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ABSTRACT The COVID-19 pandemic underscored the challenges of performing mandatory Quantitative
Fit Tests (QNFT) for healthcare professionals and the limitations of self-administered fit checks. To address
this, it is crucial to develop faster andmore efficient methods for detecting, locating, and quantifying Filtering
Facepiece Respirators (FFRs) leakage, providing wearers with immediate feedback on their safety. Infrared
(IR) technology, which relies on temperature variation analysis around the face seal, has proven effective
for locating leakage but has not yet achieved automated quantification. This paper introduces a validated
protocol for creating a comprehensive database to advance automatic leakage detection. The database
includes synchronized and calibrated IR and RGB video data, along with QNFT results, collected from
62 participants wearing four different N95 FFR models in four distinct positions. High-performance IR and
RGB cameras were used to precisely capture temperature variations, while a PortaCount® instrument served
as the reference for fit quantification. Preliminary results using the MediaPipe approach with synchronized
and calibrated RGB and IR videos demonstrate that precise tracking of the human face is achievable even
with an FFR. The normalized cross-correlation methods further highlight the capability of IR imaging to
accurately monitor and detect leakage. This breakthrough paves the way for real-time, automated detection
of N95 FFR leakage, potentially deployable at operator workstations. This large, high-quality, open-access
database is available to the scientific community to drive innovation in respiratory protection research and
beyond.

INDEX TERMS Database, infrared imaging, N95 FFR leakage, occupational health and safety, quantitative
fit testing, BigData.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia .

I. INTRODUCTION
A N95 Filtering Facepiece Respirator (N95 FFR) is a device
that protect the wearer from inhaling harmful aerosols.
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However, only N95 FFR devices correctly adapted to the
wearer’s face can offer adequate protection. For N95 FFR,
which are the most frequently used in healthcare [1], the
biggest contributory factor to the loss of protection is a
leakage through the face seal [2], [3]. This implies that the
protection offered by an FFR is significantly affected by
the impaired fit between the FFR and the face [4]. FFR fit
can be determined by qualitative or quantitative methods [5]:
Quantitative Fit Test (QNFT) or Qualitative Fit Test (QLFT).
These methods enable to choose the N95 FFR best suited
to the wearer’s facial morphology. Once the N95 FFR has
been selected, the wearer must perform a self-test named fit
check or user-seal-check each time it is used. This test checks
the tightness of the N95 FFR through positive and negative
pressure tests.

Concerning QNFT and QLFT, these methods enable the
choice of the best-suited N95 FFR to the wearer’s facial
morphology. The distinction between QLFT and QNFT lies
in both the method and the Pass/Fail criteria. In QLFT,
the tester must verify the subject’s ability to detect the
challenge agent (sensitivity test) during breathing exercises.
The subject must indicate if he detects the challenge agent
during the QLFT; it is deemed ‘‘Pass’’ when the challenge
agent is not detected. Conversely, QNFT employs a particle
counter to calculate a fit factor. To obtain a test labeled
‘‘Pass’’, it requires a minimum fit factor of 100 for half
facepieces [5]. However, these different methods have shown
some limits. Indeed, they do not enable the precise leakage
localizations, which are detected solely through irritation
or a low fit factor. Additionally, they offer neither a visual
representation of leakage nor an accurate measurement of
their severity. Furthermore, these tests are not automated,
requiring supervision by a specially trained professional.
Taken together, fit testing is both resource-intensive and
expensive in terms of time and cost [6].
Concerning the fit check, before COVID-19, Huh et al. [7]

have already studied the accuracy of this fit check and
have shown that almost 50% of N95 wearers don’t perform
an adequate verification. Lam et al. [8] and Regli et al. [6]
have both concluded that the user-seal-check has low
sensitivity, accuracy, and predictive value in determining
the fit of N95 FFR. It is unreliable in detecting a proper
fit or identifying leakage. Furthermore, many healthcare
workers have been extensively exposed to COVID-19, and a
significant proportion of them have contracted the virus [9],
[10]. Furthermore, both this fit check and the QLFT rely
on the judgment of each participant [6], meaning their
results from these tests depend on the judgment of each
participant.

All things considered, it seems important to find alternative
methods to conventional fit testing and fit checking. These
methods should enable the detection of N95 FFR leakage,
specifically by locating and quantifying leakage automati-
cally, to reduce costs and save time. Infrared (IR) technology
has already demonstrated its capacity to detect leakage.
Indeed, studying temperature variations at the face seal can

help identify FFR leakage. These temperature changes arise
from the contrast between the ambient air (the inhaled air)
and the warm exhaled air [11].

Some studies have investigated leakage detection on
N95 FFR using IR imaging [4], [12]. These studies have
shown that IR imaging can assess whether an FFR is
properly worn and can have a complementary role in QNFT.
Harber et al. [13] have also shown that there is a correlation
between FF and IR Imaging, but it was insufficiently strong
to substitute for QNFT.

Other studies have focused on the integration of deep
learning models for N95 FFR leakage detection using IR
imaging [14], [15], [16]. All these studies have shown the
potential of artificial intelligence in detecting air leakage for
FFR wearers. Characteristics of the database used for their
study and their model’s training are given in the comparison
Table. 1. Each study has collected IR images of human
subjects wearing N95 FFR and has also conducted a fit test
(QNFT or QLFT) [14], [15], [16].

Several limitations of their databases arementioned in their
respective studies. Indeed, Chapman et al. [14] have used
only one type of P2 FFR, the flat-fold FFR, and have observed
temperature changes solely in the nose area when studying
the temperature gradient on the FFR.

Bari et al. [16] have identified immobilization of the
participant as the biggest challenge in IR image recording.
They have concluded that humanmovements influence image
processing and results.

Similarly, Siah et al. [15] have faced several limitations,
including a small sample size, an imbalance between male
and female participants, and the use of only one type of
N95 FFR, just like Chapman et al. [14]. Additionally, the
study by Siah et al. [15] has lacked a FF for each test,
as all participants have failed the QLFT, and there are no
IR images of participants wearing an FFR after a ‘Pass’
QLFT test.

In summary, these databases appear to be insufficient
for training deep learning models designed to automatically
detect and quantify leakage around the face seal of a moving
participant. Several critical gaps persist within these datasets:
the absence of four different viewpoints recorded, the lack
of FF measurements for each test, a limited and imbalanced
number of participants, a large volume of data primarily
consisting of IR videos, the use of different FFR N95 and
finally the absence of methods to account for participant
motion [14], [15], [16].

Considering the context and the various limitations high-
lighted in previous studies, the objective of the present study
is to develop a comprehensive and robust database that
adheres to several key criteria:
→ Collect data on a large and balanced number of

participants;
→ Include participants with diverse facial morphologies

wearing different types of N95 FFR;
→ Record high-definition IR and RGB videos from multi-

ple angles of participants wearing N95 FFR;
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→ Conduct two QNFT for each N95 worn by a partic-
ipant, one at the beginning and one at the end of
the test;

→ Make the database accessible to the scientific
community.

The addition of RGB video recording enables the tracking
of various points on the face of a moving person wearing
an N95. For instance, Jiang et al. [17] have used RGB and
IR sensors to detect respiratory infections by first identifying
face and N95 FFR regions in the RGB frames, then mapping
these regions to the thermal frames, and finally capturing
the regions of interest (ROIs) in the thermal frames. Some
computer codes such as MediaPipe [18] enable human face
tracking on RGB videos, which will eliminate the problem
of movements, as quoted by Bari et al. [16]. The version
of MediaPipe that can create landmarks on the face can’t
work on IR images due to the nature of IR videos and
because the MediaPipe face mesh was trained on RGB
visual datasets. The MediaPipe Face Mesh is based on deep
learning, utilizing a convolutional neural network (CNN) to
detect and track facial landmarks accurately in real-time.
This is primarily because IR technology captures thermal
radiation, which significantly differs from the visual light
spectrum in RGB images. In addition, IR and RGB data can
be merged for face tracking in IR videos. Numerous studies
have explored this fusion using RGB and IR cameras [19],
[20], as well as methods to calibrate these cameras with a
checkerboard [21], [22].

II. METHODOLOGY
A. MATERIAL
1) IMAGING SYSTEM CONFIGURATION
The study aims to investigate temperature variations of a
human face wearing an N95 FFR during normal breathing,
considering human movement. For that, a complete imaging
system was developed to study these variations, including
four different elements: an RGB camera, an IR camera,
a synchronization system and a Stereo camera calibration
system [23]. The two cameras used, are detailed in Table. 2.
They were chosen for their high-resolution level and frame
rate similarity. A 50 mm lens was chosen to operate with the
IR camera because this lens enables a display similar to that
of the RGB camera.

The imaging system was developed on the CAO software,
SolidWorks 2022 (Dassault Systems, Waltham, MA) and
was printed with the Ultimaker S5 3D Printer (Ulti-
maker B.V., Utrecht, Netherlands) as shown in black in
the Fig. 1.

A RGB camera deep adjustment was added to this system
for a better alignment between the two lenses. The main
requirement of this imaging system was the necessity to
create a system where the lenses of the cameras were as
close as possible to minimize the distance between these
lenses [21]. Indeed, it enables the recording of similar
videos and facilitates calibration between these two cameras.
Another requirement was that each camera should not move

FIGURE 1. Modeling and design of the imaging system, 1) RGB camera, 2)
IR camera.

relative to the other during all data collection to avoid a
remaking of calibration.

2) IMAGING SYSTEM CALIBRATION
Once the cameras were installed, immobile and ready for
use, they needed to be calibrated. Stereo camera system
calibration involves aligning two cameras to capture the
same scene accurately and reconstructing it in 3D, using
a known pattern like an 8 × 8 checkerboard to determine
intrinsic and extrinsic parameters. The calibration used an
aluminum checkerboard, made by sticking adhesive vinyl on
an aluminum sheet, with the checkerboard pattern cut into
the vinyl. Aluminum’s low emissivity (≈0.02 at 20◦C [24])
contrasts with vinyl’s high emissivity (≈0.95 at 20◦C [25]),
allowing an IR camera to capture the difference when a
lamp heats the checkerboard. The process starts by capturing
multiple images of the checkerboard from different angles
to calculate intrinsic parameters like focal length and optical
center and then estimating extrinsic parameters such as
relative position and orientation. Using about 10 pairs
of IR and RGB images of the checkerboard in different
positions enhances accuracy (Fig. 2). Regular recalibra-
tion is recommended to account for changes in camera
positions, lens focus, and ambient conditions, ensuring
optimal 2D correspondences and precise 3D reconstruction
for high-precision 3D imaging [26]. Ten pairs of images
were captured daily for calibration during each day of
data collection.

FIGURE 2. Two IR and RGB image pairs of the aluminum checkerboard in
2 different positions for calibration.
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TABLE 1. Information about database used to develop their deep learning models.

TABLE 2. Characteristics of two cameras used to collect data.

3) IMAGING SYSTEM SYNCHRONIZATION
Once IR and RGB cameras were fixed and calibrated, it was
important to synchronize the recordings from each camera to
avoid a time difference between IR and RGB videos. The two
cameras work with different software, each with a different
time delay at the start of recording, making automatic
synchronization complicated. A synchronization system was
developed to solve this issue, controlled by Bluetooth and
composed of a halogen lamp, an electromagnet, an Arduino
Uno and 3D printing pieces. This system was placed just
behind the participant on a wood panel. For each video
recording start, a 10-second delay allowed the lamp to heat
up. At the end of this period, a pulse of heat and light was
visible to the two cameras, as shown in Fig. 3. Furthermore,
a computer code was developed to recognize this pulse and
synchronize the IR and RGB videos.

4) QUANTITATIVE FIT TESTING
To detect an N95 FFR leakage with IR technology, it was
essential to rely on a technology that is already used daily
by professionals and has already proven its efficiency. The
reference instrument that was used in this study is the
PortaCount® Instrument, Model 8038 (TSI Incorporated,
Shoreview, Minnesota, USA). It enables the performance
of a QNFT by counting particles inside and outside the
N95 FFR during 8 breathing exercises, as described by
OSHA. The Fit Factor (FF) is then calculated by dividing the
number of particles outside the N95 FFR by the number of
particles inside. The PortaCount® Model 8038 measures FF
from 0 to 200. For an N95 FFR, the success criterion to pass
a QNFT is an FF higher than 100 [5]. The instrument must
be used in a controlled environment with enough particles
in the ambient air. For that, a particle generator, the 24 Jet
Collision Nebulizer (BGI, Inc) was used. It operates with

FIGURE 3. Two IR and RGB image pairs with and without pulse of heat
and light (encircled in red) for synchronization.

different pressures and solutions, but in the context of the
present data collection, a pressure of 30 PSI and a salt solution
(c = 0,05 g/mL) were chosen. These parameters enabled
constant particle generation around 10000 particles/cm3 in
ambient air and were safe for participants’ health. The
average diameter of the generated particles was less than
100 nanometers.

5) OVERALL INSTALLATION
The installation integrated the various instruments and
allowed one participant to sit in front of the cameras.
As shown in Fig. 4, it consisted of a dark tent, a swivel chair
and the imaging system. The dark tent served two purposes.
It minimized reflectivity and prevented external disturbances
during data collection and calibration on the checkerboard,
as done by Roberge et al. [4]. The dark tent also created
a smooth bottom on videos, making the synchronization
easier. The swivel chair allowed participants to rotate with the
chair instead of turning their heads, thus limiting their head
movements. Indeed, head movements can change N95 FFR
fit and by the same way affect correlation between FF and IR
evaluation. The tripod of the imaging system and the swivel
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chair were fixed to the ground. This helped to maintain a
constant distance of 50 centimeters between the participant’s
face and the camera lenses. Keeping this distance constant
helped reduce the need for frequent adjustments of the IR
camera lens and, consequently, minimized the number of
camera calibrations required.

This setupwas implemented in a laboratorywith controlled
temperature and relative humidity, maintained using a ther-
mostat set to 21◦C. During data collection, the temperature
ranged from 20◦C to 22.5◦C, while the relative humidity
fluctuated between 17% and 23%.

FIGURE 4. Final installation including the imaging system, the
PortaCount®, the dark tent and the swivel chair.

B. METHODS
1) PARTICIPANTS
The ethical approvals to conduct the data collection on
participants were obtained by the University of Quebec at
Rimouski (UQAR) and Laval University Research Ethics
Committees (approval number 2024-276) in the fall of 2023.
Participant recruitment was done in the student community
of Laval University. To be recruited, the participant had to
meet the following eligibility criteria, similar to those for
a QNFT [5]: Not show flu-like symptoms, not have skin
irritation or inflammation on the face, not have eaten, drunk,
or smoked 1 hour before the event, for men, be clean-shaven
at least 24 hours beforehand. 62 participants participated,
36 women (58%) and 26 men (42%). Before starting
data collection, each one signed two consent papers, one
to participate in the data collection and another to give
agreement for image sharing in publications or reports.
Refusing to share their data did not result in the cancellation
of data collection.

TABLE 3. N95 FFR characteristics tested during data collection.

2) PROTOCOL
After the consent papers were signed and following an
explanation of the protocol for data collection, the data
collection process began. Each participant tested 4 different
N95 FFR out of 7 available options (Table. 3).

The N95 FFRs from various manufacturers were selected
for their distinct geometries, designed to create diverse
leakage scenarios. Indeed, one of the objectives of this study
is to examine different leakage scenarios occurring at various
locations around the face seal. One can reach this objective
by multiplying N95 FFR geometries and participant facial
morphologies. It is important to notice that the data collection
was not performed to test the N95 FFR’s performance to fit.
The participants did not receive instructions about wearing an
N95 FFR. Therefore, the participants unintentionally created
leakage.

As illustrated in Fig. 5, participants followed a test
sequence that involved setting up an N95 FFR, undergoing
an initial QNFT, breathing in front of the imaging system,
and finally, completing a second QNFT. This protocol
was developed following a preliminary study on a Static
Advanced Headform wearing an N95 FFR. This study helped
establish the number of fit tests conducted and the number of
views recorded.

Data collection operated in the following sequence. First,
participants, seated in front of the cameras, were given two
minutes to put on and adjust an N95 FFR. QNFT tests
were carried out at the beginning and end of the collection.
It consisted of three exercises: normal breathing (50 seconds),
deep breathing (50 seconds), and normal breathing (50
seconds). The two QNFT allowed verification that the N95
FFR fit did not change during the collection. The difference
X (with X = FF1−FF2) and the average between these two
FF were then calculated. The difference enabled to class the
reliability of each test. The greater difference, the less reliable
the data. Indeed, a large difference meant the N95 FFR fit had
changed during test. On the other hand, the average gave a
global FF of the test.

The aim of the database is to correlate FFwith IR videos, so
3 exercises were selected to observe the same leakage during
the IR test. Exercises and sample time were selected from the
eight exercises outlined in the OSHA protocol, as they are
less likely to modify the face seal during testing.

During the IR test, the subject breathed normally and
assumed four different positions over 35 seconds, positioning
their face in front of the cameras, upwards, to the left,
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FIGURE 5. Detailed data collection protocol for 1 N95 FFR tested.

and finally to the right. These positions enabled to capture
exactly and totally the participant face seal. Indeed, with
one view, for example in front of cameras, the IR camera
can’t capture the entire face seal. To take these positions, the
participants used the swivel rotation to avoid breaking the
face seal and not changing their N95 FFR fit. It was requested
that the participants minimize their head movements. The
sweating of these participants was not controlled. Between
each QNFT and the IR test, a replacement between a cap
and the PortaCount® sensor was done. It was enabled
to capture IR videos without the PortaCount® sensor
influencing temperature variations on the N95 FFR or the
face seal in IR videos. A cap was used because a QNFT
requires the N95 FFR to be perforated to accommodate the
PortaCount® sensor. Time recording was chosen to capture
enough breathing cycle to study them. For a normal human
breathing, frequency breathing is comprised between 12 and
20 cycles per minutes [27]. So, a time recording equal to
35 seconds represents several cycles captured between 7 and
12 cycles. At the end of each N95 FFR (starting from the 11th

participant) a question about a possible feeling of leakage was
asked to the participant. Their answer enables cross-reference
information between an IR video, an FF and a participant’s
feelings. This information makes it easier to locate leakage
with certainty.

Between each N95 FFR, the participant had a break of
2 minutes to breathe normally without N95 FFR. When the
participant’s face temperature was back to normal at the
end of data collection, a last IR and RGB video recording
of the participants without wearing an N95 FFR was done.
This last recording enabled the evaluation of the size of
the participant’s face with an algorithm which calculates the
number of pixels compared to a known face reference. Face
length and face width of each participant were measured, and

so it enabled the placement of each participant in the bivariate
NIOSH Panel (Fig. 6). This figure shows the diversity of
participant facial morphologies in this data collection, which
is one of the aims of this study.

FIGURE 6. NIOSH bivariate panel as determined by Zhuang et al. [28] and
distribution of 62 participants’ face length and width.

III. RESULTS
A. RECORDING VISUALIZATIONS
As described previously, for each participant and each
N95 FFR, IR and RGB videos lasting 35 seconds were
captured in four different positions as shown in Fig. 7. OBStu-
dio Software [29] (OBStudio, Inc.) enables the recording
and export of RGB video in.mp4 format, while ResearchIR
Max [30](FLIR Systems, Inc., Wilsonville, Oregon, USA)
records in.ats format, a proprietary FLIR format that is
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TABLE 4. Test reliability classification according to the difference
between FF1 and FF2.

unusable without Research IR Max and so in algorithms.
The.tiff format, known for its high-quality images, was finally
used to export these videos to avoid information and quality
loss. For each participant, 34 videos were recorded, 17 IR
videos (.tiff and.ats) and 17 RGB videos (.mp4). 4 positions
for each of 4 N95 FFR = 16 videos + 1 video without an
N95 FFR. As mentioned before, the four positions allow
visualization of the face seal entirely. Additionally, the IR
camera’s high sensitivity and high acquisition frame rate
allow for precise monitoring of temperature variations around
the face seal, with a sensitivity of less than 20 mK.

FIGURE 7. Visualization of IR and RGB images in 4 different positions:
front, top, left, right.

B. TEST RELIABILITY
In addition to IR and RGB videos, each N95 FFR tested by a
participant involved two QNFT, resulting in two measured fit
factors. The difference and the average of the fit factors were
calculated to classify each test. The difference |FF1−FF2|
was used to classify the reliability of a test, as shown in
the Table. 4. There were, in totality, 62 participants, and
each one wore 4 N95 FFR, so there were 248 (62*4) tests.
This classification was decided according to the accuracy
of PortaCount® which is ±20 when the higher fit factor
measurable is 200 [31]. With this classification, more than
92.8% of data collected are considered as reliable or very
reliable. A difference between FF1 and FF2 greater than
100 indicates that the N95 FFR fit changed significantly
during data collection. This classification helps determine
which data will be used first and which will be discarded.

C. TEST CLASSIFICATION
Regarding the average between FF1 and FF2, this value was
used to classify each test according to the FF. A distribution

TABLE 5. Example of 2 tests for 2 participants.

of the number of QNFT based on FF is presented in Fig. 8.
This distribution can also be used to count howmany tests are
classified as ‘Pass’ and ‘Fail.’ A test is considered a ‘Pass’
if its FF is higher than 100 [5]. In these tests, 114 (46%) are
considered as ‘‘Fail’’ and 134 (54%) as ‘‘Pass’’. The database
is then constituted for each test by the bivariate parameter of
the participant, 17 IR videos, 17 RGB videos, 2 FF labels and
a test reliability.

FIGURE 8. Test distribution according to the average between FF1 and
FF2 (∗Corresponds to the class of FF with 1 unreliable test).

D. PRELIMINARY RESULTS
To show an example of using this database, sequences from
two different participants, were processed and compared. The
sequences from participants number 60 and 41 are used as an
example. The information regarding these tests is detailed in
Table. 5.

For each participant and each recorded point of view,
it is possible to visualize the temperature variations between
exhalation and inhalation over a single breathing period.
These variations are calculated as the pixel-wise subtraction
between two images corresponding to the peak temperature
of the exhalation and the inhalation: Iexhalation and Iinhalation:

I (i, j) = Iexhalation(i, j)− Iinhalation(i, j), (1)

where i and j represent the pixel coordinates, with
i ∈ [0,1280] and j ∈ [0,1024]. Fig. 9 presents these
temperature variations for one single breathing period.
These heatmaps align with the leakage feeling reported by
participant 60 in the area of the left nostril and the absence
of such a feeling reported by participant 41. This presence
and absence of leakage are also consistent with the FF
measurements collected for these two participants wearing a
3M 8210 N95 (Table 5).
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FIGURE 9. Variation of temperature (in ◦C) over a single breathing period
for each recorded point of view. 1) Participant 60, 2) Participant 41.

However, this subtractionmethod has its limitations, which
are evident in the heatmaps (Fig. 9). Specifically, some
temperature variations are not due to leakage. For instance,
temperature variations of approximately 7-8◦C are observed
near each participant’s collar. This phenomenon is also
evident for participant 60, particularly around the face seal
and near the right ear in the ‘‘front’’ view, as well as
at the forehead level in the ‘‘right’’ view ((1) in Fig. 9).
These temperature variations are caused by movement and
can be attributed to the temperature difference between
the pullover and the skin in the collar area. Even though
these two participants exhibit only slight movements, small
movements can lead to errors in temperature readings.
Overall, accounting for participant movement is crucial for
accurate leakage detection, a finding consistent with the study
conducted by Bari et al. [16].
The method used to account for human movements in

this study is the MediaPipe [18] approach, which utilizes
both RGB and IR videos. Specifically, theMediaPipe method
enables the tracking of key points on a moving human face in
RGB videos. After synchronizing the RGB and IR 3, stereo
camera system calibration is applied [21], [22] using the
checkerboard shown in Figure 2. MediaPipe is applied on the
RGB images, as shown in Fig. 10 (left side). The information
is then transferred to the IR sequence, where the landmarks
of the face mesh detected by MediaPipe are mapped onto
the IR images, as illustrated in Fig. 10 (right side). This
process ensures accurate correspondence between the RGB
and IR data, enabling robust facial feature detection across
both modalities.

After identifying the landmarks, it is possible to extract the
temperature at specific points on the face (Fig. 10). In this
case, landmarks numbers 56 and 464 are used. The results
of the temperature measurements at these points are shown
in Fig. 11. This approach enables precise thermal analysis
of the face with a sensitivity of less than 20 mK, based on
accurately mapped landmarks from RGB images, even when
the participant moves during the recording.

FIGURE 10. Application of MediaPipe on RGB/IR Images after
synchronization and calibration. 1) Participant 60, 2) Participant 41.
Landmark 56: blue point on the left side, at eye level; Landmark 464: red
point on the right side, at cheek level; Center of mask: green circle. The
size of the landmarks is enlarged for better visibility; their original size is
4*4 pixels.

After extracting the landmarks on the IR images, land-
marks that could potentially indicate thermal leakage were
selected. This selection allows visualizing the temperature
at these critical points. Fig. 10 shows the locations of these
selected landmarks ((blue point for landmark 56 on the left
side, at eye level, and red point for landmark 464 on the
right side, at cheek level). Fig. 11 presents a diagram of
the temperature changes over time at these two points for
participants 60 and 41. This analysis helps in understanding
the thermal behavior of the face at specific landmarks under
different conditions.

This diagram is consistent with the heatmaps (Fig. 9). It’s
also noticeable that the mean temperature fluctuates over
the recording period depending on the landmark. Landmark
56 registers a highermean temperature compared to landmark
464. For the same landmark, this mean temperature also
varies between participants. As for temperature fluctuations,
they are not constant throughout the test, as illustrated by
the blue curve for participant 60. The preliminary results,
therefore, show that the method is capable of showing the
presence of potential leakage.

It is also valuable to analyze the temperature evolution
of the N95 FFR, as it provides essential insights into each
participant’s breathing patterns, including respiratory rate and
amplitude. However, detecting the center of the mask to
calculate the respiratory temperature was challenging, while
the mask was not part of the face. To address this issue,
a semantic segmentation method was implemented using
a U-Net variant proposed by Arbane et al. [32]. This deep
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FIGURE 11. Comparative analysis of temperature variations between two
participants at identical landmarks.

learning model enables the automation of N95 FFR detection
and was developed on human subjects wearing N95 FFR.
After segmentation, the center of the mask (in green in
Fig. 10) was selected to measure the breathing pattern and
temperature variations, including frequency and amplitude.
Fig. 12 presents the two participants’ average temperature
evolution on the N95 FFR. Additionally, a spectral analysis
could be performed to identify the dominant frequency
components.

FIGURE 12. Evolution of the average temperature across all pixels within
the green circle at the center of the N95 FFR, using mask
segmentation [32].

To determine whether temperature variations are due to a
leakage rather than movements, blinking, or external factors,
one approach is to analyze the similarity between thermal
signals recorded at the N95 FFR (Fig.12) and at the leakage
site (Fig.11) for each participant. This can be achieved
using normalized cross-correlation [33], which measures the
similarity between two signals with a time lag (τ ). This
method disregards the continuous component and the signal
amplitudes, focusing solely on temperature variations, which
are indicative of leakage [11]. A high correlation value (close
to 1) indicates a strong similarity between these thermal
signals and suggests the presence of a potential leakage.
Indeed, the breathing pattern will be more pronounced in
areas with leakage than in those without.

These two thermal signals are discrete and sampled at a
frame rate of 30 Hz over a duration of 35 seconds, resulting in
N (the number of samples) being 1050. Formulas (2) enables
to normalize a discrete signal g[k] with µg the mean and σg
the standard deviation of the discrete signal.

gnorm[k] =
g[k]−µg

σg
,where :

µg =
1
N

N∑
k=1

g[k] ; σg =

√√√√ 1
N

N∑
k=1

(
g[k]−µg

)2 (2)

The normalized cross-correlation Rnormgf [n] between two
discrete signals g[k] and f [k], where n represents the sample
lag and ∗ denotes the convolution product, is defined by
formula (3).

Rnormgf [n] = (fnorm ∗gnorm)[n]

Rnormgf [n] =

N−1∑
k=0

fnorm[k] ·gnorm[k+n] (3)

Once calculated, this normalized cross-correlation can be
expressed as a function of the time delay τ using the frame
rate. Fig. 13 presents the normalized cross-correlation R for
two studied landmarks (56 & 464) with the thermal signal at
the N95 FFR for each participant as a function of the time
lag (τ ). A strong correlation is observed for landmark 56 of
participant 60, reaching 0.91 at a time lag of 0.26 seconds
(R(0.26) = 0.91, the black cross on Fig. 13). This strong
correlation supports the potential leakage detected in Fig. 11.
In contrast, for the other landmarks, the correlation is
significantly lower, falling below 0.35.

The calculation of the normalized cross-correlation at each
Mediapipe landmark with the thermal signal at the FFR
could allow for precise leakage detection. Other methods
to check the similarity between two signals, such as cross-
spectral analysis [34] or Pearson correlation [35], could also
be explored. Future work will investigate these methods and
determine which is most suitable for detecting N95 leakage.
Additionally, future efforts will focus on developing amethod
to quantify each leakage by analyzing the thermal signal
amplitude at specific landmarks around the face seal. These
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methods will be applied to the entire dataset, facilitating the
efficient training of deep learning models.

FIGURE 13. Normalized cross-correlation Rnorm between breathing
pattern and each studied landmark (56 & 464) for two
participants (60 & 41).

More recently, Arbane et al. employed their semantic
segmentation approach [32] for a purpose different from
that of this study. They used it to eliminate the need for
RGB videos by applying their model to each frame, enabling
the detection of FFR and the face seal at each position of
a participant. This allows for the study of the face seal
independently of the participant’s movements.

IV. DISCUSSION
The development of the testing installation has allowed for
the collection and compilation of a database of participants
wearing N95 FFR in various positions. Preliminary results
demonstrate the method’s capacity to detect potential leak-
age. Concerning the reliability of data collected, based on
the difference between FF1 and FF2, 85.5% of the data
are considered very reliable, 7.3% are considered reliable,
5.6% are considered little reliable and 1.6% are considered
unreliable. The unreliable data is explained by change in the
FFR fit during the recording of IR and RGB videos. These
videos are still usable, but the labeling of the FF on these tests
remains unreliable.

Recording videos to accurately capture the face seal proved
complex during data collection. Positioning the participant
with meticulous precision is imperative to obtain appropriate
data. Excessive rotation of the chair results in partial capture
of the face seal. Using four views of the participant’s face

ensured capturing the entire face seal. However, achieving
adequate capture might require fewer views.

The objective is not only to locate leakage, but also
to quantify it. Labeling each test using the FF will allow
leakage-level classes to be created. Currently, the two main
existing classes are ‘‘Pass’’ and ‘‘Fail’’, for the two fit testing
methods: QNFT and QLFT. However, given the distribution
of PortaCount® measures (Fig. 8), there is potential for
refining and multiplying these classes.

This database could be also used to detect respiratory
issues by studying breathing patterns through the mask,
assessing the thermal impact of wearing an N95 FFR,
or studying the fluid mechanics of breathing through an
N95 FFR. For example, Arbane et al. [32] have already
utilized these data to develop a deep learning model aimed
at improving the segmentation of an N95 FFR using IR
videos. This model demonstrates high accuracy and enables
precise analysis of the face seal. Future work will focus on
an in-depth investigation of the face seal to enable automatic
leakage detection, alongside exploring alternative correlation
methods proven to enhance this process. Statistical analyses
will be employed to determine the most effective approach.
Making this localization and quantification automatic would
also allow detecting leakage at workstations close to the
operators, ensuring them respiratory protection throughout
their activity. Many other fields where hazardous fine
particles are present and where respiratory protection is
essential, such as construction, healthcare, manufacturing,
mining, laboratories, and firefighting, could benefit from this
technology. All things considered, this database could play a
significant role in occupational safety and respiratory health
research.

V. CONCLUSION
A database of high-quality IR and RGB videos was created.
62 participants, 36 women and 26 men, each tested 4 FFR
in 4 different positions (front, top, left, right) and they
performed 2 QNFT for each FFR tested: one before video
recording and one after. This database comprises 1054 IR,
1054 RGB videos, and 496 QNFT, totaling 8To. To our
knowledge, it currently represents the most comprehensive
database in the field of N95 FFR leakage detection using IR
imaging.

This database has been specifically created to develop
deep learning models for comprehensive N95 FFR leakage
detection. These models could automatically locate and
quantify leakage across the entire face seal of N95 FFR.
This deep learning technology has the potential to provide an
alternative to current methods, ensuring adequate respiratory
protection for all N95 FFR users, particularly healthcare
workers.

DATA ACCESSIBILITY
A website1 has been developed to showcase a sample
database and the procedure to follow in order to obtain it.
This database is available only to students, research groups,

1https://saferespirator.uqar.ca/
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or research institutions with approval from an authorized
authority. Therefore, we will not accept applications from
generic email addresses (gmail.com, hotmail.com, etc.); only
applications from email addresses associated with non-profit
institutions such as schools or research institutes will be
considered.

This website provides the rules and the license agreement
that must be signed and returned. The use of participants’ data
is clearly outlined in these rules. Any participant who has not
signed the consent form to share their facemust have their eye
area blurred or hidden before their data can be used. A list of
each participant’s consent status is available on this website
and in the database.

Concerning the data, only raw data is provided. The
videos are available in.tiff and.ats formats for IR recordings
and.mp4 format for RGB videos. For the QNFT results, the
Portacount® output is provided as a PDF summarizing the
participant number, the N95 FFR model, and the fit factor.

Regarding data organization, the dataset is divided into two
collection phases. The first phase includes 35 participants,
while the second phase includes 27 participants. For each
participant, the data is organized by N95 FFR model.
Additionally, for each N95 FFR, the corresponding IR, RGB,
and FF data are provided in the previously specified formats,
with recordings captured from four different viewpoints: top,
left, front, and right.

Additionally, no scripts are included in the dataset.
However, an Excel file named SummaryTable_ToShare is
provided, summarizing participant information such as their
number, sex, and facial dimensions (height and width). This
file also includes a summary of leakage feeling for each
participant and eachN95 FFR, numbered 11 to 62, as well as a
summary of the QNFT results conducted by the participants.

ACKNOWLEDGMENT
The authors would like to thank all the participants who took
part in their data collection. Clemente Ibarra Castanedo and
Denis Ouellet for their assistance throughout this study and
the individuals working at the 3D printing services at UQAR
and ULaval.

REFERENCES

[1] L. A. Pompeii, C. S. Kraft, E. A. Brownsword, M. A. Lane, E. Benavides,
J. Rios, and L. J. Radonovich, ‘‘Training and fit testing of health care
personnel for reusable elastomeric half-mask respirators compared with
disposable N95 respirators,’’ JAMA, vol. 323, pp. 1849–1852, Mar. 2020.

[2] M. Clayton and N. Vaughan, ‘‘Fit for purpose? The role of fit testing
in respiratory protection,’’ Ann. Occupational Hygiene, vol. 49, no. 7,
pp. 545–548, 2005.

[3] S. A. Grinshpun, H. Haruta, R. M. Eninger, T. Reponen, R. T. McKay,
and S.-A. Lee, ‘‘Performance of an N95 filtering facepiece particulate
respirator and a surgical mask during human breathing: Two pathways for
particle penetration,’’ J. Occupational Environ. Hygiene, vol. 6, no. 10,
pp. 593–603, Sep. 2009.

[4] R. J. Roberge, W. D. Monaghan, A. J. Palmiero, R. Shaffer, and
M. S. Bergman, ‘‘Infrared imaging for leak detection of N95 filtering
facepiece respirators: A pilot study,’’ Amer. J. Ind. Med., vol. 54, no. 8,
pp. 628–636, Aug. 2011.

[5] 1910.134 App A—Fit Testing Procedures (Mandatory). Accessed:
Apr. 4, 2024. [Online]. Available: https://www.osha.gov/laws-
regs/regulations/standardnumber/1910/1910.134AppA

[6] A. Regli, A. Sommerfield, and B. S. vonUngern-Sternberg, ‘‘The role of fit
testing N95/FFP2/FFP3 masks: A narrative review,’’ Anaesthesia, vol. 76,
no. 1, pp. 91–100, Jan. 2021.

[7] Y. J. Huh, H. M. Jeong, J. Lim, H. Y. Park, M. Y. Kim, H.
S. Oh, and K. Huh, ‘‘Fit characteristics of N95 filtering facepiece
respirators and the accuracy of the user seal check among Koreans,’’
Infection Control Hospital Epidemiology, vol. 39, no. 1, pp. 104–107,
Jan. 2018.

[8] S. C. Lam, J. K. L. Lee, S. Y. Yau, and C. Y. C. Charm, ‘‘Sensitivity and
specificity of the user-seal-check in determining the fit of N95 respirators,’’
J. Hospital Infection, vol. 77, no. 3, pp. 252–256, Mar. 2011.

[9] A. K. Sahu, V. Amrithanand, R. Mathew, P. Aggarwal, J. Nayer, and
S. Bhoi, ‘‘COVID-19 in health care workers—A systematic review and
meta-analysis,’’ Amer. J. emergency Med., vol. 38, no. 9, pp. 1727–1731,
2020.

[10] S. L. Burrer, M. A. de Perio, M. M. Hughes, D. T. Kuhar, S. E. Luckhaupt,
C. J. McDaniel, R. M. Porter, B. Silk, M. J. Stuckey, and M. Walters,
‘‘Characteristics of health care personnel with COVID-19—United States,
February 12-april 9, 2020,’’ MMWR. Morbidity Mortality Weekly Rep.,
vol. 69, no. 15, pp. 477–481, Apr. 2020.

[11] J. Kerl, M. Wenzel, and D. Köhler, ‘‘Thermal imaging of mask leakage
during pressure-controlled ventilation (bipap therapy),’’ Somnologie,
vol. 8, no. 3, pp. 83–86, 2004.

[12] J. Dowdall, I. Pavlidis, and J. A. Levine, ‘‘Thermal image analysis for
detecting facemask leakage,’’ in Thermosense, vol. 5782. Bellingham,WA,
USA: SPIE, 2005, p. 46.

[13] P. Harber, J. Su, A. D. Badilla, R. Rahimian, and K. R. Lansey, ‘‘Potential
role of infrared imaging for detecting facial seal leaks in filtering facepiece
respirator users,’’ J. Occupational Environ. Hygiene, vol. 12, no. 6,
pp. 369–375, Jun. 2015.

[14] D. Chapman, C. Strong, K. D. Tiver, D. Dharmaprani, E. Jenkins, and
A. N. Ganesan, ‘‘Infra-red imaging to detect respirator leak in healthcare
workers during fit-testing clinic,’’ IEEE Open J. Eng. Med. Biol., vol. 5,
pp. 198–204, 2024.

[15] C. R. Siah, S. T. Lau, S. S. Tng, and C. H. M. Chua, ‘‘Using infrared
imaging and deep learning in fit-checking of respiratory protective devices
among healthcare professionals,’’ J. Nursing Scholarship, vol. 54, no. 3,
pp. 345–354, May 2022.

[16] A. Bari, R. Lamoureux-Lévesque, A. Ahmed Si, J. Brousseau, A. Bahloul,
B. Clothilde, Y. Yaddaden, and X. Maldague, ‘‘COVID-19, wearing N-95
masks in clinical environments: Thermographic detection of air leaks,’’ in
Proc. Int. Conf. Quant. Infr. Thermography, 2022, pp. 1–10.

[17] Z. Jiang, M. Hu, Z. Gao, L. Fan, R. Dai, Y. Pan, W. Tang, G. Zhai, and
Y. Lu, ‘‘Detection of respiratory infections using RGB-infrared sensors
on portable device,’’ IEEE Sensors J., vol. 20, no. 22, pp. 13674–13681,
Nov. 2020.

[18] Google. (2023). Mediapipe Face. [Online]. Available:
https://developers.googleblog.com/en/mediapipe-enhancing-virtual-
humans-to-be-more-realistic/

[19] J. Richter, C. Wiede, S. Kaden, M. Weigert, and G. Hirtz, ‘‘Skin
temperature measurement based on human skeleton extraction and infrared
thermography—An application of sensor fusion methods in the field of
physical training,’’ in Proc. 12th Int. Joint Conf. Comput. Vis., Imag.
Comput. Graph. Theory Appl., 2017, pp. 59–66.

[20] M. Brenner, N. H. Reyes, T. Susnjak, and A. L. C. Barczak, ‘‘RGB-D
and thermal sensor fusion: A systematic literature review,’’ IEEE Access,
vol. 11, pp. 82410–82442, 2023.

[21] C. Chen, B. Yang, S. Song, M. Tian, J. Li, W. Dai, and L. Fang, ‘‘Calibrate
multiple consumer RGB-D cameras for low-cost and efficient 3D indoor
mapping,’’ Remote Sens., vol. 10, no. 2, p. 328, Feb. 2018.

[22] I. R. Spremolla, M. Antunes, D. Aouada, and B. Ottersten, ‘‘RGB-D and
thermal sensor fusion-application in person tracking,’’ in Proc. Int. Conf.
Comput. Vis. Theory Appl., vol. 4, 2016, pp. 610–617.

[23] R. Beschi, X. Feng, S. Melillo, L. Parisi, and L. Postiglione, ‘‘Stereo
camera system calibration: The need of two sets of parameters,’’ 2021,
arXiv:2101.05725.

[24] S. Marinetti and P. G. Cesaratto, ‘‘Emissivity estimation for accurate
quantitative thermography,’’ NDT & E Int., vol. 51, pp. 127–134,
Jun. 2012.

[25] K. Rakrueangdet, N. Nunak, T. Suesut, and E. Sritham, ‘‘Emissivity
measurements of reflective materials using infrared thermography,’’ in
Proc. Int. Multi. Conference Engineers Comput. Scientists (IMECS), 2016,
pp. 1–12.

[26] Q. Gu, K. Herakleous, and C. Poullis, ‘‘3DUNDERWORLD-SLS:
An open-source structured-light scanning system for rapid geometry
acquisition,’’ 2014, arXiv:1406.6595.

5658 VOLUME 13, 2025



G. Marchais et al.: SafeRespirator: Comprehensive Database for N95 FFR Leakage Detection

[27] G. Yuan, N. A. Drost, and R. A. McIvor, ‘‘Respiratory rate and breathing
pattern,’’McMaster Univ. Med. J., vol. 10, no. 1, pp. 23–25, 2013.

[28] Z. Zhuang, B. Bradtmiller, and R. E. Shaffer, ‘‘New respirator fit test panels
representing the current us civilian work force,’’ J. Occupational Environ.
Hygiene, vol. 4, no. 9, pp. 647–659, 2007.

[29] OBStudio Software. Accessed: May 22, 2024. [Online]. Available:
https://obsproject.com/

[30] FLIR Syst. Inc. ResearchIR Max Software. Accessed: May 20,
2024. [Online]. Available: https://www.flir.eu/products/flir-research-
studio?vertical=rd+science&segment=solutions

[31] (2024).Manuel D’utilisation PortaCount Pro 8030/8038. [Online]. Avail-
able: https://tsi.com/getmedia/c8670f72-bd42-4281-9dac-42b09690adb2/
8030-8038_PortaCountPro-Manual-FR-6001873?ext=.pdf

[32] M. Arbane, G. Marchais, B. Topilko, Y. Yaddaden, J. Brousseau,
X. Maldague, C. Brochot, and A. Bahloul, ‘‘Enhanced face mask
segmentation on infrared images using lightweight u-net techniques,’’
in Proc. IEEE Int. Multi-Conference Smart Syst. Green Process-2024,
Apr. 2024, pp. 1–14.

[33] S. Chandaka, A. Chatterjee, and S. Munshi, ‘‘Cross-correlation aided
support vector machine classifier for classification of EEG signals,’’Expert
Syst. Appl., vol. 36, no. 2, pp. 1329–1336, Mar. 2009.

[34] L. B. White and B. Boashash, ‘‘Cross spectral analysis of nonstationary
processes,’’ IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 830–835, Jul. 1990.

[35] P. Sedgwick, ‘‘Pearson’s correlation coefficient,’’ Bmj, vol. 345, pp. 1–26,
Apr. 2012.

GEOFFREY MARCHAIS received the Master
of Engineering (M.Eng.) degree from the École
Nationale Supérieure d’Arts et Métiers (ENSAM)
and the Master of Science degree (M.Sc.A) in
applied sciences from the Université du Québec Ã
Rimouski (UQAR), Québec City, Canada. He is
currently pursuing the Ph.D. degree with the
École de Technologie Supérieure (ETS),Montreal,
specializing in the dynamic study of vibrations
in suspension seats. His research interests include

collaborations with various institutions and experts in mechanical and
biomedical engineering.

MOHAMED ARBANE (Graduate Student Mem-
ber, IEEE) received the B.S. degree in electronics
from the University of M’sila, Algeria, in 2019,
and the master’s degree in embedded systems in
Algeria. He is currently pursuing the master’s
degree in engineering with UQAR/Laval, Canada.
His research interests include artificial intelli-
gence, deep learning, computer vision, natural
language processing, data science, and infrared
technology.

BARTHELEMY TOPILKO received the M.S.
degree in engineering from the Université du
Québec Ã Rimouski and the Engineering Diploma
degree from the Ecole Nationale Supérieure d’Arts
et Métiers, in 2024. Since September 2024,
he has been a Thermal Engineer with the start-
up NAAREA. He is the author of two conference
papers (LATAM SHM 2023 and IEEE UBMK
2024). His research interests include CFD and
thermal finite element computation and infrared
imaging technologies.

JEAN BROUSSEAU received the Ph.D. degree
in mechanical engineering from Laval University,
Québec City. He is currently a retired Professor
with the Université du Québec Ã Rimouski,
where he is actively engaged in research as an
Associate Professor. He held the NSERC-UQAR
Research Chair in design engineering, until 2023.
His research interests include mechanical system
design, material behavior, finite element modeling
and simulation, and industrial applications of 3D

metal printing. He is also a member of the Ordre des Ingénieurs du Québec.

CLOTHILDE BROCHOT received theM.S. degree
in physics from the University of Lyon 1, France,
in 2008, and the Ph.D. degree in process engi-
neering from the University of Lorraine, France,
in 2012. She is currently an IRSST Research
Professional and an Associate Professor with ÉTS
and UQAR. Between 2013 and 2021, she was with
IRSST and Concordia University (a Postdoctoral
Fellow and a Research Associate) setting up and
managing a particle filtration research laboratory.

She has worked for both research institutes and companies, mainly in the
field of respiratory protection equipment. Her research interests include the
protection of workers exposed to airborne contaminants in their working
environment, particularly from the point of view of aerosol physics and
filtration mechanics.

YACINE YADDADEN received the bachelor’s
and master’s degrees in electrical engineering,
with a focus on intelligent and communicating
systems from the Université des Sciences et de
la Technologie de Houari Boumediene, Algeria,
where he is currently pursuing the Doctorate
degree in information science and technology in
telecommunications. At the same time, he worked
for a company specializing in internet access and
services. In 2015, he joined the Université du

Québec Ã Chicoutimi to pursue the Ph.D. degree, focusing his work
on artificial intelligence. After completing the Ph.D. degree, he had the
opportunity to complete a postdoctoral fellowship with Université Laval,
while lecturing in computer science with the Université du Québec Ã
Rimouski and Cégep de Limoilou. In July 2020, he joined as a Faculty
Member of the Université du Québec Ã Rimouski, specializing in computer
vision and machine learning.

ALI BAHLOUL has been a Researcher with
IRSST, since 2005, has developed expertise in the
field of industrial ventilation and indoor air quality.
He is currently an Associate Professor with the
Montréal’s École de Technologie Supérieure and
Concordia University and an Adjunct Professor
with the Université de Montréal. His research
interests include anticipate, identify, evaluate,
and control exposure to chemical substances and
biological agents. His work focuses on developing

and validating methods for revaluating ventilation efficiency, studying
ventilation system components and aeraulic parameters of emission, and
developing and validating source capture devices. He also works on
developing and using analytical methods. In addition, he has expertise in
hydrodynamic instability, dual diffusion, and heat and mass transfers.

XAVIER MALDAGUE (Life Senior Member,
IEEE) received the B.Sc., M.Sc., and Ph.D.
degrees in electrical engineering from Université
Laval, Québec City, QC, Canada, in 1982, 1984,
and 1989, respectively. He has been a Full
Professor with the Department of Electrical and
Computing Engineering, Université Laval, since
1989, where he was the Head of the Department,
in 2003, 2008, 2018, 2023, 2024, and 2025.
He has trained over 50 graduate students (M.Sc.

and Ph.D.) and has more than 300 publications. His research interests
include infrared thermography, nondestructive evaluation (NDE) techniques,
and vision/digital systems for industrial inspection. He is a Honorary
Fellow of Indian Society of Nondestructive Testing. He is also a fellow
of Engineering Institute of Canada Canadian Engineering Institute, the
American Society of Nondestructive Testing, and the Alexander von
Humbolt Foundation, Germany. He holds the Tier 1 Canada Research Chair
in Infrared Vision. In 2019, he was bestowed an Doctor Honoris Causa in
Infrared Thermography by University of Antwerp, Belgium.

VOLUME 13, 2025 5659


