Marchais, Geoffrey ORCID: https://orcid.org/0009-0004-4715-9753, Arbane, Mohamed, Topilko, Barthélemy ORCID: https://orcid.org/0009-0008-3554-4231, Brousseau, Jean ORCID: https://orcid.org/0000-0003-4665-4205, Brochot, Clothilde, Yaddaden, Yacine ORCID: https://orcid.org/0000-0003-4704-1398, Bahloul, Ali et Maldague, Xavier (2024). SafeRespirator: Comprehensive Database for N95 Filtering Facepiece Respirator Leakage Detection Including Infrared, RGB Videos, and Quantitative Fit Testing. IEEE Access, 13 . pp. 5648-5659.
Prévisualisation |
PDF
Licence d'utilisation : CC BY-NC-ND 4.0. Télécharger (2MB) | Prévisualisation |
Résumé
The COVID-19 pandemic underscored the challenges of performing mandatory Quantitative Fit Tests (QNFT) for healthcare professionals and the limitations of self-administered fit checks. To address this, it is crucial to develop faster and more efficient methods for detecting, locating, and quantifying Filtering Facepiece Respirators (FFRs) leakage, providing wearers with immediate feedback on their safety. Infrared (IR) technology, which relies on temperature variation analysis around the face seal, has proven effective for locating leakage but has not yet achieved automated quantification. This paper introduces a validated protocol for creating a comprehensive database to advance automatic leakage detection. The database includes synchronized and calibrated IR and RGB video data, along with QNFT results, collected from 62 participants wearing four different N95 FFR models in four distinct positions. High-performance IR and RGB cameras were used to precisely capture temperature variations, while a PortaCount® instrument served as the reference for fit quantification. Preliminary results using the MediaPipe approach with synchronized and calibrated RGB and IR videos demonstrate that precise tracking of the human face is achievable even with an FFR. The normalized cross-correlation methods further highlight the capability of IR imaging to accurately monitor and detect leakage. This breakthrough paves the way for real-time, automated detection of N95 FFR leakage, potentially deployable at operator workstations. This large, high-quality, open-access database is available to the scientific community to drive innovation in respiratory protection research and beyond.
Type de document : | Article |
---|---|
Validation par les pairs : | Oui |
Mots-clés : | Base de données ; imagerie infrarouge ; fuite de N95 FFR ; santé et sécurité au travail ; essais d'ajustement quantitatifs ; BigData / Database ; infrared imaging ; N95 FFR leakage ; occupational health and safety ; quantitative fit testing ; BigData. |
Départements et unités départementales : | Département de mathématiques, informatique et génie |
Date de dépôt : | 16 janv. 2025 19:03 |
Dernière modification : | 16 janv. 2025 19:03 |
URI : | https://semaphore.uqar.ca/id/eprint/3195 |