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IV 



Meinen Eltern 

Man haIt aus dem Leben das 

Beste heraus, wenn man das tun kann, 

was man gerne tut. 
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AVANT-PROPOS 

This thesis 'Studying the functioning of benthic hotspot and coldspot ecosystems in 

the Canadian Arctic' is focused on the description and understanding of patterns and 

processes at the Arctic seafloor, and how different factors can influence them. The ultimate 

motivation is the need to find methods, possibly sentinel sites, at which we can monitor 

how global changes influence the Arctic benthic ecosystem and relate these to the entire 
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of 'Ecologically and Biologically Significant Areas' (EBSAs) by each country in its 

territory as a baseline for sustainable use and development in the future. 
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Canadian Healthy Oceans Network (CHONe, NSERC Strategie Network) 

CHONe's research is focused on marine biodiversity and its role and use for 

sustainability of Canada's three oceans (Snelgrove et al., 2012) . Expeditions were in 

collaboration with ArcticNet. 

ArcticNet (Network of Centers of Excellence of Canada) 

ArcticNet aims to study the impacts of climate change in the coastal Canadian Arctic 

and helps to bring researchers , Northerners and managers from different fields together. 

Expeditions: 04/09/2008 - 05/10/2008 (Lancaster Sound, Baffin Bay) 

08/10/2009 - 06/11/2009 (Beaufort Sea to Labrador coast) 
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International Polar Year - Circumpolar Flaw Lead Study (CFL) 

The CFL study aimed to gain a better knowledge, how changes in the flaw le ad 

system, areas of thinner or open ice in the Arctic, affect physical and biological processes 
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Malina 

The Malina project studied how changes in permafrost, ice cover and light 
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Expedition: 30/07/2009 - 27/08/2009 (Beaufort Sea) 
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RÉSUMÉ 

L'océan Arctique est de plus en plus affecté par les changements climatiques et les 
intérêts économiques de l'humanité. Le développement durable de l'Océan Arctique ne 
saurait se faire sans une évaluation exhaustive et rapide de son écosystème et de son 
fonctionnement. La dégradation de la matière organique sur le fond de l'océan engendre 
des flux d'oxygène et de nutriments liés aux cycles biogéochimiques du système marin 
global. Ultimement, cette reminéralisation benthique participe à la production primaire 
dans les couches de surface de l'océan. Nos connaissances sur la diversité, la physique et 
la chimie de l'Océan Arctique se sont améliorées, mais nous en savons toujours très peu 
sur le fonctionnement de l'écosystème benthique. Le but de cette thèse est donc la 
description et la compréhension du fonctionnement de l'écosystème benthique et de sa 
variabilité à des 'hotspots' et 'coldspots' en Arctique canadien. Plus précisément, je me 
suis intéressée à comprendre comment les ressources alimentaires, la diversité et autres 
paramètres environnementaux influencent la reminéralisation benthique et ce, à 
différentes échelles spatiales et temporelles. Pour cela, j'ai effectué des incubations de 
carottes de sédiment provenant du milieu naturel; ces incubations ont été faites en milieu 
contrôlé sur des bateaux. J'ai échantillonné plusieurs sites, sur deux années et trois 
saisons, pour déterminer la quantité de pigments dans les sédiments, les flux d'oxygène, 
de nitrate, de nitrite, de phosphate, d'acide silicique et d'ammonium. J'ai également 
identifié la macro faune présente dans ces carottes de sédiment. 

Dans le chapitre 1 de ma thèse, j'ai étudié l'influence de la transition saisonnière 
printemps-été dans le sud-est de la mer de Beaufort sur la reminéralisation benthique du 
carbone et ses facteurs déterminants, c'est-à-dire les ressources alimentaires et la 
biomasse de l'endofaune. Les résultats ont montré qu'il y a des changements saisonniers 
de la reminéralisation benthique et de la quantité de pigments sédimentaires, mais pas de 
la concentration de Chi a et de la biomasse de l'endofaune. Dans les deux saisons, la 
concentration de Chi a dans les sédiments est le facteur le plus important pour expliquer 
la variation spatiale de la reminéralisation, mais au printemps, la profondeur des sites est 
aussi un facteur explicatif, alors qu'en été, c'est la biomasse de l'endofaune. Mes résultats 
révèlent un effet combiné et dynamique de la situation alimentaire et de la communauté 
benthique sur la reminéralisation benthique du carbone. 

Mon deuxième objectif était de déterminer l'influence de paramètres abiotiques et 
biotiques, lesquels varient sur des échelles temporelles différentes , sur la variabilité 
spatiale de flux de reminéralisation multiples (chapitre 2). Des analyses multivariées ont 
démontré que les flux d'oxygène, qui sont généralement utilisés comme un proxy , ne 
peuvent pas expliquer la variation spatiale de l'ensemble des flux de reminéralisation 
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benthique . J'ai également testé l'influence des paramètres environnementaux suivants sur 
les flux benthiques: flux verticaux de carbone organique en particules, concentration de 
Chi a dans les sédiments de surface (échelle court-terme), porosité, concentration de 
manganèse et fer en surface des sédiments, concentration d'oxygène en eau profonde 
(échelle long-terme), phaeopigments (échelle intermédiaire) et Ôl3Corg (influence 
terrestre). La variation spatiale de l'ensemble des flux est expliquée le mieux par la 
concentration de Chi a, les phaeopigments, Ô13Corg , et le manganèse en surface des 
sédiments et par l'oxygène en eau profonde. Alors, c'est notamment les paramètres 
environnementaux qui expliquent le plus le patron spatial de flux multiples, mais 
l'historique d'apports en matière organique et l'influence terrestre peuvent modifier ce 
patron. 

Dans le chapitre 3, je donne une vue d'ensemble des données sur les flux benthiques 
multiples qui ont été publiées ou compilées pendant ma thèse . J'étudie la localisation 
géographique en Arctique canadien des hotspots et des coldspots de reminéralisation 
benthique; le plateau peu profond de Mackenzie, le détroit de Lancaster et la polynie du 
Nord sont des hotspots. Ma participation à la description 'Ecologically and Biolgically 
Significant Areas' en Arctique canadien démontre qu'il est possible d'appliquer des 
données biogéochimiques dans le cadre d'évaluations d'écosystèmes à grande échelle. 

Finalement, j'ai testé les hypothèses suivantes: (1) la variabilité annuelle de la 
reminérali sation benthique et de (2) la situation alimentaire est pl us élevée à des sites 
hotspots que coldspots, (3) la composition taxonomique et (4) fonctionnelle des 
communautés benthiques ne change pas significativement entre les années et (5) la 
situation alimentaire explique la variation de reminéralisation benthique à une échelle 
temporelle , puis la diversité l'explique à une échelle spatiale (chapitre 4). Mes résultats 
supportent ces hypothèses et indiquent que les ressources alimentaires et la diversité 
benthique sont complémentaires pour l'explication de la variation de la fonction de 
reminéralisation benthique . 

Globalement, je présente ici la première description de la fonction multiple en 
reminéralisation benthique à des hotspots et coldspot en Arctique canadien. Mes résultats 
démontrent que la relation entre la diversité et les fonctions de l'écosystème en milieu 
benthique arctique dépend fortement des ressources disponibles. J'ai également pu 
montrer que les effets interactifs de la variation spatio-temporelle peuvent cacher la 
détection des changements progressifs, particulièrement à des sites hotspots . Pour étudier 
les changements de diversité et de ressources alimentaires, il est necessaire de désigner 
des sites sentinelles à des hot- et coldspots . 

Mots clés: Arctique, fonctionnement de l'écosystème, reminéralisation benthique, 
diversité, hotspots, flux, ChI a dans les sédiments, variation spatio-temporelle 



ABSTRACT 

Climate change and human interests are having increasing impacts on the Arctic 
Ocean. A profound and rapid assessment of its ecosystems and its functioning is essential, 
if we want development to be sustainable and maintain a healthy state of the Arctic Ocean. 
The degradation of organic matter at the seafloor effects oxygen and nutrient fluxes that are 
part of the biogeochemical cycles in the overall marine system. Thus, this benthic 
remineralisation eventually fuels primary production in surface waters. While inventories 
of diversity, physical and chemical parameters in the Arctic are improving, we still know 
little about the benthic ecosystem functioning. The aim of this thesis is to provide a 
description and understanding of benthic ecosystem functioning and its variability at 
hotspots and coldspots in the Canadian Arctic. More specifically 1 studied, how food 
availability, diversity (taxonomic, functional, abundance or biomass) and other 
environmental factors influence benthic remineralisation at different temporal and spatial 
scales. 1 used ship-board microcosm incubations of sediment cores from different sites in 
two years and three seasons to determine fluxes of oxygen, nitrate, nitrite, phosphate, silicic 
acid and ammonia as well as the inhabiting macrofauna. At the same sites 1 deterrnined 
sediment pigment concentrations. 

ln chapitre 1 of my thesis 1 asked how the spring-to-summer transition influences 
benthic carbon remineralisation and its potential determining factors, food supply and 
infaunal biomass, in the southeastern Beaufort Sea. 1 found that benthic remineralisation 
and food supply patterns vary on the seasonal time scale, although infaunal biomass and 
sediment ChI a concentration does not. In both spring and summer, sediment ChI a 
concentration is the prime determinant of benthic carbon remineralisation, but other factors 
have a significant secondary influence, such as water depth (in spring) and infaunal 
biomass (in summer). These findings indicate the importance of the combined and dynamic 
effects of food supply and benthic community patterns on the carbon remineralisation. 

My second objective was to determine the influence of biotic and abiotic 
environmental parameters, that vary on different time scales, on the spatial variation of 
multiple benthic remineralisation fluxes (chapitre 2) . Multivariate analysis of flux data 
showed that the commonly used proxy (oxygen flux) does not explain overall variation in 
benthic remineralisation. 1 tested the influence of the following environmental parameters 
on benthic fluxes: vertical flux of particulate organic carbon, sediment surface ChI a (both 
short-term), porosity, surface manganese and iron concentration, bottom water oxygen (aU 
long-term), phaeopigments (intermediate-term influence) and Ôl3Corg (terres trial influence). 
The overaU spatial distribution of fluxes can be best explained by sediment ChI a, 
phaeopigments, Ô13Corg , surficial manganese and bottom-water oxygen concentration. This 
indicates that environmental parameters of short time variation are most important for 
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spatial patterns of multiple fluxes, but also that historical input of organic matter and 
terrestrial influence can modify benthic remineralisation patterns. 

In chapitre 3 I give an overview of aH data on multiple benthic fluxes published in 
connection with and compiled during my thesis. I asked, where in the Canadian Arctic are 
hotspots - and coldspots - of benthic remineraiisation function. The shallow Mackenzie 
SheIf, Lancaster Sound and the North Water Polynya present benthic remineralisation 
hotspots. The successful participation in the description of Ecologically and Biologically 
Significant Areas in the Canadian Arctic shows how biogeochemical data can be applied in 
larger ecosystem assessments. 

Finally, I tested the hypotheses that (1) interannual variability of benthic 
remineralisation function and (2) food supply at hotspots is higher than at coldspots, that 
(3) taxonomie and (4) functional community composition does not change significantly 
between years, and that (5) food supply explains variation in benthic remineralisation on 
the temporal scale, and diversity on the spatial scale (chapitre 4). My results support all 
hypotheses and indicate that resource availability and diversity are complementary for the 
expia nation of variation in benthic remineralisation function. 

Overall, 1 present the first description of multivariate benthic remineralisation 
functioning at hot- and coldspots in the Canadian Arctic. My results demonstrate that the 
diversity-ecosystem function relation in arc tic benthic systems strongly depends on 
resource availability and that the interactive effects of spatio-temporal variation may hide 
the detection of progressive change particularly at hotspots. Sentinel sites studying 
diversity and food supply changes should therefore be implemented at hot- and coldspots. 

Keywords : Arctic, ecosystem functioning, benthic remineralisation, diversity, 
hotspots, fluxes, sediment ChI a, spatio-temporai variation 
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INTRODUCTION GÉNÉRALE 

Global change is modifying the environ ment we live in and pushes humans towards 

new frontiers. One of the last frontiers on Earth is the Arctic Ocean, itself being affected by 

rapid climate change. The exploration of resources in the Arctic is already underway. 

Protecting hotspots - areas with higher ecosystem functions than the average - has been 

suggested to help maintain ocean health. But knowledge is lacking, where they are, how to 

find them, and how they differ from other regions - hereafter coldspots. A profound and 

rapid assessment of its ecosystems and their functioning is essential, if we want 

development to be sustainable while maintaining a healthy state of the Arctic Ocean. 

1. ECOSYSTEM FUNCTIONING AND SERVICES 

Ecosystem functioning describes the integrated sum of the processes performed by 

the biota encountered in a specified ecosystem. Stachowicz et al. (2007) de fi ne it as 

"aggregate or emergent aspects of ecosystems (e.g., production, nutrient cycling), carrying 

no inherent judgment of value" . In this document, ecosystem functioning will include 

mechanisms that influence ecosystem functions, while ecosystem functions are 

quantifyable products (such as the amount of released nutrients). When ecosystem 

functions are associated with a value to human society , we speak of ecosystem services 

(Naeem et al., 2009). For ex ample , forest growth can be seen as wood production and 

carries an economical value. From an integrated economical perspective, the knowledge 

about marine ecosystem functioning will be important for developing a guideline for the 

sustainable use of marine resource s, which is necessary to ensure the coexistence of 

humankind and the ocean's biota as its food and pleasure source (Wolanski 2006). 
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Economical values are sometimes difficult to assign to biogeochemical cycles, but the 

complex web of interactions and energetic and trophic links makes biologie al production or 

decomposition part of the nu trient cycles (Naeem et al., 2012). 

The theory of global stability assumes that an ecosystem will always need to return to 

its equilibrium stable state after a perturbation. However, according to Gray and Elliot 

(2009), marine systems are more likely to follow the theory of the neighbourhood stability, 

where the system may exist and switch to an alternative steady state after perturbation. 

Following the ide a of alternative steady states, perturbation such as climate change 

can cause an ecosystem to fall into a stable state with, e.g., changed diversity patterns - that 

may coincide with changes in ecosystem functions. It is therefore likely that climate change 

will provoke changes in ecosystem functions and services (Cardinale et al., 2012). 

Benthic ecosystem functioning 

The majority of ecosystem functioning research has been conducted in terres trial 

environments (Naeem et al., 2012) . From the marine perspective, benthic ecosystems 

provide a comparative approach because they share important processes with the terrestrial 

system, as for ex ample the competition for space and the lirnited mobility in adult stages 

due to which they depend on local resources. 

A large number of benthic habitats from intertidal to deep-sea, from rocky to soft 

bottom or from temperate to arc tic can be distinguished. Aigae can play an important role 

in benthic ecosystem functioning up to the maximum light penetration depth (between 50 -

150 m), but on the macroscopic scale, the seafloor is generally dominated by invertebrates 

(J ahnke , 2004). 

Different ecosystem functions have been studied in different benthic systems. 

Production of biomass by macroalgae has been related to macroalgal species richness in the 

tropical intertidal (Bruno et al., 2006). Danovaro et al. (2008) studied biomass production 
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mediated by nematodes in the deep sea to show the importance of the diversity of trophic 

groups for ecosystem functioning. In hard-bottom environments, the stability of community 

composition has been investigated as a measure of resistance against invasion or 

environmental change (McCann 2000; Wahl et al., 2011). Besides trophic links and 

community interactions described by these functions, biogeochemical cycles are an 

important component of ecosystem structure (Naeem et al., 2012), and the mechanims 

driving (functioning) nutrient regeneration has received increasing attention in soft-bottom 

environments (Raffaelli et al., 2003, Godbold and Solan, 2009). 

In benthic systems, nutrient regeneration is the release of nutrients from the 

sediments to the water column following the mostly bacterial degradation of organic 

matter. The degradation products - mostly carbon dioxide, nitrate, ammonium, phosphate 

and silicic acid - eventually replenish the pool of nutrients necessary for primary 

production in the surface layers of the ocean. Although microorganisms play a crucial role 

in the chain of chernical reactions, their abundance and activity is to a large part influenced 

by macrofaunal activity (Michaud et al., 2009; Hunter et al., 2012). The amount of nutrient 

release versus nu trient uptake depends on a number of factors and processes, including 

input of organic matter, faunal composition and the related bioturbation and spatial 

variability in sediment geochemical properties. 

Due to the complexity of these processes, in field studies, researchers are often forced 

to reduce the number of considered function metrics to a selection. In the marine Arctic 

system, only the carbon cycle has been described with an integration of benthic 

rernineralisation into the entire system (Stein and Macdonald, 2004), and sorne local 

attempts have been made for the nitrogen cycle (Rysgaard et al., 2004; Chang and Devol , 

2009). To our knowledge, only one study in the Arctic has investigated the rernineralsation 

of multiple nutrients so far (Rysgaard et al., 1998), and nu trient remineralisation was 

discussed seperately for each flux as opposed to a multivariate ecosystem functions 

description. Until the science community has completetly resolved aIl single nutrient 

cycles, such multi variate description is necessary to estimate the importance of benthic 
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remineralisation to the overall system in status evaluation reports. It remains to be 

answered, where, in the Arctic Ocean, areas of high benthic ecosystem functions can be 

found . 

2. FACTORS RELEVANT FOR ECOSYSTEM FUNCTIONING 

The pattern of ecosystem functions in a system depends on the temporal and spatial 

sc ales that are considered (Schmid et al., 2009; Cardinale et al., 2009), and it can be 

controlled by a variety of factors, such as resource availability and diversity (Hooper et al., 

2005) . However, most studies have focused on the relation between biodiversity and 

ecosystem functions, aiming to estimate the consequences of biodiversity loss (Hooper et 

al. , 2012) , and promoting the idea that hotspots of biodiversity are important for global 

ecosystem functioning (My ers , 2000). But proof of diversity's importance for marine 

ecosystem functions is still scarce. 

Biodiversity and ecosystem functioning 

In the face of decreasing biodiversity (Chapin III et al., 2000; Hooper et al., 2012), 

the interest in describing the role of biodiversity for ecosystem functioning has significantly 

increased during the last decades (Hulot et al., 2000; Loreau et al., 2002; Solan et al., 2009; 

Naeem et al., 2012). 

Several models for the biodiversity - ecosystem function relationship have been 

proposed and discussed particularly in terrestrial ecology literature (Hooper et al., 2005) . It 

has generally been accepted by the expert community that biodiversity does affect 

ecosystem functions, but there is still an ongoing debate on the underlying mechanisms and 

direction of the biodiversity - ecosystem function relationship (e.g. Loreau et al., 2002; 

Stachowicz et al., 2007; Naeem et al., 2009). 
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Part of the debate involves , how biodiversity is measured. Traditionally, the number 

of species, taxonomie richness, has been used to explain plant biomass production, but soon 

the concept of functional traits evolved, assuming that it is not the mere number of species, 

but rather their complementarity in mediating different functions or occupying different 

niches which are important for the total ecosystem functioning (Naeem et al., 2012). If 

species are complementary in their traits, ecosystem functions should increase linearly with 

species richness. If species are redundant in their functions, the relation between species 

richness and ecosystem functions can be asymptotic or show a rivet-like distribution 

(Lore au et al., 2002). Such redundancy cou Id serve as an insurance against ecosystem 

functioning changes, if environmental change reduces biodiversity (Yachi and Loreau, 

1999). Finally , sorne species can provide a very particular, idiosyncratic role for the 

ecosystem's functions not encountered in other species , thus that we speak of an identity 

effect of the species (Lore au et al., 2002) . Biodiversity can also be measured as 

phylogenetic, genetic, landscape or other kinds of diversity (Naeem et al., 2012). However, 

hereafter 1 will only treat diversity in terms of taxonomie and functional group richness and 

community composition, which are within the scope of my thesis. 

Global changes 
• Biogeochemical cycles (C. N, p. organics) Human ! 
• Land use (type, intensity) }4---------j aclivilies i 
· Climate -_ .....• - .. .i 

1 . Specie~!n~asion~ ______ ._._ ._. + 

, Biotic community 1 
: (biodiversity) 

I---~: . Composition \ ., 
• Richness 1----' Specles tra its 

Ecosystem 
functions 

: . Evenness 1 L 
. . Specles inte ra~tions , _____ _ 

; ...... ....................... .. .......... ..... .[~stem propertiëS] 

~~~~~~r~~:~~~~bllny 1·· .. ········ .... ······················ .. ········· .. ····· .. l j 
• Modulators (temp. pH) i 

.. !?i::~~~.ce r:~~~. ___ . .1 

Fig. 1: Pathways and interactions of different factors influencing 
ecosystem functioning (modified from Hooper et al. , 2005). 
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The concept of functional diversity has been helpful in the context of comparing the 

different models. There are several definitions of functional diversity: Steele (1991; Steele 

and Collie, 2004) refers to it as the variability of an ecosystem to respond to environmental 

changes. When working with biodi versity, however, the following definition is more 

appropriate and will be referred to hereafter: functional diversity describes the number of 

groups of species that share the same (relevant) traits of function. Cornrnonly used traits to 

distinguish functional groups are, e.g., feeding mode (detritus vs. suspension feeder vs. 

grazer), lifespan, size, bioturbation type and mobility (Brernner et al., 2003). Working with 

functional diversity, e.g., avoids redundancy as a confounding factor for the analysis of 

how diversity influences ecosystem functions. It moreover allows the comparison of 

geographically distinct systems by introducing a 'standard' to the measurement of species . 

Functional diversity has also been a useful tool to refine ecosystem models without 

inc1uding the eomplexity of taxonomie diversity (Ebenhoh et al., 1995; Hulot et al., 2000; 

Steele, 2004). 

In a study on the effeets of diversity on nitrogen fluxes, Emmerson et al. (2001 ) 

found that a combined effeet of idiosynerasy and species diversity in different benthic 

macrofaunal assemblages provided the best explanation for variability in function. From 

another study, Bolam (2002) conc1uded that functional group richness is more important 

than species richness in benthic soft-bottom cornrnunities. Other extensive experimental 

studies inc1uding bioturbation and nutrient fluxes demonstrated that the functional group 

approach is useful for estimating the flux budgets when acknowledging geochemical 

properties of the habitat: The amount of organic matter recyc1ed and nutrients remineralised 

in soft-bottom environments largely depends on the diversity and bioturbation identity of 

benthic cornrnunities (Pearson , 2001 ; Godbold and Solan 2009; Michaud et al. , 2006; 

Michaud et al., 2009). But in Arctic benthic environments, diversity has rarely been linked 

to remineralisation function. 
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Resource availability and ecosystem functioning 

Few studies within the diversity-ecosystem function debate have inc1uded the 

external factor resource availability to explain relationships. In fact, most studies are placed 

in experimental or controlled environmental settings, such that external variability cannot 

confound the diversity-ecosystem function relationship . However, in an experimental setup, 

Fridley (2002) found that resource availability dominates the relation between plant species 

richness and their production, and Cardinale et al. (2009) found important effects of 

resource availability on primary production patterns of phytoplankton species. 

Contrary to experimental studies, observational studies are strongly influenced by the 

variability on the natural setting (Maestre et al., 2012). Non-intertidal benthic communities 

are supposedly limited by food supply from the water column (Jahnke, 2004; Klages et al., 

2004). Hence, benthic activity may be greatly influenced by vertical flux patterns (Klages 

et al., 2004; Renaud et al., 2007a; Gradinger et al., 2010). Consequently, benthic 

remineralisation not only depends on the diversity of a benthic community, but also on the 

presence and quality of organic matter in the benthic environment (Sun et al., 2009). 

Resource availability may also act indirectly on ecosystem functions (Fig. 1). Many 

studies have demonstrated that on a regional scale, diversity or abundance of communities 

increase with increasing quantity of food supply (Rex et al., 2006; Hoste et al., 2007; 

Witman et al., 2008). Thus, more resources would mean higher diversity, which increases 

ecosystem functions. Clearly, such interactions must be taken into account when looking 

for factors that can best predict areas of high ecosystem functions . 

The influence of temporal and spatial variability in natural systems 

Ecosystem functioning varies on the spatial (Glud, 2008; Schmid et al. , 2009) and 

temporal scales (Yachi and Loreau, 1999; Farias et al., 2004; Frid, 2011 ). While 

experimental setups control for such confounding factors (or are specifically looking for it) , 

spatio-temporal variation introduces an additional source of variation when studying the 
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influence of diversity and/or resource availability on ecosystem functions in the natural 

environment. For example, rernineralisation in benthic environments is higher in summer 

than in winter (Renaud et al., 2007a), thus measures at different sites are comparable only 

in the same season. On the spatial scale, benthic rernineralisation of nutrients is influenced 

by zonation of the redox-front in the sediments. In oligotrophic, weU-oxygenated benthic 

environments, the oxic layer of the sediments can be several centimetres into the sediment. 

Thus, incoming organic matter is foremost aerobicaUy remineralised and the sediments act 

as a source of most nutrients (Hensen et al., 2006). In less oxygenated sediments, the redox 

front can be c10ser to the sediment-water interface, and degradation of organic matter may 

require nitrate or even nitrite as reaction partner, thus that sediments in less oxygenated 

regions can act as a sink for nitrate (Hulth et al., 2005). The habitat precondition can affect 

how diversity of bioturbating macrofauna wiU be related to nutrient fluxes (Laverock et al., 

2011). 

The influence of temporal and spatial sc ales on ecosystem functions can also interact 

in their influence on variation. Benthic remineralisation of shallow water communities was 

different in one si te of a lagoon than another, but only in one of two studied years 

(Thouzeau et al., 2007). This shows how seasonal differences can intervene if we want to 

generalize ecosystem processes from field study results. 

Depending on the spatial and time scale observed, a measured change might therefore 

simply represent a stochastic change (the system will faU back to the equilibrium state), or 

a progressive change (the system will shift to another steady-state). To distinguish 

stochastic from progressive change, it is crucial to complete our knowledge on ecosystem 

processes with long-term studies inc1uding seasonal aspects as weIl as multiple spatial 

scales (Klages et aL, 2004; Piepenburg, 2005; Stachowicz et al., 2007). 
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3. BENTHIC ECOSYSTEMS IN THE ARC TIC 

Pelagic-benthic coupling and characteristics of the environ ment 

Marine shelf ecosystems are characterized by a high turnover rate and close coupling 

between physical and biological processes. This is particularly pronounced in polar regions, 

where environmental factors such as ice-cover, light and tempe rature follow strong 

seasonal cycles . Primary production is mostly restricted to a limited period between April 

and September, when increasing light and decreasing ice-cover trigger the onset of 

biological cycles (Sakshaug, 2004). The greatest part of primary production is usually 

produced by the phytoplankton spring bloom in stratified waters after the ice-breakup in 

May-June, enhanced by high nutrient concentration built over the winter period (Arrigo and 

van Dijken, 2004; Carmack and Wassmann, 2006) . But ice-algae and under-ice blooms 

may also contribute a significant component to the total production (Sakshaug, 2004; 

Mundy et al., 2009). Due to the intensity of spring blooms and ice-algae production, 

vertical fluxes may show significant export of organic matter to the seafloor, and we 

therefore generally speak of a high intensity of pelagic-benthic coupling in the Arctic (e.g. 

Piepenburg et al., 1997; Klages et al., 2004; Grebmeier et al., 2006a; Renaud et al., 2007b; 

Juul-Pedersen et al., 2008). The amount of exported matter depends on a number of water-

column processes, most notably zooplankton grazing and microbial degradation. Timing of 

the bloom crucially influences the efficiency of secondary pelagic processes and thus the 

total amount of export (Forest et al., 2010). 

Compared to the other world oceans, the Arctic Ocean (Fig. 2) is characterized by a 

particularly high amount of freshwater input via river runoff. The latter and high erosion 

rates along the coasts le ad to a significant input of terres trial material including organic 

matter (Klages et al., 2004; Macdonald et al., 2004). The Mackenzie River runoff located in 

the Beaufort Shelf region is the largest single sediment source in the Arctic Ocean 

(Macdonald et al ., 2004) and leads to a high rate of terres trial organic carbon burial 

compared to the marine organic carbon production in the Beaufort sediments (Gofii et al., 
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2005). However, there is multiple evidence that the export of terrestrial organic matter does 

not provide a significant food source to benthic communities, probably due to its Iargely 

refractory quality (Rysgaard et al., 1998; Klages et al., 2004; MacDonald et al., 2010). Still, 

it influences the geochemical properties of sediments on a longer time scale (Gobeil et al., 

2001). 

Known patterns of benthic ecosystem functioning and its relation to resource 

availability and diversity in the Arctic 

Processes in benthic ecosystem functioning in the Arctic follow the general patterns 

described for soft-bottom environments above. However, the peculiarities of polar 

environments aiso influence mechanisms in the benthos. Ice coyer and seasonality in 

primary production combined with slowly onsetting zooplankton grazing is the cause for a 

very tight pelagic-benthic coupling in the Arctic compared to other marine regions (Fig. 3). 

This phenomenon is particularly pronounced along the marginal ice zone and polynyas, 

regions of physically induced open water surrounded by ice (Carmack and Wassmann, 

2006). Accordingly, high benthic standing stocks have been recorded in corroboration of 

this the ory on the Chuckchi Shelf (Grebmeier et al., 2006b), the North-East-Water-Polynya 

(Renaud et al., 2006), and the Barents Sea (KI ages et al., 2004). The concentration of 

chlorophyll a (ChI a) in surface sediments - an indicator of detritus freshness, and therefore 

of tight pelagic-benthic coupling - has repeatedly been correlated with benthic carbon 

remineralisation (Renaud et al., 2007a,b; Carroll et al., 2008; Morata et al., 2008), and 

seems to be a better predictor than substrate heterogeneity (Piepenburg, 2005). One of the 

few studies on benthic carbon and nu trient remineralisation has been conducted in shallow 

sediments of an Arctic Fjord (Rysgaard et al., 1998). The authors found that nutrient release 

from the sediments increased markedly after the input of fresh organic matter, and a later 

study implied a positive influence of macrofauna bioturbation on sediment-water fluxes 

(Glud et al., 2000). 
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Fig. 2: Overview of the Arctic Ocean and adjacent seas. Map modified from AMAP (1998) 

Fig. 3: Factors influencing benthic remineralisation in marine environments 
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There is also evidence that sorne arctic benthic macrofauna species pre fer ice algae 

over phytoplankton while others ingest both, and that food quality has diverse effects on the 

activity of different functional groups, but long-term consequences of a change in di et are 

unclear (Sun et al., 2009). There is still debate about the general decrease of diversity and 

benthic productivity with increasing latitude (Cusson and Bourget, 2005; Piepenburg, 2005; 

Gray and Elliot, 2009). But recent studies have demonstrated that biodiversity in the 

Canadian Arctic Ocean is comparable to the Canadian Pacific or Canadian Atlantic Ocean 

(Archambault et al., 2010). There is evidence that the distribution of communities in the 

Arctic Ocean differs significantly among the regions, e.g., supporting less diverse benthic 

communities in oligotrophic primary production regimes such as the Arctic Basin, and 

more diverse assemblages in productive areas such as the Chukchi shelf and the Barents 

Sea (Klages et al., 2004; Grebmeier et al., 2006a; Piepenburg et al., 2011). However, the 

link between diversity and benthic ecosystem functions other than standing stock has not 

been studied. 

Spatial and temporal variability of ecosystem functioning in the Arctic 

Spatial and temporal variation of benthic carbon rernineralisation has generally been 

coupled to vertical fluxes of organic matter in the Arctic (Grebmeier et al., 2006a; Carmack 

and Wassmann, 2006;), including seasonal changes. In the Chukchi Sea, seasonal 

differences in benthic carbon rernineralisation were present in 2002 but not in 2004 (Lep ore 

et al., 2007). Lateral advection has been proposed to explain the mismatch of vertical flux 

and benthic activity patterns, on temporal as weIl as on spatial scales such as the low 

reported benthic activity in the North Water Polynya (NOW) (Grant et al., 2002). In 

shallow sediments of an Arctic Fjord, Rysgaard et al . (1998) found clearly elevated oxygen 

and nutrient fluxes after the early summer bloom that declined about a month later. 

Experimental studies have shown that the intensity of temporal coupling between 

food supply and benthic cycling can be in the range of hours to days (McMahon et al., 
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2006; Sun et al., 2007), and the signal of a food pulse may be lost after a period of three 

weeks (Graf, 1992) . 

Recently, Grebmeier (2012) reported a possible progressive change in benthic 

community composition in the Bering Sea, but high temporal variability in the benthic 

biomass masked the statistical detection of the result. 

These findings emphasize the importance of temporal variability in resource 

variability compared to spatial differences on benthic processes relevant for the marine 

carbon cycle in Arctic systems, but also the importance to better distinguish natural 

(oscillations) from induced (progressivly, driven by a factor) variability in benthic 

community patterns. Moreover, very little at all is known about nu trient remineralisation 

and the influence on it by benthic communities in these regions. 

Known patterns of benthic ecosystem functions and food availability on the Canadian 

Arctic shelves 

In the Canadian Arctic, benthic processes have been described most intensively from 

the CASES study on the Beaufort Shelf (2003-2004) and the NOW study in northern Baffin 

Bay (1997-1998), but the region is still understudied in the Arctic (Klages et al., 2004). 

With 90-175 g C m-2 y-l, the Cape Bathurst Polynya is known for medium high primary 

production (Sakshaug et al., 2004), when compared to the more productive NOW (76 - 254 

g C m-2 y-l) (Klein et al., 2002) . In contrast, benthic community oxygen demand was much 

higher in the Beaufort region than in the NOW (1.8 - 21.0 vs 1.7 - 4.1 mM O2 m-2 dol) 

(Grant et al., 2002; Renaud et al., 2007b). On a regional scale, Renaud et al. (2007b) found 

highest influence of depth and food input on benthic oxygen demand. In both regions, 

single or three-site studies demonstrated important seasonal variation in benthic acti vit Y 

(Grant et al., 2002; Renaud et al., 2007a) . 

But neither the seasonal differences nor the striking differences in benthic activity 

between the western and eastern Canadian Arctic were reflected in ChI a distribution. 
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While the partitioning of oxygen demand between macrofauna and meiofauna and 

microbes was determined, a comparison with patterns in benthic biomass or diversity was 

not attempted so far. 

Moreover, to my knowledge no data on nutrient remineralisation on Canadian Arctic 

shelves has been reported up to now, thus presenting a significant gap for nutrient budgets 

in the Canadian Arctic marine system. 

Known patterns of diversity in the Canadian Arctic 

Compared to benthic remineralisation, much more is known about benthic diversity 

in the Canadian Arctic, although large data gaps still exist, particularly when compared to 

other regions of the Arctic (Archambault et al., 2010; Piepenburg et al., 2011). In their 

review, Cusson et al. (2007) demonstrated that benthic assemblages differed among the 

seven regions on the Canadian Arctic shelf. A total number of 947 infaunal species and 

taxonomic groups were recorded, and taxonomic diversity was higher in eastern regions 

than in the central and western Canadian Archipelago. 

In an extensive description of benthic communities on the Canadian Beaufort Shelf 

and Amundsen Gulf, Conlan et al. (2008) reported di versity to be high in general. The total 

number of taxa found was 497, and assemblages of different areas could be distinguished 

based on their composition, while composition differences were attributed mostly to water 

depth. The authors emphasized the relation between physical and environmental factors and 

the taxonomic composition of assemblages. They noted that different community 

composition might reflect differences in the system. 

For the Lancaster Sound to Baffin Bay region, Thomson (1982) has reported similar 

patterns . He emphasized the abundance of suspension feeders vs. deposit feeders in shallow 

vs. deep environments, and again, depth and geographical location explained most of the 

variance in community composition assembled by the 343 taxa described from the study. 
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ln the North Water Polynya (NOW) , benthic diversity, composition, and feeding 

guild patterns identified three different communities, in the center, the east, and west of the 

polynya (Lalande, 2003). A total of 120 benthic taxa have been described, with particularly 

high abundance in the polynya center. Community patterns were related to sediment grain 

size, and only trophic organization was linked to food supply. 

When comparing studies on benthic diversity in the Canadian Arctic Shelf, the 

following biodiversity hotspots have been described: 

Lancaster Sound (Thomson, 1982): Macrofaunal abundance and taxonomie richness 

was highest when compared to regions west of Barrow Strait and east of Lancaster Sound. 

North Water Polynya (Lalande, 2003): Individual abundance and species diversity 

was highest in the center of the North Water Polynya, but did not directly reflect 

sedimentation patterns. 

Cape Bathurst and Mackenzie Canyon (Conlan, et al 2008): Abundance was highest 

with comparable diversity within the southwestern Beaufort Shelf region. 

Considering the numerous evidences for the variability of the biodiversity -

ecosystem function relationship demonstrated in the course of the introduction, the question 

now arises, whether diversity hotspots such as in the Canadian Arctic also represent 

hotspots of benthic remineralisation, and whether this pattern is stable on a temporal sc ale 

considering the important variation in food supply in the system. 
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Importance of finding hotspots of benthic ecosystem functioning in the face of a 

changing Arctie 

Climate change is predicted to induce major shifts in Arctic ecosystem processes at 

an intermediate time-scale (ACIA, 2004; Gray and Elliot, 2009; Wassmann et al., 2011). In 

fact, dramatic changes in sea-ice cover, water surface temperature and precipitation have 

already been recorded during the last decade, and they seem to exceed long-term variations 

su ch as the North-Atlantic-Oscillation (Carmack et al., 1995; ACIA, 2004; Barber et al., 

2009). The opening of the North-West-Passage and its relevance for global economy as 

weIl as the accessibility of further resources also create much anticipation among 

stakeholders in the global competion for exploitation. Protecting hotspots of the marine 

ecosystem can help to maintain its health, meaning a condition in which the marine 

ecosystem's services and benefits to humans are sustainable - from food such as shellfish to 

climate such as carbon uptake. 

In polar areas, polynyas are considered hotspots of primary production and marine 

ecosystem functioning (Grebmeier and Barry, 2007). They pro vide important services to 

the surrounding ecosystem and changes in these services may have large-scale impacts. 

Due to their complexity, the effects of climate change are supposed to be recognisable at an 

early stage in environments of such elevated productivity or diversity (Grebmeier et al., 

2006a). Such a regime shift was observed in the Bering Sea, where the reduction of sea-ice 

cover translated into the rapid increase of pelagic fish and whale populations, and the 

simultaneous decrease of benthos production (Grebmeier et al., 2006a). However, Glover et 

al. (2010) have demonstrated that progressive change in a system can only be distinguished 

from stochastic change in long-term studies. Hotspot ecosystems might show too much 

natural variability to easily detect a change, and areas of lower overall process rate -

coldspots - might provide a better indicator of change. 

Benthic processes are cou pIed with the functioning of the entire marine system via 

biogeochemical cycles, and they are not only necessary to be understood in order to predict 
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global effects of climate change (Baretta et al., 1995; Ebenhëh et al., 1995), but also to 

protect areas essential for biogeochemical cycles in the face of increasing human activities. 

But data on benthic remineralisation in the Canadian Arctic is extremely scarce, and the 

lack of knowledge on the biodiversity-ecosystem function relationship in the Arctic does 

not allow estimating benthic function hotspots from di versity. Moreover, high temporal 

variability in food supply for the benthos interferes with regional comparisons, if the 

benthic remineralisation has not been measured in similar seasons. 

Tt becomes evident that we need to investigate the influence of food supply and 

diversity inc1uding temporal and spatial scales on benthic remineralisation, before a valid 

long-term description of benthic ecosystem function hotspots in the Canadian Arctic can be 

made. Considering the different sc ales that are important for understanding changes in 

benthic ecosystem functioning, it is crucial to develop 'sentinel' sites that will allow us to 

monitor and compare variations and its causes. 
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4. GENERAL OBJECTIVE 

The goal of this thesis is to provide a baseline for the understanding of benthic 

ecosystem functioning in soft-bottom environments of the Canadian Arctic, to find hotspots 

of high benthic ecosystem functions and to verify if these can be used as sentinel sites to 

monitor ecosystem changes, compared to sites of lower ecosystem functions - coldspots. 

For this, my work aims to determine how food availability, diversity and other 

environ mental factors influence benthic remineralisation at different temporal and spatial 

scales at hotspots or coldspots (Fig. 4) . Given the necessity to distinguish spatial from 

temporal variation for the estimation of the impact of future changes in relation to natural 

variability in a dynamic ecosystem such as the Arctic, my general objective is addressed in 

four major steps, which are presented in the following sections: 

The objective of chapitre 1 is to verify, how seasonal variability affects benthic carbon 

remineralisation function. Specifically, 1 test the following hypotheses in the western 

Canadian Arctic: (1) The availability of food for benthic communities increases following 

the ice melt, (2) benthic biomass increases after the ice melt, (3) benthic carbon 

remineralisation increases following ice melt, and (4) spatial variability of benthic carbon 

remineralisation is determined by both food availability and benthic community patterns . 

Chapitre 2 analyses how the description of spatial patterns is influenced by the single-

flux or multiple-flux approach to benthic remineralisation function, and which 

environmental factors influence spatial variation in single and multiple benthic boundary 

fluxes. 1 address the following question and hypotheses: (1) What is the spatial variation of 

benthic boundary fluxes in the Beaufort Sea? The c1assical proxy of benthic activity , 

oxygen flux, does not describe overall spatial variation in fluxes . (3) A different 

combination of environmental conditions that vary either on a long-term (decadal) or short-

term (seasonal to annual) scale determine each single flux. (4) A combination of 

environmental conditions varying on the short and long-term scale drive the overall spatial 

variation in benthic boundary fluxes. 
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What 
influences 
benthic 
ecosystem 
functioning? Within Re ion Canadian Arctic 

Spatial scale 

Fig. 4: Overview of how the four objectives analyse the different sources of variation in 
benthic ecosystem functioning (here: remineralisation) in this thesis. Bubbles represent 
which part of variation is treated in the respective chapter (Ch), and which driving factors 
were analysed. Coloured bubbles represent analyses of variation in hot spots vs coldspots 
(red vs blue, respectively). Note that spatial variation in benthic functioning was not always 
analysed across temporal scales. 

Chapitre 3 glves an overVlew of present spatial patterns of multivariate benthic 

remineralisation function. The objective is to present (1) where the highest benthic fluxes 

are found, (2) where regions with high fluxes aresignificantly different from other regions 

within the Canadian Arctic, (3) whether benthic function hotspots are general hotspots 

(how the fluxes relate to other biological parameters) and (4) how benthic boundary fluxes 

can be used in ecological assessment. 
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Finally, chapitre 4 evaluates how interannual variation can affect our perception of 

changes in benthic ecosystem functions at hotspots or coldspots and the diversity-

ecosystem function relation in dynamic systems such as the Arctic. Specifically, 1 test the 

following hypotheses: (1) Benthic remineralisation function is significantly different among 

years at hotspots but not at coldspots, (2) food availability for the benthos is significantly 

different among years at hotspots but not at coldspots, (3) Taxonomic community 

composition is not significantly different among years at hot spots or coldspots , (4) 

Functional community composition is not significantly different among years at hotspots or 

coldspots, and (5) Food supply explains temporal variation and macrofaunal community 

parameters explain spatial variation in benthic remineralisation function. 

5 . SAMPLING DESIGN 

To obtain data that qualifies for analyses on different temporal and spatial scales , it was 

crucial to resample a same location (site) at different points in time. During the 

Circumpolar Flaw Lead Study (CFL; Derning and Fortier, 2011) in 2008, the ArcticNet-

CHONe (Canadian Healthy Oceans Network; Snelgrove et al., 2012) expeditions in 2008 

and 2009 and the Malina expedition in 2009 1 sampled a total of 47 stations for the major 

parameters of benthic remineralisation (ship-board microcosm incubations) and sediment 

pigment concentration (Fig. 5, Table 1). 

Additional benthic parameters could be sampled at different subsets of the 47 

stations, and 14 sites were sampled more than once (Table 1). According to my objectives, 

sampling and data analyses was conducted for: 

Chapitre 1. Seasonal patterns: 5 sites in spring and summer each (benthic carbon 

rernineralisation, sediment pigment concentration, benthic biomass; Amundsen Gulf; CFL) 
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Chapitre 2. Habitat influence and spatial patterns: 8 sites in summer (benthic oxygen 

flux and nutrient remineralisation, sediment pigment concentration, sediment and habitat 

properties; Mackenzie Shelf and Slope; Malina) 
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Fig. 5: Station map of this thesis. Symbols represent sites sampled during different 
expeditions in the Canadian Arctic in 2008 and 2009. +: CFL spring; x: CFL summer/faIl; 
.: ArcticNet-CHONe 2008; 0 : Malina; . ArcticNet-CHONe 2009. NOW = North Water 
Polynya; Am. Gulf = Amundsen Gulf. Note that symbols can overly each other if sampling 
at the same location in different expeditions was achieved 

Chapitre 3. Hotspot spatial patterns: 42 sites between summer and faIl (benthic 

oxygen flux and nutrient remineralisation; entire study area; aIl expeditions) 

Chapitre 4 . Interannual patterns: 9 sites in summer and faIl each (benthic oxygen flux 

and nutrient remineralisation, sediment pigment concentration, benthic diversity; subset in 

en tire study area; aIl expeditions). 

Table 1 provides an overview of the origin of the data, and more information on the 

precise methods can be found in the respective chapters. 



Table 1: Station list. Sites, their original expedition label ('Station'), sampling date , region , bottom water depth , geographic 
position, the according symbol in Fig. 5, obtained data and the presentation in the following chapitres ('Ch') are presented. 
Obtained data: B = biomass; 0 = macrofaunal diversity; G = geochemical sediment properties; N = benthic nutrient fluxes; 0 
= benthic oxygen flux ; P = sediment pigment concentration 

Site Station Date Region Depth Latitude Longitude Symbol Data Ch 1 Ch2 Ch3 Ch4 (ON) COW) 
034 035 2008-04-02 AG 215 71.069 121.944 + OPB " 034 2008-05-24 AG 185 7 1.076 121.811 + OPB " 034 2008-07-13 AG 186 71.070 121.823 x ONPB " " 037 037 2008-04-10 AG 245 71.3 12 124.603 + OPB " 2011-IOA 2008-08-02 AG 251 71.318 124.595 x ONPB " " 1020A 1020A 2008-05-06 AG 255 71.029 127.088 + OPB " 1020A 2008-07-27 AG 245 71 .028 127.088 x ONPB " " 405 405 2008-05-19 AG 505 70 .662 122.887 + OPB " 405B 2008-06-10 AG 546 70 .667 123.010 x ONPB " " 405-IOA 2008-07-21 AG 596 70.707 122.939 x ONPO " " " 405 2009-10-16 AG 559 70 .665 122.996 • ONPO " " FB 1116 2008-06-14 AG 230 70 .042 126.277 x ONPB " " FB3 2008-06-16 AG 97 69 .968 125.862 x ONPB " " OB OBOI 2008-06-19 AG 95 69.827 123.604 x ONP " 1216 1216 2008-06-23 AG 151 70.615 127.616 x ONP " 1200 1200 2008-06-27 AG 207 71.532 124.297 x ONP " 9002 9002 2008-07-07 MS 219 74.298 125.376 x ONP " 408 408-IOA 2008-07-25 AG 206 71.323 127 .606 x ONPO " " 140 2009-08-07 AG 154 71.285 127.783 0 ONPOG " " " 408 2009-10- 13 AG 152 71.286 127.782 • ONP " 437 110 2009-08-06 AG 400 71.696 126.477 0 ONPG " " 437 2009-10-14 AG 320 71.779 126.477 • ONP " 308 308 2009-10- 19 YM S 541 74.101 108.836 • ONP " 434 434 2008-06-30 MO 45 70. 177 133.537 x ONPO " " 390 2009-07-3 1 MO 47 70.178 133.569 0 ONPOG " " " 435 435 2008-07-02 MS 318 71.072 133.876 x ONPO " " 345 2009-08- 16 MS 577 71.382 132.652 0 ONPOG " " " 



Table 1 continued 
Site Station Date Region Depth Latitude Longitude Symbol Data Ch 1 Ch2 Ch3 Ch4 (ON) (OW) 
690 690 2009-08-01 MD 55 69.486 137.942 0 ONPG " " 260 260 2009-08-04 MS 60 71 .269 130.613 0 ONPG " " 680 680 2009-08-10 MD 125 69 .611 138.235 0 ONPG " " 235 235 2009-08-22 MS 576 71.764 130.766 0 ONPG " " Barrow 
304 Strait 2008-09-06 LS 353 74.271 91 .248 • ONPD " " 304 2009-10-23 LS 331 74.3 18 91.406 • ONPD " " 301 301 2008-09-08 LS 707 74.153 83.209 • ONPD " " 323 2009-1 0-25 LS 786 74.172 80 .726 • ONPD " " 101 101 2008-09-15 NOW 402 76.401 77.492 • ONP " 108 108 2008-09-14 NOW 444 76 .270 74.594 • ONPD " " 109 2009-1O~28 NOW 451 76 .290 74.137 • ONPD " " 115 115 2008-09-13 NOW 668 76.326 71 .215 • ONPD " " 115 2009-10-29 NOW 669 76.335 71.238 • ONPD " " 205 205 2008-09-17 NOW 623 77 .219 78.981 • ONP " 126 126 2008-09-18 NOW 323 77 .343 73.441 • ONP " 233 233 2008-09-20 NOW 696 76.739 71 .844 • ONP " 136 136 2008-09-10 BB 795 74.786 73 .633 • ONPD " " 136 2009-10-30 NOW 810 74.687 73.349 • ONPD " " 140 140 2008-09-11 BB 286 75 .028 64.477 • ONP " Gibbs fjord • " GF 2 2008-09-24 GF 452 70 .768 72.264 ONP 



CHAPITRE 1 

SPRING-TO-SUMMER CHANGES AND REGIONAL 

V ARIABILITY OF BENTHIC PROCESSES IN THE WESTERN 

CANADIAN ARC TIC 

RÉSUMÉ DU PREMIER ARTICLE 

Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few 

local studies, and the pronounced among-site variability characterizing their results makes 

it difficult to upscale and generalize their conclusions. In a regional study encompassing 

five sites at 100-595 m water depth in the southeastern Beaufort Sea, we found that total 

pigment concentrations in surficial sediments, used as proxies of general food supply to the 

benthos, rose significantly after the transition from ice-covered conditions in spring 

(March-June 2008) to open-water conditions in summer (June-August 2008), whereas 

sediment ChI a concentrations, typical markers of fresh food input, did not. Macrobenthic 

biomass (including agglutinated foraminifera > 500 Jtm) varied significantly among sites 

(1.2-6.4 g C m-2 in spring, 1.1-12.6 g C m-2 in summer), whereas a general spring-to-

summer increase was not detected. Benthic carbon remineralisation also ranged 

significantly among sites (11.9-33.2 mg C m-2 dol in spring, 11.6-44.4 mg C m-2 do l in 

summer) and did in addition exhibit a general significant increase from spring to summer. 

Multiple regression analysis suggests that in both spring and summer, sediment ChI a 

concentration is the prime determinant of benthic carbon remineralisation, but other factors 

have a significant secondary influence, such as foraminiferan biomass (negative in both 

seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate 

the importance of the combined and dynamic effects of food supply and benthic community 
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patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered 

seas. 

Keywords: Arctic, Beaufort Sea, Pelagic-benthic coupling, Seasonality, Carbon 

remineralisation, Benthic biomass 
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Biological processes in the Arctic are known to exhibit a pronounced seasonality with 

ice cover being one of the major underlying mechanisms (Carmack and Wassmann, 2006). 

Following the ice melt during the spring-to-summer transition, the mismatch between peak 

primary production and zooplankton grazing allows for an enhanced export of organic 

material to the seafloor (Wassmann et al., 2006). This provides an important food input to 

benthic communities, and several studies have described the significant increase in benthic 

activity in response to an organic matter pulse for the oceans in general (Graf, 1992; 

Pfannkuche, 1993) and for Arctic regions in particular (Renaud et al., 2007b; Rysgaard et 

al., 1998). The remineralisation of organic matter at the seafloor is a source of nutrient 

release to the water colurnn (Grebmeier et al., 2006a) and a significant pathway in the 

global carbon budget (Klages et al., 2004). 

Strong pelagic-benthic coupling has been widely suggested as a general feature of 

Arctic shelves (Ambrose and Renaud, 1995; Grebmeier and Barry, 1991; Piepenburg et al., 

1997; Wassmann et al., 2006), in terms of both quantity and quality of the organic matter 

exported from the water column and/or sea ice to the seabed (Morata et al., 2008). During 

the Shelf-Basin Interaction Study (SBI) in the Chukchi Sea, vertical export and benthic 

response were measured in spring and summer in 2002 and 2004 (Lepore et al., 2007). In 

2002, the export of particulate organic carbon (POC) was much higher in summer than in 

spring and coincided with an, albeit less pronounced , increase in benthic respiration (Moran 

et al., 2005). In 2004, however, POC ex port and benthic carbon respiration were only 

slightly less under ice cover than in summer open-water conditions (Lalande et al., 2007; 

Lepore et al., 2007). The findings - elevated chlorophyll a (ChI a) concentrations under ice 

(Lalande et al., 2007), more than twice as high absolute export rates but only slightly higher 

benthic respiration - suggest that there was a distinct spring bloom but lateral advection of 
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organic matter into the central Arctic Ocean, which resulted in a lack of a seasonal benthic 

activity boost (Lep ore et al., 2007). Enhanced benthic respiration has been related to higher 

nutritive quality of the phytodetritus reaching the seabed (Morat a and Renaud, 2008; Sun et 

al., 2009). In the Barents Sea, a sharp increase in benthic activity was related to the supply 

of fresh food, as indicated by high ChI a export and high sediment pigment concentrations 

(Renaud et al., 2008). In the southeastern Beaufort Sea, spring-to-summer dynamics have 

been studied at one time-series site in Franklin Bay (Amundsen Gulf) during the Canadian 

Arctic Shelf Exchange Study (CASES) in 2004. A seasonal increase in benthic carbon 

remineralisation was recorded (Renaud et al., 2007b), whereas an increase in the 

availability of fresh food at the sea floor could only be confirmed after pigment analyses 

with a higher resolution (Morata et al., 2010). A considerable increase in benthic 

respiration from spring to summer has also been reported from the North Water Polynya 

(NOW) , where carbon remineralisation was driven by micro- and meiobenthic communities 

in spring and by macrobenthic communities in summer (Grant et al., 2002). The 

composition of the benthic community also plays a major role in deterrnining benthic 

carbon remineralisation in Arctic environments (Clough et al., 2005), as documented in 

experimental studies (MacMahon et al., 2006). However, much less is known about 

seasonal changes of the structure and activity of benthic communities in relation to 

dynamics of food availability (Renaud et al., 2008; Witman et al., 2008). 

The reduction in Arctic sea ice in response to c1imate change and ocean warming is 

well documented (Barber et al., 2009), but its effects on biological processes are hard to 

predict (ACIA, 2004; Smetacek and Nicol, 2005). Wassmann et al. (2011) highlighted that 

c1imate change has already resulted in c1early discernable changes in marine Arctic 

ecosystems, but the number of well-documented changes in planktonic and benthic systems 

was surprisingly low. Although total primary production in the Arctic Ocean will likely 

increase (Arrigo et aL, 2008), its reduced seasonal variability and increased pelagic 

remineralisation might result in a general decrease of the vertical flux of fresh organic 

matter to the bottom (Forest et aL, 2010; Forest et al., 2011; Piepenburg, 2005). There is 

still controversy about the actual scope and direction of future changes in primary 
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production and vertical flux patterns (Wassmann et al., 2008). Regardless, shifts in benthic 

community metabolism and composition are expected (ACIA, 2004; Archambault et al., 

2010; Carroll et al., 2008; Grebmeier et al., 2006a; Sun et al., 2009) and are likely to 

influence the ecosystem at higher trophic levels (Bluhm and Gradinger, 2008). Our 

incomplete knowledge about spring-to-summer dynamics of benthic processes makes it 

difficult to reliably predict their response to c1imate-induced changes in the abiotic 

environment and to concurrent changes in the timing and magnitude of primary production, 

the quality of organic material deposited on the seafloor, and the composition of benthic 

communities. For this purpose, it is crucial to assess the relationships among seasonal 

dynamics in food supply, benthic standing stock and benthic carbon remineralisation on a 

regional scale. 

The objective of this study was to describe how seasonal changes in the availability 

of food influence benthic carbon remineralisation - the rate of carbon cycling - in the 

southeastern Beaufort Sea. Since ice cover is a major seasonal characteristic of polar 

regions, differences between the ice-covered period (spring) and subsequent open-water 

period (summer) were studied. Our hypotheses were that (1) the availability of food for 

benthic communities increases significantly following the ice melt , (2) benthic biomass 

increases after the ice melt, (3) benthic carbon remineralisation increases significantly 

following ice melt, and (4) spatial variability of benthic carbon remineralisation is 

determined by both food availability and benthic community patterns, here tested as 

biomass. 

Materials and methods 

Study Region 

This study was conducted in the southeastern Beaufort Sea with emphasis on the 

Amundsen Gulf, inc1uding Franklin Bay (Fig . 1.1) . The area is usually covered by sea ice 
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from November to June (Galley et al., 2008). In 2008, it was generally covered by sea ice 

until mid-May (Barber et al., 2010; NSIDC, 2010). Primary production ranges from 30-

70 g C m-2 year-1
, indicating generally oligotrophic conditions (Sakshaug, 2004). In the 

Cape Bathurst Polynya, rates are higher, reaching 90-175 g C m-2 year-1 (Arrigo and van 

Dijken, 2004). Intensive blooms related to ice-edge upwelling events were documented for 

coastal regions of the Amundsen Gulf, including Franklin Bay, in June 2008 (Mundy et al., 

2009; Tremblay, pers. comm.). The study area is dominated by coastal shelves with 

maximum depths of 600 m in the center of the Amundsen Gulf. Seafloor sediments are 

usuaIly fine, composed of more than 70% silt and clay (Conlan et al., 2008). Sediment 

characteristics indicate that marine material dominated the flux in summer and is more 

degraded in the Amundsen Gulf, whereas on the Mackenzie Shelf material of terrestrial 

origin is abundant in faH (Magen et al., 2010; Morata et al., 2008). Sediment ChI a 

concentrations are reported to be low (0-2 mg m-2 in the Amundsen Gulf and 3 to 4 mg m-2 

in Franklin Bay), with ChI a-to-phaeopigment ratios not exceeding 0.2 in summer and faIl 

(Morata et al., 2008). In 2004, accessory sediment pigments consisted mostly of 

fucoxanthin in the western Amundsen Gulf and of ChI b in the eastern part (Morata et al. , 

2008). Sediment pigment concentrations in spring have only been reported for Franklin 

Bay, where concentrations were similar to those encountered in summer (Renaud et al., 

2007a). 

Environmental Conditions 

Near-bottom water temperature and salinity were determined by the shipboard CTD 

probe at each station 10 m above the seafloor. We used sea ice concentration maps 

available from the CERSAT Ifremer group 

(http: //cersaLifremer .fr/fr/dataldiscovery/by _parameter/sea_ice/psi_ssmi) based on the daily 

brightness tempe rature maps from the National Snow and Ice Data Centre (Maslanik and 

Stroeve, 1990), which are acquired from the special sensor microwave imager (SSM/I) 

onboard the DMSP satellite to extract sea ice concentration data. Daily sea ice 

concentration data were extracted for each station between March and August 2008. The 

average of daily concentration for the 14 days preceding the sampling date was used to 
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determine the ice cover for each station. Ice break-up in the region typically takes 1-2 

weeks (Galley et al., 2008). We considered the period of 14 days long enough to assure that 

ice cover was not incidental (e.g. being due to a passing ice floe) and short enough to assure 

that it describes the ice condition that should be timely linked to benthic processes. 

, 50m 

500 m 

750 m 

fOOO m 

1250m 

1500m 

Fig . 1.1: Locations of sites sampled for benthic processes during ice-covered (spring) and 
open-water (summer) conditions in 2008. A = Amundsen Gulf, FB = Franklin Bay; C, E, 
N, W = central, east, north , west; i = ice-covered, 0 = open water. Note that one point on 
the map can represent two sampling events when exact relocation in summer was achieved 



Table 1.1 : Sampled stations , environmental conditions, temporal factor (season) and number of replicates used to determine 
sediment oxygen demand (SOD), chlorophyll a concentrations in the sediment (ChI a) and macrobenthic infauna biomass 
(Biomass) . Daily ice cover concentrations averaged over the 14 days preceding the date of sampling was used to determine 
sea ice cover [%] . . A = Amundsen Gulf, FB = Franklin Bay; C, E, N, W = central, east, north , west; CFL = Circumpolar Flaw 
Lead System Study 

CFL Water Position Sea ice T bot SOD Chi a Biomass 
Station Station Date Depth cover Salbot Season 

Label [m] Latitude Longitude [%] 
[oC] (11) (n) (n) 

A-NE-i D 34 24/Mar/08 185 71.076 N 121.811 W 100 34.5 -O.l ice 5 3 5 
A-NE-i-2 D 35 02/Apr/08 215 71 .069 N 121.944 W 98 34.5 -0.1 ice 5 3 5 
A-NE-o D 34 13/Ju 1/0 8 185 71.07 N 121.823 W 0 34.3 -0.6 open 5 3 3 

A-NW-i D 37 10/Apr/08 245 71.312 N 124.603 W 95 34 .6 -0 .1 ice 5 3 5 
A-NW-o D 37 02/Aug/08 250 71.318 N 124.595 W 0 34.5 -0.2 open 5 3 5 

A-CW-i 1020A 06/May/08 255 71.029 N 127.088 W 90 33 .1 ice 5 3 5 
A-CW-o 1020A 27/Ju1/08 245 71.028 N 127.088 W 0 nia -0.1 open 5 3 5 

A-CC-i 405 19/May/08 505 70 .662 N 122.887 W 60 34.5 ice 4 3 5 
A-CC-o 405B 10IJun/08 545 70 .667 N 123.01 W Il 34.8 0.4 open 5 3 5 
A-CC-o-2 405B 21/Ju1/08 595 70.707 N 122.939 W 0 34.8 0.4 open 5 3 nid 

FB-i FB03 16/Jun/08 100 69.968 N 125 .862 W 34* 33.4 -1.3 ice* 5 3 5 
FB-o 1116 14/Jun/08 230 70.042 N 126.277 W 22 33.3 -1.3 open 5 3 5 

* Station was located in fast ice, while general ice cover had retreated 



33 

Field Sampling 

Samples were collected at five sites ranging in water depth from 100 to 595 mat least 

once in each season (ice-covered and open-water condition) between March and August 

2008 onboard the icebreaker CCGS Amundsen (Table 1.1). !ce conditions for the 

Amundsen Gulf have been classified as 'ice covered' with ~80% ice cover, 'open' with 

::5;20% ice cover (Galley et al., 2008; Hammill, 1987) and as ice 'break-up' with ::5;80% and 

~20% ice cover (Galley et al., 2008). Adopting this approach, we considered a station to be 

'ice-covered' if the 14-day average sea ice concentration was above 80% and 'open' if 

average sea ice concentration was below 20%. Fifty percent ice cover represents the 

average ice concentration of 'break-up' condition and implies that a site was closer to 'ice-

covered' than 'open' for at least 7 days before sampling. We verified ice concentration of 

aIl sites in break-up condition with weekly ice charts for the western Canadian Arctic 

published by the Canadian !ce Service (CIS) available on http: //www .ec.gc .ca/glaces-ice/ . 

Sites were located in the Amundsen Gulf (A-CC, A-CW, A-NE, A-NW) and Franklin Bay 

(FB) (Fig. 1.1). In Franklin Bay, sampling was conducted at two distinct sites within 2 

days: FB-o was located where the ice edge had retreated for more than 10 days at 18 km 

distance from FB-i, which was located at the ice edge (Table 1.1). At each sampling event 

('station'), an USNEL box corer was deployed for collecting seafloor sediments. From each 

box core, five sub-cores of Il cm diameter and 20 cm sediment depth were taken for 

assessing benthic carbon remineralisation in microcosm incubations and three additional 

sub-cores of 5 cm diameter and 10 cm length were taken for determining sediment 

properties (Table 1.1). 

Sediment Pigment Concentration 

Samples from the sediment surface (0 to 1 cm) of additional sub-cores were frozen 

immediately at -20 oC for later pigment analysis. ChI a and phaeopigment concentrations 

were analysed fluorometrically following a modified version of the protocol by Riaux-

Gobin and Klein (1993). Two grams of wet substrate were incubated with 10 ml 90% 

Acetone (v/v) for 24 h at 4 oC, and the supernatant was measured in a Turner Design 20 
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fluorometer before and after acidification. ChI a and total pigment concentration (ChI a + 

phaeopigments) were determined and used in statistical analyses. Quantities are expressed 

as microgram pigment per gram of dry sediment !}tg g-l]. 

Benthic Carbon Remineralisation 

Incubations of sediment rnicrocosms were run in a dark, temperature-controlled room 

(2 to 4 oC) for 24 to 48 h. Prior to the onset of measurements, sediment cores were 

carefully topped with bottom water collected by the rosette at the same site and then 

allowed to acclimate for 6-8 h while being saturated with oxygen to avoid suboxic 

conditions du ring the experiment. At the onset of measurements, the rnicrocosms were 

hermetically closed and bubbles were removed. During the incubation, the water overlying 

the sediment was constantly stirred without resuspending the sediment surface. Total 

sediment oxygen demand (SOD) was determined as the decrease in oxygen concentrations 

in the water phase and was measured periodically (4-8 h intervals) with a non-invasive 

optical probe (Fibox 3 LCD, PreSens, Regensburg, Germany), until it had declined by 

approximately 20%. Three additional incubation cores containing bottom water only acted 

as controls for assessing the oxygen uptake due to processes within the water column. SOD 

values were determined as the slope of the linear regression of oxygen concentration in 

sediment microcosms on incubation time. Average oxygen decrease rates from the three 

control cores were subtracted, and benthic carbon remineralisation values (mg C m-2 dOl) 

were ca1culated from SOD rates using a respiration coefficient of 0.8 (Brey, 2001). 

Macrobenthic biomass 

Each sediment microcosm was sieved through a 0.5 mm mesh under running sea 

water at the end of incubations to de termine biomass of macrofaunal communities. The 

sieve residue was preserved in a buffered 4% seawater-formaldehyde solution and analysed 

for species composition and abundance under a stereomicroscope in the lab. Metazoan 

infauna biomass was estimated by deterrnining the formaldehyde wet weight (except at 

station A-CC-02 see Table 1.1) and applying taxon-specifie wet weight to carbon 

conversion factors (Brey et al., 2010). All macrofaunal foraminifera except for five 
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individu ais were agglutinated forms. For sorting, we used the method described by 

Moodley et al. (2002) based on the presence of cytoplasma and appearance of shells. 

Biomass of macrofaunal foraminifera was estimated from abundance figures using an 

average value of 5}tg C individuar1 (Altenbach, 1985). Abundance of foraminifera at 

station A-CW-i could not be analysed, as the remains of this sample were discarded after 

macrofauna sorting. There is good evidence, however, that at this site the foraminiferan 

biomass was lower in spring than in summer, since no foraminifera were detected by visual 

inspection of the spring sieve residues, whereas in summer, tests were easily visible 

although abundances were lower than in aIl other samples. Total benthic biomass was 

computed by adding foraminiferan and infaunal biomass values, assuming 0 for the three 

stations where foraminiferan data were lacking. For statistical analysis, foraminifera data 

were assigned ranks in steps of 50 mg C m-2
• This interval allowed for capturing within-

station variances and at the same time to assign the lowest rank to replicates at stations 

from which no data were available. 

Data Analysis 

One-way ANOVA was used to test seasonal differences in salinity and temperature 

(two levels: ice, open). Earlier studies have provided evidence that variance among sub-

cores from the same box core is not significantly smaller than variance among different box 

cores taken at the same station (Renaud et al., 2007a). Sub-cores were, therefore, treated as 

true replicates in statistical analyses. An orthogonal two-way ANOV A was used to test the 

differences between 'seasons' (two levels: ice, open), 'sites' (five levels: A-CC, A-CW, A-

NE, A-NW, FB) and their interactions in sediment ChI a concentration, total sediment 

pigment concentration, benthic biomass and carbon remineralisation. Tukey's post-hoc 

tests were applied to identify differences when a source of variation was significant. Prior 

to ANOVA, normality was verified using Shapiro-Wilk's test and homogeneity of 

variances was verified using Levene's test and visual analysis of residuals. Data were 

transformed using natural logarithm if variances were not homogeneous. To identify the 

drivers of benthic carbon remineralisation in spring and summer (separately), Mallow's Cp 

(MCp) and adjusted R2 were used to de termine the best-subset linear multiple regression 
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model. MCp compares a given reduced model to the full model, and a smaller statistic 

indicates a better model (Quinn and Keough, 2002). Water depth, sediment ChI a 

concentration, total sediment pigment concentration, infaunal biomass and ranked 

foraminiferan biomass were predicting variables of the full model. We tested for 

collinearity of variables retained in the best-subset model using the variance inflation factor 

(VIF). When VIF is > 10, collinearity is assumed critical (Quinn and Keough, 2002). This 

was not the case for either of the best-subset models. 

ResuUs 

Temporal Dynamics from spring to summer 

Environmental conditions 

Near-bottom water temperature at the study sites varied between -1.3 to 0.4 oC, and 

near-bottom salinity ranged between 33.1 and 34.8, as determined by the shipboard CTD 

probe 10 m above the seafloor (Table 1.1). The greatest difference was a decrease in 

temperature of 0.5 oC (from -0.1 to -0.6 oC) at site A-NE from March to July (Table 1.1). 

However, neither temperatures nor salinities differed significantly between spring and 

summer (one-way ANOVA, salinity FI . 7 = 0.23, P = 0.64; temperature FI , 7 = 0.44, 

P = 0.53) . Average sea ice coyer during the 14 days before sampling at a given site varied 

from 100 to 60% between March and May and from 34 to 0% between June and August 

(Table 1.1). The higher ice co ver in June (34 and 22%) was measured in Franklin Bay, 

where sampling was conducted at a distance of 18 km (FB-o) and < 0.5 km (FB-i) to a 

visible ice edge . CIS ice charts showed that sites A-CC and FB were completely ice-

covered at least seven of 14 days prior to sampling on May 19th and June 16th, 

respectively. Based on these results, stations were grouped into ice-covered (or spring) 

stations when ice co ver was ~34% and into open-water (or summer) stations when ice 

co ver was ::522%. 
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Fig. 1.2: Seasonal and spatial patterns in benthic processes in the southeastern Beaufort Sea 
in 2008. Differences in Season (A, C, E, G), Site (D, H) and significant interactions 
between Season and Site (B, F) in sediment ChI a concentration (A, B) sediment pigment 
concentration (C, D), benthic biomass (E, F), and benthic carbon remineralisation (G, H) 
following univariate orthogonal two-way ANOVA are presented. Means ± SE. Lower case 
letters indicate significantly different groups identified using Tukey's post-hoc testing, ns = 
not significant. A = Amundsen Gulf, FB = Franklin Bay; C, E, N, W = central, east, north, 
west; i = ice-covered, 0 = open water 



38 

Sediment pigment concentration 

ChI a concentrations in the surficial seafloor sediments varied between 0.24 and 

1.36}tg g-l under ice cover and between 0.15 and 2.39}tg g-l in open-water conditions 

(Table 1.2). There was a significant interaction between site and season (F4, 26 = 3.09, 

P = 0.03; Fig. 1.2A, B). Phaeopigment concentrations ranged from 5.05 to 9.93}tg g-l and 

from 6.23 to 14.61}tg g-l, respectively. They increased at an sites from spring to summer 

(Table 1.2). Total sediment pigment concentrations varied from 5.29 to 10 .51 }t g g-l under 

ice cover and from 6.39 to 17.00}tg g-l in open water. The values were significantly 

different between seasons (F l ,26 = 13.19, P < 0.01) and among sites (F4, 26= 13.57, 

P < 0.001; Fig . 1.2 C, D) . No interaction between season and site was observed (F4, 26 = 
0.52, P = 0.72). Four site groups were identified using Tukey's post-hoc test with A-CC 

having a significantly lower sediment pigment concentration than an other sites. Highest 

pigment concentrations were found at FB. 

Benthic biomass 

Macrofauna in the sediment samples was mostly composed of infaunal polychaetes 

contributing between 33% and 84% of total biomass at the different stations (unpub . data). 

Macrobenthic infauna biomass varied from 916 to 6166 mg C m-2 under ice cover and from 

900 to 12566 mg C m-2 in open water (Table 1.2). At sorne sites, large agglutinated 

foraminifera (test sizes > 500 }tm) were particularly abundant, with biomass values ranging 

from undetermined to 592 mg C m-2 under ice cover conditions and undetermined to 

662 mg C m-2 in open water. They accounted for between « 1 % to > 10 % of the total 

macrobenthic biomass (Table 1.2). Total macrobenthic biomass (infauna and foraminifera) 

reached values from 1230 to 6398 mg C m-2 under ice cover and from 1055 to 12649 mg C 

m-2 in open-water conditions. There was a significant interaction between site and season 

(F4• 43 = 3.17, P = 0.02; Fig. 1.2 E, F), and three groups were identified following Tukey's 

post-hoc test. 
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Table 1.2: Carbon remineralisation, sediment parameters and macrobenthic biomass at each 
location (A = Amundsen Gulf, FB = Franklin Bay; C, E, N, W = central, east, north, west) 
and season. Within-station averages ± SE. ChI a = chlorophyU a concentration, Phaeo = 
phaeopigment concentration; Foram = foraminifera > 500 ytm; nid = not determined 

Phaeo Infauna Foram Carbon 
Location Season Chi a [Ilg g,l] [Ilg g,l] [mg C m,2] [mg C m,2] remineralisation 

[mg C m'2 d,l] 

A-NE ice 0.72 ± 0.18 6.80 ± 0.54 2526 ± 881 237 ± 32 16.7 ± 2.9 
lce 0.55 ± 0.08 8.53 ± 0.37 1138 ± 186 nid 13.0 ± 2.6 
open 0.74 ± 0.32 10.83 ± 3.97 8382 ± 2366 662 ± 140 16.9 ± 1.9 

A-NW ice 0.54 ± 0.06 9.02 ± 0.51 1102 ± 246 128 ± 36 12.7 ± 0.6 
open 0.53 ± 0.02 10.39 ± 0.51 12566 ± 9012 83 ± Il 23.4 ± 4.5 

A-CW lce 0.31 ± 0.15 9.93 ± 1.09 2919 ± 1712 nid 20.8 ± 2.0 
open 0.80 ± 0.15 13.45 ± 0.73 3912 ± 1320 36 ± 6 24.2 ± 1.5 

A-CC ice 0.24 ± 0.05 5.05 ± 0.35 916 ± 168 592 ± 22 11.9 ± 2.2 
open 0.16 ± 0.02 6.23 ± 0.66 900 ± 723 155 ± 7 11.6 ± 3.1 
open 0.15 ± 0.04 7.08 ± 0.28 nid nid 11.9 ± 1.8 

FB lce l.36 ± 0.12 9.14 ± 1.00 6166 ± 3513 232 ± 23 33.2 ± 2.4 
open 2.39 ± 0.79 14.61 ± 1.40 3600 ± 719 5 ± 2 44.4 ± 4.0 

Benthic carbon remineralisation 

Carbon remineralisation by the sediment community ranged from Il .9 mg C m,2 d' I to 

33.2 mg C m,2 d' I in spring under ice cover and from 11.6 mg C m,2 d'I to 44.4 mg C m,2 d' I 

under open water in summer (Table 1.2) . The values varied significantly between seasons 

(F I. 49 = 11.34, P<O.OOl) and among sites (F4 • 49 = 33.37 , P<O.OOl) (Fig. 1.2 G, H) . 

Following Tukey's Post-hoc test, four groups were identified with only FB showing higher 

carbon remineralisation than aU other sites (Fig. 1.2 H). Remineralisation was lowest at A-

ce. No interaction between season and site was observed (F4 •49 = 2.12, P = 0.09). 
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Table 1.3: Adjusted R2 and standardized regression coefficients of benthic parameters 
(Depth - water depth, Infauna - biomass of infaunal macrobenthos, Foram = biomass of 
foraminifera > 500 ftm, ChI a - sediment chlorophyll a concentration, Pigments = total 
sediment pigment concentration) predicting benthic carbon remineralisation in the two 
different seasons (ice-covered spring, open-water summer). Whole model results are 
presented for the best-subset solution following MCp criteria (Effects - number of 
parameters included in the model). Absence of standardized regression coefficients indicate 
the parameters were not retained in the model 

Season 

!ce 

Open 

Adjusted 
R2 

0.57 
0.58 
0.55 
0.56 
0.59 

0.74 
0.71 
0.74 
0.73 
0.68 

F 

13.42 

22.07 

p Depth Infauna 

<0.001 0.35 
0.34 0.18 

0.18 
0.52 0.2 

<0.001 0.25 
0.21 
0.33 

0.11 0.32 

ChI 
a Pigments Foram MCp Effects 

1.02 -0.43 4.88 3 
0.94 -0.4 5.15 4 
0.74 -0.31 5.19 2 
0.66 -0.28 5.39 3 
0.94 0.27 -0.29 6 5 

0.63 -0.23 2.89 3 
0.77 3.97 2 
0.81 -0.27 -0.3 4.12 4 
0.67 -0.23 4.54 4 
0.84 5.19 

Drivers of spatial variability of benthic carbon remineralisation in spring and summer 

MCp criteria and adjusted R2 identified the best-subset regression model for ice-

covered conditions in spring with depth, ChI a concentration and foraminiferan biomass 

retained as predictive variables (Table 1.3). Benthic carbon remineralisation was positively 

related to depth and ChI a concentration (standardized regression coefficient 0.35 and 1.02, 

respectively) and negatively related to foraminiferan biomass (standardized regression 

coefficient -0.43). The model explained 57 % (adjusted R2) of the variance in our data . 

Foraminiferan biomass and ChI a concentration were also retained in the following three 

subset models with either depth and infaunal biomass, none, or infaunal biomass as 

additional predictor variable. 
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The best open-water model, explaining 74% (adjusted R2) of the total variance, did 

also encompass three predictive variables (Table 1.3) . Again, ChI a concentration exhibited 

the highest relation to benthic carbon rernineralisation (standardized regression coefficient 

0.63) and foraminiferan biomass was negatively related (-0.23), but this time, infaunal 

biomass was the third significant variable contributing to the best-subset model (0.25). 

These three variables were retained in the four best models, with total sediment pigment 

concentration and/or water depth as additional predictors in the subsequent models, that 

were disqualified following MCp (Table 1.3). 

Discussion 

Hypothesis 1: Food availability for the benthos increases after the ice melt 

Site and season had effects of similar importance on the distribution of total sediment 

pigment concentration, but their influence on ChI a distribution cannot be separated. Water 

depth seemed to affect both parameters: The lowest concentrations were found at the 

deepest site in the central Amundsen Gulf and the highest concentration at the shallowest 

site in Franklin Bay . These results correspond with the general finding that the vertical flux 

of organic matter decreases with depth (Carmack and Wassmann, 2006; Christensen, 

2000). 

The significant effect of season on total sediment pigment concentration , i.e., its 

general increase from ice to open-water season, supports our hypothesis that food supply to 

benthic communities in the southeastern Beaufort Sea rises after the ice melt characterizing 

the spring-to-summer transition. The lack of an interaction between site and season 

indicates that this temporal trend was independent of the significant concentration 

differences among the sites. A sirnilar conclusion has been reported for vertical flux 

patterns in the southeastern Beaufort Sea (Juul-Pedersen et al. , 2010): sedimentation rates 

were significantly higher in summer than in faH, but also showed a higher variability 
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among the different sites in summer than in fall. The importance of seasonal food pulses for 

the benthos has been recognized since sorne time (Pfannkuche, 1993), and the pronounced 

seasonality of the production period and, hence, the vertical flux of organic matter is one of 

the major factors explaining the tight pelagic-benthic coupling observed in Arctic shelf 

regions (Grebmeier and Barry, 1991; Klages et al., 2004). 

Sediment ChI a concentration in the study area, as determined by fluorometry, was 

slightly higher in 2008 (0.7-3.5 mg ChI a m-2
) than in 2004 (0-2 mg ChI a m-2

) (Morata et 

al., 2008). In Franklin Bay, they were even up to four times higher (7-11 vs 

3-4 mg ChI a m-2
). An upwelling event in late 2007 and early 2008, the year of our study, 

led to enhanced primary production and vertical export particularly in Franklin Bay and 

close to the Mackenzie river delta (Tremblay, pers. comm.; Williams and Carrnack, 2008), 

where a higher input of food to the seabed may thus have allowed preserving the seasonal 

signal. However, the other sites of this study were not affected by this event (vertical flux 

38-68 mg POC m-2 d- 1
, Sallon et al., 2011) and were located in an area generally expected 

to receive less input from the water column than other Arctic regions (Lalande et al., 2009). 

Moreover, analysis of carbon flux in the central Amundsen Gulf has shown that high 

pelagic turnover did not allow for intensive organic matter export despite an increased 

primary production in this area (Sallon et al., 2011; Forest et al., 2011). Despite the 

interannual difference, the generally low quantity of recently exported 'fresh' materiai may 

have prevented a measurable seasonal increase in Chi a concentration at the seafloor here . 

The detection of a seasonai signal in total sediment pigment concentration but not in 

ChI a, the indicator of fresh material, is not in contradiction. Morata et al. (2010) have 

demonstrated that a combination of analytical methods were necessary to verify the arrivaI 

of a food pulse that had not been detectable using fluorometric analysis of sediment 

pigments in the course of a spring-to-summer transition. The response of benthic 

communities to aigai input can be rapid but of limited duration (Sun et al., 2007), and we 

may have sampled sorne sites after the onset of such a rapid consumption. This wou Id 

imply a processing of fresh (ChI a) to more decomposed (phaeopigments) algal material. 
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lndeed, we report a tendency of increasing ChI a concentration combined with the 

significant increase in total pigment concentration from spring to summer. Considering a 

possibly insufficient resolution for the transient signal of sedimentary ChI a concentration, 

our results support the hypothesis of enhanced high-quality food supply to the benthos after 

the ice break-up that may be rapidly processed by benthic communities. 

Our findings also highlight that there is a spatial variability in the importance of the 

processes driving the food supply to the benthos. The general spatial pattern of sediment 

pigment concentration reflects differences in primary production and depth at the different 

sites . Lowest concentrations of sediment pigments were found in the central Amundsen 

Gulf, where the depth reduces organic matter export (Carmack and Wassmann, 2006). 

Highest concentrations were found in Franklin Bay and A-CW sites that were situated in or 

at the margin of the upwelling zone reported for 2008 (Tremblay, pers. comm.), but similar 

values were reported for most sites at ca. 200 m depth. Whereas Lepore et al. (2007) 

suggested a lack of spring-to-summer signal for years of enhanced primary production and 

export in Chukchi Sea, here, the seasonal increase in both ChI a and total sediment pigment 

concentration was highest at sites A-CW and FB (Table 1.2). We would have expected a 

more evident increase for A-NW in this context, but the late summer sampling date 

(August) may have allowed for a more complete degradation of algal material since the 

spring bloom at this site (see above). 

Hypothesis 2: Benthic biomass increases after the ice melt 

Total benthic biomass did not change significantly after the ice break-up, but did 

show a tendency to increase. This may reflect a lag between food input and faunal 

production and reproduction. Metabolic responses and, therefore, carbon remineralisation 

react more quickly to food inputs than does biomass (Brey et al., 2010). At one site (A-

NE), we did observe a seasonal transition from juvenile to adult individuals in polychaete 

species between the two sampling events, but a quantification of such growth processes is 

difficult due to the small size of the encountered infauna. The influence of predation has 

neither been investigated in our study area nor suggested to limit the increase of biomass in 
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other polar regions (Ambrose and Renaud, 1997, Bluhm and Gradinger, 2008). Moreover, 

faunal composition also responds to environmental changes on time sc ales greater than 1 

year (Cusson et al., 2007; Piepenburg et al., 2011) and does therefore integrate the effects 

of past processes that have not been covered during our sampling. It is noteworthy that 

spatial patterns of biomass did not match those of sediment pigment concentration or 

carbon remineralisation as can often be expected in polar regions (e.g. Carroll et al., 2008; 

Witman et al., 2008). Values at FB were not higher than at other sites, and at sites A-NE, 

A-NW and A-CW biomass increased strongly from spring to summer. Total benthic 

biomass is only one of several benthic community factors reacting to food supply patterns, 

as metabolic rates differ widely among species (Michaud et al., 2009). The southeastern 

Beaufort Sea is one of the most diverse Arctic shelf regions (Piepenburg et al., 2011). Local 

community composition can be quite variable (Cusson et al., 2007), which involves 

changes in trophic positions and, therefore, in carbon cycIing efficiency (Tamelander et al., 

2006; Sun et al., 2009). A better proxy than mere biomass would be achieved if functional 

composition of benthic communities were considered in the analysis (Bolam et al. , 2002; 

Michaud et al., 2005) , and hence, we coarsely separated biomass into infauna and 

foraminifera for analysis of driving factors. 

We did not determine the biomass of microbes and meiofauna, which have higher 

reproduction and growth rates and are thus more likely to show a detectable short-term 

biomass increase in response to organic matter input (Rex et al., 2006; Soltwedel, 2000). 

We did not find an increase in foraminifera biomass over the seasonal transition as it has 

been reported from other investigations (Altenbach, 1992; Moodley et al. , 2002). Our 

restriction to individuals of macrofaunal size may explain the deviation from processes 

described for foraminifera communities elsewhere, since total communities in those studies 

where dominated by meiofaunal species of smaller size and presumably faster metabolic 

reactions. These differences in community composition likely influence the timing and 

amplitude of the benthic response to seasonal food input (Renaud et al., 2007 a). 
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Hypothesis 3: Benthic carbon remineralisation increases after the ice melt 

In our 2008 data, the spatial and temporal distribution of benthic carbon 

remineralisation Iargely reflected that of sediment pigment concentration: there were 

significant effects of both season and site, with the latter being even more pronounced than 

the former. There was no interaction between the two effects, indicating that the carbon 

cycling generally increased from spring to summer, independent from spatial differences in 

the extent of this rise. Our resuIts, therefore, support the hypothesis that benthic carbon 

remineraiisation in our study area increases after the ice break-up. 

Microcosm incubations are a widespread and robust method for benthic community 

metabolic measures (e.g. Tengberg et al., 2004) and produce reIiable estimates for benthic 

carbon remineralisation (Renaud et al., 2007a). During our measurements, the temperature 

of the experiments was slightIy higher (max. 4 OC) than in situ bottom water temperature as 

measured 10 m above ground during CTD casts. Even though this might influence the 

accuracy of our absolute carbon cycling estimates (max. 30% overestimation following 

QIO)' it is common practice in Arctic studies to run shipboard incubations between 0 and 

4 oC (e.g. Grant et al., 2002; Renaud et al., 2007a) . Moreover, temperatures were generally 

constant for incubations during this study and, hence, did not affect the comparability of the 

data gained in the course of our study. 

Benthic carbon remineralisation rates were lower in summer 2008 (11.6-

44.4 mg C m-2 d- ') than those observed by Renaud et al. (2007a) in the same region in 

summer 2004 (18.0-58.8 mg C m-2 d- '). At first glance , this seems to be in contradiction to 

the primary production reported to be higher in 2008 than 2004 (Forest et al., 2011) . 

However, carbon turnover in the water column has aiso been reported to be particuiarly 

high in 2008 leading to vertical fluxes similar to those in 2004 and a weaker pelagic-

benthic coupling (Sallon et al., 2011) . Our data suggest that food avaiIability at the seafloor 

was comparable or ev en higher than in 2004 (0.7-3.5 in 2008 vs 0-2 mg ChI a m-2 in 2004). 

The lower benthic activity observed in 2008 may be explained by two other factors. First , 

experimentai studies have emphasized the fast but also rather short-term response of 
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sediment community respiration to organic matter input (Graf, 1992; Sun et al., 2007). The 

signal may already be lost after two weeks . It is possible that most of our summer data were 

obtained in a later, more declined or beginning phase of benthic activity, and that data from 

2004 were rather obtained during the peak response shortly after the sedimentation pulse. 

This may also explain the important differences of organic matter degradation between 

sites compared to seasons. Nevertheless, we are confident that our sampling design was 

appropriate to detect the benthic response to food supply. The general increase in sediment 

pigment concentration during the open-water period covered by our study indicates that the 

effects of enhanced food supply du ring and/or shortly after the ice melt were still 

measurable. Organic matter export to the seafloor occurs over several days to weeks, and it 

is likely that the Arctic benthic communities maintain the shift from 'winter to summer 

mode' for more than 2 weeks, particularly if high-quality food (ChI a) is still available. 

Second, the difference in benthic activity patterns between 2004 and 2008 may also be 

caused by differences in faunal composition. The results of Michaud et al. (2005) show that 

sediment oxygen uptake is strongly influenced by the functional groups of species present. 

Renaud et al. (2007a) have reported very high densities of amphipods at sorne sites in 2004, 

which were never observed in 2008 . However, more data on faunal composition are needed 

to test this hypothesis. 

The significant differences between sites highlight the amount of spatial variability 

in parameters influencing the benthic activity such as vertical export, depth and other biotic 

as well as abiotic factors . Tamelander et al. (2006) have demonstrated important spatial 

variability in pelagic-benthic coupling on the northwestern Barents Sea, ultimately 

influencing the benthic food web . The spatial pattern of benthic carbon remineralisation in 

our study is generally congruent with that in sediment pigment concentration , and highest 

values were observed in Franklin Bay, the shallowest site (FB), and lowest values at the 

deepest site in the central Amundsen Gulf (A-CC). Carbon cyc1ing increase from spring to 

summer was significantly greater at FB than at aH other sites, indicating that not only water 

depth but also other parameters are involved. Primary production and vertical ex port was 

higher at FB than in other regions of the southeastern Beaufort Sea (Tremblay, pers. 
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comm.), and we may have been sampling closer to bloom conditions that at other sites . 

This may lead to a generally higher benthic activity. The interplay of food quantity, quality 

and benthic community composition needs to be considered for the explanation of spatial 

patterns in benthic carbon remineralisation. 

Hypothesis 4: Spatial variability of benthic carbon remineralisation is determined by both 

food availability and benthic biomass 

In our data, the importance of the factors driving benthic carbon remineralisation 

slightly changed in the course of the transition from ice-covered conditions in spring to 

open-water conditions in summer: In both spring and summer, sediment ChI a 

concentration was the most important predictor. In summer, macrobenthic infauna biomass 

was a secondary significant predictor and foraminiferan biomass retained in the model; in 

spring foraminiferan biomass was identified as second significant and depth as additional 

third factor affecting carbon cycling. 

A number of studies have described the significant impact of water depth and benthic 

food availability on carbon remineralisation (Bessière et al., 2007; Graf 1992; Renaud et 

al., 2007a, 2008). In a study ranging down to 3650 m depth, besides these two factors, 

benthic biomass was found to be correlated to benthic carbon remineralisation (Clough et 

al., 2005). Our results partly corroborate these, but also suggest that depth does not directly 

predict spatial patterns of benthic carbon cycling on the southeastern Beaufort Sea shelf. 

The general relationship between water depth and sediment pigment concentration 

(Ambrose and Renaud, 1995; Renaud et al., 2007a) and between water depth and benthic 

biomass (Conlan et al., 2008) on Arctic shelves has been reported. It is likely that depth had 

an indirect influence on benthic carbon remineralisation via other parameters du ring our 

study , and its inclusion in the best spring model only indicates the dominating influence of 

other parameters on spatial variability and the aforementioned effects of local processes 

(e.g. in Franklin Bay) in summer. Areas of enhanced primary production and pelagic-

benthic coupling can create ' hotspots ' of benthic processes, irrespective of water depth 

(Grebmeier et al., 2009; Witman et al., 2008). In the low-production ice-covered season, 
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when food input to the benthos is generally low and limits benthic activity at aU sites, the 

quantity of high-quality food is the most important driver. After the ice melt, sufficient 

fresh detritus is reaching even greater depths and the level of benthic activity generaUy rises 

(Renaud et al., 2008). The metabolic rate is still primarily determined by the actual 

availability of high-quality food rather than by total sediment pigment concentration (Sun 

et al., 2009). The significance of infaunal biomass in summer only could be explained by 

a dormant stage of organisms during starvation periods. The consistent negative effect of 

foraminiferan biomass on benthic carbon remineralisation in both spring and summer raises 

questions on the metabolic mechanisms in this group. Recently, Pifia-Ochoa et al. (2011) 

have described use of denitrification processes by many foraminiferan species. This cou Id 

imply the respiration of nitrate rather than oxygen from the water phase, but it is still 

unclear, whether foraminiferan denitrification is restricted to anaerobic conditions 

(H!Zlgslund et al., 2008; Pifia-Ochoa et al., 2011). Depending on the oxygen penetration of 

sediments, which is generally deeper in greater water depths, foraminifera can be abundant 

down to more than 5 cm sediment depth (Fontanier et al., 2005). Also, the importance of 

smaller organisms as compared to macrofauna increases with water depth, most likely 

caused by the limited supply of food in terms of quantity and quality (Clough et al., 2005; 

Piepenburg et al. , 1995; Rex et al., 2006). As their abundance is higher at deeper sites, 

benthic carbon rernineralisation seems to decrease with forarniniferan biomass. 

Forarninifera are often neglected in studies on benthic macrofauna, due to the high effort 

for sorting specimens (Soltwedel, 2000; Wollenburg and Kuhnt, 2000). Clough et al. 

(1997) conducted one of the few studies recording foraminifera and macrofauna in 

conjunction with benthic processes in the Arctic. However, foraminiferan contribution to 

the variability in benthic processes was not statistically analysed, and their contribution to 

benthic carbon remineralisation was not measured in their study. As demonstrated by 

Gooday et al. (2009) for the deep sea, the size and abundance of macrofaunal foraminifera 

in Arctic environments imply the need to consider this parameter in the examination of 

benthic processes . 
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Conclusions 

We hypothesized that an increase in food availability is the prime cause for the 

general rise in benthic carbon remineralisation after the ice melt in open-water conditions. 

This hypothesis is not only supported by the concurrent spring-to-summer increase in 

sediment pigment concentrations and benthic carbon rernineralisation but also by the great 

importance of ChI a in predicting benthic carbon cycIing. Our results of the two regression 

models also support our hypothesis that both food supply to the benthos and benthic 

biomass are the most important determinants for benthic carbon remineralisation, and their 

different spatiotemporal patterns during this study imply that they are not directly 

correlated. Overall, these findings indicate the importance of biotic parameters rather than 

an abiotic factor such as depth in deterrnining the spatial variability of benthic carbon 

rernineralisation, particularly on a regional scale like in our study. The general relationship 

between food supply and benthic metabolism in seasonally ice-covered polar shelf seas 

may be regionally modified by the composition of the benthic community. If we assume 

that a decrease in ice coyer accompanied with enhanced pelagic recycIing will le ad to rather 

degraded organic matter exported to the benthos over a longer season, we can expect an 

increase in competition for quality food among benthic communities. Thus, cIimate 

changes may favour a shift in community composition towards boreal species on Arctic 

shelves. 

To better understand the effects of the underlying factors driving the spatial and 

seasonal variability of benthic processes, analyses of the relationship between spatial 

patterns and annual-to-decadal changes in seasonal dynamics are necessary. The faunal 

composition of benthic communities represents a long-term integration of environmental 

conditions, and the significant role of infauna for spatial variability in our study emphasizes 

that differences in benthic community composition influence carbon cycIing at the seafloor. 

Our findings strongly suggest that it is important to consider the interplay of seasonal 

dynamics and spatial patterns, involving fast-changing factors such as food supply and 

slow-changing variables such as benthic community composition over different years, 
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when evaluating shifts of benthic ecosystem processes in relation to the rapid decline of sea 

ice in the Arctic. 
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CHAPITRE 2 

MUL TIV ARIATE BENTHIC ECOSYSTEM FUNCTIONING IN THE 

ARC TIC - BENTHIC FLUXES EXPLAINED BY ENVIRONMENTAL 

PARAMETERS IN THE SOUTHEASTERN BEAUFORT SEA 

RÉSUMÉ DU DEUXIÈME ARTICLE 

The effects of climate change on Arctic marine ecosystems and their biogeochemical 

cycles are difficult to predict given the complex physical, biological and chemical 

interactions among the ecosystem components. To predict the impact of future changes on 

benthic biogeochemical fluxes in the Arctic, it is important to understand the influence of 

short-term (seasonal to annual), long-term (annual to decadal) and other environ mental 

variability on their spatial distribution. In surnrner 2009, we measured fluxes of dissolved 

oxygen, nitrate, nitrite, arnrnonia, soluble reactive phosphate and silicic acid at the 

sediment-water interface at eight sites in the southeastern Beaufort Sea at water depths 

from 45 to 580 m to address the following question and hypotheses using a statistical 

approach: (1) What is the spatial variation of benthic boundary fluxes (sink and source)? 

(2) The classical proxy of benthic activity, oxygen flux, does not determine overall spatial 

variation in fluxes. (3) A different combination of environmental conditions that vary either 

on a long-term (decadal) or short-term (seasonal to annual) scale determine each single 

flux. And (4) A combination of environmental conditions varying on the short and long-

term scale drive the overall spatial variation in benthic boundary fluxes. The spatial pattern 

of the measured benthic boundary fluxes was heterogeneous . Multivariate analysis of flux 

data showed that no single or reduced combination of fluxes could explain the majority of 

spatial variation . We tested the influence of eight environmental parameters: sinking flux of 
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particulate organic carbon above the bottom, sediment surf~ce ChI a (both short-term), 

porosity, surface manganese and iron concentration , bottom water oxygen concentrations 

(aIl long-term), phaeopigments (intermediate-term influence) and Ô1 3Corg (terrestrial 

influence) on benthic fluxes. Short-term environmental parameters were most important for 

explaining oxygen, ammonium and nitrate fluxes. Long-term parameters together with 

Ô13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite 

fluxes. Sediment pigments and Ô13Corg levels in surficial sediments were most important to 

explain fluxes of silicic acid. The overall spatial distribution of fluxes could be best 

explained (57 %) by the combination of sediment ChI a, phaeopigments, Ô13Corg, surficial 

manganese and bottom-water oxygen concentration. We conclude that it is necessary to 

consider long-term environmental variability in the prediction of the impact of ongoing 

short-term environmental changes on the flux of oxygen and nutrients in Arctic sediments . 

Our results contribute to improve ecological models predicting the impact of climate 

change on marine ecosystems functioning .. 

Keywords: Benthic ecosystem functioning , nutrient fluxes, Arctic , spatial variation, 

environmental factors, multivariate analysis 
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Increased effort is put into estimating climate change effects in Arctic ecosystems 

(ACIA, 2004; Wassmann et al., 2011; Barber et al., 2012). Contrary to multilevel analyses 

of pelagic processes (Forest et al., 2011; Tremblay et al., 2011), few studies have tried to 

link environmental conditions to benthic ecosystem functioning in terms of multiple 

processes in the Arctic (Schmid et al., 2009). Marine sediments play a pivotaI role in the 

remineralisation of the organic matter settling to the seafloor. They can be both a major 

source of nutrients and carbon to the overlying water column or / and a significant sink 

(Schulz, 2006). Typically, a significant fraction of exported organic matter undergoes 

biologically mediated degradation and oxidation through a complex web of redox reactions, 

while a small remaining fraction is permanently buried (Berner, 1980). Determining the 

spatial variation and partition between source fluxes from and sink fluxes to the sediments 

is important for improving our understanding of regional biogeochemical cycles (Ebenh6h, 

1995; Zabel and Hensen, 2006), and only few data is available from the Arctic regions 

being particularly sensitive to climate change (Chang and Devol, 2009; Darnis et al., 2012; 

Davenport et al. , 2012; Rysgaard et al., 1998). 

Oxygen uptake is often used as a proxy of total benthic ecosystem functioning, more 

precisely of activity and remineralisation (Glud, 2008; Hensen et al., 2006; Holstein and 

Hensen, 2010; WenzhOfer and Glud, 2002). But evidence is increasing, that benthic 

nutrient remineralisation is not directly correlated with oxygen uptake, particularly in 

coastal and shelf environments (Braeckman et al., 2010; Davenport et al., 2012; Holstein 

and Hensen, 2010; Michaud et al., 2009; Robert et al., 2012). 

A wide range of environ mental factors influence benthic processes. Determining their 

relative importance is difficult due to the number and complexity of biotic and abiotic 

interactions among the processes involved (Godbold and Solan, 2009). Organic carbon 
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content m sediments has been proposed to be the principal driver of benthic 

remineralisation. Several different metabolic pathways contribute to the degradation of 

organic carbon, with oxygen, nitrate, manganese, iron and sulphate being most important 

agents of remineralisation (Canfield et al., 1993; Froelich et al., 1979). Their relative 

importance varies temporally and spatially due to changes in environmental conditions. 

Thus, organic carbon content of sediments seems less predictive of benthic rernineralisation 

(Rysgaard et al., 1998) than the quantity of fresh organic matter deposited on the seafloor 

(Chang and Devol, 2009; Link et al., 2011). AIso, historical input of organic matter, 

ambient water oxygen concentration and porosity modifies the oxygen penetration of 

sediments and therefore its reactivity (Gobeil et al., 2001). FinaIly, biologically mediated 

degradation in Arctic marine sediments seems to be enhanced if labile, marine derived 

matter is present (Sun et al., 2009). Thus, the quality of organic matter at the seafloor will 

influence the pattern of benthic nutrient remineralisation (Rysgaard et al., 1998). 

The continental shelf off the Mackenzie Delta in the Beaufort Sea may be particularly 

sensitive to climate change: Among Arctic rivers, the Mackenzie is the largest exporter of 

particulate organic matter and ranks third in total terrigenous organic carbon input 

(dissolved and particulate) to the Arctic seas (Rachold et al., 2004). Over the last two 

decades, this region has experienced a significant reduction in summertime ice cover 

(Galley et al., 2008), an increase in ultraviolet radiation (Bélanger et al., 2006), as weIl as 

an earlier onset of primary production in spring (Tremblay et al., 2011). These changes 

would result in a greater export of terrigenous carbon to the Arctic Ocean (Benner et al., 

2004) and shifts in marine produced vertical carbon export (Forest et al., 2011). Direct and 

indirect effects of these changes on Arctic Ocean biogeochemical cycles are difficult to 

predict in quantitative terrns given the complexity of physical, biological and chemical 

interactions among ecosystem components. It is clear, however, that the flux of organic 

matter to coastal and shelf Arctic sediments will be considerably altered, which in tum will 

severely affect benthic ecosystem functioning , including the processes of nutrient 

remineralisation. Reducing the current lack of knowledge on benthic boundary fluxes in 
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Arctic regions, or on their link with environmental changes on different time scales, will 

help to evaluate biogeochemical budgets on larger time scales. 

As part of the larger Malina pro gram (http://malina.obs-vlfr.fr/), which aims to 

predict Arctic ecosystem reactions to changes in light penetration of the ocean and climate, 

we want to fill gaps in benthic ecosystem process knowledge. The objective of this study 

was to determine what drives spatial variation in benthic functioning measured as benthic 

boundary fluxes in the Beaufort SealMackenzie Shelf. Emphasis is put on the ecological 

perspective and setting, and a hypothesis-driven approach, using multivariate statistics. 

SpecificaUy, the foUowing research question (1) and hypotheses (2-4) were addressed: (1) 

What is the spatial variation of benthic boundary fluxes (sink and source)? (2) The classical 

proxy of benthic activity, oxygen flux, does not determine overaU spatial variation in 

fluxes. (3) A different combination of environmental conditions that vary either on a long-

term (decadal) or short-term (seasonal to annual) scale determine each single flux. And 

finaUy (4) A combination of environmental conditions varying on the short and long-term 

scale drive the overaU spatial variation in benthic boundary fluxes. 

Material and methods 

Study Region 

This study was conducted in the southeastern Beaufort Sea with emphasis on the 

shelf off the Mackenzie Delta (Fig. 2.1). The study area is dominated by coastal shelves 

and the maximum depth of our study was 580 m on the outer Mackenzie Shelf. Annual 

primary production ranges from 30 to 70 g C m-2 yr- 1
, indicating generaUy oligotrophic 

conditions (Sakshaug, 2004). Rather low primary production daily rates (73 ± 37 mg C m-2 

d-1
) were also found in summer or faU 2005-2007 in the eastern Beaufort Sea (Ardyna et 

aL, 2011) . In the Cape Bathurst Polynya at the eastern boundary of the study area, however, 

rates are apparently higher, reaching 90 to 175 g C m-2 yr- 1 as based on satellite estimates 

(Arrigo and van Dijken, 2004). Ardyna et al. (2011) reported daily primary production rates 

of 159 ± 123 mg C m-2 d-1 in summer and faU , and intensive phytoplankton blooms related 
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to ice-edge upwelling events were documented for coastal regions of the Mackenzie Shelf 

and Amundsen Gulf in 2008 (Mundy et al., 2009; Tremblay et al., 2011). An annual 

vertical POC flux of 1.6-1.8 g C m-2 yr- 1 and 2.4 g C m-2 yr-1 was estimated at 200 m water 

depth for the Mackenzie Shelf and the Cape Bathurst Polynya, respectively (O'Brien et al, 

2006; Forest et al., 2007; Lalande et al., 2009). Seafloor sediments are dominated by fine-

grained material that is usually composed of more than 70 % silt and clay (Conlan et al., 

2008). Sediment characteristics indicate that organic carbon at the seafloor is to a large part 

derived from either the Mackenzie River plume and erosion (O'Brien et al., 2006) or 

refractory marine material (Morata et al., 2008; Magen et al., 2010; Sallon et al., 2011). 

The latter dominates the carbon flux in summer and on the eastern shelf (Naidu et al., 2000) 

whereas on the Mackenzie Shelf carbon of terres trial origin is abundant in fall (Morata et 

al.,2008). 

Field Sampling 

Samples were cOllected during the Malina pro gram at eight sites ranging in water 

depth from 47 m to 577 m in July and August 2009 onboard the icebreaker CCGS 

Amundsen (Table 2.1). At each sampling event ('station'), an USNEL box corer (50 x 50 x 

30 cm) was deployed for seafloor sediment collection. From each box core, three sub-cores 

of ten cm diameter and approximately 20 cm sediment depth were taken for assessing 

benthic oxygen demand and nutrient remineralisation in microcosm incubations . Six 

additional sub-cores of 2.4 cm diameter and 8 cm and 1 cm length were taken for 

determining sediment pigment concentration and water content and sediment solid phase 

composition, three sub-cores each, respectively (Table 2.1). Samples from the sediment 

surface (0 to 1 cm sediment depth) of additional sub-cores were stored in pre-weighed 

plastic vials and frozen immediately at -80 oC for later analysis. Near-bottom water 

temperature and salinity were determined by the shipboard CTD probe at each station 10 m 

above the seafloor. Salinity ranged from 32.2 at the shallowest site (47 m) to 34.9 at the 

deepest site (577 m). Temperature values varied between -1.6 oC and 0.4 oC (Table 2.1) . 



57 

Sediment Pigment Concentration 

ChI a and phaeopigment concentrations were analysed fluorometrically following a 

modified protocol proposed by Riaux-Gobin and Klein (1993) as described in Link et al. 

(2011): Two grams of wet substrate were extracted with 10 ml 90 % Acetone (v/v) for 24 h 

at 4 oC, and the supernatant was measured in a Turner Design 20 fluorometer before and 

after acidification. ChI a and total pigment concentration (ChI a + phaeopigments) were 

determined. Quantities are expressed as rnicrogram pigment per gram of dry sediment 

!}tg g-l]. 

Table 2.1: Station list. Labels, data of sampling, geographic position, bottom-water 
temperatures and salinities, number of within-station replicate samples used to determine 
benthic boundary fluxes (BBF) and sediment surface properties (ChI a, phaeopigments, 
porosity, manganese and iron oxide) . A = Amundsen Gulf, MD = Mackenzie Delta, 
MS = Mackenzie Shelf/Slope; C, E, N, W = central, east, north, west 

Malina Sed 
Station Depth Latitude Longitude BBF Prop 

Station Label Date [ml [ON] [OW] Sal!lllt T!llIl [oC] (n) (n) 
MD-C 390 31/Jul/09 47 70.178 133.569 32.24 -1.3 3 3 
MD-W 690 01 /Aug/09 55 69.486 137.942 32.49 -1.6 3 3 
MD-E 260 04/Aug/09 60 71.269 130.613 32.32 -1.2 3 3 
A-NW 110 06/Aug/09 400 71.696 126.477 34.77 0.3 3 3 
A-CW 140 07/Aug/09 154 71.285 127.783 33.4 -1.4 1 1 

154 71 .285 127.782 2 2 
MS-W 680 1O/Aug/09 125 69.611 138.235 32.31 -1.3 3 3 
MS-C 345 16/Aug/09 577 71.382 132.652 34.86 0.2 3 3 
MS-E 235 22/Aug/09 576 71.764 130.766 34.84 0.4 3 3 

Particulate surficial sediment composition 

Porosity was determined by comparison of weight of wet and dried sediment. 

Porosity was ca1culated using a dry sediment density of 2 .65 g cm-2 (Berner , 1980). The 

dried solid fraction was homogenised and the water content used to correct the analyses for 

the presence of sea salt. 
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Fig. 2.1: Locations of sites sampled for benthic boundary fluxes during the Malina 
expedition in the Beaufort Sea in summer 2009 

For stable isotope composition analysis, grounded sediments were acidified twice for 

48h with a dilute HCI (lN) solution to dissolve solid carbonates. The acid supernatant was 

decanted and solids rinced with nanopure water and dried. Samples were analysed for 

ô13CORG and ô15N with a CF-IRMS (continuous-flow Isotope Ratio Mass Spectrometry) 

coupled to a Costech 4010 elemental analyser. Here, we only report the stable isotope 

signature of Ô1 3CORG of the surficial buried organic matter. Data are reported in standard 

notation in %0 with respect to V -PDB for carbon. The analytical precision error was lower 

than 0.3%0 and three internaI standards were measured during the isotopie analyses to 

continuously check the accuracy of the measurements. 
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Acid soluble Mn- and Fe-oxides were deterrnined on homogenised dried sediments 

using IN HCI solution. About 250 mg of dry sample was leached with a 12 ml solution 

during 24 hours while shaking continuously at room temperature. The centrifuged and 

filtered solution was then diluted in 0 .2 N HCI and analyzed with a flame atornic absorption 

spectrometer (5100PC Perkin-Elmer). The analytical precisions were better than ±3% and 

± 7% for Mn and Fe, respectively. Acid soluble Fe (FeHc l) represents amorphous iron-

oxides, FeS, sorne iron phyllosilicates and iron carbonates. Specific tests on particulate Mn 

extraction with IN HCI (MnHcl) have shown that MnHc 1 represents the whole fraction of 

Mn-oxides and Mn associated with carbonates (Anschutz et al., 2006). 

Sinking fluxes of particulate organic carbon (POC) reaching the benthic boundary 

layer (approximately 20 m above bottom) were derived from a particle size distribution 

dataset obtained with an Underwater Vision Profiler 5 (UVP5 , Picherai et al. , 2010) 

deployed at every station (Table 2.1). Full methodology on the functioning of the UVP5 

and on the estimation of sinking POC fluxes can be found in Forest et al. (201 2) . Briefly, 

particles in the range 0.08-4.2 mm (in equivalent spherical diameter) recorded with the 

UVP5 were transformed into sinking fluxes by applying a regional empirical algorithm 

linking sediment trap fluxes and the UVP5 dataset. The algorithm was calibrated using an 

optirnization function following Guidi et al. (2008) and provided robust agreement between 

sediment trap POC fluxes and UVP5 POC fluxes (r2 = 0.68, n = 21). 

Benthic oxygen flux and nu trient remineralisation 

Incubations of sediment microcosms were run in a dark, temperature-controlled room 

(2 to 4 OC) for 24 to 48 h. Prior to the onset of measurements, sediment cores were 

carefully topped with bottom water collected by the rosette at the same site, and then 

allowed to acclimate for six to eight hours while being saturated with oxygen to avoid 

suboxic conditions during incubations. At the onset of measurements, the microcosms were 

hermetically closed and bubbles were removed. During the incubation, the water overlying 

the sediment was constantly stirred without resuspending the sediment surface. Total 

sediment oxygen flux was determined as the change in oxygen concentrations in the water 
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phase and was measured periodically (2 to 8 h intervals) with a non-invasive optical probe 

(Fibox 3 LCD, PreSens, Regensburg, Germany). During incubations, oxygen concentration 

never decreased by more than 25 % in order to avoid anoxie conditions and biogeochemical 

transformations. Hall et al. (1989) demonstrated the importance of maintaining the O2 

supply to ob tain consistent and relevant data during core incubations . 

To determine changes in nutrient concentration, samples of the overlying water phase 

were taken at three times during the incubation, inc1uding the onset and end. Water samples 

withdrawn for analysis were immediately replaced by an equivalent volume of bottom 

water of known nutrient composition. The total amount of water withdrawn and replaced 

during each sampling never exceeded 10% of the total overlying water volume to prevent 

artefacts. Three additional incubation cores containing bottom water only acted as controls 

for assessing the oxygen consumption and nu trient changes due to processes within the 

water column or sample handling. Oxygen and nutrient fluxes were determined as the slope 

of the linear regression of the oxygen and nu trient concentration on incubation time and 

corrected for solute concentration in the replacement water. Median flux rates deterrnined 

in the three control cores were subtracted from each sediment core measure . A positive flux 

means a release of the nutrient from sediment into the water column. 

Samples were filtered through combusted GF/F filters and split into subsamples for 

nu trient analyses. For NH/ measurements, 6 ml samples were immediately incubated with 

3 ml orthophtaldialdehyde solution following an adaptation of the method proposed by 

Holmes et al. (1999). Samples were analysed using a Turner Design fluorometer 5-6 h after 

the initiation of colorimetrie reaction. Detection limit for ammonium was 0.1 }lM. For 

nitrate, nitrite, phosphate and silicic acid measurements, water samples were frozen at -

80 oc and analysed within the following two weeks using an Autoanalyzer 3 (Bran and 

Luebbe) applying colorimetrie methods adapted from Grasshoff et al. (1999) . The precision 

ofthese methods was ±5 %. 
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Definition of short-term and long-term environmental factors 

We used environmental parameters of different temporal variation to explain benthic 

boundary fluxes . As short-term scale we define seasonal to annual time sc ales and the 

parameters sediment surface ChI a concentration and vertical POC export. Results reported 

from different seasons and years in the Beaufort Sea have shown that sediment ChI a 

concentration and vertical POC export vary both over seasons and years (Link et al., 2011; 

Morata et aL, 2008; Renaud et aL, 2007a; Forest et aL, 2007; luul-Pedersen et aL, 2010; 

Sallon et al., 2011) respectively. This is likely due to the seasonal and spatial dynamic of 

primary production and carbon fluxes in the region (Ortega-Retuerta et al., 2012; Tremblay 

et aL, 2011; Forest et aL, 2010). 

As long-term we define temporal variations of decades and longer. Bottom-water 

oxygen concentration of shelf waters changes on such time scales (Gilbert et al., 2010), as 

does iron oxide (Hensen et al., 2006) and manganese oxide concentration (Gobeil et al., 

2001; Katsev et al., 2006) in sediments. In open ocean regions, changes in the ocean' s 

dissolved oxygen are likely related to physical processes and thermohaline circulation. The 

major drivers of these changes are increased temperature , altered hydrological cycles and 

shifts in wind patterns that alter coastal currents and upwelling formation (Rabalais et al. 

2009). The effect of interdecadal changes in deep-water characteristics have recently been 

proposed to explain a decline in dissolved oxygen saturation in deep waters of both coastal 

waters (Gilbert et al., 2005; Chan et al., 2008) and open basins (Fukasawa et aL, 2004). At 

the sediment-water interface, the abundance of trace metals such as Mn and Fe-oxides 

allows to track the depositional redox conditions (Tribovillard et aL , 2006) . Sedimentary 

redox conditions reflect the balance between the O2 diffusing from the bottom water and 

metabolic aerobic processes that mineralize the labile organic carbon at the sediment-water 

interface (Canfield et aL, 1993; Froelich et aL, 1979). Over a period of several decades, the 

upward migration of sedimentary redox boundary can generate surficial peak of metal-

oxides as a result of generally increased water column productivity (Gobeil et aL, 2001; 

Katsev et al., 2006) or progressive decline in the deep water oxygen saturation (Lefort et 

al., in press). Changes in porosity of sediments depends on the sedimentation rate, which is 
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generally about 1 mm yr-1 in the study area (Richerol et al., 2008) and can therefore also be 

considered long-term. 

Sediment phaeopigment concentration depends on vertical POC flux (short-term) but 

is also the accumulation of degraded material over severa1 years (Morata et al., 2008). The 

signature of ol3C in surface sediments depends on the contribution of terrestrial versus 

marine produced carbon to the total carbon input and rather indicates input of sediments 

from the Mackenzie River (Gofii et al., 2005; Magen et al., 2010; Naidu et al., 2000). 

Therefore, sediment phaeopigment concentration and ol3C signature are considered 'other' 

environmental factors .. 

Statistical analyses 

We used best-subset multiple regression analyses to identify potential drivers of each 

single flux separately. Predicting variables allowed in the model were: Sediment surface 

ChI a concentration, sediment surface phaeopigment concentration, sediment surface 

porosity, sediment surface manganese-oxides concentration, sediment surface iron-oxides 

concentration, sediment surface 013C, bottom water oxygen concentration and vertical flux 

of POC. Due to independent sampling of environmental and benthic flux data, the median 

value of each site of each of the predicting variables was attributed to the three flux 

replicates of each site. This allowed for keeping the high variability of benthic boundary 

fluxes in the model testing. Analysis of multicollinearity showed that sediment ChI a 

concentration and sinking POC in the lower water colurnn were highly correlated 

(R = 0.92). Nevertheless, both predictors were retained in the initial full multiple regression 

model to deterrnine which of the two would be predictors in the best solutions. Akaike's 

Information Criterion (AIC) was applied to choose the best linear model (Akaike 1978; 

Quinn and Keough, 2002) . In none of the best models, both predictors were retained. 

Normal distribution of the best model's residuals was verified with Shapiro-Wilk's test, and 

homogeneity of variance was tested using graphical methods (Quinn and Keough, 2002). If 

distribution of residuals was skewed, natural logarithm transformation was applied to the 

response variable and/or sediment surface ChI a and sinking POC data until assumptions 
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were met by the best model. Normality could not be achieved for any N02- model, thus 

only the graphical method was applied. Outliers with severe influence on the model were 

identified using Cook's Distance (D) and removed if D > 1. One outlier in the silicic acid 

fluxes was found and removed from all further analyses (Table S2.1). We tested for 

collinearity of variables retained in the best-subset model using the variance inflation factor 

(VIP), with VIP> 10 indicating critical collinearity (Quinn and Keough, 2002). This was 

not the case for either of the best-subset models. 

Principal Component Analysis (PCA) was used to determine the influence 

(eigenvector) of the six measured benthic boundary fluxes on the ordination of samples in a 

multidimensional space. Prior to PCA, homogeneity of each variable was assessed using a 

draftsman plot, and ammonium fluxes were transformed using naturallogarithm. Moreover, 

flux data was standardized using the 'normalise' routine in PRIMER-E (Clarke and Gorley, 

2006). No pair of fluxes was correlated with R > 0.7, with the exception of nitrate and 

oxygen (R = 0 .82). 

A stepwise distance-based linear model permutation test (DistLM, McArdle and 

Anderson, 2001) was performed to identify which set of environmental variables predict 

the multivariate variation of benthic boundary fluxes, thus taking into account possible 

interactions between different fluxes (in contrast to the multiple-regression approach 

described above) . The resemblance matrix quantifying the between-samples similarities in 

terms of an six standardized fluxes was calculated based on Euclidean distances (Clarke 

and Gorley, 2006). Predicting environmental variables allowed to enter the model were 

sediment surface ChI a concentration, sediment surface phaeopigment concentration, 

sediment surface porosity, sediment surface manganese-oxide concentration, sediment 

surface iron-oxide concentration, sediment surface Ôl3C and bottom-water oxygen 

concentration. To represent natural variation as much as possible in the analysis but to 

avoid arbitrary attribution, each environmental sample of a site was attributed to each 

replicate fl ux sample, thus triplicating the original data set. Sinking POC rates were 

excluded from this analysis due to a lack of replicates and due to its correlation with 
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sediment ChI a. While the influence of multicollinearity on the model results can be tested 

for multiple regression (VIF, see above), this is not the case for the DistLM. After assessing 

normality and collinearity of the other predictor variables using a draftsman plot , sediment 

ChI a data was transformed using the naturallogarithm to correct for skewness (Anderson 

et al., 2008). No pair of variables was correlated by R > 0.85 and hence all variables were 

retained for possible inclusion in the mode!. The stepwise routine was run employing 9999 

permutations and using the AI Cc (Akaike's Information Criterion corrected) selection 

criterion. The AICc was devised to handle situations where the number of samples (N) is 

small relative to the number (v) of predictor variables (N/v<40) (Anderson et al., 2008). 

Results were visualized with a distance-based redundancy analysis (dbRDA) (Anderson et 

al., 2008). AU multivariate statistical analyses were performed using the PRIMER 6 

statistical package with the PERMANOVA+ add-on (PRIMER-E, Plymouth Marine 

Laboratory, UK). 

Results 

Spatial variability of benthic boundary fluxes 

Sediment oxygen uptake varied between 0.5 and 11.5 mmol O2 m-2 d-1 with highest 

values in the shallower central Mackenzie Delta (390) and lowest values on the deeper 

eastern and central Mackenzie Slope (110,235, and 345; Fig. 2.2, Table S2.1). This spatial 

pattern was generally also evident in the release of silicic acid from the sediments (314.5 -

3494.7 !lmol m-2 d-1
, Table S2.1), although fluxes at sites at comparable water depths were 

higher in the eastern study area (Fig. 2.2). 

Fig. 2.2: Spatial distribution of benthic boundary fluxes in the southeastern Beaufort Sea (z-
axis; O2 = oxygen , N03- = nitrate, pot = phosphate, N02- = nitrite, Si(OH)4 = silicic acid, 
NH4 + = ammonium) across a longitudinal (x-axis) and water depth (y-axis) gradient. The 
values of three replicates from each site are shown in the x-y-z · plots. Positive values 
indicate release from sediments, negative values uptake by sediments, the line is a reference 
to the zero-plane (values above the plane represent release, below the plane uptake) 
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Phosphate was taken up by the sediments at the shallowest sites off the western and 

central Mackenzie Delta (690 and 390) and mostly released at aU other sites (Fig. 2.2). 

Nitrate was mostly released from the sediments at eastern sites, while the shelf sites off the 

central and western Mackenzie Delta were characterized by high sediment uptake rates of 

nitrate (Fig. 2.2, Table S2.l) . Uptake fluxes were found in most nitrite measurements, being 

highest off the shaUow Mackenzie Shelf. Ammonium showed highest release rates 

recorded from station 390 on the shallower central Mackenzie Shelf and highest uptake 

rates found in the Cape Bathurst Polynya at station 140 (Fig. 2.2, Table S2.l). Within site, 

variability of phosphate and an three nitrogen-derived fluxes was higher than for silicic 

acid and oxygen fluxes (Fig. 2.2, Table S2.l). 

Fluxes dominating the variation among sites 

In the PCA plot, variation was high between the central (390) and western (690) 

Mackenzie Delta and all other samples, and low among deeper Mackenzie Shelf and 

Amundsen Gulf samples (235, 345, 110, 140) (Fig. 2.3). The first PCA axis (PCl) 

explained 46.2% of the total variance in the flux data, and the first three PCA axes (PCl, 

PC2 , and PC3) together explained 88 .3 % (Table 2.2). Analysis of the eigenvectors showed 

that no single flux dorninated the multivariate similarity pattern among samples (Fig . 2.3). 

Oxygen, phosphate and nitrate fluxes were most correlated with the first PCA axis, while 

silicic acid and ammonium fluxes showed a doser relationship to PC2 and PC3. Nitrite 

fluxes correlated almost equally with all PCA axes (Table 2.2, Fig. 2.3). 
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Fig. 2.3: Principal Component Analysis (PCA) plot showing the non-metric multivariate 
similarity among replicate samples in terms of benthic boundary fluxes. Vectors indicate 
the direction and strength of each flux's contribution to the overall distribution (Table 2.2). 
Triangles: shallow Mackenzie Shelf and Delta; circles: Cape Bathurst and Amundsen Gulf 
region (East); squares: deeper Mackenzie Slope 

Table 2.2 Correlation-based Principal Component Analysis (PCA) of normalised benthic 
boundary fluxes determined in the southeastern Beaufort Sea in July/August 2009. 
Eigenvalues and % of variation explained by the first 5 ordination axes (PCI, PC2 , PC3, 
PC4, and PC5) is given. Linear coefficients (eigenvector) of each PC are given for each 
flux 

PC1 PC2 PC3 PC4 PC5 

Eigenvalue 2.77 1.64 0.88 0.46 0.22 
% variation 46.2 27.4 14.7 7.7 3.6 
Eigenvector 
O2 ·0.548 0.295 0.092 0.011 0.055 
Si(OH)4 0.170 -0.612 -0.564 0.047 -0.287 
pot -0.470 -0.306 -0.343 -0.269 0.670 
N03- -0.543 0.065 -0.177 -0 .314 -0.677 
N02- -0.394 -0.376 0.252 0.779 -0.062 
NH4+(ln) -0.017 -0 .546 0.679 -0.470 -0 .062 
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Environmental drivers of spatial flux variation 

Results of environmental parameters used for statistical analyses are presented in 

Table S2.2. The best models explaining variation in each benthic boundary flux are shown 

in Table 2.3. Except for ammonium and nitrite fluxes, more than 68 % of the variation in 

each flux could be explained by the environmental predictors (Table 2.3). Oxygen uptake 

strongly increased with vertical water-column POC flux, increased with sediment 

phaeopigment concentration and decreased with the porosity and concentration of iron 

oxide in surface sediments (adj. R2 = 0.98, P < 0.001). Release of silicic acid decreased 

with phaeopigment concentrations but rose with sediment ChI a and bottom-water oxygen 

concentrations (adj . R2 = 0.92, P < 0.001). Phosphate fluxes strongly increased with ô l3C 

signature and declined with sediment manganese oxide concentrations and with vertical 

poe flux (Adj. R2 = 0.68, P < 0.001). Nitrate fluxes were best predicted by ô 13e signature 

(positive), sediment manganese oxide and ChI a concentration (both negative, adj. 

R2 = 0.81, P < 0.001). Nitrite fluxes increased with ôl3e signature, bottom-water oxygen 

levels and sediment porosities (adj. R2 = 0.50, P = 0.002). Finally, ammonium release was 

found to strongly increase with ehl a and phaeopigment concentrations but to decrease 

with Ô13e signature (adj. R2 = 0.24, P = 0.037). 



Table 2.3: Multiple regression analysis of benthic boundary fluxes against environmental factors in the southeastern Beaufort 
Sea in July/August 2009. Adjusted (Adj.) R2 and standardized regression coefficients of benthic parameters (Short-term 
variability proxies: ChI a - sediment chlorophyll a concentration , POC - sinking POC; medium-term variability proxies: 
Phaeo - sediment phaeopigment concentration, Ô 13C - isotopie carbon signature; long-term variability proxies: Mn -
sediment surface manganese concentration, Fe - sediment surface amorphous iron concentration, Po - porosity , O2 bot - bottom 
water oxygen concentration) predicting each benthic boundary flux. Whole model results are presented for the best-subset 
solution following Akaike's criterion (Effects - number of parameters inc1uded in the model). Absence of standardized 
regression coefficients indicates that the parameter was not retained in the model. Gray color indicates that the factor was not 
significant in the mode! 

Short term Medium term Long-term 

Flux Adj. R2 F P ChI a POC Phaeo Ô13C Mn Fe Po O2 bol AIC Effects 

O2 UplakC 0.98 237.47 <0 .001 * -1.13 (ln) 0.21 -0.15 -0.26 50.84 4 
In(Si(OH)4 ) 0.92 89.61 <0.001 0.34 (ln) * 0.68 -0.15 -16.21 3 

PO/" 0.68 17.5 <0.001 * -0 .62 (ln) 1.12 -1.43 206.14 3 
N03" 0.81 32.83 <0.001 -0.77 * 1 -1.01 307.38 3 
N0

2
" 0.5 6.69 0.002 nA3 * 1.51 0 .93 1.46 181.35 4 

In(NH4+) 0.24 3.42 0.037 1.41 (ln) * -0.89 0 .68 72.73 3 



70 

Influence of environmental parameters on the overall distribution of benthic boundary 

fluxes 

The best distance-based linear model (DistLM), explaining 57 % of the overall 

variation in benthic boundary fluxes, is composed of sediment surface ChI a, phaeopigment 

and manganese oxide concentration, ô13C signature and bottom-water oxygen concentration 

(Fig. 2.4, Table 2.4). The most important parameters contributing to the first axis of the 

dbRDA plot (explaining 70.5 % of fitted flux variation), which separates shallower and 

western sites from deeper and eastern sites, are sediment surface ChI a and manganese 

oxide concentration and bottom-water oxygen concentration (Fig. 2.4). They explain more 

than 40 % of the total variation (Table 2.4). Sediment phaeopigment concentration and ô13C 

signature were most strongly correlated with the second dbRDA axis (explaining 20.8 % of 

fitted flux variation). 
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Fig. 2.4: Distance-based Redundancy Analysis (dbRDA) plot of the distLM model based 
on the environmental parameters fitted to the variation in biogeochernical fluxes (Table 
2.4). Vectors indicate direction of the parameter effect in the ordination plot. ChI a = 
natural logarithm of sediment ChI a concentration; dCI3 = ô13C signature; Phaeo = 
sediment phaeopigment concentration; MnHCl sediment surface manganese 
concentration; 02 bottom = bottom-water oxygen concentration. Triangles: shallow 
Mackenzie Shelf and Delta; circ1es: Cape Bathurst and Amundsen Gulf region (East); 
squares: deeper Mackenzie Slope 
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Table 2.4: Distance-based linear model (DistLM) of benthic boundary fluxes against 
environmental drivers deterrnined in the southeastern Beaufort Sea in July/August 2009. 
Proportion of variance in benthic boundary fluxes explained by environmental variables in 
stepwise sequential tests following AI Cc selection criterion. Prop. is the proportion of 
variance explained by each single variable, Cumul. is the cumulative proportion of variance 
explained by multiple variables 

Seguentia! tests for stepwise mode! (Adj. R2 = 0.57) 
Variable AICc SS(trace) Pseudo-F P Prop. Cumul. res.df 

ChIa 88 .69 122.14 36.72 <0.01 0.344 0.344 70 
Phaeo 78.39 37.04 13.05 <0.01 0.104 0.448 69 
0 2h01 74.18 16.79 6.38 <0.01 0.048 0.496 68 
dC13 66.44 23.33 10.04 <0.01 0.065 0.561 67 

MnHC! 61.47 15.11 7.09 <0.01 0.043 0.604 66 
Percentage ofmultivariate flux variation explained by individual axes 

% explained variation % explained variation 
out of fitted mode! out of total variation 

Axis Individual Cumulative Individual Cumulative 
1 70.51 70.51 42.59 42.59 
2 20.84 91.35 12.59 55.18 
3 7.47 98.83 4.51 59.69 
4 l.l6 99.99 0.7 60.39 
5 0.01 100 0.01 60.4 

Discussion 

Benthic activity is most often derived from sediment oxygen demand (Graf, 1992; 

WenzhOfer and Glud, 2002; Link et al., 2011) and assumed to decrease with increasing 

depth and distance from the continental source of particles and carbon. But the 

heterogeneous pattern of oxygen and nutrient fluxes at the sediment-water interface in the 

Beaufort Sea emphasizes that benthic remineralisation function is more complex than 

oxygen fluxes. Here we present for the first time a multiple dataset of benthic boundary 

fluxes, i.e . for oxygen, silicic acid, phosphate, nitrate, nitrite and ammonium, and their 

relation with environmental variables in the Canadian Arctic . We discuss their spatial 

pattern and influences of the environment at different time-scales with the aim to estimate 
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dynamics of benthic ecosystem functioning related to variation in the quality and quantity 

of organic matter export. 

What is the spatial variation of benthic boundary fluxes in the southeastern Beaufort Sea? 

ln 2009 the spatial pattern of oxygen fluxes was similar to those reported earlier from 

the region (2003-2004,2008) (Darnis et al., 2012; Link et al., 2011; Renaud et al., 2007b). 

Ali those studies reported highest uptake off the Mackenzie Delta and the Cape Bathurst 

Polynya. Oxygen demand at shallowest sites (690 and 390) was twice the amount reported 

from 2004 (Renaud et al., 2007b) and half compared to the upwelling year 2008 (Tremblay 

et al., 2011). Values from other sites were similar for the three studied years. This indicates 

that (i) the influence of the Mackenzie Delta increases interannual variability of benthic 

oxygen uptake at its plume and (ii) that marine influence (such as primary production as in 

the Cape Bathurst Polynya) is more likely to contribute to the relative spatial distribution of 

benthic oxygen uptake. 

The relatively higher release of silicic acid compared with oxygen uptake in the 

eastern part of the Beaufort Sea (140) can be explained by the different composition of 

organic matter exported to the seafloor. First, terres tri al input of organic material is high 

close to the Mackenzie Delta and along the Tuktoyaktuk Peninsula due to the strong 

influence of the Mackenzie River plume (Macdonald et al., 2004; Magen et al., 2010). This 

may increase the input of inorganic silicates (Juul-Pedersen et al., 2008), but these are 

unlikely to be biologically remineralised at the seafloor. Second, primary production in the 

Cape Bathurst Polynya area has a higher diatom contribution (Ardyna et al., 2011), which 

aliows for an increased fresh silicic shell export (Simpson et al., 2008). Indeed, Sampei et 

al. (2011) identified the Cape Bathurst vicinity as a unique zone in biogenic silicate export 

out of the euphotic zone, with rates roughly one order of magnitude higher than elsewhere 

across the southeast Beaufort Sea. 

Nitrate was replenished at the benthic boundary in deep waters of the slope and in the 

Cape Bathurst Polynya area (sites 235, 345, 110, 140), while sediments on the shallow 

Mackenzie Shelf (sites 390, 690, 680) act as sink. On the shallow Mackenzie Shelf, low 
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oxygen penetration depth (> 1 cm) and a steep gradient in nitrate concentration have been 

reported, indicating a redox horizon close to the sediment surface (Magen, 2009). Nitrate 

and nitrite uptake with denitrification processes at the top of the sedimentary column are 

typically encountered in sediments receiving excess organic matter such as shallow Arctic 

shelves and continental shelves affected by large river outflow (Hyacinthe et al., 2001; 

Chang and Devol, 2009; Hulth et al., 2005). Such an input of excess organic matter has also 

been found during the Malina study (Forest et al., 2012). Nitrate release in the other areas 

was also consistent with oxygen-saturated degradation. The highest nitrate release in the 

Cape Bathurst Polynya area (site 140) supports the findings of Simpson et al. (2008), who 

explained excess nutrient concentrations in the deep Amundsen Gulf water with 

degradation of more available fresh matter. 

The generally low nitrite flux reflects its role as an intermediate product of nitrogen 

compound transformations. Highest uptake rates were linked to sites with high nitrate 

uptake or low nitrate release. 

The pattern of ammonium effluxes, which are mai nI y originated from the anaerobic 

mineralization of organic N, is probably explained by the presence/absence of efficient 

oxidative barriers at the top of the sedimentary column, such as oxygen and Mn-oxides 

(Luther et al., 1997; Anschutz et al., 2000; 2005). Highest ammonium effluxes were linked 

to sites where high organic matter input favours the shallowest oxygen penetration depth 

and thin Mn-oxides rich horizon, e.g., site 390 (Magen, 2009). The upward migration of 

ammonia to the bottom water probably promoted denitrification processes at the sediment 

interface at these sites. The within-site heterogeneous patterns of ammonium fluxes could 

be due to physiological responses of different macrofaunal species or densities in the cores 

(Braeckman et al., 2010), which are not available for our study . 

Phosphate uptake from the two shallowest sites near the Mackenzie River delta may 

again be linked to the low oxygenation, a history of high organic matter input, and to the 

accumulation at the interface of newly formed reactive iron-oxides with high capacity to 

sorb phosphate (Hensen et al., 2006; Magen, 2009). Sediment phosphate release can be 
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explained by either a lost of the sediment capacity to adsorb remobilised phosphate or a 

production of phosphate via aerobic organic matter mineralisation, or both. Desorption 

from particulate Fe-oxide when sediment Fe-oxide and associated phosphate are exposed to 

overlying water with lower dissolved P concentrations relative to pore water (Ruttenberg 

and Sulack, 2011) can also contribute to phosphate release at the sediment-water interface. 

The highest phosphate effluxes in the Cape Bathurst Polynya (sote 140) probably reflected 

an increased oxic degradation of fresh matter, as Davenport et al. (2012) observed on the 

productive Bering Shelf. 

Benthic boundary fluxes of silicic acid, oxygen and phosphate in 2009 were in the 

range of those reported for the region in 2008 (Darnis et aL, 2012). It is noteworthy that 

phosphate was released from shallow Mackenzie Shelf sediments during the upwelling year 

2008 and that notably less silicic acid was remineralised in the Cape Bathurst Polynya area 

in 2008. The increased remineralisation of silicic acid could be explained by the 

accumulation of excess biogenic silica following vertical export in the highly productive 

upwelling year of 2008. Phosphate on the other hand is more immediately remineralised 

from organic matter and the release in 2008 could represent a more short-term reaction to 

organic matter input from the upwelling year. Concentrations of nutrients at the onset of 

experiments were in the range described for deeper waters in the study region (Simpson et 

al., 2008) . We therefore consider the described spatial pattern of fluxes a realistic estimate. 

Seasonal changes in nutrient fluxes have been shown in macrofauna nearshore experiments 

(Braeckman et al. , 2010) and can be found in the Bering and Chukchi Sea (Chang and 

Devol, 2009; Davenport et al., 2012) . Here we report nutrient fluxes and mechanisms for 

the late summer. Considering the seasonal effect in benthic polar systems (Lepore et aL, 

2007; Link et al. , 2011) , lower input of fresh organic matter in winter might therefore be 

accompanied by a different oxygen, ammonium and silicic acid fluxes. 

When considering aU fluxes synchronously, site 390 can be well separated from 690, 

these two are different from the lower Mackenzie Shelf (site 260 and 680), which finally 

can be separated from the Cape Bathurst Polynya site (110 and 140) and the deeper 
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Beaufort slope sites (235 and 345) in their rernineralisation functioning (see also Fig. 2.3). 

This spatial pattern has also been found using lipid biomarker analyses conducted on 

sediment samples collected at sorne of the sites we studied (Rontani et al., 2012, Tolosa et 

al., 2012). Particularly high concentrations of autochthonous fresh material derived from 

diatom production were found at site 390, with decreasing concentrations farther north 

from the Mackenzie Delta (Rontani et al., 2012; Tolosa et al., 2012). 

We conclude that high oxygen demand, nitrate and phosphate uptake prevail in 

proximity to the Mackenzie outflow, with high ammonium and silicic acid release at the 

central Mackenzie Delta (site 390), while benthic activity replenishes bottom water with 

silicic acid, nitrate and phosphate in deeper waters and particularly in the productive Cape 

Bathurst Polynya area. 

The classical proxy of benthic activity, oxygen flux, does not determine overall spatial 

variation in fluxes 

Although sediment oxygen consumption is widely used to described benthic 

rernineralisation function (Grebmeier et al., 2006b; Glud, 2008; Michaud et al., 2005; 

Holstein and Hensen, 2010), our results confirm this hypothesis and show that differences 

in benthic remineralisation including six major fluxes are not dominated by oxygen flux. In 

our study, the major differences between the shallow Mackenzie Shelf and all other sites 

are equally based on different oxygen, nitrate and phosphate fluxes while the eastern 

Mackenzie Shelf remineralisation differs greatly from the central shelf in silicic acid and 

ammonium release. Sampling sites in the Cape Bathurst Polynya and on the western 

Mackenzie slope were also distinct from aIl deeper sites with respect to silicic acid and 

ammonium release. Clearly, oxygen uptake al one cannot describe the spatial pattern of 

benthic ecosystem functioning in our region. While oxygen uptake is often related to 

organic matter degradation (e.g. Glud, 2008), further factors influence the quantity and 

quality of other nutrient remineralisation. 

Recent experimental studies have shown that benthic fluxes other than oxygen, e.g. 

silicic acid or ammonium, respond to treatment of different organic matter input (Callier et 
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al., 2008; Richard et al., 2007). Such effects have been related to particular species present 

in treatments, which influence microbial activity (Michaud et al., 2009; Robert et al., 2012). 

Although we can assume different benthic faunal composition on the Mackenzie Shelf, 

slope and Cape Bathurst area (Conlan et al., 2008), we do not know how each Beaufort Sea 

species influences each flux, and even less how they interact with the benthic microbial 

community . Rence, our results suggest that multiple fluxes need to be considered when the 

spatial variability of benthic ecosystem functioning in terms of nutrient replenishment is 

evaluated - whatever factors influence the spatial pattern of benthic nutrient 

remineralisation. 

A different combination of environmental conditions that vary either on a long-term 

(decadal) or short-term (seasonal to annual) scale determine each single flux 

The heterogeneous spatial pattern of benthic boundary fluxes announces the 

complexity of different factor combinations determining each single flux. Our results of 

multiple regression analysis support our hypothesis. They show that different subsets of 

environmental factors can explain spatial variation of different single fluxes, to a 

surprisingly high part (up to 98%). 

While short-term environmental conditions do always explain part of the variation , a 

large sinking partic1e flux and an associated increased concentration of sediment ChI a 

most strongly increase oxygen uptake and ammonium release. Observational as well as 

experimental studies have already demonstrated rapid response of benthic communities to 

food input (Pfannkuche, 1993; Sun et al., 2007). Ammonium release has been linked to 

oxic degradation of high quality organic matter by bacterial or faunal communities in 

shallow and Arctic sediments (Rysgaard et al., 2004). The low explicative power of the best 

model for ammonium fluxes (24%) indicates that other factors not identified here were 

playing a substantial role in driving its spatial variability. The faunal composition, which 

has important effects on ammonium release by sediment oxygenation and bioturbation, 

might be one of these lacking measurements (Braeckman et al., 2010; Laverock et al. 2011; 

Piot , 2012). 
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Environmental parameters of long-term variability (e.g. MnHcj, porosity , bottom water 

oxygen) are powerful predictors of phosphate, nitrate and nitrite fluxes, when the origin of 

organic matter (terrigenous vs marine) is simultaneously considered. This combination may 

reflect the long-term influence of terrigenous matter sedimentation from the Mackenzie 

River (Macdonald et al., 2004). The long-term input of organic matter, porosity and 

surrounding bottom water oxygen concentration limit the depth of the sediment oxic layer. 

AIso, the manganese oxide rich horizon with higher surficial MnHCI indicates a de gradation 

of organic matter under suboxic conditions during the last decades, which is capable to 

produce upward dissolved Mn flux that precipitates at the sediment interface (Aller, 1988). 

These redox conditions also control denitrification and phosphate binding processes and 

seem to be more important for NOx and phosphate release th an the input of fresh marine 

matter. 

We would have assumed that silicic acid release was positively related to ChI a and 

phaeopigment concentration, since we considered sediment pigments a proxy of detrital 

input. Following dissolution kinetics, silicic acid release supposedly increases with silicate 

input (Tréguer et al., 1995), and we assumed that more detrital material sinking to the 

seafloor implies a high silicate input to sediments. However , phaeopigments at the seafloor 

reflect both silicic and non-silicic detrital material. Possibly , the input of terrigeneous 

phaeopigment-Ioaded material from the Mackenzie is higher towards the western part of 

the Mackenzie plume (Sampei et al., 2011). Phaeopigment-enriched sediments could then 

represent diatom-poor organic matter input , and wou Id therefore not lead to increased 

silicic acid release. Recently , Holstein and Hensen (2010) have also demonstrated the 

importance of bacterial silicate release in oxygenated sediments. Bacterial biomarker 

concentrations were more abundant in sediments with higher fresh labile matter (ChI a) 

compared to the total input of organic matter (Tolosa et al., 2012). These observations 

would further explain why an increase in silicic acid release was found in association with 

increasing ChI a and decreasing phaeopigments in our study. 
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In summary, while short-term factors such as fresh marine matter enhance the oxic 

degradation and nutrient replenishment, long-term factors reflecting decadal-scale input of 

organic matter dominates the remineralisation of NOx and phosphate on the southeastern 

Beaufort Shelf. 

A combination of environmental conditions varying on the short and long-term scale drive 

the overall spatial variation in benthic boundary fluxes 

Despite the differences in environ mental factors explaining each single flux (see 

above), the majority (57 %) of spatial variation in multiple benthic remineralisation 

function can be explained by a subset of the following five environmental factors: sediment 

surface ChI a (also a proxy for sinking particle fluxes), phaeopigment and manganese oxide 

concentration, Ô13C signature and bottom-water oxygen concentration. The similarity of the 

dbRDA plot and the PCA plot show, that the environmental variables explain benthic flux 

variation fairly weU, with a little less congruence for the shallow Mackenzie sites 

(Anderson et al., 2008). The input of fresh organic matter (ChI a) alone can explain a third 

of the spatial variation, separating the deeper sites from the shelf and shallow sites, 

particularly site 390. This stresses the importance of short-term parameters for the 

estimation of nutrient release from Arctic sediments. The quality of organic matter has 

repeatedly been related to benthic oxygen demand (Renaud et al., 2007a; Link et al., 2011), 

infaunal diversity (Conlan et al., 2008) and bacterial activity (Rontani et al., 2012) in the 

southeastern Beaufort Sea. Assuming the importance of biological activity for phosphate 

(Davenport et al., 2012), nitrogen derivates (Chang and Devol, 2009; Braeckman et al., 

2010) and silicic acid (Holstein and Hensen 2010) release, high ChI a concentrations at the 

seafloor not only provides the fresh matter for bacterial degradation, but it also stimulates 

benthic ecosystem functioning in terms of biological activity of macrofauna, which 

additionally enhances nutrient release. 

The greater marine fraction and phaeopigment content in organic matter input are the 

primary determinants of the different benthic boundary fluxes in the Cape Bathurst Polynya 

are a when compared with fluxes close to the Mackenzie Delta. It is clear that locations 
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influenced by the Mackenzie River plume, which feeds a high sedimentation flux of 

terrigenous particulate matter (Juul-Pedersen et al., 2010; Magen et al., 2010), will show a 

distinct benthic ecosystem functioning. Finally, the influence of bottom water oxygenation 

and manganese oxides along the shelf-basin transect north of station 390 demonstrates how 

long-term environmental factors drive spatial variation in benthic boundary fluxes. Both 

these factors relate to mostly geochemical processes in the sediments (Gobeil et al., 2001), 

and may therefore de scribe a basic variation, on top of which short-term environmental 

factors further differentiate benthic fluxes. 

About 40 % of the total variation in benthic remineralisation function could not be 

explained by any of the environmental conditions included in the analysis. The most likely 

missing factor is faunal or bacterial abundance and composition in the analysed sediment 

cores . An increasing number of studies report the key role of benthic species for benthic 

boundary fluxes, particularly through their bioturbation or bioirrigation (Davenport et al. , 

2012; Kristensen et al., 2012). Benthic fauna thus can locally directly enhance nutrient 

remineralisation or indirectly by modifying bacterial abundance (Michaud et al., 2009; Piot , 

2012) . It is noteworthy, that sediment porosity, a major parameter used to calculate 

diffusive fluxes across the sediment water interface (e.g. Hensen et al., 2006), does not play 

a significant role in our analysis . Again, this emphasizes the role of biological processes for 

spatial variation in benthic ecosystem functioning in the southeastern Beaufort Sea. 

Conclusions 

Can we use environmental factors to predict benthic ecosystem functioning on polar 

shelves? Although we could explain benthic boundary fluxes to a large part without 

chemistry-based models, we still cannot answer this question with an unambiguous 'Yes' . 

But compared to the almost non-existent data of benthic fluxes in the Canadian Arctic, our 

results provide insights on the spatial gradients and driving factors of biogeochemical 

fluxes across the benthic boundary on Arctic shelves. In addition, the statistical relations 

found in the present study might help building more comprehensive ecosystem models that 
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aim at predicting ecosystem functioning in Arctic shelf waters. We report that in summer, 

the sediments of the southeastem Beaufort Sea are usually a source of silicic acid, while the 

Mackenzie Delta is a region of nitrate and phosphate uptake and more marine influenced 

areas are areas of nitrate release. The dominating role of environmental factors varying on a 

short-term scale indicates that benthic remineralisation rates in terms of quantity will quite 

rapidly respond to c1imate changes. On a longer time scale, if terrigenous matter 

sedimentation from the Mackenzie River and water temperatures increase with c1imate 

change, we can expect a decrease in oxygen concentration of coastal bottom waters and 

sediments, with the latter shifting from nutrient sources to sinks. The analysis of our results 

emphasizes the importance of biologically mediated degradation interacting with 

geochemical processes. Inc1uding more specific marker of fresh biologically degradable 

matter and faunal composition data in benthic boundary flux models should further enhance 

the predictive power of biological ecosystem models. 
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Table S2.l: Fluxes of oxygen (02)' silicic acid (Si(OH)4)' phosphate (pot) , nitrate (N03'), 

nitrite (N02') , and ammonium (NH/ ) across the sediment-water interface determined for 
three replicates at eight stations in the southeastem Beaufort Sea in July/August 2009. * 
denotes an outlier that has been excluded from statistical analyses following Cook's D 
analysis 

Malina O2 flux Si(OH)4 pot N03' N0 2' NH4+ 

Label [mmol m,2 d' l] [}t mol m,2 d'l ] [}tmol m,2 d' l] [}tmol m,2 d'l] [}tmol m,2 d' l] [}tmol m,2 d' l] 

390 -9.5 1 -352.13' -41 .07 -785 .06 -25 .84 -44.61 
-11.47 3494.65 23.25 -597 .91 -4.28 28 1.00 
-10.59 2478.59 -44.26 -378.09 14.39 443.30 

690 -8 .84 117 1.44 -46.35 -345.32 -43.57 -30.80 
-8.13 1082.16 -57.66 -631.51 -15,90 -66 .95 
-8.48 947.69 -39.14 -324.24 -29.15 31.38 

260 -5.41 2092.55 17 .29 10.59 -7.10 21 .24 
-4 .29 1347.74 27.55 21.24 -7.49 60.89 
-3.42 1377 .07 15.5 1 4 1.35 -7 .94 -53.54 

110 -0 .98 867.21 3.21 90.24 -3.24 4.35 
-1 .31 763 .65 0.38 -27.85 -3 .51 -13 .74 
-0.70 599.41 -0 .85 -22 .68 -1 .99 5.19 

140 -3.26 1776 .83 13.24 16.45 -2.76 -56.1 8 
-2.41 1798 .87 15 .24 362.94 -9.93 -54 .90 
-2.33 2819 .58 40.67 193.84 -0.77 -48 .62 

680 -4 .32 1283.23 Il .08 -238 .66 -3 .37 -10 .52 
-5 .04 1356.21 19.59 -120 .99 0.18 6.75 
-4.45 1232.46 17.25 -158.03 -3 .08 -13.49 

345 -0.53 437 .34 13.40 92.78 -0 .65 1.02 
-0.54 329.21 9.32 -2 .08 -0.45 -2 .68 
-0.81 481.38 6.20 25.01 3.40 3.25 

235 -0.86 363 .63 -0.37 -24 .75 -1.39 -16.58 
-0 .63 457 .30 5.90 132.52 -2.09 -14. 16 
-0.52 314.54 0 .56 -26.89 -1.71 -1 6.37 
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Table S2.2: Replicate values of abiotic parameters measured in the overlying bottom water 
and at the sediment surface used as environmental variables tested to explain the 
distribution of the benthic fluxes . Dissolved oxygen (DBO), porosity, Mn- and Fe-oxide 
contents, stable isotope signature of the surficial organic matter, and pigment contents are 
presented. Sinking POC estimated at the bottom of the water column by Forest et al. 
(2012) 

Malina DBO Porosity MnHc1 FeHcl Ôl5Ntot Ô13Corg ChIa Phaeo POC 
fluxes 

Label ]lM jtmollg ]lmollg %0 %0 yg/g jtg/g 

390 270 0 .87 6.1 337 .78 4.72 -26 .22 n.d. n.d . 3441.1 
271 0 .86 3.94 347.38 3.96 -26 .11 3.81 9.15 
272 0.89 8.63 363 .67 5.45 -26.04 3.89 10.91 

690 308 0 .83 19.13 315.82 3.79 -26 .57 1.11 5.13 1465.3 
308 0 .82 22.52 322.47 7.15 -26 .55 1.23 7.23 
308 0.80 10.31 324.31 4 .72 -25 .96 1.68 5.73 

260 311 0.78 2.49 264.04 5.32 -25.39 1.23 11.37 734.3 
311 0.78 2.75 246 .73 7.01 -25.55 1.03 6 .05 
311 0.78 n.d . 208.47 5.45 -25.75 1.43 8.18 

110 273 0.81 85.09 355 .27 6.74 -24.00 0.13 3.56 20.5 
273 0 .83 n.d. 355.46 7.81 -24.45 0 .09 2.92 
273 0.85 88 .56 355 .27 7.12 -24.08 0.15 4 .63 

140 282 0 .82 n.d. 309.17 5.54 -25 .27 0 .86 6.31 49 .8 
282 0 .86 36.81 408.35 6.49 -25.39 1.36 10.81 
282 0 .87 1 .02 427 .64 6.00 -25 .22 0.90 10.70 

680 303 0 .80 3.42 312 .42 4.42 -26.41 2.95 9.25 619 .2 
303 0 .76 3.32 318.53 3.86 -25.96 1.99 7.29 
303 0.73 8.76 294.95 4 .55 -25.49 1.67 6.28 

345 299 0 .81 48 .72 334.90 5.77 -25.12 0.04 1.27 17.8 
300 0.76 59 .84 324.99 5.66 -24.55 0.08 2.24 
301 0.81 47 .83 347 .42 5.76 -25.36 0.03 1.87 

235 298 0 .80 64.85 303 .59 5.63 -27.37 0.52 8.89 28.3 
298 0 .80 61.89 323.67 5.68 -24.89 0 .07 1.87 
298 0.85 59.29 328.23 5.77 -24.72 0.02 1.71 



CHAPITRE 3 

HOTSPOTS IN THE COLD - A PERSPECTIVE FROM BENTHIC 

REMINERALISATION IN THE CANADIAN ARCTIC 

RÉSUMÉ DU TROISIÈME ARTICLE 

Climate change and anthropogenic disturbance will affect the remote ecosystems of the 

Arctic Ocean. Protecting hotspots of the marine ecosystem can help to maintain its health . 

To reflect not only diversity but also the functioning of the ecosystem, a description of 

hotspots should include measures of function. In the Canadian marine Arc tic , the 

remineralisation of nutrients at the seafloor presents a benthic ecosystem function that 

affects the overall marine biogeochemical cycles. Only recently, benthic remineralisation 

other than oxygen fluxes across the Canadian Arctic shelves has been quantified, reported 

and discussed in a number of publications on different regions and aspects of the Canadian 

marine Arctic. Here , we present an overview of the complete dataset of multiple benthic 

boundary fluxes and discuss its relevance concerning the following questions: (1) Where 

were the highest benthic fluxes were found? (2) Which regions are significantly different 

from other regions within the Canadian Arctic, based on multiple benthic fluxes? (3) Are 

benthic function hotspots general hotspots? (4) How can benthic remineralisation fluxes be 

used in ecological assessment? While highest fluxes were found on the shallow Mackenzie 

Shelf, in Lancaster Sound and the North Water Polynya, these were also significantly 

different from other sites . Consequently , they present benthic remineralisation hotspots , but 

not aIl primary production hotspots where found to be benthic hotspots. The collaboration 

with Fisheries and Oceans Canada lead to the successful integration of benthic ecosystem 

functions into the definition of Ecologically and Biologically Significant Areas (EBSAs), 
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using established criteria of EBSA assessment. Our results show, that the integration of 

benthic remineralisation data into larger ecosystem models and assessments is possible and 

can thus improve long-term marine spatial planning and protect sorne hotspots of our most 

remote marine ecosystem. 

This short note was co-authored by myself, Prof. Philippe Archambault and Prof. Dieter 

Piepenburg. It presents a synthesis of benthic remineralisation data that has been published 

and discussed in subsets in the following publications: 

Darnis, G., Robert , D., Pomerleau, C., Link, H., Archambault, P., Nelson, R ., Geoffroy, M., 
Tremblay, J.-É., Lovejoy, C., Ferguson, S., Hunt, B., and Fortier, L. (2012): Current state and 
trends in Canadian Arctic marine ecosystems: II. Heterotrophic food web, pelagic-benthic 
coupling, and biodiversity, Climatic Change, 1-27, doi: 1O.1007/s 10584-012-0483-8 

Kenchington, E., Link , H., Roy, V., Archambault, P., Siferd, T., Treble, M., and Wareham, 
V. (2011): Identification of Mega- and Macrobenthic Ecologically and Biologically Significant 
Areas (EBSAs) in the Western, Central and Eastern Canadian Arctic, Department of Fisheries 
and Oceans Canada, Res. Doc. 2011/XXX. iv 

Link, H., Chaillou, G., Forest, A., Piepenburg, D., Archambault, P. (in press): Multivariate 
benthic ecosystem functioning in the Arctic - Benthic fluxes explained by environmental 
parameters in the southeastern Beaufort Sea, Biogeosciences Discussion 

Link, H., Piepenburg , D. , Archambault, P. (chapitre 4): Are hotspots always hotspots? 
Temporal variability and its role for the relationship between diversity and ecosystem 
functioning in Arctic benthic environments 

As first author, 1 conducted the experimental work, the laboratory and statistical 

analyses and wrote the publication. 1 also wrote all parts concerning benthic 

remineralisation in the publications listed above. Prof. Philippe Archambault contributed to 

the original idea and contributed to the writing. Prof. Dieter Piepenburg participated in the 

production of the manuscript. 1 have presented parts and short versions of this publication 

at the following conferences: (1) CHONe Network Meeting in Montreal (Canada) m 

October 2009 (2) Forum québecois en sciences de la mer in Rimouski (Canada) m 

November 2009 (3) ArcticNet Annual Scientific Meeting in Victoria (Canada) in December 

2009 (4) Fisheries and Oceans Science Advice Meeting in Winnipeg (Canada) in June 2011 

and (5) IPY 2012 - From Knowledge to Action in Montreal (Canada) in April 2012. 
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Climate change and anthropogenic disturbance will affect the still remote ecosystems 

of the A~ctic Ocean. Protecting hotspots of the marine ecosystem can help to maintain its 

health. In the common understanding, hotspots are considered sites or regions with higher 

properties (such as biodiversity) than the average. 

One of the targets formulated in the Convention on Biological Diversity Strategie 

Plan 2011-2020 is the description of ecological and biological significant are as (EBSAs). 

Description of EBSAs shall provide a baseline for stakeholders, which will help to 

prioritize the protection of ecologically more important regions in the face of continuing 

econornic development. To define EBSAs, the Department of Fisheries and Oceans Canada 

has developed Criterias and Dimensions that can be used to assess the level of different 

ecosystem features (e.g. feeding, biodiversity; DFO, 2004). The definition of EBSAs 

includes hotspots of biodiversity, and descriptions of the latter will therefore likely receive 

increasing attention in the next years. 

Hotspots of ecosystems are often described based on a high biodiversity encountered 

In an area (My ers et al., 2000). This assumes that high biodiversity equals elevated 

ecosystem functioning, services of the area to the surrounding ecosystem (Yachi and 

Loreau, 1999). But there is evidence of high variability in biodiversity-ecosystem function 

relationships, depending on the system and scale that are considered (Stachowicz et al., 

2007). We therefore believe it important to integrate ecosystem functions in the description 

of biological hotspots . 

Biological productivity is often used as a measure ecosystem functions (Danovaro et 

al., 2008). In benthic environments, the rernineralisation of detritus and release of inorganic 

nutrients back into the water column are other important processes for the functioning of 
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marine ecosystems. These nutrients are part of the global marine biogeochemical cycles 

and ultimately determine primary production in surface waters. The level of benthic 

rernineralisation also influences the oxygenation state of sediments, which strongly 

influences the suitability of benthic habitats for different species (Rosenberg et al., 2001) . 

Knowledge of benthic processes in the Canadian Arctic has increased notably since 

the late 1990ies. Data on benthic carbon rernineralisation on the Beaufort Shelf has been 

published from the Canadian Arctic Shelf Exchange Study (CASES, 2003-2004) (Renaud 

et al., 2007a;b) and the North Water Polynya study (NOW, 1997-1998, Grant et al., 2002) 

in northern Baffin Bay, but the region is still under-studied compared to other parts of the 

Arctic (Klages et al., 2004; Wassmann et al., 2011). Results from studies on benthic 

rernineralisation in Canadian Arctic in 2008-2009 have recently been published in different 

places (Kenchington et al. , 2011; Darnis et al., 2012). The aim of this paper is to compile 

and give a comprehensive overview of results on multiple benthic boundary fluxes in the 

Canadian Arctic with emphasis on describing hotspots based on benthic remineralisation 

function . We discuss our findings in relation to earlier results and their potential in 

integrati ve applied studies . 

Origin of data and statistical analyses 

Since 2008 , we coUected data on fluxes at the sediment-water interface including 

respiration and for the first time also nutrient release (phosphate, silicic acid, nitrate, nitrite 

and ammonium) at 42 sites in the Canadian Arctic (Fig. 3.1, Table 3.1). We ran ship-based 

temperature and light-controlled rnicrocosm incubations of samples from the Mackenzie 

Shelf, the Amundsen Gulf and Viscount-Melville Sound in 2009 , and from Barrow Strait, 

Lancaster Sound , the NOW and central Baffin Bay in 2008 and 2009. Most results and 

methods have been published as parts of larger-scale ecosystem studies, either from the 

perspective of pelagic-benthic coupling (Forest et al., 2011; Tremblay et al. , 2011; Fortier 

et al., 2012), as analysis of environmental factors controlling benthic fluxes (Link et al., in 

press , chapitre 2; Link et al., chapitre 4) or contributing to a description of benthic biology 
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across the Canadian Arctic (Kenchington et al., 2011; Darnis et al., 2012; Fortier et al., 

2012). A detailed description of methods can be found in Link et al. (in press , chapitre 2). 

Table 3.1: Station list. Original station label from expedition, date of sampling, ecoregion 
(based on Spalding et al., 2007), region (used in statistical tests), depth [m], geographic 
position (Lat [ON] , Long [OW] ,) expedition leg (Exp) and references (Ref) , where and if 
data on benthic boundary fluxes has been published. Multiple benthic nutrient fluxes were 
acquired from all these sites. AG = Amundsen Gulf; AG-B = Amundsen Gulf bays 
inc1uding Cape Bathurst Polynya; B = Beaufort; BB = Baffin Bay; DS = Davis Strait; GF = 
Gibbs Fjord; LS = Lancaster Sound; MD = shallow Mackenzie Shelf; MS = Mackenzie 
Shelf and Slope; NOW = North Water Polynya; VMS = Viscount Melville Sound. A = 
ArcticNet expedition, 1 = IPY Circumpolar Flaw Lead Study, M = Malina Project. 

Station Date Eeoregion Region Depth Lat Long Exp Ref 

405B 10.06.08 B-AG-VMS AG 546 70 .667 123.01 19 abed 
1116 14.06.08 B-AG-VMS AG-B 230 70.042 126.277 19 abed 
FB3 16.06.08 B-AG-VMS AG-B 97 69 .968 125 .862 19 abed 

DBOI 19.06.08 B-AG-VMS AG-B 95 69.827 123 .604 19 bed 
1216 23.06.08 B-AG-VMS AG-B 151 70 .615 127.616 19 bed 
1200 27.06.08 B-AG-VMS AG 207 71.532 124.297 19 bed 
434 30.06.08 Beaufort Sea MD 45 70.177 133.537 19 bede 
435 02.07.08 Beaufort Sea MS 318 71 .072 133.876 19 bede 

9002 07 .07.08 Beaufort Sea MS 219 74.298 125.376 19 be 
D34 13.07.08 B-AG-VMS AG 186 71.07 121.823 19 a bed 

405-IOA 21.07.08 B-AG-VMS AG 596 70.707 122.939 110 abede 
408-10A 25.07 .08 B-AG-VMS AG 206 71.323 127.606 110 bede 

1020A 27.07.08 B-AG-VMS AG 245 71.028 127.088 110 abed 
D37 (2011- 02.08.08 B-AG-VMS AG 251 71.318 124.595 110 a bed IOA) 

Barrow Strait 06 .09.08 LS LS 353 74 .271 91.248 A08 b ee 
301 08.09.08 LS LS 707 74.153 83.209 A08 bee 
136 10.09 .08 BB-DS BB 795 74 .786 73.633 A08 bee 
140 11.09.08 BB-DS BB 286 75 .028 64.477 A08 be 

115 13.09.08 BB-DS NOW 668 76.326 71.215 A08 bee 

108 14.09.08 BB-DS NOW 444 76.27 74 .594 A08 bee 
101 15.09 .08 BB-DS NOW 402 76.401 77.492 A08 be 

205 17 .09.08 BB-DS NOW 623 77.219 78.981 A08 b e 

126 18 .09.08 BB-DS NOW 323 77.343 73.441 A08 be 
233 20.09.08 BB-DS NOW 696 76.739 71.844 A08 be 
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Table 3.1 continued 

Station Date Ecoregion Region Depth Lat Long Exp Ref 

Gibbs fjord 2 24.09.08 BB-DS GF 452 70.768 72.264 A08 bc 

390 31.07 .09 Beaufort Sea MD 47 70.178 133.569 M cef 

690 01.08 .09 Beaufort Sea MD 55 69.486 137.942 M cf 
260 04.08 .09 Beaufort Sea MS 60 71.269 130.613 M cf 
110 06.08.09 B-AG-VMS AG 400 71.696 126.477 M cf 

140 07.08.09 B-AG-VMS AG 154 71.285 127.783 M cef 

680 10.08.09 Beaufort Sea MD 125 69 .611 138.235 M cf 
345 16.08.09 Beaufort Sea MS 577 71.382 132.652 M cef 

235 22 .08.09 Beaufort Sea MS 576 71.764 130.766 M cf 

408 13.10.09 B-AG-VMS AG 152 71.286 127 .782 A09 c 

437 14.10.09 B-A-VMS AG 320 71.779 126.477 A09 c 

405 16.10.09 B-A-VMS AG 559 70.665 122.996 A09 ce 

308 19 .10.09 B-A-VMS VMS 541 74.101 108 .836 A09 c 

304 23.10.09 LS LS 331 74.3 18 91.406 A09 ce 

323 25.10.09 LS LS 786 74.172 80.726 A09 ce 

109 28.10.09 BB-DS NOW 451 76.29 74.137 A09 ce 

115 29.10.09 BB-DS NOW 669 76.335 71.238 A09 ce 

136 30 .10.09 BB-DS NOW 810 74.687 73.349 A09 ce 

a = Link et al., 2011 (02); b = Darnis et al. , 2012 (0 2 , Si(OH)4' pot ); c = Kenchington et 
al., 2011 (02 , Si(OH)4' po t ); d = Tremblay et al., 2011 (0 2); e = Link et al., chapitre 4 (0 2 , 

N03- , N02·, Si(OH)4' pot) ; f = Link et al. , in press, chapitre 2 (0 2 , N0 3-, N0 2-, NH/, 
Si(OH)4' pot ). 

We used a 2-factor PERMANOVA design to test for differences among regions in 

benthic boundary fluxes. The factors 'year' (two levels: 2008, 2009), fully crossed with 

'region' (seven levels: AG, BB , BS=Barrow Strait, LS, MD, MS, NOW) and their 

interactions were tested . The resemblance matrices quantifying the between-replicate 

similarities in terms of three standardized fluxes (0 2 , Si(OH)4' pot) were calculated based 

on Euclidean distances. GF and VMS were excluded from the analysis due to their singular 

character Missing data points were replaced using the 'missing' function in PRIMER-E 

software. PERMANOV A pair-wise tests were run for significant sources of variation 

between the factors (Anderson et al., 2008) . 
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Benthic remineralisation function in the Canadian Arctic in 2008-2009 

We recorded highest oxygen fluxes from the Mackenzie Delta and Barrow 

StraitlLancaster Sound (red colours, Fig. 3.1). Slightly lower fluxes were measured in the 

NOW and Cape Bathurst Polynya area, and lowest oxygen uptake in the central Amundsen 

Gulf, Viscount- Melville Sound and central Baffin Bay (green colours, Fig. 3.1). 

Remineralisation of sicilic acid was higher in Barrow StraitlLancaster Sound and the NOW 

than in the western Canadian Arctic. Phosphate fluxes were more heterogeneous and did 

not show general patterns. Nitrate release was highest in the Amundsen Gulf (inc1uding 

bays) and on the deeper Mackenzie Shelf, while mostly uptake was measured on the 

shallow Mackenzie shelf and in the NOW and Lancaster Sound. At sorne sites, nitrate 

uptake was reported from one year and nitrate release in the other year (Fig. 3.1). Benthic 

boundary fluxes were generally lower in 2009 than in 2008 (Fig. 3.1, Kenchington et al. , 

2011; Link et al., chapitre 4). 

The results of multivariate statistical analyses (PERMANOV A) revealed significant 

differences between regions based on oxygen, silicic acid and phosphate fluxes (Table 3.2 , 

Kenchington et al. , 2011). Pair-wise tests showed that benthic fluxes (a) on the shallow 

Mackenzie Shelf (inc1uding bays of the Amundsen Gulf) were significantly different from 

the Amundsen Gulf, central Baffin Bay and NOW; (b) in the NOW were significantly 

different from the Amundsen Gulf, central Baffin Bay and shallow Mackenzie Shelf; and 

(c) in Barrow Strait were significantly different from the Amundsen Gulf, central Baffin 

Bay, eastern Lancaster Sound and the deeper Mackenzie Shelf ('Basin') (Figure 3.2, Table 

3.2, Kenchington et al., 2011). These regional differences were found despite the observed 

variability among sites within regions. 
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Fig. 3.1: Benthic remineralisation in the Canadian Arctic in 2008 and 2009. Fluxes from the 
sediment to the water column of oxygen (02), nitrate (N03), silicic acid (SiOH) and 
phosphate (P04) are presented. Left side: southeastern Beaufort Sea; right side: Lancaster 
Sound, NOW and Baffin Bay; top: 2008; bottom: 2009. Modified after data published in 
Kenchington et al. (2011) and Darois et al. (2012) . See legend for rates and color codings 
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Canadian benthic remineralisation hotspots and what they can tell us 

The question, where Canadian benthic remineralisation hotspots are, is answered by a 

combination of answers on the following two questions: (1) Where are the highest benthic 

fluxes found? (2) Which regions are significantly different from other regions within the 

Canadian Arctic , based on multiple benthic fluxes? We moreover ask the questions (3) Are 

benthic function hotspots general hotspots (how the fluxes relate to other biological 

parameters)? and (4) How can benthic boundary fluxes be used in ecological assessment? 

Where are the highest benthic fluxes found? 

According to our results, highest benthic fluxes are found in the NOW, on the 

shallow Mackenzie Shelf and in Lancaster Sound. To our knowledge, no benthic boundary 

fluxes other than oxygen (and oxygen flux translated into carbon demand or 

rernineralisation) have been reported in the Canadian Arctic prior to our studies . The 

heterogeneous pattern of the different fluxes we found emphasises that oxygen fluxes 

cannot be used as a good proxy for other benthic fluxes (Link et al., in press, chapitre 2.). 

Therefore, comparison of earlier and our results apply to oxygen fluxes only. 

In the southeastern Beaufort Sea, the range of our oxygen fluxes is comparable to 

values reported from the CASES program (Renaud et al. , 2007b). Only sites c10sest to the 

Mackenzie River plume (off Tuktoyaktuk and to its west) had higher oxygen uptake (2 to 

4-fold) in our study years compared to 2004 (Tremblay et al., 2011; Link et al., in press, 

chapitre 2). In the NOW, oxygen fluxes have been reported from 1998 (Grant et al., 2002). 

In 2009, our values were comparable to those measured earlier, but in 2008 they had 

increased to the double (Damis et al. , 2012; Link et al. , chapitre 4) . 

While these findings allow an approximate comparison of oxygen fluxes among 

regions , they also stress the influence of temporal variability on flux measures in Arctic 

seas (Link et al. , 2011; chapitre 4.) . Such variability can be caused by stochastic events like 

an upwelling (Tremblay et al., 2011), but also by progressive changes in primary 

production or environmental conditions (Arrigo et al., 2008; Grebmeier, 2012). 
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Consequently, hotspots should not be described as steady-state regional patterns in the 

Arctic if results are based on single sampling events. 

Where is benthic remineralisation higher and significantly different from other regions 

within the Canadian Arctic - and thus a hotspot? 

For the two years of our study we observed that the shallow Mackenzie Shelf, the 

Lancaster Sound (including Barrow Strait) and the NOW were hotspots of benthic 

boundary fluxes. Combining the information from Fig. 3.1 and 3.2 and Table 3.2, we 

conclude that fluxes were significantly higher in these regions than in the Amundsen Gulf 

and Baffin Basin. If data from only 2008 was considered, we found similar patterns, 

although data from the shallow Mackenzie Shelf and bays was not sufficient to be 

separated from the slope and did thus not show generally high values (Damis et al., 2012). 

Fig . 3.2 also shows that v ariab il ity among samples in hotspot regions is higher than in other 

regions. The significance of the PERMANOVA test for the factor region can therefore be 

an effect of location of samples in the non-metric ordination or an effect of their dispersion 

(Anderson et al., 2008). Such variability can be caused by the differences among sites 

within region. But in any case, hotspot regions show a different pattern of benthic boundary 

fluxes than the other regions. Our dataset comprises 42 sites over two years . While we can 

draw conclusions with sorne degree of confidence for the southeastern Beaufort Sea and 

NOW, many regions remain understudied (Kenchington et al., 2011). The studies compiled 

here present the first benthic nutrient remineralisation data in the Canadian Arctic , and the 

overall first data in Lancaster Sound. Still , no data is available from the Canadian Arctic 

further north of our study area. Future surveys will be necessary to confirm CUITent and 

discover further hotspots of benthic remineralisation for marine global biogeochemical 

budgets. 

It is interesting to note that the ordination of sites in Fig. 3.2 does not follow a 

longitudinal gradient, and thus supports the classification of different regions in the 

Canadian Arctic as group of higher (hotspots) or group of lower fluxes (coldspots) (see also 

Link et al., chapitre 4). A similar grouping of regions in the Canadian Arctic has also been 
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proposed for primary production patterns of 2005-2007 (Ardyna et al., 2011), 

differentiating eutrophie from oligotrophic regimes. Grouping regions based on their 

multi variate similarity in multiple processes may be a powerful tool for understanding the 

functioning of ecosystems and describing hotspots on larger scales. 

Table 3.2: Effects of factors on multivariate benthic fluxes and difference between regions. 
Results are from permutation al multivariate analyses of variance (PERMANOVAs) testing 
the effect of Year (Ye), Region (Reg) and their interactions and results for pair-wise tests 
for the regions. Calculation is based on Euclidian distance for benthic boundary fluxes. 
Significance level at P < 0.05 

Main test 
Source df SS MS Pseudo-F P(perm) Unique P(MC) 

l2erms 
Ye 1 9.598 9.598 3.4469 0.0255 9959 0 .0235 
Reg 2 24.325 12.163 4.3678 0.0017 9946 0.0009 
YexReg 2 5.846 2.923 1.0496 0.3741 9947 0.3854 
Res 101 281.240 2 .785 
Total 106 318.00 

Pairwise test 

Pairs: P(perm) Unique P(MC) 
l2erms 

MD,AG 4.2842 0.0001 9945 0.0001 
MD,MS 1.4709 0.1165 9955 0.1204 
MD,BS 1.6955 0.0549 9950 0.0586 
MD,LS 1.2943 0.1877 9956 0.1894 
MD,NOW 1.7406 0.0308 9960 0.0399 
MD,BB 1.7159 0.0464 9964 0.0651 
AG,MS 0.97889 0.3407 9933 0.3529 
AG, BS 7.6111 0.0001 9954 0.0001 
AG,LS 1.8588 0.0563 9942 0.0499 
AG,NOW 4.8086 0.0001 9943 0.0001 
AG,BB 1.7715 0.0632 9933 0.0616 
MS,BS 15.305 0.0001 7693 0.0001 
MS,LS 0.39543 0.7805 7692 0.7904 
MS,NOW 1.5053 0.1134 9950 0.1202 
MS,BB 3.6021 0.0003 7706 0 .0013 
BS,LS 3.6544 0.0027 8863 0.0037 
BS,NOW 1.241 0 .219 9949 0.2145 
BS , BB 16.811 0.002 8672 0.0001 
LS,NOW 1.1 871 0.258 9967 0 .2512 
LS,BB 2.4349 0.0268 8885 0.0257 
NOW,BB 2.4759 0.007 9954 0.007 
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Fig. 3.2: Multidimensional Scaling Plot showing the similarity of replicates based on the 
three benthic fluxes of oxygen, silicic acid and phosphate. MS= (shallow) Mackenzie Shelf, 
AG= Amundsen Gulf, Basin= Mackenzie Basin (or Beaufort Sea), BS= Barrow Strait 
(western Lancaster Sound), LS= eastern Lancaster Sound, NOW= North Water Polynya, 
BB= Baffin Bay. Figure from Kenchington et al. (2011) 

Are benthic function hotspots general hotspots? 

The hotspot areas of benthic remineralisation function described (shallow Mackenzie 

Shelf, Lancaster Sound and NOW) are in accordance with regional patterns of benthic 

diversity reported elsewhere: In the NOW, both abundance and species number are high , 

particularly in the center of the polynya (Lalande, 2003). In Lancaster Sound, Thomson 

(1982) reported high macrofaunal abundance and taxonomic richness , although mostly 

from the shallow areas of Lancaster Sound. Recent data from the central part of Lancaster 

Sound also indicates high benthic diversity in terms of biomass and species number 

(Kenchington et al., 2011). In the southeastern Beaufort Sea, highest abundance was 

reported from the shallow Mackenzie Shelf and the bays of the Amundsen Gulf (Conlan et 

al.,2008). 
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General spatial patterns of primary production in the Canadian Arctic Archipelago 

also fit our hotspots , reporting eutrophic regimes from Lancaster Sound and the NOW. 

Although the recently reported hotspot of primary production in the central Amundsen Gulf 

(Ardyna et al., 2011) seems in contradiction to our results, marine system studies in the 

area confirrned high pelagic carbon cycling and low organic matter export in the central 

Amundsen Gulf, at least in 2008 (Forest et al., 2011). Aiso contrary to Ardyna et al. (2011 ), 

we found the shallow Mackenzie Shelf to be a hot spot area of benthic remineralisation. 

While the latter study summarizes data from 2005 to 2007, an upwelling provoked a marine 

system hotspot including tight pelagic-benthic coupling on the shallow Mackenzie Shelf 

and Amundsen Gulf bays in 2008 (Link et al., 2011, Tremblay et al., 2011). Considering a 

2-fold increase of oxygen fluxes in 2009 compared to 2004 (Link et al., in press, chapitre 

2), we believe that the shallow Mackenzie Shelf is a benthic rernineralisation hotspot even 

beyond the upwelling year. 

We should also note here that, although hotspots are sites with the highest fluxes, 

they may not be the only important regions for a global ecosystem function. Areas of 

particular low processes may also provide extremely rare habitats that can le ad to 

specialized ecosystems , which are important simply due to their uniqueness. 

Finally, we suggest that benthic rernineralisation hot spots do reflect benthic diversity 

hotspots , but do not reflect primary production hotspots and can therefore not be 

generalized. 

How can benthic remineralisation be used in ecological assessment? 

Earlier and our results on benthic boundary fluxes cou Id be integrated into the 

description of EBSAs in the Canadian Arctic (DFO, 2011) based on definition methods 

developed by the DFO (2004) and following the demand by the Convention in Biological 

Diversity. For this, we first defined benthic EBSAs in a larger collaborative work 

(Kenchington et al., 2011) including knowledge on benthic diversity, sediment pigments 

and coral and sponge habitats . Benthic rernineralisation data could be integrated in the 
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dimension and criteria framework as a 'feeding' function, meaning that the release of fluxes 

from the sediments feeds into primary production. We present the results in Table 3.3, 

where High (H) values for a dimension indicate a high priority for EBSA designation, 

except for the Resilience dimension (low resilience equates to a higher importance . for 

EBSA classification). A total of 20 benthic EBSAs could be defined based on biological 

data and supports the overall described EBSAs (Fig. 3.3), and the detailed description 

provides a useful tool in ecosystem management. It allows not only assessing whether a 

seafloor anthropogenic disturbance activity can be authorized, but also which kind would 

be most detrimental in which areas. 

We also integrated benthic fluxes in an exercise estimating the impact of climate 

change on benthos in the western Canadian Arctic (Fortier et al., 2012). Based on 

integrati ve studies in the area including our data (Forest et al., 20 Il; Tremblay et al., 20 Il), 

we suggest the following: Predicted changes in primary production and vertical export 

regimes may induce a decrease in benthic fluxes (also connected to a probable decrease in 

benthic diversity) in the central Amundsen Gulf and on the deeper Mackenzie Shelf. In 

coastal areas and on the shallow Mackenzie Shelf, however, increased organic matter input 

could increase fluxes and le ad to a reduction of sediment oxygenation on a longer time-

scale. Sediments of low oxygen content are inhabited by less diverse benthic communities 

(Rosenberg et al., 2001). Monitoring fluxes at the sediment-water interface can thus 

provide a tool to survey the health of arctic soft-bottom environments , the most common 

habitat in the Canadian Arctic Ocean and in the oceans around the globe. However, the 

conclusions are based on only two years of nutrient remineralisation measurements. The 

impact of climate change on benthic ecosystem function should be assessed with a longer 

time series of data including the changes in benthic community composition. 
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Fig. 3.3: EBSAs identified in Canadian Arctic waters by DFO (2011). Areas inc1ude 
those identified in 2011 (red hatch marks) and those identified previously from the northern 
Foxe Basin and Beaufort Sea exercises (black hatch marks). The numbers indicate EBSAs 
that have been confirmed with benthic data (Table 3.3). The blue dashed !ine represents 
Canada's international boundary. Modified from DFO (2011) 
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Table 3.3: Benthic Ecologically and Biologically Significant Areas (EBSAs) in the 
Canadian Arctic. An assessment of available benthic data parameters against the DFO 
(2004) EBSA criteria by Ecoregion, Subregion and EBSA (DFO 2011b). - Indicates 
insufficient data to rank; * Refers to EBSAs that were not identified by the IUCN. Table 
from Kenchington et al. (2011) 

IUCN Regional 
'" EBSA '" " " " III 

'" 0 U 
QI 

" ~ '" " u 
EBSA Function (F) or " '" " " " Ecoregion Subreglon Benthic Parameter " Cl " " ~ ~ (OFO 2011b) Structural (S) Feature " i!! " ~ IUCN Super ~ :!::QI 'u; ~ 'ë Cl "-'" .. EBSA Cl " '" .. ::> ..: 0 z u 

Hudson Bay 
Complex 1.1 -1.4, 1.6, 1.8, 1.10 62,64, 65, 66 No Data to Assess 

Southampton Polynyas and Ice- Physical 
Island Polynya 1.5 60 edges Oceanographie (S) M H M H 

Southwestem 
Hudson Bay Macrobenthic 
Estuaries 1.7 63 Diversity Biodiversity (S) H M H 

Sediment pigment Feeding (F) H H 

Macrobenthic 
Selcher Islands 1.9 61 Diversity Biodiversity (8) H M H 

Sediment pigment Feeding (F) H H 

Hudson 5trait- L-
West 1.11 59,60 Carals and Sponges Deep water carals (S) M M H H H 

Corals and Sponges Sponge reefs (S) M M H H 
Macrobenthic 
Diversity Biodiversity (S) H M H 

Sediment pigment Feeding (F) H H 

Hudson 5tra it -
East 1.12 57 Cara ls and Spanges Sponge reets (S) M H H H 

Ungava Bay 1.13 58 Gorals and Sponges Deep water corals (S) M H H H H 

Garais and Spanges 8ponge reefs (8) M H H H 

Eastern Arctlc 2.1. 2.2. 2.4. 2.7 ' .67,70. I No Data to Assess 
2.9.2.15-2.16 69,72,73, 2 No Data to Assess 

Prince Regent Polynyas and Ice- Physical 
Inlet 2.3 70,I edges Oceanographie (S) M H M H 

Peel Sound and Palynyas and Ice- Physical 
Franklin Strait 2.5 71 edges Oceanographie (S) M H M H 

Macrobenthic 
Diversity Biodiversity (S) M H M M H 

Lancaster Sound 
and Barrow Macrobenthic 
Strait 2.6 69,70, I Diversity Biodiversity (S) H H H M H 

Macrobenthic 
Diversity Rare species (S) H H 
Benthic 
Reminera lization Feeding (F) M H H M H 

Sediment pigment Feeding (F) H H H H 
Polynyas and Ice- Physical 
edges Oceanographie CS) M H M H 

Physical 
Seabed Topography Oceanographie (S) H M H 

Davis Strait and 
Hatton Basin 2.8 52,57 Gorals and Sponges Deep water eorals (S) H H H H 

Garais and Spanges 8ponge reefs (S) H H H H 

Garais and Spanges Biodiversity (5) M H H H 

Continental 
Siope-Centrai 
Baffin Island 2.10,2.11 54 Corals and Sponges Deep water cora ls (S) M M M H 

Gorals and Sponges Sponge reets (S) M H 
Physica l 

8eabed Topography Oceanographie (S) H M H 

Narwhal Site 
and Goral Area 2.12 54 Cara ls and Sponges Deep water eorals (S) H H H H 

Corals and Sponges Sponge reets (S) M M H 

Baffin Bay-
North 2.13 69, I Garais and Sponges Deep water corals (S) H H H H 

North Water Macrobenthic 
POlynya (NOW) 2.14 69, I Diversity Biodiversity (S) H H H M H 

Macrabenthic 
Diversity Rare species (S) H H 
Benthic 
Remineralization Feeding (F) M H H M H 

Sediment pigmenl Feeding (F) M H H L H 
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Table 3.3 continued 
Polynyas and Ice-- Physical 
edges Oceanographie (8) M H M H 

Western Arctle 3.1. 3.3, 3.4, 3.6 No Data to Assess 

Polynyas and Ice- Physical 
Bathurst Inlet 3.2 edges Oceanographie (8) M H M H 

West King Macrobenthic 
William Island 3.5 Diversity Biodiversity (8) H H H 

Sediment pigment Feeding (F) H H H 
Physical 

8eabed T opography Oceanographie (5) H M H 

Beaufort LOMA- Macrobenthic 
Mackenzie Shelt 3.8, 3.9, 3.13 37, 77, ~ Oiversity Biodiversity (8) H H H M H 

Beaufort LOMA-
Cape Bathurst- Benthic 
Amundsen Gulf 3.14 37, 76, ~ Remineralization Feeding (F) M H H M H 

Sediment pigment Feeding (F) M H H 

Beaufort LOMA- Macrobenthic 
Franklin Bay 37 Diversity Biodiversity (8) H H H M H 

Benthic 
Remineralization Feeding (F) M H H M H 

Sediment pigment Feeding (F) H H H 
Potynyas and Ice- Physical 
edges Oceanographie (5) M H M H 

Beaufort LOMA-
Prince of Wales Macrobenthic 
Sirait Diversity Biodiversity (8) H H H 

Sediment pigment Feeding (F) H H H 

Beaufort LOMA-
Viscount Melville Macrobenthic 
Sound 3.24 72, § Diversity Biodiversity (5) H 

Benthic 
Remineralization Feeding (F) M H 

Sediment pigment Feeding (F) H 

Pofynyas and lee- Physieal 
Aretle Basin Beaufort Gyre 4.1 edges Oceanographie (S) M H M H 

High Canadlan 
5.1, 5.2, 5.3, 5.4, 5.5 No Data to Assess 

Aretie 
Arehipelago 

Polynyas and lee- Physical 
72, § edges Oceanographie (8) M H M H 

Conclusion 

Hotspot areas of enhanced nutrient remineralisation in the Canadian Arctic are 

reported for the shallow Mackenzie Shelf, Lancaster Sound and the NOW _ They represent 

benthic hotspots, but are not always linked to pimary production hotspots. Further surveys 

of this benthic function will be necessary to confirm that the observed spatial patterns are 

not exception al events of the 2008-2009 survey _ Understanding the driving factors of 

benthic remineralisation function will help to predict shifts which c1imate change may 

cause. Integrating such data into larger ecosystem models and assessments can improve 
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long-term marine spatial planning and protect some hotspots of our most remote marine 

ecosystem. 
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CHAPITRE 4 

ARE HOT SPOTS AL WAYS HOTSPOTS? TEMPORAL 

V ARIABILITY AND ITS ROLE FOR THE RELATIONSHIP 

BETWEEN DIVERSITY AND ECOSYSTEM FUNCTIONING IN 

ARCTIC BENTHIC ENVIRONMENTS 

RÉSUMÉ DU QUATRIÈME ARTICLE 

Ecosystem-based management often relies on proxy measures such as diversity for 

decisions making. However, the diversity-ecosystem function relationship has not been 

verified in Arctic environments, and has rarely been tested for its stability in time. We 

studied the temporal variability of benthic ecosystem functioning at hotspots (sites with 

high benthic boundary fluxes) and coldspots (sites with lower fluxes) among two years in 

the Canadian Arctic . Benthic rernineralisation function was measured as fluxes of oxygen, 

silicic acid, phosphate, nitrate and nitrite at the sediment-water interface. In addition 

sediment pigment concentration and macrobenthic diversity (taxonomic and functional) 

were deterrnined. To separate temporal from spatial variability, we sampled the same nine 

sites from the Mackenzie Shelf to Baffin Bay during the same season (summer or faH) in 

2008 and 2009. We observed that temporal variability of benthic remineralisation function 

at hotspots is higher than at coldspots and that taxonomic and functional community 

composition does not change significantly between years. Unexpectedly, temporal 

vari ability of food availability (i .e., sediment surface pigment concentration) seemed higher 

at coldspots than at hotspots. Sediment chlorophyll a (ChI a) concentration, taxonomic 

richness , total abundance, water depth and abundance of the largest gallery-burrowing 
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polychaete Lumbrineris tetraura together explained 42 % of the total variation in fluxes. 

Food supply proxies (i.e., sediment ChI a and depth) split hot- from coldspot stations and 

explained variation on the axis of temporal variability, and macrofaunal community 

parameters explained variation mostly along the axis separating eastern from western sites 

with hot- or coldspot regime. We conclude that variability in benthic rernineralisation 

function, food supply and diversity will react to climate change on different time scales , 

and that their interactive effects may hide the detection of progressive change particularly 

at hotspots. Time-series of benthic functions and its related parameters should be conducted 

at both hot- and coldspots to produce reliable predictive models. 

Keywords: diversity, ecosystem functioning, Arctic, benthic rernineralisation, 

sediment pigments, functional diversity, spatio-temporal variation, time-series 
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RELATIONSHIP BETWEEN DIVERSITY AND ECOSYSTEM FUNCTIONS IN ARC TIC BENTHIC 
ENVIRONMENTS 

Introduction 
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Can we use the diversity of communities to predict ecosystem functions? This 

question has been nourishing the experimental efforts and discussions of terres trial and 

marine ecologist for sorne time (Naeem et al., 2009; 2012). But very few studies have 

explicitly investigated the relationship between biodiversity and ecosystem functions at 

higher latitudes (Schmid et al., 2009). Ecosystem functioning, defined as the 

biogeochemical and biotic processes and interactions in an ecosystem, is strongly related to 

ecosystem services providing, e.g., wood or fish for human needs (Cardinale et al., 2012) . 

With global changes underway, such ecosystem services are threatened and, hence, efforts 

are increasing to define the role of biodiversity and its changes for ecosystem functions 

(Hooper et al., 2012). Particularly hotspots of species richness are considered an insurance 

of functioning in the face of species loss. Other studies have demonstrated the importance 

of resource availability modifying the diversity- ecosystem function relationship (Fridley, 

2002; Godbold and Solan 2009; Wahl et al., 2011). 

Polar ecosystems are of particular interest, because c1imate changes are affecting 

them faster and stronger than the ecosystems in other regions (Doney et al. , 2012) . There is 

thus a need for particularly rapid assessment of how environmental changes may alter 

ecosystem functioning in polar latitudes . In contrast to most other oceans, more than half of 

the Arctic Ocean's total area consists of rather shallow continental shelves. Understanding 

shelf-environments is indispensible for a description of the marine Arctic ecosystems and 

their functioning. While recent reviews have achieved an inventory of benthic diversity of 

Canadian and pan-Arctic shelves (Cusson et al., 2007; Piepenburg et al., 2011 ), their 

benthic ecosystem functioning is understudied (Wassmann et al., 2011). In soft-bottom 

environments, which dominate Arctic continental shelves, the degradation of organic 
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matter and coupled oxygen and inorganic nutrient fluxes from the sediments back to water 

column is an important ecosystem function (Emmerson et al., 2001). Benthic oxygen 

consumption is generally linked to the availability of food resources, which are often 

measured as sediment pigments (Clough et al., 2005; Grebmeier et al., 2006b; Renaud et 

al., 2007a). Knowledge on the remineralisation of other nutrients from the sediments in the 

Canadian Arctic has only recently been reported (Damis et al., 2012), and is not directly 

correlated to oxygen fluxes (Robert et al., 2012, Link et al., in press, chapitre 2). This 

underlines the need to investigate, which factors influence benthic remineralisation function 

as a whole. In other habitats and experimental studies for example, the role of the number 

and identity of species for oxygen consumption and nu trient fluxes at the sediment-water 

interface have been clearly demonstrated (Ieno et al., 2006; Michaud et al., 2006; Piot, 

2012). Moreover, the functional diversity seems to be more important than number of taxa 

(Harvey et al., 2012). 

At sites with higher benthic remineralisation than known on average from the 

Canadian Arctic (Kenchington et al., 2011; Damis et al., 2012), which we define as 

hotspots, we have recently found high temporal variability of oxygen consumption. But 

sites characterized by a generally low oxygen consumption (hereafter 'coldspots ') showed 

lower temporal variability (Link et al. , 2011; Forest et al., 2011; Tremblay et al., 2011). 

Time-series data from deep-sea sites also report important interannual variability of the 

downward export of organic matter (Baldwin et al., 1998), but changes in macrofaunal 

benthic community composition are observed only after several years or decades 

(Grebmeier, 2012) . While temporal and regional variabilities in benthic oxygen uptake in 

the Arctic have so far been linked to environmental factors and food supply, it is not clear 

to which ex te nt the benthic diversity affects multiple benthic fluxes (Glud et al., 2000; 

Schmid et al., 2009). 

For most areas of the Arctic, predictive models have to rely on few benthic data 

collected from different locations at different times, because Arctic time-series studies are 

even rarer than in other oceans (Glover et al., 2010; Soltwedel et al., 2005). But the use of 
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such datasets to detect directional (progressive) change can be affected by the natural 

variability (stochastic change) of marine systems (Glover et al., 2010). Climate forced 

environmental changes introduce additional temporal and spatial variability of ecosystem 

functioning. Here we assess how diversity (taxonomic and functional; composition, species 

number and abundance) and environmental factors affect spatial vs temporal variability of 

ecosystem functions at hotspots and coldspots in the Canadian Arctic. The objectives of 

this study were to distinguish between the temporal and spatial variation in a multivariate 

benthic ecosystem function in the Canadian Arctic, and to investigate the relation of the 

often used function proxies diversity and food supply with spatio-temporal variation. The 

resampling of study sites in the same season of different years for multiple remineralisation 

fluxes, diversity and sediment pigments was the key approach to allow for separating 

temporal from spatial variation in the diversity-ecosystem function analysis. 

We test specifically the following hypotheses: (1) Benthic remineralisation function 

is significantly different among years at hotspots but not at coldspots, (2) food availability 

for the benthos (measured as sediment pigments) is significantly different among years at 

hotspots but not at coldspots, (3) Taxonomic community composition is not significantly 

different among years, (4) Functional community composition is not significantly different 

among years, and (5) Food supply ex plains temporal variation and macrofaunal community 

parameters (e.g., total abundance, richness) explain spatial variation in benthic 

remineralisation functioning. The results will allow evaluating whether diversity can serve 

as a reliable surrogate for benthic remineralisation function in the Canadian Arctic des pite 

temporal variability in polar ecosystem processes. 

Methods 

Study region 

The study covered the benthic ecosystems in shelf environments across the Canadian 

Arctie Arehipelago from the eastern Mackenzie Shelf in the west to the North Water 

Polynya (NOW) in Northern Baffin Bay in the east (Fig. 4.1). These environments are 
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characterised by strong seasonality, with the productive period being subjected to the 

timing of ice-melt and increasing light duration as summer arrives. 

The eastern Beaufort Sea and Amundsen Gulf are dorninated by coastal shelves down 

to 600 m water depth. Pelagic primary production ranges from 30 to 70 g C m-2 yr- I
, 

indicating generally oligotrophic conditions (Sakshaug, 2004). Rather low primary 

production was also found in summer and fall 2005-2007 in the eastern Beaufort Sea with 

daily production rates of 73 ± 37 mg C m-2 d-' (Ardyna et al., 2011). In the Cape Bathurst 

Polynya at the eastern boundary of the Amundsen Gulf, however, annual production rates 

are higher than usual, reaching 90 to 175 g C m-2 yr- I (Arrigo and van Dijken, 2004). 

Ardyna et al. (2011) reported daily primary production rates in summer of 159 ± 123 mg C 

m-2 d- ' , and intensive phytoplankton blooms related to ice-edge upwelling events were 

documented for coastal regions of the Mackenzie Shelf and Amundsen Gulf in 2008 

(Mundy et al., 2009; Tremblay et al., 2011) Annual vertical POC fluxes of 1.6-1.8 g C m-2 

yr-I and 2.4 g C m-2 yr- I were estimated at 200 m water depth for the Mackenzie Shelf and 

the Cape Bathurst Polynya, respectively (O'Brien et al, 2006; Forest et al., 2007; Lalande et 

al., 2009) . Seafloor sediments are usually composed of more than 70 % silt and clay 

(Conlan et al., 2008). 

The eastern North-West-Passage is marked by the opening of Lancaster Sound into 

Baffin Bay. From its western limitation at the Barrow Strait sill (125 m) the channel 

reaches a depth of more than 800 m in the sound itself. Tidal and bathymetry induced 

mixing of Pacific and Atlantic waters east of Barrow Strait allow for high primary 

production with rates of 251 ± 203 mg C m-2 d-1 (Ardyna et al., 2011) and an annual me an 

of about 60 g C m-2 yr-I (Welch et al., 1992; Michel et al., 2006). Vertical export can be 

high (Fortier et al., 2002) and studies on benthic biomass and diversity report values that 

are among the highest known from the Arctic (Thomson, 1982), but important gaps of data 

need to be filled for a more comprehensive description of the area (McLaughlin et al., 

2006; Michel et al., 2006; Piepenburg et al., 2011). 
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The North Water Polynya (NOW) is located in Baffin Bay north of Lancaster Sound. 

It opens each year depending on latent heat fluxes, ice-bridge formation and northerly 

winds over the Nares Strait between western Greenland and eastern Ellesmere Island 

(Ingram et al., 2002; Dumont et al., 2009). In general, its productivity is considered to be 

the highest in the Arctic with primary production reaching values up to 250 g C m-2 yr-1 in 

the east (Klein et al., 2002) and 150 g C m-2 yr- 1 (Sakshaug, 2004; Ardyna et al., 2011). A 

significant amount of organic carbon is exported to water depths of > 200 m with highest 

values in the western polynya (Hargrave et al. , 2002). The seabed under the polynya 

reaches a depth of around 700 m and studies on benthic carbon turnover showed 

comparatively low rates in 1998 (Grant et al., 2002) and higher rates in 2008 (Darnis et al., 

2012). Abundance of benthic fauna was highest in the NOW center, indicating the role of 

currents and possible advection processes in the food supply for the benthos (Lalande, 

2003). 

Field sampling 

Samples were collected from nine sites (MD-C, AG-CW, LS-W, LS-E, NW-C, NW-

E (hotspots) and MS-C, AG-CC, BB-N (coldspots), Fig . 4.1) distributed across the study 

region in 2008 and 2009. To avoid confounding influence of seasons, the same sites were 

sampled in the same season each year. Sampling was conducted onboard the CCGS 

Amundsen between July and October during the Circumpolar Flaw Lead Study (Deming 

and Fortier, 2011), ArcticNet expeditions in collaboration with the Canadian Healthy 

Ocean Network (Sne1grove et al., 2012) and the Malina project (http://malina.obs-vlfr.fr/). 

Locations were chosen to study both hotspots and coldspots in the Canadian Arctic. A 

hotspot site was defined as an areas known for high primary productivity, vertical export 

and benthic fluxes (Mackenzie Delta plume, Cape Bathurst Polynya, Lancaster Sound, 

NOW) from previous knowledge. A coldspot site was defined as the opposite outside such 

areas, which generally show low benthic fluxes . More information on the definition and 

categorisation is found in Darnis et al. (2012) as well as Kenchington et al. (2011), 

respectively. At each sampling event ('station'), an USNEL box corer was deployed for 

seafloor sediment collection. From each box core, three to five sub-cores of ten cm 
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diameter and approximately 20 cm sediment depth were taken for assessing benthic 

remineralisation function (i.e., benthic oxygen demand and nutrient remineralisation) in 

shipboard microcosm incubations (Table 4.1). After incubation, the same sediment cores 

were passed through a 0.5 mm mesh sieve under slow running seawater. The sieve residues 

were preserved in a 4 % seawater-formaldehyde solution for later analyses of species 

diversity and abundance under a dissection microscope. Sediment surface (first cm) of 

additional three sub-cores were stored in pre-weighed plastic vials and frozen immediately 

at -80 oC to determine sedimentary ChI a and phaeopigment concentrations later in the 

laboratory (Table 4.1) . Part of the data presented here has been published in oceanograpic 

descriptive here (Table 4.1, Darnis et al., 2012; Link et al., 2011; Link et al., in press, 

chapitre 2; Tremblay et al., 2011). 
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Fig 4.1: Locations of sites sampled across the Canadian Arctic in 2008 and 2009. Red = 
hot spots , blue = coldspots; circle = 2008, diamonds = 2009. Note that one point on the map 
can represent two sampling events when exact relocation was achieved 

Benthic oxygen and nutrient fluxes at the sediment-water interface 

Shipboard incubations of sediment microcosms were run in a dark, temperature-

controlled room (2 to 4 OC) for 24 to 48 h. Total sediment oxygen flux was determined as 

the decrease in oxygen concentrations in the water phase and was measured periodically (2 
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to 8 h intervals) with a non-invasive optical probe (Fibox 3 LCD, PreSens, Regensburg, 

Gerrnany). To deterrnine changes in nu trient concentrations, samples of the overlying water 

phase were taken at three times during the incubation, inc1uding the onset and end. 

Table 4.1 : Station list. Labels , date of sampling, geographic position, number of within-
station replicate samples used to deterrnine each benthic boundary flux and diversity (BBF) 
and food supply proxies (sedimentary ChI a, and phaeopigments), and references (Ref) , 
where data has been published. For sub-regions: AG = Amundsen Gulf, MD = Mackenzie 
Delta, MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North Water Polynya; 
= BB = Baffin Bay; C, E, N, W = central, east, north, west; A = ArcticNet expedition, 1 = 
IPY Circumpolar Flaw Lead Study, M = Malina Project. 

Station Depth Latitude Longitude BBF Food 
Regime Site label Date [m] [ON] [OW] (n) proxy Ref 

(n) 
Hotspot MD-C 1-434 30/Jun/08 45 70.l77 133 .537 4 3 b e 

M-390 31/Jul/09 47 70.l78 133.569 3 3 a 

Hotspot AG-CW 1-408 25/Jul/08 206 71.323 127.606 3 3 b 

M-140 07/Aug/09 154 71.285 127.783 3 3 b 

Hotspot LS-W A-304 06/Sep/08 353 74 .271 91.248 3 3 b 

A-304 23/0et/09 331 74.3 18 91.406 3 3 
Hotspot LS-E A-301 08/Sep/08 707 74.153 83.209 3 3 b 

A-323 25/0et/09 786 74.l72 80.726 3 3 
Hotspot NW-C A-108 14/Sep/08 444 76.27 74.594 3 3 b 

A-109 28/0etl09 451 76.29 74.137 3 3 
Hotspot NW-E A-lIS 13/Sep/08 668 76 .326 71.215 3 3 b 

A-115 29/0et/09 669 76.335 71.238 3 3 
Coldspot MS-C 1-435 02/Jul/08 318 71 .072 133.876 4 3 be 

M-345 16/Aug/09 577 71.382 132.652 3 3 a 

Coldspot AG-CC 1-405 21/Jul/08 596 70.707 122.939 5 3 bed 

A-405 16/0 et/09 559 70.665 122 .996 3 3 a 

Coldspot BB-N A-136 10/Sep/08 795 74.786 73.633 3 3 b 

A- l36 30/0et/09 810 74.687 73.349 3 3 
a = oxygen fluxes, silicic acid fluxes, phosphate fluxes and food proxy (Link et al., in press, 
chapitre 2); b = oxygen fluxes , silicic acid fluxes, phosphate fluxes and food proxy (Darnis 
et al., 2012); c = oxygen fluxes and food proxy (Tremblay et al., 2011);d = oxygen fluxes, 
food proxy and benthic biomass (Link et al., 2011) 
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Oxygen and nu trient fluxes were determined as the slope of the linear regression of 

the oxygen and nutrient concentration on incubation time and corrected for solute 

concentration in the replacement water. A more detailed description of this method can be 

found in Link et al. (2011) and Link et al. (in press, chapitre 2). 

Sediment pigment concentration 

ChI a and phaeopigment concentrations were analysed fluorometrically following a 

modified protocol proposed by Riaux-Gobin and Klein (1993) as described in Link et al. 

(2011). Two grams of wet substrate were incubated with 10 ml 90 % Acetone (v/v) for 24 h 

at 4 oC, and the supernatant was measured in a Turner Design 20 fluorometer before and 

after acidification. ChI a and total pigment concentration (ChI a + phaeopigments) were 

determined. Quantities are expressed as microgram pigment per gram of dry sediment [jIg 

g-l] . 

Macrofaunal diversity 

Taxonomie diversity 

Sediment residues from the sieved incubation cores were sorted under a dissection 

microscope in the lab to retrieve benthic organisms that were subsequently identified to the 

lowest possible taxonomic level and counted (abundance, N). Taxa not identified to the 

species level were distinguished from other specimen (e.g. sp. 1) and c1assified as morpho-

species. Where such consistency across the study region was not achieved (e.g., due to a 

lack of describable characters), specimens were grouped into the lowest common taxon 

(e.g., Sipuncula) . Taxonomic richness is the number of taxa at each station (Tax Sor STaJ. 

Functional diversity 

Consequently, species were c1assified into functional groups according to their traits 

in terms of feeding mode, body size, mobility and bioturbation influence (Table 4.2, Table 

S4.l) (Bremner et al., 2003; Pearson, 2001; Petchey and Gaston, 2006). Categories were 

chosen based on their presumed influence on benthic remineralisation. Species were 

allowed more than one trait for feeding mode. Trait information was retrieved from the best 
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resources available (Fauchald and Jumars, 1979; Todd, 2001; MarLIN, 2006; Australian 

Museum, 2009; Kedra et al., 2009; MarLIN, 2009; Macdonald et al., 2010; Appeltans et al., 

2012). 

Table 4.2: Functional traits. Categories of traits and their levels used to define functional 
groups for taxa. 

Level 
FeedinglDiet 

C = Camivorous (predator 
or passive suspension) 
D = Surface deposit feeder 
F = Filter/Suspension 
feeder 

Category 
Size 

S<3mm 

3 mm<M< 10 mm 

L> 10 mm 

Mobility 
M=Mobile 

S = Sessile 
H= 
Hemimobile 

B ioturbation 
B = Active burrower 
(diffusive) 
G = GaIIery burrower 
S = Surface dweIler 

0= Omnivorous T = Tube burrower 
(scavenger) 
P = Parasite 
S = Subsurface deposit 
feeder 

For analyses of composition and richness, functional groups were treated in the same 

way as taxonomie entities. Functional group richness is the number of different categories 

of traits per station (SFunc) . 

Statistical analyses 

We used a mixed-model PERMANOVA design to test for temporal and spatial 

differences in (a) benthic boundary fluxes, (b) food supply proxies (i .e., sediment pigment 

concentrations), (c) taxonomie and (d) functional composition. The factors 'year' (two 

levels: 2008, 2009), fully crossed with 'regime' (two levels: hotspot, coldspot) ,'sites' 

nested in 'regime' (six sites MD-C, AG-CW, LS-W, LS-E, NW-C, NW-E (hotspot) and 

three sites MS-C, AG-CC, BB-N (coldspot» and their interactions were tested. The 

resemblance matrices quantifying the between-replicate similarities in terms of aH five 

standardized fluxes (02 and four nutrients) and the two sediment pigments were ca1culated 

based on Euclidean distances. Missing data points were replaced using the 'missing' 

function in PRIMER-E software. Taxonomie and functional abundance matrices were 

fourth-root transformed and their resemblance matrices were ca1culated based on Bray-
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Curtis similarity (Clarke and Gorley, 2006). PERMANOVA pair-wise tests were run for 

significant sources of variation between the factors (Anderson et al., 2008). The 

significance level was corrected for multiple testing using the Bonferoni correction with 

aB = a/n, where n is the number of comparisons and a=0.05. Homogeneity of dispersion 

could not be tested for groups of the interaction terms 'year x site (regime)' using the 

PERMDISP routine due to the smaU sample size (n = 3) (Anderson et al., 2008). Instead, 

we determined average squared distances (Euclidian, for fluxes and pigments) or 

dissimilarities (Bray-Curtis, for taxonomic and functional composition) across sites within 

and between years for samples of hotspots and coldspots, respectively, using the SIMPER 

routine (Clarke and Gorley, 2006). Multidimensional Scaling (MDS) plots were used to 

visualize the resemblance patterns. 

A stepwise distance-based linear model permutation test (DistLM, McArdle and 

Anderson, 2001) was performed to identify which subset of biotic and environmental 

variables predict the multivariate variation of five benthic boundary fluxes at 18 stations 

(aU stations of 2008-2009) best. Ten predicting variables were aUowed to enter the model: 

sediment surface Chl a concentration, sediment surface phaeopigment concentration, 

taxonomic richness, functional group richness, abundance, Shannon-Wiener index, 

abundance of the largest gaUery burrower Lumbrineris tetraura (single species of its 

functional group) and abundance of the largest dominant tube-burrower group DFLHT, 

water depth and the date of ice-free conditions. Ice-free conditions were determined from 

weekly ice charts for the western and eastern Canadian Arctic published by the Canadian 

!ce Service (CIS) available on http://www.ec.gc.ca/glaces-ice/.Asite was considered to be 

ice-free, if ice concentrations below 1 prevailed for more than two consecutive weeks. To 

meet the linearity assumption for predictor variables, ChI a was ln transformed prior to 

analysis. No pair of variables was linearly correlated by r > 0.85 and hence aU variables 

were retained for possible inclusion in the model. The stepwise routine was run employing 

9999 permutations and using the AICc selection criterion. The AICc was devised to handle 

situations where the number of samples (N) is small relative to the number (v) of predictor 
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variables (N/v<40) (Anderson et al., 2008). Results were visualized with a distance-based 

redundancy analysis (dbRDA) (Anderson et al., 2008). 

Results 

Temporal and spatial variability of benthic boundary fluxes 

In general, benthic boundary fluxes were higher at hotspots than at coldspots and 

higher in 2008 than in 2009 (Fig. 4.2). This pattern was most pronounced for oxygen 

fluxes , whereas other nutrient fluxes showed more heterogeneous patterns. Sites of greatest 

benthic oxygen and nitrate uptakes, and silicic acid and phosphate releases were MD-C, 

NW-C and LS-W (ail hotspots) (Fig. 4.2) . 

The multivariate composition of benthic boundary fluxes was significantly different 

between hotspots and coldspots and among sites, with a significant interaction between 

years and the nested factor sites (Table 4.3). The years 2008 and 2009 were significantly 

different at the sites LS-W, LS-E, NW-C, NW-E and BB-N (Table 4.4 , Fig. 4 .3). 

Variability within and between years was greater at hotspots than at coldspots (Table 4 .5). 

Temporal and spatial variability offood supply 

Sediment ChI a concentrations ranged from 0.04 to 32.44 }tg g-l with highest values 

at the hotspot sites MD-C and LS-W and lowest values at coldspots. Sediment 

phaeopigment concentrations were higher at hotspots than at coldspots (Table S4.2). 

Significant differences in the multivariate composition of sediment pigments were 

found between hotspots and coldspots and among sites, with a significant interaction 

between years and sites (Table 4.3). There were significant differences between 2008 and 

2009 at sites AG-CW, MS-C and AG-CC (Table 4.4 , Fig. 4.4) . Variability within and 

between years was greater at hotspots than at coldspots (Table 4.5, Fig. 4.4). 
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Fig 4.2: Benthic boundary fluxes at each sampling event across the Canadian Arctic in 
2008 and 2009. Columns represent median ± min/max. For years: black columns = 2008 , 
grey columns = 2009. For sub-regions: AG = Amundsen Gulf, MD = Mackenzie Delta, MS 
= Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North Water Polynya; = BB 
Baffin Bay; C, E, N, W = central, east, north, west 



Table 4 .3 : Effects of factors on multivariate benthic parameters. Results are from permutational multivariate analyses of 
variance (PERMANOVAs) testing the effect of Year (Ye) , Regime (R), Site (Si) nested within Regime and their interactions . 
Calculation is based on Euclidian distance for benthic boundary fluxes and pigments, and on Bray-Curtis sirnilarity of fourth-
root transformed data of functional and taxonomie community composition. Significance level at P < 0.05 

Benthie Boundary Fluxes Pigments 
Source of variation df MS Pseudo-F P (Qerm) Source of variation df MS Pseudo-F P (Qerm) 
Year 17.099 2.219 0 .1047 Year 4.327 1.643 0.2436 
Regime 1 43.911 3.031 0 .0310 Regime 1 36.117 8.316 0.0226 
Site(R) 7 14.066 6.977 0 .0001 Site(R) 7 4.343 14.202 0 .0001 
Year x R 1 3.448 0.455 0 .7892 Year x R 1 2.551 0.969 0.3643 
Year x Site(R) 7 7.497 3.719 0.0001 Year x Site(R) 7 2.633 8.611 0.0001 
Res 40 2.016 Res 36 0.306 
Total 57 Total 53 

Functional Compositions Taxonomie Diversity 
Source of variation df MS Pseudo-F P Qerm) Source of variation df MS Pseudo-F P (Qerm) 
Year 2056 .0 1.115 0 .3656 Year 1 3293.2 1.063 0.4143 
Regime 1 16579.0 3.105 0.0032 Regime 1 20697.0 2.096 0.0267 
Site(R) 7 5181.4 9.496 0 .0001 Site(R) 7 9588.0 8.916 0 .0001 
Year x R 1 1986.8 1.078 0 .3887 Year x R 1 2338.5 0 .758 0 .6628 
Year x Site(R) 7 1801.8 3.302 0.0001 Year x Site(R) 7 3035.5 2.823 0 .0001 
Res 40 545 .6 Res 40 1075.4 
Total 57 Total 57 
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Table 4.4: Difference between years for pairs of each site based on multivariate benthic 
parameters . Results for PERMANOV As pair-wise tests for the significant interaction term 
Year x Site (R) (Table 4.3) and the average distance between (2008 - 2009) and within 
(2008, 2009) groups of replicates are presented. Calculation is based on Euc1idian distance 
for benthic boundary fluxes and pigments. Significance level after Bonferroni correction: 
p(MC) < 0.006. Significant results are in boldo For sub-regions: AG = Amundsen Gulf, MD 
= Mackenzie Delta, MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North 
Water Polynya; = BB = Baffin Bay; C, E, N, W = central, east, north, west 

Regime Site Df P (MC) 2008 - 2009 2008 2009 

Fluxes 
Hotspots MD-C 0.969 5 0.4221 4.86 5.33 4.09 

AG-CW 1.390 4 0.1984 1.26 0.35 1.62 
LS-W 4.184 4 0.0043 2.14 0.82 0.81 
LS-E 7.568 4 0.0003 2.79 0.52 0.67 
NW-C 3.934 4 0.0034 2.49 1.36 0.51 
NW-E 5.004 4 0.0012 3.63 1.61 0.37 

Coldspots MS-C 1.946 5 0.0631 1.12 0.95 0.50 

AG-CC 1.486 6 0.1560 0.83 0.67 0.82 
BB-N 11.942 4 0.0003 2.99 0.41 0.44 

Pigments 
Hotspots MD-C 4.122 4 0.0136 3.81 2.08 0.43 

AG-CW 5.686 4 0.0020 0.33 0.08 0.11 
LS-W 3.350 4 0.0146 2.01 0.95 0.94 
LS-E 1.534 4 0.1939 0.70 0.41 0.73 
NW-C 0.454 4 0.6822 0.95 1.30 0.19 
NW-E 0.910 4 0.4456 0.44 0.33 0.56 

Coldspots MS-C 14.072 4 0.0003 0.42 0.04 0.05 
AG-CC 8. 351 4 0.0013 0.28 0.05 0.05 
BB-N 1.328 4 0.2345 0.13 0.04 0.15 
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Fig 4 .3: Temporal and spatial patterns of benthic boundary fluxes at each sampling event 
across the Canadian Arctic in 2008 and 2009. The plot shows the relative distance of 
samples determined as Euc1idian distance of the five different fluxes. Red = hotspots, blue 
= coldspots; full symbols = 2008, open symbols = 2009; AG = Amundsen Gulf, MD = 
Mackenzie Delta, MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North 
Water Polynya; = BB = Baffin Bay; C, E, N, W = central, east, north, west 
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Fig 4.4: Temporal and spatial patterns of sediment pigments at each sampling event across 
the Canadian Arctic in 2008 and 2009. The plot shows the relative distance of samples in a 
2-D space deterrnined as Euc1idian distance of ChI a and phaeopigments . Red = hotspots, 
blue = coldspots; full symbols = 2008, open symbols = 2009; AG = Amundsen Gulf, MD = 
Mackenzie Delta, MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North 
Water Polynya; = BB = Baffin Bay; C, E, N, W = central, east, north, west 
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Table 4.5: Dispersion within and between 2008 and 2009 for hot spots and coldspots across 
the nested sites. Average squared distance (benthic boundary fluxes and pigments) and 
average squared Bray-Curtis dissimilarity ca1culated by SIMPER are presented 

GrouE HotsEots ColdsEots 
Fluxes 2008 5.08 0.34 
(Sq. Eue!. Dist.) 2009 1.80 0.20 

2008 vs 2009 10.66 3.08 
Pigments 2008 0 .72 <0 .01 
(Sq . Eue!. Dist.) 2009 0.20 0 .01 

2008 vs 2009 3.73 0 .09 
Tax . Comp 2008 44.22 50.17 
(Dissimilarity) 2009 45.52 44.88 

2008 vs 2009 57.97 55.57 
Fune. Comp 2008 29.63 36.82 
(Dissimilarity) 2009 31.07 34.86 

2008 vs 2009 41.76 43.74 

Temporal and spatial variability of taxonomie diversity 

We identified a total of 311 macrofaunal taxa in the sediments taken from the 

incubation cores (Table S4.l) . Taxonomic richness (STax) per core ranged from seven taxa 

at AG-CC (coldspot) up to 45 at LS-W (hotspot) (Table S4.2). Lowest abundance was 

found at sites MD-C and AG-CW (both hotspots) and highest in the NOW sites (hotspot) 

(Table S4.2). 

Taxonomie composition of communities was significantly different between hotspots 

and coldspots and among sites, with a significant interaction between years and sites (Table 

4.3, Fig. 4.5) . The consecutive years 2008 and 2009 were not significantly different at any 

site (Table 4.6). Within-year and between-year dissimilarities of hotspot and coldspot 

communities were comparable (Table 4.5, Fig. 4.5). 

Temporal and spatial variability of funetional diversity 

Taxa were classified into a total of 72 functional groups (Table S4.l). Number of 

functional groups (SPunJ per core ranged between six groups at AG-CC (coldspot) and 32 at 

LS-W (hotspot) (Table S4.2). 
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Functional composition of communities was significantly different between hotspots 

and coldspots and among sites, with a significant interaction between years and the nested 

factor sites (Table 4.3). The two years 2008 and 2009 were not significantly different at any 

site (Table 4.6, Fig. 4.6). Dissimilarity within years was greater across coldspots than 

across hotspots and comparable in 2008 and 2009 (Table 4.5, Fig. 4.6). 

Table 4.6: Difference between years for pairs of each site based on multivariate benthic 
parameters. Results for PERMANOV As pair-wise tests for the significant interaction term 
Year x Site(R) (Table 4.3) and the average similarity [%] between (2008 - 2009) and 
within (2008,2009) groups of replicates are presented. Ca1culation is based on Bray-Curtis 
similarity of fourth-root transformed data of functional and taxonomie community 
composition. Significance level after Bonferroni correction: P (MC) < 0.006. For sub-
regions: AG = Amundsen Gulf, MD = Mackenzie Delta, MS = Mackenzie Shelf/Slope; LS 
= Lancaster Sound; NW = North Water Polynya; = BB = Baffin Bay; C, E, N, W = central, 
east, north, west 

Regime Site Df P (MC) 2008 - 2009 2008 2009 

FComp 
Hotspots MD-C 1.750 5 0.0493 56.51 61.29 69.03 

AG-CW 2.302 4 0.0199 39.89 62.98 60.85 
LS-W 1.791 4 0.0573 66.48 77.98 71.62 
LS-E 1.224 4 0.2451 66.86 67.41 71.21 
NW-C 2.691 4 0.0136 52.95 70.55 76.47 
NW-E 1.649 4 0.0774 67.30 75 .61 72.13 

Coldspots MS-C 2.223 5 0.0143 49.52 66.88 63.87 
AG-CC 1.167 6 0.2695 55 .10 59.67 53.39 
BB-N 1.863 4 0.0549 66.74 72.50 78.1 5 

TComp 
Hotspots MD-C 1.579 5 0.0661 42.32 53 .58 49.82 

AG-CW 2.098 4 0.0261 24.70 46.64 50.45 
LS-W 1.532 4 0.0988 47.29 58.87 53 .80 
LS-E 1.602 4 0.0744 50.32 59.78 59.50 
NW-C 2.250 4 0.0230 34.64 61 .77 53.98 
NW-E 1.316 4 0.1734 52.83 56.22 59.31 

Coldspots MS-C l.732 5 0.0389 35.99 46.58 52.79 
AG-CC 1.119 6 0.3012 45.23 47.42 45.95 

BB-N 1.796 4 0.0498 54.34 64.33 66.64 
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Fig 4.5: Temporal and spatial patterns of taxonomie community compositIon at each 
sampling event across the Canadian Arctic in 2008 and 2009. The plot shows the relative 
similarity of samples in a multidimensional space determined as Bray-Curtis similarity 
based on 4th-root transformed abundance of taxa. Red = hotspots , blue = coldspots; full 
symbols = 2008, open symbols = 2009; AG = Amundsen Gulf, MD = Mackenzie Delta, 
MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North Water Polynya; = BB = 
Baffin Bay; C, E, N, W = central , east, north , west. 
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Fig 4.6: Temporal and spatial patterns of functional community composItion at each 
sampling event across the Canadian Arctic in 2008 and 2009. The plot shows the relative 
similarity of samples in a multidimensional space determined as Bray-Curtis similarity 
based on 4th-root transformed abundance of functional groups . Red = hotspots, blue = 
coldspots; full symbols = 2008, open symbols = 2009; AG = Amundsen Gulf, MD = 
Mackenzie Delta, MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North 
Water Polynya; = BB = Baffin Bay; C, E, N, W = central, east, north, west 
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Influence of biotic and environmental factors on the variability in fluxes 

The best distance-based linear model (DistLM), explaining 42 % of the overall 

variation in benthic boundary fluxes, is composed of five parameters (Fig. 4.7, Table 4 .7). 

Sediment surface ChI a concentration contributes most to the explained variation (23.5 %), 

fOllowed by STax (9.5 %), N (5.9 %), water depth (4.3 %) and abundance of Lumbrineris 

tetraura (3.9 %). Measures of functional diversity were not retained in the model. Variation 

of the first axis mainly separates coldspots from hot spots and pairs of the two years of each 

site. The most important parameters contributing to the first axis of the dbRDA plot 

explaining 63 % of fitted flux variation are sediment surface ChI a concentration and water 

depth (Fig. 4 .7 , Table 4.7). Benthic community parameters were most strongly correlated 

with the second dbRDA axis explaining 27.9 % of fitted flux variation. 
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Fig 4.7: Distance-based Redundancy Analysis (dbRDA) plot of the distLM model based on 
the five parameters fitted to the variation in benthic boundary fluxes (Table 4.7). Vectors 
indicate direction of the parameter effect in the ordination plot. ChI a = Ln of sediment 
ChI a concentration; N = abundance, Tax S = taxonomie richness. Red = hotspots, blue = 
coldspots; full symbols = 2008 , open symbols = 2009; AG = Amundsen Gulf, MD = 
Mackenzie Delta, MS = Mackenzie Shelf/Slope; LS = Lancaster Sound; NW = North 
Water Polynya; = BB = Baffin Bay; C, E, N, W = central, east, north, west 
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Table 4.7: Distance-based linear model (DistLM) of benthic boundary fluxes against 
environmental and diversity drivers determined in the Canadian Arctic in 2008 and 2009. 
Proportion of variance in benthic boundary fluxes is explained by environmental variables 
in stepwise sequential tests following AI Cc selection criterion. ChI a = sediment ChI a 
concentration, STax = taxonomic richness, N = individual abundance, Depth = water depth, 
L. = Lumbrineris. 'Prop.' is the proportion of variance explained by each single variable, 
'Cumul.' is the cumulative proportion of variance explained by multiple variables. 

Sequential tests for stepwise model (Adj. R2 = 42%) 

Variable Adj . R2[%] SS(trace) Pseudo-F P Prop . Cumul. res.df 

Chi a 75 .693 62.191 15.946 0.0001 0 .235 0 .235 52 
ST.x 70.782 25.168 7.226 0.0001 0.095 0.330 51 
N 68 .158 15.591 4.811 0.0021 0.059 0.388 50 
Depth 66.673 11.344 3.688 0.0069 0 .043 0.431 49 
L. tetraura 65.34 10.423 3.566 0 .0149 0 .039 0.471 48 

Percentage of multivariate flux variation explained by individu al axes 
% explained variation % explained variation 
out of fitted model out of total variation 

Axis lndividual Cumulative lndividual Cumulative 
1 63 .01 63.01 29 .65 29.65 
2 27.87 90.88 13.12 42.77 
3 5.92 96.8 2.79 45.56 
4 3.19 100 1.5 47 .06 

Relationships between dbRDA coordinate axes and orthonormal X variables 
(multiple partial correlations) 

Variable 
Chi a 

ST.x 
N 
Depth 
L. tetraura 

Discussion 

dbRDAl dbRDA2 dbRDA3 
0 .591 0.092 0.201 
0 .239 -0 .662 0.636 
0.314 -0.452 -0.707 
-0.702 -0.328 0.079 
-0.031 -0.492 -0.221 

dbRDA4 
0.359 
0.ü25 
0.392 
0.516 
-0.671 

ln the Arctic, benthic time-series data are extremely scarce and long-term prediction 

of the ecosystem function is often based on one-site one-year measures. Here, we focus on 
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the different patterns of (non-directional) temporal and spatial variability in benthic 

remineralisation function, functional and taxonomic diversity and resource availability, 

which we consider important terms of error for long-term predictions. We discuss the role 

of variability in hotspot vs coldspot regimes and finally, we discuss the limitations of a 

statistical model integrating environmental and macrofaunal parameters to explain 

directional temporal and spatial variation in benthic remineralisation function in the Arctic. 

Hypothesis 1: Benthic remineralisation function is significantly different among years at 

hotspots but not at coldspots 

Simultaneous consideration of five benthic boundary fluxes showed that the 

magnitude of interannual variability differed between hotspots and coldspots. At hotspot 

sites the between-years differences were generally more pronounced than at coldspot sites, 

but the results are less consistent than we assumed. The composition of fluxes at different 

sites is heterogeneous due to complex interactions with environmental (Farias et al., 2004; 

Link et al., in press, chapitre 2) and faunal (Michaud et al., 2006; Davenport et al., 2012) 

parameters . Change in benthic boundary fluxes from one year to another can be positive or 

negative in its direction, depending on the flux and on the site. This means that a given site 

x in 2008 can be different from the same site x in 2009, but similar to another site y in 2009 

(e.g. LS-W and NW-C, Figs. 4.2, 4.3), although both are hotspots . When remineralisation 

function as a whole is considered, it is therefore not surprising that the relative change from 

2008 to 2009 across all hotspots or all coldspots is not significant, although differences 

between years are found for four of six hotspots. In fact, the interannual differences at the 

remaining two hotspots might not be detectable due to the strong within-site variation, but 

they show the tendency of a shift. The coldspot site BB-N was not only different in 2008 

than in 2009, but also differed from other coldspot fluxes. High nitrite uptake of about 

30 ]lmol m-2 d-I may be the underlying mechanism. In this study, such high nitrite uptake 

has only been found at hotspots with other high fluxes (NW-E and LS-E) and typically 

indicates bacteria-mediated anaerobic degradation of nitrogen derivates such as ammonium 



126 

oxidation (anammox). Anammox is considered a common process in deep Arctic cold-

water environments, and the nitrite uptake rates measured in 2008 might be a lag response 

to the degradation of intensive organic matter pulses fuelling abundance and de gradation by 

anammox bacteria (Rysgaard et al., 2004). Site-dependent changes in nu trient fluxes were 

also found in a shallow-water environment by Thouzeau et al. (2007), who interpreted 

interannual differences of biogeochemical fluxes as being mostly effected by differences in 

environmental parameters and organic matter deposition, inc1uding indirect effects of 

macrofauna and macroalgae, depending on the sites. Similar factors cou Id have affected the 

changes at our hotspot sites . 

One of the rare time-series studies inc1uding the measurement of total sediment 

oxygen fluxes in deeper water was conducted in the abyssal north Pacific for eight years 

(Smith at al., 2001) . Although the export of organic matter varied between years, oxygen 

consumption remained fairly stable. Smith et al. (2001) interpreted this discrepancy in the 

rather oligotrophic environment they investigated as a capacity of the benthic fauna to 

endure food deficiency over a limited time period - until a new food pulse arrives . Such an 

explanation would also fit to oxygen flux patterns of coldspots in our study . Lepore et al. 

(2007) compared sediment oxygen fluxes (expressed as benthic carbon respiration) among 

years in the Chukchi Sea in 2002 and 2004. Summed over several sites, they found that 

benthic carbon respiration did not change much, neither on the shelf nor on the slope, 

among years, despite great changes in vertical carbon export . One possible explanation for 

this finding is a time lag in the response of the sediment communities. However, among-

site patchiness in benthic carbon respiration was high and may have masked temporal 

variations at particular sites - as it was the case across hotspots and co Ids pots in our study. 

This stresses the importance to separate spatial from temporal variability if we want to 

understand dynamics of ecosystem functions. A few sites of our study have been sampled 

prior to 2008. In 2004, Renaud et al. (2007b) reported less than half the oxygen demand 

(5.65 mmol m-2 d- 1
) of our values at hotspot site MD-C but similar values at hotspot site 

AG-CW (2.12 nunol m-2 d- 1
). At hotspot site NW-C, the oxygen fluxes we measured in 

2008 were twice as high as those measured in 1998 (4.3 mmol m-2 d- 1
, Grant et aL, 2002), 
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but they were largely the same in 2009. Longer time-series measurements are necessary to 

draw a firm conclusion, but these results may indicate that a progressive change is already 

happening in the Mackenzie Delta region whereas there is yet a stochastic variability in the 

NOW region. 

We found that differences among sites can be in the same order of magnitude as 

variations among years (Fig. 4.3). However, the significant difference in remineralisation 

function between hotspots and coldspots basically confirm our apriori categorisation of 

sites. Although we cannot separate a location from dispersion effect (Anderson et al., 2008) 

in the data, our results clearly showed that benthic remineralisation function is more 

variable among years at hotspot sites than at coldspot sites. This means that quantifying 

progressive directional changes in ecosystem functions at hotspot sites needs long-term 

series data (Glover et al., 2010), whereas coldspot sites might rather qualify to detect 

changes through less regular sampling. 

Hypothesis 2: Food availability is signijicantly different among years at hotspots but not at 

coldspots 

Our results showed that the magnitude of interannual variations in food supply to the 

benthos, as approximated by sediment pigment concentrations, differed between hotspots 

and coldspots and depends on the considered site. AIso, hotspots were different from 

coldspots . Only one of six hotspot sites but two of three coldspot sites changed significantly 

over the years. Here, we analysed concentration of rather labile ChI a and stable, more 

degraded phaeopigments in the sediments simultaneously. Phaeopigments can accumulate 

with degradation of matter and are therefore not necessarily an indicator of recent organic 

matter input, which we want to detect when looking at annual variability. But since ChI a is 

often rapidly degraded to phaeopigments (Sun et al., 2007), the latter allow the detection of 

food input even if it had been of lower quality or earlier in the year. Another indicator of 

food at the seafloor is the ratio of ChI a over phaeopigment concentration (e.g. Morata et 

al., 2008). But as a quality ratio, this measure does not allow to compare the quantity of 
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pigments at different sites. Since the quality of food is often related to the acti vit y of 

benthic communities (Sun et al., 2007; Link et al., 2011), we could consider to only use 

sediment ChI a concentration, which should be representative of fresh matter input having 

occurred in the same season. However, statistical analyses using only sediment ChI a did 

not yield very different results, and only hotspot MS-C differed significantly between years 

(data not shown). How else can we explain the unexpectedly rare interannual changes at 

hotspots and more common changes at coldspots? One important issue that could make 

changes statistically less detectable is the small-scale spatial (within-site) variation in our 

sediment pigment data (Anderson et al., 2008). Furthermore, dispersion was greater among 

hotspot sites th an among coldspot sites, impeding the detection of changes in the plot. In 

fact, the results from the SIMPER analysis clearly showed that hotspots were more 

different from one year to another than coldspots, but also that the difference between years 

for co Ids pots was large compared to the variability among coldspots of the same year. 

Interannual changes of sediment pigments were found at several depths in the Fram 

Strait at the HAUSGARTEN site in Norway (Soltwedel et al., 2005), which could be 

related to a decrease in settling phytodetrital matter. In our study are a , interannual 

variability of vertical flux patterns is only known for part of the study period and study 

area. Sallon et al. (2011) found two-day vertical fluxes at hotspots MS-C and AG-CW in 

2008 that were similar to those reported in 2004 (Juul-Pedersen et al., 2010). Both were 

higher than those determined in the 1980ies (O'Brien et al., 2006). Recent results from 

2009 showed, however, that vertical fluxes at theses sites were lower than in 2008 (Forest 

et al., 2012.; Link et al., in press, chapitre 2). Due to the generally tight pelagic-benthic 

coupling in the Arctic, such interannual variability in vertical fluxes in the southeastern 

Beaufort Sea (see also Forest et al., 2010 for a more regional approach) could lead to 

interannual sediment pigment changes, even at coldspots. In the NOW, at the hotspots NW-

C and NW-E, Hargrave et al. (2002) showed an about two-fold increase of vertical flux 

from 1998 to 1999. In the LS-W region, strong interannual variability of processes 

determining pelagic-benthic coupling, including the release of ice algae, have been 

observed between 1984 and 1992 (Michel et al., 2006). However, in that period the change 
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seemed stochastic and we may have sampled in two years of similar vertical export. 

Although these regions show interannual variability, we do not know how or whether 

vertical fluxes changed between 2008 and 2009, and it is therefore difficult to explain the 

lack of signal for sediment pigments using vertical flux patterns. To our knowledge, no data 

on vertical fluxes in the area of LS-E or BB-N has been published, thus that we can only 

infer variability from primary production and phytoplankton ChI a biomass patterns. 

Significant interannual differences between 2005 and 2007 (confounded with season late 

summer, early faU and faU) in primary production have not been found for the Beaufort 

Sea, Archipelago (induding Lancaster Sound) or NOW (Ardyna et al., 2011). However, 

phytoplanktion ChI a biomass at individually resampled sites AG-CW (408), AG-CC (405), 

NW-C (108) and NW-E (115) seemed different in 2005 than in 2006 and 2007. But at 

water depths of more than 200 m, several processes influence the actual export of primary 

production to the seafloor. Temporal and spatial variability in these pelagie processes may 

nullify or even invert an increase in primary production to a decrease in vertical export, as 

has been reported at sorne sites in the southeastern Beaufort Sea in 2008 (Sallon et al., 

2011; Forest et al., 2011). Such discrepancy is particularly evident for site AG-CC, which 

Ardyna et al. (2011) identified as a hotspot of primary production, but which is consistently 

a coldspot in benthic parameters. Lateral advection has been proposed as mechanism 

underlying discrepancies between surface primary production and benthic activity (Lepore 

et al. , 2007). However, currents in the central Amundsen Gulf region are generaUy weak, 

thus that pelagie degradation is probably more important (Forest et al., 2010, 2011) . 

Extrapolating temporal and spatial changes in benthic food supply from primary production 

patterns should be treated with extreme caution. 

Benthic degradation of organic matter could theoretically also be the reason why 

coldspots with consistently lower sediment pigment concentration demonstrate more 

changes than hotspots: Assuming that hotspots generally host higher abundance of 

organisms due to generally higher food supply (e .g. Rex et al., 2006), su ch higher density 

cou Id consume a peak of arriving food more rapidly than a site with lower abundance. 

Rapid consumption of organic material has been demonstrated for seafloor communities of 
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different depths (Witte et al., 2003) and Arctic locations (Link et al., 2011; Sun et al., 

2007). If sediment food supply is measured months after the input peak, the measured 

sediment pigments could represent the 'leftovers of the feast', which should vary less when 

abundance is high. Our data does not support the hypothesis that food supply varies more 

among years at hot spots than at coldspots. The results indicate that when explaining 

changes in benthic function, the interaction of community composition on measured food 

supply (i.e. the remaining stock) could influence the results. 

Hypothesis 3: Taxonomie community composition is not significantly different among years 

Macrobenthic communities at hotspots or coldspots in the Canadian Arctic did not 

change significantly in taxonomic composition from 2008 to 2009. Instead, the community 

composition is generally different at hot spots than that at coldspots, and sites are distinct 

from each other. The total number of 331 macrobenthic taxa found in our samples may 

seem low compared to the overall number of 992 taxa reported from the entire Canadian 

Arctic (Archambault et aL, 2010). Piepenburg et al. (2011) performed a rarefaction analysis 

based on molluscs, arthropods, echinoderms and annelids for different regions in the Arctic. 

They showed that 19 sampling events would yield an average of 274 observed taxa in the 

Amundsen Gulf region and 205 on the Beaufort Shelf. Moreover, based on less stations, 

totals of 86 and 204 taxa have been reported for Lancaster Sound and northern Baffin Bay, 

respectively (Piepenburg et al., 2011). Considering species overlap between the different 

regions and a total of 18 sampling events, we can assume to have taken and analysed a 

typical number of species for the sampling size. The number of taxa we found at sites in the 

NOW region was also lower than reported by Lalande (2003). But due to the different 

sampling approaches applied (here: 3 incubation cores of 80 cm2 each vs large corers 

covering areas of usually 1250 cm2
), our results are not directly comparable, and the 

numbers most likely only represent differences in total sampled surface. Two data 

distribution patterns in the MDS plot (Fig.5) are interesting to note: First, with the 

exception of site AG-CW 2008, hotspot sites are weIl separated from coldspot sites. This 
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observation confirms the notion that species composition is largely dependent on regimes 

of food supply (Smith et aL, 2008), since primary production regimes were part of our 

hotspot definition. Second, sites are clustered according to their depth within the hotspot or 

coldspot groups (which is much less the case for benthic fluxes) (Fig. 4.5). This indicates 

depth zonation of benthic infauna communities on a shelf gradient, which has previously 

been reported (Conlan et aL, 2008; Hoste et aL, 2007), but cou Id not be identified by 

Cusson et al. (2007) in other regions of the Canadian Arctic. These results of within-regime 

gradients stress the importance that environmental factors other th an depth create 

communities of different diversity and composition. 

In contrast to spatio-temporal patterns in benthic boundary fluxes and sediment 

pigments, the significant interaction between the factors year and site in our data results 

only from statistically different pairs of different sites across years. Similar variability of 

communities across sites in 2008 and 2009 is also confirmed through the SIMPER analysis . 

Polar environments host species with longer life spans, and community turnover rates 

should therefore be slower. In an arctic Fjord, Kedra et al. (2010) reported a decadal shift in 

communities in two of the fjord regions influenced by an intrusion of warm water, but no 

changes in a third region with more stable hydrographic conditions. This supports the 

notion that community changes are rather long-term reactions to environmental forcing. 

Similarly, long-term time series of macrobenthic infauna in the northern Bering Sea show 

progressive change in community composition since 2000 on a decadal scale, although the 

change is not yet statistically detectable (Grebmeier, 2012) . At sites in Frobisher Bay 

(Canadian Arctic) , however, Cusson et al. (2007) detected monthly variability in 

community composition. Considering that those communities became sirnilar over time 

again, the effect of lacking replicate data information could have reduced both within-

month and within-site variability and thus produced an artificial signal. The overall low 

within-site variability of Frobisher Bay sites compared to other sites in the Canadian Arctic 

supports this explanation. Interannual variations in meiofaunal abundance were found 

during time-series measurements at the HAUSGARTEN from 2000-2004 (Hoste et al. , 

2007). However, these changes were less clear when community composition was 
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considered. Overall, the results support our hypothesis and spatial variability in community 

composition seems more pronounced than interannual variations. However, without 

separating the temporal from the spatial component of variability, we will miss out 

detecting long-term shifts in community composition, such as that reported by Grebmeier 

(2012) in the northern Bering Sea. 

Hypothesis 4: Functional community composition is not significantly dif.ferent among years 

The number of 72 functional groups reported in our study may seem very high, but if 

functional groups are to be related to ecosystem functions, it is crucial to include as many 

different trait categories as known to influence those functions (Petchey and Gaston, 2006) . 

We therefore think that such fine-scale categorisation is adequate. Functional richness 

(number of functional groups) was largely similar to the number of taxa at sites with only 

few taxa, but was clearly lower at sites with many taxa (Table S4.2). This is a typical 

phenomenon, since in smaIl-scale studies, the probability to find species redundant in their 

functions increases with the total number of species encountered (Curnrning and Child, 

2009). Functional diversity can foIlow changes in taxonomic diversity - or not (Hooper et 

a1. , 2005; Villeger et a1., 2012). If functional redundancy is present (as for samples where 

taxonomic diversity is higher than functional diversity), a reduction in the number of 

species will not necessarily decrease the number of functional groups. This implies less 

variability, and the absence of changes in functional composition over the years matches 

weIl with temporal patterns in taxonomic composition. 

When comparing results of variation in functional composition and taxonomic 

composition, we again find a well-defined separation of hotspot and coldspot sites . 

However, sites are generally more similar to each other when functional diversity is 

analysed. Using functional diversity in comparative studies has received increasing 

attention over the last decades (Naeem et a1., 2012). An important advantage of this 

approach is its lower susceptibility to misclassifications, and Cochrane et al. (2012) have 

recently demonstrated its utility to describe ecologically distinct regions in the Barents Sea. 
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Although the general power to identify spatial and temporal differences in community 

composition is reduced when the functional (opposed to taxonomic) approach is used, it is 

sufficient to describe the ecological role of different communities. 

Hypothesis 5: Food supply explains temporal variation and macrofaunal community 

parameters explain spatial variation in benthic remineralisation function 

The results of this study confirm our hypothesis that the temporal variability of 

benthic remineralisation function is most affected by sediment pigments while its spatial 

variation is largely determined by diversity patterns. However, water depth was an 

addition al important factor explaining spatial patterns, both among sites and between 

hotspots and coldspots. We demonstrated how depth played a role in explaining the 

resemblance patterns in taxonomic community composition (see section H3). Moreover, 

water depth has been used as a rough estimate for food supply to the benthos (Graf, 1992), 

as also indicated by its similar relationship ta the variation axes as that of sediment ChI a 

concentrations in our data. The importance of an easy-to-determine and steady-state 

variable for ecosystem functions can have stabilizing effects in predicting models, but also 

caUs for caution considering its low explicative power and when ecosystems of different 

depths and regimes are compared (Glover et al., 2010). In our data, sediment ChI a 

concentrations are strongly related to the variation axis across which hot- and coldspots are 

separated, and along which temporal variability of sites is spread, despite the lack of 

temporal variability in the variable itself. The retenti on of ChI a but not phaeopigments in 

our model underpins the notion that fresh food supply rather than general food supply is 

most important in determining benthic remineralisation function (Sun et al., 2007; Link et 

al., 20 Il; Link et al., in press, chapitre 2). 

About 20 % of the variation in benthic function is explained by different measures of 

diversity (richness of taxa, individu al abundance, and the abundance of L. tetraura). These 

three variables mostly explain differences between hotspots and coldspots and the eastern 

and western Canadian Arctic, but also temporal variation at hotspots AG-CW and NW-E, 
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The better explicative power of taxonomic vs functional group richness may be due to 

several mechanisms. Resource availability, measured as ChI a in our study, may affect the 

diversity-ecosystem function relationship. At large spatial sc ales across the marine Arctic, 

the number of benthic species generally increases with primary production, if the effect of 

salinity is removed from the model (Witman et al., 2008). If functional group richness is 

more related to sediment ChI a concentration, then taxonomic richness is chosen as a more 

complementary variable to the already used ChI a in the model. Moreover, interactions 

between functional and species richness in their effect on functions have been found, 

making species richness more important, if functional richness is low (Wahl et al., 2011). 

Another cause for taxonomic richness being more important is the use of multiple processes 

defining our function: Using multiple processes decreases the chance that several species 

are redundant in effecting the functions (Gamfeldt et al., 2008). 

Our statistical approach of a predictive linear model does not allow testing the 

combined effect of food supply and community composition on multiple benthic fluxes. 

But total abundance and the abundance of a gallery-burrowing polychaet species as 

significant predictors for multiple benthic functions stress the importance of community 

composition additionally to mere species numbers. In fact, the density of fauna (Braeckman 

et al. , 2010), identity or functional traits of species (Michaud et al., 2006; Piot , 2012) and 

the number of burrows at the seafloor (Davenport et al., 2012) have been related to benthic 

boundary fluxes before. 

More than half of the variation in benthic boundary fluxes in our data could not be 

explained by our best model. As already mentioned above, more exact measures of 

community composition or trait composition could explain more variation. Two other 

important benthic community components are also lacking in our study: meiobenthic and 

bacterial abundance. The role of meiobenthos for biogeochemical cycles is less studied, but 

there is increasing evidence that its density is related to benthic remineralisation function 

(Veit-Kahler et al. , 2011 ; Nascimento et al., 2012; Piot, 2012). The role of bacteria on the 

other hand is well known to be important for organic matter degradation processes 
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(J0rgensen, 2006). Different types of bacteria can influence the particular process of 

degradation (e.g. anammox), can react rapidly to matter input and interact with macrofaunal 

matter degradation processes (Boetius and Damm, 1998; Rysgaard et al., 2004; Hunter et 

al., 2012). Although evidence is increasing that macrofauna drives the variability in 

bacteria-mediated degradation (Michaud et al., 2009; Hunter et al., 2012), future studies 

should integrate meiofaunal and microbenthic organisms to gain a better understanding of 

mechanisms regulating temporal and spatial variability of benthic remineralisation 

function. 

Benthic ecosystem function in the Canadian Arctic increases with fresh food supply, 

species-rich and functional diverse communities and decreasing depth. With climate 

change, the quantity and - ev en more importantly - the quality of food supply to polar 

benthos is altering (Forest et al., 2011; Tremblay et al., 2011; Wassmann et al., 2011) . 

While we currently still know only little about how benthic communities will react to these 

changes (Grebmeier, 2012), we could show here that diversity changes will have an impact 

on the quality of benthic ecosystem functioning, depending on resource availability. 

Conclusion 

Great efforts are underway to estimate the impact of climate change on polar 

ecosystems. Due to the very limited number of real benthic time-series measurements in the 

Arctic, ecosystem models often rely on data obtained from different sites at different times 

of the year. One important question under these circumstances is: Are known benthic 

diversity hotspots in the Canadian Arctic also hotspots in ecosystem function? We conclude 

from our findings: Yes, with regard to a general spatial comparison , but no, with regard to 

long-term predictions, which may increase variability of resource availability due to 

climate-related ecological change. In our study, we have demonstrated that the influence of 

diversity on multiple benthic ecosystem functions is complementary or dependent on the 

availability of resources. The mechanisms controlling temporal variability of factors 

explaining benthic ecosystem function vary even on a within-region spatial scale. We have 
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also shown that the similarity in taxonomic and functional diversity patterns indicate little 

insurance against the climate induced species loss in the Canadian Arctic. Even models that 

include several variables (steady-state ones but also those varying on short and long time 

scales) explained only half of the variability in multiple benthic ecosystem function in the 

Canadian Arctic. Defining the role of the functional identity of particular organisms in 

benthic biogeochemical cycles should help to better predict benthic remineralisation 

processes. Our findings also strongly suggest that for reliable predictions of how ecosystem 

functioning in Arctic shelf habitats will change in the future and how close we are to 

tipping points, it is necessary to establish time-series sites at hotspots and coldspots where 

multiple function measures are monitored, in order to distinguish natural oscillations from 

directional change. 
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Table S4.1: Taxa list. The table presents aU taxa identified during this study and the 
accorded functional traits. For details on functianal trait categories and levels, see Table 
4.2. 

Class S ecies/taxon Feedin Size Motilit Bioturbation 
Oligochaeta Oligochaeta sp. S L M T 
Polychaeta Ophryotrocha sp. 0 S M S 
Polychaeta Schistomeringos caeca C S M B 
Polychaeta Schistomeringos rudolphii C M M B 
Polychaeta Lumbrineris scopa OC L M G 
Polychaeta Lumbrineris sp. OC M M G 
Polychaeta Lumbrineris sp. 1 OC M M G 
Polychaeta Lumbrineris sp. 2 OC M M G 
Polychaeta Lumbrineris sp . 3 cf.fauchaldi OC L M G 
Polychaeta Lumbrineris sp. 4 cf.fragilis OC L M G 
Polychaeta Lumbrineris tetrauralimpatiens C L M G 
Polychaeta Nothria conchylega 0 L H S 
Polychaeta Paradiopatra quadricuspis OC L H S 
Polychaeta Chrysopetalidae sp . C M M S 
Polychaeta Hesionidae sp. a M M B 
Polychaeta Nereimyra sp. C M M B 
Polychaeta Aglaophamus malmgreni C M M G 
Polychaeta Bipalponephtys neotena C M M G 
Polychaeta Micronephtys minuta C S M G 
Polychaeta Nephtyidae sp. 2 C M M G 
Polychaeta Nephtyidae sp . 1 cf. Nephtys C M M G 
Polychaeta Nephtys ciliata C L M G 
Polychaeta Pholoe longa C M M B 
Polychaeta Pholoe sp. C S M B 
Polychaeta Eteone flava/longa CO L M B 
Polychaeta Eteone sp. CO L M B 
Polychaeta Phyllodoce sp. CO L M B 
Polychaeta Bylgides sarsi C L M S 
Polychaeta Eucranta sp. C L M S 
Polychaeta Eucranta villosa C L M S 
Polychaeta Gattyana cirrosa C L M S 
Polychaeta Polynoidae C L M B 
Polychaeta Polynoidae sp. 1 C L M B 
Polychaeta Clavodorum sp. D S M S 
Polychaeta Sphaerodoropsis sp. 2 D S M S 
Polychaeta Sphaerodoropsis sp. 1 cf.furca D S M S 
Polychaeta Sphaerodorum gracilis D S M S 
Polychaeta Anguillosyllis pupa D S M S 
Polychaeta Anguillosyllis sp. D M M S 
Polychaeta Erinaceusyllis sp. D S M S 
Polychaeta Exogone naidina D S M S 
Polychaeta Exogoninae sp. D S M S 
Polychaeta Prosphaerosyllis sp. nov. D S M S 
Polychaeta Streptosyllis sp. nov. 1 CO S M S 
Polychaeta Streptosyllis sp. nov. 2 CO S M S 
Pol chaeta Syllis sp. C M M S 
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Table S4.1 continued 
Class S ecies/taxon Feedin Size Motilit Bioturbation 
Polychaeta Galathowenia D M H T 
Polychaeta Galathowenia oculata D M H T 
Polychaeta Myriochele heeri D M H T 
Polychaeta Myriochele olgae D M H T 
Polychaeta Myrioglobula malmgreni DF L H T 
Polychaeta Owenia borealis DF L H T 
Polychaeta Owenia polaris DF L H T 
Polychaeta Owenia sp. DF L H T 
Polychaeta Chone sp. F L S T 
Polychaeta Euchone analis F L S T 
Polychaeta Euchone incolor F L S T 
Polychaeta Jasmineira schaudinni F L S T 
Polychaeta Jasmineira sp. F L S T 
Polychaeta Oriopsis sp. F L S T 
Polychaeta Sabellidae sp . F L S T 
Polychaeta Spirorbis sp. F M S S 
Polychaeta Capitella capitata S L H G 
Polychaeta Capitellidae sp . S L H G 
Polychaeta Hetero- or Mediomastus S L H G 
Polychaeta Heteromastus filiformis S L H G 
Polychaeta Heteromastus sp. S L H G 
Polychaeta Notomastus sp. S L M B 
Polychaeta Cossura pygodactyla S M H T 
Polychaeta Cossu ra sp. S M M B 
Polychaeta Asychis biceps S L S T 
Polychaeta Asychis sp. 1 S L S T 
Polychaeta Clymenura polaris S L S T 
Polychaeta Clymenura sp . 1 S L S T 
Polychaeta Lumbriclymeninae sp. S L S T 
Polychaeta Maldane arctica S L S T 
Polychaeta Maldane glebifex S L S T 
Polychaeta Maldane sarsi S L S T 
Polychaeta Maldane sp. (arctica + sarsi) S L S T 
Polychaeta Maldanidae sp. 1 S L S T 
Polychaeta Maldanidae sp. 2 S L S T 
Polychaeta Maldanidae sp. 3 S L S T 
Polychaeta Maldanidae sp. 4 S L S T 
Polychaeta Maldanidae sp. 5 S L S T 
Polychaeta Maldanidae sp. 6 S L S T 
Polychaeta Maldanidae spp. S L S T 
Polychaeta Nicomache cf. lumbricalis S L S T 
Polychaeta Nicomache quadrispinata S L S T 
Polychaeta N icomachenae/ Petaloproctus S L S T 
Polychaeta Petaloproctus tenuis S L S T 
Polychaeta Praxillela affinis S L S T 
Polychaeta Praxillela gracilis S L S T 
Polychaeta Praxillela/axiothella S L S T 
Polychaeta Ophelina cylindricaudata S M M G 
Polychaeta Ophelina sp. 2 S M M G 
Pol chaeta Ophelina s . 1 cf. breviata S M M G 
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Table S4.l continued 
Class S ecies/taxon Feedin Size Motilit Bioturbation 
Polychaeta Scoloplos sp. 2 S L M B 
Polychaeta Scoloplos sp. 1 cf. acutus ou armiger S L M B 
Polychaeta Aricidea fragilis D M H B 
Polychaeta Aricidea nolani D M H G 
Polychaeta Aricidea quadrilobata D M H G 
Polychaeta Aricidea sp. 1 D M H G 
Polychaeta Aricidea sp. 2 D M H G 
Polychaeta Aricidea sp. 3 cf. hartmani D M H G 
Polychaeta Aricidea sp. 4 D M H G 
Polychaeta Aricidea suecica DF M H G 
Polychaeta Levinsenia (Paraonis) gracilis D M H G 
Polychaeta Paraonidae D M H G 
Polychaeta Scalibregma inflatum S S M B 
Polychaeta Scalibregmatidae sp. S S M B 
Polychaeta Apistobranchus sp. cf. tullbergi D M H T 
Polychaeta Spiochaetopterus sp. cf. typicus DF L S T 
Polychaeta Dipolydora caulleryi DF M H T 
Polychaeta Dipolydora sp. DF M H T 
Polychaeta Laonice sp. cf. cirrata DF M H T 
Polychaeta PolydoralDipolydora DF M H T 
Polychaeta Prionospio cirrifera DF M H T 
Polychaeta Prionospio sp. DF M H T 
Polychaeta Prionospio steenstrupi DF M H T 
Polychaeta Spio sp. DF M H T 
Polychaeta Spionidae w/o branchia D M H T 
Polychaeta Trochochaeta multisetosa D L S T 
Polychaeta Trochochaeta watsoni D L S T 
Polychaeta Amage gallasii DF M M B 
Polychaeta Amage sp. cf. auricula DF M H B 
Polychaeta Ampharete finmarchica D L S T 
Polychaeta Ampharete sp. D L S T 
Polychaeta Ampharetidae sp. 1 D L S T 
Polychaeta Ampharetidae sp. 2 = Amythasides D L S T 
Polychaeta Ampharetidae sp. 3 D L S T 
Polychaeta Ampharetidae juv D M S T 
Polychaeta Ampharetinae sp. D L S T 
Polychaeta Ampharetinae sp. 1 D L S T 
Polychaeta Ampharetinae sp. 2 D L S T 
Polychaeta Ampharetinae sp. 3 D L S T 
Polychaeta Ampharetinae sp. 4 D L S T 
Polychaeta Amphicteis gunneri D L S T 
Polychaeta Auchenoplax sp. D L S T 
Polychaeta Glyphanostomum pallescens D L S T 
Polychaeta Pterolysippe vanelli D M H B 

Polychaeta Sabellides borealis DF L S T 
Polychaeta Aphelochaeta sp. D L H B 
Polychaeta Chaetozone sp. 1 cf. setosa D M M B 

Polychaeta Chaetozone sp. 2 D M M B 

Polychaeta Chaetozone/Tharyx D M M B 
Pol chaeta Cirratulidae D L H B 
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Table S4.l continued 
Class S ecies/taxon Feedin Size Motilit Bioturbation 
Polychaeta Monticellina sp. D M H B 
Polychaeta Tharyx sp. D M H B 
Polychaeta Brada villosa D L H S 
Polychaeta Diplocirrus hirsutus D M H S 
Polychaeta Diplocirrus sp. 1 cf. longisetosus D M H S 
Polychaeta Flabelligeridae D M H S 
Polychaeta Cistenides hyperborea S L M B 
Polychaeta Paramphitrite sp. D L S T 
Polychaeta Pista sp. D L S T 
Polychaeta Polycirrus arc tic us D L H T 
Polychaeta Polyeirrus sp. D L H T 
Polychaeta Proclea graffi D L S T 
Polychaeta Proclea malmgreni D L S T 
Polychaeta Terebellidae sp. 1 D L S T 
Polychaeta Terebellidae sp . 2 D L S T 
Polychaeta Terebellinae (Amphitritinae) sp . D L S T 
Polychaeta Thelepodinae D L S T 
Polychaeta Terebellides bigenieulatus D L S T 
Polychaeta Terebellides cf. williamsae D L S T 
Polychaeta Terebellides sp. D L S T 
Polychaeta Terebellides stroemi D L S T 
Polychaeta Terebellomorpha sp. 1 
Polychaeta Terebellomorpha sp. 2 
Malacostraca Byblis gaimardii F L H S 
Malacostraca Haploops oonah F L H S 
Malacostraca Haploops sp. F L H S 
Malacostraca Haploops tubieola F L H S 
Malacostraca Argissa hamatipes S L M B 
Malacostraca Cap relia septentrionalis D L M S 
Malacostraca Gammaridae D M M B 
Malacostraca Paraphoxus oeulatus D M M B 
Malacostraca lsaiedae sp. F L H B 
Malacostraca lsehyroeerus megaeheir F M M B 
Malacostraca lsehyrocerus sp. F M M B 
Malacostraca Lysianassidae sp. a L M S 
Malacostraca Paraeentromedon sp. a L M S 
Malacostraca Paronesimus sp. a L M S 
Malacostraca Aeeroides latipes C M M B 
Malacostraca Bathymedon sp. cf. Obtusifrons C M M B 
Malacostraca Oediceropsis brevieornis C M M B 
Malacostraca Oedieerotidae C M M B 
Malacostraca Paroediceros sp. C M M B 
Malacostraca Haliee sp. S M H B 
Malacostraca Pardaliseidae sp. S M H B 
Malacostraca Pontoporeia f emorata D M M B 
Malacostraca Diastylidae sp. 1 DF M M S 
Malacostraca Diastylidae sp . 2 DF M M S 
Malacostraca Diastylis lueifera DF M M S 
Malacostraca Diastylis rathkei DF M M S 
Malacostraca Diastylis sp. DF M M S 
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Table S4.l continued 
Class S ecies/taxon Feedin Size Motilit Bioturbation 
Malacostraca Ektonodiastylis DF M M S 

nimia/Brachydiastylis 
Malacostraca Eudorella emarginata DF M M S 
Malacostraca Eudorella sp. DF M M S 
Malacostraca Eudorellopsis integra DF M M S 
Malacostraca Leucon acutirostris DF M M S 
Malacostraca Leuconfulvus DF M M S 
Malacostraca Leucon nasicus DF M M S 
Malacostraca Leucon sp. DF M M S 
Malacostraca Leuconidae sp. 1 DF M M S 
Malacostraca other 1 DF M M S 
Malacostraca other 2 DF M M S 
Malacostraca Saduria sabini C L M S 
Malacostraca Desmosoma lineare S S M B 
Malacostraca Eugerda tenuimana S S M B 
Malacostraca Caecognathia stygia P M H S 
Malacostraca Gnathia sp. P M H S 
Malacostraca Synidotea bicuspida D L M S 
Malacostraca llyarachna hirticeps C M M S 
Malacostraca Pleurogonium spinosissimum S M M B 
Malacostraca Leptognathia sp. D M H S 
Malacostraca Akanthophoreus gracilis D S H S 
Malacostraca Akanthophoreus sp. cf. disa D S H S 
Malacostraca Pseudotanais affinis D M H S 
Malacostraca Pseudotanais forcipatus D M H S 
Malacostraca Pseudotanais sp. D M H S 
Malacostraca Pseudosphyrapus serratus C M M B 
Malacostraca Typhlotanais sp. D S H S 
Malacostraca Tanaidae D S H S 
Ostracoda Cypridininae CO S M S 
Ostracoda Philomedes sp. 1 D S M S 
Ostracoda Philomedes sp. 2 cf. brenda D S M S 
Ostracoda Scleroconcha sp. D S M S 
Ostracoda Myodocopida D S M S 
Ostracoda Hemicytheridea sp . CO S M S 
Ostracoda Sarsicytheridea sp. CO S M S 
Ostracoda Trachyleberididea sp. CO S M S 
Ostracoda Acanthocythereis sp. cf. dunelmensis CO S M S 
Ostracoda Podocopida (Ostracoda B) CO S M S 
Pycnogonida Nymphon sp. 1 cf. hirtum C L M S 
Pycnogonida Nymphon sp. 2 cf hirtipes C L M S 
Pycnogonida Nymphonsp.3 C L M S 
Bryozoa Bryozoa F L S S 
Gymnolemata Notoplites sp. F M S S 
Gymnolemata Eucratea loricata F L S S 
Gymnolemata Romancheinidae sp. F L S S 
Gymnolemata Alcyonidium sp. F M S S 
Gymnolemata Alcyonidium sp. 2 F M S S 
Priapulida Priapulida S L H B 
Priapulida Priapulopsis bicaudatus S L H B 
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Table S4.l continued 
Class S ecies/taxon Feedin Size Motilit Bioturbation 
Ascidiacea Phlebobranchia sp . F L S S 
Ascidiacea Polycarpa F M S S 
Ascidiacea Ascideacea sp. 1 F M S S 
Ascidiacea Ascideacea sp. 2 F M S S 
Anthozoa Actinostolidae sp. FCO L S S 
Anthozoa Edwardsidae C M H B 
Anthozoa Athen'aria sp. cf. halcampa C M H B 
Anthozoa Actinaria sp. C M H S 
Anthozoa Cerianthidae sp . C L H B 
Anthozoa Anthozoa sp . 1 C M H S 
Anthozoa Anthozoa sp. 2 C M H S 
Hydrozoa Anthoathecata FCO L S S 
Hydrozoa Obelia sp. FCO L S S 
Hydrozoa Sertularia sp. FCO L S S 
Hydrozoa Sertulariidae spp. FCO L S S 
Hydrozoa Thuiaria sp. FCO L S S 
Hydrozoa Tiaropsis multicirrata FCO M M S 
Hydrozoa rhizome FCO L S S 
Asteroidea Asteroidea C L M S 
Asteroidea Ctenodiscus crispa tus DO L M B 
Echinodermata Echinoderm larvae D L M S 
Holothuroidea Holothuridae sp. l D M M B 
Holothuroidea Holothuridaesp. 2 D M M B 
Holothuroidea Holothuridae sp. 3 D M M B 
Ophiuroidea Ophiocten sericeum DO L M S 
Ophiuroidea Ophiuroidea DO L M S 
Enteropneusta Enteropneusta D L M B 
Bivalvia Cuspidaria sp. cf. glacialis C L H B 
Bivalvia Cuspidariidae C M H B 
Bivalvia Bathyarca sp. F M S S 
Bivalvia Astarte sp. 1 cf. elliptica ou F L H B 

esquimati 
Bivalvia Astarte sp. 2 cf. montagui F L H B 
Bivalvia Limidae F M S S 
Bivalvia Bivalvia sp. 2 (Thyasiridae) F M H B 
Bivalvia Thyasira sp. (east) F M H B 
Bivalvia Thyasira sp. (west) F M H B 
Bivalvia Crenellafaba F L S S 
Bivalvia Dacrydium F M S S 
Bivalvia Dacrydium viviparum F M S S 
Bivalvia Musculus glacialis F L S S 
Bivalvia Musculus niger F L S S 
Bivalvia Mytilidae F M S S 
Bivalvia Portlandia sp. cf.frigida S M H B 
Bivalvia Ennucula tenuis S M M B 
Bivalvia Nucula sp . S M M B 
Bivalvia Montacuta sp. F M S B 
Bivalvia Montacutidae sp . F M S B 
Bivalvia Macoma calcarea DF L H B 
Bivalvia Bivalvia decalcifié DF M H B 
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Table S4.1 continued 
Class S ecies/taxon Feedin Size Motilit Bioturbation 
Bivalvia Bivalvia sp. 1 DF M H B 
Bivalvia Bivalvia sp. 3 DF M H B 
Caudofoveata Chaetoderma CO L M B 
Gastropoda Tachyrhynchus erosus F L M S 
Gastropoda Cylichna sp. cf. alba C M M S 
Gastropoda Philinoidea C M M S 
Gastropoda Retusa obtusa C M M S 
Gastropoda Heterobranchia C M M S 
Gastropoda Pyramidelloidea 0 M M S 
Gastropoda Buccinidae C L M S 
Gastropoda Gastropoda D M M S 
Scaphopoda Scaphopoda C M H B 
Nematoda Nematodes S S M G 
Nemertea Nemerti C L M S 
Demospongiae Demospongiae F M S S 
Sipuncula Sipunculida D M M T 

Foramini era D S S S 

Table S4.2: Sediment pigment concentrations (ChI a and phaeopigments 'Phaeo'), 
community descriptors (taxonomic richness STaJ(' total abundance N, functional group 
richness SFunc and Shannon-Wiener Index H'Func) and abiotic variables used in the study. 

Regime Site Year ChI a Phaeo STax N SFun H'Func Depth Ice-melt 
~g gol] ~ggol] [ind.] 1< [ml [ dlylian] 

Hotspots MD-C 2008 23.33 36.44 31 129 23 2.67 45 161 
14.25 31.96 20 172 16 2.25 45 161 
32.44 43 .58 32 142 24 2.57 45 161 

2009 3.55 16.93 25 89 19 1.82 47 160 
3.82 9.15 15 75 14 1.84 47 160 
3.89 10.92 19 96 16 2.09 47 160 

AG-CW 2008 0.53 14.66 22 53 16 2.38 206 182 
1.11 15.43 28 98 21 2.11 206 182 
0.87 15.30 24 89 18 1.74 206 182 

2009 1.37 10.81 30 55 19 2.63 154 202 
0.90 10.71 28 87 23 2.67 154 202 
0.79 12.06 23 60 18 2.60 154 202 

LS-W 2008 18.29 37.72 41 186 32 2.59 353 217 
14.02 43.00 34 155 24 2.50 353 217 
10.11 40.82 45 197 31 2.62 353 217 

2009 6.92 33 .98 42 253 29 1.95 331 146 
3.57 18.04 36 262 25 1.93 331 146 
4.55 23.68 33 274 23 1.78 331 146 

LS-E 2008 3.21 26.74 36 253 25 1.90 707 182 
4.19 33.80 41 361 25 1.77 707 182 
3.33 31.34 29 238 21 1.50 707 182 

2009 2.73 32.27 31 308 20 1.51 786 167 
1.50 21.65 26 485 18 0.85 786 167 
1040 19.26 28 457 20 0.95 786 167 
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Table S4.2 continued 
NW-C 2008 3.53 35.34 27 978 19 0.65 444 147 

1.77 12.42 26 996 19 0.77 444 147 
1.88 Il .78 18 741 13 0.72 444 147 

2009 3.21 21 .71 41 380 25 2.08 451 153 
2.86 22.85 38 566 25 1.51 451 153 
2.98 25 .06 40 457 29 1.90 451 153 

NW-E 2008 2.04 14.78 38 356 27 1.33 668 147 
2.51 20.78 33 355 24 1.15 668 147 
2.56 19.37 37 358 27 1.57 668 147 

2009 1.43 25.64 25 434 17 0.93 669 177 
1.08 19.24 24 339 20 1.18 669 177 
0.68 15.57 28 359 22 1.07 669 177 

Coldspots MS-C 2008 0.43 7.10 28 94 22 2.00 318 175 
0.38 6.98 27 74 19 2.23 318 175 
0.50 6.41 16 78 15 1.35 318 175 

2009 0.04 1.27 10 427 9 0.24 577 216 
0.08 2.24 13 449 12 0.27 577 216 
0.04 1.87 10 407 8 0.18 577 216 

AG-CC 2008 0.09 6.84 9 220 9 0.29 596 161 
0.14 6.77 12 173 10 0.47 596 161 
0.22 7.65 15 244 12 0.52 596 161 

2009 0.17 3.3 1 9 174 9 0.36 559 195 
0.21 3.48 7 212 6 0.20 559 195 
0.21 4.24 8 204 8 0.22 559 195 

BB-N 2008 0.18 3.63 18 409 15 0.40 795 203 
0.06 4.28 16 403 15 0.40 795 203 
0.14 3.78 16 463 14 0.37 795 203 

2009 0.93 4.54 17 402 16 0.52 810 160 
0.42 3.l9 18 274 15 0.52 810 160 
0.39 2.00 15 242 12 0.59 810 160 



CONCLUSION 

The general objective of my thesis was to provide a description and enhance the 

understanding of benthic ecosystem functioning and its determining factors at hotspots and 

coldspots in the Canadian Arctic. Only if we know where the areas are that are important 

for marine ecosystems' functions, and how they vary naturally, we can assess the impact of 

climate change and human activities on our environment. As long as we do not know the 

extent of natural variation (or oscillation), it will be difficult to predict long-term trends. 

ln the vast and remote Canadian Arctic marine ecosystems, information on life and 

processes at the seafloor is scarce and we often have to rely on interpretation, as opposed to 

observations, if the benthic function of an area needs to be evaluated. It is therefore a 

central interest to find parameters that can provide reliable estimations of benthic 

ecosystem function. In this study, 1 focused on the benthic remineralisation as an important 

component of ecosystem functioning, which interacts with the overall biogeochemical 

cycles of the oceans. 1 looked for parameters in the biotic and abiotic environment that can 

predict benthic remineralisation, and studied where higher and lower benthic 

remineralisation is found. It was important to assess benthic remineralisation on different 

temporal and spatial scales to gain a better knowledge and representation of the natural 

variability. Moreover, 1 studied how such variability can differ between hot- and coldspots 

of benthic remineralisation to better assess their reliability as potential sentinel sites of 

change. 
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First comprehensive analysis of spatio-temporal variation in benthic remineralisation 

across the Canadian Arctic shelves 

This study allowed for the first time to assess synchronous remineralisation of oxygen 

and multiple nutrients at the seafloor in the Arctic. 1 showed that the typically used measure 

for benthic activity - sediment oxygen demand - is not statistically related to and hence, 

does not represent the spatial or temporal variation in all other nutrient release or uptake 

rates (chapitre 2, 3,4). This implies that the evaluataion, where important seafloor areas for 

global biogeochemical cycles are, needs to include a subset of multiple benthic flux 

measures. From a chemical point of view, it may seem more appropriate to ca1culate 

carbon, nutrient and oxygen flux budgets separately for each flux. Parts of my results have 

already served to pro vide a detailed assessment of carbon cycling in the Amundsen Gulf 

(Forest et al., 2011). Although data from this thesis may be used for such global flux 

budgets, this was not the scope of my study. From an ecological and management 

perspective, it is more important to designate areas , which will be important to be 

maintained in a healthy state to support the overall functioning of the ecosystem. Further 

functions of the seafloor such as biomass production or habitat construction (as by corals) 

should be included to gain a more complete picture, which benthic areas are most important 

in providing services to the connected ecosystems. As part of my collaborative work, 

benthic Ecologically and Biologically Significant Areas (EBSAs) were described based on 

all of these parameters and more (chapitre 3, Kenchington et al., 2011), but rarely was data 

on all of these different functions available for a region. Rence, the importance of each 

described benthic EBSAs for the overall ecosystem could only be partially estimated. 

The study approach to sample the same sites at different times (or basically 

monitoring) also allowed for the separation of spatial variation from temporal variation in 

benthic remineralisation, benthic community composition and food supply, which is still 

exceptional data in polar regions . 
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Although pronounced seasonality in the Arctic ecosystems is a commonly accepted 

paradigm, the detection of seasonal signaIs in benthic functions has been less clear (Lepore 

et al., 2007). This may be due to confounding spatial variability. In chapitre 1 (Link et al., 

2011) 1 demonstrated that benthic activity at five sites increases during the spring-to-

summer transition, but also that the total benthic carbon remineralisation was different 

among these sites. In fact, seasonal changes were much more pronounced at a hotspot site 

that had been influenced by an upwelling in the same year but almost insignificant at a 

coldspot (Link et aL, 2011, Tremblay et aL, 2011). These results highlight two 

consequences: First, comparing sites sampled in spring with other sites of the same region 

sampled in summer or faH can lead to wrong conclusions on spatial variability. Second, 

monitoring seasonal changes at hotspots do es not represent the dynamics of an entire 

region. 

This study also pro vides the first description of interannual variation of benthic 

remineralisation across the Canadian Arctic (and the Arctic) , and to my knowledge no 

dataset of interannual variation in multiple benthic fluxes of such spatial coverage has been 

published before . The paucity of long-term time series (Glover et al., 2010) and the logistic 

difficulties to achieve sampling at the same sites in the same seasons makes interannual 

comparisons in the Arctic even rarer than seasonal studies on benthic remineralisation. 1 

showed that in the majority of places, benthic remineralisation patterns are different in two 

different years, but these differences are not necessarily in the same direction at aU places 

(chapitre 4). That means that if we want to evaluate climate related changes in benthic 

remineralisation relevant for biogeochemical cycles in the Canadian Arctic, we cannot base 

our conclusions on findings from a single site. Moreover, interannual changes (as seasonal 

changes) were more pronounced at hotspots than at co Ids pots (chapitre 4). U P to now, 

studies_ that recur,in the same regions in the Arctic have focused on hotspot regions with 

high primary production or generally high biological process rates. Following the high 

variability that 1 found on an annual time scale, long-term series will be necessary to 

distinguish stochastic from progressive change at hotspots (Glover et al., 2010; Grebmeier, 

2012). On the Mackenzie Shelf, comparison of benthic remineralisation in 2008 and 2009 
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with 2004 shows a two-fold increase in 2009, the year of lower fluxes. While this could 

indicate the tendency of increasing benthic fluxes, the data from other years would be 

necessary to verify the directional change. 1 observed a similar pattern for the comparison 

with oxygen fluxes measured in the North Water Polynya in 1998, 10 years prior to this 

study (chapitre 3). Coldspots generally showed lower temporal variability in benthic 

remineralisation, and they could be more appropriate sentinel sites to detect directional 

change and tipping points (Duarte et al., 2012) of benthic ecosystem functioning in the 

Arctic. Another important result from the interannual comparison is that hotspot sites 

remained significantly different from coldspot sites in their remineralisation pattern. 

Therefore, although the amount and pattern of fluxes vary on an annual time scale, they 

remain higher at hotspots than at coldspots, underlining the importance of hotspots for the 

health of the connected ecosystem. 

While temporal variation in macrofaunal community composition as well as 

functional community composition could not be found on the annual time scale, spatial 

variation separated hotspots clearly from coldspots, but also most of the different sites 

(chapitre 4), which seem to be grouped according to their regions. The expected lack of 

temporal signaIs on an annual time scale indicates that macrobenthic community 

composition in the Arctic may not be suitable to explain the evident spatio-temporal 

variation in benthic remineralisation. 

The spatio-temporal variation of food supply did not show clear patterns: While total 

food supply varied among seasons and mostly among years at coldspots, the indicator of 

fresh food (ChI a) rather showed spatial patterns than seasonal patterns (chapitre 1 and 4). 

But changes were greater at hotspots th an at coldspots. 
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First explicit integrative study on the influence of abiotic environmental parameters, 

resource availability and diversity on ecosystem function in Arctic benthic systems 

Finding the factors that influence benthic ecosystem functions the most was another 

major goal of my thesis. Although it is widely assumed that the biodiversity of a system is 

most important for its functioning (Hooper et al., 2012), the results throughout my thesis 

show the predominant roIe of fresh food supply for benthic remineralisation in the 

Canadian Arctic . The sediment ChI a concentration explained a major part of spatial 

variation in benthic carbon remineralisation in spring and summer 2008 (chapitre 1), as 

well as multiple benthic remineralisation in 2009 in the southeastern Beaufort Sea (chapitre 

2), and it also explained variation among hot- and coldspots across the Canadian Arctic 

across both years (chapitre 4). However, it was never the sole parameter affecting benthic 

remineralisation, and faunal biomass, taxonomic diversity or bottom water oxygenation 

could explain part of the variation. This indicates the interplay of several factors for the 

benthic functions provided by an ecosystem. 

The water depth of studied benthic systems is often considered a good proxy of food 

supply . Pelagic-benthic coupling assumes that the longer the export distance is, the more 

organic matter is degraded during vertical export. Vertical export of organic matter in ice-

covered regions, however, can differ from this pattern due to a particularly rapid sinking 

primary producer composition (Grebmeier and Barry, 1991; Ardyna et al., 2011) . In 

chapitre 1, 1 could demonstrate that on a regional scale, water depth could explain parts of 

spatial variation of benthic carbon mineralisation under low-food conditions in spring, but 

not after the arrivaI of the season's food pulse at the seafloor. Chapitre 2 also underlined 

that the depth related spatial pattern of benthic remineralisation of the different nutrients is 

skewed by an east-west gradient on a regional scale in summer (Fig. 2.2). Even on the scale 

of Arctic Canada across two years, water depth could explain only 4 % of multiple benthic 

flux variation in summer and fall (chapitre 4). From the same study it is particularly 

interesting to note, that the effect of benthic diversity (richness and abundance) was not 

correlated to depth. Although the importance of depth as predictive parameter for benthic 
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remineralisation could increase on longer and more continuous time sc ales (including all 

seasons), physical (ice-cover) and biological processes in a dynamic system such as the 

Arctic are more important determinants of food supply and benthic ecosystem functioning. 

Environmental parameters that vary on long time-scales are interesting for ecosystem 

management models because data from different years of surveys can be combined to build 

a base of spatial variation estimates. In my more detailed assessment, whether long-term or 

short-term dynamic environmental parameters influence benthic remineralisation on the 

freshwater-influenced Mackenzie Shelf, 1 found that proxies of more recent food supply 

(sediment pigments) are more important than proxies of more long-term quantity and 

quality of organic carbon input or physical sediment characteristics (chapitre 2). Even the 

important spatial differences of terrigenic carbon input were less important than recent food 

input. On a regional scale, the history of organic carbon input can be helpful to improve the 

description of spatial variation in benthic remineralisation, but the recent food supply 

remains the most important environmental parameter in predictive models . 

Finally, 1 could confirm that macrofaunal diversity is an important biotic component 

controlling benthic remineralisation in Arctic soft-bottom ecosystems. Interestingly, the 

effect of macrofaunal biomass was not important for carbon remineralisation in spring 

conditions (chapitre 1), but macrofaunal abundance was important in summer and across 

the years and the Canadian Arctic (chapitre 1 and 4). The number of species encountered 

was even more important than abundance, and the presence of a strong gallery-bioturbating 

species was sufficiently important to be retained as a predictor for multiple benthic fluxes 

(chapitre 4). The role of macrofauna in modifying conditions for benthic bacterial 

remineralistion is underlined by these results: Initial macrofaunal decomposition of 

complex organic matter into bioavailable matter and macrofaunal bioturbation activity may 

be the controlling mechanisms for bacteria-mediated remineralisation (Michaud et al., 

2009; Hunter et al. , 2012; Piot, 2012) . This conclusion supports that a combination of 

diversity measures can deliver best results when explaining particularly the spatial variation 

in benthic remineralisation. While taxonomic richness seems more important than 
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functional group richness, the identity of one species retained in the model supports the 

approach to look for species l roles and functions in order to predict ecosystem function. 

Further analyses of the influence of functional cornrnunity composition on benthic fluxes in 

polar environments need to be conducted to pursue the quest for the best diversity measure 

for predicting ecosystem functions. 

1 c1early found an interaction of resource availability and diversity on the spatio-

temporal pattern of benthic remineralisation. Macrofaunal diversity is an important 

predictor of benthic remineralisation in times and places where food supply is abundant 

(chapitre 1 and 4). The influence of food supply could also be the possible explanation for 

the greater importance of taxonomic richness compared to functional group richness: 

Statistically, functional richness is more strongly correlated to food supply than taxonomic 

richness. Rence, in predictive models, more information of food supply and functional 

group richness is redundant for benthic flux explanation than information of fresh food 

supply and taxonomic richness. 

Overall, my results demonstrate that the diversity-ecosystem function relation in 

arctic benthic systems strongly depends on resource availability and on the temporal scale 

considered (Fig. 6). The joint picture of the different chapitre in this thesis, hence, allows 

answering sorne questions about benthic function hotspots in the Canadian Arctic. 

Where are benthic remineralisation hotspots? 

How many remineralisation hotspots do we know in the Canadian Arctic? 

1 showed that independent from interannual variability, six hotspot sites of benthic 

remineralisation are found in regions with high biodiversity and/or high fresh food supply, 

namely in the shallow Mackenzie Shelf and Amundsen Gulf bays, Lancaster Sound and the 

North Water Polynya. These regions were general hotspots compared to other studied 

regions in the Canadian Arctic (chapitres 3 and 4). 
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food avallability 
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Within Re ion Canadian Arctic 
Spatial scale 

Fig. 6: Overview of the conclusions from the different chapitre (Ch) of my thesis and their 
link to the overall conclusion. Bubbles present the key factors influencing variation in 
benthic rernineralisation or where the hotspots were found (Ch 3) . 

How can we find more remineralisation hotspots? 

Numerous studies have demonstrated the importance of ice-edges for high 

productivity in polar regions (Grebmeier, 2012). Based on our results, high primary 

production does not automatically indicate high benthic ecosystem function (chapitre 3) , 

but polynyas and flaw lead regions did. If observations of high primary production can be 

cou pied with vertical ex port models and thus estimate the supply of fresh food to the 

benthos, we have a first indicator of a possible remineralisation hotspot. Nevertheless, the 

diversity of benthic fauna would be a second, necessary deterrninant. My results show that 

taxonomic species richness predicts benthic remineralisation better than functional group 

richness. But these two diversity measures are correlated, and in case taxonomic diversity 

measures are doubtful, functional diversity can serve as a proxy. Consequently, more 

hotspots can be found if we specifically measure functions at sites of high benthic diversity 

and food supply, starting with polynyas. 
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Where will remineralisation hotspots be in the future ? 

Climate effects are rapidly changing the ice-cover and ecosystem dynamics of the 

Arctic. Sorne regions may be characterized by higher primary production and vertical 

matter export due to upwellings (Tremblay et al., 2011), but others may experience higher 

pelagic matter recycling than before, thus diminishing the food supply to the benthos . 

Moreover, boreal species are starting to replace arc tic benthic species in sorne regions 

(Grebmeier, 2012), a trend that might increase due to arctic species' dependence on sea-ice 

algae (Sun et al., 2009). In the long mn, an excess input of organic matter, e .g. on the 

shallow Mackenzie Shelf, could provoke suboxic conditions and remineralisation patterns 

of less healthy benthic habitats (Rosenberg et al., 2001). To better estimate the effect of 

species loss, invasions and shifts, we need to investigate explicitely which benthic 

community components are most important for benthic remineralisation. It is likely that 

benthic function hotspots in the future will be at future polynya sites, but we need more 

knowledge on how benthic communities will change and how they influence benthic 

functions. 

Are hotspots suitable sentinel sites? 

The important temporal variation in benthic remineralisation hotspots indicates that 

long-term series will be necessary to distinguish natural variability from a progressive 

change in benthic remineralisation. Although coldspots show less natural variability and 

might therefore be better indicators of change, this assumption could proof to be wrong 

with data from further years. We cannot say yet, whether observed hotspots are only points 

in the succession of a respective system, or whether they reflect the characteristics and 

importance of a region on a longer time scale. Moreover, we should keep in mind that 

hotspots may not be the only important regions for a global ecosystem function. Areas of 

particular low processes may also provide extremely rare habitats that can lead to 

specialized ecosystems, which are important simply due to their uniqueness. 1 recommend 

the simultaneous use of hotspots and coldspots to monitor changes in the Arctic marine 

ecosystems. 
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Future directions 

The conclusions from my thesis answer many questions on the functioning of Arctic 

benthic systems. But several aspects remain to be studied, and directions for further 

research on ecosystem functioning emerge. 

One aspect that could not be studied to its full extent in the frame of my thesis is the 

role of the functional identity of species for benthic rernineralisation in Arctic marine 

environments. Although measures of diversity such as species number were helpful to 

predict variation in benthic rernineralisation, there was also evidence of the importance 

ofbioturbation functions of species. Many studies in intertidal habitats and experimental 

approaches have demonstrated the importance of particular species traits (mostly 

bioturbation) for benthic fluxes (Godbold and Solan, 2009; Laverock et al., 2012; Piot, 

2012). A first observational study on the importance of species in the natural community 

for bioturbation and/or remineralisation in arctic shelf sediments can help to de termine 

experimental setups, in which the particular role of single species and their interactions 

should be determined. Although experimental studies cannot completely represent the 

complex processes in the natural environment, it is c1ear that without manipulation of 

species diversity we cannot estimate the effect of species loss or community shifts in the 

Arctic .Another component that was not analysed in this thesis is the interaction of the 

smaller benthic organismal compartment with benthic rernineralisation. There is increasing 

evidence of the role of meiofauna for benthic fluxes (Nascimento et al., 2012; Piot, 2012). 

Particularly, coldspots of this study showed low macrofaunal abundance and richness, but 

meiofauna is known to be equally important in hotspots and coldspots such as deep and 

oligotrophic areas of the Arctic (Kroncke et al., 2000). The influence of bacterial and 

meiofaunal diversity on spring-time benthic carbon remineralisation in the Arctic has also 

been demonstrated (Grant et al., 2002; Renaud et al., 2007a) , and recent findings stress the 

role of food quality, i.e., the content and composition of fatty acids, for bacterial 

remineralisation (Rontani et al., 2012; Tolosa et al., 2012). But Hunter et al. (2012) 

demonstrated that it is an interactive effect of macrofauna and bacteria activity that 
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mediates overall phytodetritus degradation (Hunter et al., 2012). The negative effect found 

for the influence of foraminifera on benthic rernineralisation in my study (chapitre 1) also 

indicates the complex interactions even within the faunal compartment (chapitre 1). Apart 

from their different metabolism compared to metazoan macrofauna (Pina-Ochoa et al., 

2010), their influence on rernineralisation could reflect a cascade effect: More forarninifera 

would consume more bacteria and thus indirectly reduce bacterial remineralisation. 

Including the smaller organismal compartments into measures of diversity, and gaining a 

better spatial coverage on the fatty acid quality of benthic food supply, could improve the 

predictive power of statistical models of benthic remineralisation. 

While my study provides a first interannual and a seasonal analysis on benthic 

rernineralisation in the Arctic, we could not yet close the knowledge gap on the annual 

benthic flux cycle or detect progressive change. Due to the lower productivity outside 

spring or summer, it is likely that seasonal changes in other transitions (fall-winter, winter-

spring) will yield less pronounced changes in benthic rernineralisation than the spring-

summer transition . However, more studies on seasonal changes across other transitions are 

necessary to provide annual models of biogeochemical fluxes. Such annual models can then 

help to calibrate earlier data obtained in different years and different seasons towards an 

annual me an , and hence add to long-term monitoring series. Permanent seafloor 

installations in the Arctic to monitor annual rernineralisation cycles such as in the VENUS 

program (http://venus.uvic.ca) cou Id greatly improve our knowledge on temporal 

variations. 

The results of my thesis have been integrated into the regional study of carbon fluxes 

and pelagic-benthic coupling in the southeastem Beaufort Sea (Forest et al., 2011; 

Tremblay et al., 2011; Darnis et al., 2012). Such ecosystem-wide understanding of 

functioning is the key to estimate large-scale impacts of climate change or human activity 

in the Arctic. Integrating efforts are still necessary for other regions of the Canadian Arctic 

and the Arctic in general - for pelagic-benthic coupling, but also the benthic-pelagic 

feedback of nu trient release or biomass production, and eventually the coupling with the 
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physical processes. The Arctic in Rapid Transition project (ART, Wegner et a1., 2011) is a 

promising initiative with these goals . 

Indeed, such integrative studies are also necessary to find common and distinctive 

drivers of benthic ecosystem function in marine regions of Canada and the world. Benthic 

remineralisation is one of several goods provided by the seafloor system to the connected 

ecosystems. Biomass productivity is another benthic function measure, which is important 

for the food web. Habitat engineering by corals, sponges, bivalves or other sessile species is 

also a function that enhances an ecosystem's performance by providing niches for 

associated fauna and thus increasing overall organismal density and diversity (e.g. for 

mussels, see Largaespada et a1., 2012). In a first step, it would be informative to gather data 

on these different benthic functions and analyse their common patterns in the relation 

between resource availability and diversity and ecosystem function. In a second step, large-

scale experiments inc1uding several trophic levels and benthic remineralisation could be 

conducted in engineered and non-engineered habitats to evaluate the role of biotic bottom 

structures for ecosystem functioning. 

To evaluate the effects of c1imate change and human activity on polar marine 

ecosystems it would be ideal to conduct such integrative studies and experiments at sites of 

long-term monitoring and periodically elsewhere. This way, spatial coverage could be 

steadily increased, while sentine! sites could calibrate for temporal changes to a certain 

degree. The increasing number of seafloor observatories is a major step towards this 

approach, but has not yet reached Arctic shelf environments. 

Here, 1 could decribe hotspots of benthic functions m the Canadian Arctic. A 

temporally verified decription of benthic remineralisation hotspots in other regions and 

subsequent comparison of absolute values could provide a relative idea, how important 

benthic functions in the Arctic are for the world's oceans. A first step in the approach to 

such large-scale hotspot comparisons is certainly the comparison of Arctic and Antarctic 

benthic functioning hotspots. Both regions are highly dynamic and subject to be modified 

with ongoing climate changes. In fact, monitoring the temporal stability of described 
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hotspots in the Arctic vs the Antarctic could provide valuable insights about the pace of 

climate change effects on our marine ecosystems. 

It may also be useful to create a measure of 'functional distinctness', indicating not the 

quantity, but rather the uniqueness of functions provided by an ecosystem. This could avoid 

the possibly incomplete conclusion that only sites of elevated functions are important for 

the overall marine ecosystem functioning and services. 

FinaIly, aIl scientific research becomes more valuable if we can utilize its findings for 

sound expert advice to improve govemance. Finding the predictive factors of ecosystem 

functions is only valu able if we can apply the information in ready-to-use tools for 

stakeholders. My participation in the description of EBSAs in the Canadian Arctic Ocean 

has been an active step towards integration of (politically) abstract function measures such 

as benthic remineralisation into baseline information for later management use. This 

approach provides an example for other marine areas and/or benthic functions, although 

finding the best proxies will provide an even easier-to-use tool for large spatial planning of 

sustainable resource use in our marine environments. 
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