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RÉSUMÉ

Depuis sa création, l’Intelligence Artificielle (IA) a toujours été un point focal de la recherche,
équipant les machines, y compris les ordinateurs et autres, de la capacité d’agir de manière au-
tonome, en émulant ainsi l’intelligence humaine. La sous-domaines de l’IA, plus particulière-
ment l’apprentissage machine (ML) et l’apprentissage profond (DL), ont fait preuve d’une
efficacité remarquable dans la résolution des tâches d’analyse des données. L’apprentissage
machine, caractérisé par un ensemble d’algorithmes permettant aux ordinateurs d’apprendre
à partir de données d’entraînement sans programmation explicite, a été largement adopté dans
l’industrie, les soins de santé, les transports, l’éducation, le commerce électronique et divers
autres secteurs. Cette adoption a été catalysée par son aptitude à découvrir des motifs dans
les données, à apprendre d’eux, et à faire des prédictions en conséquence.
La croissance de l’apprentissage machine a été facilitée par les progrès des techniques infor-
matiques. Ces progrès ont permis aux spécialistes de l’apprentissage automatique d’analyser
des ensembles de données plus importants et de s’attaquer à des problèmes plus complexes,
repoussant ainsi les limites de ce qui peut être réalisé. Néanmoins, le domaine reste confronté
à une série de défis que l’on peut classer en quatre grandes catégories : les défis liés aux don-
nées, les défis liés aux modèles, les défis liés à la mise en œuvre et les défis généraux. Parmi
ceux-ci, les questions primordiales de la vie privée et de la sécurité entrent dans la catégorie
des défis généraux. D’une part, les modèles de ML restent vulnérables à un spectre d’attaques
et de menaces, quels que soient les mécanismes de sécurité mis en œuvre. D’autre part, les
préoccupations en matière de protection de la vie privée ont donné naissance à un cadre ré-
glementaire qui restreint l’accès aux données, limitant ainsi les performances des modèles de
ML. Il s’agit là d’un obstacle important, car l’efficacité des modèles intelligents est souvent
proportionnelle à leur capacité à accéder à des ensembles de données diversifiés et complets.
En réponse à ces défis de sécurité et de confidentialité, Google a introduit l’apprentissage
machine fédéré, également connu sous le nom de Federated Learning (FL). Le FL a été
initialement conçu comme une approche de ML préservant la vie privée, car il élimine le
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besoin de centraliser les données des utilisateurs pour l’apprentissage des modèles. À la
place, les modèles sont distribués aux clients participants, formés localement, puis agrégés
par le serveur pour générer un modèle global. Dans ce contexte, un algorithme d’agrégation
d’apprentissage fédéré est défini comme le mécanisme utilisé par le serveur pour envoyer des
modèles aux clients impliqués dans le cycle d’FL, recevoir les modèles entraînés de leur part
et les combiner en un seul modèle global entraîné. Bien que le FL soit prometteur en matière
de protection de la vie privée, il reste sensible aux menaces de sécurité. Les chercheurs étu-
dient activement des méthodes pour sécuriser le FL contre diverses attaques, notamment les
attaques byzantines, les attaques par inversion, les attaques par porte dérobée, etc., en met-
tant en œuvre des mécanismes tels que le chiffrement homomorphe, le calcul multipartite
sécurisé, la méthode des multiplicateurs à sens alternatif et bien d’autres encore. Bien que
des progrès considérables aient été réalisés dans le renforcement des algorithmes FL contre
certaines attaques, des vulnérabilités telles que l’attaque par inversion persistent, permettant à
des entités malveillantes de discerner les données des utilisateurs contenues dans les modèles
entraînés. Cela souligne le besoin pressant de faire progresser les mesures de sécurité dans le
domaine du FL.
Motivée par l’impératif de renforcer l’apprentissage fédéré contre une multitude d’attaques et
reconnaissant le potentiel du chiffrement polymorphe et homomorphe dans l’amélioration de
la sécurité, cette recherche présente quatre nouveaux frameworks d’agrégation de l’apprentissage
fédéré : PolyFLAG_SVM, PolyFLAM, PolyFLAP et HP_FLAP. Les modèles proposés intè-
grent le chiffrement polymorphe et homomorphe dans leur architecture, ce qui garantit que
les messages échangés entre le serveur et les clients restent protégés contre les entités malveil-
lantes. Les frameworks prennent en charge la formation de plusieurs modèles d’apprentissage
machine, permettant aux utilisateurs de sélectionner le modèle le mieux adapté à leur prob-
lème spécifique. Ce qui distingue ces frameworks, c’est l’intégration du chiffrement ho-
momorphe et polymorphe, qui renforce leur résilience face aux menaces. Le chiffrement
homomorphe permet au serveur d’agréger les paramètres échangés sans déchiffrement, tan-
dis que le chiffrement polymorphe garantit que chaque message échangé entre le serveur et
les clients FL est chiffré avec une clé de chiffrement distincte, réduisant ainsi le risque de
compromis des clés à pratiquement zéro, puisque ces clés ne sont jamais réutilisées dans le
cycle du FL. Cette double couche de sécurité renforce la sécurité globale du FL, en contrant
diverses menaces, y compris les attaques par inversion, faisant ainsi progresser le domaine en
question. En outre, les frameworks proposés intègrent des techniques de réduction des coûts
de communication pour améliorer leur efficacité.

x



Pour valider l’efficacité de ces frameworks, une évaluation complète a été menée, englobant
les garanties théoriques, l’analyse de la complexité temporelle et spatiale, les évaluations de
l’utilisation des ressources et les évaluations de la qualité de l’apprentissage. Des tests appro-
fondis ont été effectués sur trois ensembles de données distincts, dont un ensemble de données
simulées et des données réelles liées à la santé provenant de SHAREEDB et des ensembles
de données binaires de Surgical Deepnet. Les résultats empiriques soulignent l’amélioration
substantielle de la sécurité, car même dans le cas rare d’une clé de chiffrement compromise
ou ayant fait l’objet d’une fuite, le risque pour l’ensemble du système est minime, étant
donné la non-réutilisation des clés entre les différentes sessions des clients. Bien que les
frameworks proposés offrent effectivement des approches d’agrégation de FL sécurisées et
efficaces en termes de communication, ils constituent une base sur laquelle d’autres avancées
et intégrations avec les approches existantes peuvent être construites. Une telle intégration
peut améliorer la fiabilité et la crédibilité des frameworks proposés et de l’environnement
d’apprentissage fédéré dans son ensemble.

mots-clés: Confidentialité, sécurité, attaques par inversion, apprentissage machine fédéré,
apprentissage fédéré, chiffrement polymorphe, chiffrement homomorphe, PolyFLAG_SVM,
PolyFLAM, PolyFLAP, HP_FLAP, communication efficace.
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ABSTRACT

Since its inception, Artificial Intelligence (AI) has remained a focal point of research, equip-
ping machines, including computers and more with the capacity for acting autonomously, by
emulating human intelligence. The subfields of AI, most notably Machine Learning (ML)
and Deep Learning (DL), have demonstrated remarkable efficiency in solving data analysis
tasks. Machine Learning, characterized by a set of algorithms enabling computers to learn
from training data without explicit programming, has gained widespread adoption across in-
dustry, healthcare, transportation, education, e-commerce, and various other sectors. This
adoption has been catalyzed by its aptitude for uncovering patterns in data, learning from
them, and ability to making predictions accordingly.
The growth of Machine Learning has been facilitated by advancements in computing tech-
niques. These advancements have empowered ML practitioners to analyze larger datasets
and tackle more intricate problems, thus extending the boundaries of what can be achieved.
Nevertheless, the domain still grapples with a range of challenges that can be categorized
into four broad areas: data-related, model-related, implementation-related, and general chal-
lenges. Among these, the overarching issues of privacy and security fall within the category
of general challenges. On one front, ML models remain vulnerable to a spectrum of attacks
and threats, regardless of the security mechanisms implemented. On the other front, privacy
concerns have given rise to a regulatory landscape that restricts access to data, thereby con-
straining the performance of ML models. This has emerged as a significant hurdle, as the
effectiveness of smart models is often commensurate with their ability to access diverse and
comprehensive datasets.
In response to these security and privacy challenges, Google introduced Federated Learning,
also known as Federated Learning (FL). FL was initially conceived as a privacy-preserving
ML approach, as it eliminates the need to centralize user data for model training. Instead,
models are distributed to participating clients, trained locally, and later aggregated by the
server to generate a global model. In this context, a Federated Learning aggregation algo-
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rithm is defined as the mechanism used by the server to send models to clients involved in
FL cycle, receive trained models from them and merge the them into a single trained global
model. While FL has shown promise in preserving privacy, it remains susceptible to security
threats. Researchers are actively exploring methods to secure FL against various attacks, in-
cluding Byzantine attacks, inversion attacks, backdoor attacks, and more, by implementing
mechanisms like Homomorphic Encryption, Secure Multi-Party Computation, the Alternat-
ing Direction Method of Multipliers and much more. While substantial progress has been
made in strengthening FL algorithms against certain attacks, vulnerabilities like the inversion
attack persist, enabling malicious entities to discern users’ data contained within the trained
models. This underscores the pressing need to advance security measures within the FL do-
main.
Motivated by the imperative to fortify Federated Learning against a multitude of attacks
and recognizing the potential of Polymorphic and Homomorphic Encryption in enhancing
security, this research introduces four novel Federated Learning aggregation frameworks:
PolyFLAG_SVM, PolyFLAM, PolyFLAP, and HP_FLAP. These proposed models embed
both Polymorphic and Homomorphic Encryption in their architecture, ensuring that mes-
sages exchanged between the server and clients remain safeguarded against malicious enti-
ties. The models support multiple smart models in training, providing flexibility for users to
select the most suitable model for their specific problem. What sets these frameworks apart
is the integration of both Homomorphic and Polymorphic encryption, bolstering their re-
silience against threats. Homomorphic Encryption allows the server to aggregate exchanged
parameters without decryption, while Polymorphic Encryption guarantees that each message
exchanged between the server and the FL clients is encrypted with a distinct encryption key,
thus reducing the risk of key compromise to virtually zero, as these keys are never reused
in the FL cycle. This dual-layered security enhances the overall security of FL, countering
various threats, including inversion attacks, thereby advancing the FL domain. Moreover, the
proposed frameworks incorporate communication cost reduction techniques to enhance their
efficiency.
To validate the efficacy of these proposed frameworks, a comprehensive evaluation was con-
ducted, encompassing theoretical guarantees, analysis of time and space complexity, resource
utilization assessments, and assessments of learning quality. Extensive testing was performed
across three distinct datasets, including a simulated dataset and real-life health-related data
from SHAREEDB and the Surgical Deepnet Binary datasets. The empirical results unequiv-
ocally underscore the substantial enhancement in security, as even in the rare event of a
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compromised or leaked encryption key, it poses minimal risk to the overall system, given the
non-reuse of keys across different client sessions. While these proposed frameworks indeed
offer secure, communication-efficient FL aggregation approaches, they present a foundation
upon which further advancements and integrations with existing approaches can be built.
Such integration can enhance the reliability and trustworthiness of the proposed frameworks
and the Federated Learning environment as a whole.

keywords: Privacy, Security, Inversion Attacks, Federated Machine Learning, Federated
Learning, Polymorphic Encryption, Homomorphic Encryption, PolyFLAG_SVM, PolyFLAM,
PolyFLAP, HP_FLAP, communication-efficient.
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CHAPTER 1

General Introduction

Artificial Intelligence (AI) has experienced rapid growth over the past two decades. The
concept of AI has been around since 1950, and the term itself was coined in 1965 at the
Dartmouth Summer Workshop, which is considered the founding event of AI as a field [1].
However, the growth in Information and Communication Technologies (ICTs) and the in-
creasing power of computers have contributed significantly to the increasing feasibility and
adoption of AI [2]. AI technologies are becoming more advanced and are capable of analyz-
ing enormous amounts of data, learning from past experiences, and making predictions based
on patterns and trends [3]. Despite the different definitions provided for AI in [4–6], they all
agree that it is the technology that enable machines to mimic human intelligence. A lot of
researches, including [4–6] showed the efficiency of Artificial Intelligence, and discussed the
difference in its applications in our daily lives.
Machine Learning (ML) [7] and Federated Learning (FL) [8] are popular sub-fields of the
AI as depicted in Figure 1. Machine Learning is defined as a field of study that focuses on
the development of algorithms that enable computer systems to learn from data and make
predictions or decisions without being explicitly programmed. It involves the application of
various approaches that allow computers to automatically improve their performance on a
given task through experience [7].

Machine Learning (ML), allows computers to "learn" from training data and expand their
knowledge over time without being explicitly programmed. Machine Learning algorithms
attempt to find patterns in data and learn from them to make their own predictions. Tradition-
ally, a computer program is developed by engineers and given a set of instructions that enable
it to turn incoming data into its intended output. ML, by contrast, designs the program to
learn with little or no human interaction and to expand its knowledge over time. The remark-
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Figure 1: Artificial Intelligence Branches.

able success of ML, as well as its enormous potential in data analysis, have made it attractive
to researchers in many fields. Later studies revealed the variety of applications of ML that
can be observed in different fields such as: E-commerce and product recommendations, Im-
age, speech and pattern recognition, user behavior analytics and context-aware smartphone
applications [9,10], healthcare services [11–13], traffic prediction and transportation [11,14],
Internet of Things (IoT) and smart cities [14], Cybersecurity and threat intelligence [15], Nat-
ural Language Processing and sentiment analysis [16], sustainable agriculture [17], industrial
applications [18] and more.

1.1 Machine Learning Techniques Taxonomy

Artificial Intelligence and its descendant, Machine Learning, are used in a wide variety of
real-world applications. Plenty implementations are available in the areas mentioned in the
previous section. Moreover, the algorithms of ML can be classified into different groups de-
pending on their classification perspective. These algorithms are traditionally classified into
supervised, unsupervised, semi-supervised, and reinforcement learning [19–21]. However,
this classification only considers the data analyzed by the model or the so-called learning
style and ignores other possible classification bases. In this context, the function or goal of
the algorithm as well as the architecture can serve as classification factors and provide an
extended taxonomy for ML algorithms. Figure 2 below presents the proposed taxonomy for
machine learning algorithms.

3



1.1.1 Classification per Learning Style

Machine Learning workflows specify what steps are performed in an ML project. Data ac-
quisition, data preprocessing, model training and fine-tuning, evaluation, and production de-
ployment are generally the common processes. Consequently, the type of data obtained de-
termines the Machine Learning algorithm. From this point of view, the four categories listed
below can be defined [22–24]:

• Supervised Learning: This refers to the types of ML where machines are trained with
labeled input and then predict output based on that data. Labeled data means that the
input data have been labeled with the corresponding output. The training data serve as
a supervisor that teaches the computers how to correctly predict the output. Then it can
be described as a process of providing the model ML with appropriate input and output
data so that it can identify a function to map the input and output variables;

• Unsupervised Learning: An algorithm that operates only on input data and has no out-
puts or target variables. Consequently, unlike supervised learning, there is no teacher
to correct the model. In other words, it is a collection of problems where a model is
used to explain or extract relationships in data;

• Semi-Supervised Learning: This is a form of supervised learning in which the train-
ing data includes a small number of labeled instances and a large number of unlabeled
examples. It attempts to use all available data, not just the labeled data as in supervised
learning;

• Reinforcement Learning: This defines a class of problems where the intelligent model
operates in a given environment and must learn how to act based on inputs. This means
that there is no given training dataset, but rather a goal or collection of goals for the
model to achieve, actions it can take, and feedback on its progress toward the goal. In
other words, the goal is to learn what to do, how to map events to actions in order to
maximize a numerical reward signal, not dictating to the model what actions to per-
form, but figuring out through trial and error which activities yield the greatest reward.

1.1.2 Classification per Function

Machine Learning algorithms, on the other hand, can be categorized by the goal of the model.
The goal, also referred to as the function, is the output of the model and determines the type
of model to be used. The different types of ML can be defined as follows [22–24]:
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• Classification: the process by which a ML algorithm predicts a discrete output or so-
called class. Depending on the type of class to be predicted, this class can be divided
into the following groups:

– Binary Classification: refers to algorithms that can predict only one of two la-
bels, e.g., classifying emails as spam or not;

– Multi-Class Classification: refers to algorithms with more than two class la-
bels, where there are no normal and abnormal results. Instead, the examples are
classified into one of several known classes;

– Multi-Label Classification: the set of algorithms that predict the output of a
label class, with no limit to how many classes the instance can be assigned to.

• Regression: the process by which a ML algorithm can predict a continuous output or a
so-called numerical value;

• Clustering: the process of categorizing a set of data instances or points so that those in
the same group are more similar and different from data points in other groups. It is
essentially a collection of instances based on their similarity and dissimilarity;

1.1.3 Classification per Architecture

Another approach to classifying Machine Learning algorithms can be based on the underlying
architecture of the system. In this context, two main categories can be defined [25, 26]:

• Centralized Architecture: the traditional ML architecture, where data is collected on
a machine running the model;

• Distributed Machine Learning: the ML paradigm that benefits from a decentralized
and distributed computing architecture where the ML process is split across different
nodes, resulting in a multi-node algorithm and system that provides better scalability
for larger input data.

1.2 Machine Learning Under Scope: Challenges

Accurate results in classification or regression are increasingly encouraging the incorpora-
tion of these techniques into areas of daily life [9]. The feasibility of using AI tools, and in
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Figure 2: Machine Learning algorithms taxonomy.

particular ML, has been demonstrated by the high performance they offer and the possibility
of integrating them in different domains. However, ML still suffers from several challenges
that are extensively described and discussed in the literature [8]. However, these challenges
are not classified into a single taxonomy, but grouped according to different aspects, includ-
ing technical, ethical, social, and other factors. In this section, the common challenges are
presented under a proposed taxonomy based on data-related, model-related, implementation-
related, and other general aspects. In addition, these challenges are illustrated and summa-
rized in Table 1 below.

1.2.1 Data Related Challenges

Machine Learning algorithms are typically implemented in a known pipeline consisting of
data collection, preprocessing, exploration, model selection, training, evaluation, and deploy-
ment. Data, which constitute the main component of these algorithms, can present various
challenges, such as [27, 28]:

• Data availability and accessibility: to train a model, one must have the necessary
data, which may not be available on the spot or may be available but inaccessible for
various reasons;

• Data locality (Data Islands): in the real world, data are scattered in different and
unrelated entities called "data islands". Due to different regulations and laws, data
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related to the same subject and available on different data islands cannot be accessed
for use and analysis;

• Data readiness: even if data are available and accessible, several aspects should be
considered, such as:

– Data Heterogeneity: available data may have different characteristics or be com-
posed of different forms. For example, health data for the same patient may be
available in different forms, such as medical images, reports, videos, and struc-
tured data. The ability to deal with such heterogeneity is a challenging task;

– Noise and Signal Artifacts: due to the interaction between data acquisition in-
struments and other electrical devices, data can be poisoned by noisy attributes
that affect the overall results of ML models;

– Missing Data: data collected by measuring devices may be incomplete for vari-
ous reasons;

– Classes Imbalance: in classification problems, the data collected for one group
may dominate the data collected for other groups, affecting the learning of the
smart model.

• Data Volume: is the amount, size, and scope of the data. In the context of ML, size
can be defined either vertically by the number of records or samples in a dataset or
horizontally by the number of features or attributes it contains. Data volume presents
several challenges, such as:

– Course of Dimensionality: dimensionality describes the number of features or
attributes that are present in a dataset. Increasing dimensionality can have a neg-
ative impact on model performance.

• Feature Representation and Selection: the performance of ML models heavily de-
pends on the choice of data representation or features, so selecting the optimal features
will definitely improve the overall model performance.

1.2.2 Models Related Challenges:

In addition to the challenges posed by the data, some challenges are related to models such
as [29, 30]:
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• Practicality and Performance: achieving the most practical and feasible ML models
remains the main goal for researchers from various fields, and the highest feasibility
will lead to the highest adoption and integration of this technology;

• Model Evaluation: evaluating an ML model can be challenging, especially when tra-
ditional performance metrics may not, necessarily, reflect a model’s feasibility In addi-
tion, ML models are susceptible to variance and bias that can affect their performance,
results, and confidence. Given that variance is the variability of the model prediction
for a given data point or a value indicating the spread of our data, and bias is the differ-
ence between the average prediction of our model and the correct value we are trying
to predict;

• Model Selection: different models can produce different results even for the same
problems. For example, support vector machines (SVM) and logistic regression (LR)
can lead to different results, even when working with the same data at the same point
in time. Thus, selecting the optimal model and tuning its parameters are not easy tasks;

• Explainability: some of the ML models are known by their black box identity. The
failure to allow human users to comprehend and understand the results and output, or
how they were extracted by a Machine Learning model can have a negative impact on
trust in these models, even when high accuracies are achieved.

1.2.3 Implementation Related Challenges:

Assuming that the obstacles in the data and models have been overcome, implementing the
models of ML can be a challenging task due to various obstacles such as [31, 32]:

• Real-time Processing: ML models are created and trained with available data. How-
ever, fitting these models to real-time problems presents several challenges;

• Execution Time and Complexity: due to many reasons, including but not limited to,
the complexity of the data or models, multiple preprocessing steps and computation re-
sources, ML models can require enormous computing power and long execution times.
On the other hand, the structure of some ML models, Neural Networks for instance,
are known to pose more complexity than others such as Linear Regression. A model
complexity can also raise execution time challenges as well.
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1.2.4 General Challenges:

Finally, other challenges besides technical aspects can be mentioned in this section, such
as [29, 30]:

• User Data Privacy and Confidentiality: which is one of the most critical issues in
the field of ML. Users tend not to share their data for various reasons, which affects the
availability of the data and jeopardizes the entire ML cycle;

• User Technology Adoption and Engagement: due to privacy issues, unclear results,
lack of explanation, and other reasons, users may not accept ML being integrated into
their daily routine, or even accept its results;

• Ethical Constraints: various ethical constraints posed by ML have been widely dis-
cussed in the literature, such as control and morality, model ownership, environmental
impact, and many others.

Table 1: Machine Learning domain common challenges.

Group Challenges

Data-Related
Challenges

Data Availability and Accessibility
Data Locality

Data Readiness

Data Heterogeneity
Noise and Signal Artifacts

Missing Data
Classes Imbalance

Data Volume Course of Dimensionality

Models Related
Challenges

Accuracy and Performance
Model Evaluation
Model Selection
Explainability

Implementation-
Related Challenges

Real-Time Processing
Execution Time and Complexity

General Challenges
User Data Privacy and Confidentiality

User Technology Adoption and Engagement
Ethical Constraints
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1.3 Data Privacy:A Machine Learning Impediment

Privacy is a fundamental right, and protecting sensitive personal information is critical in to-
day’s digital age. Privacy issues can arise when collecting, storing, and analyzing data in the
context of Machine Learning, as algorithms may rely heavily on personal data to train models
and make predictions. For example, ML models applied in health, finance or some specific
fields of life, may deal with highly sensitive personal data. The necessity to preserve privacy
of sensitive data stems not only from their confidentiality, but also due to the increasing num-
ber of data breaches, which require more and more solutions as their negative impact grows.
Consequently, not only individuals, but also society, governments, and organizations are
strengthening the protection of data privacy and security. In this regard, several regulations
and laws were enacted, such as the European Union’s General Data Protection Regulation
(GDPR) [33], China’s Cyber Security Law of the People’s Republic of China [34], the Gen-
eral Principles of the Civil Law of the People’s Republic of China [35], the PDPA in Singa-
pore [36], and hundreds of principles legislated around the world. While these regulations
help protect private information, they pose new challenges to the ML field by making it more
difficult to collect data to train models, which in turn makes it more difficult to improve the
accuracy of model performance and to personalize those models. Consequently, data privacy
and confidentiality are not a stand-alone challenges, but also trigger other challenges for ML,
such as data availability, performance, personalization, and thus trust and acceptance.

1.4 Federated Learning: Privacy-Preserving ML Concept

Recent advancements in data collection and analysis have been significant, driven by the
development of communication tools and AI techniques. However, data are often gathered in
isolated "data islands", composed of entities such as foundations, institutions, individuals, or
other organizations where data are collected and stored. To enhance AI model performance, a
centralized approach is often sought, involving the collection of data into a central repository
for unified processing, cleaning, and modeling. For instance, analyzing a patient’s health data
from various hospitals, clinics, or health centers can be most effective when done collectively.
However, privacy regulations and data heterogeneity present challenges to this centralized
data collection and analysis. As a result, researchers worldwide have focused on finding
solutions to the issues posed by data islands and privacy.
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1.4.1 An Overview of FL

In the context of privacy criticality, Google introduced a new notion in ML field, which
was named Federated Machine Learning or Federated Learning [8]. This concept allowed
training ML models, without the need to collect data on a central server, as it is the case in
the traditional ML concept. Alternatively, a global model is sent from the central sever to the
entities participating in the FL system. Each entity trains the received model on its own data,
and send the trained model to the server where all models are aggregated into a trained global
one. This mechanism eliminates the need to share private data, thus promoting the privacy,
and keeping confidential data secured. Even it was introduced in 2016, FL is considered
as a promising concept that can improve the entire field of Machine Learning. Despite this
rise, Federated Learning is still in its infancy and still struggling with various challenges and
issues. These challenges include convergence issues, algorithm complexity, communication
and computational overhead, and more [8]. Most importantly, Federated Learning is still
vulnerable to the well-known digital attacks, which will be discussed in more detail later.
This vulnerability to attacks threatens the main concept of FL, which is privacy preservation.

1.4.2 Aggregation in Federated Learning

In Federated Learning, aggregation is the process of collecting and combining model updates
from multiple clients that have trained their models locally on their respective datasets. This
process is typically orchestrated by a central server or coordinator. The aggregated updates
are then used to update the global model, which is subsequently redistributed to the clients
for further local training. The aggregation step is crucial for maintaining model performance
while preserving data privacy, as it allows the global model to learn from distributed data
without requiring raw data to be shared between clients or with the central server.

1.4.3 Securing Federated Learning Against Attacks

FL is vulnerable to different threats and attacks including poisoning and inference attacks
[37]. Those two types of attacks affect the FL system differently. Poisoning attacks affect
the learning quality of the global model, by feeding the main server with models trained by
false and useless data. Therefore, the global model’s learning quality will be affected. On the
other hand, inference attacks can allow malicious entities to capture the models exchanged
between the server and clients, and therefore crack the private data embedded in those mod-
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els through different mechanisms. Considering their severity, those threats and attacks can
undermine the privacy-preserving identity of FL.
In this context several attempts were carried out to secure FL algorithms against such at-
tacks. For example, authors in [38] presented a secured FL algorithm by the means of safe
vector summing and cryptographic primitives in multiple stages. Their proposed model suc-
ceeded in securing FL against poisoning attacks, but it also shows some limits in its ability
to withstand active attacks, ensure the use of well-formed input, and manage communication
overhead. Similarly, Authors in [39] proposed RFA, an FL algorithm secured with geometric
median-based aggregation, that succeeded to withstand poisoning attacks, but not inference
attacks. Likewise the proposed algorithm LEGATO [40], where authors developed the al-
gorithm to withstand poisoning attacks only. Beside its limitation to this kind of attacks,
LEGATO was limited to ML models composed in layers such as Neural Networks. In addi-
tion, authors in [41] used the Alternating Direction Method of Multiplier (ADMM) to control
the communication mechanism among the FL entities. Their proposed algorithm, named
SecureD-FL withstand malicious entities attempts to crack other entities data by limiting
connections among them. However, it do not take into consideration withstanding inference
attacks as well. Moreover, authors of [42] uses trusted execution environment (TEE) hard-
ware to secure the FL method. The proposed algorithm, named SEAR, proved efficiency
against different attacks, but it struggles with the limited memory capacity in those hardware
environments. Furthermore, authors in [43] proposed EPPDA, that uses homomorphic en-
cryption for secret sharing among FL entities. EPPDA proved to withstand among different
types of attacks, including inference attacks.
Additionally, authors in [44] addresses communication efficiency and resilience to Byzantine
attacks. Despite its success against such attacks, but inference attacks were not taken into
consideration in the proposed algorithm. Also, authors in [45], proposed FLDetector focuses
on identifying potentially malicious clients, by the means of assessing the consistency of
model updates received from those entities. Although it reduces the risk of malicious enti-
ties, but it did not take withstanding inference attacks into consideration in its mechanism.
Also, the algorithm FLCert, proposed in [46] was built to resist poisoning attacks by clas-
sifying customers into groups and utilizing majority voting among global models to resist
poisoning attacks. This algorithm didn’t take inference attacks into their security strategy as
well as most of the previous mentioned algorithm. Likewise, authors in [47], proposed ELSA
that distributes trust among two servers instead of a central manager. Therefore, the proposed
algorithm withstands poisoning attacks and malicious servers, but didn’t take into considera-

12



tion the severity of inference attacks that can crack private data, even if exchanged between
a trusted server and a legit entity. Moreover, authors in [48] proposed Multi-RoundSecAgg
that excels in long-term privacy preservation, structured user selection, and fairness consider-
ations. However, it introduces complexity in terms of multi-round confidentiality guarantees
and structured user selection strategies, potentially increasing computational and operational
complexity.
On the other hand, different solutions used Homomorphic Encryption to secure the models
exchanged between the central server and the FL entities. For instance, authors in [49–55]
embedded this encryption technique in their mechanisms. However, such implementations
are still prone to the risk of cracking encryption keys, thus threatening the FL privacy identity.

1.5 Polymorphic & Homomorphic Encryption

In the context of securing data exchange against attacks, different techniques can be defined.
For instance, Polymorphic and Homomorphic Encryption are two techniques that can be
defined as below.

1.5.1 Polymorphic Encryption

To define Polymorphic Encryption, it is helpful to define both polymorphism and encryption,
which are in fact, two different concepts:

• Polymorphism: denotes the capacity of an object or function to assume various forms
or behaviors;

• Encryption: refers to the process of transforming regular data into an incomprehensi-
ble format to deter unauthorized access or usage. Furthermore, encryption techniques
are plenty, and the well-known encompass AES (Advanced Encryption Standard), RSA
(Rivest-Shamir-Adleman), and others [57].

Therefore, Polymorphic Encryption [56] can be characterized as an encryption approach
that alters the algorithm or encryption keys to bolster security. With PE, it becomes signif-
icantly more challenging for attackers to decipher the encryption, even if they manage to
obtain the ciphertext. Unlike conventional encryption methods that rely on fixed algorithms
and static keys, PE employs dynamic algorithms and continually changing keys. This dy-
namic nature ensures that the encryption pattern is constantly evolving, making it extremely
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difficult for attackers to predict or decode the encrypted data.
In traditional encryption, once an attacker discovers the key or understands the algorithm,
they can decrypt the data. However, polymorphic encryption adds layers of complexity by
frequently altering the cryptographic parameters. This continuous transformation of the en-
cryption schema means that even if one set of keys is compromised, the subsequent data
remains secure due to the ever-changing nature of the encryption process.
This method provides robust protection against a wide range of attacks, including brute force,
man-in-the-middle, and quantum computing attacks [56]. The adaptability and resilience of
Polymorphic Encryption make it a formidable defense mechanism in safeguarding sensitive
data in an era where cyber threats are becoming increasingly sophisticated.

1.5.2 Homomorphic Encryption

Homomorphic Encryption [58], a recent innovation in encryption techniques, permits com-
putations to be conducted on encrypted data without requiring decryption beforehand. In con-
trast to conventional encryption methods, where decryption is necessary for data utilization,
homomorphic encryption allows mathematical operations to be directly applied to encrypted
data while maintaining its secrecy. This breakthrough encompasses various forms, including
partial homomorphic encryption (PHE) and fully homomorphic encryption (FHE), which are
defined in the below list:

• Partial Homomorphic Encryption: supports a limited set of operations, such as addition
or multiplication, on encrypted data. This is useful for specific applications where only
certain computations are needed;

• Fully Homomorphic Encryption, on the other hand, enables arbitrary computations on
encrypted data, providing the most flexibility and security. FHE has been a particularly
challenging goal to achieve due to its complexity and computational overhead, but
recent advancements have made it more feasible.

The implications of this advancement are significant for privacy and security, particularly in
contexts like cloud computing and data sharing. By employing homomorphic encryption,
sensitive data can remain safeguarded during processing, facilitating secure data analytics,
private machine learning, and confidential data processing outsourcing. This means that or-
ganizations can outsource data processing tasks to third-party service providers, such as cloud
computing platforms, without exposing the underlying data [58].
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For instance, in the field of healthcare, homomorphic encryption allows for the analysis of
encrypted patient data to gain insights without compromising patient privacy. In finance, it
enables secure computations on encrypted financial records, allowing for private auditing and
fraud detection. Overall, homomorphic encryption offers a powerful tool for maintaining data
confidentiality and integrity in an increasingly data-driven world, where privacy concerns are
paramount [58].

1.6 Problematic

Privacy and confidentiality concerns lead to additional ML challenges for ML, such as data
availability, performance, personalization, and thus trust and acceptance. Consequently, the
concept of Federated Learning was introduced as a solution to privacy issues.
However, FL is still prone to different attacks and threats. This issue has been of great
interest in the literature, and numerous solutions have been proposed to make the algorithms
and implementation of FL more robust to attacks [25]. Despite this, inference attacks have
not been considered in these solutions, which in turn threatens user privacy and underpin
the preserving privacy identity of Federated Learning, given the fact that it enables cracking
private data out of the captured model.

1.7 Objectives and Research Questions

The vulnerability of current Federated Learning algorithms to various types of attacks, espe-
cially inference attacks, undermines the true identity of FL domain. The ability of a malicious
entity to discover users’ private data is certainly the opposite of the privacy-preserving idea
that was initially proposed in Federated Learning notion. Therefore, this research investi-
gates and analyzes the security aspects of Federated Learning, and proposes a set of frame-
works with enhanced security levels to withstand various attacks, including inference attacks.
Therefore the objective for this research can be summarized as:

Enhance the security of Federated Learning aggregation algorithms to stand
against inference attacks by the means of Polymorphic and Homomorphic

Encryption

Within this context, the research delves into Federated Learning, encryption methodolo-
gies, and the introduction of innovative aggregation frameworks. The exploration of these
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facets aims to provide comprehensive answers to crucial research questions, ultimately ad-
vancing the understanding and fortification of the security landscape in Federated Learning.
The research questions can be found in the below list (RQ in the below list is the acronym of
’Research Question’ and RSQ is the acronym of Research Sub Question)

• RQ1: How to enhance privacy of Federated Learning aggregation algorithms and se-
cure them against malicious attacks, especially inference attacks?

• RQ2: What is the impact of integrating Polymorphic & Homomorphic encryption in
FL in terms of robustness against inference attacks and in terms of additional complex-
ity, computation and communication cost?

1.8 Research Methodology

In this research project, four Federated Learning Frameworks with advanced and enhanced
security are proposed. Those frameworks, named PolyFLAG_SVM, PolyFLAM, PolyFLAP,
and HP_FLAP, compete with the existing Federated Learning frameworks by embedding both
Polymorphic and Homomorphic Encryption technologies to secure the messages exchanged
between FL server and clients. In this section, the research methodology followed to obtain
the objectives of the project is explained. This methodology was conducted in four phases
over a period of three years as detailed below and summarized in Table 2 below:

• First Phase – Review: formed of the examination and contextualization of the re-
search topic, where the literature was reviewed and the existing Federated Learning
frameworks were analyzed to find out where they stand in the vulnerability against at-
tacks, specifically inference attacks. During this phase, the problem was framed, and a
possible solution was proposed;

• Second Phase – Design: includes the design of the frameworks and setting the tech-
nical benchmarks of the implementation. For this purpose, primarily implementations
of Federated Learning, Homomorphic, and Polymorphic encryption were performed.
This stage helped in gaining knowledge about the tools needed to build the frameworks.
The results obtained at this stage were recorded to be used later;

• Third Phase – Implementation: First, Polymorphic Encryption layer was added to
the FL framework built in the second phase. After that, Homomorphic Encryption
layer was added so that additional security could be obtained. This stage resulted in
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four different frameworks that support up to five different smart models (as will be
discussed later);

• Fourth Phase – Evaluation & Use-Case Study: included evaluation of the imple-
mented frameworks with different datasets. For this purpose, a simulated Federated
Learning environment was built, and a simulated dataset was used for primary evalua-
tion. Later, two real-world datasets were used to conduct a use case study that helps in
testing the proposed frameworks in real-world scenarios.

1.8.1 First Phase: Review & Critical Analysis of FL Frameworks/algorithms

In the literature review phase, an extensive exploration of existing research and scholarly
works was undertaken to establish the theoretical foundation and identify gaps within the
realm of Federated Learning.

• Literature Review: composed of a comprehensive exploration of existing scholarly
works, research articles, and relevant publications in the field of study. The insights
gained from this literature review not only informed subsequent phases but also played
a pivotal role in shaping the overall research methodology. The literature review went
into three main tasks:

– Task 1: reviewing smart health, with a focus on the use of smart wearables in
the detection of Cardiovascular Diseases. Due to the fact that smart health is rela-
tively a wide and broad topic of research, Cardiovascular Diseases was selected as
a starting point due to the severity of this diseases and to the wide interest it gains
in the research domain. The objective was to gain a nuanced understanding of the
current state of knowledge, theoretical frameworks, and methodologies employed
by previous researchers in smart health. To fulfill an adequate review, systematic
strategies were followed to include all relevant studies, analyze them, and extract
emerging trends and gaps;

– Task 2: During the review, challenges in the Machine Learning domain were
set under focus, with Multimodal and Federated Learning being two trending
domains studied. The first acts as a solution for heterogeneity, and the latter acts
as a solution for privacy;

– Task 3: Perform a deep review of Federated Learning, with a focus on the chal-
lenges and deficiencies hindering the domain;
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• Problem Definition: The problem definition phase was instrumental in precisely ar-
ticulating the challenges within the domain of Federated Learning that necessitated
intervention. Central to this phase was the identification and elucidation of the vulner-
ability of existing Federated Learning frameworks to inference attacks. The scope was
delineated by a nuanced understanding of the risks posed by these attacks, emphasizing
the potential compromise of sensitive information. By explicitly defining the problem,
this phase provided a clear foundation for subsequent research endeavours, guiding
the formulation of a targeted and effective solution. The insights garnered during this
phase not only shaped the trajectory of the research methodology but also contributed
to the development of frameworks resilient to the identified vulnerabilities;

• The Scope of Solution: Within the literature review phase, attention was given to fram-
ing the scope of the solution, which addressed the vulnerability of Federated Learning
frameworks to inference attacks. The proposed solution aimed at enhancing Federated
Learning by introducing novel frameworks that incorporated Polymorphic and Homo-
morphic Encryption techniques, thereby bolstering the security measures. The delin-
eation of the scope was intricately tied to countering the identified vulnerability, and it
was strategically defined by incorporating the use of Polymorphic and Homomorphic
Encryption. This strategic choice not only aimed at mitigating the susceptibility to
inference attacks but also paved the way for a more secure and robust Federated Learn-
ing environment. The thorough literature review informed and justified the selection of
these encryption techniques, providing a solid foundation for subsequent phases in the
research methodology.

1.8.2 Second Phase: Design

The design phase marked a crucial transition from the theoretical groundwork laid in the
literature review to the concrete formulation of a solution tailored to address the identified
issues. This phase encompassed several key components:

• Conceptual Framework: Building upon the insights derived from the literature re-
view, a robust conceptual framework was developed. This framework served as the
blueprint for integrating Polymorphic and Homomorphic Encryption into the archi-
tecture. Each element of the framework was meticulously designed to ensure com-
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patibility with existing infrastructure while addressing the specific security concerns
identified in the problem definition phase;

• Algorithm Development: In order to deepen the technical understanding of the pro-
posed solution, three fundamental algorithms were developed. The first algorithm en-
capsulated the core functionality of a FL approach, elucidating the decentralized model
training process. Simultaneously, a Polymorphic Encryption algorithm and a Homo-
morphic Encryption algorithm were crafted to comprehend the intricacies of these
cryptographic techniques. These algorithmic implementations provided invaluable in-
sights into the technical nuances and potential challenges, laying a solid foundation for
the subsequent design and implementation phases;

• Frameworks Architecture: The design phase also involved the creation of the ar-
chitecture, outlining the structural components of the proposed Federated Learning
framework. This encompassed defining the roles of different entities, specifying data
flow, and elucidating the integration of encryption techniques at various stages of the
learning process;

• Encryption Integration: A key focus of the design phase was the seamless integration
of Polymorphic and Homomorphic Encryption. This involved developing protocols
and algorithms to embed these encryption methods into the FL workflow without com-
promising computational efficiency or model accuracy. The design ensured that the
encryption mechanisms not only bolstered security but also facilitated collaborative
model training across decentralized devices.

1.8.3 Third Phase: Implementation

The implementation phase was a pivotal stage where the theoretical design was translated
into functional frameworks. Four distinct frameworks were developed, each incorporating
advanced cryptographic techniques to enhance the security of Federated Learning:

• PolyFLAG_SVM: The first framework was designed as a Federated Learning solution
embedding polymorphic encryption. This framework specifically offered a Support
Vector Machine (SVM) model. An SVM model is known with different advantages
such as effective in high-dimensional spaces, robustness to overfitting, versatility in
kernel selection, global optimization, memory efficiency, effective in cases of small
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sample size, versatility in solving different types of problems including both classifica-
tion and regression and many more. The architecture facilitated secure model training,
ensuring that server and clients could exchange gradients while preserving the privacy
of local datasets. To secure the exchange of gradients, each client an SVM model on its
local data, generate its own gradients, wrap them within messages that are encrypted
polymorphically and exchange them with the server. At each round, the server receives
the gradients from all involved clients, and aggregate them to have a global model
trained federally without the need to collect users’ private data (source code available
at [59]);

• PolyFLAM: Building upon the PolyFLAG_SVM foundation, the second framework,
PolyFLAM, expanded the scope by incorporating polymorphic encryption to support
five different models. Unlike the first framework, PolyFLAM enabled the exchange
of entire models between the server and clients, enhancing the versatility of FL across
various model architectures (source code available at [60]);

• PolyFLAP: The third framework represented an enhanced version of PolyFLAM, in-
troducing polymorphic encryption and supporting five different models. However,
PolyFLAP innovatively shifted the paradigm by exchanging model parameters between
the server and clients. This approach aimed to further optimize communication effi-
ciency while preserving the confidentiality of sensitive information during the Feder-
ated Learning process (source code available at [61]);

• HP_FLAP: In the final iteration, the HP_FLAP framework was developed, embed-
ding both polymorphic and homomorphic encryption. This advanced framework sup-
ported four distinct models, providing a comprehensive approach to secure FL. In
HP_FLAP, the exchange of model parameters between the server and clients was fa-
cilitated through a combination of polymorphic and homomorphic encryption, adding
an extra layer of security to the collaborative learning process (source code available
at [62]);

These implementations not only demonstrated the technical feasibility of integrating cryp-
tographic techniques into Federated Learning but also served as experimental platforms for
evaluating the efficacy of the proposed security-enhanced frameworks.
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1.8.4 Fourth Phase: Evaluation and Use Case Study

The Evaluation and Use Case Study phase marked the culmination of the research, focusing
on assessing the performance and applicability of the developed frameworks in diverse sce-
narios. Three distinct evaluations were conducted, each shedding light on the frameworks’
capabilities:

• Evaluation with Simulated Dataset: The first evaluation utilized a simulated dataset
to gauge the frameworks’ effectiveness in controlled environments. The dataset was
generated in tabular form, with 20 features and 9000 records and formed of real value
numbers. Metrics such as complexity, data consumption, and accuracy were recorded.
This simulated environment allowed for a thorough understanding of the frameworks’
behavior under ideal conditions, serving as a baseline for subsequent evaluations;

• Evaluation with SHAREEDB Dataset: Moving beyond simulated scenarios, the
frameworks were evaluated with real-world data using the SHAREEDB dataset. This
evaluation aimed to assess the frameworks’ performance in a more dynamic and com-
plex setting, providing insights into their adaptability and robustness with genuine data
challenges;

• Evaluation with Surgical-Binary Dataset: In the final evaluation, the frameworks
were subjected to the unique characteristics of the Surgical-Binary dataset. This use
case study delved into the frameworks’ performance in a specialized domain, capturing
the nuances of medical data. The assessment considered metrics related to complexity,
data consumption, accuracy, and additional domain-specific parameters.

Throughout these evaluations, the frameworks were meticulously monitored, and compre-
hensive metrics were recorded to analyze their performance. This included assessing the
computational complexity of the frameworks, evaluating their efficiency in terms of data
consumption, and measuring the accuracy of collaborative learning. A rigorous compari-
son among the results obtained by each framework provided a comprehensive understanding
of their relative strengths and weaknesses, informing potential areas for refinement and im-
provement.
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1.8.4.1 Robustness Against Inference Attacks

On the other hand, testing the proposed frameworks against inference attacks included moni-
toring and recording the flow of encrypted exchanged messages among FL server and clients.
It worth mentioning that parties who perform Inference attacks tends to eavesdrop or inter-
cept exchanged model(s) between FL Server and client, in the attempt to crack users’ private
data out of this model. However, the main goal of the proposed models was to secure those
messages by:

• Encrypting each message exchanged among FL server and clients by the means of the
robust AES encryption algorithm;

• Using a unique encryption key for each of the exchanged messages, which guarantees
that a leaked or cracked key do not risk any of the future messages as it will not be used
again in the FL cycle;

• Additionally securing the exchanged parameters (in case of HP_FLAP), by adding the
Homomorphic Encryption layer within the polymorphically encrypted messages. In
such a way, if a malicious entity succeeded by cracking an exchanged model, it will
not be able to gain access for the embedded parameters that are also encrypted. Fur-
thermore, the FL server itself, will not gain access to the exchanged parameters in this
case, where it aggregate all the collected parameters while exchanged, being homo-
morphically encrypted. This also grants the HP_FLAP framework additional security,
even against the server itself.

Consequently, monitoring and evaluating the security level of the proposed frameworks
is obtained by tracking the exchanged messages among FL server and clients, and recording
the encryption keys used in each round with each client or at the server side. The polymor-
phism of the keys in use, beside the exchange of encrypted parameters, are the the guarantees
of robustness of the proposed frameworks against inference attacks. During the evaluation
phase, polymorphism and homomorphism were tracked and recorded in the system as will
be explained later in Chapter 5.

To fulfill the research goal, and to execute the methodology as planned, a Gantt-Diagram
was initially created with the above explained tasks. The diagram was followed, and updates
were performed where needed, reaching to the results explained in this report. The diagram
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is illustrated in Figure 3 below. In this chart, the scientific contributions named as P1, P2, ..
are listed in Table 4 mentioned in the Appendix A.

Table 2: Research Plan

Problem Federated Learning is prone to inference attacks, and the available
aggregation algorithms lack robustness against such attacks which

threatens the privacy-preserving concept of FL

Research
Objective

Enhance the security of Federated Learning aggregation algorithms to
stand against inference attacks by the means of Polymorphic and

Homomorphic Encryption

R
es

ea
rc

h
Pl

an

First Phase

Literature Review, Analysis and Contextualization

Problem Definition

Defining the scope of the proposed solution

Second Phase
Conceptual Framework

Algorithm Development

Frameworks Architecture

Encryption Integration

Third Phase
Integration of Polymorphic Encryption and Building

PolyFLAG_SVM

Extending the supported smart models and building
PolyFLAM

Enhancing Communication cost by building PolyFLAP

Integrating Homomorphic Encryption and building
HP_FLAP

Fourth Phase

Evaluation with Simulated Dataset

Evaluation with SHAREEDB dataset

Evaluation with Surgical-Binary dataset

Comparing performance results obtained from the proposed
frameworks

23



Figure 3: Research Gantt Diagram.
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1.9 Novelty and Contribution

In this research, four frameworks are proposed to improve security and privacy in Feder-
ated Learning. The uniqueness of the proposed frameworks stems from their integration of
polymorphic and homomorphic encryption, as will be shown later, and their ability to train
different Machine Learning models suitable for different real-world analysis problems. This
integration not only distinguishes the proposed systems from the current state of the art, but
also creates new opportunities for strengthening the overall security of FL.
The contributions of this research include the development and rigorous evaluation of sev-
eral frameworks that represent significant advances in the field of privacy-friendly Machine
Learning. These frameworks integrate state-of-the-art cryptographic techniques to strengthen
the security and privacy of the Federated Learning environment. Through the use of poly-
morphic encryption, each exchanged message is encrypted with a unique key, making any
potential compromise of the key insignificant to the integrity of the overall system. Further-
more, the use of homomorphic encryption during model aggregation introduces an additional
layer of security. In addition to the security improvements, the proposed frameworks also
provide practical benefits by reducing communication costs through parameter and gradient
exchange options. Furthermore, the inclusion of five different smart models: Support Vec-
tor Machines, Linear Regression, Naive Bayes, Stochastic Gradient Descent Classifiers, and
Multi-Layer Perceptrons — makes these frameworks versatile and applicable to a wide range
of data analysis challenges. The contributions of the proposed frameworks, and thus this
thesis, can be summarized as follows:

• Improved security through the implementation of polymorphic encryption, which en-
sures that any potential compromise of the key does not pose a threat to the overall
system;

• Improved privacy through homomorphic encryption during model aggregation, intro-
ducing an additional layer of security;

• Practical reduction in communication costs through the ability to exchange parameters
and gradients;

• Enhanced versatility through support for five different smart models: Support Vector
Machines, Linear Regression, Naive Bayes, Stochastic Gradient Descent Classifiers
and Multi-Layer Perceptrons.
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1.9.1 Scientific Publications

During the research journey, six articles were published in different journals, and other four
were published as conferences proceedings. In addition, three more articles are currently
under review in different scientific journals. All details related to those publications can be
found in Appendix A.

1.10 Thesis Structure

This thesis presents a comprehensive survey of the field of federated learning along with
proposed frameworks that integrate advanced cryptographic techniques to improve privacy,
security, and efficiency. The remainder of the thesis is organized into several chapters, each
addressing specific aspects and facets of the research journey and presented in the form of
a journal article. Through this structured approach, a coherent presentation of the proposed
work, its context, and its importance in the broader landscape of Machine Learning and pri-
vacy is discussed.
Paper presented in Chapter 2 explores the concept of Federated Learning in depth, first ad-
dressing privacy concerns in Machine Learning and demonstrating how Federated Learning
contributes to privacy protection. The remainder of the chapter explains the technical under-
pinnings of Federated Learning, introduces a taxonomy for Federated Learning, distinguishes
its key characteristics from those of other Machine Learning methods, and provides compre-
hensive insights into its various applications and challenges.
Paper presented in Chapter 3 is dedicated to the exploration of aggregation algorithms in
Federated Learning. It begins with an explanation of the architecture of this concept and
then delves into the different types of messages that are exchanged between the server and
the clients in a Federated Learning system. The chapter further deals with a comprehensive
analysis of different aggregation approaches and culminates with an examination of the cur-
rent state-of-the-art implementations of Federated Learning aggregations, accompanied by a
thorough presentation of the challenges involved.
Paper presented in Chapter 4 takes an in-depth look at the security and privacy issues that
arise when implementing aggregation algorithms in FL. The chapter begins with an explana-
tion of the various threats and attacks in Federated Learning. It then provides a thorough and
comprehensive analysis of aggregation algorithms that have been developed with security
and privacy considerations in mind. Furthermore, this chapter puts these secured aggregation
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algorithms under the microscope, highlighting shortcomings and vulnerabilities and provid-
ing empirical evidence that underscores the central problem addressed in this research.
Papers presented in Chapter 5 is devoted to a detailed examination of the frameworks pre-
sented in this thesis. In first section, a paper discussing PolyFLAG_SVM is presented, while
the second paper discusses PolyFLAM and PolyFLAP and the third discusses HP_FLAP.
The four novel frameworks are explained in detail and their structure and workflows are
explained. A comprehensive evaluation is then conducted, considering various facets and
contrasting these frameworks with the current state of the art. Finally, the chapter culminates
in the practical application of the proposed frameworks through real-world data testing, illus-
trating their utility and effectiveness through use case studies.
Chapter 6 concludes with a comprehensive executive summary that summarizes the entire
body of work and provides key findings and reflections on the contributions and implications
of this research. Also, it explores challenges and future prospects related to the proposed
frameworks, highlighting potential barriers and opportunities for further research and devel-
opment. Finally, the chapter presents a comparison between the proposed frameworks and
the existing frameworks.
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CHAPTER 2

Reviewing Federated Machine Learning: A
General Overview of the Domain

Published in Sensors Journal 2023
Under the special issue Smart Environments for Health and Well-Being
Volume 23; Issue 4; doi: 10.3390/s23042112

Résumé: Dans le monde réel, la collecte de données constitue un défi majeur, sinon le plus
grand, dans le développement de modèles ML pour plusieurs raisons, dont la plus impor-
tante est la confidentialité. Ce chapitre examine en détail l’apprentissage fédéré en abordant
d’abord les problèmes de confidentialité dans l’apprentissage automatique et en démontrant
son rôle dans la protection de la confidentialité. Il se penche ensuite sur les aspects tech-
niques de l’apprentissage fédéré, introduit une taxonomie pour le concept, met en évidence
ses caractéristiques distinctives par rapport à d’autres méthodes d’apprentissage machine,
et fournit une exploration complète de ses diverses applications et défis. Par conséquent,
l’article présenté dans ce chapitre contribue de manière significative à l’état de l’art dans le
domaine de l’apprentissage fédéré. Il propose des définitions complètes de l’apprentissage
fédéré, clarifiant ses principes fondamentaux et ses applications. De plus, l’article établit une
taxonomie de l’apprentissage fédéré, catégorisant ses différentes techniques et approches, et
délimite les frontières entre l’apprentissage fédéré et d’autres technologies d’apprentissage
automatique, mettant en avant les caractéristiques uniques et les avantages de l’apprentissage
fédéré.
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Abstract: Machine learning (ML) has succeeded in improving our daily routines by enabling au-
tomation and improved decision making in a variety of industries such as healthcare, finance, and
transportation, resulting in increased efficiency and production. However, the development and
widespread use of this technology has been significantly hampered by concerns about data privacy,
confidentiality, and sensitivity, particularly in healthcare and finance. The “data hunger” of ML
describes how additional data can increase performance and accuracy, which is why this question
arises. Federated learning (FL) has emerged as a technology that helps solve the privacy problem
by eliminating the need to send data to a primary server and collect it where it is processed and
the model is trained. To maintain privacy and improve model performance, FL shares parameters
rather than data during training, in contrast to the typical ML practice of sending user data during
model development. Although FL is still in its infancy, there are already applications in various
industries such as healthcare, finance, transportation, and others. In addition, 32% of companies
have implemented or plan to implement federated learning in the next 12–24 months, according to
the latest figures from KPMG, which forecasts an increase in investment in this area from USD 107
million in 2020 to USD 538 million in 2025. In this context, this article reviews federated learning,
describes it technically, differentiates it from other technologies, and discusses current FL aggregation
algorithms. It also discusses the use of FL in the diagnosis of cardiovascular disease, diabetes, and
cancer. Finally, the problems hindering progress in this area and future strategies to overcome these
limitations are discussed in detail.

Keywords: federated machine learning; federated learning; privacy preservation; aggregation algorithms;
diseases prediction; cardiovascular diseases; diabetes; cancer; smart wearables; smart health

1. Introduction

Artificial intelligence (AI) is a rapidly advancing technology that is increasingly being
integrated into various industries and aspects of daily life, leading to significant changes
and advancements in the way we live and work. This truth is obvious and can be seen
with one’s own eyes; no evidence is needed to prove it. Ever since Alan Turing, considered
the father of theoretical computer science and artificial intelligence, asked their famous
question, “Can computers think?” [1], artificial intelligence has become a broad field of
research. Despite the fact that AI has been researched for a long time, there is no single
definition for this field. The authors in [2] defined it as a set of tools and techniques that use
principles and devices from various fields such as computation, mathematics, logic, and
biology to address the problems of realizing, modeling, and mimicking human intelligence
and cognitive processes, while the authors in [3] defined it as programs that, in an arbitrary
world, will cope no worse than a human.
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Machine learning (ML), a derivative of AI, allows computers to “learn” from training
data and expand their knowledge over time without being explicitly programmed. Machine
learning algorithms attempt to find patterns in data and learn from them to make their own
predictions. In short, machine learning algorithms and models learn through experience.
Traditionally, a computer program is developed by engineers and given a set of instructions
that enable it to turn incoming data into its intended output. ML, by contrast, designs the
program to learn with little or no human interaction and to expand its knowledge over
time. The remarkable success of ML, as well as its enormous potential in classification
and regression problems and its ability to use both supervised and unsupervised learning
techniques, have made it attractive to researchers in many fields. Later studies revealed the
variety of applications of ML that can be observed in the field such as:

• E-commerce and product recommendations [4,5];
• Image, speech and pattern recognition [4,5];
• User behavior analytics and context-aware smartphone applications [4,5];
• Healthcare services [6–8];
• Traffic prediction and transportation [4,9];
• Internet of Things (IoT) and smart cities [9];
• Cybersecurity and threat intelligence [10];
• Natural language processing and sentiment analysis [11];
• Sustainable agriculture [12];
• Industrial applications [13].

1.1. Machine Learning under The Scope: Challenges

Accurate results in classification or regression are increasingly encouraging the incor-
poration of these techniques into areas of daily life. The feasibility of using AI tools, and in
particular ML, has been demonstrated by the high performance they offer and the possi-
bility of implementing them in different domains. However, ML still suffers from several
challenges that are extensively described and discussed in the literature. However, these
challenges are not classified into a single taxonomy, but grouped according to different
aspects. In this section, the common challenges are presented under a proposed taxonomy
based on data-related, model-related, implementation-related, and other general aspects.
In addition, these challenges are illustrated and summarized in Figure 1 below.

Figure 1. Machine Learning Domain Challenges.

1.1.1. Data Related Challenges

Machine learning algorithms are typically implemented in a known pipeline consisting
of data collection, preprocessing, exploration, model selection, training, evaluation, and
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deployment. Data, which constitute the main component of these algorithms, can present
various challenges, such as [14,15]:

• Data availability and accessibility: to train a model, one must have the necessary
data, which may not be available on the spot or may be available but inaccessible
for various reasons;

• Data locality (data islands): in the real world, data are scattered in different and
unrelated entities called “data islands.” Due to different regulations and laws, data
related to the same subject and available on different data islands cannot be accessed
for use and analysis;

• Data readiness: even if data are available and accessible, several aspects should be
considered, such as:

– Data heterogeneity: available data may have different characteristics or be com-
posed of different forms. For example, health data for the same patient may
be available in different forms, such as medical images, reports, videos, and
structured data. The ability to deal with such heterogeneity is a challenging task;

– Noise and signal artifacts: due to the interaction between data acquisition instru-
ments and other electrical devices, data can be poisoned by noisy attributes that
affect the overall results of ML models;

– Missing data: data collected by measuring devices may be incomplete for
various reasons;

– Classes imbalance: in classification problems, the data collected for one group
may dominate the data collected for other groups, affecting the learning of the
smart model.

• Data volume: is the amount, size, and scope of the data. In the context of ML, size
can be defined either vertically by the number of records or samples in a dataset or
horizontally by the number of features or attributes it contains. Data volume presents
several challenges, such as:

– Course of dimensionality: dimensionality describes the number of features or
attributes that are present in a dataset. Increasing dimensionality can have a
negative impact on model performance;

– Bonferroni principle [16]: the Bonferroni principle states that when searching for
a particular type of event in a given set of data, the probability of finding that
event is high. Therefore, the accuracy of a ML model subject to the Bonferroni
principle may be compromised.

• Feature representation and selection: the performance of ML models heavily depends
on the choice of data representation or features, so selecting the optimal features will
definitely improve the overall model performance.

1.1.2. Models Related Challenges:

In addition to the challenges posed by the data, the models themselves can present
researchers with various problems, such as [17,18]:

• Accuracy and performance: achieving the highest accuracy for ML models remains
the main goal for researchers from various fields, and the highest accuracy will lead to
the highest adoption and integration of this technology;

• Model evaluation: evaluating an ML model can be challenging, especially when
traditional performance metrics such as accuracy, precision, and recall do not reflect a
model’s feasibility;

• Variance and bias: where variance is the variability of the model prediction for a given
data point or a value indicating the spread of our data, and bias is the difference
between the average prediction of our model and the correct value we are trying
to predict. ML models are susceptible to variance and bias, which can affect their
performance, results, and confidence;
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• Explainability: some of the ML models, especially deep learning models, are known
by their black box identity. The lack of explanations of how they work can have a
negative impact on trust in these models, even when high accuracies are achieved.

1.1.3. Implementation Related Challenges:

Assuming that the obstacles in the data and models have been overcome, implement-
ing the models of ML can be a challenging task due to various obstacles such as [19,20]:

• Real-time processing: ML models are created and trained with available data. How-
ever, fitting these models to real-time problems presents several challenges;

• Model selection: different models can produce different results even for the same prob-
lems. For example, support vector machines (SVM) and logistic regression (LR) can lead
to different results, even when working with the same data at the same point in time.
Thus, selecting the optimal model and tuning its parameters are not easy tasks;

• Execution time and complexity: due to the complexity of the data or models, multiple
preprocessing steps, and many other reasons, ML models can require enormous
computing power and long execution times.

1.1.4. General Challenges:

Finally, other challenges besides technical aspects can be mentioned in this section,
such as [17,18]:

• User data privacy and confidentiality: which is one of the most critical issues in the
field of ML. Users tend not to share their data for various reasons, which affects the
availability of the data and jeopardizes the entire ML cycle;

• User technology adoption and engagement: due to privacy issues, unclear results,
lack of explanation, and other reasons, users may not accept ML being integrated into
their daily routine, or even accept its results;

• Ethical constraints: various ethical constraints posed by ML have been widely dis-
cussed in the literature, such as control and morality, model ownership, environmental
impact, and many others.

1.2. Privacy Challenge: Federated Machine Learning Motivation

The challenges in machine learning and its derivatives have been thoroughly studied,
and researchers are trying to find answers to all of them without focusing on just one.
Nevertheless, the workflow of ML mainly consists of data acquisition and preprocessing,
feature engineering, model training, model evaluation, and model deployment. The structure
of the workflow reflects the importance of data in ML. The performance of ML models
heavily depends on the availability of data. Although achieving highly accurate models
depends on the technical structure of the models themselves, the cleanliness and readiness
of the data, the optimal feature selection, and many other aspects, it is well known that the
availability of more data to train the models increases their accuracy [14,15]. However, in the
real world, data collection is a big challenge, if not the biggest, in developing ML models for
several reasons, most importantly privacy and confidentiality.

Not only individuals, but also society, governments, and organizations are strengthening
the protection of data privacy and security. In this regard, several regulations and laws were
enacted, such as the European Union’s General Data Protection Regulation (GDPR) [21], China’s
Cyber Security Law of the People’s Republic of China [22], the General Principles of the Civil
Law of the People’s Republic of China [23], the PDPA in Singapore [24], and hundreds of
principles legislated around the world. While these regulations help protect private information,
they pose new challenges to the ML field by making it more difficult to collect data to train
models, which in turn makes it more difficult to improve the accuracy of model performance
and to personalize those models. Consequently, data privacy and confidentiality are not a
stand-alone challenges, but also trigger other challenges for ML, such as data availability,
performance, personalization, and thus trust and acceptance.
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Overcoming Privacy Challenges

The criticality of privacy has been a hot research topic for years, pushing to find
different solutions to protect the information exchanged by subjects. To this end, various
privacy algorithms were proposed, such as encrypting data before exchange through
various algorithms such as differential privacy [25], k-order anonymity [26], homomorphic
encryption [27], and other methods. However, these methods were not able to provide
definitive and unbreakable solutions, as several attacks have been observed in ML such as
the model inversion attack [28] and the membership inference attack [29], which are able to
derive raw data by accessing the model.

Recently, Google proposed a new concept in the machine learning domain known as
“federated machine learning” or “federated learning” [30]. The main concept behind FL is
to eliminate the exchange of user data between peripherals. FL is a type of collaborative
distributed/decentralized ML privacy-preserving technology where a model is trained
without the need to transfer data from the edges to a central server, but models are sent to
peripherals to be trained on local data, and then sent back to a central aggregation server to
generate the global model without knowing the embedded data.

Federated learning has proven to be a great solution to user privacy issues, opening the
door to collecting more data to train ML models and improve their accuracy and efficiency.
Moreover, FL enables training models with data from different entities known as data islands
and merging the knowledge into a global trained model, which increases the efficiency
of the models. In addition, FL enabled the handling of heterogeneous data scattered in
different data spaces with different characteristics, and facilitated the so-called “learning
transfer” where models can share their knowledge without transferring users’ private data.
Nevertheless, FL is still in its infancy and is still vulnerable to various challenges.

1.3. Machine Learning and Healthcare

The development of information and communication tools, in parallel with the emer-
gence of artificial intelligence and its branches such as ML and DL has produced effective
solutions to health challenges. Moreover, AI is considered the most promising technology
for improving healthcare services, as it can be applied to almost all areas of medicine
and will revolutionize healthcare delivery to patients and populations. This tremendous
contribution is not due to magic, but to AI’s data processing capabilities that surpass those
of humans, especially in terms of its ability to perform large calculations in a short period
of time. Given the promise, initiatives to use AI as a solution to healthcare problems have
recently significantly expanded, with the number of AI healthcare applications exceeding
thousands in the last decade [31,32].

AI is playing an increasingly important role in healthcare and has the potential to revolu-
tionize the way healthcare professionals diagnose, treat, and monitor patients. One of the most
important ways in which AI can be used in healthcare is to analyze large amounts of medical
data. By using machine learning algorithms to identify patterns and trends in these data, AI
can help medical professionals make more accurate diagnoses, predict which patients are at
risk of developing certain diseases, and develop more personalized treatment plans [33]. AI
can also be used to monitor patients’ health and vital signs in real-time, and to alert medical
professionals to potential problems. This can be particularly useful for patients with chronic
conditions who need close monitoring to avoid complications. For example, using AI in smart
wearables, a person’s heart rate and blood pressure can be continuously monitored and the
data analyzed to detect the early signs of cardiovascular diseases (CVDs), as shown in [34]. In
addition, smart wearables equipped with sensors and machine learning algorithms can play
a critical role in detecting and monitoring diabetes by continuously tracking and analyzing
biometric data such as blood glucose levels, heart rate, and activity levels, enabling early detec-
tion and intervention [35]. In addition, the potential of smart wearables and machine learning
models in detecting fatigue in the workplace has been shown to be highly feasible, contributing
to disease prevention [36]. Overall, AI has the potential to significantly improve the quality of
healthcare for patients and make healthcare more efficient and cost-effective. However, it also
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raises ethical and legal issues that need to be addressed for the successful implementation of AI
in healthcare.

With healthcare being of critical importance, the performance of ML in healthcare
needs to be enhanced. Increasing this performance requires using the latest techniques and
overcoming any barriers that may impede progress. The barriers to the development of
the use of ML in healthcare are the same for all ML implementations in all diseases and
correspond to the previously described problems. Therefore, potential solutions that can
help promote the use of ML will lead to improved applications in these areas.

1.4. Outline and Main Contributions of This Article

In this article, FL and its use in disease prediction and diagnosis have been studied.
To achieve this goal, this article explores this topic in depth in the following sections. In
Section 2, FL is discussed from various perspectives, including technical perspectives,
aggregation algorithms, and others. Then, in Section 3, the use of Federated learning
technology in detecting and predicting various diseases is presented by listing the state-of-
the-art in each area and discussing the implementations mentioned in the literature. Later,
in Section 4, the challenges that hinder the progress in this field are discussed and therefore
some future perspectives that could help in overcoming these challenges are proposed. In
this context, this article attempts to answer the following questions:

• What is federated machine learning?
• What are the motivations for this technology?
• What are the technical perspectives on which FL is based?
• What taxonomy can be used to classify FL algorithms and techniques?
• What are the differences between FL, traditional ML (including deep learning), dis-

tributed and decentralized ML, and federated database systems?
• What are the existing FL aggregation algorithms and what is the contribution of each?
• What are the available FL frameworks?

The topic of federated learning has been a hot and trending topic in recent years.
As a result, dozens if not hundreds of studies have already addressed this topic, with a
large number of these studies reviewing federated learning. However, none of the articles
proposed an inclusive and full taxonomy for FL, or even compared FL to classical ML,
decentralized ML and federated database systems. Furthermore, the federated aggregation
algorithms were not reviewed with any of the previous studies. Furthermore, the use of FL
in diseases prediction such as CVDs and diabetes were not reviewed. Consequently, this
article proposes several new ideas, contributing to the body of FL knowledge by:

• Proposing a novel and comprehensive taxonomy that classifies FL into the maximum
number of possible categories;

• Establishing clear and precise boundaries to distinguish between FL, traditional ML,
distributed and decentralized ML, and federated database systems;

• Discussing existing aggregation algorithms in FL and evaluation of the contributions
of each to the field;

• Reviewing and discussing the state of the art of FL in diagnosing:

– Cardiovascular disease;
– Diabetes;
– Cancer.

• Presenting the challenges faced by FL and the possible future perspectives that can be
pursued to increase the efficiency of the technology.

2. Federated Learning

Artificial intelligence and its derivatives, such as machine learning and deep learning,
are gaining attraction and confidence in a variety of fields. For example, deep learning
surpassed human performance in the game of Go, where AlphaGo and AlphaGo Zero
achieved superhuman feats by beating the world champions of the game. However,
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the high accuracy achieved by these models required that they be trained on data that
spanned 29 million records [37,38]. This underscores the description of such technologies
as “data hungry,” with the need to improve the accuracy of the models requiring larger
datasets. This is undoubtedly the case not only in gaming, but also in other sectors such
as education, industry, healthcare, and others. Moreover, this is not the only problem that
hinders the development of ML and DL. With the development of ICT tools and especially
mobile networks, data collection has become easier and larger datasets are being obtained.
However, an urgent problem that requires effective solutions is the privacy and security of
data, with the disclosure of information about individuals never being a minor issue and
recently attracting the attention of both governments and researchers [39,40].

2.1. Overview and Definition(s)

The increasing efficiency of artificial intelligence tools is leading them to be used in
various areas of life. However, the challenges faced by these technologies lead researchers
to always look for appropriate solutions, which is why federated learning, or what is
sometimes called federated machine learning, was found.

2.1.1. Data Islands and Privacy Dilemma: Concept behind FL

The ability to collect and analyze large amounts of data has recently made great strides,
especially with the development of communication tools and AI methods. However, data
are collected in what are known as “data islands.” Data islands are defined as foundations,
institutions, individuals, or other entities where data are collected and stored [41,42]. To
improve the performance of AI models, the idea of the centralized server is pursued, with
the common method being to collect data in a centralized repository and perform unified
processing, cleaning, and modeling. For example, a patient’s health data scattered across
different hospitals, clinics, or health centers have the greatest potential when analyzed
together [43]. However, privacy regulations and restrictions, as well as data heterogeneity,
limit the ability to collect and simultaneously analyze such data. Consequently, the search for
solutions to the data islands and privacy dilemma has attracted the attention of researchers
worldwide and was the motivation for the concept of federated learning [44]. In Figure 2,
the concept of data islands is illustrated by showing how medical data may be stored in
different institutions and cannot be shared due to the sensitivity of the health data. Instead,
the parameters are shared with the FL server as shown in the figure.

Figure 2. Data islands concept illustrated by medical entities.
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2.1.2. Motivations behind FL Concept

The critical importance of data protection has led to the development of various pro-
tection algorithms aimed at protecting data through encryption or other methods, but they
have failed to provide an inevitable solution against attacks. Moreover, the data annotation
in some fields, such as the medical industry, relies on the knowledge of professionals, re-
sulting in a rarity of valid data that are detrimental to industrial development. Accordingly,
the need to deal with private data or data scattered in islands while maintaining their
privacy is the main motivation behind the concept of federated learning [45]. The fact that
private and confidential data available in scattered sources are more usable for ML models
than those centralized on the server provides FL with the opportunity for collaboration
between these data sources to improve the accuracy of ML models [46]. Because the data
can be analyzed without having to be transferred to a central server, FL helps address
the challenges mentioned earlier. The FL architecture, communication methods, security
mechanisms, and other factors allow the model to be trained on edge devices, the data
islands, by sending them the model itself, rather than collecting and aggregating the data in
a centralized space [47]. In other words, instead of aggregating training data from different
sources, FL enables the training of the shared global model using a central server, while
keeping the data at their main sources of origin [48]. This not only preserves data privacy,
but also reduces data transfer costs by limiting the transfer to only the necessary param-
eters rather than the entire datasets. This also allows dealing with a scalable number of
devices, ranging from ten to ten million [49,50]. All in all, FL is an emerging and promising
technology that helps one solve the ML challenges by preserving data privacy, increasing
the model performance, reducing the data transfer costs, improving scalability, and more.
Therefore, it has the potential to challenge the prevailing ML paradigm [51,52].

2.1.3. FL Definition(s)

Federated learning was originally introduced by Google in 2016, where it was used in
Google Keyboard to predict users’ text input on tens of thousands of Android devices without
transferring data from the devices to central servers [30]. However, the authors in [43] claim
that the term FL was introduced before and that its core idea is distributed deep learning,
such as the privacy-protected deep learning system proposed in [52]. Although it is still
considered a new concept, it is increasingly attracting researchers’ attention, and its definition
can be found in various places in the literature. For example, the authors in [42,45] define
it by explaining how it works, mentioning that federated learning is a type of collaborative
distributed/decentralized machine learning technology where privacy is maintained and a
model is trained without the need to transfer data from the edges to a central server, but instead
weight updates are sent to a central aggregation server to build the global model. A statistical
definition is given in both [41,44], where FL is defined as follows:

“Define N data owners {F1, ...FN}, all of whom wish to train a machine learning model
by consolidating their respective data {D1, ...DN}. A conventional method is to put
all data together and use D = Di ∪ ... ∪ DN to train a model MSUM. A federated
learning system is a learning process in which the data owners collaboratively train
a model MFED, in which process any data owner Fi does not expose its data Di to
others. In addition, the accuracy of MFED, denoted as VFED should be very close to
the performance of MSUM, VSUM. Formally, let δ be a non-negative real number, if
|VFED−VSUM| < δ. We say the federated learning algorithm has δ-accuracy loss.”

2.2. FL Technical Inspection

The potential for federated learning lies in the architecture upon which it is built. To
understand this structure, it is necessary to study the various aspects of this technology
and its various parts, which will be presented in this section.
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2.2.1. Underlying Architecture

Federated learning is a collaborative decentralized approach of machine learning where
data are analyzed by the model without being transmitted from the edges to the central server,
which acts as an aggregator. This is made possible by the architecture behind this technology.
The technical architecture of FL consists of the three main components: the parties, the manager,
and the communication framework, which are discussed below [41,42,44]:

• Parties: are also referred to as customers, users, or individuals, and are the data owners
and beneficiaries of FL. They are indicated by:

– Hardware specifications such as storage, processing, and power capacities;
– Scalability and stability;
– Data distribution.

• Manager: known as a server or aggregator, is the high-performance central server that
acts as a model aggregator rather than a data collector;

• Communication–computation framework: the computation handles the model train-
ing and the communication handles the exchange of model parameters between
the parties and the manager. Several frameworks were developed to manage the
relationships between different FL entities, which are discussed in detail later;

In the various available frameworks for communication computation, the steps taken
in the application of FL differ but they share a common basic concept which is:

• The parties federally train their own model using their local data without sharing it;
• The global model is updated by the locally trained models;
• The global model is then shared with the different parties/data owners;
• The above steps are repeated until the global model achieves the desired performance.

2.2.2. FL Communication-Computation Frameworks

The different FL communication–computation frameworks are due to the different
centralized concepts. Currently, there are two FL concepts: centralized managers and
decentralized managers. Each of these concepts manages communication between parties
differently, where [46]:

• Centralized design (client-server architecture): in this approach, data flow is often
asymmetric, with the manager aggregating information from the parties and sending
them back to the updated model. In addition, communication between the manager
and the parties can be synchronous or asynchronous;

• Decentralized design (peer-to-peer architecture): In this approach, communication is
performed between the parties themselves without the need for a central manager.
This allows each party to directly update the global parameters.

The above concepts are currently implemented in various FL frameworks which will
be discussed later. Two popular FL architectures are mentioned below: the centralized
federated average (FedAvg) [30] and the decentralized FL framework [53], which are
discussed and explained below as well as shown in Figure 3:

• Federated average learning, which is the basis of FL and is determined in the
following steps:

– The manager sends the model to the parties involved;
– The parties train the received model with their local data;
– The updated models are sent back to the manager;
– The above steps are repeated until the model achieves the desired performance.

• Decentralized federated learning SimFL, where no central manager/server is required.
In this framework, the following steps are applied:

– The parties first update the gradients of their local data;
– Then, the gradients are sent to a selected party;
– Next, the selected party uses its local data and the gradients to update the model;
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– Then, the model is sent to all other parties;
– To ensure fairness and to use the data from the different parties, each party is

selected to update the model for approximately the same number of rounds and
the above steps are therefore repeated until the final model is reached.

Figure 3. Communication–computation frameworks.

2.3. Federated Learning Taxonomy

The different ways of applying federated learning have contributed to the creation
of numerous classifications within this technology, which can be considered differently
according to the different subdivision bases or points of view. In light of this, the study
of the literature in FL concludes to subdivide it based on six approaches, which are listed
below and explained in this section:

• Data partitioning;
• Machine learning model;
• Privacy mechanism;
• Communication architecture;
• Scale of federation;
• Motivation of federation.

2.3.1. Data Partitioning

Federated learning provides the ability to train models without the need to collect
data from edge devices. In addition, in the FL environment, a device’s local storage of data
samples (pictures, documents, etc.) is considered its sample space. On the other hand, the
feature space is the collection of characteristics used to characterize the data points, often
expressed as a vector with a large number of dimensions. This set of characteristics may
be put to use in a wide range of classification and regression applications. FL is able to
develop a model that can efficiently aggregate information from the various sample and
feature spaces, which are typically dispersed throughout the parties (clients, users, etc.).
Depending on the data structure and point of view, the samples and features in federated
machine learning (FL) may be seen as rows or columns. Traditional machine learning
uses a table-like data structure with rows representing samples and columns representing
features; in FL, however, the samples are generally dispersed over numerous devices or
locations, leading to a lack of unified data structure. If this is the case, we may think of
the samples as columns and the features as rows, with each feature being shared across
all devices. Finally, the representation is determined by the nature of the issue and the FL
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technique used. Figure 4 below describes the difference between features and samples in
both traditional ML and federated ML.

Figure 4. Samples vs. features in traditional and federated ML.

In this context, the different forms of data partitioning in federated learning environ-
ments form three categories that are described below [41,42,44].

• Horizontal FL: also known as sample-based federated learning, and is the case when
the data on the parties share the same feature space but differ in the samples. In
other words, in horizontal FL partitioning, the datasets are partitioned horizontally
(by parties), and then the part of the data that have the same features but the parties
are not exactly the same is taken out for training. It is therefore characterized by
the following:

– Is the most commonly used data partitioning strategy in implementations of FL;
– Is suitable to increase the sample size;
– Can train the local models using their local data with the same architecture, since

these data share the same feature space;
– Simplifies the update of the global model by averaging all local models.

• Vertical FL: also known as feature-based learning, when the data share the same or
similar sample space (parties) but differ in the feature space (data). In other words,
in vertical FL partitioning, the dataset is split vertically (by features), then part of the
data where the parties are the same but the features are not exactly the same are taken
out for training:

– Which is challenging in terms of implementation;
– Which makes it more complex to update a global model by averaging because

the data may not be similar between parties;
– Which has much more room for improvement to be applied in more complicated

ML approaches.

• Federated transfer learning: this is the case when the datasets scattered between the
parties differ not only in the samples but also in the feature space. In this partitioning
method, the data are not segmented, but the learning is transferred to overcome the
lack of data or tags. Therefore, it is characterized by:

– Being an effective way to protect both data security and user privacy while
breaking the boundaries of data islands;

– Enabling the transfer of knowledge from one domain to another for better
learning outcomes;
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– Offering plenty of room for growth to make it more flexible with different
data structures;

– Triggering the issue of communication efficiency.

Furthermore, Figure 5 below illustrates the three categories of federated machine
learning divided by the type of data.

(a) (b) (c)

Figure 5. (a) Horizontal FL; (b) vertical FL; and (c) federated transfer learning.

In Table 1, the differences between the alternate groups of FL, classified based on the
type of data, are summarized.

Table 1. Differences among FL groups divided by type of data.

Horizontal
Transfer
Learning

Vertical Transfer
Learning

Federated
Transfer
Learning

Data Distribution Similarity Same Different Different
Output/Label Space Similarity Different Same Same
Type of Task Single task Single ask Federated task

2.3.2. Machine Learning Models

Federated learning was created to overcome problems with machine learning algo-
rithms. Therefore, it is of great interest to train a modern ML model for a specific task.
Researchers have worked diligently to develop new models or reinvent existing models to
fit the federated learning architecture. For example, the ML models used in FL include but
are not limited to: [41,42,44]:

• Linear models: support vector machines, linear regression, ridge regression, lasso
regression, among others;

• Decision tree: gradient boosting, decision trees, random forests, among others;
• Neural networks: convolutional neural networks, multi-layer perceptron, deep neural

networks, and others.

2.3.3. Privacy Mechanism

It is clear that the main goal behind the development of FL technology is to protect
the privacy of the data of individuals, organizations, and companies participating in the
machine learning process. The main concept to preserve this privacy is that the parties
involved do not share their data with other entities, but only exchange some model param-
eters. However, these parameters may still reveal sensitive information about the data. FL
was exposed to several attacks that may occur at any stage of the process of FL, including
the inputs, the learning process, and the learned model [54]. In the list below, several attacks
are discussed and detailed based on the model stage targeted by the Machine Learning
attack [46]:

• Inputs: During this phase, malicious parties can perform “data poisoning
attacks” [55–57], in which the labels of the training samples with a particular class are
changed so that the final model performs poorly on that class;



Sensors 2023, 23, 2112 13 of 39

• Learning process: during this process, parties can perform “model poisoning at-
tacks” [58,59] or Byzantine fault [60,61] to upload some designed model parameters
at the local model level. Such attacks can negatively affect the accuracy of the learning
process due to the poisoned local updates;

• The learned model: once the learned model is published, it is exposed to attacks
such as model inversion attack [28] and membership inference attack [29] and others.
Such attacks can potentially infer raw data by accessing the model. For example, they
can determine whether a particular dataset was used in the training process. Finally,
inference attacks can also be performed in the FL manager learning process, where
the server has access to the parties’ local updates.

To overcome such problems and achieve the goals, various approaches such as model
aggregation, cryptographic methods, and differential privacy are used in Federated Learning
systems. These techniques help avoid the risk of attacks and backdoors and are described
below [41–43]:

• Model aggregation: is one of the most common privacy preserving mechanisms in
FL systems and the main concept behind the FL technique, where the global model
is trained by aggregating the model parameters of all parties without sharing the
original data in the training process;

• Cryptographic methods: In this approach, the parties must encrypt their messages be-
fore sending them to the manager or other parties, work with the encrypted messages,
and decrypt the encrypted output to obtain the final result. In this context, various
algorithms have been used in FL systems, such as:

– Homomorphic encryption [39]: Users can compute and process the encrypted
data without revealing the original data, and at the same time the user decrypted
the processed data with the key, which is exactly the expected result. How-
ever, due to the additional encryption/decryption operations, homomorphic
encryption incurs extremely high computational overhead;

– Secure multiparty computation (SMC) [62]: in this algorithm, the server is guar-
anteed to learn the parties’ inputs only in their entirety. However, SMC does not
provide any confidentiality guarantee for the final model, which is still vulnerable
to inference and model inversion attacks and can also be a reason for additional
computational overhead.

• Differential privacy [63]: is a new definition of privacy in which the final results
of the model are insensitive to the changes of a particular dataset by minimizing
the impact of a single dataset on the computation of the results. This method has
been proven successful for data poisoning attacks, but may not be usable for model
poisoning attacks.

2.3.4. Methods for Resolving Heterogeneity

The different equipment of the parties involved in the FL system and the diversity of
the data stored in them can have a negative impact on the efficiency of the overall learning
process. To solve the problems caused by this heterogeneity, four types of distractions are
used in FL implementations [41]:

• Asynchronous communication: the synchronous scheme can be easily disrupted by
the diversity of devices. Therefore, asynchronous communication can help resolve
this diversity;

• Device sampling: limiting the use of a party/device to only the necessary iterations,
not necessarily participating in every single iteration;

• Fault-tolerant mechanism: in an environment with multiple working participants,
the failure of one participant can affect the performance of the entire environment. A
fault-tolerant mechanism helps prevent the entire system from collapsing if one of the
parties fails;

• Model heterogeneity: is used to resolve data heterogeneity and includes three strategies:
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– Each individual party has its own model;
– A global model that is suitable for all parties;
– Relevant learning models for tasks.

2.3.5. Communication Architecture

Following the various client/server approaches taken in FL systems, there are two
main categories in communication architecture, which are [46]:

• Centralized design: this assumes the existence of a central server that aggregates the
local models trained by the parties and sends them back for updating. Communication
between the manager and the local parties can be synchronous or asynchronous;

• Decentralized design: in this approach, communication is between the parties, and each
can directly update the global model without the need for a central aggregation manager.

2.3.6. Scale of Federation

Federated learning can be classified into two groups based on the scale of federation,
namely: cross-silo FLS and cross-device FLS [42,46]. These two approaches differ in the
number of parties and the amount of data stored in each party, where [64]:

• Cross-silo FL: this approach is used when the participating parties are fewer in number,
have relatively large amounts of data, have relatively high computational power,
and are available for all rounds of learning. This approach is best suited when the
participants are organizations or computers;

• Cross-Device FL: in contrast, the number of parties involved in the learning process is
relatively large, they have a small amount of data, and are equipped with relatively low
computing power. This approach is best suited when the participants are mobile devices.

2.3.7. Federation Motivation

Finally, the reasons for using FL systems can be categorized as follows [46]:

• Regulations: where laws restrict the sharing of private information between different
companies, such as the GDPR, Chinese laws, or PDPA or other laws;

• Incentives: where FL is motivated by a desire to develop services.

The various categories of federated learning that may be obtained from grouping vari-
ous points of view are outlined below in Table 2 along with a summary of the advantages
associated with each category.

2.4. Federated Learning: Borderlines

Federated learning is the result of the accumulation of technological improvements in
machine learning. Motivated by privacy preservation, inspired by the concept of distributed
computing, and executed by advanced communication technologies, FL has become an
efficient and feasible technology. In this section, we highlight the limitations of FL systems
to differentiate them from traditional and previous ML technologies.

2.4.1. FL vs. Classic ML

Both FL and classical ML aim to optimize the learning goal. However, they differ in the
architecture of their models. Since the classical ML can be implemented in both centralized
and distributed approaches, this section compares FL only with the centralized classical ML,
while the comparison with the distributed ML is performed in the next section. Centralized
classical ML is the concept where data characterized by the same features are collected
from different users on a central server where they are then processed and analyzed. In
this context, the two concepts are compared using [47]:

• Motivation: classical ML focuses on the learning goal, while FL focuses on both the
learning goal and privacy;
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• Data identity: in classical ML, user data are described as independently and identically
distributed (IID), while in FL, it is possible to deal with unbalanced non-IID data
coming from different parties, be it individuals or institutions;

• Centralization: in the classical ML, all data and computations are centralized around
one server, while FL provides both centralized and distributed server architecture;

• Data access: in the classic ML, the central server has full access to the user data, while
this is not the case in FL;

• Communication and data transfer: in classic ML, all the user data are fully transmit-
ted to the central server, while in FL, only minimal parameters or trained models
are exchanged.

Table 2. Summarized Taxonomy for Federated Learning Systems.

Taxonomy Category Structure Advantages

Data partitioning

Horizontal FL Different parties and similar
data features Holds larger variety of parties

Vertical FL Similar parties and different
data features

Holds larger variety of
data features

Federated transfer learning Different parties and different data
features

Holds larger variety of parties and
data features

Machine learning models

Linear models Linear regression, ride regression,
lasso regression Ease of implementation

Decision tree gradient boosting, decision trees,
random forests

Accurate, stable, and can map
non-linear relationships

Neural networks - Learning capabilities, highly robust
and fault-tolerant

Privacy mechanisms

Model aggregation Central manager learns by aggregating
the locally trained model Avoid transmitting original data

Cryptographic methods

Using encryption algorithms such as
homomorphic encryption and secure

multi party computation (SMC) to
encrypt the messages exchanged

among parties

Enables the calculation and processing
of encrypted data

Differential privacy
Reducing the impact of a single data

record on the calculation of the global
model

Reduce the effect of data
poisoning attacks

Methods for solving heterogeneity

Asynchronous communication
sampling To resolve the heterogeneity of parties

Solve the problem of communication
delays and avoid simultaneous

training with heterogeneity of parties

Fault-tolerant mechanism To resolve the failure of parties Prevent whole system from collapsing
if one of the parties failed

Heterogeneous model To resolve the heterogeneity of data Resolve the issue of models diversity

Communication architecture

Centralized design Architecture controlled by a central
aggregation manager/server Reduces communication cost

Decentralized design
Communication performed among
parties without the existence of a

central manager/server
Reduces the risk of backdoor attacks

Scale of federation

Cross-silo FL
Parties are less in number, hold large
amounts of data and equipped with

high computation power
Fits for FL among institutions

Cross-device FL
Parties are high in number, hold less

amount of data and equipped with less
computation power

Fits for FL among individuals

Motivation of federation

Regulations Motivated by laws such as GDPR
and others

Incentives Motivated by desire of updating
some services

Enhancing ML services

2.4.2. FL vs. Distributed and Decentralized ML

The architecture of the FL system is based on the concept of distributed computing.
Therefore, FL is considered a collaborative distributed learning technology. On the other
hand, distributed classical ML is the concept that collects data characterized by the same
features from different users on more than one central server where they are processed and
analyzed. Thus, the concept of distributed classical ML is to distribute the data analysis
tasks to multiple servers instead of just one. Thus, it can be said that distributed classical
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ML models are trained using the same methodology as centralized ML models, except
that they are trained separately on multiple servers. In this context, the two concepts are
compared using [41–43]:

• Motivation: in distributed classical ML, the main goal is to accelerate the processing
phase, while in FL, both privacy and processing phases are targeted;

• Data identity: in the distributed classical ML, the data are described as IID records,
while in FL, it is unbalanced non-IID records due to heterogeneity;

• Centralization: in the distributed classical ML, no central server is included in the
architecture, while in FL, both centralization and distribution are provided;

• Data access: in the distributed classic ML, the data are distributed among several
servers, but the global model still has access to the user data and, moreover, some
servers can have access to all the data of a user at a given time;

• Communication and data transmission: in distributed classical ML, all user data are
transmitted to the network of servers, while in FL, only minimal parameters or trained
models are exchanged.

2.4.3. FL vs. Federated Database System

Federated database systems (FDSs) [65] are systems that are able to combine multiple
database entities and manage them as one overall system. This concept was proposed to
achieve integration between multiple independent databases. Moreover, it can manage
heterogeneous databases distributed among different storage units. Moreover, FDS focuses
on basic operations such as insert, delete, update, and other database operations. In this
context, the two concepts are compared using [44,65]:

• Motivation: in FDBS, the main goal is to perform database operations over diverse
and independent databases, while the main goal of FL is to process heterogeneous
and independent databases to learn from data;

• Data identity: both can support non-IID databases;
• Centralization: both support the decentralization of database storage, but in FDBS,

the processing is handled by a central server;
• Data access: in FDBS, unlike FL, the processing server has access to all data;
• Communication and data transfer: in FDBS all data are transferred in contrast to FL.

The boundaries between federated ML and classical machine learning, distributed and
decentralized machine learning, and the federated database are shown in Figure 6 below.

Figure 6. Borderlines between FL, ML, decentralized ML and federated DB.
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2.5. FL Aggregation Algorithms: State of the Art

The first implementation of federated learning was proposed by Google to train Android
keyboards to predict text input [30]. Despite its success in training machine learning models
without the need to collect user data, the performance of FedAVG is poorly understood and
encounters a number of problems and drawbacks, as discussed in [66]. These drawbacks can
be summarized below:

• Performance issues:

– Suffering from ‘client-drift’ and convergence;
– Tuning difficulty;
– High communication and computation cost;
– Significant variability in systems characteristics on each network device;
– Existence of non-identically distributed data across the network;
– Heterogeneity of devices, users and network channels;
– Sensitivity to local models;
– Scalability issues.

• Security and privacy issues: FL is still under the risk of several breaching attacks
such as:

– Poisoning attacks;
– Inference attacks;
– Backdoor attacks.

Therefore, there was a great need to improve the performance of the federated learn-
ing FedAvg aggregation algorithm to overcome its drawbacks. In this context, several
implementations have been carried out in the last 5 years. Given the diversity of chal-
lenges in this area, researchers are continuously investing in developing or improving FL
aggregation algorithms. To this end, there are twenty-seven aggregation algorithms in the
literature to date. These algorithms are listed in Table 3 below. An in-depth analysis of
these algorithms can summarize the areas to which they contribute in the following list,
which is also detailed in the table:

• Improving model aggregation;
• Reducing convergence;
• Handling heterogeneity;
• Enhancing security;
• Reducing communication and computations cost;
• Handling users’ failures (fault tolerance);
• Boosting learning quality;
• Supporting scalability, personalization, and generalization.

Table 3. Contributions of existing FL aggregation algorithms.
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[30] 2017 FedAVG
[66] 2017 -
[67] 2019 RFA
[68] 2020 SCAFFOLD
[69] 2020 FedOPT

FedADAGAR
FedYOGI
FedADAM

[70] 2020 FedBoost
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[71] 2020 FedProx
[72] 2020 FedMA
[73] 2020 -
[74] 2020 -
[75] 2020 -
[76] 2020 LAQ
[77] 2020 SAFA
[78] 2021 FedDist
[79] 2021 FEDHQ
[80] 2021 FAIR
[81] 2021 FedPSO
[82] 2021 LEGATO
[83] 2021 MHAT
[84] 2021 -
[85] 2021 -
[86] 2021 SEAR
[87] 2021 Turbo-Aggregate
[88] 2022 EPPDA
[89] 2022 FedBuff
[90] 2022 HeteroSAg
[91] 2022 LightSecAgg

However, the achievements of previous federated learning aggregation algorithms
have mainly focused on the aggregation itself or on reducing communication costs. The
other contribution areas have been less studied. For example, among the 27 algorithms
mentioned, 15 targeted global model aggregation and 12 targeted communication cost
reduction, while only three targeted learning quality improvement and only one targeted
personalization. This distribution is shown in the diagram in Figure 7 below.

Figure 7. Aggregation algorithms count per contribution area.

Analysis of the distribution of implementations per contribution domain shows that the
state of the art in federated learning algorithms has produced a number of robust aggregation



Sensors 2023, 23, 2112 19 of 39

algorithms that are also acceptable from the point of view of reduced communication costs.
However, from a security point of view, all the presented implementations focused on only
one type of attack, namely the Byzantine attack. Other attacks have not been extensively
covered in the literature, raising the question of how robust the available methods are against
attacks such as reversal attacks, which are the main concern of FL, where attackers can detect
users’ private data based on the local trained model exchanged within the network. In
addition, few efforts have been made to improve the learning quality of the models from
FL, which in turn raises the question of the extent to which the accuracy of the traditional
algorithms from ML is comparable to that of the models from FL. Finally, personalization
has only been investigated in a single study, as shown in the table and chart.

2.6. FL Available Frameworks/Platforms

Despite its novelty, federated learning has been a popular topic in the research commu-
nity. The increasing interest in this field assisted in having several frameworks or platforms
that implement FL. Some of those frameworks are [65,92,93]:

• Tensorflow federated (TFF) algorithm [94]: an open source framework for experiment-
ing with FL that enables developers to experiment with novel FL algorithms as well
as simulating existing ones on their data;

• Federated AI technology enabler (FATE) [95]: relies on homomorphic encryption and
supports a range of FL architectures and secure computation algorithms including
logistic regression, tree-based algorithms, neural networks and transfer learning;

• PySyft [96]: developed by OpenMined and decouples private data from model training
using federated learning, differential privacy and multiparty computation;

• Tensor/IO [97]: a lightweight cross-platform library for on-device machine learning,
bringing the power of TensorFlow and TensorFlow Lite to iOS, Android, and React
native applications;

• Tensorflow encrypted: provides an interface similar to that of TensorFlow and aims to
make the technology readily available without requiring the user to be an expert in
ML, cryptography, distributed systems, and high-performance computing;

• CoMind: built on top of TensorFlow and provides high-level APIs for implementing
FL and FedAvg specifically;

• Horovod: based on the open message passing interface (MPI) and works on top of
popular deep learning frameworks, such as TensorFlow and PyTorch;

• LEAF benchmark: is a modular benchmarking framework for machine learning in
federated settings, with applications in FL, multi-task learning, meta-learning, and
on-device learning aiming to capture the reality, obstacles, and intricacies of practical
FL environments.

2.7. Training and Evaluation of Federated Learning Algorithms

FL is known as a privacy-preserving technology, where the data are not transferred
to nor collected at a central server to allow model training. However, when training a
federated machine learning model, updates are aggregated from multiple decentralized
nodes: each node trains a local model on its own data and then shares the model updates
with other nodes, allowing the global model to converge towards a stable solution while
protecting the privacy and security of the individual data points. Additionally, there exist,
in fact, norms and standards that may be used to evaluate federated machine learning
algorithms. However, due to the fact that federated machine learning is still a relatively
new field, these norms and standards are still in the process of developing. These norms
include, but are not limited to [30,94–97]:

• Model accuracy: in the case of FL, model accuracy is a frequent parameter used to
assess performance. Precision, recall, F1-score, and area under the curve (AUC) are
various ways in which a model’s efficacy may be evaluated;

• Communication overhead: since communication delays might have a negative effect
on the efficiency of a federated machine learning system, it is crucial to keep this
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in mind. The length of time spent communicating, the number of times messages
need to be sent back and forth, and the overall quantity of data communicated are all
indicators of communication overhead;

• Convergence speed: the speed with which a model reaches a stable solution is known
as its convergence speed. Since the models in federated machine learning need to be
trained across numerous participants, this is a crucial factor to take into account;

• Privacy: since the data are being shared across several parties, privacy and security
are crucial concerns in federated machine learning. Examples of privacy and security
standards include data encryption, differential privacy, and safe multiparty computing.

These are some of the norms and standards that are used to assess federated machine
learning algorithms. However, given that the area of study is still developing, new norms
and standards may appear as the technology progresses.

3. Federated Learning in Action

Federated machine learning is emerging as a privacy-friendly technology that is
expected to boost the performance of machine learning algorithms by enabling more
data analytics. The ability to analyze more data or even instances with heterogeneous
architectures will help increase the accuracy of smart models and thus increase their
adoption in various domains. This is already demonstrated in the literature where FL
is already being used in various domains such as healthcare, transportation, Internet of
Things, and others [43,50,51].

3.1. FL: Areas of Implementation

Federated learning was initially used to improve the text prediction service for An-
droid Google keyboards. However, its success and efficiency motivated its implementation
in other domains. As an innovative modeling mechanism that allows training a global
model with heterogeneous data from different parties without compromising user data
privacy and security, FL has demonstrated its feasibility for training models that classic
ML models do not allow due to factors such as intellectual property rights, privacy regu-
lations, data confidentiality, statistical heterogeneity, and others. In addition, several FL
implementations have been performed in different domains such as:

• Smart healthcare: due to the sensitive nature of healthcare data, FL is a promising
solution to improve the ML healthcare service while maintaining privacy [51,98];

• Smart retail: the ability to gather knowledge from different institutions enables the
smart retail sector to thrive by analyzing data scattered on different islands [43];

• Transportation: FL helps improve autonomous driving decisions by training vehicles
with data from different geographic locations that enable accurate learning [43,99];

• Natural language processing (NLP): with the ability to handle heterogeneous data, FL
is a good choice to improve the performance of NLP models [43,100];

• Finance: the banking sector is one of the biggest beneficiaries of FL, where the data of
customers scattered in different institutions can be analyzed to assess credit risk [43,50].

3.2. Federated Learning and Disease Prediction

In addition, federated learning has the potential to play an important role in healthcare by
enabling the training of models using distributed and decentralized health data [51,93,98]. This
can help protect patient privacy while enabling the creation of more accurate and personalized
models and the analysis of more data, as long as privacy is maintained. Federated ML can also
enable the training of models with data that are difficult to obtain and consolidate, such as data
from under-served or rural areas. In addition, ML can help eliminate healthcare data islands by
enabling data sharing and analysis across multiple organizations. In addition, FL has increased
its efficiency in learning from data that are distributed across multiple sites and cannot be
combined into a single dataset, or when data reside in multiple clinical systems [101]. In
summary, FL can significantly improve the quality of healthcare by making it more data-driven
and personalized [93,98,101].
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3.2.1. Federated ML and Cardiovascular Diseases: State-of-the-Art

Cardiovascular diseases, which comprise the deadliest diseases, claimed 18.6 million
lives worldwide in 2019, accounting for 32% of global mortality. For this reason, researchers
in the field of machine learning have been addressing the issue of cardiovascular diseases
and trying to find more feasible solutions that can help in predicting these diseases to
reduce their deadly impact. Several implementations have been performed in the literature
to predict CVDs or heart-related information, whether using smart wearables equipped
with smart machine learning models [34] or using only machine learning models as shown
in [102].

However, with the advent of federated learning, it became possible to analyze data
from diverse and heterogeneous sources, supporting the accuracy and feasibility of ap-
plying FL algorithms in cardiology. Consequently, FL has been considered in several
implementations in the treatment of heart disease. For example, the authors in [103] were
the first to apply FL in the field of cardiovascular disease. They analyzed various electronic
health records (EHRs) to predict the hospitalizations of patients with heart disease in a
given year based on their medical history described in the EHRs. To this end, they devel-
oped a federated optimization scheme (cPDS) to solve the sparse support vector machine
(sSVM) problem and used the Boston Medical Center electronic health records to train
and test their model. In addition to maintaining privacy, their model proved to scale well,
and its performance was measured by the area under curve (AUC), which reached as high
as 0.78.

In addition, the authors implemented a regression model in [104] to predict heart rate
using federated learning. They used Polar smartwatches to collect their own data, which
were analyzed using FL sequential Bayesian and empirical Bayes-based hierarchical Bayesian
models. The former model was proposed to work based on a centralized FL architecture,
while the latter provides an alternative decentralized but more scalable method from the
perspective of a hierarchical Bayes model. They succeeded in creating a privacy-friendly and
scalable model that predicted heart rate with high accuracy. Similarly, in [105], the authors
implemented a time-series-to-time-series generative adversarial network (T2T-GAN), which is
a centralized FL model based on LSTM, to predict blood pressure. Their study was performed
using the “Cuff-Less Blood Pressure” estimation, an open source dataset available in the Kaggle
datastore [106] for training and the “College of Queensland vital signs dataset” [107] for testing.
In addition to the novelty of their model, they were able to maintain privacy and predict blood
pressure with high accuracy.

In addition, the study [108] was performed to predict the presence of cardiovascular
disease. With the goal of developing a personalized privacy-preserving model and reduc-
ing the difference between global and local data, a novel feature alignment model was
developed to predict the presence of various cardiac arrhythmias. They analyzed electro-
cardiography (ECG) recordings from their privately collected data and their classification
model achieved 87.85% accuracy. Similarly, in [109], the authors created a classification
model to predict the cardiovascular risks. They analyzed the Nursing Electronic Learning
Laboratory (NeLL) EHR data using a sequential pattern mining (SPM)-based framework.
They created both centralized and decentralized models that could predict risk with high
accuracy while protecting patient privacy.

In the same context, [110] proposed a cardiovascular arrhythmia prediction model
based on federated learning. The authors built a centralized federated transfer learning and
explainable 1D convolutional neural network (CNN) trained with the MIT-BIH arrhythmia
database [111]. They succeeded in preserving privacy, increasing explainability, reducing
communication costs, and creating a personalized model with up to 98.9% arrhythmia
prediction accuracy.

Finally, in [112], the authors developed a 3D CNN for predicting hypertrophic cardiomy-
opathy with FL. Their centralized FL model was trained with the M&M [113] and ACDC
challenges [114] datasets consisting of cardiovascular magnetic resonance images. Their
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model preserved privacy and achieved a performance of 0.89 AUC. The following Table 4
summarizes and presents the federated learning implementations performed with FL.

Table 4. Federated machine learning implementations in CVDs prediction.

Ref Year Type Parameter
Studied

Predicted
outcome

Model FL
Architecture

Contribution Dataset Used Performance

[103] 2018 Classification Electronic
health
records

Hospitalization
for CVD
patients

Federated optimization
scheme (cPDS) for solving
sparse support vector
machine

Scalability
Privacy

Electronic heart
records from the
Boston Medical
Center

Best 0.78 AUC

[104] 2020 Regression Heart rate Heart rate Federated ;earning based
on sequential Bayesian
method (FD Seq Bayes)

Empirical Bayes-
based hierarchical
Bayesian method (FD
HBayes-EB)

Centralized
Decentralized

Privacy
Scalability

Private -

[105] 2021 Regression Blood
pressure

Blood
pressure

Time-series-to-time-series
generative adversarial
network (T2T-GAN)
(based on LSTM)

Centralized Novelty
Privacy

Cuff-Less blood
pressure estimation
[106]
University of
Queensland vital
signs dataset [107]

Mean error of
2.95 mmHg
and a standard
deviation of 19.33
mmHg

[108] 2021 Classification ECG Arrythmias Customized alignment
Model

Centralized Personalization
Privacy

Private Accuracy: 87.85%

[109] 2021 Classification Electronic
health
records

Cardiovascular
risk

Sequential pattern mining
(SPM) Based Framework

Centralized
Decentralized

Privacy Nursing Electronic
Learning Laboratory
(NeLL)

-

[110] 2022 Classification ECG Arrythmias 1D-convolutional neural
Networks

Centralized Privacy
Explainability
Communication
cost reduc-
tion
Personalization

MIT-BIH arrhythmia
Database [111]

Accuracy: 98:9%

[112] 2022 Classification Cardiovascular
magnetic
resonance
images

Hypertrophic
cardiomy-
opathy

3D-convolutional neural
networks

Centralized Privacy M&M challenge [113]
ACDC challenge [114]

Best 0.89 AUC

3.2.2. Federated ML and Diabetes: State-of-the-Art

In addition to its role in predicting cardiovascular diseases, federated learning has
also been used in diabetes detection. According to recent figures from the World Health
Organization (WHO), diabetes affects approximately 422 million people worldwide, most
of whom live in low and middle-income countries, and 1.5 million deaths are directly
attributable to it each year. Most frustrating, however, is the fact that both the incidence and
prevalence of diabetes have substantially increased in recent decades [115]. The criticality
of these diseases and the increase in their numbers require innovative solutions to help
manage these situations. In this context, several implementations of federated learning
have already been carried out.

Additionally, in [116], the authors evaluated the effectiveness of federated neural
network-based retinal microvasculature segmentation and classification of referable dia-
betic retinopathy (RDR) using optical coherence tomography (OCT) and OCT angiography
(OCTA). For this purpose, several datasets were used, including SFU prototype swept-
source OCTA, RTVue XR Avanti (OptoVue, Inc.), Angioplex (Carl Zeiss Meditec), and PLEX
Elite 9000 (Carl Zeiss Meditec). The obtained results show that FL achieves comparable
performance to conventional DL models while maintaining data confidentiality.

In addition, the authors of [117] developed a decentralized, privacy-protected, FL
algorithm to identify individuals at high risk of developing diabetes-related problems. In
their experiments, they trained and evaluated models using the “Health Facts EMR Data”
dataset from Cerner. The results showed that FL can be used not only to maintain privacy but
also to address issues such as class-imbalance when using real-world clinical data. In addition,
FL showed similar performance to the gold standard of centralized learning, and the use of
class-balancing strategies improved performance across all cohorts. In addition, in [118], the
authors proposed the use of deep learning models for the diagnosis of diabetes, also known
as the Diabetes Management Control System (DMCS). The system can predict patients’
glucose levels at each evaluation time point, while the classification model was designed to
identify anomalous data points using a convolutional neural network (CNN) and a multilayer
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perceptron model (MLP). Considering the sensitive nature of patient physiological data
contained in the datasets, the authors developed independent learning (IL) and federated
learning to protect the privacy of user data. However, the dataset used to train and evaluate
the proposed models was generated by a simulator. The results of their study show that the
FL method has a higher retrieval rate (≥98.69%) than the IL method (≤97.87%). In addition,
the FL-CNN model performed better than the MLP model with a recall value of 99.24%
compared to 98.69% for the former and the latter, respectively.

Furthermore, in [119], the authors investigated the privacy threat of gradient inversion
attacks to reconstruct identifiable retinal fundus images during diabetic retinopathy classifi-
cation training with federated learning. Despite the fact that the primary goal of the research
is privacy-related, the authors conducted their evaluation using the fine-grained annotated
diabetic retinopathy (FGADR) dataset [120], which allows for the advanced exploration of DR
diagnosis. The results show that the reconstructed images matched the respective baseline
images with an accuracy level of 72.0%. In addition, the authors proposed an FL-based model
for predicting diabetes in [121]. The experimental results showed that federated learning helps
to overcome data isolation phenomenon, also known as data islands, between healthcare insti-
tutes, and successfully collects patient data from different facilities, which can not only improve
the accuracy of the trained model but also successfully protect patient privacy. Furthermore,
in [122], the authors investigated the use of federated learning to detect diabetic retinopathy
and non-DR images. To this end, they created three models, including standard, FedAVG, and
FedProx, and evaluated their models with five publicly available diabetic retinopathy datasets,
including EyePACS [123], Messidor [124], IDRID [125], APTOS [126], and College of Auckland
(UoA) [127]. The three models achieved accuracies of 92.19%, 90.07%, and 85.81%, respectively.

The aforementioned implementations of federated learning in the detection of diabetes.
In FL, the model can be developed using data from different healthcare facilities without
requiring a facility to provide its entire dataset, improving the generalizability of the model
while maintaining data confidentiality. The state of the art in the use of federated learning
in diabetes discussed in this section is summarized in Table 5:

Table 5. Federated machine learning implementations in diabetes prediction.

Ref Model Data Used Performance

[116] FL deep neural network SFU prototype swept-source OCTA
RTVue XR Avanti (OptoVue, Inc.)
Angioplex (Carl Zeiss Meditec)
PLEX Elite 9000 (Carl Zeiss Meditec)

Performance is comparable to con-
ventional DL models

[117] Not identified Health Facts EMR Data dataset from Cerner Performance is similar to the gold
standard of centralized learning

[118] FL convolutional neural network (CNN)
FL multilayer perceptron (MLP)

Generated by simulator FL-CNN recall: 99.24%
FL-MLP recall: 98.69% performed
better than traditional DL

[119] Not identified Fine-Grained Annotated Diabetic Retinopathy
(FGADR) dataset [120]

Accuracy: 72%

[121] Not identified Private data collected from different healthcare facili-
ties

-

[122] Standard FL FedAVG FedProx EyePACS [123]
Messidor [124]
IDRID [125]
APTOS [126]
University of Auckland (UoA) [127]

Standard FL Accuracy: 92.19%
FedAVG Accuracy: 90.07%
FedProx Accuracy: 85.81%

3.2.3. Federated ML and Cancer: State-of-the-Art

Differently speaking, cancer, which is the disease characterized by the uncontrolled
multiplication and spread of aberrant cells throughout the body, is of particular interest
to federated learning researchers. This disease is known to be a leading cause of death
worldwide, responsible for approximately 10 million deaths in 2020, accounting for 16%
of total mortality [128] that year. Therefore, there is an increasing interest in finding
technological assistance solutions for the diagnosis and prediction of cancer.

In this context, Alexander Chowdhury et al. [129] conducted a comprehensive litera-
ture review to identify the latest applications of federated learning for cancer research and
clinical oncology analysis. Their study came up with several positive results that contribute
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to the understanding of the use of federated learning in cancer diagnosis. Their results
showed that many studies have been conducted in this area, but only 56% of them were
focused on cancer research, while the others used cancer datasets to benchmark a general
method. The studies dedicated to cancer research are listed in Table 6 below:

Table 6. Federated machine learning implementations in cancer prediction.

Ref Disease Data Used Performance

[130] Brain tumor Brain MRI Segmentation Kaggle
dataset [131]

FL results outperform the baseline but classical ML models competed with their results

[132] Brain tumor BraTS dataset [133] Dice = 0.86 for both FL and ML scenarios

[134] Brain tumor BraTS dataset [133] FL performance is similar to ML models

[135] Brain tumor Private data Dice=0.86 for both FL and ML scenarios

[136] Skin cancer ISIC 2018 dataset [137] Accuracy = 91% for both FL and ML scenarios

[138] Skin cancer ISIC 2019 Dermoscopy dataset [137] Accuracy: 89% which outperformed previous implementations

[139] Breast cancer Private data from 7 different institutions FL perform 6.3% on average better than classical ML

[140] Breast cancer Obtained from Netherlands Cancer Registry
(NCR)

Not available

[141] Prostate cancer Private data FL model exhibited superior performance and generalizability to the ML models

[142] Lung cancer Private data from 8 institutes across 5 coun-
tries

Not available

[143] Pancreatic cancer Data from hospitals in Japan and Taiwan FL models have higher generalizability than ML models

[144] Thyroid cancer Private data from 6 institutions DL models outperformed FL models

[145] Anal cancer Private data from 3 institutions Not available

3.3. Discussion

Federated learning is a method for training ML models using decentralized data
residing on different devices or systems as opposed to a central server. In the field of
disease diagnosis, FL could be used to train models on a huge, distributed dataset of
patient data from different hospitals or clinics. This method allows information and
knowledge to be shared between facilities while protecting the privacy and security of
patient data. Using a larger, more diverse dataset also allows for more accurate and
robust models. However, implementations of federated learning for disease prediction,
particularly cardiovascular disease, diabetes, and cancer, can be discussed from several
perspectives, which are discussed in more detail in this section.

3.3.1. Models Performance: Competition between FL and ML

In classical ML, data collection is the first step in the execution of the known pipeline.
It is also known that the accuracy of a trained ML model can be improved by collecting
additional data. Therefore, it is agreed in theory that the accuracy of FL models will surpass
that of traditional ML models because FL can access more data due to its nature.

In this context, the prediction results presented in Table 4 using FL show the high
feasibility and accuracy. For example, the models in [110] achieved 98.9% accuracy in de-
tecting cardiac arrhythmias, whereas the models in [108] had 87.85% accuracy. In addition,
both models in [103,112] had area under the curve values of 0.78 and 0.89, respectively.
However, these results are not better than any classical ML models used to predict CVDs.
Even though the results of [110] are relatively high, a comparison between other imple-
mentations and classical implementations shows that the accuracy of the classical ML is
higher. For example, the machine learning models proposed in [102] achieved over 91%
accuracy in predicting CVDs 12 months before their onset. These results outperform all FL
implementations in Table 4 except [110].

On the other hand, the FL implementations in diabetes diagnosis showed relatively
high performance values, with the authors in [118] recording an accuracy of 99.24%, which
is better than the traditional ML models used in this field, as explained by the authors.
Moreover, in [116,117], the authors stated that the results obtained were comparable to
those obtained with traditional DL models. However, the results in [119] are not as high as
those obtained with other implementations, with an accuracy of 72%, which is lower than
the results obtained with conventional ML models, as shown in [35].
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Furthermore, the results presented in Table 6 were inconsistent in comparing the perfor-
mance between FL and the classical ML and DL models. In this regard, the results obtained
in [132,134,136,136] proved that the FL and ML models (including the classical ML and DL)
have the same performance. However, the results obtained in [130,138,139,141] proved that
the FL models outperform the earlier implementations of ML. In contrast, the authors of
the results in [144] clearly stated that the models of DL outperform the models of FL, in
contrast to the results in [143] where the authors stated that the models of FL have higher
generalizability than the models of ML, but not higher accuracy.

In summary, although FL may theoretically have higher performance in machine
learning, the results obtained are not yet sufficient to prove this hypothesis in the field of
disease prediction. The FL implementations in this field are very accurate and feasible, but
in some cases, the models of ML are still able to provide higher accuracy even if privacy is
not preserved.

3.3.2. Real World vs. Research Implementations

Federated ML was proposed by Google in 2016 [30]. Although FL is still in its infancy,
it has found widespread application in research, particularly in disease prediction.

However, most of the implementations performed, whether these were for cardiovas-
cular diseases, diabetes, or cancer prediction, have been implemented as research studies
rather than production methods. Moreover, most of these implementations are performed
with publicly available data rather than using clinical or real-world data. For example,
in the case of cardiovascular disease prediction, only [103] used real-world data from
healthcare institutions and in the study in [104], real-world data from 10 individuals were
used, whereas the others used either publicly available datasets or unspecified private data.
In addition, none of these implementations were carried through to production readiness,
but were conducted only as research studies.

In addition, the models for diabetes detection based on FL only used [121] data from
a laboratory, whereas [118] used a dataset generated from a simulator and used other
publicly available datasets. In addition, none of these implementations were taken to
production maturity; all were conducted as research studies only. In contrast, for cancer
detection, the studies in [139,142–145] used data from laboratories, whereas others used
publicly available datasets, with the exception of [135,141], which used their own data
without explaining their source. Similarly to the cardiovascular disease and diabetes cases,
all studies were only research studies that were not production projects and were not made
commercially available for further use. These findings support the fact that FL is still in its
infancy and further efforts are needed to move into production phases with FL.

3.3.3. Dedication to Disease Diagnosis

The implementations of federated machine learning that have been performed in the
field of predicting diseases such as cardiovascular disease, diabetes, and cancer have not
all directly been for diagnosing diseases. For example, in the prediction of cardiovascular
diseases, all of the studies listed in Table 4 were aimed at proving privacy-preservation
concepts. In addition, the studies in [103,104] attempted to solve scalability problems
using CVDs, while [108] attempted to solve personalization nodes using FL, and [110] ad-
dressed explainability, where reducing communication costs contributed to both privacy
and personalization. In this context, only [109] addressed the disease itself, without
targeting other FL-related topics, because it used a dataset from a clinical laboratory.

In contrast, the diabetes FL-based implementations summarized in 3 were all devoted
to the disease itself, without targeting other FL-related topics. The same is true for the
studies listed in Table 4, as this table only includes FL-based models dealing with cancer,
whereas the authors in [129] mentioned dozens of articles proposing some FL-based models
trained with cancers but focusing on FL-related topics.

FL-based models are therefore able to analyze data from different institutions that are
not connected or related in the real world, using specific disease datasets while targeting
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other FL-related ideas such as scalability, communication costs, personalization, and so
on. This may potentially help increase the efficiency and accuracy of intelligent models in
predicting disease by giving them access to more data, while also helping to advance the
field itself, clearly a win–win scenario for machine learning and health scientists.

3.3.4. Use of Smart Wearables

Smart wearables are known to provide people with continuous, long-term, and real-
time monitoring. For example, fitness trackers and smartwatches have the potential to
play an important role in the early detection and management of various diseases such as
cardiovascular disease [34], diabetes [35], or even fatigue detection in the workplace, as
shown in [36]. These tools can continuously monitor health data, such as the heart rate,
and provide data that can help identify potential health problems. They also allow data to
be collected outside of traditional healthcare settings, such as doctors’ offices and hospitals,
so that a larger number of patients can be cared for over longer periods of time. Overall,
the use of smart wearables can lead to the earlier diagnosis and treatment of diseases,
improving outcomes and reducing healthcare costs.

The importance of smart wearables stems from their specifications, which have re-
sulted from improvements in information and communication technologies (ICTs), the
Internet of Things (IoT), and artificial intelligence. Smart wearables, as seen in [34–36], can
be known as:

• Non-invasive: do not penetrate the skin to collect data;
• Compact: should not be bulky or large so as not to interfere with life activities;
• Affordable: to increase its acceptance;
• Rugged: to withstand harsh operating conditions such as light scratches or shocks;
• Easy to use: should have an intuitive interface;
• Durable power source: able to operate for a long period of time.

Despite the potential and usefulness of using smart wearables for disease detec-
tion using federated machine learning models, only one study ([104]) has employed a
smart wearable to predict the onset of cardiovascular disease using data collected from a
smartwatch for continuous, long-term, and real-time monitoring. In the other studies on
cardiovascular disease, diabetes, or cancer, the use of smartwatches was not considered in
the research. Therefore, there is still a great opportunity to merge smart wearables with the
field of federated machine learning to enable private and secure model training without
sharing confidential data.

3.3.5. Limitations in the Use of FL for Disease Prediction

In this sense, the use of federated machine learning in the detection and prediction
of CVDs, diabetes and cancer is still in its early stages. In addition to the fact that not
all FL implementations beat classical ML models, very rare real-world examples in this
context can be obtained. In addition, it is also rarely seen that FL researchers used smart
wearables in their experiments. All these details are mentioned in Table 7 below, which
summarizes the results discussed in this section to provide a complete overview of how
implementations based on FL have contributed to different concepts. Moreover, other
limitations and challenges that are obtained in the field of FL and its implementations in
disease prediction are mentioned in Section 4.1 below.
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Table 7. Federated machine learning implementations in CVDs prediction.

Ref Disease FL Beats ML
(Performance)

Real-World
Implementation

Disease-
Oriented Wearable

[103]

CVDs

No No No No
[104] No Yes No Yes
[105] No No No No
[108] No No No No
[109] No No Yes No
[110] Yes No No No
[112] No No No No

[116]

Diabetes

Yes No Yes No
[117] Same No Yes No
[118] Yes No Yes No
[119] No No Yes No
[121] Not available No Yes No
[122] Yes No Yes No

[130]

Cancer

Yes No Yes No
[132] Same No Yes No
[134] Same No Yes No
[135] Same No Yes No
[136] Same No Yes No
[138] Yes No Yes No
[139] Yes No Yes No
[140] Not available No Yes No
[141] Yes No Yes No
[142] Not available No Yes No
[143] No No Yes No
[144] No No Yes No
[145] Not available No Yes No

4. FL in Disease Prediction: Challenges and Future Perspectives

Federated learning, the new and emerging technology, is promising and has already
proven its efficiency in improving ML algorithms without compromising privacy. However,
this technology still faces many challenges that require further research, which requires
further development and improvement in this technology so that it can be further imple-
mented in real-world scenarios. These challenges require further future work to bring this
technology to a higher level so that it becomes more flexible and useful, contributing to its
adoption in different areas of life. This section discusses these challenges and identifies the
corresponding future perspectives needed to overcome obstacles and develop FL. These
challenges demand further future work to bring this technology to a higher level to make it
more flexible and useful, contributing to its adoption in different areas of life. This section
discusses these challenges and identifies the corresponding future perspectives needed to
overcome obstacles and develop FL.

4.1. Challenges

Federated learning is still in its early stages and still faces some obstacles. However,
there is no unified classification of these challenges in the literature, and they can be
considered differently depending on their nature, causes, and possible solutions. In
this section, the challenges have been studied in detail and classified into three main
categories [41,43,45,46,48,49,65,146,147]:

• Data source-related challenges (parties embedded in FL):

– Structural heterogeneity;
– Statistical heterogeneity;
– Data specifications—amount and readiness.
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• Learning process-related challenges:

– Privacy;
– High communication cost;
– Aggregation techniques;
– Personalization techniques;
– Evaluation complexity.

• Other vulnerability-related challenges:

– Federated fairness;
– Application areas.

4.1.1. Data Source-Related Challenges

? Structural heterogeneity: This is also referred to as system heterogeneity. Since
federated learning mainly aims to deal with data scattered in different islands, called
parties, these parties may differ in terms of network state, storage space, performance,
and the processing capabilities of the devices containing the parties’ data. Therefore,
due to network failures, not all devices may be ready and online at each processing
iteration, which is known as device failure. On the other hand, devices with better-
processing capabilities train faster than other devices, resulting in unbalanced training
times. Therefore, device failure and unbalanced training times can cause some devices
to lag behind the global model if they are still training with outdated parameters, with
these devices being referred to as laggards.

? Statistical heterogeneity: Due to the differences between FL embedded parties, the
data generated and collected are generally not independently and identically dis-
tributed (non-IID). Moreover, the data sizes of the different parties can be very differ-
ent, resulting in an unbalanced distribution. This definitely increases the complexity
in terms of analysis, modeling and evaluation.

? Data specifications—amount and readiness: In classical machine learning and deep
learning, the amount of training data is one of the factors affecting the performance
of the models, where large amounts of data can increase the accuracy of the learned
model. However, in a distributed environment, the amount of data on each party
is not the same, and it may be insufficient for local training on some parties, which
therefore affects the accuracy. In addition, heterogeneous data on the parties may
require different preprocessing steps, where some parties can process some missing
data while others do not.

4.1.2. Learning Process-Related Challenges

? Privacy: Despite the fact that federated learning aims to building smart models that
do not collect user data, it is still vulnerable to data leakage caused by attacks. This
is possible because of the transmission of gradients and partial parameters, whether
this is between parties and manager in the centralized architecture or between parties
themselves in the decentralized architecture. Those parameters are under the risk of
cracking on three levels: the inputs, learning process, or learned model, as previously
discussed. Usually, attacks are performed by adversaries ranging from malicious
clients in a party to a malicious party which only has black-box access to the model.
The types of attacks can be summarized into the following groups [54]:

• Poisoning attacks: these are conducted by injecting noise into the FL system, and are
also split into two categories:

– Data poisoning attacks: these are the most common attacks against ML models
and can be either targeted toward a specific class or non-targeted. In a targeted
attack, the noisy records of a specific target class are injected into local data so
that the learned model will act badly on this class;

– Model poisoning attacks: these are similar to data poisoning attacks, where the
adversary tries to poison the local models instead of the local data.
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• Inference attacks: in some scenarios, it is possible to infer, conclude, or restore the
party local data from the model updates during the learning process;

• Backdoor attacks: secure averaging allows parties to be anonymous during the model
update process. Using the same functionality, a party or group of parties can introduce
backdoor functionality in in FL global model. Then, a malicious entity can use the
backdoor to mislabel certain tasks such as choosing a specific label for a data instance
with specific characteristics. For sure, the proportion of the compromised devices and
FL model capacity affects in the intensity of such attacks.

? High communication cost: this is induced by the huge number of involved devices,
encryption and privacy preserving computations, local models and parameter-exchange
batches. In addition, it is known that the life cycle of modern data is short and that the
speed of iterative updating of data is fast, because the most important advantage is time-
liness. Therefore, the cost of communication is a difficult topic that is worth studying;

? Aggregation techniques: in centralized federated learning, the local models are ag-
gregated into a global model at the central server. Due to the variety of amounts of
data at each party, different results of local models, communication bottlenecks and
other challenges, the method behind aggregating the global model is a challenging
topic. In addition, most of the existing aggregation algorithms target the aggregation
itself, communication/computation cost reduction or heterogeneity the most, while
other topics such as personalization and scalability are less investigated;

? Personalization: According to [148], there is a gap between the accuracy of local and
global models, which impose personalization as a challenging topic in FL. However,
there are no clear metrics to evaluate the performance of personalization techniques,
which should be a hot topic for further research;

? Evaluation complexity: In classical ML and DL, the models are evaluated by defined
metrics such as accuracy, communication cost, computation speed, among others. In
contrast, the evaluation of an FL system will add more parameters to be evaluated
such as privacy, additional communication cost, and robustness against attacks.

4.1.3. Other Vulnerabilities

? Federated fairness: fairness is an emerging area of ML, investigating how to confirm
that the results of a model do not depend on sensitive attributes in a way that is
considered unfair. FL creates new problems for researchers regarding fairness and
requires a greater focus on improving the fairness of existing algorithms. At present,
it is unclear whether existing fairness methods and frameworks that have been shown
to be effective in ML will also be effective in FL;

? Application areas: federated learning has mainly been applied to supervised learning
algorithms. Therefore, when using FL in domains that require data exploration, such
as reinforcement learning, unsupervised learning, semi-supervised learning, and
others, some challenges may arise;

? User adoption: one of the main obstacles to integrating federated machine learning
into disease diagnosis is user acceptance, adoption, and participation. Although FL is
known as a privacy-friendly technology, FL is still new and has mixed user adoption
due to privacy concerns, discomfort, ethics, and other contextual factors.

Therefore, these difficulties give rise to the study questions below. In addition, these
questions are illustrated in Figure 8 below (the initialism RQ in the list below and in the
figure refers to the term “research question”):

• RQ1: Heterogeneity has a negative impact on the performance of a federated learning
system. What are the solutions to deal with diversity?

• RQ2: Real-world data are noisy and usually not suitable for analysis by intelligent
models. How can peripheral data be processed before these are used for model training?

• RQ3: Federated machine learning is vulnerable to security breaches and attacks. What
mechanisms are in place to strengthen these algorithms against malicious entities?
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• RQ4: The additional computations and sharing of models incur additional commu-
nication and computational costs in the FL system. What techniques can be used to
manage the increasing costs?

• RQ5: The available aggregation algorithms consider aggregation, reduction in com-
munication and computational costs, and privacy the most, while other issues such as
personalization and scalability are the least considered. What further steps need to be
taken to improve the performance of FL’s aggregation algorithms?

Figure 8. Research questions arising from analyzing the usage of FL in disease prediction.

4.2. Future Perspectives

Federated learning technology is still in its infancy, and there is much room for
improvement and enhancement that can increase its efficiency and feasibility. Based on the
literature review and investigation of the major challenges in this area, the following future
prospects can be identified in FL [41,43,45,46,48,49,65,146,149]:

? Managing heterogeneity: Heterogeneity in federated learning systems can result
from both data and hardware, which is known as statistical or structural heterogeneity.
To overcome heterogeneity, federated learning researchers may consider the following:

• Structural heterogeneity:

– Fault tolerance: FL considers the impact of low participation in the training pro-
cess to resist device failures by storing user updates in a trusted cache architecture
to mitigate their unreliable impact on the global model;

– Resource allocation: to solve resource scarcity, most of the previous work is
devoted to properly allocating resources to heterogeneous devices.

• Statistical heterogeneity:

– Data clustering: separating independent data into multiple clusters, then pro-
cessing FL on each cluster, which is not suitable for training bulk data due to
conversion overhead;

– Modify local training mode: put cross-entropy loss into the transfer process and
assign different local update times to each party in each processing iteration;

– Meta learning [150]: Improve training on non-IID data by creating a small subset
of data that are shared among all edge devices.

? Privacy preservation enhancement: even though the main goal of FL is to preserve
privacy by sharing the trained model between entities instead of raw data, the privacy
preservation concept needs further enhancement, especially towards:
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• Enhancing security mechanisms: by proposing new robust and feasible security
mechanisms that are protected against data attacks and cracking;

• Verifying the returned model: most privacy preserving methods (FL) assume that the
clients are reasonably honest. Although this is in line with training rules, curiosity in
acquiring private data remains. Therefore, the returned model should be checked to
determine whether it can be considered non-malicious.

? Communication optimization: due to the system and structural heterogeneity, as
well as the decentralized nature of FL, the research area of the communication cost
reduction is a hot topic to attend to. There are plenty things to be considered in this
area, such as:

• Gradient aggregation: it is worthwhile to introduce adaptive weighting for each party
or an ML method to learn how to aggregate these gradients in an efficient way;

• Handle heterogeneity: efficiently handling heterogeneous data and devices will defi-
nitely reduce communication rounds;

• Novel models of asynchrony: in the environment of FL, there is a large variety of
devices where the synchronous scheme can be easily disrupted. Therefore, it is better
to use an asynchronous scheme that can handle this diversity, solve the communication
delay problem, and avoid concurrent training with heterogeneous devices; Therefore,
the development of asynchronous FL platforms is a possible area of study;

• One-/few-shot learning: to minimize communication costs, reducing the number
of learning rounds could be a viable solution. Some researchers are exploring the
possibility of training the local models with only one iteration and updating the global
model accordingly.

? Performance optimization: The trade-off between communication, performance, and
privacy is an active research area in FL. Performance optimization can be achieved
using various approaches, such as:

• Incentive mechanism: to encourage parties’ participation in the training process in
a feasible way, it is important to encourage high-quality users to contribute to the
process by granting them some rewards, while neglecting or rejecting untrustworthy
users because the inconsistent quality of data provided by users;

• Handle party dropouts: as one of the biggest challenges in networks with a large
number of devices, handling dropouts will reduce communication costs, especially
related to delayed parties;

• Personalization: improving FL personalization is much needed by users and has
far-reaching applications. Many involved data holders will prefer to receive more
personalized models to better meet their needs.

? Toward unsupervised learning: unsupervised data are a large part of the data avail-
able in real life, and unsupervised learning is an area of great interest around the
world. Therefore, it is of great efficiency to move towards unsupervised learning
models with FL;

? Production of FL: due to its novelty and lack of popularity, FL still needs to be put
into production so that it can gain trust and be used in more areas of life;

? Benchmarks: since the technology is still in its infancy, there is a large window of
opportunity for benchmarking to define its future by ensuring that it is based on
real-world circumstances, assumptions and datasets.

For this reason, we can summarize the prospects on the following emerging research
topics. Moreover, these research topics are shown in Figure 9 as follows (the symbol TR in
the list below and in Figure refers to the term “trending research topic”):

• TR1: Fault tolerance, resource allocation, data clustering, modifying local training
models, and meta learning help handle heterogeneity;

• TR2: Preprocessing of data at peripherals to enhance their readiness may boost the
overall model accuracy;
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• TR3: More security perspectives are needed to strengthen FL against attacks;
• TR4: More communication/computation cost reduction is needed to boost the perfor-

mance of FL algorithms;
• TR5: more perspectives are needed to be taken into consideration in aggregation

algorithms such as privacy, personalization, and scalability.

Figure 9. Research topics that may serve as solutions to the challenges in the domain.

Figure 10 below summarizes the challenges–future solutions relationship and illustrates
how future views may act as potential solutions in the domain, all of which can assist in en-
hancing research on the use of federated machine learning in disease diagnosis and prediction.

Figure 10. Challenges–future solutions chart.

5. Conclusions

It is hoped that the federated ML will solve the privacy problems of ML. It is attractive
because it allows models to be trained without revealing sensitive information. Several
aggregation strategies for FL knowledge have been proposed, although the field is still
in its infancy. There are several examples of the application of this technology in various
industries, including healthcare, banking, and others. As explained in this article, it has been
used in healthcare as a diagnostic tool for a number of diseases, including cardiovascular
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disease, diabetes, and cancer. Federated machine learning has achieved some successes so
far, but still faces challenges such as the diversity of data and devices in the FL network,
the possibility of security breaches and attacks, and the high cost of computation and
communication. To help future researchers understand where we are now with this
technology and what they need to take the following steps, this article presents a number
of future directions that could be pursued to address these obstacles and improve the
efficiency of this technology.
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CHAPTER 3

Reviewing Federated Learning Aggregation
Algorithms; Strategies, Contributions,
Limitations and Future Perspectives
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Résumé: Les algorithmes d’agrégation dans l’apprentissage fédéré sont discutés et exam-
inés en détail dans ce chapitre. Ce chapitre se concentre exclusivement sur les algorithmes
d’agrégation dans le cadre de l’apprentissage fédéré, en commençant par une présentation
de son architecture, suivie d’une exploration des différents types de messages échangés entre
le serveur et les clients dans un système d’apprentissage fédéré. Le chapitre procède à une
évaluation approfondie de diverses méthodes d’agrégation et conclut en examinant minu-
tieusement les implémentations les plus avancées d’agrégations d’apprentissage fédéré, ainsi
qu’un examen approfondi des défis associés.
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Abstract: The success of machine learning (ML) techniques in the formerly difficult areas of data
analysis and pattern extraction has led to their widespread incorporation into various aspects of
human life. This success is due in part to the increasing computational power of computers and in
part to the improved ability of ML algorithms to process large amounts of data in various forms.
Despite these improvements, certain issues, such as privacy, continue to hinder the development
of this field. In this context, a privacy-preserving, distributed, and collaborative machine learning
technique called federated learning (FL) has emerged. The core idea of this technique is that, unlike
traditional machine learning, user data is not collected on a central server. Nevertheless, models
are sent to clients to be trained locally, and then only the models themselves, without associated
data, are sent back to the server to combine the different locally trained models into a single global
model. In this respect, the aggregation algorithms play a crucial role in the federated learning process,
as they are responsible for integrating the knowledge of the participating clients, by integrating
the locally trained models to train a global one. To this end, this paper explores and investigates
several federated learning aggregation strategies and algorithms. At the beginning, a brief summary
of federated learning is given so that the context of an aggregation algorithm within a FL system
can be understood. This is followed by an explanation of aggregation strategies and a discussion
of current aggregation algorithms implementations, highlighting the unique value that each brings
to the knowledge. Finally, limitations and possible future directions are described to help future
researchers determine the best place to begin their own investigations.

Keywords: federated machine learning; federated learning; collaborative artificial systems; dis-
tributed machine learning; decentralized machine learning; distributed intelligent systems; aggrega-
tion algorithms; privacy-preserving technology

1. Introduction

The industrial revolutions, from the first to the fourth, marked significant turning
points in human history, as they brought about a fundamental shift from manual labor
to machine production. This led to an increase in production efficiency that enabled
faster production at lower costs [1]. With the advent of information and communication
technologies (ICTs) such as computers and later the Internet, the pace of technological
progress has increased even further. These tools have revolutionized the way people
communicate, work, and access information. They enable real-time global communication
and interaction and facilitate access to vast amounts of data at a glance. The development
of computers and machines has led to unprecedented levels of automation, making many
tasks faster and more efficient than ever before [2].
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In the 1960s, the introduction of artificial intelligence (AI) as a branch of computer
science played an important role in revolutionizing computer and machine technology
worldwide [3]. AI, known as the algorithms that enable computers to perform tasks
that normally require basic intelligence, and to autonomously interpret and analyze large
amounts of data, make predictions, act independently, interact with the environment, and
even perform difficult tasks [4]. Moreover, the field of AI has been a hot research topic
since its invention, which has led to several AI branches and offshoots, such as machine
learning, deep learning, and others [5]. In this context, machine learning is defined as a set
of algorithms that allow computers to “self-learn” from training data and improve their
knowledge over time without being explicitly programmed. Machine learning algorithms
aim to detect patterns in data and learn from them to make their own predictions [6]. In
short, machine learning algorithms and models learn through experience. Technically, a
computer program is written by engineers and given a set of instructions that enable it
to convert input data into a desired output. In contrast, machine learning algorithms are
designed to learn with minimal or no human intervention and improve their knowledge
over time. The great success of ML and its great potential in classification and regression
problems, as well as its ability to handle both supervised and unsupervised learning
approaches, have attracted researchers from various fields [7]. Later reviews show the
variety of applications of ML, which can be found in almost all areas of our lives, especially
in the areas listed in Table 1 below.

Table 1. Machine learning common fields of implementation.

Field of Implementation

E-commerce and product recommendations [8,9]
Image, speech, and pattern recognition [8,9]

User behavior analytics and context-aware smartphone applications [8,9]
Healthcare services [10–12]

Traffic prediction and transportation [8,13]
Internet of things (IoT) and smart cities [13]
Cybersecurity and threat intelligence [14]

Natural language processing and sentiment analysis [15]
Sustainable agriculture [16]
Industrial applications [17]

1.1. Machine Learning Techniques: A Taxonomy

Artificial intelligence and its descendant, machine learning, are used in a wide variety
of real-world applications. Thousands, if not millions, of implementations are available
in the areas mentioned in the previous section. Moreover, the algorithms of ML can
be classified into different groups depending on their classification perspective. These
algorithms are traditionally classified into supervised, unsupervised, semi-supervised, and
reinforcement learning [5–7]. However, this classification only considers the data analyzed
by the model or the so-called learning style and ignores other possible classification bases.
In this context, the function or goal of the algorithm as well as the architecture can serve as
classification factors and provide an extended taxonomy for ML algorithms.

1.1.1. Classification per Learning Style

Machine learning workflows specify what steps are performed in an ML project. Data
acquisition, data preprocessing, model training and fine-tuning, evaluation, and production
deployment are generally the common processes. Consequently, the type of data obtained
determines the machine learning algorithm. From this point of view, the four categories
listed below can be defined [8–10]:

• Supervised Learning: This refers to the types of ML where machines are trained with
labeled input and then predict output based on that data. Labeled data means that the
input data have been labeled with the corresponding output. The training data serve
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as a supervisor that teaches the computers how to correctly predict the output. Then it
can be described as a process of providing the model ML with appropriate input and
output data so that it can identify a function to map the input and output variables;

• Unsupervised Learning: An algorithm that operates only on input data and has no
outputs or target variables. Consequently, unlike supervised learning, there is no
teacher to correct the model. In other words, it is a collection of problems where a
model is used to explain or extract relationships in data;

• Semi-Supervised Learning: This is a form of supervised learning in which the train-
ing data includes a small number of labeled instances and a large number of unla-
beled examples. It attempts to use all available data, not just the labeled data as in
supervised learning;

• Reinforcement Learning: This defines a class of problems where the intelligent model
operates in a given environment and must learn how to act based on inputs. This
means that there is no given training dataset, but rather a goal or collection of goals
for the model to achieve, actions it can take, and feedback on its progress toward the
goal. In other words, the goal is to learn what to do, how to map events to actions
in order to maximize a numerical reward signal, not dictating to the model what
actions to perform, but figuring out through trial and error which activities yield the
greatest reward.

1.1.2. Classification per Function

Machine learning algorithms, on the other hand, can be categorized by the goal of the
model. The goal, also referred to as the function, is the output of the model and determines
the type of model to be used. The different types of ML can be defined as follows [8–10]:

• Classification: the process by which a ML algorithm predicts a discrete output or so-
called class. Depending on the type of class to be predicted, this class can be divided
into the following groups:

– Binary Classification: refers to algorithms that can predict only one of two labels,
e.g., classifying emails as spam or not;

– Multi-Class Classification: refers to algorithms with more than two class labels,
where there are no normal and abnormal results. Instead, the examples are
classified into one of several known classes;

– Multi-Label Classification: the collection of algorithms that predict the output of
a label class, with no limit to how many classes the instance can be assigned to.

• Regression: the process by which a ML algorithm can predict a continuous output or
a so-called numerical value;

• Clustering: the process of categorizing a set of data instances or points so that those in
the same group are more similar and different from data points in other groups. It is
essentially a collection of instances based on their similarity and dissimilarity;

• Dimensionality Reduction: the process of minimizing the number of variables in the
supplied data, either by selecting only relevant variables ( feature selection ) or by
creating new variables that reflect several others (feature extraction);

• Representation Learning: the process of determining appropriate representations for
input data, which often involves dimensionality reduction.

1.1.3. Classification per Architecture

Another approach to classifying machine learning algorithms can be based on the under-
lying architecture of the system. In this context, two main categories can be defined [18,19]:

• Centralized Architecture: the traditional ML architecture, where data is collected on a
machine running the model;

• Distributed Machine Learning: the ML paradigm that benefits from a decentralized
and distributed computing architecture where the ML process is split across different
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nodes, resulting in a multi-node algorithm and system that provides better perfor-
mance, higher accuracy, and better scalability for larger input data.

That being said, federated machine learning, also known as federated learning, which
is the core topic of this paper, is a decentralized ML strategy that will be discussed in detail
in later sections. Figure 1 depicts the proposed taxonomy for machine learning algorithms.

Figure 1. Machine learning algorithms taxonomy.

1.2. Machine Learning Challenges

Machine learning has become an important part of modern technology, enabling
computers to perform complicated tasks with increasing efficiency and accuracy. However,
despite its obvious benefits, there are several problems in the field of machine learning,
ranging from technical issues of data quality and algorithm development to ethical concerns
about privacy, fairness, and transparency. Therefore, there is also a great need to address
these difficulties and ensure that machine learning benefits society in a responsible and
sustainable manner. The known challenges in ML are discussed below.

1.2.1. Data Related Challenges

Machine learning algorithms are trained with datasets to determine relationships
between them, discover trends and patterns, and predict future outcomes. However, since
the workflow of the ML algorithms begins with data acquisition, as described earlier, data
plays a critical role in shaping the quality and efficiency of a machine learning algorithm.
The following describes the most common challenges in ML related to data [20,21]:

• Data Availability/Accessibility: data may not be available or accessible;
• Data Locality (Data Islands): data are scattered into different and non-related entities;
• Data Readiness: data may be heterogeneous, noisy or imbalanced;
• Data Volume: difficulty of working with datasets that are too large or too small;
• Feature Representation and Selection: selecting the optimal features for best results.

1.2.2. Models Related Challenges

After preparing the data for the ML algorithms, selecting the most appropriate model
for the problem at hand is another problem that experts usually grapple with. The chal-
lenges associated with the ML models themselves are in the following list [22–24]:

• Accuracy and Performance: increasing the accuracy of the models;
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• Model Evaluation: correct evaluation of the performance of the models;
• Variance and Bias: affects the results and confidence;
• Explainability: resolving back-box identity of ML models.

1.2.3. Implementation-Related Challenges

In addition, the implementation phase, which refers to the training of the model,
evaluation and results, and other steps, is a big area of interest. The implementation phase
is associated with several challenges, which can be summarized as follows [22–24]:

• Real-Time Processing: adapting models to operate in real time;
• Model Selection: selecting the best model suitable for the problem under study;
• Execution Time and Complexity: ML models may require high computational power.

1.2.4. General Challenges

On the other hand, there are a number of challenges that do not fall into any of the
previously mentioned categories. More attention needs to be paid to these challenges,
which are identified below, in order to increase the efficiency of the ML domain and
improve its usability [20,23,25]:

• Users’ Data Privacy and Confidentiality: data are protected by numerous regulations;
• User Technology Adoption and Engagement;
• Ethical Constraints.

1.3. Privacy Criticality: Federated Learning as a Solution

Privacy is a fundamental right, and protecting sensitive personal information is critical
in today’s digital age. Privacy issues can arise when collecting, storing, and analyzing
data in the context of machine learning, as algorithms rely heavily on personal data to
train models and make predictions. These challenges stem from the increasing number
of data breaches, which require more and more solutions as their negative impact grows.
According to a survey conducted by IBM in 2020, 56% of data breaches are due to malicious
attacks, while 32% are due to system glitches or human error, as mentioned in the IBM Cost
of a Data Breach Report [26]. This report is a global study that examines data breaches in
different countries and industries. The report analyzes data breaches in different regions,
including North America, Europe, Asia-Pacific, and the Middle East, and covers various
industries, including healthcare, financial services, retail, and manufacturing. According to
this report, the average total cost of a data breach in 2020 was $3.86 million USD, with an
average cost of $150 USD per record, highlighting the economic burden of these illegal acts
in addition to ethical violations and privacy [26]. Therefore, it is more than necessary to
reduce the impact of malicious attacks or system disruptions on ML.

In this context, Google proposed federated learning in 2016, which later proved to be
a solution to privacy issues [27]. Federated learning is thus defined as a machine learning
method that allows numerous devices or organizations to train a model collaboratively
without sharing raw data. Alternatively, the model is trained on local data, and only the
model updates are shared with a central server, which enables privacy-preserving and
decentralized model training [27,28]. By decentralizing the ML process, and reducing the
amount of data transferred between devices and servers, federated learning was able to
minimize the risk of data leaks from malicious attacks and system failures. These results
were confirmed by different studies, for instance [29], where the authors proved that their
federated learning framework preserves up to 99% of bandwidth and 99% of energy for
clients during communication.

After that, in the federated learning domain, an aggregation algorithm is defined as
the technique that aggregates the result of training multiple smart models on the clients’
side using their local data. This algorithm is the part that handles the fusion of the results
obtained from the local clients training, and updating the global model. The aggregation
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algorithms in federated learning are discussed and reviewed in detail in this paper. In
addition, Figure 2 illustrates the aggregation algorithm in the federated learning domain.

Figure 2. Federated learning aggregation algorithms.

1.4. Article Outline and Contributions

In this article, aggregation algorithms in the field of federated machine learning are
discussed in detail. To achieve this goal, the topic is discussed in detail in the following
sections. In Section 2, federated learning is discussed from different perspectives, including
both definitions and technical perspectives. In addition, aggregation is defined and its
various approaches are explored. In Section 3, the state of the art of aggregation algorithms
in federated learning is presented and a taxonomy for the available algorithms is proposed.
In Section 4, an overview of these algorithms is given, exploring the contribution of each
algorithm along with its limitations and future prospects. Finally, the aforementioned
sections are followed by a conclusion that summarizes the entire work. In this context, this
article attempts to answer the following research questions:

• What is federated machine learning?
• What is aggregation in federated learning?
• What are the different aggregation strategies?
• What is the state of the art in FL aggregation algorithms?
• What possible taxonomy can be established for these algorithms?
• What are the area(s) of contribution for each proposed aggregation algorithms?
• What are the limitations to date in this area?
• What future perspectives can be pursued to improve aggregation in the field FL?

The topic of federated machine learning has been a hot and timely topic lately. Al-
though it was first used in 2016, FL has become the focus of interest among computer
science researchers because it is expected to play a role in advancing machine learning as a
privacy-preserving technology that will help overcome the increasing conflicts associated
with it. Dozens, if not hundreds, of studies have already been published in this regard.
However, to our knowledge, none of these studies have addressed, inclusively and com-
pletely, the issue of aggregation algorithms in FL, as is the case in this study. For example,
the authors of [30] discussed privacy and security in FL aggregation algorithms, but did
not mention other aggregation approaches that address other goals, such as reducing
communication and computational overhead, scalability, or other issues, as is the case here.
Consequently, there is a great need to study this area in order to direct future efforts to
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the crucial work that best contributes to the advancement of the field FL. Therefore, this
article attempts to fill the gap in this area by providing a complete overview of the currently
available federated learning aggregation algorithms, discussing their contributions and
limitations, and providing future perspectives that researchers can pursue in their future
studies. The contributions of this article can be summarized as follows:

• Differentiating between exchanging model updates, parameters or gradients in FL;
• Explaining aggregation algorithms in federated learning domain;
• Describing aggregation and its different approaches;
• Presenting the state of the art of aggregation algorithms in federated learning;
• Proposing a taxonomy that can be followed in categorizing FL aggregation algorithms;
• Discussing the contributions of each of the available FL aggregation algorithms;
• Studying the limitations of the aforementioned algorithms;
• Examining possible future prospects, which can be used as a starting point for further

studies to improve aggregation algorithms in the field of FL.

2. Materials and Methods: Studying Federated Learning and Aggregation

Privacy and security are paramount in the age of big data. The more data that are
collected and shared, the greater the risk of data breaches. Federated machine learning
offers a compelling answer to these problems by allowing data to be analyzed and shared
without ever leaving the device on which it was collected. Federated machine learning
can realize the full potential of big data while protecting privacy and security by lever-
aging advanced algorithms and unique aggregation approaches. This section presents
the technological foundations of federated machine learning and the various aggregation
strategies that can be used to harness the potential of scattered data. Different approaches
to secure privacy-preserving methods are explored, ranging from simple averaging to more
advanced methods such as secure multi-party computing and differential privacy.

2.1. Federated Learning: An Overview

In federated machine learning, many parties collaborate to train a single model without
exposing their own data to the other entities or a central server. The term “federated
machine learning” can also refer to distributed learning with multiple participants. In this
technique, each participant trains a model using only the data specific to that participant,
and then shares the refined model parameters with a central repository. After receiving
updates to the model from all participants, the aggregator merges them into a single,
updated version of the model. This process is iteratively repeated until the accuracy of the
combined model reaches the target level. Federated machine learning makes it possible to
ensure privacy in machine learning, where sensitive data remain under the control of its
original owners by ensuring that the data are stored locally and that data transfer between
parties is kept to a minimum [27,28,31].

2.2. Federated Learning: Technical Perspectives

Federated learning is emerging as a privacy-preserving machine learning technology
that is not only capable of protecting private data, but also improving the quality of models
by facilitating access to more data. This potential stems from the underlying architecture
and technical perspectives considered in this context.

2.2.1. Underlying Architecture

Typically, a federated machine learning environment consists mainly of a set of four
groups of entities, namely, the main server, the parties, the communication framework,
and the aggregation algorithm [31–33]. Each of these entities assumes a specific role in the
federated learning process. These entities can be defined as follows:

• Central Server: the entity responsible for managing the connections between the
entities in the FL environment and for aggregating the knowledge acquired by the
FL clients;
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• Parties (Clients): all computing devices with data that can be used for training the
global model, including but not limited to: personal computers, servers, smartphones,
smartwatches, computerized sensor devices, and many more;

• Communication Framework: consists of the tools and devices used to connect servers
and parties and can vary between an internal network, an intranet, or even the Internet;

• Aggregation Algorithm: the entity responsible for aggregating the knowledge ob-
tained by the parties after training with their local data and using the aggregated
knowledge to update the global model.

Following this, the classical approach of the learning process is achieved in the envi-
ronment of FL by repeating the following steps:

1. Central server receives connection from clients and sends them initial global model;
2. Parties receive initial copy of model, train it with their local data, and send results

back to central server;
3. The central server receives the locally trained models, which are aggregated with the

correct algorithm;
4. The central server updates the global model based on the aggregation results and

sends the updated version to the clients;
5. Repeat the above steps until the model converges or until the server decides to stop.

In Figure 3 below, the underlying architecture, entities, and process steps are illustrated
for a better description of the FL environment.

Figure 3. Federated learning process and environment.

2.2.2. Exchanging Models, Parameters, or Gradients

In classical machine learning, data are collected on the server so that the models can
be trained directly, building their ability to predict future instances. In contrast, in the
federated learning environment, the data are not collected on the server, but the models are
shared between the server and the clients so that training can be performed on the local data,
which helps to maintain privacy. The term “exchange of models” is often used in federated
learning research, but it does not describe the different approaches to message exchange
between the central server and the clients. For example, there are other alternatives for
sending and receiving models, such as exchanging gradients or model parameters instead
of the model itself. In this context, the different approaches to message exchange in the FL
environment can be described as follows:
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• Exchanging Models: This is the classical approach, where models are exchanged
between server and clients. This approach is very costly in terms of communication
and also poses security problems, since the models can be intercepted with malicious
intent to extract the data used for training;

• Exchanging Gradients [34,35]: Instead of submitting the entire model to the server,
clients in this method submit only the gradients they compute locally. Federated
learning with gradient aggregation (FLAG) is another name for this strategy. Each
client computes the gradients using its own local data and then submits them to the
server, which indicates the direction in which the parameters of the model should
be updated to minimize the loss function. After the server collects the gradients, it
applies them to the global model. This method has the advantage of both maintaining
privacy and reducing communication costs. The divergence of local models is one
of the challenges that can arise with this strategy when clients use different learning
rates and optimization strategies;

• Exchanging Model Parameters [36,37]: This concept is mainly tied to neural networks
where model parameters and weights are usually used interchangeably. Parameters,
sometimes called weights, are the values assigned to connections between neurons in a
neural network where the input from one layer of neurons is used by the next layer to
produce an output, which is then weighted. During training, the weights are adjusted
to reduce the discrepancy between the expected and actual output. This method has
the potential to reduce the burden of communication costs in an FL environment while
maintaining the confidentiality features of the FL approach. However, this method
assumes that all clients have the same model architecture, which may not be the case
for all implementations, leading to numerous problems. There is also the possibility
that the method will not be effective if the client data are too large or if the data are
not balanced on the client side;

• Hybrid Approaches: Two or more of the above methods can be combined to form a
hybrid strategy that is particularly suited to a particular application or environment.
For example, the server can broadcast the initial parameters for the clients to all nodes
and then receive updated models from the nodes, which it then combines with its own
to create a global model.

In Table 2 below, the different types of messages exchanged between server and
clients in federated learning environment are summarized, along with their advantages
and disadvantages.

Table 2. FL exchanged messages: models updates vs. parameters vs. gradients.

Type Concept Advantages Disadvantages

Exchanging Models Models are sent between
server and clients Ease of implementation High communication cost

Less secure

Exchanging Gradients Only gradients are exchanged
between entities

Lower communication cost
Higher security Local models divergence

Exchanging Model
Parameters

Only weight and parameters
are exchanged

Lower communication cost
Higher security

Limitation to neural networks
Unified client model

architecture
Not effective with big or

imbalanced data

Hybrid Approach Merging two or more of the
above approaches Fit for specific cases Generated frameworks may

not be re-used

2.3. What Is Aggregation in FL?

Federated learning is a collaborative, decentralized machine learning technology
where entities within the network collaborate in training a global model without sacrific-
ing the security of private data. To make the process of integrating the obtained results
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efficient, an aggregation approach is essential, whether the messages exchanged are the
models themselves, some or all of their parameters, or gradients. Each client trains its own
model on its own data and then transmits these results to the server, where an aggregation
approach uses these results to generate the group’s collaborative relationship. Then, this
information is used to update the global model. The central server can leverage the diver-
sity of the training data without actually having access to the raw data by aggregating the
model updates sent from each device. The various aggregation methods available for use in
federated machine learning each have their own advantages and disadvantages. However,
aggregation in federated machine learning goes beyond simply merging model updates.
In addition to tracking model performance across devices, additional statistical indicators
such as loss functions or accuracy measurements can also be aggregated. Furthermore,
aggregation can be carried out in a hierarchical manner, aggregating local models on inter-
mediate servers before sending them to the central server, enabling large-scale federated
learning systems. This is why the aggregation algorithm is such a fundamental concept in
federated learning; it ultimately determines the success of model training and whether or
not the resulting model is practical to use [28,29,31,32].

2.4. Different Approaches of Aggregation

Aggregation algorithms in federated learning are important because of their role in
updating global models. There are many aggregation approaches that can be followed in
building the aggregation algorithm in a federated learning environment. In federated learn-
ing, a variety of aggregation algorithms are used depending on the goals to be achieved,
such as protecting user privacy, increasing the convergence rate, and reducing the damage
caused by fraudulent customers. Each of these approaches has its advantages and disad-
vantages, and some are better suited to certain contexts of federated learning than others.
In this section, the best- known aggregation algorithms are mentioned, since there may be
approaches other than those presented here.

2.4.1. Average Aggregation

This is the initial approach and the most commonly known. In this approach, the
server summarizes the received messages, whether they are model updates, parameters,
or gradients, by determining the average value of the received updates. Since the set of
participating clients is denoted by “N” and their updates are denoted by “wi”, the aggregate
update “w” is calculated as follows [38]:

w = (1/N) ∗
N

∑
i=1

wi (1)

2.4.2. Clipped Average Aggregation

This method is similar to average aggregation, where the average of received messages
is calculated, but with an additional step of clipping the model updates to a predefined
range before averaging. This approach helps reduce the impact of outliers and malicious
clients that may transmit large and malicious updates [39]. Since “N” denotes the set
of participating clients and “wi” denotes their relative weights, “clip(x, c)” is a function,
which clips the values of “x” to a range of “[−c, c]”, and “c” is the clipping threshold, the
total clipped aggregate update “w” is calculated as [39]

w = (1/N) ∗
N

∑
i=1

clip(wi, c) (2)

2.4.3. Secure Aggregation

Techniques such as homomorphic encryption, secure multiparty computation, and
secure enclaves make the aggregation process more secure and private in this way. These
methods can ensure that client data remain confidential during the aggregation process,
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which is critical in environments where data privacy is a high priority [40]. Secure aggrega-
tion is the result of integrating security techniques, such as those mentioned earlier, with
one of the available aggregation algorithms to create a new secure algorithm. However,
one of the most popular secure aggregation algorithms is the differential privacy aggrega-
tion algorithm, which proposes a different technique for integrating clients results. This
technique is detailed in the next section.

2.4.4. Differential Privacy Average Aggregation

This approach adds a layer of differential privacy to the aggregation process to ensure
confidentiality of client data. Each client adds random noise to its model update before
sending it to the server, and the server compiles the final model by aggregating the up-
dates with the random noise. The amount of noise in each update is carefully tuned to
compromise between privacy and model correctness. If “N” denotes the set of participating
clients and ”wi” denotes their relative weights, “ni” is a random noise vector, drawn from
a Laplace distribution with a scale parameter “b”, and “b” is a privacy budget parameter,
the differentially private aggregate update “w” is calculated as follows [41]:

w =
1
N

N

∑
i=1

(wi + b · ni) (3)

2.4.5. Momentum Aggregation

This strategy should help solve the slow convergence problem in federated learning.
Each client stores a “momentum” term that describes the direction of model changes in
the past. Before a new update is sent to the server, the momentum term is appended to the
update. The server collects the updates enriched with the momentum term to build the
final model, which can speed up convergence [42].

2.4.6. Weighted Aggregation

In this method, the server weights each client’s contribution to the final model update
depending on client performance or other parameters such as the client’s device type,
the quality of the network connection, or the similarity of the data to the global data
distribution. This can help give more weight to consumers that are more reliable or
representative, improving the overall accuracy of the model. Given that “N” denotes the
set of participating clients and “wi” their relative weights, and their corresponding weights
“ai”, the weighted aggregate update “w” is computed as follows [43]:

w = (
N

∑
i=1

ai ∗ wi)/(
N

∑
i=1

ai) (4)

2.4.7. Bayesian Aggregation

In this approach, the server aggregates model updates from multiple clients using
Bayesian inference, which allows for uncertainty in model parameters. This can help reduce
overfitting and improve the generalizability of the model [44].

2.4.8. Adversarial Aggregation

In this method, the server applies a number of techniques to detect and mitigate the
impact of customers submitting fraudulent model changes. This may include methods
such as outlier rejection, model-based anomaly detection, and secure enclaves [45].

2.4.9. Quantization Aggregation

In this approach, model updates are quantized into a lower bit form before being
delivered to the server for aggregation. This reduces the amount of data to be transmitted
and improves communication efficiency [46].
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2.4.10. Hierarchical Aggregation

In this way, the aggregation process is carried out at multiple levels of a hierarchical
structure, such as a federal hierarchy. This can help reduce the communication overhead
by performing local aggregations at lower levels of the hierarchy before passing the results
on to higher levels [47].

2.4.11. Personalized Aggregation

During the aggregation process, this approach considers the unique characteristics of
each client’s data. In this way, the global model can be updated in the most appropriate
way for each client’s data, while ensuring data privacy [48].

2.4.12. Ensemble Bases Aggregation

The model is trained on different subsets of clients, called ensembles, and the resulting
models are integrated to produce the final model. Each ensemble may have a specific subset
of clients and models trained on that customer. The models from each ensemble are then
merged to create a final model. This method can help reduce the impact of non-IID data
while improving model accuracy. To increase model accuracy, ensemble-based aggregation
can be combined with other aggregation approaches, such as weighted aggregation [49].

In Table 3, these aggregation algorithms are summarized, showing at the same time
their main concept as well as their advantages and disadvantages.

Table 3. FL aggregation approaches: concepts, advantages, and disadvantages.

Approach Main Concept Advantages Disadvantages

Average Aggregation Average the clients updates Simple and easy to implement
Can improve model accuracy

Sensitive to outliers and
malicious clients

May not perform well in cases
of non-IID data

Clipped Average Aggregation
Clip the model updates to a

predefined range before
taking the average

Reduces the effect of outliers
and malicious clients

Can improve model accuracy

More computationally
intensive

Secure Aggregation

Use techniques such as
homomorphic encryption or

secure multi-party
computation to ensure privacy

Provides a high level of
privacy protection

Can still achieve good model
accuracy

May be computationally
expensive and slower than
other aggregation methods

Requires careful
implementation and

management of security
protocols

Differential Privacy Average
Aggregation

Add random noise to the
model updates before

aggregation to ensure privacy

Provides a high level of
privacy protection

May be slower and less
efficient than other

aggregation methods
The level of noise added can

impact model accuracy

Momentum Aggregation

Add a momentum term to the
model updates before

aggregation to improve
convergence speed

Can improve convergence
speed and reduce the impact

of noisy or slow clients

May be sensitive to the choice
of momentum term and the
level of noise in the updates

Weighted Aggregation
Weight the contributions of
different clients based on

performance or other factors

Can improve model accuracy
by giving more weight to

more reliable or representative
clients

Requires careful calibration of
weights and may be sensitive

to bias or noise in
performance metrics
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Table 3. Cont.

Approach Main Concept Advantages Disadvantages

Bayesian Aggregation
Use Bayesian inference to

aggregate model updates and
take uncertainty into account

Can improve model
generalization and reduce

overfitting

Can be computationally
expensive and require large

amounts of data
The Bayesian model

assumptions may not hold for
all types of data

Adversarial Aggregation
Detect and mitigate the

impact of malicious clients or
outlier model updates

Can improve model accuracy
and reduce the impact of

malicious clients

May be computationally
expensive and require

sophisticated detection and
mitigation techniques

Quantization
Reduce the bit representation

of model updates before
transmission

Can improve communication
efficiency and reduce

bandwidth requirements

May introduce quantization
error that can impact model

accuracy
The level of quantization

needs to be carefully chosen

Hierarchical Aggregation
Perform aggregation at

different levels of a
hierarchical structure

Can improve communication
efficiency by performing local

aggregation at lower levels

Requires a well-defined
hierarchical structure and

careful management of data
and aggregation protocols

Personalized Aggregation Takes clients’ unique
characteristics into account

Improves model performance
by adapting to individual

client data

Maintains privacy, but may
require additional

communication and
computational overhead

Ensemble-based Aggregation
Aggregate the model updates
of multiple models trained on
different subsets of the data

Can improve model accuracy
by leveraging the diversity of

the models

May be computationally
expensive and require careful
management of the ensemble

models

In this section, federated machine learning has been explained and discussed in detail.
Federated learning is a machine learning-based technology that allows smart models to be
trained without the need to collect users’ private data on central servers. Alternatively, and
because of the technical architecture on which FL is built, models are sent to users to be
trained on their data, preserving privacy. Another approach in FL involves the exchange
of model parameters or gradients. In this context, the messages exchanged between the
central server and the clients of FL must be aggregated to produce the final global model.
Consequently, the aggregation algorithms in FL are the mechanisms used to integrate
knowledge from local models into a global model. Originally, the average aggregation was
proposed by Google in their FL aggregation algorithm called FedAvg [38]. Later, several
aggregation concepts were proposed in different studies, as explained earlier. In the next
section, various FL aggregation algorithms are discussed and the state of the art is also
presented.

3. Results: FL Aggregation Algorithm Implementations

In federated machine learning, both clients and server collaborate in training a smart
model. The different approaches taken in aggregating locally trained models have led to
several aggregation algorithms in recent years. Although it was first proposed by Google in
2016 [38], federated learning emerged as a trending topic that attracted researchers and led
to dozens of studies in this area. In this context, several implementations for FL aggregation
algorithms can be found in the literature and will be discussed in this section.
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3.1. State of the Art

Aggregation algorithms for federated learning are being studied extensively, and
researchers are making great efforts to advance this field. In the last six years, twenty-seven
implementations were carried out in this context. These implementations are described
below. A graphical summary of these implementations is shown in Figure 4 below.

Figure 4. Implementations of FL aggregation algorithms.

3.1.1. “2017–2019”: Introducing FL to the Market

The first implementation of a federated learning framework, called FedAvg, was
proposed by Google [38], and they were the first to propose training smart models without
collecting user data. This article provided the first practical method for FL of deep networks
based on iterative model averaging. The authors of this article used five different model
architectures and four datasets to evaluate their model. In the same year, the authors of [50]
developed a novel communication-efficient, failure-robust protocol for secure aggregation
of multiple and high-dimensional data. The proposed protocol allows a server to compute
the sum of large data held by the user in a secure manner. The obtained results prove
the security of their protocol in the “honest but curious” and “active adversary” settings,
maintaining this security even if an arbitrarily chosen subset of users drops out at any
point in time. Furthermore, in [51], the authors presented a new approach that is robust to
possible poisoning of local data or model parameters. Their model, called robust federated
aggregation (RFA), aggregates local updates using the geometric median, which can be
efficiently computed using a Weiszfeld-type algorithm. The authors also offered two
variants of RFA: a faster variant with robust one-step aggregation and another with intra-
device personalization. They tested their model with three tasks from computer vision and
natural language processing and their results competed with classical aggregation.

3.1.2. “2020”: A Big Step

The year 2020 brought a boost in the development of FL aggregation algorithms. For
instance, authors of [52] proposed SCAFFOLD, a new algorithm that uses control variance
to correct for ’client drift’ in its local updates. The obtained results showed that SCAFFOLD
requires fewer rounds of communication and is not affected by data heterogeneity or client
sampling. Moreover, SCAFFOLD proved that exploiting client data similarity leads to
faster convergence. Moreover, in [53], the authors proposed different versions of federated
learning models using different adaptive optimizations, including ADAGRAD, ADAM, and
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YOGI, and analyzed their convergence in the presence of heterogeneous data for general
nonconvex settings. The obtained results proved the feasibility of these models in reducing
convergence in FL. Moreover, in [54], the authors presented an alternative approach called
FedBoost, which uses an ensemble of pre-trained base predictors. This method can be used
to train a model that can overcome the limitations of communication bandwidth and client
memory capacity. With their proposed model, the cost of communication between server
and clients could be reduced.

In addition, the authors of [55] proposed FedProx, which is able to deal with hetero-
geneity in federated learning networks. FedProx is a generalization and reparametrization
of FedAvg, and they proved that their model provides more robust convergence than
FedAvg over a range of real-world heterogeneous datasets. Moreover, the authors of [56]
proposed a federated matching average (FedMA ) algorithm, which constructs the joint
global model layer-by-layer by matching and averaging hidden elements with similar
feature extraction signatures. Their results show that FedMA outperforms the classical
algorithms of FL in processing real-world datasets and also reduces the overall communi-
cation overhead. In the same context, the authors of [57] investigated the analog gradient
aggregation (AGA) solution to overcome the communication resource constraints in FL
applications. They proposed both new communication and learning approaches to improve
the quality of gradient aggregation and accelerate the convergence speed. In addition, in
article [58], the authors proposed a low-complexity approach that preserves user privacy
and uses significantly fewer computational and communication resources.

Furthermore, in [59], the authors proposed a new approach to selective model aggre-
gation based on a two-dimensional contract theory as a distributed framework to facilitate
the interaction between FL entities. They tested their approach with two datasets, MNIST
and BelgiumTSC. The obtained results showed that their model outperformed the original
FL model, i.e., FedAvg. Moreover, the authors of [60] developed a new model that is
characterized by adaptive communication of quantized gradients. The key idea of their
model is quantization of gradients as well as skipping of less informative quantized gra-
dient communications by reusing previous gradients. Quantization and skipping lead
to ’lazy’ worker–server communication, which explains the name of their model as the
lazily aggregated quantized (LAQ) gradient.Their model showed a significant reduction in
communication compared to other FL approaches. In addition, the authors of [61] proposed
a semi-synchronous FL protocol, referred to as SAFA, to improve the convergence rate in
heterogeneous FL networks. The authors introduced new designs for model distribution,
client selection, and global aggregation to reduce the negative effects of stragglers, crashes,
and model staleness. The obtained results demonstrate that the proposed model efficiently
shortens the duration of interconnection rounds, reduces the waste of local resources, and
improves the accuracy of the global model at an acceptable communication cost.

3.1.3. “2021”: FL toward More Enhancements

In addition, the authors proposed FedDist in [62], a novel approach for FL aggrega-
tion, which is able to change its architecture by detecting dissimilarities between clients.
This approach improves the personalization and specificity of the model without com-
promising generalization. In addition, the authors of [46] proposed federated learning
with heterogeneous quantization (FedHQ), which accelerates convergence by computing
and piggybacking the instantaneous quantization error as each client uploads the local
model update, and the server dynamically computes the appropriate weight for the current
aggregation. Their results show that the performance of FedHQ outperforms FedAvg with
an accelerated convergence rate. Similarly, in [63], the authors proposed a novel system
known as federated learning with quality awareness (FAIR), which consists of three main
components. The first component is learning quality estimation, which uses historical
learning records to estimate the user’s learning quality. The second component is the
quality-aware incentive mechanism, which reverses the auction problem to encourage
the participation of users with high learning quality. The third component is the model
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aggregation, where only ideal models are aggregated in this process to optimize the global
model. Their conducted experiments demonstrated the effectiveness of FAIR.

Similarly, in [64], the authors proposed the new model called federated particle swarm
optimization (FedPSO), which has increased robustness to unstable network environments.
This is achieved by modifying the data that clients send to servers by transmitting score
values instead of large weights of local models. In addition, FedPSO has improved network
communication performance. Tests conducted by the authors have shown that their model
has an improved communication approach where data transmission has been minimized,
and that it has improved accuracy even in unstable networks. The authors of [65] also
presented their model, called layerwise gradient aggregattion (LEGATO). LEGATO is a
scalable and generalizable aggregation approach. Their model uses a dynamic gradient
weighting scheme that processes gradients based on layer-specific robustness. Experiments
conducted by the authors showed that LEGATO is computationally more efficient than
previous models of FL. Moreover, LEGATO proved its efficiency against attacks such as
the Byzantine attack. In addition, the authors proposed a new model in [66] called model-
heterogenous aggregation training (MHAT) FL. The model relies on knowledge distillation
to extract update information from the heterogeneous model of all clients and then train a
supporting model on the server to understand the information aggregation. By relieving
clients from using a unified model, computational resources are significantly reduced,
and the convergence accuracy of the model also remains acceptable. The efficiency and
applicability of this model has been demonstrated through several tests in this paper.

In response, the authors of [67] proposed a new federated learning model with an
improved communication protocol to minimize privacy leakage. Unlike previous work that
used differential privacy or homomorphic encryption, the proposed protocol controls the
communication between participants in each round of aggregation. This communication
pattern was inspired by combinatorial block design theory. The authors evaluated their
model using tests with nine datasets distributed over fifteen sites. The obtained results
demonstrate the efficiency of this model in minimizing privacy leakage. In addition,
the authors of [68] proposed a new FL model based on a reputation-based aggregation
methodology. The methodology scales the aggregation weights of users according to their
reputation value, which is calculated using the performance metrics of their trained local
model in each training round. This reputation value can therefore be considered as a metric
for evaluating the direct contributions of each trained local model. The tests conducted by
the authors have shown that their model outperforms previous implementations, especially
in non-independent and identically distributed (non-IID) FL scenarios. In addition, in [69],
the authors proposed a new model FL called the secure and efficient aggregation framework
(SEAR). SEAR is a Byzantine-robust model for federated learning. The model relies on intel
software guard extensions (SGX) to protect clients’ locally trained models from Byzantine
attacks. Considering the memory limitation in their concurrent trusted Intel SGX memory,
the authors proposed to use two data storage modes to efficiently implement aggregation
algorithms. Experiments conducted by the authors showed that SEAR is computationally
efficient and robust against attacks. Furthermore, in [70], the authors proposed a secure
aggregation framework FL called turbo-aggregate. This framework uses a circular multi-
group strategy to efficiently aggregate locally trained models. Moreover, the framework
uses additive secret sharing to incorporate aggregation redundancy to deal with user
failures while maintaining the privacy of all users. The framework was tested and the
results showed that, first, it provides an increase in aggregation speed of up to 40 times
compared to previous implementations and, second, the total runtime grows almost linearly
with the number of users, which increases scalability.

3.1.4. “2022”: The Journey Continues

Recently, in [71], the authors proposed an efficient privacy-preserving data aggregation
(EPPDA) mechanism. EPPDA is based on secret sharing and has an efficient fault-tolerance
method to deal with user disconnection. The authors tested their model to show that it
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is robust against reverse attacks and user connection disruption. In addition, the authors
of [72] proposed a new FL model called federated buffered asynchronous aggregation
(FedBuff). FedBuff is independent of the optimizer choice and combines the best features of
synchronous and asynchronous FL. FedBuff was found to be 3.3 times more efficient than
synchronous FL and up to 2.5 times more efficient than asynchronous FL. In addition, the
authors of [73] proposed HeteroSAg, that enables secure aggregation with heterogeneous
quantization. Their strategy was based on a grouping scheme that divides the network
into groups and divides local model updates from users into segments. Therefore, aggre-
gation is applied to segments with specific coordination between users instead of being
applied to the local model. This strategy allows the edge users to adapt to their available
communication resources, thus achieving a better trade-off between training accuracy and
communication time. The tests conducted by the authors also show that HeteroSAg is
robust against Byzantine attacks. Finally, in [74], LightSecAgg was proposed, which is
based on reconstructing the aggregate mask of active users using “ mask coding/decoding”
instead of “random-seed reconstruction of the dropped users ”. LightSecAgg shows a
reduction in overhead for resilience against lost users. In addition, it provides a modular
system design and optimized parallelization on the device for a scalable implementation
that improves the speed of concurrent data exchange. The authors tested their model with
four datasets to show its resilience to dropouts and significant reduction in training time.

3.2. FL Aggregation Algorithm Implementations Taxonomy

The growing interest in federated learning aggregation approaches promises to en-
ergise the field and encourage the adoption of this emerging technology in real-world
applications. The available aggregation algorithms can be classified under different aspects
besides the year of introduction, as mentioned earlier.

3.2.1. Classification by Area of Contribution

The analysis of the previously mentioned implementations leads to a summary of
their contribution areas in the list below. In addition, Table 4 below shows a summary of
the contribution of each implementation:

• Improving model aggregation;
• Reducing convergence;
• Handling heterogeneity;
• Enhancing security;
• Reducing communication and computation cost;
• Handling users’ failures (fault tolerance);
• Boosting learning quality;
• Supporting scalability, personalization and generalization.

However, the achievements of the federated learning aggregation algorithms men-
tioned earlier focused mainly on the aggregation itself or on reducing communication
costs. The other contribution areas were less explored. For example, of the twenty-seven
algorithms mentioned, fifteen targeted global model aggregation and twelve targeted
communication cost reduction, while only three targeted learning quality improvement,
and only one targeted personalization. This distribution is shown in the graph provided
in Figure 5 below (in the pie chart, total will not add up to 100% since one study may
contribute to more than one area).
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Table 4. Contributions of FL aggregation algorithm implementations.
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[38] 2017 FedAVG

[50] 2017 -

[51] 2019 RFA

[52] 2020 SCAFFOLD

[53] 2020 FedOPT
FedADAGAR
FedYOGI
FedADAM

[54] 2020 FedBoost

[55] 2020 FedProx

[56] 2020 FedMA

[57] 2020 -

[58] 2020 -

[59] 2020 -

[60] 2020 LAQ

[61] 2020 SAFA

[62] 2021 FedDist

[46] 2021 FEDHQ

[63] 2021 FAIR

[64] 2021 FedPSO

[65] 2021 LEGATO

[66] 2021 MHAT

[67] 2021 -

[68] 2021 -

[69] 2021 SEAR

[70] 2021 Turbo-Aggregate

[71] 2022 EPPDA

[72] 2022 FedBuff

[73] 2022 HeteroSAg

[74] 2022 LightSecAgg
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Figure 5. Count per contribution area.

3.2.2. Classification by the Aggregation Approach

On the other hand, considering the aggregation approaches followed in the algorithms,
we can classify these implementations into the mapping shown in Table 5 below.

Table 5. Aggregation approaches followed in state of the art of FL aggregation algorithms.

Ref. Year Given Name Aggregation Approach

[38] 2017 FedAVG Averaging Aggregation
[50] 2017 - Secure Aggregation
[51] 2019 RFA Averaging Aggregation
[52] 2020 SCAFFOLD Secure Aggregation
[53] 2020 FedOPT Weighted Aggregation

FedADAGAR Differential Privacy Average Aggregation
FedYOGI Personalized Aggregation
FedADAM -

[54] 2020 FedBoost Ensemble-Based Aggregation
[55] 2020 FedProx Weighted Aggregation
[56] 2020 FedMA Personalized Aggregation
[57] 2020 - Personalized Aggregation
[58] 2020 - Secure Aggregation
[59] 2020 - Personalized Aggregation
[60] 2020 LAQ Quantization Aggregation
[61] 2020 SAFA Secure Aggregation
[62] 2021 FedDist Weighted Aggregation
[46] 2021 FEDHQ Quantization Aggregation
[63] 2021 FAIR Personalized Aggregation
[64] 2021 FedPSO Ensemble-Based Aggregation
[65] 2021 LEGATO Personalized Aggregation
[66] 2021 MHAT Personalized Aggregation
[67] 2021 - Secure Aggregation
[68] 2021 - Weighted Aggregation
[69] 2021 SEAR Secure Aggregation
[70] 2021 Turbo-Aggregate Secure Aggregation

Personalized Aggregation
[71] 2022 EPPDA Secure Aggregation
[72] 2022 FedBuff Ensemble-Based Aggregation
[73] 2022 HeteroSAg Secure Aggregation

Quantized Aggregation
[74] 2022 LightSecAgg Secure Aggregation
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As shown in the table above, most implementations focus on the secure aggregation
approach, which was implemented in 10 of the 27 available studies. Figure 6 below
illustrates the distribution of implementations per the aggregation approach followed, with
the approaches isted in Section 2.4 and summarized in Table 3.

Figure 6. Count per aggregation approach.

Federated learning is growing rapidly as it is expected to play a critical role in revo-
lutionizing the field of machine learning. Since the first FL aggregation algorithm, called
FedAvg [38], dozens of aggregation algorithms have been proposed. In this context, FedAvg
was fraught with some challenges and shortcomings, which was the main goal of the later
studies. Therefore, each of the proposed algorithms contributed to the body of knowledge
in FL with a different topic. For example, some were focused on reducing convergence
costs, some on reducing computation and communication costs, some on security, and so
on. Consequently, the proposed techniques can be classified from the perspective of their
contribution domain, or they can even be classified according to the aggregation approach
they follow. All these details have been mentioned in this section, and in the next section,
the areas to which they contribute will be discussed in detail and, finally, challenges and
future perspectives will be identified.

4. Discussion

Federated machine learning introduced a new concept to the field of artificial intel-
ligence. It offers the possibility of improving the accuracy of intelligent models while
preserving privacy, since user data are not collected on a central server as in classical
machine learning. Instead, model updates, parameters, or gradients are shared between
the server and FL clients, which are then aggregated to train or update the global model. In
this context, different aggregation strategies can be followed, which also leads to a plethora
of aggregation algorithms. Consequently, each aggregation follows one or more strategies
and is characterized by one or more contributions. Moreover, there are some limitations in
these implementations. All these details are discussed in this section.

4.1. Contributions of Aggregation Algorithms

Analysis of the distribution of implementations per area of contribution shows that
research in federated learning aggregation algorithms has produced a number of robust
algorithms that are also acceptable from the point of view of reduced communication
costs. However, from a security point of view, all the implementations carried out focused
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on only one type of attack, namely the Byzantine attack. Other attacks have not been
extensively covered in the literature, which raises the question of how robust the available
methods are against attacks such as reverse attacks, which are the main concern of FL,
where attackers can determine users’ private data from the local trained model exchanged
within the network. In addition, few efforts have been made to improve the learning quality
of FL’s models, which in turn raises questions about the extent to which the accuracy of
ML’s traditional algorithms is comparable to that of FL’s models. Finally, personalization
has only been investigated in a single study, as shown in the table and the graph.

4.1.1. Aggregation

Advances in aggregation strategies in federated learning have been substantial in
recent years. Originally, the focus was on simple averaging methods such as federated
averaging, which takes the average of local model updates from each client and then
updates the global model using the averaged aggregation. This strategy was introduced by
Google in 2016, and their proposed framework became known as FedAvg [38]. However,
later studies such as [75,76] have shown that FedAvg has several challenges in terms of
performance, such as the following:

• Suffering from ’client-drift’ and convergence;
• Tuning difficulty;
• High communication and computation cost;
• Significant variability in clients’ system characteristics;
• Non-identically distributed data across the network;
• Heterogeneity of devices, users and network channels;
• Sensitivity to local models;
• Scalability issues.

In this regard, the successor aggregation algorithms have tried to solve the above
problems, investigating the communication and computation costs in more than ten algo-
rithms such as SCAFFOLD [52], FedBoost [54], SAFA [61] and others. In addition, issues
related to heterogeneity, such as the diversity in clients’ data and devices, sensitivity to
local models, and others have been cited by aggregation algorithms such as FedYOGI [53],
FedMA [56], FAIR [63], LEGATO [65], and others, where these algorithms succeeded in
creating personalized aggregation algorithms that demonstrated their feasibility in different
scenarios, such as clients’ data and device heterogeneity, and more. As a result, aggregation
itself has grown beyond the initial average integration to gain the ability to address more
complex problems. For example, the introduction of the secure aggregation algorithm
in [50] opened the door to improving the security of aggregation algorithms. In addition,
the weighted and differential aggregation with average privacy introduced in [53] enabled
more advanced aggregation algorithms where both security and communication cost are
considered in these strategies. The later aggregation algorithms introduced many more
aggregation concepts, showing the progress in this area mentioned earlier.

4.1.2. Convergence Reduction

In federated machine learning setup, the term convergence is used to describe the
point at which the parameters of the model reach a stable and accurate state on all clients
that contribute to the FL process. FedAvg suffered from client drift and convergence prob-
lems, as mentioned earlier. However, later implementations of FL aggregation algorithms
included several mechanisms to address this problem.

For example, the developers of SCAFFOLD [52] attempted to reduce the commu-
nication rounds required for convergence by introducing an adaptive sampling strat-
egy [77]. Then, SCAFFOLD dynamically selects a subset of clients in each communication
round based on their similarity to the current global model. The selected clients are then
used to update the global model, reducing the diversity between the global model and
the selected clients, reducing the required communication rounds, and increasing the
convergence speed.
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In addition, FedOPT [53] improves convergence by applying optimization steps to both
local and global models that allow for more accurate client updates and better alignment
with the server’s optimization goal, thereby accelerating convergence and improving the
overall accuracy of the global model. In addition, the FedProx [55] aggregation algorithm
includes a proximal term [78] in the optimization objective to increase the similarity between
client updates, making the global model generalizable and able to represent the data
of all clients. In other words, the proximal term encourages the FL client updates to
be more similar compared to the global model, which increases the convergence speed.
Overall, it can be said that the convergence speed problem has been intensively studied by
researchers and many solutions have been proposed, including but not limited to those
previously mentioned.

4.1.3. Heterogeneity

Traditionally, federated learning aggregation algorithms followed average aggregation
to calculate the mathematical median of the received updates before updating the global
model based on this average. However, this approach did not seem to be suitable for sce-
narios where the participating clients have heterogeneous data or so-called non-informally,
identically distributed (Non-IID) data [79]. To address this issue, FedOPT [53] proposed to
perform local optimization of the clients’ dataset using the current global model parameters
as a starting point, allowing clients to fit their models to their data, resulting in improved
accuracy and generalizability. In contrast, FedMA [56] proposed a matched averaging
approach based on finding clients with comparable data distributions and then taking
the average of their model updates. The new global model parameters are based on the
calculated weighted average. A similar approach, called distribution matching, is also
included in FedHQ [46]. Overall, the handling of heterogeneity has been improved by the
aggregation algorithms for federated learning developed after the introduction of FedAvg.

4.1.4. Security

On the other hand, security has been an active area of study in aggregation algorithms
for federated learning. Due to the fact that FL is vulnerable to various types of attacks and
threats including, but not limited to, poisoning attacks such as Byzantine attacks, inference
attacks such as backdoor attacks, and more [80]. However, security enhancements were
later introduced to include various security aspects. For example, in [50], the authors
proposed a secure vector summation strategy that uses a protocol with a fixed number
of rounds, lower processing cost, high fault tolerance, and only a single server that can
be trusted with a small amount of information. In this architecture, the server has a dual
role: it must both transmit messages between the different participants and perform the
necessary computations. The authors also offer two variants of their protocol; the first
is more efficient and has a better chance of being secure in the simplest model against
honest but curious adversaries. Nevertheless, the alternative has been shown to be secure
in the random oracle paradigm and guarantees anonymity even when faced with active
adversaries, such as a hostile server.

In addition, to make the aggregation process more resilient to poisoning local data or
model parameters of participating devices, the authors of [51] proposed robust federated
aggregation (RFA). The authors contributed to the aggregation step and presented a better
aggregation technique for federated learning, since compromised devices can only affect the
global model through updates. The proposed technique aggregates model updates without
revealing the unique contribution of each device and is based on the geometric median,
which can be easily estimated using a Weiszfeld-type algorithm [81]. The experiments
conducted by the authors show that RFA can compete with traditional aggregation at a low
level of corruption and has greater resilience at a high level of corruption.

In addition, the authors of [67] have developed a decentralized aggregation protocol
for federated learning that protects user privacy, called SecureD-FL. The proposed approach
to data aggregation is based on a refined form of the alternating direction multiplier
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(ADMM) [82]. This communication pattern is inspired by combinatorial block design
theory and is used by the proposed method to minimize privacy loss and ensure privacy
from honest but curious adversaries in each aggregation round. To reduce the amount of
personal information leaked during the aggregation process, the algorithm selects which
subset of users (called a group) should have a conversation during each iteration.

In addition, the authors of [69] proposed SEAR, a secure aggregation algorithm that
uses a hardware-based trusted execution environment instead of time-consuming crypto-
graphic tools. For example, they used Intel SGX [83] trusted execution environment (TEE)
to aggregate the locally trained models in a secure and trusted hardware environment. This
is a secure area of the central processor where the confidentiality and integrity of the loaded
code and data can be well protected.

Furthermore, the authors of [71] proposed efficient privacy-preserving data aggrega-
tion (EPPDA), which exploits the homomorphism of secret exchange [84]. In this context,
secret sharing is able to protect the clients’ secret data and thus reduce the influence of
some malicious clients, which makes this algorithm a private, fault-tolerant algorithm. The
cryptographic primitives can be summarized in the following steps: secret sharing, key
exchange protocol, authenticated encryption, and the signature method.

Finally, in [73], the HeteroSAg aggregation algorithm protects the privacy of each
user’s local model updates by masking each user’s model update such that the mutual
information between the masked model and the unique model is zero. The efficiency
of HeteroSAg and its robustness against Byzantine attacks lie in the FL system cycle,
which executes a segment grouping strategy based on dividing edge users into groups and
segmenting local model updates for those users. In summary, security has been studied and
improved in FL aggregation algorithms, with several attempts in this area, as explained.
Furthermore, the security mechanisms used in the implemented aggregation algorithms
are summarized in Table 6.

Table 6. Security mechanisms followed in aggregation algorithms.

Ref. Mechanism

[50] Secure vector summing strategy
[51] Using geometric median estimated using a Weiszfeld-type algorithm
[67] Refined form of the alternating direction multiplier (ADMM)
[69] Hardware-based trusted execution environment instead of complex cryptographic tools
[71] Homomorphisms of the secret exchange
[73] Masking each user’s model update

4.1.5. Communication Cost

Federated machine learning, in its original version, offers a communication reduc-
tion approach where, instead of exchanging row data, which can sometimes be huge, it
only exchanges model updates, which are typically smaller compared to the initial data.
However, the training process in FL can take place in networks of enormous size, probably
even around the world, as is the case with FedAvg, which was originally used to train
Google keyboard services to improve text prediction. Apart from that, the network state
and bandwidth can depend very much on the connection service providers, so one has
to worry about the communication costs even if only model updates and no raw data
are exchanged.

To this end, in [50], the authors proposed a technique based on the use of quantiza-
tion, which involved reducing the amount of information exchanged between FL entities.
Specifically, they used fixed-point quantization, in which data values are represented as
fixed-point numbers with a finite number of bits, and achieved up to a 100-fold reduction
in communication costs with their approach compared to the standard approach of secure
aggregation without quantization. Similarly, in [60], the authors reduced communication
costs by quantizing gradients on client devices before transmitting them to the server, and
then aggregating the quantized gradients on the server in a “lazy manner,” thereby reduc-
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ing the size of the message exchanged and the communication costs. The same approach is
taken by the HeterOSAg [73] algorithm.

In addition, SCAFFOLD [52] reduced communication costs by exchanging the control
variate term [85] between server and clients instead of sending and receiving the entire
model. This term was designed to reduce the variance of the stochastic gradient descent
updates [86] and improve the convergence rate of the training process. In addition, the
FedMA algorithm [56] has succeeded in reducing the communication cost through the
matched averaging aggregation algorithms, where clients with similar distributions are
aggregated together, speeding up the convergence, reducing the execution rounds, and
reducing the overall communication cost even if the communication cannot be reduced in
one round.

In contrast, in [57], the authors proposed to use an analog network coding technique
to reduce the communication cost in federated learning over wireless networks. In this
approach, the gradients are transmitted with a much lower communication bandwidth by
encoding the gradients from multiple wireless devices into a single analog waveform that
is transmitted over a wireless network using a technique called a physical layer network
(PNC). Then, the received wave is decoded at the central server to recover the gradients
from the different devices so that they can be aggregated to update the global model. In [59],
the authors managed to reduce the communication cost by applying selective aggregation,
where in each round some clients are selected based on their data distribution to perform
the aggregation, reducing both the communication cost in a round and in the overall
FL cycle.

Moreover, the aggregation algorithm SAFA [61] proposed the introduction of a semi-
asynchronous protocol, where clients continue to train their local models while sending
updates to the server. The key idea to reduce the communication cost is that instead of
waiting for all clients to send their updates before aggregating them, the central server
aggregates the clients’ updates with a small delay to allow more updates to arrive, thus
reducing the communication overhead and latency.

In addition, the authors of [64] proposed FedPSO, in which clients’ local models are
optimized using particle swarm optimization (PSO) and then only the optimized param-
eters are transmitted to the central server instead of transmitting the entire model. This
lowers the communication cost by significantly reducing the amount of data transmit-
ted between the central server and the clients. However, the algorithm proposed in [65],
called LEGATO, reduces the communication cost by performing gradient aggregation on
a per-layer basis instead of aggregating the gradient of the entire model. Finally, model
compression has been used in several approaches to reduce communication costs, e.g., in
FedBoost [54] and in [58]. In summary, the communication costs were increased in the
respective aggregation algorithms. The mechanisms for reducing communication costs in
the aggregation algorithms of FL are summarized in Table 7 below.

Table 7. Communication cost reduction mechanisms followed in aggregation algorithms.

Ref. Mechanism

[50,60,73] Quantization
[52] Exchanging the control variate term
[56] Matched averaging
[57] Analog network coding technique
[59] Selective aggregation
[61] Semi-asynchronous protocol
[64] Particle swarm optimization (PSO)
[65] Gradient aggregation on a per-layer basis
[54,58] Model compression
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4.1.6. Computation Cost

Federated learning, as a collaborative artificial intelligence technology requires addi-
tional computational costs due to the additional communication, aggregation, and manage-
ment processes performed throughout the FL cycle. However, this problem was addressed
with the proposed aggregation algorithms that followed the FedAvg implementation. For
example, in [58], the authors proposed the use of the gradient masking [87] technique
to reduce computational costs. In this technique, each client encrypts its local gradient
updates with a mask generated by the server, which in turn performs secure aggregation
over the masked updates to train the global model. Applying aggregation over the masked
gradients reduces the computational cost on the server side, yet there is still debate about
the additive computational overhead required for masking and mask generation on both
the client and server sides.

Moreover, in [61], the authors used a selective technique in developing their aggrega-
tion algorithm called SAFA. The server selects a subset of clients to share the model with for
training, reducing the size of the data to be retrieved and aggregated. In [65], on the other
hand, the reduction in computational overhead comes from the reduction in communica-
tion, where the amount of data exchanged between the server and clients is reduced, thus
reducing the computational overhead. In addition, the personalization described in [66],
in which clients do not receive a uniform model depending on their data distribution and
characteristics, reduces the computational cost because each client receives a model that fits
its data, so the server only needs to perform minimal executions to train the global model.
Moreover, in [69], the authors used a sparse vector technique to compress the updates sent
by the clients, which reduces the computational cost in the FL cycle. Furthermore, in [70],
the authors reduced computational costs by using a circular multi-group aggregation struc-
ture to speed up the model aggregation process. In this approach, customer data are split
into multiple groups, with each group assigned a unique aggregation order. Then, the
groups are aggregated in a circular fashion so that each group is aggregated with a different
subset of groups in each round, resulting in a visible reduction in the computational cost.
Finally, the LightSecAgg [74] algorithm reduced the computational cost by reducing the
dimensionality of the updates through random projections and hashing, while maintaining
privacy as in traditional secure aggregation methods.

4.1.7. Fault Tolerance

The federated learning environment involves servers and clients collaborating in
training a global model without sharing client data. However, the participating clients may
lose connection to the network for various reasons. In this case, the training process of
the global model may be affected, and the server may even wait indefinitely for them to
reconnect, and even these stragglers may affect the accuracy of the global model. This case
is defined as model staleness [88]. The longer the delay continues, the more outdated the
model becomes, since the central server’s model is not updated with the latest local models.
To deal with this problem, the authors proposed in [61] a semi-asynchronous protocol that
preserves the local training results. To this end, the authors used the futility percentage
metric to measure the percentage of local progress wasted due to model synchronization
forced by the server. Furthermore, the EPPDA aggregation algorithm was described by the
authors of [71] as a fault-tolerant algorithm where aggregation continues regardless of how
many clients abort the process. Finally, in [74], the authors proposed a new aggregation
approach called LightSecAgg to overcome the bottleneck resulting from dropped users.
They considered changing the design of their aggregation process from “random-seed
reconstruction of the dropped users” to “one-shot aggregate mask reconstruction of active
users via mask encoding/decoding”. The proposed aggregation algorithms reflect a major
advance in the way a FL global server handles the faulty clients and reduces their impact
on the accuracy of the resulting global model.
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4.1.8. Learning Quality

In a federated learning system, clients may have different data that can affect the
quality of the globally trained model. Because clients may have different amounts and
qualities of data, it can be a challenge to ensure that the contributions of each client are
appropriately evaluated and that the resulting global model is of high quality based on
the results aggregated from the local models. To ensure acceptable learning quality, the
authors of [63] proposed a quality-aware aggregation scheme that weights each client’s
contribution based on the quality of its local data and the accuracy of its locally trained
model. In other words, they created an index for the contribution of each client’s local
model, with those with higher indices contributing more to the global model, leading to a
higher quality result. A similar approach was also proposed by the authors of [64,68].

4.1.9. Scalability

One of the biggest challenges in federated machine learning is its scalability. Unlike
classical machine learning, which requires only one central server for training, FL can
involve up to millions of devices in the training process. Therefore, developing a scalable
aggregation algorithm that can handle an increasing number of clients is a major require-
ment in this area. In this context, LEAGTO [65] has been proposed as a scalable aggregation
algorithm since it reduces the communication and computation costs. Similarly, Turbo-
Aggregate [70] is proposed as a scalable algorithm that can grow with a higher number of
clients due to reduced computation and optimized code.

4.1.10. Personalization

Consequently, the aggregation algorithms of federated learning are meant for distribu-
tion and collaboration between different clients to train a global model. The diversity and
heterogeneity of clients participating in the federated learning process make the develop-
ment of a personalized aggregation algorithm urgent. However, personalization is a topic
that can be considered from different perspectives, such as the following:

• Ability to handle heterogeneous data and hardware;
• Capability to adapt for the network settings such as bandwidth on the client’s side;
• Other factors.

In this context, the aggregation algorithms FedYOGI [53], FedMA [56], FAIR [63],
LEGATO [65], MHAT [66], and TurboAggregate [70] were proposed as personalized ag-
gregation algorithms that managed to adapt to the particular circumstances on the client
side. However, these algorithms were not originally intended for personalization, which is
the only reason they were not classified as contributing to the personalization domain in
Table 4. In contrast, the FedDist [62] aggregation algorithm was tested for personalization,
which made it one of its targets.

4.2. Further Limitations

Federated learning aggregation algorithms are still at a very early stage. It has been
only six years since the concept was introduced to FL with its FedAvg aggregation al-
gorithm for averaging. However, tremendous efforts have been made to improve these
algorithms. As mentioned earlier, FedAvg struggled with several obstacles such as slow
convergence, difficult tuning, high communication and computational costs, dealing with
client heterogeneity, scalability, and more [75,76]. These problems have been intensively
studied, and the algorithms developed after FedAvg managed to solve several problems, as
explained in the previous section. However, there are still some challenges and limitations
in the area of aggregation algorithms, which will be discussed in this section.

4.2.1. Global Model Quality

There is agreement that larger amounts of training data can improve the accuracy
of a learned model in both traditional machine learning and deep learning. On the other
hand, in a distributed environment such as federated learning, the amount of data on
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each client is not necessarily the same, and it may be insufficient for local training at a
given time, which in turn reduces the accuracy of the local model and the global model
accordingly. Traditionally, there are some solutions in ML that can be followed to improve
the output of a smart model by improving the quality and quantity of data, such as
resampling and standardization, which have successfully improved the accuracy of models
in several examples such as [89,90]. However, these techniques are not guaranteed to
improve the overall quality of the globally trained model, as preprocessing methods may
vary depending on the heterogeneity of the client data, as some are able to handle certain
missing data while others cannot. This may create an impetus to find more robust solutions
to improve the overall quality of the global model.

4.2.2. Security Limitations

Although federated learning aims to create intelligent models that do not collect user
data, it is still vulnerable to data leaks caused by attacks. This is possible due to the transfer
of gradients and partial parameters, whether between clients and servers in the centralized
architecture or between the clients themselves in the decentralized architecture. These
parameters are attackable at three levels: at the inputs, at the learning process, and at the
learned model. Typically, the attacks are carried out by attackers originating from malicious
clients, and the types of attacks can be grouped as follows [80]:

• Poisoning attacks: these are conducted by injecting noise into the FL system, and are
also split into two categories:

– Data poisoning attacks: these are the most common attacks against ML models
and can be either targeted toward a specific class or non-targeted. In a targeted
attack, the noisy records of a specific target class are injected into local data so
that the learned model will act badly on this class;

– Model poisoning attacks: these are similar to data poisoning attacks, where the
adversary tries to poison the local models instead of the local data.

• Inference attacks: in some scenarios, it is possible to infer, conclude, or restore the
party local data from the model updates during the learning process;

• Backdoor attacks: secure averaging allows parties to be anonymous during the model
update process. Using the same functionality, a party or group of parties can introduce
backdoor functionality in in FL global model. Then, a malicious entity can use the
backdoor to mislabel certain tasks such as choosing a specific label for a data instance
with specific characteristics. For sure, the proportion of the compromised devices and
FL model capacity affects in the intensity of such attacks.

Despite the fact that the developed aggregation algorithms have found robust solutions
to poisoning attacks such as the Byzantine attack [91], inference and backdoor attacks are
still observed in this area, which requires further development and research. In addition,
some techniques and methods in the aggregation algorithm domain are still unknown,
such as the polymorphic encryption,

“PE”, which has proven to be a viable technology for exchanging encrypted data with
high confidence in privacy, as explained in [92].

4.2.3. Evaluation Complexity and Lack of Standards

In classical machine learning and deep learning processes, models are usually eval-
uated using specific and defined metrics such as accuracy, precision, recall, specificity,
negativity, and others. In contrast, evaluating a federated learning system requires pa-
rameters that may include privacy level, communication cost, and robustness to attacks.
In addition, there are as yet no uniform standards that can be referenced to measure the
feasibility of an FL system.
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4.2.4. Software and Hardware Heterogeneity

The differences in hardware and software used by individual clients present a signifi-
cant obstacle to algorithms for aggregating learning across the FL system. Clients can vary
widely in terms of their data availability, feature representation, computing power, and
network connectivity. For example, poor generalization performance can result from over-
fitting the local model due to imbalanced data distribution. In addition, the convergence
of the model and the performance of the global model may be affected by the different
feature representations of the clients, which may lead to inconsistencies or incompatibilities
in the feature sets. Differences in the processing power of client devices can also lead
to performance inconsistencies during training, with some devices taking more time to
complete operations or being unable to run the model at all. Overall, heterogeneity can
have a detrimental effect on the efficiency and precision of the overall trained model.

4.2.5. User Adoption

Furthermore, one of the biggest obstacles to integrating federated machine learning
into real-world implementations is user acceptance, adoption, and participation. Although
FL is known as a privacy-preserving technology, FL is still new and not yet adopted by
users due to privacy concerns, discomfort, ethical concerns, and other contextual factors.

So far, Figure 7 below illustrates a summary of the main limitations in the federated
machine learning aggregation algorithms.

Figure 7. Federated learning aggregation algorithms limitations.

4.3. Future Perspectives

In addition to what has been achieved with the available aggregation algorithms,
further efforts can be directed to improve some features, such as further reducing communi-
cation and computational costs, improving scalability, and others. In addition, less studied
areas such as scalability, learning quality, and personalization should also be considered in
future studies to develop more efficient and accurate aggregation algorithms for federated
learning. Moreover, with regard to the limitations in the field of aggregation algorithms
for federated learning mentioned in the previous section, there are a number of future
prospects that can help improve the field and increase its efficiency.

4.3.1. Boost Learning Quality

Confidence in machine learning and its application in daily life is achieved through
various aspects, including high accuracy, explainability, feasibility, and others. However,
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accuracy is always a major concern in this field. Therefore, there is a great need to improve
the “learning quality” of federated learning aggregation algorithms in order to improve
the feasibility and usability, thus increasing the acceptance of the technology in daily life.
Accepted learning quality for global models can be achieved by improving the quality of
locally trained models by handling heterogeneity, improving generalization, preprocessing
customer data, and other steps. Improving the locally trained models can help improve the
quality of the global model.

4.3.2. Improving Security and Privacy

Federated learning was originally introduced as a privacy-preserving technology to
collaboratively train smart models without sacrificing the privacy and confidentiality of
user data. Accordingly, the ability to bypass privacy controls in the FL system undermines
the foundation on which this field is built and causes it to lose value. Therefore, it is
necessary to strengthen the robustness of aggregation algorithms against attacks, especially
inference and backdoor attacks, to prevent malicious entities from reflecting exchanged
messages, whether in the form of model updates, gradients, or parameters, in an effort
to uncover the data used for local training. In this regard, several technologies can be
explored, such as polymorphic encryption [92] and quantum-resistant cryptography [93].

4.3.3. Proposing Standards and Norms

Machine learning norms and standards are very useful for evaluating an intelligent
model. In the classical version of ML, accuracy, precision, and recall, among other pa-
rameters, are important measures used to evaluate a model. However, when it comes to
federated learning and aggregation algorithms, these parameters are not enough because
privacy, communication and computational costs, scalability, generalization, and other
parameters are also important in evaluating these algorithms. Therefore, it is necessary to
propose methods to unify these standards so that future aggregation algorithms can be
evaluated based on these specifications.

4.3.4. Enhance Heterogeneity Handling Abilities

The benefits of federated learning techniques extend beyond privacy preservation
to several important goals, such as overcoming the data islanding dilemma. However,
as resource divergence increases, so does the likelihood of heterogeneity. Therefore, it is
necessary to improve the ability to handle heterogeneity in aggregation algorithms. Various
techniques can be considered for this purpose, such as the following:

• Resource Allocation [94]: This involves the optimal distribution of computational load
and communication bandwidth among clients, taking into account their capabilities
and limitations. This can reduce the impact of heterogeneity, minimize training time,
and improve the convergence and accuracy of the model;

• Data Clustering: Implemented by grouping clients into clusters based on the similarity
of their data distribution or other criteria, this allows the system to leverage the
similarities between devices and reduce the impact of heterogeneity;

• Meta-Learning [95]: This involves determining the optimal learning algorithm or
hyperparameters for each client based on its past performance or other metadata. This
helps to adapt to client heterogeneity and also improves the overall performance and
scalability of the federated learning process.

4.3.5. Boost Technology Adoption into Real-Word Scenarios

Federated machine learning is increasingly being studied and is also trending in the
scientific research community and among researchers, yet it is not widely used in the real
world as it is in research. This may seem normal, especially because it is still in its early
stages; however, there are also many opportunities for it to be embedded more and more in
real-world scenarios. Smart wearables, for example, have proven to be extremely viable
in a number of areas different domains, such as health for example [12,96], and the ability
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to embed federated learning into these devices is likely to revolutionize their efficiency
by providing access to more data while preserving user privacy. Embedding FL in smart
wearables has been extensively studied in [28].

4.3.6. Integrate Different Areas of Contribution

The various aggregation algorithms presented in this study have contributed to the
concept of collaboration in training a global model in several areas. Whether it is the
aggregation itself, increasing the speed of convergence, reducing computational and com-
munication costs, or even other areas, much has been achieved. However, almost all of the
algorithms mentioned have contributed to one or two areas as detailed in Table 4, and only
SAFA [61] and LEGATO [65] have contributed to four areas, with the former focusing on
aggregation, lowering communication and computation costs, and fault tolerance, and the
latter focusing on lowering communication and computation costs, security, and learning
quality. Therefore, there is a need to work on aggregation algorithms that integrate more
and more domains, such as security, learning quality, scalability, personalization and, of
course, aggregation with reduction of communication and computational costs. The ability
to integrate these areas into one algorithm will certainly be a big step in this area.

4.3.7. Embedding Latest Technologies into FL: Quantum Computing as an Example

Quantum computing is a new type of computing that takes advantage of the principles
of quantum mechanics to perform certain calculations much more efficiently than classical
computers. Embedding quantum computing into federated learning will help advance this
field from multiple perspectives [97–99]:

• Speeding Up Computation: Quantum computers are capable of solving certain tasks
much faster than traditional computers, such as factoring large numbers or scanning
unsorted databases. Quantum computers could potentially help speed up the training
of machine learning models in the context of federated learning, especially for com-
plicated tasks or large datasets. This could improve the efficiency and feasibility of
federated learning for real-world applications;

• Quantum Communication: Quantum communication technologies, such as quantum
teleportation and quantum key distribution, could be used to securely transfer model
changes between nodes of the federated learning system. This could improve the
privacy and security of federated learning, which is one of its main advantages;

• Quantum Encryption: Quantum encryption technology, such as quantum key distri-
bution, could be used to improve the security of communications between nodes of
the federated learning system. This could be particularly useful in federated learning
environments where privacy and security are critical;

• Improved Optimization: Some optimization problems, such as training machine
learning models, can be solved more effectively by using quantum technologies. As a
result, federated learning algorithms can become more efficient and effective.

Finally, the limitations known in the field of federated learning aggregation algorithms
and the possible future recommendations to solve these problems are presented in Figure 8
below.

Aggregation algorithms for federated learning are a topic that is attracting more and
more attention nowadays. Recently proposed algorithms have succeeded in reducing
convergence, communication, and computation costs on the one hand, and handling het-
erogeneous data on the other. Moreover, security and fault tolerance have been strongly
emphasized by researchers in this area, while learning quality, scalability, and personaliza-
tion issues have been less considered. Therefore, federated learning aggregation algorithms
are still vulnerable to various challenges such as learning quality of the global model, secu-
rity limitations and vulnerability to inference and backdoor attacks, evaluation complexity,
lack of norms and standards, and other issues as described previously. However, these
problems can be addressed with different concepts and notions, such as embedding security
techniques, polymorphic encryption as an example, or using emerging technologies such
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as quantum computing or other solutions. All challenges and future perspectives of FL
aggregation algorithms have been described in detail in this section.

Figure 8. Federated learning aggregation algorithms limitations and solutions.

5. Conclusions

Federated ML and associated aggregation algorithms are emerging as a practical,
privacy-preserving ML technology that will improve the effectiveness of smart models and
facilitate their integration into people’s daily routines. The exchange of models or their
parameters between server and clients, rather than the exchange of raw data, makes these
technologies feasible. An essential part of the federated learning cycle is the aggregation
algorithm, i.e., the method by which the clients’ knowledge is integrated and the global
model is updated accordingly. Many aggregation methods have been developed and
published, each using its own method of data integration. Each aggregation algorithm
adds something new to the body of knowledge. The rapid development of aggregation
algorithms in their short history is a sign of the great interest in this topic. Nevertheless,
such algorithms have several serious drawbacks, including vulnerability to heterogeneity,
inference, and backdoor attacks. These problems motivate further studies in this area. This
article summarizes the state of the art in aggregation algorithms, analyzes their properties
and shortcomings, and suggests numerous perspectives for further investigation.
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CHAPTER 4

Securing Federated Learning; Approaches,
Mechanisms and Opportunities

This article is undergoing peer review process in the Journal of the ACM.

Résumé: Malgré les progrès réalisés par le FL dans la préservation de la vie privée des util-
isateurs, il n’en est encore qu’à ses débuts et est vulnérable à de nombreuses difficultés et
obstacles. Dans ce chapitre, l’accent est mis sur les problèmes de sécurité et de confiden-
tialité liés aux algorithmes d’agrégation dans l’apprentissage fédéré, en commençant par une
vue d’ensemble des menaces et attaques potentielles. Il procède à une analyse complète des
algorithmes d’agrégation soucieux de la sécurité et examine leurs vulnérabilités, en appuyant
la principale préoccupation de la recherche sur des preuves empiriques.
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With the ability to analyze data, artificial intelligence technology and its offshoots have made difficult tasks easier. The tools of these
technologies are now used in almost every aspect of life. For example, Machine Learning (ML), an offshoot of artificial intelligence, has
become the focus of interest for researchers in industry, education, healthcare and other disciplines and has proven to be as efficient
as, and in some cases better than, experts in answering various problems. However, the obstacles to ML ’s progress are still being
explored, and Federated Learning (FL) has been presented as a solution to the problems of privacy and confidentiality. In the FL
approach, users do not disclose their data throughout the learning process, which improves privacy and security. In this article, we
look at the security and privacy concepts of FL and the threats and attacks it faces. We also address the security measures used in FL
aggregation procedures. In addition, we examine and discuss the use of homomorphic encryption to protect FL data exchange, as well
as other security strategies. Finally, we discuss security and privacy concepts in FL and what additional improvements could be made
in this context to increase the efficiency of FL algorithms.

CCS Concepts: • General and reference → Surveys and overviews.

Additional KeyWords and Phrases: Federated Learning, Security, Privacy, Aggregation Algorithms, Homomorphic Encryption, Securing
Mechanisms, Threats, Attacks
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1 INTRODUCTION

Machine Learning (ML), considered an offshoot of Artificial Intelligence (AI), allows computers to "self-learn" from train-
ing data. This allows them to gain information over time without having to be explicitly programmed. By recognising
patterns in data and learning from them, ML algorithms can develop their own predictions. In short, ML algorithms and
models gain knowledge through experience. Later reviews show the various domains in which ML has demonstrated
its efficiency and usability, such as healthcare [1–3], smart cities [4, 5], industry[6], Internet of Things (IoT) [7, 8],
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e-commerce [7, 8], Natural Language Processing (NLP) [9], and others [10–12]. However, there are still a number of
difficulties that must be overcome in order to advance Machine Learning, many of which are described and discussed in
detail in the literature. These difficulties can be divided into several groups, including:

• Data Related Challenges [15, 16]: encompassing problems at the level of data collection stage including:
– Data Availability/Accessibility: data may not be available or accessible;
– Data Locality (Data Islands): data is scattered into different and non-related entities;
– Data Readiness: data may be heterogeneous, noisy or imbalanced;
– Data Volume: data volume causes different challenges such as ’Curse of Dimensionality’;
– Feature representation and selection: selecting the optimal features.

• Models Related Challenges [17–19]: which are defined as challenges faced at the level of ML model building,
including:
– Accuracy and Performance: increasing accuracy of models;
– Models Evaluation: correctly evaluate the models? performance;
– Variance and Bias: that affects the results and trust;
– Explainability: resolving the back-box identity of ML models;
– Model Selection: choose the best model that fits for the problem being studied.

• Implementation Related Challenges[17–19]: such challenges are faced at the level of implementing ML models
in real-life applications, including:
– Real-Time Processing: adapting models to act on real-time basis;
– Execution time and complexity: ML models may need high computation powers.

• General Challenges [15, 18, 20]: other issues such as:
– Users? Data Privacy and Confidentiality: data are protected with many regulations;
– User Technology Adoption and Engagement;
– Ethical Constraints.

The challenges of ML have been intensively studied. Since the workflow of ML mainly consists of data management,
model training, model review, and model deployment, the data in ML play a central role. Because the performance of
ML ’s models is highly dependent on the availability of data, the collection of real-world data is the most challenging
aspect of ML model development for several reasons, particularly with respect to privacy and confidentiality. Not only
individuals, but also society, governments, and organizations are strengthening privacy and data security protections,
for which various regulations have been enacted, such as the European Union’s General Data Protection Regulation
(GDPR) [19], the Chinese People’s Republic of China’s Cybersecurity Law[20], the General Principles of Civil Law of
the People’s Republic of China [21], the PDPA in Singapore [22], and others. Although these regulations facilitate the
protection of personal data, they pose new difficulties for ML because it is now more difficult to collect data for model
training, which makes it more difficult to improve the performance accuracy and personalization of these models. For
this reason, maintaining data privacy and confidentiality is not a sole obstacle for ML, but simultaneously raises issues
of data availability, performance, personalization, and thus acceptance and trust.
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1.1 Federated Learning: A Privacy Preserving Technology

In an attempt to protect user privacy, Google has recently introduced the idea of "Federated Machine Learning" or
"Federated Learning (FL)"[23]. The main concept behind FL is to prevent the sharing of user data by peripherals. FL is
therefore defined as a type of collaborative distributed/decentralised ML privacy-preserving technology where a model
is trained without the need to transfer data from the edges to a central server, but models are sent to peripherals to be
trained on local data, and then sent back to a central aggregation server to build the global model without knowledge
of the embedded data. Federated Averaging (FedAVG), the first proposed FL model [23], provided a technique for
combining locally trained models into a single global model. This process is iteratively repeated until the accuracy of
the combined model reaches the target level. Federated Machine Learning enables privacy in Machine Learning, where
sensitive data remains under the control of its original owners by ensuring that data is stored locally and data transfer
between parties is kept to a minimum. The architecture of FedAvg is shown in Figure 1 below. In FedAvg, a central
sever, named as "Manager", send a Machine Learning model for clients, where they train it with their data, and send it
back to the Manager that aggregates all the received models and update the global model accordingly.

Fig. 1. FedAvg Architecture

1.1.1 Underlying Architecture. Typically, a Federated Machine Learning environment (described in 1) mainly consists
of four groups of entities, namely the server, the parties, the communication framework, and the aggregation algorithm
[22, 23]. Each of these entities performs a specific role in the Federated Learning process. These entities can be defined
as follows:

• Central Server (Manager): the entity responsible for managing connections between entities in the FL environ-
ment and for aggregating the knowledge acquired by FL clients;

• Parties (Clients): any computing device with data that can be used to train the global model, including but not
limited to: Personal Computers, Servers, Smartphones, Smartwatches, Computerized Sensor Devices, and many
more;
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• Communication Framework: consists of the tools and devices used to connect servers and parties, and can vary
between an internal network, an intranet, or even the Internet;

• Aggregation Algorithm: the entity responsible for aggregating the knowledge obtained by the parties after
training with their local data and using the aggregated knowledge to update the global model.

Then, the classical approach of the learning process is achieved in the environment of FL by repeating the following
steps:

(1) The central server receives the connection from the clients and sends them the initial global model;
(2) The parties receive an initial copy of the model, train it with their local data, and send the results back to the

central server;
(3) The central server receives the locally trained models, which are aggregated with the correct algorithm;
(4) The central server updates the global model based on the aggregation results and sends the updated version to

the clients;
(5) Repeat the above steps until the model converges or the server decides to stop.

In Figure 2 below, the underlying architecture, entities, and process steps are illustrated for a better description of
the FL environment.

Fig. 2. Federated Learning process and environment

1.1.2 Challenges in FedAvg. Despite the progress FL has made in protecting privacy, FL is still in its infancy and
vulnerable to many difficulties and obstacles. However, the performance of FedAVG is poorly understood and encounters
a number of problems, including [24–29]:

• Performance Issues:
– Suffering from ’client-drift’ and convergence;
– Tuning difficulty;
– High communication and computation cost;
– Significant variability in terms of the systems characteristics on each device in the network;
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– Non-identically distributed data across the network;
– Heterogeneity of devices, users and network channels;
– Sensitivity to local models;
– Scalability issues.

• Security & Privacy Issues: FL is still under the risk of several breaching attacks such as
– Poisoning attacks;
– Inference attacks;
– Backdoor attacks.

1.2 Privacy & Security Deficiency in FL

First and foremost, security and data protection should be separated, even though security in the broadest sense is part
of data protection. Security refers to the ability to transmit and receive data securely without being monitored, altered,
or tampered with. If a plan is secure and communication between participants occurs over a secure channel, it is as
secure as a face-to-face conversation. On the other hand, the term"Information Privacy " in the context of digital data
protection refers to the idea that people should be able to control how their digital information is collected and used. In
the case of personal data, this is particularly important. Both the idea of privacy and the field of information technology
(IT) have evolved over time. The way information is shared has changed drastically with networking and computers
[32, 33]. In this context, security and privacy in Federated Learning technology are discussed below.

1.2.1 Security & Privacy in FL. The analysis of security and privacy in Federated Learning literature leads to the
taxonomy proposed below [24–31]:

• Security: occurs in the communication process to ensure that two individuals communicate with each other
within a network in the same way as they would in a face-to-face environment, and can be divided into:
– Confidence: ensures that the adversary is not able to obtain information from the transmitted ciphertext;
– Authentication: guarantees that the recipient of the message is the one intended by the sender of the

message;
– Integrity: verifies that the message is not added, removed, or modified during transmission.

• Privacy: refers to the use of the exchanged data, only by the parties authorized to do so, and can be discussed
in three categories:
– Consent: to confirm that the shared data is intended only for those users who consent to the sharing of

their own data, such as those who sign up to participate in FL;
– Precision: The results of some data activities are shared, but it must be determined which parts of the data

are to be shared. For example, in FL, the data is not shared, but the local model trained with local data is;
– Preservative: to ensure the safety of the data against leaks caused by reverse analyses on local models.

• Robustness: Resistance to various attacks and breaches, discussed in more detail later in Section 2.

The security and privacy aspects of Federated Learning are summarized in Figure 3 below. The proposed taxonomy
was derived from available reviews and implementations in the literature [24–31].

1.2.2 Privacy Leakage in FL. FL offers privacy-preserving model training that requires no data transfer and allows users
to join or leave the FL system at any time. However, the transmission of model updates during the training process
may expose sensitive information [34–36] or even cause a deep leak [37], either to third parties or to the central server
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Fig. 3. Security, Privacy and Robustness Taxonomy

[38, 39], as recent research suggests that FL doesn’t always provide sufficient privacy protection. For example, [40]
shows that even a small portion of the original gradient can reveal information about local data. Moreover, a hostile
attacker can quickly and completely obtain the training data for the gradient [37]. Such threats pose a major threat
to FL and make it important to understand the concepts underlying these attacks. This is necessary because the FL
protocol has vulnerabilities against both:

• Possibly malicious server: that can observe individual updates over time, disrupt training, and manage
participants’ views of global parameters;

• Any participant: that can observe the global parameters and manage the parameter uploads. For example,
hostile individuals may intentionally change their inputs or introduce covert backdoors into the overall model.

1.3 Article Contributions

This article delves deeply into the critical realm of Federated Machine Learning, emphasizing its paramount importance
in addressing the pressing concerns surrounding user data privacy. In a comprehensive exploration, it meticulously
scrutinizes the multifaceted dimensions of Federated Learning from both security and privacy standpoints. By metic-
ulously examining threats and vulnerabilities inherent in this domain, the article offers invaluable insights into the
protective measures essential for safeguarding Federated Learning systems. The article endeavors to fill critical gaps
in the existing literature by offering novel insights and comprehensive analyses across various topics, as outlined in
its contributions. While existing literature has extensively covered the security landscape of Federated Learning, this
article distinguishes itself by addressing previously unexplored aspects, thereby enriching the scholarly discourse by:

• Proposing a systematic classification framework delineating the varying levels of data security within Federated
Learning, categorized into three distinct groups;

• Conducting a thorough review of the myriad threats and attacks prevalent in Federated Learning environments,
illuminating potential vulnerabilities:
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• Providing an exhaustive analysis of Federated Learning aggregation algorithms, with a specific focus on
enhancing privacy, security, and robustness;

• Delving into the intricacies of privacy-enhancing mechanisms integrated within these algorithms, elucidating
their efficacy in fortifying Federated Learning against malicious exploits;

• Investigating the utilization of cutting-edge technologies such as Homomorphic Encryption to bolster the
security posture of Federated Learning paradigms;

• Exploring alternative methodologies poised to augment the security infrastructure of Federated Learning
systems, thereby diversifying the arsenal of defensive measures;

• Concluding with a forward-looking discussion on the future trajectories and emerging trends in the realm of
securing Federated Learning, offering invaluable insights for further research and development.

By meticulously dissecting the intricacies of Federated Machine Learning security, this article not only advances the
scholarly discourse but also underscores its indispensable role in shaping the future landscape of data privacy and
security.

2 FEDERATED LEARNING THREATS & ATTACKS

Federated Learning is vulnerable to several types of attacks that are already known in the Machine Learning domain.
A thorough analysis of the literature provides insight into these attacks. However, a deep understanding of attacks
in the Federated Learning domain requires a solid understanding of privacy threats in the digital world in general
and in the Machine Learning domain in particular. In the Machine Learning context, threats, sometimes referred to
as vulnerabilities, refer to potential security flaws or weaknesses that an attacker can exploit. These deficiencies may
include inadequate data security, lack of proper authentication systems, and insufficient access restrictions. An attack,
on the other hand, is the intentional and aggressive exploitation of these threats that results in damage to the ML
system or unauthorized access to sensitive data. An example of a threat to a Machine Learning system is an unsecured
database of training data, while an attack is when an unauthorized person attempts to gain access to or even steal that
data. Understanding and addressing threats and attacks is critical to maintaining the security and trustworthiness of
Machine Learning systems [29, 30, 37]. In this context, threats can be classified into the following three groups [29].
These threats, including but not limited to those discussed in the list below and shown in Figure 4:

• Insider vs. Outsider Threat: Since "Insiders" are the parties within the FL system and "Outsiders" are other
parties, "Insider Attack" is an attack originating from either the FL server or one of the subscribers, while
"Outsider Attack" is defined as an attack initiated by eavesdroppers in the communication channel between
subscribers and the FL server or by users of the final FL service. However, due to access restrictions, the insider
attack is usually stronger than the outsider attack, so the latter has been less studied in the literature. Therefore,
insider attacks can be summarized as follows:
– Single Attack [41, 42]: in which a single, malicious, non-colluding individual aims to make the model

misclassify a given set of inputs with certainty;
– Sybil Attack [42, 43]:which aims to launch more effective attacks against FL, attackers can mimic multiple

fake subscriber accounts or select already compromised individuals;
– Byzantine Attack [44–48]: a Byzantine Attack, or Byzantine Failure, is a situation in which one or more

individuals experience technical glitches or communication problems and, as a result, submit incomplete
information to the parameter server, which can affect the accuracy of the overall model. Such a failure

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Mohammad Moshawrab et al.

can take the form of an attack, which we refer to as a "Byzantine Attack," in which malicious actors
purposefully compromise a FL system by strategically providing dishonest responses. These attacks fall
into two categories:

∗ Gaussian Attack [49]: is performed by a single worker in a FL system, regardless of local training
datasets. The individuals performing this attack draw their responses randomly from a Gaussian
distribution;

∗ Fall of Empires Attack [50]: Designed to overcome strong aggregation algorithms, it requires a
minimum number of Byzantine workers (i.e., individuals performing the attack), depending on the
strength of the resistant algorithms. It also requires that the Byzantine workers know the answers
sent by the truthful employees.

• Semi-Honest vs. Malicious: Attackers in the semi-honest context are considered passive or honest but curious.
They seek to learn the private states of the other parties while adhering to FL protocol. Passive adversaries are
assumed to only view the aggregated or averaged gradient, but not the training data or gradient of the other
honest players. In the malicious situation, an active or malicious adversary attempts to learn the secret states of
the honest players and arbitrarily deviates from the FL protocol by modifying, replaying, or deleting messages.
This powerful adversarial model enables the adversary to launch exceptionally deadly attacks;

• Training Phase vs. Inference Phase [51, 52]: Attacks in the training phase use data poisoning or model
poisoning to learn, influence, or corrupt the FL model itself. In the first case, the integrity of the training data
collection is compromised, while in the second case, the learning process is compromised. The attacker can
also perform a series of inference attacks on the update of a single participant or on the set of updates of all
participants. Inference attacks, on the other hand, often do not interfere with the target model, but either make
it produce false results or gather information about the model’s properties. The success of such attacks depends
primarily on how well the attacker understands the model. Moreover, if the target model is provided as a service,
the FL model broadcast phase makes the model accessible to any malicious client.

Fig. 4. Known Threats in Federated Learning Field
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2.1 Poisoning Attacks in Federated Learning

Poisoning attacks can be either random or targeted [53]. Random attacks aim to reduce the accuracy of the model
FL, while targeted attacks aim to make the FL model to output the target label given by the attacker, the latter being
more difficult when the attacker has a specific target. In addition, poisoning attacks can be performed on the data or
on the model. Both attacks attempt to change the behavior of the target model in an undesirable way. If the attackers
can compromise the FL server, they can easily perform both targeted and untargeted poisoning attacks on the trained
model. Data and poisoning attacks can therefore be explained as follows:

• Data Poisoning: also known as data corruption, occurs in local data collection and is broadly divided into two
types: Clean Label [54] and Dirty Label [55]. In clean label attacks, it is assumed that the attacker cannot change
the label of the training data because there is a mechanism to confirm that the data belongs to the correct class,
and the poisoning of the data must go unnoticed. In contrast, in dirty label poisoning, the attacker can insert a
set of data samples into the training set that he wants to misclassify with the intended target label. In addition,
any member of FL can perform data poisoning attacks. Thus, the impact on the FL model depends on how many
system members participate in the attacks and how much training data is poisoned;

• Model Poisoning: occurs during local model training and aims to contaminate local model updates before
they are sent to the server or implant secret backdoors in the global model [42]. The attacker’s goal in targeted
model poisoning is to cause the model FL to misclassify a set of selected inputs with high confidence. Note that
these inputs are not modified to cause misclassification at test time, as is the case with attacks by adversarial
attacks [56]. Rather, the misclassification is the result of the attacker’s manipulation of the training process. In
FL, Model Poisoning even trumps Data Poisoning, since attacks by Data Poisoning eventually affect a portion
of the updates that are fed to the model at each iteration [43]. This is essentially equivalent to a centralized
poisoning attack that poisons a portion of the entire training data. Model poisoning attacks require strong
technological capabilities and a large amount of processing power.

2.2 Inference Attacks in Federated Learning

Sharing gradients during FL training can lead to a significant loss of privacy [36, 37, 40, 57]. Since deep learning models
appear to internally recognize numerous features of the data that are not clearly related to the core tasks, model updates
may provide additional information about undesirable features of the participants’ training data to hostile participants.
The attacker can also store the snapshot of the FL model parameters and perform property inference based on the
difference between subsequent snapshots, which corresponds to the aggregate updates of all participants without the
attacker. The fundamental problem is that the gradients are derived from the participants’ private data.
The gradients of a given layer in deep learning models are created based on the characteristics of that layer and the
error of the layer above it. The gradients of the weights in successive fully connected layers are the inner products
of the error of the layer above and the features. Similarly, the gradients of the weights in a convolutional layer are
convolutions of the error of the overlying layer and features [36]. As a result, observations can be used to update the
model to derive a significant amount of private information, such as class representatives, membership, and attributes
associated with a subset of the training data. Worse, an attacker can infer labels from shared gradients and recover the
original training samples without knowing anything about the training set [37]. Inference attacks fall into the following
categories:
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• Inferring Membership: The goal of membership inference attacks is to determine whether a particular data
element was used to train the model [58];

• Inferring Class Representatives: takes place when a malicious participant can specifically compromise any
other participant, and the attack takes advantage of the real-time nature of the FL learning process, which
allows the attacker to train a network that generates prototype samples of the targeted training data that should
be private. The generated samples appear to be from the same distribution as the training data;

• Inferring Properties: In this attack, an attacker can perform both passive and active property inference attacks
to infer properties of other participants’ training data that are independent of the features describing the classes
of the FL model[36]:
– Property inference attacks require the attacker to have additional training data labeled with the exact

property they wish to infer;
– A passive attacker can only monitor updates and make inferences by training a binary property classifier;
– An active adversary can use multitask learning to trick the model FL into learning a better separation

between data with and without the property, resulting in more information being extracted;
– An adversarial participant can even infer when a feature appears and disappears in the data during training;
– It can recover pixel-perfect original images and token-matched original texts.

In Figure 5 below, the attacks that are known in Federated Learning field are illustrated.

Fig. 5. Known Attacks in Federated Learning Field

3 SECURING FL AGGREGATION ALGORITHMS

Federated Learning technology is known as a privacy-preserving technology that builds Machine Learning models
without collecting users’ private data. The first federated aggregation algorithm, proposed by Google and called FedAvg
[23], was originally dedicated to the idea of aggregating multiple locally trained models. However, later reviews have
shown that this algorithm is vulnerable to many challenges, including various attacks and violations [24–29]. Therefore,
several aggregation algorithms have been proposed to address these issues. However, not all aggregation algorithms
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have been developed to address privacy and security concerns. Some were developed to optimize communication and
communication costs, such as FedBoost [59], FedProx [60], FedMA [61], and others. Other approaches have been used
to improve personalization, such as FedDist [62]. Thus, in this section, we discuss the aggregation algorithms of FL that
aim to improve privacy and security in Federated Learning environments.

3.1 Securing FL Aggregation Against Active Adversaries

The FL algorithm proposed in [23] is vulnerable to poisoning attacks. In [63], the authors proposed a protocol for
secure vector summation that has a fixed number of rounds, minimal communication cost, failure robustness, and only
one server with limited trust. In this design, the server has two tasks: relaying communication between other parties
and computing the final result. In addition, the authors offer two variants of their protocol, the first of which is more
efficient and can prove secure against honest but curious adversaries in the simple model. The alternative, on the other
hand, ensures anonymity against active adversaries (including an actively hostile server), but requires an additional
round and has been shown to be safe in the random oracle model. Using a simulation-based demonstration, it was
shown in both cases that the server learns the user input only in aggregate form [23]. To secure the communication
between the involved parties, a cryptographic primitive was implemented in the following phases:

• Secret Sharing: which relies on Shamir’s "t-out-of-n" Secret Sharing [64], which allows a user to divide a
secret "s" into "t" shares that can be used to reconstruct the secret without revealing the secret from shares
smaller than "t", does not provide information about the secret "s";

• Key Agreement: consists of three functions, the first of which generates some public parameters, the second
of which allows each party to generate a privateand public key pair, and the third of which allows each user to
combine his private key with the public key to obtain a private shared key;

• Authenticated Encryption: a symmetric encryption that combines confidentiality and integrity guarantees
for messages exchanged between two parties;

• Pseudorandom Generator: ensures that, given a uniformly random seed, its output is computationally
indistinguishable from a uniformly sampled element of the output space as long as the seed is hidden from the
discriminator;

• Signature Scheme: Now, for the signature to prove the origin of a message, it must be the case that someone
without the secret key cannot create a valid signature for a message they have not yet seen signed, which is
called UF-CMA security [65];

• Public Key Infrastructure: allows clients to register identities and sign messages with their identities so that
other clients can verify the signature but not forge it.

Based on the performance analysis performed by the authors, this approach shows several advantages and disadvan-
tages which are listed here:

• advantages:
– Privacy-Preserving: By eliminating the need to collect user data, user privacy is preserved;
– Security: by using a cryptographic primitive that prevents communication with unauthorised users;
– Dropped Users Management: The server receives messages from all users who have not dropped this

round, and terminates if the number of messages received is less than the desired number.
• drawbacks:
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– robustness against active attackers: The security protocol ensures that when the server learns user
input, it always merges it with other users’ values, but it does not protect against malicious clients who
want to prevent the server from learning any sum at all;

– forcing well-formed input: The protocol also does not ensure that user input is well-formed or within
certain bounds, allowing malicious users to enter arbitrary values of their choosing, resulting in the server’s
output also being ill-formed;

– Communication Overhead: Users must exchange random vectors, which could require a quadratic
communication overhead if naive.

3.2 Robust Federated Aggregation (RFA)

Following the success of the Federated Learning approach as a privacy-friendly technology, the authors of [66] proposed
Robust Federated Aggregation (RFA), a new approach for FL, which makes the aggregation process more robust to
possible poisoning of local data or model parameters of participating devices. Since corrupted or poisoned devices
can only affect the global model through updates, the authors contributed to the aggregation step and proposed an
improved aggregation algorithm for Federated Learning. The proposed method is based on the geometric median,
which can be easily computed using a Weiszfeld-type algorithm [67] and is independent of the extent of damage, and
aggregates model updates without revealing the specific contribution of each device. The authors’ experiments have
shown that RFA can compete with traditional aggregation when the extent of corruption is low, while it has higher
resilience when the extent of corruption is high.
Their model, RFA, is based on the principle of aggregation with the Geometric Median (GM) defined as the minimizer
of vectors with an optimal collapse point of 1/2, where at least half of the points must be changed for the geometric
median to correspond to any point. Moreover, the RFA algorithm is obtained by replacing the mean aggregation of
FedAvg with this GM-based robust aggregation oracle. As a result, RFA is independent of the convexity of the local
targets regardless of the actual amount of corruption in the problem, and the aggregate is robust. However, it turns out
that robustness is incompatible with the two main goals of Federated Learning communication efficiency and privacy.
Therefore, the authors propose two variants of RFA, namely one-step RFA, which aims to reduce communication costs,
and personalized RFA, which aims to deal with heterogeneity. In addition, the authors explained the tension between
robustness, communication, and privacy, concluding the following:

• Any FL algorithm among existing Secure Multi-Party Computation techniques can only exhibit two of the three
aspects of privacy, communication, and robustness

• FedAvg is efficient in terms of communication and privacy, but not robust
• In general, any linear aggregation scheme is not robust, and therefore any robust aggregation must be non-linear;
• Only linear functions of inputs are communication efficient for the secure multiparty computation primitives

based on secret sharing on which privacy protection is built.

Therefore, the presented algorithm, called RFA, is based on the geometric median and the smoothed Weiszfeld
approach to aggregate the vectors. The approach proved to be robust to corrupted updates and the proposed variants
also showed optimization of communication overhead.

Manuscript submitted to ACM



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Securing Federated Learning; Approaches, Mechanisms and Opportunities 13

3.3 LayerwisE Gradient AggregatTiOn (LEGATO)

Furthermore, in [68], the authors discussed the need for robust aggregation algorithms that can survive Byzantine
attacks. In Byzantine attacks, workers are defined as individuals that send malicious gradients to corrupt the global
model. The approach proposed by the authors was triggered by the increasing challenges in FL aggregation, where:

• Several known robust aggregation techniques, especially in non-IID environments, are unable to defend against
Byzantine attacks;

• The need to develop aggregation algorithms that are:
– intelligently detect whether a worker sending a "different" response is a malicious worker;
– can train a global model with reasonable performance given a local data distribution without an IID;
– uses all information collected from workers to diagnose worker behavior.

Given that existing robust aggregation algorithms are often very computationally intensive, the authors justified the
development of their model by the need for robust, yet communication-efficient methods. Therefore, they introduced
LayerwisE Gradient AggregatTiOn (LEGATO), a scalable and generalizable FL aggregation algorithm. LEGATO uses a
dynamic gradient reweighting approach that is novel in its treatment of gradients based on layer-specific resilience
and is beneficial for convergence of gradient descents in the absence of an attack. The authors secured their algorithm
via the layer-by-layer approach, which works on each layer of the model. Therefore, it is worth noting that their
approach is limited in implementing ML models built from layers, such as Deep Learning and Neural Network models.
Consequently, the new steps of LEGATO begin when the server receives gradients from all workers where:

• First: The gradient log is updated by the server to include the latest gradients collected from workers;
• Then: It assigns to each slice a robustness factor standardized over all slices, which is the inverse of the standard

deviation of those norms over all recorded rounds;
• Finally: All these reweighted gradients are averaged over all workers, and the resulting aggregated gradient is

used as the round gradient.

The proposed approach has thus been shown to be robust to Byzantine attacks while also being considered communica-
tion efficient. However, it suffers from several drawbacks, which can be summarized as follows:

• Its limitation to Neural Networks;
• Its weakness against Gaussian variance attacks;
• Its lack of a definition for "Extreme Outliers".

3.4 Privacy-preserving Decentralized Aggregation (SecureD-FL)

So far, it has been discussed that Federated Learning aggregation algorithms are vulnerable to various poisoning attacks.
This being said, Secure Multiparty Computation [63, 69, 70] Differential Privacy [71, 72] and combinations of both
[73–75] are techniques to address these privacy issues. However, these techniques involve significant computational
overhead, require the use of a trusted third party to provide the secret key, or compromise the quality of the trained
models due to the noise introduced. Most importantly, these systems require the use of a central aggregation server that
acts as a single point of failure and poses a privacy risk in the event of a hacking attack. Therefore, in [76], the authors
developed a privacy-preserving decentralized aggregation protocol for Federated Learning called "SecureD- FL". Their
proposed aggregation algorithm is based on an improved version of the Alternating Direction Method of Multiplier
(ADMM) [77]. The proposed algorithm controls the communication between participants in each aggregation round to
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reduce privacy loss and guarantee privacy against honest but curious adversaries, with this communication pattern
inspired by combinatorial block design theory.
The algorithm in [76] proposed a novel communication pattern between FL system participants inspired by the theory
of combinatorial block design [78]. The basic idea is that the algorithm determines which group of participants (called a
group) should interact in each aggregation round to minimize privacy loss. The grouping algorithm is explained with
an example:

• assume having a set of partitions of the nine users 1, . . . , 9 in groups (of size s = 3) with a gap constraint. Each of the

partitions corresponds to a communication scheme in an ADMM iteration. The members of a group (triangles) are

free to communicate their parameters among themselves in one iteration. These partitions create a communication

gap across the ADMM aggregation. Therefore, users do not disclose private information when the aggregation

converges in less than twice the number of partitions at least" [76].

In Figure 6, the communication protocol is shown for a group of 9 users divided into 3 groups. In the figure, parts a, b, and
c represent communication with gaps between individuals with unequal distances. In this case, two adjacent individuals
can communicate more than once in a full communication cycle (8 iterations), unlike part d where the connection
between the same two individuals occurs only after 8 iterations. This reduction in the repetition of communication
between individuals contributes to less leakage of private information.

Fig. 6. Communication Control Explained for Set of 9 Users

Following the classical Federated Learning algorithm, the proposed architecture consists of multiple rounds. Since
no central server is required, the steps are as follows:

• Each individual trains the global model using its local data and updates the model parameters;
• The individuals synchronize the locally trained models;
• The individuals work together to compute the summedmodel via the ADMM-based secure aggregation algorithm

without having to send it to a central server;
• Repeat the above steps until the model converges.
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However, by using the communication control protocol, the communication between individuals proceeds as follows:

• In each iteration, each individual performs its minimization and shares its parameters with other individuals in
the same group to calculate the partial sum of the group;

• Different groups exchange their partial sums to calculate the final sum of the model;
• Individuals update their parameters at each iteration with the final sum.

As a result, individuals from FL are able to build an aggregate model with fewer repeated communications, which
increases robustness to a loss of privacy.

3.5 Secure and Efficient Aggregation for Byzantine-Robust Federated Learning (SEAR)

Byzantine attackers are not the only problem that Federated Learning technology can suffer from. For example, the
server is able to infer private content from the client’s data. It can recover this data by Generative Adversarial Network
(GAN) [79] or pixel-wise accurate images by using gradients [37]. Moreover, implementing cryptographic primitives
such as Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC) incurs expensive communication
and computation costs [80]. Therefore, in [80], the authors proposed a new private and secure aggregation algorithm
called SEAR. Their proposed algorithm uses a hardware-based trusted execution environment instead of cryptographic
time-consuming tools.
First, SEAR used the Intel SGX [81] Trusted Execution Environment (TEE) to aggregate the locally trained models in a
secure and trusted hardware environment. A Trusted Execution Environment is a secure area of the central processor
where the confidentiality and integrity of the code and data loaded into it can be well preserved. There are two TEEs
based on different processor architectures: ARM TrustZone [82] and Intel Software Guard Extensions (SGX) [81]. In
Intel SGX, the trusted part is called the enclave and the protected memory area is called the Processor Reserved Memory
range (PRM), which cannot be accessed by code outside the enclave. Since the local models are encrypted and only a
trusted execution environment, the enclave, has the key to recover them, sensitive information is never disclosed to the
aggregation.
However, the physical memory size of PRM is limited to 128 MB on current Intel CPUs, which limits the number
of locally trained models that can be aggregated simultaneously. This poses a major challenge since thousands or
even more individuals may be involved in aggregation simultaneously in the FL environment. Therefore, the authors
proposed two data storage modes that can be used within the enclave:

• Row Major Data Storage Mode: the parameters uploaded by a client are stored in a contiguous storage area
suitable for the aggregation algorithm, which is implemented by accessing each client’s vector once;

• Column Major Data Storage Mode: stores the parameters in the same dimensions in a contiguous array.

Since the row-oriented data storage mode is time-consuming due to the time required for EPC paging, the column-
oriented mode is proposed as a solution to this drawback. In this mode, PRM is able to shop more dimensions without
changing the total memory consumption. In addition, in [80], the authors considered preventing information leakage
through side channels, such as power consumption [83], rollback attacks [84], or other timing attacks [85].

3.6 Efficient Privacy-Preserving Data Aggregation (EPPDA)

FL is vulnerable to data poisoning attacks and also to reverse attacks that can analyze users’ model and expose their
private data. For example, the aggregation server, as a legal FL participant, can decrypt individuals’ locally trained models.
Moreover, the instability of the communication network affects the system FL. Therefore, in [86], the authors proposed an
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efficient, fault-tolerant privacy preserving data aggregation scheme that requires less communication and computation.
Their model, called Efficient Privacy-Preserving Data Aggregation (EPPDA), exploits the homomorphisms of the secret
exchange [87] to minimize the iterations of the secret exchange and thus reduce the consumption of communication,
computation, and storage resources. In this context, reducing communication, computation, and memory resources leads
to improved system efficiency, especially when the number of training times increases. Moreover, secret sharing can
secure users’ secret data to reduce the influence of some malicious users, which makes EPPDA a private fault-tolerant
algorithm. The cryptographic primitives used in EPPDA can be summarized in the following steps:

• Secret Sharing: which is based on the Shamir Secret Sharing [64] discussed in Section 3.1;
• Key Exchange Protocol: which helps both communication parties generate a session key in a public channel;
• Authenticated Encryption: which allows both communication parties to communicate with a shared secret

in a public channel;
• Signature Scheme: verifies the source of the message.

3.7 Secure Aggregation with Heterogeneous Quantization (HeteroSAg)

FL offers many advantages, but also suffers from key challenges such as communication bottlenecks, system failures,
malicious users, and Byzantine faults. Therefore, the authors in [88] Secure Aggregation with Heterogeneous Quantiza-
tion (HeteroSAg) proposed a privacy-friendly and heterogeneous efficient FL aggregation algorithm. HeteroSAg, as
proved by the authors, proves:

• Protect the privacy of each user’s local model updates by masking each user’s model update so that the mutual
information between the masked model and the unique model is zero;

• Enable the use of heterogeneous quantization, which allows edge users to adjust their quantizations proportion-
ally to their available communication resources, resulting in a much better tradeoff between training accuracy
and communication time;

• Achieves resilience against Byzantine attacks by adding distance-based defences;
• reduces bandwidth expansion.

HeteroSAg enables secure aggregation with heterogeneous quantization. The efficiency of HeteroSAg and its robustness
against Byzantine attacks lie in the FL system cycle that runs the Segment Grouping Strategy. The main concept behind
HeteroSAg privacy efficiency lies in this strategy, which is based on dividing edge users into groups and segmenting
local model updates for these users. This segmentation helps with the following:

• computation on segments with specified user cooperation, so that segments can be quantized by different
quantizers instead of applying the safe aggregation procedure to all local model update vectors;

• enabling safe model aggregation with heterogeneous quantization while preventing the server from unmasking
the full average model from a subset of users.

In summary, HeteroSAg has been shown to be an efficient aggregation algorithm that provides a much better tradeoff
between training accuracy and communication time. Moreover, the proposed HeteroSAg method can be used to mitigate
Byzantine attacks and drastically reduce the bandwidth growth of the secure state-of-the-art aggregation protocol.

3.8 FLDetector: Securing FL via Detecting Malicious Clients

At FL, existing defenses have focused heavily on Byzantine-robust or provably robust methods, even in the presence
of malicious clients. However, a major limitation of these defenses is that they can withstand only a small number
Manuscript submitted to ACM
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of malicious clients. In [89], the authors present FLDetector, which was developed to address this critical challenge
of defending against model poisoning attacks with a large number of malicious clients. Their method takes a unique
approach by focusing on detecting such malicious clients. The methodology is based on a fundamental observation:
in the context of model poisoning attacks, model updates originating from a client in multiple iterations exhibit
inconsistencies. In this context, FLDetector identifies potentially malicious clients by checking the consistency of their
model updates. Essentially, the server uses historical model updates to predict a client’s model update for each iteration.
It raises a red flag and classifies a client as malicious if the model update received from that client does not match
the predicted model updates across multiple iterations. This innovative approach enables FLDetector to tackle the
difficult scenario of combating model poisoning attacks orchestrated by a variety of malicious clients. By assessing the
consistency of model updates, FLDetector not only provides a robust defense mechanism, but also provides insight
into the limitations and opportunities for mitigating such threats within the Federated Learning landscape. However,
it’s important to recognize that FLDetector, like any defense strategy, has its own benefits and limitations, which are
explored below with the benefits:

• Benefits
– Improved Defense Against Large-Scale Attacks: it offers a defense mechanism against model poisoning

attacks involving a substantial number of malicious clients, addressing a critical challenge in FL domain;
– Unique Detection Approach: The method’s unique approach, focusing on the consistency of model updates

across iterations, sets it apart from existing defenses that rely on Byzantine-robust or provably robust
methods;

– Predictive Model Update Analysis: By utilizing historical model updates to predict a client’s model update
for each iteration, FLDetector demonstrates the ability to proactively identify potentially malicious clients;

– Early Detection: The system raises a red flag and designates a client as malicious if inconsistencies persist
across multiple iterations, enabling early detection and mitigation of threats.

• Limitations
– Detection Sensitivity: FLDetector can identify fraudulent clients based on inconsistent model updates, but

it may also raise false alarms in cases of benign inconsistencies like communication problems or system
noise;

– Complexity and Resource Requirements: Predictive model update analysis and consistency testing may
increase server-side computational complexity and resource overhead, impacting FL system performance;

– Effectiveness Under Evolving Attacks: The method’s effectiveness could be limited if adversaries adapt
their strategies to introduce more subtle and harder-to-detect inconsistencies in their model updates;

– Trade-Off Between False Positives and False Negatives: Fine-tuning the balance between false positives
(flagging innocent clients as malicious) and false negatives (failing to detect true dangerous clients) may be
difficult.

3.9 FLCert: Security by Clients Grouping Strategy

Similarly, the authors in [90] Proposed FLCert, whose main concept is to categorize customers into groups and facilitate
the learning of a global model for each client group using established FL methods. Then, the system uses a majority
voting mechanism between these global models to classify test inputs. The approach considers two different methods
for grouping clients, resulting in two variants: FLCert-P, in which clients are randomly grouped, and FLCert-D, in which
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clients are deterministically divided into disjoint groups. Through extensive experimentation on multiple datasets,
the results show that the labels predicted by FLCert for test inputs are demonstrably not affected by the influence
of a limited number of malicious clients, regardless of the specific poisoning attack strategies. This breakthrough in
providing provable security guarantees positions FLCert as a robust and promising defense-in-depth strategy in the
FL landscape that addresses critical vulnerabilities and advances security standards in the field. However, as with any
approach, it is important to recognize the potential benefits and limitations, which are listed below:

• Benefits:
– Provable Security: it offers a solid security guarantee against poisoning attacks;
– Ensemble Approach: It leverages client grouping and majority voting among global models;
– Two Variants: it presents flexibility with FLCert-P and FLCert-D catering to various use cases.

• Limitations:
– Assumed Malicious Clients: FLCert assumes a known upper limit on malicious clients, limiting its applica-

bility in scenarios with uncertain adversarial activity;
– Complexity: Implementing client grouping and ensemble learning introduces computational complexity

and resource demands, impacting efficiency;
– Grouping Methods: The effectiveness of client grouping methods may vary depending on the data distribu-

tion, necessitating careful selection;
– False Positives: Like any defense mechanism, finding the right balance between false positives and false

negatives in identifying malicious clients may pose a challenge.

3.10 ELSA: Security by Distribution of Trust

In the context of FL, they cannot consider malicious actors within the system, which is a major obstacle to making FL
an ideal solution for privacy-preserving Machine Learning applications. As a solution, the authors in [91] proposed
ELSA, a breakthrough secure aggregation protocol to overcome these challenges. ELSA not only ensures efficiency, but
also combats the presence of malicious actors at its core. ELSA introduces a novel secure aggregation protocol based on
distributed trust between two servers that keeps individual client updates secret as long as a server remains honest. This
design not only protects against malicious clients, but also ensures end-to-end efficiency. What distinguishes ELSA from
previous protocols is its innovative approach. Instead of servers interactively generating cryptographic correlations,
clients act as untrusted traders of these correlations without compromising the security of the protocol. This innovation
results in a much faster protocol that provides even higher security compared to previous work. Moreover, ELSA
introduces novel techniques that maintain privacy even when a server is malicious, with only a small increase in runtime
and negligible communication overhead compared to the case of reasonably honest servers. This groundbreaking work
significantly improves end-to-end runtime over previous approaches with similar security guarantees. A number of
benefits and limitations of ELSA are proposed in the following list:

• Benefits:
– Efficiency: it offers a much faster secure aggregation protocol compared to previous approaches, making it

suitable for real-world FL scenarios;
– Malicious Actor Resilience: The protocol addresses the presence of malicious actors at its core, ensuring

robust security even in the face of adversarial clients or servers;
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– Distributed Trust: ELSA leverages distributed trust across two servers, keeping client updates private as
long as one server remains honest, enhancing privacy and security;

– Improved Security: It achieves stronger security at high efficiency compared to prior work, making it a
noteworthy advancement in secure aggregation techniques;

– Negligible communication overhead compared to semi-honest server scenarios.
• Limitations:

– Assumed Trust: The security of ELSA relies on the assumption of at least one honest server. In cases where
both servers are compromised, the protocol’s security guarantees may be compromised;

– Additional Runtime Cost: While ELSA maintains privacy when a server is malicious, it does come with a
runtime cost of 7-25%, which may impact the speed of Federated Learning processes;

– Specific Model Consideration: The performance improvements mentioned in the text, may be contingent
on the specific ML models used, and results could vary with different model architectures or dataset sizes.

–

3.11 Multi-RoundSecAgg: Securing by Random User Selection Strategy

In [92], the authors showed that the conventional practice of random user selection in FL can lead to the leakage of
users’ individual models within a number of rounds proportional to the total number of users. To address this critical
challenge, they introduced a new secure aggregation framework known as Multi-RoundSecAgg that provides privacy
guarantees over multiple rounds. This framework goes beyond the single-round privacy paradigm and introduces a
new metric to quantify the privacy guarantees of FL over successive training rounds. They also develop a systematic
user selection strategy that ensures the long-term privacy of each user, regardless of the number of training rounds.
Importantly, their framework incorporates fairness considerations and maintains an average number of participating
users in each round. Their experiments, conducted on datasets such as MNIST [101] & CIFAR [105], illustrate the
effectiveness and practicality of our multi-roundSecAgg framework. This work represents a significant advance in
the field, addressing the privacy challenges posed by multi-round scenarios from FL and providing improved privacy
guarantees for Federated Learning systems.

• Benefits:
– Enhanced Privacy over Multiple Rounds: it recognizes and mitigates privacy vulnerabilities that may arise

from partial user participation over time;
– Novel Privacy Metric: it introduces a new metric to quantify privacy guarantees across multiple training

rounds enhances the assessment and understanding of long-term privacy preservation in Federated
Learning;

– Structured User Selection: it ensures the sustained privacy of each user, irrespective of the number of
training rounds, addressing a critical concern in Federated Learning;

– Fairness and Participation: it takes into account considerations of fairness and maintains an average number
of participating users at each round, promoting equitable involvement and balanced contributions in the
learning process.

• Limitations:
– Complexity: The introduction of multi-round privacy guarantees and structured user selection strategies

may increase the computational and operational complexity of FL systems;
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– Resource Demands: Implementation could require additional computational and storage resources, which
may pose challenges in resource-constrained environments;

– Generalization: The framework’s effectiveness and privacy guarantees may depend on specific use cases
and data distributions, and its generalization to all scenarios may require further exploration;

– Fairness Considerations: While the framework accounts for fairness in user participation, achieving perfect
fairness in all practical scenarios may still be a challenge;

– Scalability: The scalability of Multi-RoundSecAgg to large-scale Federated Learning scenarios with numer-
ous participants and data sources remains an area of consideration and potential limitation.

4 SECURING FEDERATED LEARNING WITH HOMOMORPHIC ENCRYPTION

The challenges of Federated Learning require the implementation of various solutions, especially to improve security
and privacy. In this context, encryption algorithms have been used to provide additional security for transactions
between different FL individuals. Encryption techniques are divided into two types: Secret key algorithms and public key
algorithms. All of today’s encryption algorithms fall into one of the two categories: Secret key encryption techniques,
where the same key, called the secret key, is used to encrypt and decrypt a message, and public key encryption techniques,
where one key, called the public key, is used to encrypt a message and another key, called the private key, is used to
decrypt it[93–98].
Homomorphic encryption (HE) in this context is a type of encryption that makes it possible to perform certain types of
calculations with the ciphertext and obtain an encrypted result that, when decrypted, matches the result of operations
with the plaintext. In the development of current communication systems, this is a desired property [93–97]. RSA
[95] is known as the first public-key encryption algorithm with a homomorphic scheme. Moreover, the debate on
homomorphic encryption schemes can be summarized in the list below [93–98]:

• Benefits:
– Elimination of the need for trusted third parties, keeping data secure and confidential in untrusted contexts,

such as public clouds or third parties. Data is encrypted at all times, reducing the possibility that sensitive
information could ever be hacked;

– Elimination of the tradeoff between data usability and data privacy, where there will be no need to obfuscate
or remove elements to ensure data protection;

– resistance to quantum attacks.
• Limitations:

– Poor performance: due to issues such as slow computational speed and accuracy, fully Homomorphic
encryption remains commercially impractical for computationally intensive applications. The research
community generally agrees that research in fully homomorphic encryption still has a long way to go,
although it is useful today in conjunction with other privacy-enhancing technologies such as secure
multiparty computing.

In addition, the authors confirm in [80] what has already been discussed about the poor performance of HE for heavy
computation. In particular, they discussed the use of HE in Federated Learning aggregation algorithms, noting that HE
supports simple operations with encrypted data and typically incurs expensive computation and communication costs
for complex problems. Since defending against existing attacks requires repeated comparison operations and distance
calculations, securing FL with HE is time consuming, making it impractical for known attacks such as the Byzantine
Manuscript submitted to ACM
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attack. However, several attempts have been made to secure the FL algorithms with homomorphic encryption. These
implementations are discussed in this section. It should be noted, however, that these implementations are not FL
aggregation algorithms, but are used only to secure communications in the FL system, which is the main reason these
implementations were not mentioned in the previous section.

4.1 Securing FL Communications With HE; State-of-The Art

Homomorphic Encryption has been a hot research topic in recent years. Research institutions, whether individuals,
laboratories, or companies, have used this technique in various digital domains. Federated Learning, for example, has
played a part in this interest, as HE is used to secure communication across FL individuals.

4.1.1 Using HE as a Standalone Securing Solution. For example, the authors of [99] were the first to use HE to secure
the FL system. They originally described their solution as a three-party end-to-end solution secure against an honest
but curious adversary. Their solution consisted of two phases: privacy-preserving entity resolution and federated
logistic regression using messages encrypted with an additive Homomorphic method. Since HE allows operations over
integers, the authors developed an encoding technique that translates floating-point numbers into modular integers
while preserving addition and multiplication operations to implement algorithms over floating-point numbers. They
used an encoding scheme similar to the floating-point representation, where a number is encoded as a pair of an
encoded significant and an unencoded exponent. Their solution allows the FL model to be trained without sharing
user’s data, and is as accurate as a naive, non-private solution that collects all the data in one place, making it scalable
to millions of entities, each with hundreds of features. However, the authors did not provide any analysis regarding
the time and computational complexity of their proposed system. In the same way, the authors in [100] secured the
messages exchanged between the aggregation server and the clients using HE. They secured the system FL against
inference attacks and demonstrated the efficiency of their solution by testing experiments with two private financial
datasets.
Likewise, authors also proposed POSEIDON in [101], which is an extension for SPINDLE [102]. POSEIDON, as defined by
the authors, is a new system that enables neural network training and evaluation in a Federated Learning environment.
The proposed solution secures the exchanged messages with Multiparty Lattice-Based Homomorphic Encryption [103].
They evaluated their model with several datasets: Breast Cancer Wisconsin Dataset (BCW) [104], EMNIST Dataset
[105], the Epileptic seizure recognition (ESR) Dataset [106], the default of credit card clients (CREDIT) Dataset [107],
the street view house numbers (SVHN) Dataset [108], and the CIFAR-10 and CIFAR-100 [109].
Therefore, in [110], the authors proposed a privacy-friendly FL (PEFL) architecture that uses HE as the underlying
technology and provides a way to penalize poisoners through effective gradient data extraction of the logarithmic
function. PEFL, as proposed by the authors, is the first attempt to detect poisoning behavior in FL using ciphertext.
PEFL was evaluated using the EMNIST [105] and CIFAR [109] datasets. Similarly, in [111], the authors proposed their
Federated Learning security mechanism based on additive homomorphic encryption (DTAHE) techniques. The proposed
model allows the aggregation server to multiply the individual inputs by arbitrary coefficients and aggregate them to
build a complete contiguous layer or on the individual inputs. Similarly, in [112], the authors proposed a FL security
framework that uses fully homomorphic encryption. In particular, they used an approximate floating-point compatible
scheme that benefits from packing and scaling the ciphertext. The authors evaluated the solution on the UK Biobank
(UKBB) neuroimaging dataset [113] and the results proved the improved learning performance while maintaining the
security of the FL transactions. Moreover, in [114], the authors proposed a security scheme for Federated Learning
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Table 1. HE, as Standalone Solution, Implementations to Secure FL Algorithms

Ref Securing Scheme Dataset Used

[99]

Homomorphic En-
cryption to secure
data exchange in FL
System

-
[100] -
[101] Breast Cancer Wisconsin dataset (BCW) [104]

EMNIST dataset [105]
Epileptic seizure recognition (ESR) dataset [106]
The default of credit card clients (CREDIT) dataset [107]
Street View House Numbers (SVHN) dataset [108]
CIFAR-10 and CIFAR-100 [109]

[110] EMNIST [105], CIFAR [109]
[111] -
[112] UK Biobank (UKBB) neuroimaging dataset [113]
[114] Human Against Machine with 10,000 training images (HAM10000)

dataset [115]

based on homomorphic encryption. The proposed model was introduced to secure collaborative Deep Learning models
in an Internet of Things-based healthcare system. The proposed model was evaluated on the Human vs. Machine with
10,000 Training Images (HAM10000) dataset [115] and obtained promising privacy preserving results. Moreover, in
[116], [117], and [118], the authors also proposed the use of homomorphic encryption to build a Federated Learning
security system. Their models built on homomorphic encryption have succeeded in creating a secure and trustworthy
data exchange environment for Federated Learning systems. The discussed implementations are summarized in Table 1
below.

4.1.2 Combining HE with Other Security Technologies. Moreover, in [73], the authors proposed to secure the aggre-
gation algorithms of FL by homomorphic encryption. Since they did not propose a new aggregation algorithm, their
proposed solution is an alternative method using differential privacy, Homomorphic Encryption and Secure Multiparty
Computation (SMC) to balance the tradeoff between accuracy and privacy. This combination allows for a reduction in
the increase in noise injection as the number of participants increases, while maintaining a predefined trust rate. The
concept of transaction assurance in the proposed FL solution lies in the role played by Differential Privacy and HE.
The former is used by the participants to add a certain amount of noise, which is calculated based on various metrics.
Then, the cryptosystem HE is used to encrypt the noisy message, which is then sent to the aggregator, which uses it to
sum the global model. By combining the different security approaches, the authors presented their model as a scalable
approach that defends against inference attacks while generating highly accurate models. These results were verified
by several experiments that proved their model to be superior to the state-of- the art. However, the complexity of time
computation was not considered in this study.
Similarly, the authors combined in [119] Homomorphic Encryption and Verifiable Computing (VC), a cryptographic
method used to ensure the integrity of computations on authenticated data, to secure Federated Learning communi-
cations. The proposed model was tested with the Federated Extended EMNIST dataset [105]. However, the proposed
solution was developed only for Neural Networks and compatibility with other types of Machine Learning models was
not discussed.
On the other hand, in [120], the authors proposed an algorithm based on Blockchain Federated Learning. They secured
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Table 2. HE, Combined with Other Solutions, to Secure FL Algorithms

Ref Combined With Dataset Used

[73] Secure Multiparty Computation (SMC) -
[119] Verifiable Computing (VC) EMNIST dataset[105]
[120] Blockchain -

the data exchange with differential privacy and Homomorphic Encryption. They applied different models, securing
distributed Random Forest with differential privacy and distributed AdaBoost with HE, which provided multiple privacy
in data and model sharing. Finally, they integrated the methods with Blockchain and Federated Learning and applied
extensive experimental results that proved that their working mechanism had the better performance on the selected
indicators. These implementations are summarized in Table 2.

4.1.3 HE with Reduced Communication and Computation Cost. In contrast, the increase in computing and commu-
nication costs due to HE was studied by the authors in [121]. In their study, they proposed BatchCrypt, a system
solution for cross-silo Federated Learning. Their model was designed to secure communications in a FL system while
reducing the overhead caused by HE. To achieve this, rather than encoding individual quantized gradients with full
precision, they encoded a batch of quantized gradients into a long integer and encoded them all at once. They also
developed new quantization and encryption strategies, as well as a unique gradient truncation mechanism to enable
gradient-by-gradient aggregation of ciphertexts of encrypted batches. They then integrated BatchCrypt as a plugin
module in FATE [122], a cross-silo industrial FL framework. Evaluations in geographically distributed data centers show
that BatchCrypt achieves significant training acceleration, ranging from 23 to 93 times, while reducing communication
costs from 66 to 101 times. Moreover, the loss of accuracy of the model due to quantization errors was less than 1%.
In addition, the authors in [123] Dubhe, a customizable, adaptable, and resilient FL fuse mechanism with low encryp-
tion and communication overhead. Dubhe improves training performance while posing no security risks by using
homomorphic encryption. The authors evaluated their method on the EMNIST [105] and CIFAR [109] datasets, and
the results showed that it outperformed other approaches in terms of unbiasedness. Similarly, the authors presented
in [124] FLASHE, a HE scheme suitable for cross-silo FL that is able to capture the bare minimum of security and
functionality by eliminating asymmetric key design and using only modular addition operations with random integers.
They also evaluated their model against the EMNIST [105] and CIFAR [109] Datasets, and the results showed a 63-fold
and 48-fold reduction in computational and communication costs, respectively. Similarly, the authors in [125] PFMLP,
a security mechanism for Federated Learning that ensures that all FL individuals transmit their encrypted gradients
through homomorphic encryption. They evaluated their model against the EMNIST dataset [105] and demonstrated a
computational cost reduction of up to 25-28%.
In addition, a similar solution was also proposed in [126], where they proposed PCFL, a privacy-preserving and
communication-efficient method for Federated Learning in the Internet of Things. PCFL consists of three key com-
ponents: spatial sparsification with gradients, bidirectional compression, and a privacy-preserving protocol based on
Homomorphic Encryption to protect data privacy and be resilient to various collusion scenarios. They evaluated their
model with the EMNIST [105] and the results show that PCFL outperforms state-of-the-art methods by more than
doubling the communication reduction while maintaining high model accuracy and slightly reducing the convergence
rate. The above implementations are summarized in Table 3 below.
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Table 3. HE with Communication and Computation Cost Reduction

Ref Enhancement Ratio Dataset Used

[121] Training: 23x-93x - Communication: 66x-101x EMNIST [105] & CIFAR [109]
[123] negligible encryption and communication overhead EMNIST [105] & CIFAR [109]
[120] Computation:63x - Communication:48x -
[125] Computation: 25?28% EMNIST [105]
[126] Communication: 2x EMNIST [105]

4.2 Other Approaches to Secure FL

Despite the feasibility that Homomorphic Encryption has shown in securing Federated Learning, other technologies
have been used in this context. For example, in [127], the authors proposed to secure FL systems using the Covert
Communication-based Federated Learning (CCFL) approach. Their method relies on the emerging communication
security technique of covert communication, which disguises the existence of wireless communication activities. CCFL
can reduce the ability of attackers to extract useful information from the Federated Learning Network training (FLN)
training protocol, which is a crucial process in most existing attacks, and thus holistically improve FLN privacy. The
authors extensively tested CCFL under real-world conditions, optimizing the latency of FL under certain security
criteria.
In contrast, the authors of [128] advocated protecting FL frameworks from attackers by detecting and minimizing their
influence on the model, especially in the context of bidirectional label flipping threats with cooperation. Exploiting
correlations between local models, they presented "two graph-theoretic algorithms" based on the Minimum Spanning
Tree and the k-Densest graph. Their method can minimize the impact of attackers even when they account for up to
70% of all FL individuals, whereas previous efforts could only allow 50% of these individuals to be attackers. Using
experiments with the EMNIST dataset, the efficiency of the approach is [105].
Finally, several implementations were performed to secure FL algorithms using blockchain technology. Thus, in [129],
[130], and [131], the authors proposed several blockchain solutions aimed at securing Federated Learning algorithms.
FL Based on the results obtained in these studies, blockchain as a decentralized technology has demonstrated its ability
to improve the performance of FL without the need for a centralized server and solve several problems and challenges,
such as communication cost, disclosure of private information, the irregularity of uploading model parameters to the
aggregator, and others.

5 DISCUSSING SECURITY IN FL AGGREGATION ALGORITHMS

Federated Learning technology is emerging as an efficient, robust, and viable Machine Learning technology while
maintaining privacy. The interest in improving the aggregation algorithms and securing the data sharing mechanisms
of Federated Learning has increasingly attracted the attention of researchers worldwide. Attempts to improve the
security, privacy, and robustness of these aggregation algorithms may lead to greater confidence in this technology,
which in turn will encourage the adoption of FL in various areas of life.

5.1 Securing Aggregation Algorithms

Federated Learning Aggregation algorithms are of great interest in terms of security and privacy, especially because
they are vulnerable to poisoning attacks, inference attacks, and other breaches. Therefore, researchers are looking for
Manuscript submitted to ACM
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various ways to secure these algorithms, as described in detail in Section 3. However, it was found that most of the
proposed algorithms focused either on robustness against attacks, especially the Byzantine attack, or on the security
branches of trust, authentication, and integrity. Of the seven algorithms discussed, only SecureD- FL [76] addressed
securing the FL aggregation algorithms against the inference attacks within the proposed communication model, and
none of the algorithms proposed solutions for both class and membership inference. This conclusion sparks interest in
working on new algorithms that can help solve these challenges.
The Table 4 below summarizes the various aggregation algorithms intended to solve security challenges. The roles
played by these algorithms are presented in three categories: Security, Privacy, and Robustness, based on the taxonomy
mentioned in Section 1.2.1.
Reasons for ignoring inference attacks were not discussed for these algorithms. As shown in the table below, four of
the implementations discussed poisoning attacks, particularly the Byzantine attack, while neglecting the severity of
inference attacks where at least some information about the individual’s data can be extracted from the exchanged
local model.
Moreover, none of these aggregation algorithms have considered the use of Homomorphic Encryption as a solution to
security threats. HE has been widely considered as a solution in Federated Learning, but it has never been embedded in
an aggregation algorithm. As mentioned earlier, the authors in [80], who proposed the aggregation algorithm SEAR,
have confirmed that HE has a high communication and computation overhead on the one hand, and is limited for
complex problems on the other hand. This problem is worth to be considered as a challenge and therefore solutions in
this point can be feasible and efficient. Therefore, we can conclude with the following summary regarding security
approaches in FL aggregation algorithms (in the lists below, the acronym RF is used as an abbreviation for a research
finding):

• RF1: There is a need to improve the privacy of aggregation algorithms by leveraging resistance to inference attacks,

which can occur at the communication channel level or even through the central aggregation server itself.

5.2 Securing Communication Among FL Individuals

The Federated Learning system usually consists of individuals and an aggregation server. In some studies, the aggregation
algorithm has been moved to the individuals themselves, eliminating the need for a central server. Securing this
communication is discussed in detail in Section 4. Homomorphic Encryption, Secure Multiparty Computation (SMC),
Verifiable Computing, and Blockchain are examples of tools that have been considered for developing systems to secure
communications in FL environments. Given the high communication and computational costs associated with using
HE, several implementations have considered reducing these costs to improve performance and increase the usability
of FL algorithms.
However, these proposed solutions presented their work as a security layer or as an add-on component to the FL system.
In this context, the ability to generalize and adapt to different aggregation algorithms is not guaranteed. This is also
evidenced by the fact that some, or rather most, of the proposed mechanisms were developed only for Neural Networks
models. Therefore, they have not been tested with linear models such as Support Vector Machines (SVMs), which are of
great interest in the Machine Learning world.
In addition, the reduction in communication and computational costs has been studied with certain datasets, and it
is not known if the performance improvement occurs when other datasets are used, especially when the analyzed
databases are heterogeneous.
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Table 4. FL Aggregation Algorithms Oriented for Security Issues

Ref Name Summary
Security Privacy

Robustness

C
onfidence

A
uthentication

Integrity

C
onsent

Precision

Preserve

[63] - Used Shamir’s Secret Sharing [64] to split the secret into
multiple shares

✓ ✓ ✓

[66] RFA built on the principle of aggregation with the Geometric
Median (GM) which is computed using Weiszfeld-type
algorithm [67]

✓

[68] LEGATO uses a dynamic gradient reweighing approach that treats
gradients based on layer-specific resilience

✓

[76] SecureD-FL the algorithm determines which set of participants (named
group) should interact in each round of aggregation in
order to minimize privacy leakage

✓

[80] SEAR the proposed algorithm used hardware-based trusted
execution environment instead of cryptographic time-
computation consuming tools

✓

[86] EPPDA benefit from the homomorphisms of secret sharing [87]
to minimize the secret sharing iterations and therefore
reduce communication, calculation, and storage resources
usage

✓ ✓ ✓

[88] HeteroSAg the algorithms uses Segment Grouping Strategy that is
based on dividing individuals into groups and segmenting
local model updates for these users

✓

[89] FLDetector innovatively detects malicious clients, using model update
consistency, bolstering security in Federated Learning

✓

[90] FLCert provides provable security against poisoning attacks, fea-
turing ensemble learning with resource efficiency and pri-
vacy

✓

[91] ELSA revolutionizes secure aggregation, offering efficiency and
resilience, surpassing other approaches in runtime

✓

[92] Multi-RoundSecAgg boosts FL privacy over multiple rounds ✓

Furthermore, outsourcing encryption algorithms, communication control, and other security techniques may require
adding a new individual to the FL system to control or manage these mechanisms, such as an encryption server or
communication controller. This point in turn raises other debates about the integrity of these added individuals and
their vulnerability to attacks or threats, which also require additional security.
Consequently, we can conclude the summary below regarding security mechanisms in FL systems:

• RF2: Most security schemes are focused on Neural Networks and other types of ML models have rarely been

considered, if at all;
• RF3: Compatibility of the schemas with different Machine Learning models is not guaranteed;
• RF4: Communication/Computational cost has been evaluated with a limited number of datasets and this improve-

ment is not guaranteed with other datasets, especially heterogeneous datasets which are a major concern in FL

systems;
• RF5: Adding individuals to control security managers such as Encryption Managers or Communication Controllers

will raises debate about the security of those individuals and their vulnerability to breaches and attacks.
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5.3 Unrevealed Secrets; Techniques Unseen in FL Security Yet

Federated Learning is on the rise. This is a fact that can be observed when analyzing the implementations carried out in
the last few years. Although it is still in its infancy, the number of studies published in this field gives hope for a great
development in the near future, which will promote and facilitate its application in different areas of life. However, in
securing the FL system, various technologies have not been considered. They were not considered feasible or impractical
in this field and, as far as we know, have not been used in any of the implementations of FL. Of these technologies, we
mention Polymorphic Encryption "PE", which has been shown to be a viable technology for exchanging encrypted
data with high confidence in privacy, as discussed in [132] and [133]. The PE technique can be used to protect the FL
system against inference attacks that may occur at the level of communication between the individuals themselves or
between the individuals and the aggregation server. However, the communication and computational costs as well as
the resistance to poisoning attacks when using PE are interesting areas worth investigating further. Therefore, we can
summarize this idea with the following research results:

• RF6: There are other security technologies that have not been considered to secure the FL system, Polymorphic
Encryption as an example.

In Figure 7 below, the research findings, which are the results obtained after analyzing the privacy and security
approaches in Federated Learning are presented.

Fig. 7. Research Findings for Analyzing Privacy and Security in Federated Learning

5.4 Future Perspectives

Given what has been said in this article and the discussion in this section, it can be concluded that Federated Learning
has been extensively studied in terms of resilience to malicious individuals and robustness to poisoning attacks such
as the Byzantine attack. However, there are a number of aspects that can be considered to improve the privacy of
Federated Learning and increase its feasibility and usability. These aspects are summarized in the following list (the
acronym FP used in the list below is short for future perspective):
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• FP1: Consider applying privacy mechanisms to improve the robustness of existing or new FL aggregation
algorithms against inference attacks;

• FP2: Generalize the security mechanisms to cover ML models other than Neural Networks such as SVMs and
others;

• FP3: Ensure that the improvements in communication and computation time reduction achieved by the available
studies are maintained for datasets other than those commonly used in these studies (mainly EMNIST and
CIFAR);

• FP4: Demonstrate that third-party security managers (i.e., communication control unit, Homomorphic Encryp-
tion controller, etc.) are secure enough to be embedded in a Federated Learning system;

• FP5: Investigate embedding efficient security mechanisms, such as polymorphic encryption, into FL systems
and compare their performance with available implementations.

CONCLUSION

Federated Learning is rapidly emerging as a potential technique to increase the confidence and adoption of Machine
Learning in various aspects of life. The privacy and security techniques used in Federated Learning algorithms have
been discussed in detail in this article. It has been shown that the available FL aggregation algorithms perform well in
terms of security and robustness, but poorly in terms of privacy and resistance to inference attacks. In this context,
security approaches such as homomorphic encryption, polymorphic encryption, and other tools can be considered as
secure ways to improve the performance, privacy, and security of Federated Learning, increasing its use in real-world
applications.

REFERENCES
[1] Ramkumar, P. N., Haeberle, H. S., Bloomfield, M. R., Schaffer, J. L., Kamath, A. F., Patterson, B. M., &Krebs, V. E. (2019). Artificial intelligence and

arthroplasty at a single institution: real-world applications of Machine Learning to big data, value-based care, mobile health, and remote patient
monitoring. The Journal ofarthroplasty, 34(10), 2204-2209.

[2] Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine Learning for medical imaging. Radiographics,37(2), 505.
[3] Bhardwaj, R., Nambiar, A. R., & Dutta, D. (2017, July). A study of Machine Learning in healthcare. In 2017IEEE 41st Annual Computer Software and

Applications Conference (COMPSAC) (Vol. 2, pp. 236-241). IEEE.
[4] Ghazal, T. M., Hasan, M. K., Alshurideh, M. T., Alzoubi, H. M., Ahmad, M., Akbar, S. S., ... & Akour, I.A. (2021). IoT for smart cities: Machine Learning

approaches in smart healthcare?A review. Future Internet,13(8), 218.
[5] Zantalis, F., Koulouras, G., Karabetsos, S., & Kandris, D. (2019). A review of Machine Learning and IoT in smart transportation. Future Internet,

11(4), 94.
[6] Larra?naga, P., Atienza, D., Diaz-Rozo, J., Ogbechie, A., Puerto-Santana, C., & Bielza, C. (2018). Industrial applications of Machine Learning. CRC

press.
[7] Sarker, I. H. (2021). Machine Learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 1-21.
[8] Sharma, N., Sharma, R., & Jindal, N. (2021). Machine Learning and deep learning applications-a vision. Global Transitions Proceedings, 2(1), 24-28.
[9] Nagarhalli, T. P., Vaze, V., & Rana, N. K. (2021, February). Impact of Machine Learning in natural language processing: A review. In 2021 third

international conference on intelligent communication technologies and virtual mobile networks (ICICV) (pp. 1529-1534). IEEE.
[10] Pallathadka, H., Mustafa, M., Sanchez, D. T., Sajja, G. S., Gour, S., & Naved, M. (2021). Impact of Machine Learning on management, healthcare and

agriculture. Materials Today: Proceedings.
[11] Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in agriculture: Areview. Sensors, 18(8), 2674.
[12] Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., ... & Wang, C. (2018). Machine Learning and deep learning methods for cybersecurity. Ieee access,

6, 35365-35381.
[13] L?heureux, A., Grolinger, K., Elyamany, H. F., & Capretz, M. A. (2017). Machine Learning with big data:Challenges and approaches. Ieee Access, 5,

7776-7797.
[14] Paleyes, A., Urma, R. G., & Lawrence, N. D. (2020). Challenges in deploying Machine Learning: a survey ofcase studies. ACM Computing Surveys

(CSUR).
[15] Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine Learning on big data: Opportunities andchallenges. Neurocomputing, 237, 350-361.

Manuscript submitted to ACM



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Securing Federated Learning; Approaches, Mechanisms and Opportunities 29

[16] Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine Learning in manufacturing: advantages,challenges, and applications. Production
& Manufacturing Research, 4(1), 23-45.

[17] Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2021). Machine Learning towards intelligent systems:applications, challenges, and opportunities.
Artificial Intelligence Review, 54(5), 3299-3348.

[18] Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing Machine Learning in health care?addressingethical challenges. The New England
journal of medicine, 378(11), 981.

[19] Albrecht, J. P. (2016). HowtheGDPRwill change the world. Eur. Data Prot. L. Rev., 2, 287.
[20] Parasol, M. (2018). The impact of China?s 2016 Cyber Security Law on foreign technology firms, and onChina?s big data and Smart City dreams.

Computer law & security review, 34(1), 67-98.
[21] Gray,W., & Zheng, H. R. (1986). General Principles of Civil Law of the People?s Republic of China. TheAmerican Journal of Comparative Law, 34(4),

715-743.
[22] Zhang, C., Xie, Y., Bai, H., Yu, B., Li,W., & Gao, Y. (2021). A survey on Federated Learning. Knowledge-BasedSystems, 216, 106775
[23] McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficientlearning of deep networks from

decentralized data. In Artificial intelligence and statistics (pp. 1273-1282).PMLR.
[24] Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Learning: Challenges, methods, and futuredirections. IEEE Signal Processing Magazine,

37(3), 50-60.
[25] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advancesand open problems in Federated Learning.

Foundations and Trends in Machine Learning, 14(1?2), 1-210.
[26] Ding, J., Tramel, E., Sahu, A. K., Wu, S., Avestimehr, S., & Zhang, T. (2022, May). Federated Learningchallenges and opportunities: An outlook. In

ICASSP 2022-2022 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) (pp. 8752-8756). IEEE.
[27] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concept and applications. ACMTransactions on Intelligent Systems and

Technology (TIST), 10(2), 1-19.
[28] Rahman, K. J., Ahmed, F., Akhter, N., Hasan, M., Amin, R., Aziz, K. E., ... & Islam, A. N. (2021). Challenges,applications and design aspects of

Federated Learning: A survey. IEEE Access, 9, 124682-124700.
[29] Lyu, L., Yu, H., & Yang, Q. (2020). Threats to Federated Learning: A survey. arXiv preprint arXiv:2003.02133.
[30] Bambauer, D. E. (2013). Privacy versus security. J. Crim. L. & Criminology, 103, 667.
[31] Acquisti, A. (2004). Privacy and security of personal information. In Economics of Information Security (pp.179-186). Springer, Boston, MA.
[32] Regan, P. M. (2002). Privacy as a common good in the digital world. Information, Communication & Society,5(3), 382-405.
[33] Kernighan, B. W. (2021). Understanding the digital world: What you need to know about computers, theinternet, privacy, and security. Princeton

University Press.
[34] Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., & Rogers, R. (2018). Protection against reconstructionand its applications in private Federated

Learning. arXiv preprint arXiv:1812.00984.
[35] Fredrikson, M., Jha, S., & Ristenpart, T. (2015, October). Model inversion attacks that exploit confidenceinformation and basic countermeasures. In

Proceedings of the 22nd ACM SIGSAC conference on computerand communications security (pp. 1322-1333).
[36] Melis, L., Song, C., De Cristofaro, E., & Shmatikov, V. (2019, May). Exploiting unintended feature leakage incollaborative learning. In 2019 IEEE

symposium on security and privacy (SP) (pp. 691-706). IEEE.
[37] Zhu, L., Liu, Z., & Han, S. (2019). Deep leakage from gradients. Advances in neural information processingsystems, 32.
[38] McMahan, H. B., Ramage, D., Talwar, K., & Zhang, L. (2017). Learning differentially private recurrentlanguagemodels. arXiv preprint arXiv:1710.06963.
[39] Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S., & McMahan, B. (2018). cpSGD: Communication-efficientand differentially-private distributed SGD.

Advances in Neural Information Processing Systems, 31.
[40] Aono, Y., Hayashi, T., Wang, L., & Moriai, S. (2017). Privacy-preserving deep learning via additively homomorphicencryption. IEEE Transactions on

Information Forensics and Security, 13(5), 1333-1345.
[41] Bhagoji, A. N., Chakraborty, S., Mittal, P., & Calo, S. (2019, May). Analyzing Federated Learning through anadversarial lens. In International

Conference on Machine Learning (pp. 634-643). PMLR.
[42] Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., & Shmatikov, V. (2020, June). How to backdoor federatedlearning. In International Conference on

Artificial Intelligence and Statistics (pp. 2938-2948). PMLR.
[43] Fung, C., Yoon, C. J., & Beschastnikh, I. (2018). Mitigating sybils in Federated Learning poisoning. arXivpreprint arXiv:1808.04866.
[44] Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer, J. (2017). Machine Learning with adversaries:Byzantine tolerant gradient descent. Advances

in Neural Information Processing Systems, 30.
[45] Chen, Y., Su, L., & Xu, J. (2017). Distributed statistical Machine Learning in adversarial settings: Byzantinegradient descent. Proceedings of the ACM

on Measurement and Analysis of Computing Systems, 1(2), 1-25.
[46] Chen, L., Wang, H., Charles, Z., & Papailiopoulos, D. (2018, July). Draco: Byzantine-resilient distributedtraining via redundant gradients. In

International Conference on Machine Learning (pp. 903-912). PMLR.
[47] Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018, July). Byzantine-robust distributed learning: Towardsoptimal statistical rates. In International

Conference on Machine Learning (pp. 5650-5659). PMLR.
[48] Lamport, L., Shostak, R., & Pease, M. (2019). The Byzantine generals problem. In Concurrency: the worksof leslie lamport (pp. 203-226).

Manuscript submitted to ACM



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Mohammad Moshawrab et al.

[49] Xie, C., Koyejo, O., & Gupta, I. (2018). Generalized byzantine-tolerant sgd. arXiv preprint arXiv:1802.10116.
[50] Xie, C., Koyejo, O., & Gupta, I. (2020, August). Fall of empires: Breaking byzantine-tolerant sgd by innerproduct manipulation. In Uncertainty in

Artificial Intelligence (pp. 261-270). PMLR.
[51] Biggio, B., Nelson, B., & Laskov, P. (2011, November). Support vector machines under adversarial label noise.In Asian conference on Machine

Learning (pp. 97-112). PMLR.
[52] Barreno, M., Nelson, B., Sears, R., Joseph, A. D., & Tygar, J. D. (2006, March). Can Machine Learning besecure?. In Proceedings of the 2006 ACM

Symposium on Information, computer and communications security(pp. 16-25).
[53] Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., & Tygar, J. D. (2011, October). Adversarial machinelearning. In Proceedings of the 4th ACM

workshop on Security and artificial intelligence (pp. 43-58).
[54] Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., & Goldstein, T. (2018). Poisonfrogs! targeted clean-label poisoning attacks

on neural networks. Advances in neural information processingsystems, 31.
[55] Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities in the Machine Learningmodel supply chain. arXiv preprint

arXiv:1708.06733.
[56] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguingproperties of neural networks. arXiv

preprint arXiv:1312.6199.
[57] Su, L., & Xu, J. (2019). Securing distributed gradient descent in high dimensional statistical learning. Proceedingsof the ACM on Measurement and

Analysis of Computing Systems, 3(1), 1-41.
[58] Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks againstMachine Learning models. In 2017 IEEE

symposium on security and privacy (SP) (pp. 3-18). IEEE.
[59] Hamer, J., Mohri, M., & Suresh, A. T. (2020, November). Fedboost: A communication-efficient algorithm forFederated Learning. In International

Conference on Machine Learning (pp. 3973-3983). PMLR.
[60] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization inheterogeneous networks. Proceedings of

Machine Learning and Systems, 2, 429-450.
[61] Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., & Khazaeni, Y. (2020). Federated Learning with matchedaveraging. arXiv preprint

arXiv:2002.06440.
[62] Sannara, E. K., Portet, F., Lalanda, P., & German, V. E. G. A. (2021, March). A Federated Learning aggregationalgorithm for pervasive computing:

Evaluation and comparison. In 2021 IEEE International Conference onPervasive Computing and Communications (PerCom) (pp. 1-10). IEEE.M., &
Harchaoui, Z. (2019). Robust aggregation for Federated Learning. arXiv preprintarXiv:1912.13445.

[63] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., ... & Seth, K. (2017, October). Practical secure aggregation for
privacy-preserving Machine Learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp.
1175-1191).

[64] Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11), 612-613.
[65] Yu, H., Wang, Z., Li, J., & Gao, X. (2018). Identity-based proxy signcryption protocol with universal composability. Security and Communication

Networks, 2018.
[66] Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for Federated Learning. arXiv preprint arXiv:1912.13445.
[67] Weiszfeld, E., & Plastria, F. (2009). On the point for which the sum of the distances to n given points isminimum. Annals of Operations Research,

167(1), 7-41.
[68] Varma, K., Zhou, Y., Baracaldo, N., & Anwar, A. (2021, September). LEGATO: A LayerwisE Gradient AggregaTiOnAlgorithm for Mitigating Byzantine

Attacks in Federated Learning. In 2021 IEEE 14th InternationalConference on Cloud Computing (CLOUD) (pp. 272-277). IEEE.
[69] Chen, V., Pastro, V., & Raykova, M. (2019). Secure computation for Machine Learning with SPDZ. arXivpreprint arXiv:1901.00329.
[70] Agrawal, N., Shahin Shamsabadi, A., Kusner, M. J., & Gascon, A. (2019, November). QUOTIENT: twopartysecure neural network training and

prediction. In Proceedings of the 2019 ACM SIGSAC Conference onComputer and Communications Security (pp. 1231-1247).
[71] Shokri, R., & Shmatikov, V. (2015, October). Privacy-preserving deep learning. In Proceedings of the 22ndACM SIGSAC conference on computer and

communications security (pp. 1310-1321).
[72] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016, October).Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer andcommunications security (pp. 308-318).
[73] Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R., & Zhou, Y. (2019, November).A hybrid approach to privacy-preserving

Federated Learning. In Proceedings of the 12th ACM workshop onartificial intelligence and security (pp. 1-11).
[74] Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., & Ludwig, H. (2019, November). Hybridalpha: An efficientapproach for privacy-preserving Federated

Learning. In Proceedings of the 12th ACM Workshop on ArtificialIntelligence and Security (pp. 13-23).
[75] Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, D., & Passerat-Palmbach, J. (2018). Ageneric framework for privacy preserving

deep learning. arXiv preprint arXiv:1811.04017.
[76] Jeon, B., Ferdous, S. M., Rahman, M. R., & Walid, A. (2021, May). Privacy-preserving decentralized aggregationfor Federated Learning. In IEEE

INFOCOM 2021-IEEE Conference on Computer CommunicationsWorkshops (INFOCOMWKSHPS) (pp. 1-6). IEEE.
[77] Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statisticallearning via the alternating direction method of

multipliers. Foundations and Trends in Machine Learning,3(1), 1-122.
Manuscript submitted to ACM



1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Securing Federated Learning; Approaches, Mechanisms and Opportunities 31

[78] Stinson, D. R. (2008). Combinatorial designs: constructions and analysis. ACM SIGACT News, 39(4), 17-21.
[79] Hitaj, B., Ateniese, G., & Perez-Cruz, F. (2017, October). Deep models under the GAN: information leakagefrom collaborative deep learning. In

Proceedings of the 2017 ACM SIGSAC conference on computer andcommunications security (pp. 603-618).
[80] Zhao, L., Jiang, J., Feng, B., Wang, Q., Shen, C., & Li, Q. (2021). Sear: Secure and efficient aggregationfor byzantine-robust Federated Learning. IEEE

Transactions on Dependable and Secure Computing, 19(5),3329-3342.
[81] McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C. V., Shafi, H., Shanbhogue, V., & Savagaonkar, U. R.(2013). Innovative instructions and software

model for isolated execution. Hasp@ isca, 10(1).
[82] Li, W., Xia, Y., & Chen, H. (2019). Research on arm trustzone. GetMobile: Mobile Computing and Communications,22(3), 17-22.
[83] Brasser, F., Muller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., & Sadeghi, A. R. (2017). Software grandexposure:SGX cache attacks are practical.

In 11th USENIX Workshop on Offensive Technologies (WOOT 17).
[84] Moghimi, A., Irazoqui, G., & Eisenbarth, T. (2017, September). Cachezoom: How SGX amplifies the power ofcache attacks. In International Conference

on Cryptographic Hardware and Embedded Systems (pp. 69-90).Springer, Cham.
[85] Schwarz, M., Weiser, S., Gruss, D., Maurice, C., & Mangard, S. (2017, July). Malware guard extension:Using SGX to conceal cache attacks. In

International Conference on Detection of Intrusions and Malware, andVulnerability Assessment (pp. 3-24). Springer, Cham.
[86] Song, J., Wang, W., Gadekallu, T. R., Cao, J., & Liu, Y. (2022). Eppda: An efficient privacy-preserving dataaggregation Federated Learning scheme.

IEEE Transactions on Network Science and Engineering.
[87] Benaloh, J. C. (1986, August). Secret sharing homomorphisms: Keeping shares of a secret secret. In Conferenceon the theory and application of

cryptographic techniques (pp. 251-260). Springer, Berlin, Heidelberg.
[88] Elkordy, A. R., & Avestimehr, A. S. (2022). Heterosag: Secure aggregation with heterogeneous quantizationin Federated Learning. IEEE Transactions

on Communications, 70(4), 2372-2386.
[89] Zhang, Zaixi, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. "FLDetector: Defending Federated Learning against model poisoning attacks via

detecting malicious clients." In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2545-2555. 2022.
[90] Cao, Xiaoyu, Zaixi Zhang, Jinyuan Jia, and Neil Zhenqiang Gong. "Flcert: Provably secure Federated Learning against poisoning attacks." IEEE

Transactions on Information Forensics and Security 17 (2022): 3691-3705.
[91] Rathee, Mayank, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. "Elsa: Secure aggregation for Federated Learning with malicious actors." In

2023 IEEE Symposium on Security and Privacy (SP), pp. 1961-1979. IEEE, 2023.
[92] So, Jinhyun, Ramy E. Ali, Ba?ak Guler, Jiantao Jiao, and A. Salman Avestimehr. "Securing secure aggregation: Mitigating multi-round privacy

leakage in Federated Learning." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 8, pp. 9864-9873. 2023.
[93] Paillier, P. (1999, May). Public-key cryptosystems based on composite degree residuosity classes. In Internationalconference on the theory and

applications of cryptographic techniques (pp. 223-238). Springer, Berlin,Heidelberg.
[94] Yi, X., Paulet, R., & Bertino, E. (2014). Homomorphic encryption. In Homomorphic encryption and applications(pp. 27-46). Springer, Cham.
[95] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-keycryptosystems. Communications of the

ACM, 21(2), 120-126.
[96] Rothblum, R. (2011, March). Homomorphic encryption: From private-key to public-key. In Theory of cryptographyconference (pp. 219-234). Springer,

Berlin, Heidelberg.
[97] Li, B., & Micciancio, D. (2021, October). On the security of homomorphic encryption on approximate numbers.In Annual International Conference

on the Theory and Applications of Cryptographic Techniques (pp. 648-677). Springer, Cham.
[98] Fontaine, C., & Galand, F. (2007). A survey of homomorphic encryption for nonspecialists. EURASIP Journalon Information Security, 2007, 1-10.
[99] Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G., Smith, G., & Thorne, B. (2017). Private federatedlearning on vertically partitioned data

via entity resolution and additively homomorphic encryption. arXivpreprint arXiv:1711.10677.
[100] Ou, W., Zeng, J., Guo, Z., Yan, W., Liu, D., & Fuentes, S. (2020). A homomorphic-encryption-based verticalFederated Learning scheme for rick

management. Computer Science and Information Systems, 17(3), 819-834.
[101] Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J. R., Froelicher, D., Bossuat, J. P., Sousa, J. S., & Hubaux, J. P.(2020). POSEIDON: Privacy-preserving

federated neural network learning. arXiv preprint arXiv:2009.00349.
[102] Froelicher, D., Troncoso-Pastoriza, J. R., Pyrgelis, A., Sav, S., Sousa, J. S., Bossuat, J. P., & Hubaux, J.P. (2021). Scalable privacy-preserving distributed

learning. Proceedings on Privacy Enhancing Technologies,2021(2), 323-347.
[103] Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J. P., & Hubaux, J. P. (2020). Multiparty homomorphic encryptionfrom ring-learning-with-errors.

Cryptology ePrint Archive.
[104] UCIMachine Learning Repository: Data Set. RetrievedOctober 10, 2022, fromhttps://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).
[105] Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST: an extension of MNIST to handwrittenletters
[106] UCI Machine Learning Repository: Epileptic Seizure Recognition Data Set. Retrieved October 1, 2022,

fromhttps://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
[107] Yeh, I. C., & Lien, C. H. (2009). The comparisons of data mining techniques for the predictive accuracy ofprobability of default of credit card clients.

Expert systems with applications, 36(2), 2473-2480.
[108] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural imageswith unsupervised feature learning.
[109] Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.

Manuscript submitted to ACM



1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Mohammad Moshawrab et al.

[110] Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., & Lu, R. (2021). Privacy-enhanced Federated Learning againstpoisoning adversaries. IEEE Transactions
on Information Forensics and Security, 16, 4574-4588.

[111] Tian, H., Zhang, F., Shao, Y., & Li, B. (2021). Secure linear aggregation using decentralized thresholdadditive homomorphic encryption for Federated
Learning. arXiv preprint arXiv:2111.10753.

[112] Stripelis, D., Saleem, H., Ghai, T., Dhinagar, N., Gupta, U., Anastasiou, C., ... & Ambite, J. L. (2021,December). Secure neuroimaging analysis using
Federated Learning with homomorphic encryption. In 17thInternational Symposium on Medical Information Processing and Analysis (Vol. 12088,
pp. 351-359). SPIE.

[113] Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., ... & Smith, S. M.(2016). Multimodal population brain imaging in
the UK Biobank prospective epidemiological study. Natureneuroscience, 19(11), 1523-1536.

[114] Zhang, L., Xu, J., Vijayakumar, P., Sharma, P. K., & Ghosh, U. (2022). Homomorphic Encryption-basedPrivacy-preserving Federated Learning in
IoT-enabled Healthcare System. IEEE Transactions on NetworkScience and Engineering.

[115] Tschandl, P., Rosendahl, C., & Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-sourcedermatoscopic images of common
pigmented skin lesions. Scientific data, 5(1), 1-9.

[116] Fan, C. I., Hsu, Y. W., Shie, C. H., & Tseng, Y. F. (2022). ID-Based Multi-Receiver Homomorphic ProxyRe-Encryption in Federated Learning. ACM
Transactions on Sensor Networks (TOSN).

[117] Ku, H., Susilo, W., Zhang, Y., Liu, W., & Zhang, M. (2022). Privacy-Preserving Federated Learning in medicaldiagnosis with homomorphic
re-Encryption. Computer Standards & Interfaces, 80, 103583.

[118] Park, J., & Lim, H. (2022). Privacy-Preserving Federated Learning Using Homomorphic Encryption. AppliedSciences, 12(2), 734.
[119] Madi, A., Stan, O., Mayoue, A., Grivet-Sebert, A., Gouy-Pailler, C., & Sirdey, R. (2021, May). A secureFederated Learning framework using

homomorphic encryption and verifiable computing. In 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge
(RDAAPS) (pp. 1-8). IEEE.

[120] Jia, B., Zhang, X., Liu, J., Zhang, Y., Huang, K., & Liang, Y. (2021). Blockchain-enabled Federated Learningdata protection aggregation scheme with
differential privacy and homomorphic encryption in IIoT. IEEETransactions on Industrial Informatics, 18(6), 4049-4058.

[121] Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., & Liu, Y. (2020). BatchCrypt: Efficient homomorphicencryption for Cross-Silo Federated Learning. In
2020 USENIX annual technical conference (USENIX ATC 20)(pp. 493-506).

[122] FATE. (2019, October 31). Retrieved October 15, 2022, from https://fate.fedai.org/
[123] Zhang, S., Li, Z., Chen, Q., Zheng, W., Leng, J., & Guo, M. (2021, August). Dubhe: Towards data unbiasednesswith homomorphic encryption in

Federated Learning client selection. In 50th International Conference onParallel Processing (pp. 1-10).
[124] Jiang, Z., Wang, W., & Liu, Y. (2021). Flashe: Additively symmetric homomorphic encryption for cross-siloFederated Learning. arXiv preprint

arXiv:2109.00675.
[125] Fang, H., & Qian, Q. (2021). Privacy preserving Machine Learning with homomorphic encryption and federatedlearning. Future Internet, 13(4), 94.
[126] Fang, C., Guo, Y., Hu, Y., Ma, B., Feng, L., & Yin, A. (2021). Privacy-preserving and communication-efficientFederated Learning in Internet of

Things. Computers & Security, 103, 102199.
[127] Xie, Y. A., Kang, J., Niyato, D., Van, N. T. T., Luong, N. C., Liu, Z., & Yu, H. (2022). Securing federatedlearning: A covert communication-based

approach. IEEE Network.
[128] Ranjan, P., Gupta, A., Cor‘o, F., & Das, S. K. (2022). Securing Federated Learning against OverwhelmingCollusive Attackers. arXiv preprint

arXiv:2209.14093.
[129] Li, Z., Yu, H., Zhou, T., Luo, L., Fan, M., Xu, Z., & Sun, G. (2021). Byzantine resistant secure blockchainedFederated Learning at the edge. Ieee

Network, 35(4), 295-301.
[130] Yuan, S., Cao, B., Peng, M., & Sun, Y. (2021, March). ChainsFL: Blockchain-driven Federated Learningfrom Design to Realization. In 2021 IEEE

Wireless Communications and Networking Conference (WCNC)(pp. 1-6). IEEE.
[131] Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., & Yan, Q. (2020). A blockchain-based decentralized federatedlearning framework with committee

consensus. IEEE Network, 35(1), 234-241.
[132] Rajput, A. S., & Raman, B. (2021). Privacy-Preserving Distribution and Access Control of PersonalizedHealthcare Data. IEEE Transactions on

Industrial Informatics, 18(8), 5584-5591.
[133] Booher, D. D., Cambou, B., Carlson, A. H., & Philabaum, C. (2019, January). Dynamic key generation forpolymorphic encryption. In 2019 IEEE 9th

Annual Computing and Communication Workshop and Conference(CCWC) (pp. 0482-0487). IEEE.26

Received 10 March 2024; revised 10 March 2024; accepted 10 March 2024

Manuscript submitted to ACM



CHAPTER 5

EMBEDDING HOMOMORPHIC &
POLYMORPHIC ENCRYPTION in FL

Résumé: Cette recherche propose de nouveaux frameworks qui utilisent des techniques de
chiffrement polymorphe et homomorphe pour sécuriser les environnements FL contre dif-
férentes attaques malveillantes, en particulier les attaques par inférence. Ces frameworks
permettent d’entraîner, en toute sécurité, cinq modèles d’apprentissage machine intelligents.
PolyFLAG_SMV, PolyFLAM, PolyFLAP, HP_FLAP ont été créés en raison du besoin ur-
gent d’améliorer les protocoles de sécurité dans les frameworks d’apprentissage fédéré con-
tre les attaques par inférence, ainsi que de la possibilité pratique de combiner le chiffrement
homomorphe et polymorphe comme réponse à ce problème. Cette nouvelle idée combine
astucieusement les idées fondamentales des techniques de chiffrement récentes dans sa con-
ception. Cela crée une barrière de défense impénétrable autour du FL, garantissant une sécu-
rité totale. Cette section détaille à la fois la base conceptuelle et la conception détaillée du
frameworks proposé. Cela donne une image complète des nombreuses parties de la stratégie,
qui sont toutes destinées à renforcer l’intégrité de l’environnement FL. Ce chapitre explore
en profondeur les frameworks décrits dans cette thèse, en couvrant la motivation du prob-
lème, les concepts préliminaires, les explications détaillées de quatre nouveaux frameworks,
les évaluations complètes par rapport aux approches actuelles, et les applications pratiques
validées par des données du monde réel et des études de cas d’utilisation.
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Québec, Canada
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The critical importance of user privacy in the context of Machine Learning is a hot research topic because it hinders data collection.
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smart models, FL exchanges models with clients, which are trained and sent back to the server for aggregation and global model
updating. However, FL still faces some hurdles, such as vulnerability to inference and poisoning attacks. For this reason, this paper
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models that follow the Gradient Descent Update technique. The confidence in the security of the proposed model is the result of
the polymorphism of the encryption keys used, which guarantees that a cracked or leaked key is useless, since it is not used twice
within the FL cycle. Moreover, the proposed framework is communication efficient due to the small size of messages exchanged
between servers and clients. The proposed model is explained in detail and evaluated appropriately in this paper.
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1. Introduction
Machine learning (ML) methods have been widely adopted due to their efficacy in data analysis and pattern ex-

traction. The ability of ML algorithms for processing massive amounts of data in different formats has also improved,
contributing to this achievement [1]. As a result, ML has been adopted into different domains of humans daily lives,
not limited to healthcare, finance, industry, education, agriculture and plenty other domains [2].
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1.1. Challenges in Machine Learning Domain
Despite the success of ML tools and techniques in various fields, the technology itself is still vulnerable to various

challenges [3]. These may be data-related, model-related, or general challenges. However, these challenges are not
weighted, and none has been introduced as the most critical. However, ML usually follows a known workflow that can
be described as: data collection and preprocessing, model selection, model training, evaluation, fine-tuning, and finally
production and deployment. In this context, various regulations are introduced to manage user data collection, such
as the European Union General Data Protection Regulation (GDPR) [4], China’s Cyber Security Law of the People’s
Republic of China [5], and others. Consequently, the restriction of data collection, whether due to regulations and laws
or user lack of engagement, definitely affects the entire workflow. Moreover, it is common among ML researchers that
the ability to collect more data helps to increase the accuracy of the trained smart models. On the other hand, the data
needed to train a ML model in the real world may not be in the same physical or even virtual locations at the same
time. For example, to predict Cardiovascular Diseases, it would be more useful to simultaneously analyze medical
images, Electronic Health Records (EHRs) and continuous vital signs. However, these data sets may not be available
in the same health institute, or not accessible simultaneously due to privacy restrictions, making training ML model
with this collection an impossible task. This phenomenon is known in the field ML as ”data islands.”

1.2. Federated Learning: A Privacy Issue Solution
To address the privacy issue, Google proposed Federated Learning, a privacy-preserving technology that trains

smart models without compromising user privacy [6]. FL is a collaborative, decentralized ML technology that enables
training of ML models without transmitting user data to a central server. Instead, models are sent from the server to
clients who train the models locally and send them back to the server for aggregation to update the global model. This
process is repeated until the global model converges [3, 7, 8]. FL allows models to be trained, preserves data privacy,
and even allows smart models to access more data while maintaining privacy.

2. Problem Statement: Security Threats in FL Domain
Federated Learning achieves privacy by decentralizing ML and reducing data transfer between clients and server.

This method, additionally, lowers transmission costs as raw data is typically larger than transmitted models. Google
confirmed that data sent to FL servers was reduced by 99.6% compared to a centralized ML environment [9] .

2.1. FL under the Scope: Challenges and Issues
FL has been successful, but prone to several problems, which have been studied extensively in the literature.

For example, studies [3, 10, 11] found issues with first FL aggregation algorithm, FedAvg [6], such as data and
hardware heterogeneity, sensitivity to local model, scalability, slow convergence, complexity, communication costs,
and vulnerability to malicious attacks. These challenges have driven researchers to find solutions to improve FL’s
feasibility and usability.

2.2. Security in FL Domain
FL is vulnerable to malicious attacks, despite being a privacy-preserving ML technology [3, 10, 11]. Messages

exchanged in FL are vulnerable to attacks at three levels: input, learning process, and the learned model. These attacks
include poisoning, inference, and backdoor attacks. Poisoning attacks can compromise learning quality, inference
attacks expose users’ private data, and backdoor attacks grant unauthorized access to the FL system [12].

2.3. Securing FL Frameworks: State of the Art
Researchers are interested in improving the security of FL to promote their usability and feasibility. Several at-

tempts have been made in this regard. For example, in [13], the authors proposed a secure vector summation strategy
using a protocol with a fixed number of rounds that reduces computational cost and is robust to faulty clients. In their
approach, only a single server can be trusted to hold the exchanged data. Their proposed framework showed high
security against honest but curious adversaries, and it also guarantees anonymity even when faced with active adver-
saries, like a hostile server. Moreover, in [14], the authors proposed Robust Federated Aggregation (RFA) that aimed
to protect the FL aggregation process against poisoning attacks. To achieve their goal, they aggregated the exchanged
models based on the geometric median, which can be computed using a Weiszfeld-type algorithm [15]. RFA was able
to compete with the traditional FedAvg algorithm and was more resistant to data poisoning attacks.
On the other hand, the authors in [16] developed SecureD-FL, which is a FL framework that is based on a refined
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form of the Alternating Direction Multiplier (ADMM) [17]. Their proposed framework uses a communication mode
where the algorithm decides in each round of execution which subset of users should exchange data to minimize the
disclosure of private data during the aggregation process. In addition, the authors of [18] proposed SEAR, a Secure
and Efficient Aggregation for byzantine-robust federated learning that aggregates the local models in a secure and
trusted hardware environment, specifically Intel SGX Trustworthy Execution Environment (TEE) [19], which is a
secure CPU area, where the data and programs being executed are kept secret and cannot be modified. Moreover, in
[20], the authors proposed the Efficient Privacy-Preserving Data Aggregation (EPPDA), which uses homomorphisms
of secret exchange[21] in the FL environment. Their algorithm is secured, and reduce the influence of some malicious
clients. The cryptographic primitives used in their approach can be summarized as follows: secret sharing, key ex-
change protocol, authenticated encryption and signature methods.
Finally, in [22], the authors proposed the aggregation algorithm HeteroSAg, which uses masking to secure the ex-
changed messages such that the mutual information between the masked model and the unique model is zero. The
resilience of HeteroSAg against Byzantine attacks depends on the FL cycle, which implements a segment grouping
strategy based on dividing edge users into groups and segmenting local model updates for those users. The security
approaches followed in the state of the art of secured FL frameworks are summarized in Table 1 below.

Table 1: State-of-the-art of secured FL aggregation algorithms

Ref# Mechanism

[13] Secure Vector Summing Strategy
[14] Using geometric median estimated using a Weiszfeld-type algorithm
[16] Refined form of the Alternating Direction Multiplier (ADMM)
[18] Hardware-based trusted execution environment instead of complex cryptographic tools
[20] Homomorphisms of the secret exchange
[22] Masking each user’s model update

2.4. Problem and Motivation
Poisoning attacks have been extensively studied in secure FL aggregation algorithms, while inference attacks have

not received as much attention. Techniques such as Polymorphic Encryption (PE) [23] have been shown to be effective
in reducing the impact of inference attacks by securing data exchanges, but have not been used in previous studies.
The criticality of inference attacks and the feasibility of PE inspired the proposed framework, PolyFLAG SVM. This
framework is the first to use PE for securing FL aggregation frameworks, which makes it novel and unique.

2.5. Preliminaries: Polymorphism and Gradient Descent Update
Polymorphic Encryption can serve as a viable protection technology against inference attacks. In addition, FL has

several alternatives for exchanging models, such as exchanging model parameters or gradients. In this section, both
polymorphism and gradients are explained to show their subsequent use in the proposed model.
2.5.1. Polymorphic Encryption

Polymorphism is the ability of an object or function to take on multiple forms or behaviors. Encryption, on the
other hand, is the process of converting normal data into unreadable form to prevent unauthorized access or use.
Commonly known encryption algorithms include AES (Advanced Encryption Standard) [24], RSA (Rivest-Shamir-
Adleman) and others [25]. Consequently, PE can be defined as an encryption scheme that changes the algorithm or
encryption keys to increase security. In PE, it is difficult for attackers to break the encryption even if they get hold of
the ciphertext, unlike traditional encryption methods with fixed algorithms and keys.
2.5.2. Gradient Descent Update

Gradient Descent is a ML optimization algorithm that iteratively changes the parameters of a trained model to
determine the minimum of a cost function. The algorithm computes the gradient of the cost function with respect to the
parameters and updates it in the direction of steepest descent, controlled by a learning rate. Variants of gradient descent
include the batch, stochastic, and mini-batch methods, each of which has its own strengths and weaknesses [26]. In
FL, the amount of data exchanged between server and clients is significantly reduced when exchanging gradients
instead of models, resulting in greater scalability and efficiency.

3. Our Approach: PolyFLAG SVM
The need to improve the security of FL frameworks against inference attacks and along with the feasibility of

Polymorphic Encryption in this regard motivated the proposal of PolyFLAG SVM, which embeds PE in its structure
to secure the FL environment. The concept and design of the framework are explained in this section.
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3.1. PolyFLAG SVM: Main Concept
A typical FL framework includes a central server and clients, where the server sends a global model to the clients,

who train it using their local data and send the updated model back to the server. The server combines the received
models to create an updated global model, and repeats the process until convergence. In PolyFLAG SVM, the ex-
changed messages are polymorphically encrypted using the AES-256 algorithm [24] to ensure that the exchanged
data is protected and secured. The polymorphism in the proposed framework is created by using different encryption
keys to encrypt and decrypt each message exchanged between the server and the clients, even using different keys for
each message exchanged between the server and a single client. In this context, the two main concepts that generate
polymorphism are the table of encryption keys (ToKs) and the initial encryption key, which are explained below.

3.1.1. Table of Encryption Keys (ToKs)
In PolyFLAG SVM, when the client sends the first connection request, the server replies with the table of encryp-

tion keys, each indexed with a unique ID. These keys are later used to encrypt the exchanged messages. Each message
is marked with the index that refers to the key used in the encryption on the sender’s side and to be used in the de-
cryption on the receiver’s side. AES-256 keys consist of 32 characters, and cracking them is somehow impossible.
Nevertheless, the mechanism used in PolyFLAG SVM guarantees that a cracked or leaked key is not a threat, since it
will not be used again in the FL process, neither with the same client nor with other clients. This theory is explained
in more detail in the following sections. Thus, if a malicious client manages to crack one of the keys, it will not gain
any benefit from it because it will most likely no longer be used. Moreover, it is worth noting that each client receives
a different ToKs when it connects to the server, and even the same client receives a different ToKs for each connection
session. On the other hand, this key table is transmitted to the client after the connection is established and before
the ToKs are received, which requires another encryption mechanism to ensure that malicious entities cannot access
it. Otherwise, the entire security approach would be useless. To achieve this, the initial encryption key, referred to as
initial key, which is used to encrypt the ToKs, is also polymorphically generated, as described in the next section.

3.1.2. Initial Encryption Key
The initial encryption key or initial key is used to encrypt the ToKs that are later used to encrypt the messages

exchanged. Given the criticality of the ToKs data, it is critical that different initial keys are generated for each client.
To achieve this, PolyFLAG SVM follows defined steps to generate the initial key before it is used to encrypt the
ToKs. It is worth noting that each connection session, even for the same client, has its own key. Moreover, the keys are
not transmitted over the network, but are generated on both the server and client sides based on the same mechanism
to increase the security level. The steps to create initial key are the same on the server and client side and are:

1. After the client connects to the server, it creates a random string 32 characters long; called random secret
2. The client mixes its connection data (IP & address) with the generated random secret to create a 32 character string, where:

(a) The first 8 characters are the reverse of the last 8 characters of random secret
(b) Second 4 characters are last 4 characters of socket data
(c) Third 8 characters are the middle 8 characters of random secret
(d) Fourth 4 characters are the first 4 characters of the socket data
(e) Fifth 8 characters are the reverse of the first 8 characters of the random secret

Concatenating the above substrings results in a 32-character string representing the initial key. After this key is
obtained, it is hashed using SHA-256 algorithm [25], and the first 32 characters of the hashing result are then used to
encrypt the ToKs. The addition of the hashing step increases security against the possibility of being cracked. Since
the socket data is known to both the client and the server, the steps can be followed by both to generate the same key
if they have the same random secret. However, this secret is randomly generated on the client side, so it is almost
impossible to generate the same string on the server side, making it mandatory to send this secret to the server. To
secure the transmission, the shuffled secret is formed by following the below steps and then passed to the server:

1. First 8 characters are the reverse of third 8 characters of random secret
2. Second 8 characters are the first 8 characters of random secret
3. Third 8 characters are reverse of last 8 characters of random secret
4. Last 4 characters are the second 8 characters of the random secret

Following these steps ensures that the shuffled secret is useless to malicious entities unless they can know the steps
followed to restore the original order, which is not possible if those entities do not have access to the code. In this case,
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security is of no concern at all. After the server receives the shuffled secret, its original order is restored by reversing
the shuffling steps, and then the server follows the same steps that the client followed to create the initial key. Since
both the server and the client have the same key, it is now possible to encrypt the ToKs and send them to the client,
which decrypts them to use them to secure the exchanged messages. It is worth noting that even if the client connected
via same IP and address for two times, the initial key will not be the same because of the random secret involved in
its creation, along with the shuffling, mixing and hashing steps. Creating initial key is shown in Figure 1 below.

3.2. Framework Design
In light of the above, the workflow followed by PolyFLAG SVM is illustrated in the following steps, which can

be seen in Figure 1 below:
1. server starts FL process on its side;
2. client connects to the server;
3. client generates the random secret and initial key and sends the first to the server in a ”Connect” message;
4. server receives the message and creates the table of random encryption keys; simply the ToKs;
5. server regenerates the initial key based on the received random secret in the ”Connect” message
6. server encrypts the ToKs using the first 32 characters of the hashed initial key and sends them to the client;
7. client receives the encrypted ToKs and decrypts them using initial key (After this step, the client selects an unused key from

the ToKs to encrypt its message, and encapsulates the sent message with the ID of the used key);
8. client replies to server with an encrypted ”Ready” message;
9. server receives the message and responds with an initial ”Model” message;

10. client receives the first ”Model” message and trains the model on the local data;
11. client replies to the server with its encrypted gradients;
12. server checks if all clients have sent their gradients; and

(a) If so, it starts the aggregation process, updates the global gradients, and sends them back to the clients;
(b) If not, it sends an encrypted ”Hibernate” message to the clients to wait until the above condition is met.

13. The clients receive the updated gradients and re-train their models based on them;
14. Steps 11, 12, and 13 are repeated until the model converges or until the server decides to stop.

(a) (b)

Fig. 1: (a) Polymorphic Initial Encryption Key; (b) PolFLAG SVM Workflow

4. Experimental Evaluation and Discussion
The proposed framework, PolyFLAG SVM gains its robustness against inference attacks by embedding Polymor-

phic Encryption to secure messages exchanged in the FL cycle. The theoretical guarantees of PE, evaluation of the
proposed model, challenges and future prospects are discussed in this section. Despite the fact that the proposed frame-
work provides a secure Federated Learning environment, it is necessary to consider adding authentication services to
the proposed framework in future, to ensure that none of the connected clients is a malicious entity. Authentication ser-
vices, which are not a point of focus in this study, may include, but are not limited to: password-based authentication,
two-factor authentication (2FA), Public Key Infrastructure (PKI), Single Sign-On (SSO), biometric authentication,
and others.
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4.1. Theoretical Guarantees of PolyFLAG SVM
In the proposed model, messages are encrypted using the AES-256 algorithm, which is considered one of the

most secure encryption methods available today. The key used in this algorithm has a size of 32 characters and is
considered almost impossible to crack, since there are more than 1077 possibilities for each key, which according to
[24] takes billions of years to crack with a supercomputer. However, attacks as ”quantum” attacks [27] can threaten
the security of AES even if it is not possible to crack the key in a short time. To counter this threat, each message
exchanged in PolyFLAG SVM is encrypted with a unique key from the ToKs. In addition, this table is encrypted with
the initial key, which is created using the methodology explained earlier. Moreover, the keys, whether the ToKs or
the initial key, are created differently for each client and for each connection session. Even if a client connects twice,
or two different clients connect to the same socket at two different times, the probability that the keys used will be
reused is almost zero due to the randomization explained earlier. In summary, the theoretical guarantee provided by
PolyFLAG SVM is as follows: ”AES-256 keys are known to be unbreakable. However, if a key is leaked or has
been cracked in some way, it causes no threat because it will nearly not be used again in the FL cycle”.
4.2. Evaluation

Several metrics were used to evaluate the proposed framework. The framework is evaluated based on guaranteed
polymorphism, communication cost, and learning quality, as explained in this section.
4.2.1. Datasets Used

To assess the framework, three different datasets, that fits for binary classification, were used which are:
• a simulated dataset, generated using the SKLearn dataset library [28] (9000 records & 20 data features);
• SHAREEDB Cardiovascular Diseases prediction dataset [29], (139 records & 26 features);
• Dataset Surgical binary classification [30](14636 records and 24 features).

4.2.2. Polymorphism
First, the encryption keys used to encrypt each message were tracked and compared to ensure that a single key is

never used twice. For example, for the first data set, two clients were selected, and the initial keys and 5 keys used to
encrypt the messages were recorded and compared. The results obtained are shown in Table 2 below.

Table 2: Encryption keys polymorphism in PolyFLAG SVM

- server client 1 client 2
Initial Key depending on the client 6b7e9d53e14bbac3787a90d0aaa1cf22 699858a7ba15eeb61fa5441c945a9fae

Randomly selected 5 keys

Esjk2Gk84zdVK9tlXPCnhlKuf8hsoVSQ ZgGN4tnYlRZX4xGVWEo9CjtZe6pMPsui ZOGW0S7d8M5DkgzJ8yZuQxEwyRBC3p2S
NEu7K5IdD1AKHPW0fLhtjGVWdSOjXDXj xImgrk0gZuRl8kVqlg7eTUVVXPsrWnLR IOhhIAg6sYmybB7BH6F9FDJT1nK3pndU
v67HKldenUarfh9eKf8tYHr5vQlp4IhY Esjk2Gk84zdVK9tlXPCnhlKuf8hsoVSQ JEGpEMSRaaRfpkrQHYgvDlMLZf9vjC3E
ZOGW0S7d8M5DkgzJ8yZuQxEwyRBC3p2S a5SAqLZE4snkIhVEBXoWH3jGHS9d5NAf EKiim6TWfG9YvvMM4hejy2406o29RMAq
y04aAD42M3J8SyJYTwKcya5PysixvR59 cg9ijnmsU9rKCFPfoBLWsmfOWQPmL9ay OECIZeuDny8AjnADqksx8PShmRUakoR7

4.2.3. Communication Cost
Reducing communication costs is critical to improve system efficiency. Following this, PolyFLAG SVM ex-

changes gradients rather than the entire models. Since the former are much smaller compared to the latter,
PolyFLAG SVM provides a communication efficient framework. To analyze the communication cost of the frame-
work, data exchanged between the server and 3 (randomly selected) clients from the process of training the global
model on the datasets used were examined for 10 training rounds, where the messages exchanged didn’t exceed 5400
Bytes in total as shown in Table 3 below. The obtained results show that PolyFLAG SVM is very efficient in terms
of reducing communication costs. In this context, the following should be mentioned:
• server will receive only four types of messages: ”Connect”, ”Ready”, ”Gradients” and ”Disconnect”;
• the size of ”Connect”, ”Ready” & ”Disconnect” messages are fixed since they always contain the same content;
• the size of ”Gradients” message varies with the dataset and features selected for local models training;
• the size of a ”Gradients” message is relatively small;
• the communication cost in the system exhibits linear growth with respect to the number of clients and number

of training rounds followed, which boosts scalability in terms of communication cost.

4.2.4. Learning Quality
The quality of learning in PolyFLAG SVM was not set as a goal, but rather security. However, the accuracy of a

smart model is one of the important points to be considered in the evaluation. Next, the commonly used performance
metrics were collected for the different datasets used, and the results are shown in Table 4 below. The results show
that the numbers, while not outstanding, are encouraging and can be considered for future improvement.
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Table 3: Communication cost in PolyFLAG SVM

Dataset Simulated Dataset SHAREEDB Surgical-Binary
Client client 1 client 2 client 3 client 1 client 2 client 3 client 1 client 2 client 3
Connect mesage (Bytes) 82 82 82 82 82 82 82 82 82
Ready message (Bytes) 91 91 91 91 91 91 91 91 91
Gradients message /1 round (Bytes) 462 462 462 510 510 510 494 494 494
Disconnect message (Bytes) 107 107 107 107 107 107 107 107 107
Total size /10 rounds (Bytes) 4900 4900 4900 5380 5380 5380 5220 5220 5220

Table 4: Performance metrics for different datasets (LR: Learning Rate, LP: Lambda Parameter, TR: Training Rounds)

Dataset Parameters Accuracy Precision Recall F1 Score Specificity NPV

Simulated data LR: 0.1; LP: 0.1; TR: 50 86.67% 82.86% 93.55% 87.88% 79.31% 92.00%
SHAREEDB dataset LR: 0.00001; LP: 0.001; TR: 50 69.39% 67.94% 72.95% 70.36% 65.85% 71.05%
Surgical-Binary LR: 0.00001; LP: 0.001; TR: 50 66.48% 47.92% 80.7% 60.13% 60.0% 87.21%

4.3. Challenges
Despite polymorphism, PolyFLAG SVM can suffer from different challenges such as:
• Restriction to Support Vector Machines (SVM): SVM has proven its efficiency in solving ML problems, outperforming

other models such as in [31, 32]. However, the limitation of PolyFLAG SVM to the SVM model may limit its use;
• Heterogeneity: the proposed framework supports ”Horizontal FL data”, which describes the case where different clients

process data with the same features. However, other approaches were not considered in our study;
• Complexity and Computation Cost: encryption algorithms are computationally intensive algorithms;
• Scalability: due to the additional computational cost, the scalability of this system may suffer when the number of clients is

high, specifically on the server side;
• Learning Quality: the main purpose of the proposed framework FL is security and not learning quality;
• Resources Constraints: the clients in FL usually have limited computational resources, which may be a problem when

implementing this framework in practice.

4.4. Future Perspectives
The challenges discussed above have been addressed in previous frameworks for aggregating FL, so they are not

considered shortcomings. Future improvements can be achieved by combining our proposed framework with existing
techniques to create even more powerful FL frameworks. Improvements to PolyFLAG SVM could include::
• Framework Generalization: by embedding more models, e.g. neural networks, linear regression, or even more;
• Handling Heterogeneity: to deal with heterogeneity of devices or data, different approaches can be used, such as Resources

Allocation [33] and Meta-Learning [34];
• Reducing Computation Cost: this is possible by using different techniques, such as parallel programming;
• Enhancing Scalability: this is the result of dealing with heterogeneity and reducing computation cost, where solving these

two problems guarantees the scalability of the framework for a large number of clients;
• Boosting Learning Quality: by implementing different techniques for data pre-processing on the client side.

Conclusion
The PolyFLAG SVM framework benefits from Polymorphic Encryption to secure messages exchanged between

servers and clients in a Federated Learning environment. The security guarantees in the proposed framework derive
from the polymorphism of encryption keys, where each message exchanged between the server and a client is en-
crypted with a different key. If a key is cracked or leaked for any reason, it is useless because it is almost never used
twice in the FL cycle. Also, analysis of the communication cost of PolyFLAG SVM has shown that it is efficient due
to the small size of the messages exchanged. Even though PolyFLAG SVM focuses only on security, it can benefit
from other existing approaches to increase learning quality, handle heterogeneity, and improve scalability.
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1. Introduction

Artificial Intelligence (AI) is a rapidly advancing technology that is be-
coming increasingly integrated into various industries and aspects of daily
life, resulting in significant changes and advancements in lifestyles and pro-
fessional activities. This reality is obvious and observable and requires no
proof. Despite the long duration of AI research, dating back to the 1950s
when Alan Turing famously asked, “Can computers think?!” [1], there is no
single definition for this field. For example, a simple definition for AI is pro-
vided by the authors in [2], where they describe it as programs that are no less
competent than a human in any given setting. In contrast, the authors in [3]
describe it as a set of tools and methods that use principles and mechanisms
from various fields such as computation, mathematics, logic, and biology
to address the challenges associated with realizing, modeling, and mimick-
ing human intelligence and cognitive processes. Since then, AI has been a
broad field of research, leading to various derivatives such as machine learn-
ing (ML), deep learning (DL), federated learning (FL), and others. Machine
learning, for example, allows computers to ”learn” from training information
and incrementally improve their understanding without the need for explicit
programming or with the least amount of supervision.
ML algorithms strive to identify patterns in data and derive knowledge from
them to formulate independent predictions. ML Algorithms and models ac-
quire knowledge through encounters with the real world. In traditional con-
texts, a computer program is developed by engineers and provided with a
set of instructions that facilitate the transformation of incoming data into
the desired outcome. In contrast, ML is designed to learn on its own with
minimal or no human intervention, gradually expanding its knowledge. The
impressive performance of ML, combined with its enormous potential in clas-
sification and regression problems and its ability to use both supervised and
unsupervised learning methods, have made it attractive to researchers [4, 5].
Subsequent research has shown that ML has a wide range of applications in
areas such as: E-commerce and product recommendation, image, speech and
pattern recognition, user behavior analysis and context-aware smartphone
applications [4, 5], health services [6, 7, 8], traffic prediction and transporta-
tion [4, 9], Internet of Things (IoT) and smart cities [9], cybersecurity [10],
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Natural Language Processing and sentiment analysis [11], sustainable agri-
culture [12], industrial applications [13], and many others.

1.1. Challenges in Machine Learning Domain

The precise results obtained in classification or regression gradually pro-
mote the integration of these methods into aspects of daily life. The prac-
ticality of using AI tools, especially ML, has been underpinned by their ex-
ceptional efficiency and the potential of their application in various domains.
Nevertheless, ML continues to struggle with a number of challenges that are
described in detail in the existing scientific literature. However, these chal-
lenges cannot be categorized uniformly, but are classified according to dif-
ferent viewpoints. This section presents the prevailing challenges and places
them in a proposed framework that classifies them based on factors related
to data, models, implementation, and other general dimensions.

� General Challenges [14, 15]
– User Data Privacy and Confidentiality
– User Technology Adoption and Engagement
– Ethical Constraints

� Models Related Challenges [14, 15]
– Accuracy and Performance
– Model Evaluation
– Variance and Bias
– Explainability

� Data-Related Challenges [16, 17]
– Data Availability and Accessibility [18]
– Data Locality [19]
– Data Readiness [18]
– Data Heterogeneity
– Noise and Signal Artifacts
– Missing Data
– Classes Imbalance
– Data Volume Course of Dimensionality
– Bonferroni principle [20]
– Feature Representation and Selection

� Implementation-Related Challenges [18, 21]
– Real-Time Processing
– Model Selection
– Execution Time and Complexity
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The challenges within ML and related fields are the subject of extensive
study, with researchers seeking to address these challenges collectively rather
than focusing on any one. It’s difficult to definitively state that any one of the
above challenges is the most significant or has the most detrimental impact
on the machine learning field. Nonetheless, the machine learning workflow
primarily includes phases such as data collection and preprocessing, feature
engineering, model training, model evaluation, and model deployment. The
structure of this workflow highlights the central role of data in machine learn-
ing, as it’s the first step in the process; without its completion, subsequent
phases cannot proceed. Moreover, the performance of ML ’s models is di-
rectly linked to the availability of data. While achieving highly accurate
intelligent models depends on the technical architecture of the models them-
selves, the quality and availability of the data, preprocessing, and several
other factors, it’s generally accepted that data availability contributes to
increased and improved accuracy [16, 17].

1.2. Federated Learning: A Privacy Issue Solution

In the real world, due to several factors, the process of data collection is
a major challenge, if not the biggest challenge, in developing machine learn-
ing models, and privacy and confidentiality are of paramount importance.
This concern goes beyond individual privacy to include societal, governmen-
tal, and organizational dimensions, all of which reinforce efforts to protect
privacy and security of data. These efforts have led to the introduction of nu-
merous regulations and laws around the world, such as the European Union’s
General Data Protection Regulation (GDPR) [22], China’s Cyber Security
Law of the People’s Republic of China [23], the General Principles of the
Civil Law of the People’s Republic of China [24], Singapore’s PDPA [25],
and countless other laws implemented around the world.
While these regulations undeniably help protect private information, they
also introduce some complexities into the landscape of ML. Collecting data
for model training becomes much more difficult, which in turn hinders ad-
vances in model performance accuracy and personalized model results. Con-
sequently, privacy and confidentiality issues not only present an isolated chal-
lenge, but also set in motion a number of additional hurdles for ML. These
include challenges related to data availability, model performance, personal-
ization, and ultimately building trust and acceptance. The critical impor-
tance of privacy in information sharing has led to extensive research result-
ing in several proposed privacy algorithms such as differential privacy [26],
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anonymity k-order [27], and homomorphic encryption [28]. However, these
methods do not provide optimal solutions, as demonstrated by observed ma-
chine learning attacks, e.g., model inversion [29] and membership inference
attacks [30], where raw data is extracted by accessing the model.

1.2.1. Federated Learning: An Overview

To address privacy issues without restricting data collection, Google re-
cently introduced a novel concept in machine learning called federated ma-
chine learning or federated learning (FL) [31]. The basic premise of federated
learning is that it does not require the sharing of user data between different
devices. This concept can be defined as collaborative, distributed, and decen-
tralized machine learning with privacy preservation. In federated learning,
an intelligent model is trained without the need to transfer data from edge
devices to a central server. Instead, models are sent to these devices, where
they are trained on local data. Then, these refined models are sent back to a
central server for aggregation, which assembles the global model without hav-
ing visibility into the specific embedded data. The technical infrastructure
of federated learning is shown in Figure 1 below.

Figure 1: Federated Learning technical architecture

The concept of federated learning provides an effective solution to user
privacy concerns. It not only addresses these concerns, but also unlocks the
potential to collect more data for training machine learning models, which
helps improve accuracy and efficiency. In addition, Federated Learning fa-
cilitates training models with data from disparate and unrelated sources,

5



referred to as ”data islands.” In addition, Federated Learning enables the
management of disparate data spread across different data spaces, each char-
acterized by its unique attributes. This approach also facilitates what is
known as ”learning transfer,” which allows models to share knowledge with-
out transmitting users’ private data. However, it is important to note that
FL is still in its infancy and faces a number of challenges. This necessitates
targeted research efforts to improve its capabilities.
In response to this need, this article presents two innovative frameworks for
federated learning, both of which involve the use of Polymorphic Encryption[32]
to strengthen the security of FL. Section 2 addresses the problem, specifically
the existing privacy inadequacies in FL. It also explains the motivation for
developing these frameworks. A key aspect is the introduction of polymor-
phic encryption, a new addition in federated learning. Section 3 presents
the proposed frameworks in detail, explaining the mechanisms incorporated
in them and providing comprehensive explanations of their inner processes.
Section 4 discusses and evaluates the proposed frameworks from different
perspectives. In this context, tests are performed under real conditions to
prove their efficiency. Finally, section 5 addresses the challenges that hinder
the development of the proposed frameworks, while providing perspectives
for their future development.

2. Problem Statement: Security Threats in FL Domain

Federated learning is a robust solution for ensuring data privacy by taking
a decentralized approach to machine learning and minimizing extensive data
sharing between clients and servers. Equally advantageous, FL succeeds in
reducing transmission costs, as the raw data usually exceeds the size of the
transmitted models or their parameters.

2.1. FL under the Scope: Challenges and Issues

Federated learning has proven to be highly successful in a variety of appli-
cations, but it is not immune to challenges, a topic that has been extensively
studied in the academic literature. This thorough investigation has brought
to light a number of issues that have been discussed in detail in studies
[33, 34, 35]. In particular, the original aggregation algorithm FL named
FedAvg [31] has been studied with respect to several limitations. These
include issues such as data and hardware heterogeneity, sensitivity to local
models, scalability limitations, incremental convergence rates, computational
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and communication overheads, and vulnerability to malicious attacks. The
diversity of these challenges has led to increased research efforts aimed at
improving the practicality of FL, and has prompted researchers to develop
solutions that deftly address these challenges.

2.2. Security in FL Domain

Although Federated Learning functions as a privacy-preserving ML tech-
nology, it remains vulnerable to malicious attacks [33, 34, 35]. The security of
messages exchanged within the FL cycle can be divided into the input phase,
the learning process itself, and the resulting learned model. This vulnerabil-
ity leads to a spectrum of attacks, including but not limited to poisoning,
inference, and backdoor attacks. Poisoning attacks can adversely affect the
quality of learning outcomes, inference attacks expose users’ private data,
and backdoor attacks allow unauthorized intrusion into the FL system [36].

2.2.1. Poisoning Attacks

Poisoning attacks, whether random or targeted [37], aim to either reduce
model accuracy (random) or manipulate the model to output a label specified
by the attacker (targeted). These attacks can target data or the model, both
of which negatively impact the overall behavior of FL. Compromised FL
environments allow attackers to perform targeted and untargeted poisoning
attacks that include both data and model poisoning attacks.

� Data Poisoning: also known as data corruption, has two main forms:
Clean Label [38] and Dirty Label [39]. Clean label attacks assume
that the labels cannot change, requiring stealthy poisoning, while dirty
label attacks can insert misclassified data with the intended target la-
bels. Data poisoning can be performed by any Federated Learning
participant, and the impact on the FL model depends on the number
of attackers and the amount of data poisoned.

� Model Poisoning: Local model training leads to model poisoning by
contaminating updates before committing them to the server or em-
bedding secret global model backdoors [40]. Targeted model poisoning
aims to securely misclassify selected inputs without modifying them as
in adversarial attacks [41], which is achieved by manipulating the train-
ing process. Model poisoning in federated learning surpasses the effects
of data poisoning by affecting model updates during each iteration [42].
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It mimics centralized poisoning on a subset of the entire training data.
Performing model poisoning requires significant technical resources.

2.2.2. Inference Attacks

In federated learning, sharing parameters during training raises privacy
concerns [43, 44]. Deep learning models unintentionally internalize various
data features beyond the core tasks, potentially revealing sensitive data as-
pects of the participants. Attackers can infer features by comparing model
parameter snapshots, revealing aggregate updates of all participants except
the attacker. The problem lies in gradients computed from participants’
private data. Gradients in deep learning models arise from layer attributes
and errors abovethe layer, providing opportunities for inference attacks [43].
These observations can reveal private data attributes, including class repre-
sentatives and membership, or even allow recovery of labels without knowl-
edge of the training set [44]. Inference attacks categorically include:

� Inferring Membership: The goal of membership inference attacks is
to determine whether a particular data element was used to train the
model [45]

� Inferring Class Representatives: Occurs when a malicious partic-
ipant intentionally compromises another participant and exploits the
real-time learning of FL to train a network that generates private pro-
totype samples of targeted training data. These generated samples
mimic the distribution of the training data.

� Inferring Properties: in this attack, an attacker can perform both
passive and active property inference attacks to infer properties of other
participants’ training data that are independent of the features describ-
ing the classes of the FL model [45]:

– Property inference attacks require the attacker to have additional
training data labeled with the exact property they wish to infer

– A passive attacker can only monitor updates and make inferences
by training a binary property classifier

– An active adversary can use multitask learning to trick the model
FL into learning a better separation between data with and with-
out the property, resulting in more information being extracted
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– An adversarial participant can even infer when a feature appears
and disappears in the data during training

– It can recover pixel-perfect original images and token-matched
original texts

2.3. Securing FL Frameworks: State of the Art

Researchers are interested in improving the safety of FL to promote its
usability and feasibility. Several attempts have already been made in this
regard. For example, in [46], the authors propose a secure vector summation
strategy using a protocol with a fixed number of rounds that reduces compu-
tational costs and is robust to faulty clients. In their approach, only a single
server can be trusted to hold the exchanged data. Their proposed framework
provides high security against honest but curious adversaries and guarantees
anonymity even when faced with active adversaries, such as an enemy server.
Moreover, in [47], the authors proposed Robust Federated Aggregation (RFA)
that aims to protect the aggregation process FL against poisoning attacks.
To achieve their goal, they aggregated the exchanged models based on the
geometric median, which can be calculated using a Weiszfeld-type algorithm
[48]. RFA was able to compete with the traditional FedAvg algorithm and
was more resistant to data poisoning attacks.
On the other hand, the authors in [49] developed SecureD- FL, a FL frame-
work based on a refined form of the Alternating Direction Multiplier (ADMM)
[50]. Their proposed framework uses a communication mode in which the
algorithm decides in each round of execution which subset of users should
exchange data in order to minimize the disclosure of private data during
the aggregation process. In addition, the authors of [51] proposed SEAR,a
secure and efficient aggregation for byzantine-stable federated learning that
aggregates the local models in a secure and trusted hardware environment,
specifically, the Intel SGX Trustworthy Execution Environment (TEE) [52],
a secure CPU domain area, where the executed data and programs are kept
secret and cannot be modified. Moreover, in [53], the authors proposed the
Efficient Privacy-Preserving Data Aggregation (EPPDA), which uses homo-
morphisms of the secret exchange [54] in the FL environment. Their al-
gorithm is secure and reduces the impact of some malicious clients. The
cryptographic primitives used in their approach can be summarized as fol-
lows: Secret exchange, key ex-change protocol, authenticated encryption,
and signature methods.
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Finally, in [55], the authors proposed the aggregation algorithm HeteroSAg,
which uses masking to secure the exchanged messages such that the mu-
tual information between the masked model and the unique model is zero.
HeteroSAg’s resilience to Byzantine attacks depends on the FL cycle, which
implements a segment grouping strategy based on dividing edge users into
groups and segmenting local model updates for those users. The security
approaches followed in the state of the art of secured FL frameworks are
summarized in Table 1 below.

Table 1: State-of-the-art of secured FL aggregation algorithms

Ref# Mechanism

[46] Secure Vector Summing Strategy

[47] Using geometric median estimated using a Weiszfeld-type algorithm

[49] Refined form of the Alternating Direction Multiplier (ADMM)

[51] Hardware-based trusted execution environment instead of complex cryp-
tography

[53] Homomorphisms of the secret exchange

[55] Masking each user’s model update

2.4. Problem and Motivation

Extensive research has focused primarily on understanding poisoning at-
tacks in federated learning secure aggregation algorithms, whereas attention
to inference attacks has been relatively limited. Although techniques such as
polymorphic encryption (PE) [32] promise in reducing the impact of inference
attacks by making data exchanges more secure, they have been little explored
in previous FL frameworks. Considering the critical importance of inference
attacks and inspired by the effectiveness of PE, this paper introduces two
frameworks called PolyFLAM and PolyFLAP. What makes these frame-
works special is that they’re the first to combine PE with FL aggregation,
which makes them innovative and novel solutions in this area. This integra-
tion not only sets them apart from others, but also opens new possibilities for
improving the security of FL. On the other hand, these frameworks provide
secure FL in different models, as will be explained later.

2.5. Polymorphic Encryption

Polymorphism can be understood as the remarkable ability of objects or
functions to take on different forms or behaviors and adapt to different con-
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texts. In contrast, encryption is a complicated process of converting regular
data into an unintelligible format to protect it from malicious use or access.
The most popular encryption algorithms are AES (Advanced Encryption
Standard) [56], RSA (Rivest-Shamir-Adleman), and others [57, 58], all of
which contribute to data security. This leads to the concept of polymorphic
encryption, a sophisticated encryption paradigm that introduces a dynamic
dimension by changing the encryption algorithm or keys to enhance overall
security. Unlike traditional encryption methods, which are characterized by
fixed algorithms and keys, PE poses a major challenge to attackers because
even possession of the ciphertext provides minimal advantage in decryption,
underscoring the robustness of the technique to attackers.

3. PolyFLAM & PolyFLAP: FL Frameworks Secured with Poly-
morphic Encryption

The compelling need to improve security protocols within federated learn-
ing frameworks against inference attacks, and the feasibility of polymorphic
encryption in response, were the primary motivations for PolyFLAM and
PolyFLAP. These frameworks integrate the core principles of polymorphic
encryption into their architecture to improve the security and privacy of FL,
ensuring their unassailable security. In this section both the conceptual foun-
dations and the design of the proposed frameworks are explained in detail.

3.1. Main Concept

A typical federated learning system consists of a central server and mul-
tiple clients. The server sends a global model to the clients, which train
their own model using their local data. After training, the clients send their
updated models back to the server, which combines them into a single im-
proved global model. The process is repeated until the global model reaches a
point of stability. In the cases of PolyFLAM & PolyFLAP, the exchanged
messages are subjected to a special type of encryption, called polymorphic
encryption, using the algorithm AES -256 [56]. In this way, the security
and protection of the exchanged data is ensured. The uniqueness of the
proposed framework lies in the use of different encryption keys for each mes-
sage exchanged between the server and the clients. This approach generates
polymorphism that adds an additional layer of security. Moreover, even for
a single client, different keys are used for each message exchanged with the
server. The main sources of this polymorphism are the encryption key table
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Table of Encryption Keys (ToKs) and the initial encryption key, which are
described in the following section.

3.1.1. Table of Encryption Keys (ToKs)

In both proposed frameworks, when a client makes a connection request,
the server responds by providing a Table of Encryption Keys (ToKs). Each
key in this table is assigned a unique ID for indexing. These keys play a
critical role in encrypting the messages that are later exchanged. In this
process, each message is assigned an index corresponding to the key used for
encryption on the sender’s side and decryption on the receiver’s side. The
AES -256 keys consist of 32 characters (bytes) and are extremely resistant
to cracking attempts, which ensures a high level of security. In the context
of PolyFLAM & PolyFLAP, even the case of a key being cracked or
leaked does not pose a significant threat. This is because the implemented
mechanism ensures that the compromised key, if present, is not reused in the
federated learning process, either with the same client or with other clients.
This concept is explained in more detail in the following sections. In practise,
a malicious client that successfully cracks a key would gain minimal benefit
from it, since that key is unlikely to have any further use.
It’s important to emphasise that each client receives its own set of ToKs when
connecting to the server. Even the same client receives a new set of ToKs
each time it connects. Moreover, the transmission of ToKs to the client after
the connection is established requires an additional encryption mechanism
to protect against malicious entities. This precaution is critical because the
effectiveness of the entire security scheme would be compromised if the ToKs
were cracked or leaked. To counteract this, the initial encryption key, called
the ”initial key,” used to encrypt the ToKs is also generated polymorphically,
a concept that is explained in more detail in the following section.

3.1.2. Initial Encryption Key

The initial encryption key, referred to as the ”initial key,” plays an im-
portant role in encrypting the Table of Encryption Keys (ToKs) that is sub-
sequently used to encrypt messages. Given the sensitive nature of ToKs
data, it is imperative that separate initial keys generated for each client. To
achieve this, both PolyFLAM & PolyFLAP have well-defined procedures
to generate the initial key prior to its use in ToKs encryption. It is important
to note that each connection session, even for the same client, uses a unique
key, since random characters are used to generate the initial key creation. It
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is worth noting that these keys are not transmitted over the network. In-
stead, they are generated independently on both the server and the client,
using a unified mechanism. This approach significantly increases the level of
security. The procedure for generating the initial key remains identical on
both the server and client sides and includes the following steps (the process
described below on the side of an entity, where the entity can be the server
or a client):

1. Once the connection is established, the client generates a 32-character
string called the ”random secret”

2. This string is then combined with the client’s connection data (socket
data), which includes the IP address and address details. This merg-
ing process results in a new 32-character string that conforms to the
following structure:
(a) The first 8 characters result from the inversion of the last 8 char-

acters of random secret;
(b) The following 4 characters are extracted from the last 4 characters

of the socket data;
(c) The following 8 characters are made of the middle 8 characters of

the random secret;
(d) The next 4 characters correspond to the first 4 characters of the

socket data;
(e) Finally, the last 8 characters are obtained by reversing the first 8

characters of the random secret.
By concatenating the above substrings, a 32-character string is formed.

This string is used as input to the SHA -256 algorithm [57], which produces
a hashing result. The initial key, is then derived from the first 32 characters
of this hashing result. The inclusion of the hashing process increases secu-
rity by reducing vulnerability to potential cracking attempts. Since both the
client and the server know the socket data, they can independently repeat the
steps to create an identical key when they receive the same random secret.
However, since this random secret is randomly generated on the client side,
reproducing an identical string on the server side is highly impossible. Conse-
quently, it is necessary to share this secret with the server. To ensure secure
transmission, the ”shuffled secret” is constructed according to the following
steps and then forwarded to the server so that it can use it to regenerate the
random secret:

1. The first 8 characters are opposite to the third 8 characters of ran-
dom secret
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2. The second 8 characters are the first 8 characters of random secret
3. The third 8 characters are the inverse of the last 8 characters of ran-

dom secret
4. The last 4 characters are the second 8 characters of random secret

By following these steps, the shuffled secret becomes virtually useless to
malicious entities unless they know the process required to restore the original
sequence. This is not possible unless these entities can access the underlying
code. Once the server receives the shuffled secret, it reverses the steps of the
shuffle to restore the original sequence, thus building the random secret as
it was on the client’s side. Then the server mimics the client’s actions and
repeats the same sequence of steps to generate the initial key. Now that both
the server and the client have the identical initial key, the encryption of the
Table of Encryption Keys (ToKs) can be performed. Then these encrypted
ToKs are sent to the clients, which decrypt them and use them to secure the
exchanged messages.
It is important to note that even if a client connects through the same IP
address in different sessions at different times, the initial key would not be
consistent. This is because randomness was included in the key creation
process, in addition to complex shuffling, mixing, and hashing. The visual
representation of the initial key creation process can be seen in Figure 2.

Figure 2: Initial Encryption Key generation mechanism
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3.2. Supported ML Models

PolyFLAM and PolyFLAP are innovative frameworks for federated learn-
ing that expand the horizons of model training. These frameworks provide a
diverse set of five different machine learning models that give users the flex-
ibility to effectively tackle a variety of data analysis problems. The models
offered are:

� Support Vector Machines (SVMs) [59]: A powerful classification al-
gorithm that determines the optimal hyperplane to divide data into
different classes

� Logistic Regression [60]: A widely used binary classification algorithm
that estimates the probability that a given input belongs to a particular
class

� Gaussian Naive Bayes [61]: This algorithm relies on the Naive Bayes
theorem and the Gaussian distribution to classify data points based on
their feature values

� Stochastic Gradient Descent (SGD Classifier) [62]: An iterative opti-
mization algorithm used for training linear classifiers, often applied to
large data sets

� Neural Network (Multi-Layer Perceptron) [63]: A versatile Deep Learn-
ing architecture that simulates the interconnected structure of the hu-
man brain and is capable of processing complex patterns and relation-
ships in data

These models are suitable for a variety of machine learning tasks and
provide users with the flexibility to choose the model that best fits their
specific needs.

3.3. PolyFLAM vs. PolyFLAP

PolyFLAM and PolyFLAP differ significantly in one key respect, namely
the nature of the messages exchanged between clients and servers. PolyFLAM
follows the strategy of transmitting entire models to clients, while PolyFLAP
takes a more efficient route by transmitting only model parameters, which
has several advantages and improvements. In the case of PolyFLAM, the
complete model is transmitted to the clients, while PolyFLAP optimizes
communication by transmitting only short sets of parameters. This deliber-
ate shift from full model transmission to parameter exchange reduces both
the complexity of the system and the time required to encode messages.
It also significantly reduces communication overhead, resulting in a more
streamlined federated learning process. Each model type generates a set

15



of parameters during the local training process, which are explained in the
Table2 below.

Table 2: Parameters generated by each model on local training
Model Parameter Description
Support Vector
Machines

Support vectors data points that significantly influence
the determination of the separating hy-
perplane

Coefficients weights assigned to features, contribut-
ing to the hyperplane’s orientation

Intercept also known as the bias term, it shifts
the hyperplane’s position, aiding in
better classification

Logistic Regres-
sion

Coefficients weights determine the influence of in-
dividual features on the log-odds of the
predicted outcome

Intercept bias term that adjusts the threshold for
classifying instances

Gaussian Naive
Bayes

Class priors represent the prior probabilities of dif-
ferent classes in the training data

Theta mean values of features for each class,
used in the Gaussian probability den-
sity function

Sigma variance of features for each class, also
utilized in Gaussian probability calcu-
lations

SGD Classifier Coefficients similar to other models, these weights
influence the classification decision

Intercept a bias term that adjusts the decision
threshold

Multi Layer Per-
ceptron

Coefficients regulate the connections between neu-
rons in the neural network layers

Intercept similar to bias terms in other models,
it offsets the overall computation

These parameters, which collectively represent the core attributes of their
respective models, are shared between clients and servers to jointly refine
the global model during the federated learning process. The parameters
exchanged between clients and servers contain the essence of the model com-
plexity. On the server side, these received parameters are skillfully integrated
and aggregated, enabling iterative refinement of the global model. This col-
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laborative process ensures that the collective knowledge of the various clients
contributes to the creation of a better informed and trained global model.

3.4. Frameworks Design

With this in mind, the PolyFLAM & PolyFLAP workflow is described
in the following steps, which are also shown in Figure 3 below. Recall
that both frameworks have the same workflow, except for the type of mes-
sages exchanged between server and clients, which are models in the case of
PolyFLAM and parameters in the case of PolyFLAP.

1. server starts FL process on its side;
2. client connects to the server;
3. client generates the random secret and initial key and sends the first

to the server in a ”Connect” message;
4. server receives the message and creates the table of random encryption

keys (ToKs);
5. server regenerates the initial key based on the received random secret

in the ”Connect” message;
6. server encrypts the ToKs using the first 32 characters of the hashed

initial key and sends them to the client;
7. client receives the encrypted ToKs and decrypts them using initial key

(After this step, the client selects an unused key from the ToKs to
encrypt its message, and encapsulates the sent message with the ID of
the used key);

8. client replies to server with an encrypted ”Ready” message;
9. server receives the message and responds with an initial ”Model/Parameters”

message;
10. client receives the first ”Model/Parameters” message and trains the

model on the local data;
11. client replies to the server with its encrypted model (in case of PolyFLAM)

or encrypted model parameters (in case of PolyFLAP);
12. server checks if all clients have sent their models/parameters; and

(a) If so, it starts the aggregation process, updates the global model/parameters,
and sends them back to the clients;

(b) If not, it sends an encrypted “Hibernate” message to the clients
to wait until the above condition is met.

13. The clients receive the updated gradients and re-train their models
based on them;
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14. Repeat Steps 11, 12, and 13 until the model converges or until the
server decides to stop.

Figure 3: PolyFLAM & PolyFLAP followed workflow

4. Experimental Evaluation and Discussion

By using polymorphic encryption, this study provides two FL frameworks
with increased resistance to inference attacks, strengthening the secrecy of
messages exchanged within a federated learning cycle. This section focuses on
an in-depth evaluation of the proposed innovative frameworks: PolyFLAM
& PolyFLAP. It is worth noting that while the proposed frameworks un-
doubtedly create a secure environment for FL efforts, it is better to consider
including authentication services in future revisions. This proactive step
ensures that the FL system has a robust defence mechanism against poten-
tially malicious entities. Although beyond the scope of this study, the scope
of authentication services includes, but is not limited to: the traditional
foundation of password-based authentication, the additional security layer of
two-factor authentication (2FA), the robust security of public key infrastruc-
ture (PKI), simplified access through single sign-on (SSO), the innovative
area of biometric authentication, and a variety of other options [64].

4.1. Security Analysis

The messages are encrypted in the proposed framework using the AES
-256 algorithm, which is widely considered to be one of the most unassailable
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cryptographic systems known today. The cryptographic key of this algorithm
has a length of 32 characters and is nearly impenetrable, as there are an
incredible 1077 possible variants for each individual key. According to [56],
trying to crack such a key with the computing power of a supercomputer
would take billions of years. Attacks using quantum computers, as described
in ”Quantum Attacks” [65], however, are already on the horizon and may
break through the protective framework of AES, even if rapid key cracking
is still a long way off.
To counter this emerging threat, each message exchanged within the domains
of PolyFLAM & PolyFLAP is encrypted with a unique key taken from the
Table of Keys (ToKs). At the same time, the basic initial key, which is
polymorphically generated by the process described earlier, strengthens the
security of the ToKs by encryption. It is important to emphasize that the
key management, which includes both the ToKs and the initial key, uses a
unique instantiation for each client and each subsequent connection session.
This cautious approach also applies to situations where clients reconnect
or different clients use the same connection at different times. Thanks to
the randomness already explained, the probability of a key being reused is
extremely low and approaches zero, so there is no risk of any of the keys
used being leaked or cracked. In summary, the security of PolyFLAM &
PolyFLAP is paramount: ”Although AES -256 keys are very difficult
to crack, the risk caused by a compromised or leaked key is almost
zero, since this key is almost never used again during the FL
cycle.”

4.2. Frameworks Complexity

Complexity analysis of PolyFLAM & PolyFLAM framework is a criti-
cal examination of the efficiency and computational requirements of these
solutions. By evaluating the time complexity of essential processes such as
communication, encryption, and aggregation, a comprehensive understand-
ing emerges that provides insights into the scalability and performance char-
acteristics of the proposed federated learning frameworks. To get a better
overview of the complexity analysis of PolyFLAM & PolyFLAP, it is impor-
tant to be aware of the different functions and processes involved in these
frameworks. Figure 4 shows the different threads and functions involved in
the execution of both frameworks, which are similar in both frameworks,
except for the differences in the messages exchanged between server and
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clients, where were models are exchanged in PolyFLAM and parameters are
exchanged in PolyFLAP.

Figure 4: PolyFLAM & PolyFLAP threads and functions

In this context, it is crucial to clarify that the functions executed at both
server and clients can be summarized as below:

� Server: The functions executed are:
1. Run server thread and start the FL Cycle (function S1)
2. Run listen thread and await clients connection (function S2)
3. Run the communication thread and exchange messages with clients

(function S3)
4. Generate Table of Keys (function S4)
5. Receive and accept client’s connection (function S5)
6. Generate initial key based on clients shuffled secret (function S6)
7. Encrypt Table of Keys (function S7)
8. Send Encrypted Table of Keys to client (function S8)
9. Receive client’s ready message (function S9)
10. Decrypt Ready message (function S10)
11. Encrypt Model/Parameters (function S11)
12. Send Encrypted Model/Parameters to client (function S12)
13. Receive trained Model/Parameters from clients (function S13)
14. Check if Model/Parameters are received from all clients

– if yes, aggregate all Models/Parameters (function S14)
– if no, Encrypt and send Hibernate message to clients and

await receiving all Models/Parameters (function S15)
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15. Encrypt aggregated Models/Parameters (function S16)
16. Send Encrypted aggregated Models/Parameters to clients (func-

tion S17)
17. Repeat all steps from S13 to S17 until the global model converge

� Client: The functions executed are:
1. Run client thread and create socket (function C1)
2. Connect to server (function C2)
3. Generate Initial Encryption Key (function C3)
4. Run Exchange Messages thread (function C4)
5. Encrypt ”Connect” message (function C5)
6. Send encrypted ”Connect” message (function C6)
7. Receive encrypted ”Table of Keys” from server (function C7)
8. Decrypt ”Table of Keys” (function C8)
9. Encrypt ”Ready” message (function C9)
10. Send encrypted ”Ready” message (function C10)
11. Receive encrypted ”Model/Parameters” from server (function C11)
12. Decrypt ”Models/Parameters” from server (function C12)
13. Train model using the local data (function C13)
14. Encrypt ”Model/Parameters” from local training (function C14)
15. Send encrypted ”Model/Parameters” to server (function C15)
16. Receive and Decrypt the new message (function C16) and if the

message is:
– ”Hibernate” await until receiving another ”Model/Parameter”

message (function C17)
– ”Model/Parameter” then repeat steps C13 to C17 as per the

number of training rounds

4.2.1. Time Complexity

In the field of Federated Learning, PolyFLAM and PolyFLAP follow de-
fined steps with complexities defined by the following parameters:

� N (number of participating clients)
� IK (generation of initial key)
� ToKs (Table of Keys size
� E (encryption/decryption factors)
� R (number of training iterations rounds)
� A (aggregation complexity)
� MP (model/parameters complexity)
� T (training on local data)
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To describe the time complexity of the framework on the server side, the
O() parameter is used to form the necessary formulas. This parameter, com-
monly known as Big-O notation, is a mathematical notation used to describe
the upper bound of the growth rate of the time complexity of an algorithm
as the size of the input data increases. For example, O(1) represents a simple
operation such as the initiation of the FL cycle, which occurs once on the
server. Other messages have a different complexity, as described below:

� messages of fixed sizes such as connect, ready and done are impacted
by the number of participating clients: O(N)

� messages depending on number of rounds and participating clients
which are:

– hibernate message that are sent to all participating clients except
for the last to send its parameters: R * O(N-1)

– models or parameters messages exchanged between server and
clients are sent to all clients during all training rounds: R * O(N)

Following the steps performed on the server side and using the notations
described above, the complexity function on the server side can be described
as follows:

ServerComplexity = O(1) + (O(IK) ∗O(N))+

(O(E) ∗ (O(ToKs) ∗O(N)))+

(R ∗O(E) ∗O(MP ) ∗O(N))+

(R ∗O(E) ∗O(A)) + (O(E) ∗O(N))

(1)

The time complexity analysis of the federated learning cycle executed
on the client side involves a comprehensive evaluation of various operations,
each of which is affected by different time complexities. Notable operations
with constant time complexity, denoted as O(1), include client thread initi-
ation. However, unlike the server, the operations are not multiplied by the
number of clients, but by the number of training rounds. Consequently, the
complexity on the client side can be represented as follows:
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ServerComplexity = O(1) + (R ∗O(IK))+

(R ∗O(E) ∗O(MP ) ∗O(N))+

R ∗O(T ) +O(N)

(2)

The complexity profile shows that the efficiency of the federated learning
cycle scales linearly with the number of clients and communication rounds.
The linear nature of the complexity indicates that as the size of the inputs
(number of clients, rounds of communication) increases, the time required
for the process also increases proportionally. This is generally preferable to
a quadratic or higher complexity, which would lead to a much higher time
requirement as the size of the inputs increases.

4.3. Communication Overhead

Running the PolyFLAM and PolyFLAP frameworks introduces an inher-
ent communication overhead as part of the orchestration between the server
and the clients. This additional overhead results primarily stems from the
additional messages that are exchanged, serving as the management keys for
collaboration. These messages include important components such as the
Table of Keys (ToKs), as well as other messages that signal readiness, hiber-
nation, connection establishment, and disconnection. Particularly, a notable
fraction of the overall overhead arises from the encrypted Table of Keys,
since the other messages are of fixed and small sizes. Considering that the
size of the Table of Keys (ToKs) messages is multiplied by 32 bytes due to
the use of a 256-bit key ( AES ), and taking into account the number of
clients participating in the federated learning process, the total communica-
tion overhead can be represented approximately as follows, where K is the
number of encryption keys and C is the number of participating clients:

CommunicationOverhead = C ∗K ∗ 32Bytes (3)

This equation summarises the major factors contributing to the commu-
nication overhead caused by PolyFLAM and PolyFLAP encryption mecha-
nisms and message exchanges.

4.4. Model Accuracy and Convergence

It is important to emphasize that the PolyFLAM and PolyFLAP frame-
works were developed with the goal of strengthening the security and integrity
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of the federated learning environment, not improving learning quality. Al-
though improving machine learning models is important, these frameworks
were developed with the goal of providing effective protection against po-
tential vulnerabilities and privacy breaches in FL decentralized collaborative
learning scenarios. The frameworks protect sensitive data and confidential
model information from potential attacks by relying on polymorphic encryp-
tion strategies that guarantee that an encryption key is never used twice
within a FL cycle, even for the same client. This technique demonstrates a
proactive strategy for establishing trust in FL contexts and ensures that the
collaborative process takes place within a fortified, robust, and trust-driven
framework.

4.5. Space & Storage Utilization

The PolyFLAM and PolyFLAP frameworks introduce an overhead in the
exploration of spatial complexity that must be considered. Central to this
overhead is the inclusion of Table of Keys (ToKs), a cryptographic corner-
stone. While the basic memory components of PolyFLAM and PolyFLAP
are consistent with the foundation of federated learning frameworks, ToKs
have a noticeable impact. ToKs require additional storage, but also play an
important role in securing messages exchanged between servers and clients.

4.6. Evaluation using Real-World Data

Real-world test data sets are used to evaluate the PolyFLAM and PolyFLAP
frameworks. These frameworks, strengthened by cryptographic capabilities
and precise orchestration, serve as the vanguard of federated learning in a
world where theoretical ideas converge with practical implementations. The
upcoming research aims to move beyond the conceptual level and into a
realm where actual data is used to validate the usability and efficiency of the
proposed frameworks.

4.6.1. Testing Environment

To evaluate the effectiveness of the proposed framework, a simulated fed-
erated learning network was built, delineated by its hardware and software
components:

� Hardware Configuration: the simulated network configuration included
a server equipped with an Intel Core i7 processor and 16 GB of memory.
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This server, running Microsoft Windows 10 Home, managed the orches-
tration of the network. At the same time, the client role was performed
by different computers, each with different hardware specifications to
simulate the heterogeneity of the real world;

� Software Framework: PolyFLAM and PolyFLAP were developed using
Python (ver. 3.9) as the basic programming language.

During data partitioning, the records described in the next section were
divided among the different customers during each FL cycle. If a dataset
contains 1000 records and four clients participate in the training cycle, a
fair partitioning would mean that each client performs local training on 250
different datasets. This careful division of data ensures equality and a con-
sistent basis for comparative evaluation throughout the implementation of
the system.

4.6.2. Datasets Used

A wide range of datasets specifically selected for binary classification tasks
were carefully used to thoroughly evaluate the effectiveness and robustness
of the frameworks. The three datasets include a simulated dataset generated
using the SKLearn dataset library [66]. Using this generated dataset, which
includes 9,000 records and 20 data properties, the core capabilities of the
frameworks are thoroughly tested. In addition, the SHAREEDB Cardiovas-
cular Diseases prediction dataset [67] proves to be a critical component of
the evaluation as it goes deeper into the real-world complexity domain. This
dataset highlights the ability of the framework to adapt to real-world medical
data, as it contains 139 records and 26 variables that capture the details of
cardiovascular health. The Surgical binary classification dataset [68] expands
on its contributions with 14,636 records and 24 features that complement the
analysis. This diverse dataset highlights the framework’s ability to handle the
complexity of a more complex, real-world scenario. Together, these carefully
selected datasets provide the framework for a thorough evaluation and allow
for better examination of framework performance across multiple dimensions
of complexity and scale.

4.6.3. Security Analysis: Proof of Polymorphism

A rigorous process was used to evaluate the resilience of the framework.
The encryption keys for communications had to be constantly monitored and
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verified. By prohibiting the reuse of encryption keys, the resilience of the
framework to key reuse was tested at this critical stage. This was demon-
strated with two clients using the initial data set. The original and five
additional ToKs keys used for message encryption were carefully recorded
and compared. Table 3 summarizes the conclusions of this PolyFLAM cryp-
tographic investigation and gives the collected findings from this comprehen-
sive experiment. This technique is critical to determine the cryptographic
robustness of the framework and its ability to secure complicated data trans-
missions.

Table 3: Encryption keys polymorphism in PolyFLAM

- server client 1 client 2

Initial
Key

depending on the client btkzo1PLJsQjVVRxr0u7mytmup9proQ3 PmBlfl3k4k7rgoDm1etNWJ6IsWyKLezS

Randomly
selected
5 keys

wpmDQnYv8ncZhvNKaeXUvtFlZ9pcuM2p 3PwImZIqZT8o2DQVBfKnpile6B7nwGcp YDRf1hXOq5POw311LflEBl3zcCFak41t

uHAgHdMLG9cqPlvqMkHItBwkWJTFzMZL Bi7a1kZHKJbJdVgA1WcTEoJILoEPCj4j 6sqKWRZk9coIYXhH6uogaBCI8C8TRGNd

Wlhty1PtLy86wxH4lTxhjFTbt7dhHdT6 YZDBazmbbBCGXox8KXQzepJH3N2sUOkG QdjTzsKiH4EwOp6R3CZ8UC2U2l7r2tKG

qkgC6eIwiyyAq0Hfv4ajOqpszeuYxUbu srmBy6rUmfH23Qn8GEPhTM9egvMBSd8S Q318ez6o1n2YZ1AKM1uTDaPPDDvjqQuj

C0KFcCE18VeFkho8qwPzKu6DA6hoUZBY qxr9Qz3sFIAYGWL69CwJtBsnTdcetaqn ZEwkF5PSvAxCP6LVMHWEqegV1tWHgO4r

4.6.4. Communication Cost

As part of the study and evaluation of PolyFLAM & PolyFLAP, com-
munication costs were tracked and recorded. The communication stream
includes different message types, both on the server and on the client, as
shown in the list below:

� Server will be sending the below messages to each client
– ”Encrypted ToKs” (S1)
– ”Model/Parameters” (S2)
– ”Hibernate” (S3)
– ”Disconnect” (S4)

� Client will be sending the below messages to the server
– ”Connect” (C1)
– ”Ready” (C2)
– ”Model/Parameters” (C3)
– ”Disconnected” (C4)
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The subtleties of message size are closely related to parameters such as the
number of training rounds (R) and the number of participating clients (C).
Consequently, the quantification of communication costs can be succinctly
formulated as follows:

CommunucationCostServer = C ∗ (S1 +R ∗ (S2 + S3 + S4)) (4)

CommunicationCostClient = C1 + C2 +R ∗ C3 + C4 (5)

It is worth noting that messages S3, S4, C1, and C2 have a fixed size
due to their characteristic properties. The variability of S1 depends on
the dimensions of the number of keys in the ToKs, with each factor con-
tributing 32 bytes. It is important to emphasise that most of the commu-
nication volume comes from S2 and C3, which encapsulate a complicated
model/parameter size. The recorded communication costs when running
PolyFLAM & PolyFLAP are shown in Table 4 and Table 5 below. The
communication costs are tracked between the server and a randomly selected
client in a randomly selected training round for messages sent and received
in the three databases selected for testing. Table 4 shows the size of each
message sent by the server and the client, as described below:
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Table 4: PolyFLAM & PolyFLAP communication cost per message, model, and dataset.

E
n
ti
ty

Dataset Simulated
Dataset

SHAREEDB Surgical-
Binary
Dataset

S
en
t
(S
er
ve
r)

”Encrypted ToKs” 480 480 480

”Model/Parameters”

P
ol
y
F
L
A
M

SVM 88060 10481 75604
LR 864 912 896
NB 1498 1786 1690
SGD 954 1002 986
MLP 34697 38748 39270

P
ol
y
F
L
A
P

SVM 89294 8853 72022
LR 470 510 502
NB 1101 1293 1229
SGD 560 608 592
MLP 10173 11709 11197

”Hibernate” 139 139 139
”Disconnect” 136 136 136
”Connect” 83 83 83
”Ready” 91 91 91

S
en
t
(C

li
en
t) ”Model/Parameters”

P
ol
y
F
L
A
M

SVM 94279 11006 80119
LR 926 974 990
NB 1678 1966 1902
SGD 1166 1214 1230
MLP 37758 42350 39582

P
ol
y
F
L
A
P

SVM 89293 8782 71975
LR 462 510 494
NB 1054 1246 1214
SGD 510 558 574
MLP 10174 11710 11198

”Disconnected” 107 107 107

On the other hand, Table 5 shows the total messages exchanged between
server and client and also the reduction in communication cost between
PolyFLAM and PolyFLAP one by one:
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Table 5: PolyFLAM & PolyFLAP communication cost aggregation and reduction ratio

F
ra
m
ew

or
k

Direction Model Simulated
Dataset

SHAREEDB Surgical-
Binary
Dataset

P
ol
y
F
L
A
M

Sent (Server)

SVM 88815 11236 76359
LR 1619 1667 1651
NB 2253 2541 2445
SGD 1709 1757 1741
MLP 35452 39503 40025

Sent (Client)

SVM 94560 11287 80400
LR 1207 1255 1271
NB 1959 2247 2183
SGD 1447 1495 1511
MLP 38039 42631 39863

P
ol
y
F
L
A
P

Sent (Server)

SVM 90049 9608 72777
LR 1225 1265 1257
NB 1856 2048 1984
SGD 1315 1363 1347
MLP 10928 12464 11952

Sent (Client)

SVM 89574 9063 72256
LR 743 791 775
NB 1335 1527 1495
SGD 791 839 855
MLP 10455 11991 11479

C
os
t
R
ed
u
ct
io
n

Sent (Server)

SVM -1% 14% 5%
LR 24% 24% 24%
NB 18% 19% 19%
SGD 23% 22% 23%
MLP 69% 68% 70%

Sent (Client)

SVM 5% 20% 10%
LR 38% 37% 39%
NB 32% 32% 32%
SGD 45% 44% 43%
MLP 73% 72% 71%

4.6.5. Learning Quality

The two frameworks PolyFLAM & PolyFLAP comprise a versatile en-
semble of five different models tailored for machine learning training: Sup-
port Vector Machine (SVM), Logistic Regression (LR), Gaussian Naive Bayes
(Gaussian NB), Stochastic Gradient Descent (SGD), and Multi-Layer Per-
ceptron (MLP). To comprehensively evaluate the effectiveness and robustness
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of these methods, a series of experiments were conducted on three different
datasets described previously. The results were tracked and plotted as shown
in Table 6. The acronyms used in the table can be described as follows:

� AC: Accuracy
� PR: Precision
� RE: Recall
� F1: F1 Score
� SP: Specificity
� NPV: Negative Predictive Value

Table 6: PolyFLAM & PolyFLAP Learning Quality Results

F
ra

m
e
w
o
rk

M
o
d
e
l

Dataset AC PR RE F1 SP NPV

P
o
ly
F
L
A
M

SVM

Simulated 91.76% 98.75% 91.30% 89.36% 91.89% 94.44%

SHAREEDB 48.57% 40.91% 7.38% 12.50% 89.43% 49.33%

Surgical-Binary 66.48% 40.40% 95.24% 56.74% 57.86% 97.59%

LR

Simulated 86.67% 85.29% 90.62% 87.88% 82.14% 88.46%

SHAREEDB 45.71% 47.56% 87.70% 61.67% 4.07% 25.00%

Surgical-Binary 72.53% 46.15% 66.67% 54.55% 74.45% 87.18%

NB

Simulated 98.33% 100.00% 96.43% 98.18% 100.00% 96.97%

SHAREEDB 50.20% 50.00% 95.90% 65.73% 4.88% 54.55%

Surgical-Binary 68.13% 39.47% 71.43% 50.85% 67.14% 88.68%

SGD

Simulated 90.00% 88.89% 88.89% 88.89% 90.91% 90.91%

SHAREEDB 49.39% 42.86% 4.92% 8.82% 93.50% 49.78%

Surgical-Binary 63.19% 35.79% 85.00% 50.37% 57.04% 93.10%

MLP

Simulated 76.67% 70.00% 93.33% 80.00% 60.00% 90.00%

SHAREEDB 49.39% 43.75% 5.74% 10.14% 92.68% 49.78%

Surgical-Binary 64.84% 20.83% 10.00% 13.51% 85.61% 71.52%

P
o
ly
F
L
A
P

SVM

Simulated 91.67% 96.00% 85.71% 90.57% 96.88% 88.57%

SHAREEDB 48.16% 40.74% 9.02% 14.77% 86.99% 49.08%

Surgical-Binary 42.31% 31.21% 84.62% 45.60% 25.38% 80.49%

LR

Simulated 95.00% 97.22% 94.59% 95.89% 95.65% 91.67%

SHAREEDB 62.04% 60.90% 66.39% 63.53% 57.72% 63.39%

Surgical-Binary 42.86% 25.00% 86.84% 38.82% 31.25% 90.00%

NB

Simulated 91.67% 92.11% 94.59% 93.33% 86.96% 90.91%

SHAREEDB 48.57% 40.91% 7.38% 12.50% 89.43% 49.33%

Surgical-Binary 74.73% 0.00% 0.00% 0.00% 100.00% 74.73%

SGD

Simulated 91.67% 93.10% 90.00% 91.53% 93.33% 90.32%

SHAREEDB 48.16% 33.33% 4.10% 7.30% 91.87% 49.13%

Surgical-Binary 76.37% 68.42% 26.00% 37.68% 95.45% 77.30%

MLP

Simulated 71.67% 90.48% 55.88% 69.09% 92.31% 61.54%

SHAREEDB 53.06% 51.58% 93.44% 66.47% 13.01% 66.67%

Surgical-Binary 28.57% 27.27% 96.00% 42.48% 3.03% 66.67%

The PolyFLAM and PolyFLAP frameworks were developed primarily not
with the sole goal of improving learning quality, but rather with the goal of
strengthening federated learning against potential attacks, especially infer-
ence attacks. Nonetheless, it is critical to recognise that learning quality
retains its importance as a key metric, particularly in the context of machine
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learning models intended for predictive applications. In particular, accuracy
plays a prominent role as it is a critical criterion for the utility and effec-
tiveness of a model. The results presented above justify an analysis from
different points of view.
Moreover, there is a clear trend where datasets with a larger number of
records consistently show higher accuracy across the five different models
in both PolyFLAM and PolyFLAP. This result is consistent with expecta-
tions, as a larger volume of records in a dataset leads to additional data
availability for local training at the client node. This subsequently leads to
an improvement in the local training quality and also in the global model
quality. In particular, the results observed with the simulated dataset are
remarkable, showing accuracies that exceed the threshold of 90% across var-
ious quality parameters. In contrast, the surgical deepnet dataset achieves
comparatively lower accuracy, at 76% during the optimal iteration. In turn,
the SHAREEDB dataset exhibits the least pronounced performance, as its
highest accuracy across models does not exceed 62%. This clearly shows the
influence of dataset size on model performance and learning quality. This
observed phenomenon can be discussed from two strategic perspectives:

� Potential to improve learning quality: observed results encourage im-
proving PolyFLAM and PolyFLAP so that they perform well when
dealing with relatively small data sets;

� encouragement of client contributions: Since the two proposed frame-
works preserve user privacy, they can be considered as a solution to
attract more participants to a FL training cycle, thus providing an op-
portunity to increase data availability and improve model performance.

In summary, the results highlight the potential of these frameworks to go
beyond their primary focus on security and also contribute to improving the
quality of learning. Moreover, the scalability and privacy-friendly character-
istics of these frameworks suggest that they can provide even more robust
results as the participating entities expand. Therefore, due to their different
concepts, PolyFLAM and PolyFLAP cannot be compared to the state of the
art of classical ML models applied to these datasets such as[69, 70, 71] due
to the difference of concepts,but they can certainly be compared to the cur-
rent approaches being taken to secure FL environments against attacks and
threats.
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4.7. Comparison to The State-of-The-Art

In this section, a thorough comparison will be presented between the novel
federated machine learning frameworks (FL) presented in this study and ex-
isting state-of-the-art approaches. This comparison highlights the particular
focus on data security and privacy achieved by incorporating polymorphic
and homomorphic encryption techniques. This comparison is presented in
Table 7 below:

Table 7: Comparison of FL Security Approaches

Criteria Proposed
Frameworks

Homomorphic
Encryption

Only

SecureD-FL SEAR HeteroSAg

Encryption
Techniques

Polymorphic &
Homomorphic
Encryption

Homomorphic
Encryption

Homomorphic
Encryption

Trusted
Execution

Environment
(TEE)

Homomorphic
Encryption

Unique
Encryption Keys
for Parameters

Yes (Polymorphic
Encryption)

No (Single Key) Yes
(Homomorphic
Encryption)

Yes (TEE-Based
Encryption)

No (Single Key)

Data Privacy &
Access Control

Strong Data
Privacy & Access

Control

Limited Access
Control

Strong Data
Privacy & Access

Control

Strong Data
Privacy & Access

Control

Limited Access
Control

Security Against
Key Compromises

Highly Resilient
(Granular Key

Usage)

Vulnerable to Key
Compromise

Highly Resilient
(Granular Key

Usage)

Highly Resilient
(TEE-Based)

Vulnerable to Key
Compromise

Robustness
Against Attacks

Multi-Layered
Security
Approach

Limited Security
Layers

Multi-Layered
Security
Approach

Multi-Layered
Security
Approach

Enhanced
Security Layers

Communication
Efficiency

Efficient with
Enhanced
Security

Efficient but Less
Granular

Efficient with
Enhanced
Security

Efficient with
Hardware-Based

TEE

Efficient with
Enhanced
Security

Byzantine Attack
Resilience

Strong Resilience Limited
Resilience

Strong Resilience Strong Resilience Strong Resilience

Inference Attack
Resilience

High Resilience Limited
Resilience

High Resilience Limited Moderate
Resilience

Bandwidth
Efficiency

Enhanced
Efficiency

Standard
Efficiency

Enhanced
Efficiency

Enhanced
Efficiency

Enhanced
Efficiency

5. Challenges and Future Perspectives

As the federal learning environment evolves, a number of obstacles and in-
teresting options for future development emerge. This chapter addresses the
many challenges associated with the development, deployment, and evalua-
tion of the proposed federated learning frameworks PolyFLAM and PolyFLAP.
These issues range from heterogeneity to the requirement for effective com-
munication methods. In addition, the chapter highlights the future prospects
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that will face the proposed frameworks and, by extension, the entire field FL.
Federated learning will change machine learning paradigms and data-driven
innovation by addressing current problems and highlighting future opportu-
nities.

5.1. Challenges

In the context of PolyFLAM and PolyFLAP, a number of challenges arise
that are closely related to the implementation and refinement of these feder-
ated learning frameworks.

5.1.1. Heterogeneity

Heterogeneity poses a particular challenge for the proposed framework,
especially due to the fact that it only supports ”horizontal FL data” This
notion covers scenarios where different clients process data with identical
characteristics. Although the framework covers this particular data type well,
it is important to recognise that alternative approaches were not considered
or tested in our study. This highlights the need for further research to include
the broader landscape of data heterogeneity.

5.1.2. Complexity and Computation Cost

The issue of complexity and processing cost is critical, especially given the
costly nature of encryption techniques. Since these algorithms are intended
to ensure the integrity of the transmitted data, they necessarily require sig-
nificant computing resources. While ensuring the security of the data, the
rigorous computations required for encryption increase the complexity of the
framework. As a result, striking a balance between robust security measures
and efficient data processing becomes a critical problem that requires new
ways to reduce computational costs while maintaining the integrity of the
system.

5.1.3. Scalability

The issue of scalability is a major problem due to the increased process-
ing requirements of encryption. As the framework deals with an increasing
number of clients, especially on the server side, the additional computational
overhead can limit the scalability of the system. The influx of clients places
additional demands on the server’s processing capacity, which can lead to
bottlenecks and performance degradation. To achieve smooth scalability,
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it is critical to explore effective optimization approaches that reduce com-
putational load while maintaining system responsiveness and supporting an
increasing number of clients.

5.1.4. Learning Quality

One critical issue that emerges is the quality of learning in the proposed
frameworks. While the main goal of PolyFLAM and PolyFLAP in this con-
text is to improve security and robustness against inference attacks, the in-
herent tradeoff between security and learning quality should not be neglected.
Emphasising security techniques such as encryption and privacy may divert
attention from improving model learning quality. Striking a delicate balance
between strong security and optimal learning outcomes is an ongoing prob-
lem that requires careful evaluation of the impact of security measures on the
efficiency of the learning process and the future performance of the overall
model.

5.1.5. Resources Limitations

Resource constraints pose a significant challenge, especially in the fed-
erated learning paradigm where clients typically operate with limited com-
putational resources, which may be the case if the clients are smartphones
or smart wearables instead of powerful computers. This challenge becomes
even more significant when considering the implementation of the proposed
framework. The demands imposed by encryption and other security measures
could overwhelm the already limited resources of the clients. This scenario
raises concerns about the feasibility and practicality of deploying the frame-
work in real-world scenarios, given the potential burden on client devices.
To overcome this challenge, strategies must be developed to optimize the use
of available resources and ensure that the system remains operational while
addressing the constraints of client environments.

5.2. Future Perspectives
In moving to future perspectives, it’s important to acknowledge that the

challenges discussed above are by no means new territory in academic dis-
course. Various researchers have addressed these obstacles and offer innova-
tive solutions to be explored. With careful consideration, a promising path
emerges in which the proposed PolyFLAM and PolyFLAP frameworks con-
verge with established techniques. This convergence has the potential not
only to overcome existing challenges, but also to usher in an era of increased
efficiency and versatility for federated learning systems.
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5.2.1. Handling Heterogeneity

Addressing the challenge of heterogeneity arising from different devices
and data requires innovative approaches. A number of strategies can be ex-
plored to effectively manage this variability. One option is to use resource
allocation techniques [72], which intelligently allocate computing resources
based on the capabilities of individual devices. This approach optimizes the
use of resources and enables a more balanced and efficient federated learning
process. In addition, the integration of Meta-Learning methods [73] repre-
sents a promising avenue. Meta-learning allows models to learn and adapt
quickly to new data distributions, and thus has the potential to improve
the adaptability of the system to the heterogeneity of client devices and
data sources. The synergistic fusion of these approaches with the proposed
frameworks could lead to a more agile and effective framework for federated
learning, capable of addressing the difficulties posed by heterogeneity.

5.2.2. Computation Cost & Time Reduction

The challenge of computational costs can be mitigated through the strate-
gic use of various techniques. One notable approach is the use of parallel pro-
gramming methods. By breaking down complex computations into smaller
tasks that can be executed simultaneously, parallel programming makes more
efficient use of the processing power of modern devices. This leads to an ac-
celeration of model training and a reduction in computation time, effectively
reducing the burden on computing resources. Incorporating parallel pro-
gramming techniques into the proposed PolyFLAM and PolyFLAP frame-
works has the potential to significantly reduce computational costs while
improving system scalability and responsiveness.

5.2.3. Enhancing Scalability

The prospect of improving scalability is linked to effectively solving the
problems of heterogeneity and computational cost. As these challenges are
addressed through approaches such as resource allocation and parallel pro-
gramming, a symbiotic relationship emerges. By addressing device and data
heterogeneity, the system is enabled to serve a variety of clients. At the
same time, reducing computational costs through techniques such as paral-
lel programming ensures that the system remains responsive as the number
of participants grows. This convergence of solutions paves the way for a
more scalable federated learning system capable of accommodating signifi-
cant numbers of clients while maintaining performance and efficiency. The
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interplay of these strategies has the potential to create a robust and adapt-
able ecosystem that meets real-world needs. In addition, the concept of
third-party vendors can be incorporated into the framework to move some
tasks outside the server, such as key generation or encryption, and keep net-
work management and aggregation under the control of the central server.

5.2.4. Boosting Learning Quality

The quality of learning results can be improved by using different tech-
niques for data preprocessing on the client side. As data is prepared prior
to training, strategic preprocessing steps can be incorporated to improve the
quality of the input data. Techniques such as feature scaling, outlier removal,
and data augmentation can be applied to improve the quality and relevance
of the data. By ensuring that the data fed into the training process is well
prepared and free of noise or irregularities, the overall learning quality can be
greatly enhanced. The integration of these preprocessing techniques into the
proposed PolyFLAM and PolyFLAP frameworks may have the potential to
fine-tune the learning process in addition to their improved safety function,
leading to improved model convergence and overall performance.

Conclusion

The PolyFLAM and PolyFLAP frameworks use polymorphic encryption
to enhance the security of message exchanges between servers and clients in a
federated learning context. The security guarantees arise from the diversity
of encryption keys, with each server-client message encrypted with a differ-
ent key. Therefore, in the event of key compromise, there is minimal risk
as key reuse within the FL cycle is virtually eliminated. While PolyFLAM
and PolyFLAP prioritize security, they incur additional computational and
communication costs due to the computationally intensive encryption oper-
ations. However, they can synergize with established methods to parallelize
computation, increase learning efficiency, account for heterogeneity, and im-
prove scalability to overcome such challenges and improve their usability and
feasibility.
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Abstract

Given the implications of data collection in machine learning research, protect-
ing user privacy is paramount. Federated learning (FL), which involves sharing
trained models instead of user data, has emerged as a solution in this con-
text. However, FL faces security and privacy challenges, particularly in terms of
vulnerability to inference attacks. Therefore, in this paper, a novel aggregation
framework for federated learning called HP FLAP is proposed as a countermea-
sure. HP FLAP: ”Homomorphic & Polymorphic Federated Learning Aggregation
of Parameters” is supported by both homomorphic and polymorphic encryp-
tion to provide a secure environment for federated learning. This framework
incorporates a variety of models, including logistic regression, Gaussian Naive
Bayes, Stochastic Gradient Descent, and Multi-Layer Perceptron. In the proposed
framework, security is enhanced by embedding homomorphic and polymorphic
encryption. On the one hand, homomorphic encryption allows the server to
summarize the encrypted collected parameters without decrypting them, which
improves the security and privacy of the system. In addition, polymorphic encryp-
tion relies on a unique key polymorphism, where each set of parameters or
messages is encrypted with a different key. Therefore, if a key has been compro-
mised or leaked, it does not pose a threat to the overall security of the system.
This paper provides a detailed description and evaluation of the proposed models.

Keywords: Federated Machine Learning, Aggregation Algorithms, Polymorphic
Encryption, Homomorphic Encryption, Security, Privacy

1 Introduction

Artificial intelligence (AI) is a rapidly advancing technology that is increasingly finding
its way into many fields, leading to significant advances in both personal and pro-
fessional life. This fact is indisputable and needs no further review. Despite the long
time devoted to the study of artificial intelligence, which can be traced back to the
1950s when Alan Turing asked his famous question ”Can computers think?”, there is
no single accepted definition of [1]. Thus, in [2], the authors offer a concise definition
of AI that characterizes it as software programs that exhibit competence comparable
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to humans in a given context. On the other hand, the authors define in [3] AI as a set
of tools and methods that draw on principles and mechanisms from various fields such
as computation, mathematics, logic, and biology. These are used to solve the difficul-
ties associated with achieving, representing, and simulating human intelligence and
cognitive processes. Artificial intelligence has evolved into a broad field of study that
has spawned several branches such as machine learning (ML), deep learning (DL),
federated learning (FL), and others. ML using machine learning, for example, comput-
ers can gain knowledge from training data and incrementally expand their knowledge
through implicit programming.
Machine learning algorithms aim to identify patterns in data and use this knowledge to
make autonomous predictions later. In conventional environments, engineers develop
computer programs and insert a set of instructions that enable the transformation of
input data into the intended output. In contrast, ML is designed to acquire knowledge
autonomously and improve its understanding over time with little or no human inter-
vention. The remarkable performance of ML, as well as its extensive capabilities in
solving classification and regression problems and its effectiveness in applying super-
vised and unsupervised learning techniques, have made it very attractive to researchers
in a variety of fields [4, 5]. Subsequent studies have revealed a wide range of ML
applications in various fields. These include e-commerce and product recommenda-
tion, image, speech and pattern recognition, user behavior analysis and context-aware
smartphone applications [4, 5], health services [6–8], transportation [4, 9], Internet of
Things (IoT) and smart cities [9], cybersecurity and threat intelligence [10], natural
language processing [11], sustainable agriculture [12], industrial applications [13], and
more.

1.1 Machine Learning Challenges

The increasing integration of classification and regression approaches in various fields
is driven by the consistent achievement of accurate results. The effectiveness and
versatility of using AI techniques, especially those based on machine learning, are
well known. However, ML still encounters several obstacles that have been extensively
discussed and analyzed in the academic literature. However, these problems cannot be
classified into a single category, but are grouped based on certain aspects. This section
presents the most prevalent problems, which are classified into a proposed framework
that classifies them according to criteria related to data, models, implementation, and
other general dimensions. This classification is reflected in Table 1 below:

As a result, researchers have studied the problems at ML and in related areas and
are working together to solve them. It is difficult to say which of the above difficulties
is more important or harmful to machine learning models. However, the workflow of
ML often follows a certain order, namely data acquisition and preprocessing, feature
engineering, model training, evaluation, and deployment. This workflow recognizes
the importance of data to machine learning as the first step, without which the rest
of the process cannot move forward. The availability of data is therefore also critical
to the performance of machine learning models. Although model accuracy depends
on technical architecture, data quality, feature processing, and other factors, higher
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Table 1 Machine Learning challenges

Category Challenge

General
Challenges
[14, 15]

User Data Privacy and Confidentiality
User Technology Adoption and Engagement

Ethical Constraints

Models Related
Challenges
[14, 15]

Accuracy and Performance
Model Evaluation
Variance and Bias
Explainability

Data Availability and Accessibility [18]

Data-Related
Challenges
[16, 17]

Data Locality [19]
Data Readiness [18]
Data Heterogeneity

Noise and Signal Artifacts
Missing Data

Classes Imbalance
Data Volume Course of Dimensionality

Bonferroni principle [20]
Feature Representation and Selection

Implementation
Related
Challenges
[18, 21]

Real-Time Processing
Model Selection

Execution Time and Complexity

data availability for training has been shown to result in models with better accuracy
[16, 17].

1.2 Privacy Preserving Federated Learning

Data collection can be said to be an important, if not the biggest, problem in devel-
oping real-world machine learning models for several reasons, including confidentiality
and privacy. This problem extends not only to the privacy of individuals, but also to
the privacy and security measures of society, government, and business. In this con-
text, efforts have resulted in global regulations and laws, such as the European Union’s
General Data Protection Regulation (GDPR) [22], China’s Cyber Security Law [23],
Chinese Civil Law’s General Principles [24], Singapore’s PDPA [25], and many others
that restrict collection of information.
These laws protect private data but complicate the ML process. Obtaining data for
model training is increasingly difficult, which hinders model performance and tailored
outcomes. Thus, privacy and confidentiality are not only problems in their own right,
but also set in motion a number of other ML challenges. These include issues of data
accessibility, model efficiency, personalization, and ultimately gaining people’s trust
and consent. The importance of protecting privacy in information sharing has led
to the exploration of algorithms such as differential privacy, k-order anonymity, and
homomorphic encryption (HE) [26–28]. However, these approaches have not proven
invincible, as evidenced by machine learning-related attacks such as model inversion
[29] and attacks on membership inference [30].
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1.2.1 An overview of Federated Learning

Google has recently developed a revolutionary approach to machine learning called
”Federated Machine Learning” or ”Federated Learning” (FL) [31]that can help solve
privacy problems. One of the main ideas behind Federated Learning is to eliminate
the need to share user data across different platforms. This method uses decentral-
ized, distributed, and collaborative strategies for training ML models while protecting
individual privacy. In the FL environment, a model is trained without the need to
send data from edge devices to a central server. Instead, models are sent to devices
where they can be trained with their own local data. A central aggregation server
then receives these improved models and merges them into a global model without
having access to the granular embedded data. Figure1 below depicts the technical
infrastructure of federated learning.

Fig. 1 Federated Learning Technical Architecture

Federated Learning solves user privacy problems. It addresses such limitations by
allowing more data for training machine learning models, improving accuracy and effi-
ciency. In addition, Federated Learning facilitates training of models with data from
multiple sources called ”data islands” These islands can send their datasets to a central
model, increasing the overall efficiency of the models. In addition, federated learning
allows models to handle different data from different data spaces, each with its own
characteristics. This method also enables ”learning transfer,” where models can share
information without sharing users’ sensitive data. Federated learning, however, is still
new and faces several challenges that require in-depth study to improve its capabili-
ties.
Considering the above requirements, this paper presents a novel framework for fed-
erated learning that employs both Homomorphic Encryption[28] and Polymorphic
Encryption[32] to enhance the security of the FL environment. Section 2 of this paper
explores the main goal behind creating HP FLAP by outlining the problem, espe-
cially the current shortcomings related to privacy in federated learning systems. It also
explains the motivation behind the creation of HP FLAP is elaborated upon. A crucial
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element is the inclusion of both homomorphic and polymorphic encryption, which is
seen as an innovative contribution in the field of federated learning. Section 3 aims to
provide a thorough explanation of the proposed framework with a complete descrip-
tion of its internal operations. Section 4 presents a comprehensive analysis, critically
evaluating and assessing the proposed framework from many perspectives. Practical
investigations are conducted in real-world environments to validate its effectiveness.
Finally, section 5 discusses the obstacles that hinder the proposed framework, but also
identifies potential opportunities for its future development.

2 Problem Statement

Federated Learning presents itself as a solid privacy solution by taking a decentralized
approach to machine learning, reducing the need for extensive data transfer between
clients and servers. In this context, FL effectively reduces transmission costs by mini-
mizing data transfer, as raw data often exceeds the size of the communicated models
or their associated parameters.

2.1 Challenges and Issues in FL Domain

While federated learning has shown promise in a variety of contexts, it is also fraught
with difficulties and challenges that have been extensively explored in the academic
literature, e.g., in studies such as [33–35]. According to these and other studies, the
early aggregation technique FL, FedAvg [31], has been investigated for a number of
shortcomings. These challenges include issues such as data and hardware heterogeneity,
sensitivity to local models, limits to scalability, slow convergence rates, complicated
architectures, high communication costs, and the possibility of malicious attacks. Due
to the complexity of these issues, research has proliferated to improve the usability of
FL and make it accessible to a wide audience.

2.2 Security in FL Domain

Federated learning is vulnerable to malicious attacks [33–35]. Currently, there are
three points of attack for the messaging of FL: the input phase, the learning phase,
and the learned model itself. Therefore, many types of attacks are known in this
context, including poisoning, inference, and backdoor attacks. While the quality of
the learning results can be compromised by poisoning attacks, the user’s privacy can
be compromised by inference attacks, and the whole FL system can be attacked by
backdoor attackers accordingly [36].

2.2.1 Poisoning Attacks

Poisoning attacks, whether random or targeted, attempt to reduce model accuracy
(random) or alter the model to output a label specified by the attacker (targeted) [37].
These attacks can target either data or the model, in either case adversely affecting
the overall performance and quality of the model. In addition, attackers can use com-
promised FL servers to launch both random and targeted poisoning attacks against
trained models, including both data and poisoning attacks.
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� Data Poisoning: or data corruption and has two main forms, ’Clean Label’ [38] and
’Dirty Label’ [39]. ’Clean Label’ attacks require covert poisoning because the labels
cannot change, while ’Dirty Label’ attacks allow misclassification of data with target
labels. Data poisoning by any federated learning entity can affect the final model
depending on the number of attackers and data contamination;

� Model Poisoning: local model training can cause model poisoning by contaminat-
ing updates before server transmission or creating hidden global backdoors [40].
Targeted model poisoning manipulates the training process to misclassify selected
inputs without modifying them, similar to adversarial attacks [41]. Model poisoning
in federated learning affects model updates during each iteration more than data poi-
soning [42]. Centralized poisoning is simulated with a fraction of the training data.
In addition, performing model poisoning requires significant technical resources.

2.2.2 Inference Attacks

Sharing models or parameters during training in federated learning also raises privacy
issues [43, 44] . For example, Deep Learning models sometimes include data features
in the exchanged models or parameters that aren’t directly related to their main tasks.
This could reveal personal data about users. In this context, attackers can find out
features by comparing snapshots of model parameters, which shows the total changes
made by everyone except the attacker. The problem is that slopes are computed from
users’ private data. Technically, the slopes in Deep Learning models come from the
characteristics of the layers and the errors in the layers above them, which allows
attackers to make inferences and invert some private user data. These observations
can reveal private data characteristics such as class representatives and membership,
or even enable label recovery without knowledge of the training set [44]. Inference
attacks always involve the following:

� Inferring Membership: the goal of membership inference attacks is to determine
whether a particular data element was used to train the model [45];

� Inferring Class Representatives: this occurs when a malicious participant intention-
ally compromises another participant and exploits the real-time learning of FL to
train a network that generates private prototype samples of targeted training data.
These generated samples mimic the distribution of the training data;

� Inferring Properties: in this attack, an attacker can perform both passive and active
property inference attacks to infer properties of other participants’ training data
that are independent of the features describing the classes of the FL model. [45]:

– Property inference attacks require the attacker to have additional training data
labeled with the exact property they wish to infer;

– A passive attacker can only monitor updates and make inferences by training a
binary property classifier;

– An active attacker can use multitasking to make the model FL learn to better
separate data with and without the property, resulting in more information being
extracted;

– An adversarial participant can even infer when a feature appears and disappears
in the data during training;
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– It can recover pixel-precise original images and token-matched original texts.

2.3 Secured FL Frameworks: State of the Art

To increase the practicality and applicability of FL, researchers are looking for ways
to improve the security of the system. There have been several attempts in this direc-
tion. To minimize computational costs and resist defective clients, the inventors of [46]
have developed a technique with a specified number of rounds for secure vector sum-
mation. Their method relies on a single trusted server that stores all data from the
communicating parties. High security was demonstrated against honest but curious
adversaries, and anonymity was guaranteed even in the presence of active adversaries,
such as an enemy server. In addition, Robust Federated Aggregation (RFA) was devel-
oped to protect the FL aggregation process from poisoning attempts [47]. To this end,
a Weiszfeld-like technique was used to compute the geometric median of the traded
models [48]. With its improved resistance to data poisoning attacks, RFA was able to
compete with the standard FedAvg algorithm.
SecureD- FL, on the other hand, was developed by the authors of [49] and is a
FL framework based on a modified version of the Alternating Direction Multiplier
(ADMM) [50]. Their proposed framework uses a type of communication where the
algorithm determines at the beginning of each execution cycle which subset of users
should share data in order to limit the disclosure of sensitive information while still
allowing for the efficient collection of data. Furthermore, [51] proposed SEAR,a Secure
and Efficient Aggregation for byzantine-robust federated learning, which aggregates
the local models in a secure and trusted hardware environment, specifically Intel
SGX Trustworthy Execution Environment (TEE) [52], a secure CPU area, where the
executed data and programs are kept secret and cannot be modified. Efficient Privacy-
Preserving Data Aggregation (EPPDA) was also introduced in [53], which exploits
homomorphisms of secret sharing in the FL environment, as shown in [54]. Secret shar-
ing, a key exchange protocol, authenticated encryption, and signature mechanisms are
the four pillars of their cryptography methodology.
Finally, the authors in [55] presented the aggregation method HeteroSAg, which
employs masking to secure the exchanged messages in a way that ensures the mutual
information between the masked model and the unique model is zero. The FL cycle,
which implements a segment grouping method by partitioning edge users into groups
and segmenting local model updates for those users, is crucial to HeteroSAg’s robust-
ness against Byzantine assaults. Table 2 below summarizes the security methods used
by leading secured FL frameworks.

2.4 Problem and Motivation

While much work has been done to better handle poisoning threats in secure aggre-
gation methods of federated learning, researchers have paid far less attention to
inference attacks. Although methods such as polymorphic encryption and homomor-
phic encryption show promise in making data transmissions more secure and thus
reducing the impact of inference attacks, they have not been extensively studied in
previous research. This paper presents HP FLAP, in response to growing concerns
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Table 2 State-of-the-art of secured FL aggregation algorithms

Ref# Mechanism

[46] Secure Vector Summing Strategy

[47] Using geometric median estimated using a Weiszfeld-type algorithm

[49] Refined form of the Alternating Direction Multiplier (ADMM)

[51] Hardware-based trusted execution environment instead of complex
cryptography

[53] Homomorphisms of the secret exchange

[55] Masking each user’s model update

about inference attacks and partly as a result of the success of PE and HE. Its origi-
nality and groundbreaking nature stems from the fact that it is the first framework to
integrate both PE and HE with a secure FL aggregation. This partnership not only
sets it apart from the competition, but also creates new opportunities to improve the
security of FL. As will be shown later, the proposed framework also provides secure
FL in a variety of paradigms.

2.5 Polymorphic Encryption

Polymorphism is the ability of objects or functions to change their form or behaviour to
adapt to different circumstances. On the other hand, encryption involves the complex
process of converting conventional data into an unintelligible format that prevents
unauthorised access or use. Numerous encryption methods such as AES (Advanced
Encryption Standard) and RSA (Rivest-Shamir-Adleman) contribute to complex data
security [56, 57]. Polymorphic encryption is therefore defined as a complex encryption
paradigm that adds a dynamic component by changing the encryption algorithm or
keys, improving overall security. PE is resistant to intrusion, especially if the embedded
encryption keys are too long. It is known that it is not easy to crack an encryption
algorithm like AES by decrypting its key. Therefore, iterative use of an encryption key
or even a cypher algorithm would certainly increase the level of security.

2.6 Homomorphic Encryption

Homomorphic encryption [28]is a new type of encryption that allows computations to
be performed on encrypted data without having to decrypt it first. With traditional
encryption methods, the data must be decrypted before it can be used. However,
with homomorphic encryption, the data remains secret while mathematical processes
can be performed directly on the encrypted data. There are different types of homo-
morphic encryption, such as partial homomorphic encryption and full homomorphic
encryption. This discovery has huge implications for privacy and security, especially
when it comes to cloud computing and data sharing. By using homomorphic encryp-
tion, private data can remain protected during processing. This can be used for secure
data analytics, private machine learning and private outsourcing of data processing.
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Although HE is not as fast as other methods because it requires difficult mathemati-
cal processes, researchers are still trying to make it faster and more useful for the real
world. Homomorphic encryption can be divided into two main categories:

� Partial Homomorphic Encryption: cryptographic technique that allows certain
mathematical operations, such as addition or multiplication, to be performed on
encrypted data;

� Fully Homomorphic Encryption: is a cryptographic technique that enables the exe-
cution of various mathematical operations on encrypted data, which include both
addition and multiplication operations. This method ensures that the secrecy of the
data is maintained throughout the computational process.

In the proposed framework, HP FLAP embeds Fully Homomorphic Encryption to
allow a wide range of operations on parameters obtained from local training on each
client.

3 HP FLAP: FL Framework Secured with
Homomorphic and Polymorphic Encryption

HP FLAP framework was developed due to the urgent need to improve security pro-
tocols in federated learning frameworks against inference attacks, and the practicality
of combining homomorphic and polymorphic encryption in response to this problem.
This new idea cleverly combines the core ideas of homomorphic and polymorphic
encryption in its design. This creates an impenetrable defense barrier around the FL
landscape and ensures that it is completely secure. In this section, both the concep-
tual basis and the detailed design details of the proposed framework are explained in
detail. This provides a complete picture of the many parts of the strategy, all of which
serve to strengthen the integrity of the FL environment.

3.1 Main Concept

A traditional federated learning configuration has a central server and a set of clients.
The server transmits a global model to the clients, which then train using their own
local datasets. After the training process is complete, the clients transmit their trained
models or associated parameters back to the server. The server, in turn, integrates the
received models to generate an improved global model and iterates this process until
an equilibrium state is reached. In the case of HP FLAP, the exchanged messages are
subjected to a particular type of encryption that combines both homomorphic and
polymorphic encryption. In the proposed framework, the AES -256 algorithm [58] is
embedded to encrypt the messages exchanged between the server and the participat-
ing clients. On the one hand, homomorphic encryption allows the server to aggregate
the encrypted parameters without having to decrypt them, thus securing the param-
eters generated from the clients? local training data. On the other hand, polymorphic
encryption ensures that different keys are used to encrypt different messages in the
FL cycle.
The uniqueness of the proposed framework lies in its ability to aggregate multiple
models or their associated parameters without requiring decryption and, by changing
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the encryption key, secure messages exchanged between servers and clients. Further-
more, this is achieved by using different encryption keys for each message transmitted
between the server and the clients. This method results in both homomorphism and
polymorphism, which increases protection at two levels. Furthermore, in the context
of a single client, unique keys are used for each message transmitted between that
client and the server. The primary origin of polymorphism is the Table of Encryption
Keys (ToKs) and the original encryption key. The following section elaborates on these
principles, which serve as fundamental factors for the development of homomorphism
and polymorphism within the proposed framework.

3.1.1 Encryption Keys Tables: ToKs and HEToKs

When a client makes a connection request, the server responds with a Table of Encryp-
tion Keys (ToKs). Each key in this table is assigned a unique ID for indexing. These
keys play a crucial role in encrypting the exchanged messages. In this process, each
message is assigned an index corresponding to the key used for encryption on the
sender’s side and decryption on the receiver’s side. The AES -256 keys consist of 32
characters (bytes) and are extremely resistant to cracking attempts, which ensures a
high level of security. In the context of HP FLAP, even the case of a key being cracked
or leaked does not pose a significant threat. This is because the implemented mecha-
nism ensures that the compromised key, if any, is not reused in the FL process, either
with the same customer or with other customers. This concept is explained in more
detail in the following sections. In practise, a malicious client that successfully cracks
a key would gain minimal benefit from it, since that key is unlikely to have any fur-
ther use.
It’s important to emphasise that each client is provided with its own ToKs when
connecting to the server. Even the same client receives a new ToKs with each new con-
nection session. Moreover, the transmission of ToKs to the client after the connection
is established requires an additional encryption mechanism to protect against mali-
cious entities. This precaution is critical because the effectiveness of the entire security
scheme would be compromised if the ToKs were cracked or leaked. To counteract this,
the initial encryption key, referred to as the ”initial key” and used to encrypt the
ToKs, is also generated polymorphically, a mechanism that is explained in more detail
in the following section.
In addition, the server is responsible for creating the Homomorphic Encryption Table
of Keys (HEToKs) and distributing them to the participating clients. Similar to the
ToKs, this table consists of a collection of 32-byte strings used to encrypt models
or their associated parameters created after local training performed by the clients.
The encrypted parameters are encapsulated in a message and transmitted to a server,
where they are aggregated without decryption. The server then sends the aggregated
parameters back to the clients so that they can continue with the training. In this
current context, note the following about HEToKs:

� All clients receive identical HEToKs, and the keys in this table are each associated
with a unique identifier;

� During each iteration of the global model aggregation process, the server uses a ran-
dom selection mechanism to choose an identifier associated with one of the HEToKs
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Fig. 2 Initial encryption key, ToKs and HEToKs explained graphically

keys. This ID is then sent to the clients to inform them of the specific key that will
be used to generate polymorphism in the following round;

� HEToKs are securely encapsulated in the communication channel between servers
and clients. These HEToKs are subjected to an additional layer of encryption using
a randomly selected key from the ToKs instead of using the original encryption key.

In order to provide a more comprehensive explanation of the ideas of ToKs, initial
encryption key, and HEToKs, Figure 2 below illustrates a graphical summary of the
functionality associated with these concepts.

3.1.2 Initial Encryption Key

The encryption process uses the initial encryption key known as the ”initial key” to
encrypt the Table of Encryption Keys. These ToKs are then used to encrypt messages
exchanged between the server and clients. Since the ToKs are sensitive data, it is
critical to create unique initial keys for each client to create more polymorphism and
achieve better security. To achieve this, HP FLAP utilize carefully defined technique
to construct the initial key before it is used in the encryption process of the ToKs. It is
significant that each connection session, even for the same client, generates a different
key because random characters are used. It is worth noting that the transmission of
these keys does not take place over the network. In contrast, the generation of these
entities is done autonomously on both the server and client sides, using a uniform
procedure. This strategy significantly increases the level of security. The procedure
for generating the initial key is uniform on both the server and client sides and is
explained in more detail below for an entity, be it a server or a client:

1. After the connection is established, the client creates a 32-character string called
”random secret”.

2. Then, the aforementioned string is combined with the client’s connection infor-
mation, which includes the IP address and associated address information. The
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combination of these strings results in the creation of a new 32-character string
that conforms to the following structure:

(a) The first 8 characters are obtained by inverting the last 8 characters of the
random secret.

(b) The following 4 characters are taken from the last 4 characters of the socket data.
(c) The following eight characters are composed of the middle eight characters of

the randomly generated secret. The next four characters match the first four
characters of the data received through the socket.

(d) Finally, the last eight characters are obtained by reversing the first eight
characters of the random secret.

By combining the previously described substrings, a string of 32 characters is
created. The provided string serves as input to the SHA -256 algorithm [57], which
generates a hash value. The initial key, which is critical to the encryption process in
ToKs, is obtained by extracting the first 32 characters from the resulting hash value.
The use of the hash method increases security by reducing vulnerability to future
cracking attempts. In addition, it should be noted that in the scenario where both the
client and the server have access to the socket data, they are able to independently
reproduce the necessary procedures to generate an identical key, provided they are
given the same random secret (random secret). However, since the random secret is
randomly generated by the client, the probability of replicating a similar string on the
server is quite low. Therefore, it is mandatory to communicate this confidential infor-
mation to the server. To ensure secure transmission, the ”shuffled secret” is created
using a series of sequential procedures and then sent to the server.

1. The first 8 characters are the opposite of the third 8 characters of random secret
2. The second 8 characters are the first 8 characters of random secret
3. The third 8 characters are the inverse of the last 8 characters of random secret
4. The last 4 characters are the second 8 characters of random secret

Following these steps renders the shuffled secret unusable to malicious entities
unless they know how to restore the original sequence. After receiving the shuf-
fled secret, the server reverses the shuffling operations to recover the original sequence
and constructs the random secret on the client’s side. The server then matches the
client’s activities and repeats the same procedures to generate the first key. Since
the server and client now have the same key, the Table of Encryption Keys may
be encrypted by the server and sent to the clients. The client then decrypts these
encrypted ToKs to protect the communication.
Note that even if a client connects numerous times with the same IP address, the
initial key will not be constant. This results from the use of random secret during
generation, as well as complex shuffling, mixing, and hashing steps. The initial key
generating procedure is shown in Figure 3 below.

3.2 Supported ML Models

HP FLAP is a cutting-edge Federated Learning framework that opens up new pos-
sibilities for training smart models. To help end users effectively tackle a variety
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Fig. 3 Initial Encryption Key generation mechanism

of data-driven problems, this framework provides a choice of four separate machine
learning models, which are:

� Logistic Regression [59]
� Gaussian Naive Bayes [60]
� Stochastic Gradient Descent (SGD Classifier ) [61]
� Neural Network ( Multi-Layer Perceptron ) [62]

Taken together, these models support a wide range of ML tasks, leaving end users
free to choose the model that best suits their needs. Since both models or their asso-
ciated parameters can be exchanged or aggregated with a FL cycle, each of the above
models generates a set of parameters during the local training process, which are
explained in the Table 3 below.

During the process of federated learning, clients and servers share these parameters,
which collectively reflect the key properties of their own models, to iteratively improve
the global model. The essential details of the model are stored in the parameters
that clients and servers share. These parameters are expertly merged and aggregated
on the server side, even if they are encrypted, enabling iterative refinement of the
global model. The collaborative nature of this process ensures that the aggregated
knowledge of multiple clients plays a critical role in developing a global model that is
more accurate and personalized.

3.3 Frameworks Design

In light of the information presented above, the workflow that is followed by HP FLAP
is explained in the following stages, which are also depicted in Figure 4 that can be
found further below.

1. server starts FL process on its side;
2. server generate the HEToKs
3. client connects to the server;
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Table 3 Parameters generated by each model on local training

Model Parameter Description

Support Vector
Machines

Support vectors data points that significantly influence the
determination of the separating

hyperplane

Coefficients weights assigned to features, contributing
to the hyperplane’s orientation

Intercept also known as the bias term, it shifts the
hyperplane’s position, aiding in better

classification

Logistic
Regression

Coefficients weights determine the influence of
individual features on the log-odds of the

predicted outcome

Intercept bias term that adjusts the threshold for
classifying instances

Gaussian Naive
Bayes

Class priors represent the prior probabilities of
different classes in the training data

Theta mean values of features for each class,
used in the Gaussian probability density

function

Sigma variance of features for each class, also
utilized in Gaussian probability

calculations

SGD Classifier Coefficients similar to other models, these weights
influence the classification decision

Intercept a bias term that adjusts the decision
threshold

Multi Layer
Perceptron

Coefficients regulate the connections between neurons
in the neural network layers

Intercept similar to bias terms in other models, it
offsets the overall computation

4. client generates the random secret and initial key and sends the first to the server
in a ”Connect” message;

5. server receives the message and creates the table of random encryption keys (ToKs);
6. server regenerates the initial key based on the received random secret in the

”Connect” message;
7. server encrypts the ToKs using the first 32 characters of the hashed initial key
8. server wrap the HEToKs and encrypted ToKs in a message and sends them to the

client;
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Fig. 4 HP FLAP workflow

9. client receives the encrypted ToKs and decrypts them using initial key (After this
step, the client selects an unused key from the ToKs to encrypt its message, and
encapsulates the sent message with the ID of the used key);

10. client receive the HEToKs to be used later in encrypting the parameters
11. client replies to server with an encrypted ”Ready” message;
12. server receives the message and responds with an initial ”Model/Parameters”

message;
13. client receives the first ”Parameters” message and trains the model on the local

data;
14. client encrypt the obtained parameters via a key obtained from HEToKs;
15. client replies to the server with its encrypted model parameters;
16. server checks if all clients have sent their parameters; and

(a) If so, it starts the aggregation process without decrypting the parameters,
updates the global parameters, elect a new HEToKs key to be used in next
session, and sends all info back to the clients;

(b) If not, it sends an encrypted ?Hibernate? message to the clients to wait until
the above condition is met.

17. The clients receive the updated parameters, decrypt them and re-train their models
based on them;

18. Repeat Steps 15, 16, and 17 until the model converges or until the server decides
to stop.

4 Experimental Evaluation and Discussion

Message privacy within the federated learning system is strengthened by this research,
introducing a novel FL framework that is resistant to inference attacks by combining
homomorphic and polymorphic encryption. This section provides a detailed analysis
and evaluation of the proposed framework. Despite the fact that HP FLAP estab-
lishes a secure framework for FL activities, it is recommended that future versions
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consider the incorporation of authentication services. This preventive measure ensures
that the FL system has a robust defense mechanism against malicious entities. Tradi-
tional password-based authentication, the added security of two-factor authentication
(2FA), the robust assurance of Public Key Infrastructure (PKI), the simplified access
facilitated by Single Sign-On (SSO), the cutting-edge realm of biometric authenti-
cation, and a variety of others are beyond the scope of this study, but included
in the authentication services scope[63]that may be considered in future versions of
HP FLAP.

4.1 Security Analysis

HP FLAP encrypts messages using the AES -256 algorithm, one of the most secure
cryptographic systems. The 32-digit cryptographic key of this algorithm is essentially
unbreakable with 1077 unique permutations per key. According to [56], cracking this
key with a supercomputer would take billions of years. Quantum threats, such as
”quantum attacks” [64], however, could threaten the security of AES even if they have
not yet succeeded in cracking the AES key in a fast way.
To counter this threat, the polymorphism of the encryption keys can serve as a solid
solution. In the HP FLAP context, messages are encrypted with a unique key from the
Table of Keys (ToK). At the same time, the initial key encrypts the ToKs for further
security. It is important that each client uses a unique set of encryption keys, including
the ToKs and the initial key. In addition, the clients’ parameters are encrypted, and
the server aggregates them without decryption.
In addition, the keys, whether ToKs or the initial key, are generated uniquely for each
client and each connection session. Even if a client connects to the same socket twice,
or two clients connect to the same socket at different times, the probability that the
keys will be reused is close to zero due to the randomization described earlier. In
summary, the theoretical guarantee of HP FLAP is as follows: ”AES -256 keys are
known to be unbreakable. However, if a key is compromised or released, it does not
pose a threat because it is almost never used again in the FL cycle. Furthermore, the
parameters are aggregated while encrypted, without the need to decrypt them.”

4.2 Framework Complexity

The complexity study of the ’HP FLAP’ framework entails a rigorous examination
of the efficiency and computational requirements of the processes embedded within
it. By evaluating the time complexity associated with basic operations such as com-
munication, encryption, and aggregation, a comprehensive understanding is obtained
that provides insight into the scalability and performance attributes underlying the
proposed federated learning framework. To gain a comprehensive understanding of
the complexity analysis of HP FLAP, it is important to understand the various func-
tions and processes of the framework. The diagram shown in Figure 5 illustrates the
different threads and functions involved in the execution of HP FLAP.

In this context, it is crucial to clarify that the functions executed at both server
and clients can be summarized as below:

� Server: The functions executed are:
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Fig. 5 HP FLAP threads and functions

1. Run server thread and start the FL Cycle (function S1)
2. Generate Homomorphic Encryption Table of Keys HEToKs (function S2)
3. Run listen thread and await clients connection (function S3)
4. Run the communication thread and exchange messages with clients (function S4)
5. Generate Table of Keys (function S5)
6. Receive and accept client’s connection (function S6)
7. Generate Initial Encryption Key based on clients shuffled secret(function S7)
8. Encrypt Table of Keys (function S8)
9. Send Encrypted Table of Keys and HEToKs to clients (function S9)

10. Receive client’s ready message (function S10)
11. Decrypt Ready message (function S11)
12. Encrypt parameters (function S12)
13. Send encrypted parameters message to client (function S13)
14. Receive trained parameters message from clients (function S14)
15. Check if parameters are received from all clients

– if yes, aggregate all encrypted parameters (function S15)
– if no, encrypt and send Hibernate message to clients and await receiving all
parameters (function S16)

16. Send Encrypted aggregated Parameters to clients (function S17)
17. Repeat all steps from S14 to S17 until the global model converge

� Client: The functions executed are:

1. Run client thread and create socket (function C1)
2. Connect to server (function C2)
3. Generate Initial Encryption Key (function C3)
4. Run Exchange Messages thread (function C4)
5. Encrypt ”Connect” message (function C5)
6. Send encrypted ”Connect” message (function C6)
7. Receive encrypted ”Table of Keys” from server (function C7)
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8. Decrypt ”Table of Keys” (function C8)
9. Encrypt ”Ready” message (function C9)
10. Send encrypted ”Ready” message (function C10)
11. Receive encrypted ”Parameters” message from server (function C11)
12. Decrypt ”Parameters” message from server (function C12)
13. Train model using the local data (function C13)
14. Encrypt ”Parameters” obtained from local training with HEToKs (function C14)
15. Embed encrypted parameters in a message and Encrypt it (function C15)
16. Send encrypted ”Parameters” message to server (function C16)
17. Receive and Decrypt the new message (function C16) and if the message is:

– ”Hibernate” await until receiving another ”Model/Parameter” message (func-
tion C17)

– ”Parameter” then Decrypt parameters (function C18)

18. repeat steps C13 to C18 as per the number of training rounds

4.2.1 Time Complexity

In the field of Federated Learning, HP FLAP follow defined steps with complexities
defined by the following parameters:

� N (number of participating clients)
� IK (generation of initial key)
� ToKs (Table of Keys size)
� HEToKs (Homomorphic Encryption Table of Keys)
� HED (Homomorphic Encryption/Decryption)
� E (encryption/decryption factors)
� R (number of training iterations rounds)
� HA (Homomorphic aggregation complexity)
� P (parameters complexity)
� T (training on local data)

To describe the time complexity of the framework on the server side, the O()
parameter is used to form the necessary formulas. This parameter, commonly known
as Big-O notation, is a mathematical notation used to describe the upper bound of
the growth rate of the time complexity of an algorithm as the size of the input data
increases. For example, O(1) represents a simple operation such as the initiation of the
FL cycle, which occurs once on the server. Other messages have a different complexity,
as described below:

� messages of fixed size such as connect, ready, and done depend on the number of
participating clients O(N)

� messages that depend on the number of rounds and participating clients are:

– hibernate message sent to all participating clients except the last one, which sends
its parameters: R * O(N-1)

– parameter messages exchanged between server and clients are sent to all clients
during all training rounds: R * O(N)
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Following the steps performed on the server side and using the notations described
above, the complexity function on the server side can be described as follows

ServerComplexity = O(1) + (O(IK) ∗O(N))+

(O(E) ∗ (O(ToKs) ∗O(N)))+

(O(E) ∗O(HEToKs))+

(R ∗O(E) ∗O(P ) ∗O(N))+

(R ∗O(E) ∗O(HA)) + (O(E) ∗O(N))

(1)

The time complexity analysis of the federated learning cycle executed on the client
side involves a comprehensive evaluation of various operations, each of which is affected
by different time complexities. Notable operations with constant time complexity,
denoted as O(1), include client thread initiation. However, unlike the server, the oper-
ations are not multiplied by the number of clients, but by the number of training
rounds. Consequently, the complexity on the client side can be represented as follows:

ServerComplexity = O(1) + (R ∗O(IK))+

(R ∗O(E) ∗O(MP ) ∗O(N))+

R ∗O(T ) +O(N)

(2)

The complexity profile shows that the efficiency of the federated learning cycle
scales linearly with the number of clients and communication rounds. The linear com-
plexity profile indicates that as the size of the inputs (number of clients, rounds of
communication) increases, the time required for the process also increases proportion-
ally. This is generally preferable to a quadratic or higher complexity, which would lead
to a much higher time requirement as the input size increases.

4.3 Communication Overhead

The communication overhead created by the operations of the HP FLAP framework
as part of the orchestration between the server and the clients is unavoidable. The
additional communication operations that are exchanged to facilitate collaboration
are largely responsible for this additional cost. Both the Table of Keys (ToKs) and the
Homomorphic Encryption Table of Keys (HEToKs) are included in these messages, as
are brief messages about readiness, hibernation, and connection establishment. The
Tables of Keys ToKs and HEToKs account for a significant portion of the total com-
munication overhead. Using a 256-bit key AES increases the size of the ToKs and
HEToKs messages by a factor of 32. Multiplied by the number of clients participat-
ing in the federated learning process, the total communication cost can therefore be
roughly expressed using the equation below, where K is the number of encryption keys
and C is the number of participating clients:

CommunicationOverhead = C ∗K ∗ 32Bytes (3)
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This equation summarises the main factors contributing to the communica-
tion overhead caused by the encryption mechanisms and message exchanges within
HP FLAP.

4.4 Model Accuracy and Convergence

It is important to remember that HP FLAP was not originally developed to improve
the quality of learning, but to strengthen security and reliability in the federated
learning environment, especially against inference attacks. This framework was devel-
oped with the intention of providing reliable protection against vulnerabilities and
privacy violations in decentralized collaborative learning environments, regardless of
the importance of improving machine learning models. The framework ensures that
an encryption key is never reused with the same client or other clients during a FL
cycle by employing homomorphic and polymorphic encryption techniques that make
it difficult for intruders to gain access to sensitive data and private model informa-
tion. Parameters learned from locally trained intelligent models are aggregated on
the server without decryption, which provides additional security to the system. This
method is an example of a preventive approach to building trust in FL environments
and helps to ensure that all work is performed in a secure and trusted environment.

4.5 Space & Resource Utilization

In exploring the concept of space complexity, the HP FLAP framework introduces a
significant additional cost that is worthy of consideration and attention. The core of
this framework is the inclusion of the Table of Keys (ToKs) and the homomorphic
encryption table (HEToKs), which serves as the fundamental element of cryptogra-
phy in this framework. The storage components of HP FLAP are consistent with the
basic principles of federated learning frameworks. However, the inclusion of ToKs and
HEToKs comes at an additional storage cost. Even though they require this storage
capacity, they perform a crucial function in securing the communication of messages
between servers and clients, which is the main goal of this study.

4.6 Evaluation using Real-World Data

HP FLAP framework is evaluated using test datasets derived from real-world scenar-
ios. This framework, strengthened by advanced cryptographic techniques and careful
coordination, acts as a precursor to FL in a context where theoretical concepts inter-
sect with real-world applications. To test HP FLAP, several tests were conducted, as
described below.

4.6.1 Testing Environment

To evaluate the effectiveness of the proposed framework, a precisely designed simulated
federated learning network was created, characterized by its individual hardware and
software elements.

� Hardware configuration: the hardware arrangement consisted of a server running
in a computing environment with an Intel Core i7 processor and 16 GB of random
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access memory (RAM). The server, which ran the Microsoft Windows 10 Home
operating system, played an important role in orchestrating the activities of the
network. At the same time, clients were running on other computers, each with
different hardware specifications to simulate real-world heterogeneity;

� software configuration: the development of HP FLAP depended on the use of Python
version 3.9 as the basic programming language. The complex development pro-
cess was supported by the use of PyCharm, a powerful integrated development
environment (IDE) designed for efficient code creation and maintenance.

In each round of testing, the data sets described in the following sections were
divided equitably among the different clients. To give an example: If a dataset contains
1000 records and 4 clients are involved in the training cycle, a fair distribution would
require each client to train locally on 250 different records. This careful distribution of
data ensures uniformity and a stable metric against which to measure the performance
of the system.

4.6.2 Datasets Used

Three data sets selected for binary classification tasks were used to evaluate the effec-
tiveness and durability of the system. The three datasets contain a simulated dataset
that was professionally produced using the SKLearn dataset library [65]. This pro-
duced dataset with its 9000 records and 20 data features is used to critically test the
key capabilities of the framework. The SHAREEDB Cardiovascular Diseases predic-
tion dataset [66] is another important component of the evaluation because it takes
into account the complexity of the real world. With 139 records and 26 variables cap-
turing the nuances of cardiovascular health, this dataset highlights the adaptability of
the framework to real-world medical data. The Surgical binary classification dataset
[67] adds by significantly increasing the amount of data available for analysis with
14,636 records and 24 features. The adaptability of the framework to a more complex,
real-world scenario is underscored by this diverse dataset. Together, these carefully
selected datasets form the basis for a comprehensive evaluation that provides an in-
depth look at framework performance across multiple dimensions of complexity and
scale.

4.6.3 Security Analysis: Proof of Polymorphism

A rigorous procedure was established for determining the cryptographic resilience of
the frameworks under study. This involved close monitoring and evaluation of the
encryption keys used for communication security. This step aimed to avoid vulnera-
bilities caused by the repetition of keys by prohibiting the reuse of encryption keys.
In an exemplary test with two clients trained with the first data set, both the original
encryption keys and five additional randomly selected message encryption keys were
documented and compared. The results of this evaluation for HP FLAP are shown in
Table 4 and illustrate the valuable insights gained from this thorough procedure. This
process is critical to confirming the cryptographic resilience of the framework and its
ability to provide security and confidentiality for complex data transactions.
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Table 4 Encryption keys polymorphism in HP FLAP

- server client 1 client 2

Initial
Key

depending on the client 7ZhSavGs4UumODkQJUrkcqX4xHsMXG8e 5o6NTq98PtXXclItETR0pFpp7q4zsv8I

Randomly

selected
5
keys

S9thR5ZhU4FA2npqwQNj3dF1WivNuyJu Crie0nwT0OM4QljHASR7wNHMPgbSSpUo xvqAEzyDimNUW1SHCXbLepgwCvYs6Qzi

QDVw410ohdBDRcLyDs9ooTunEuF0kNw7 Imz50JCPuQPa8244WkQFy3EZWeZlHytB DZco40E0MdUJHJ6Ilhv8lOHD3336hSQF

WPweWn4Bv9FNat9trpdWK7GU14GJ8waU SbnETWC4z9Nl26aoW23aLT6Gq8ZpWFUh jrknL4MjK2O1zghzaMXqJ9SKs8Oox8CW

a8pYNEdzELgN9IpthV1IM9iKX95fmXnY 2r8UJySrDduvF5KFdSUFGPLsg5gVUuGj Ua1L6W0HaQSYPHfsfG0WW4Gw2x4zqy2j

JV2ccd8dwlFCcS0fLn9bHnzDHVOdYsaX VV8g2yvbOm8YSlwoGCSi8zbhc0uqi8bK pzzqXBVACQqVtvsoCkwqP7BxIYqrfTMT

4.6.4 Communication Cost

As part of the study and evaluation of HP FLAP, communication costs were tracked
and recorded. The communication stream includes different message types, both on
the server and on the client, as shown in the list below:

� Server will be sending the below messages to each client

– ”Encrypted ToKs” (S1)
– Homomorphic Encryption Table of Keys HEToKs (S2)
– ”Parameters” (S3)
– ”Hibernate” (S4)
– ”Disconnect” (S5)

� Client will be sending the below messages to the server

– ”Connect” (C1)
– ”Ready” (C2)
– ”Parameters” (C3)
– ”Disconnected” (C4)

The complexity of message scaling is closely related to characteristics such as
the number of training rounds (R) and the number of participating customers (C).
Consequently, the quantification of the communication cost can be clearly stated as
follows:

CommunucationCostServer = C ∗ (S1 +R ∗ (S2 + S3 + S4 + S5)) (4)

CommunicationCostClient = C1 + C2 +R ∗ C3 + C4 (5)

It is worth noting that messages S4, S5, C1, and C2 have fixed sizes due to their
unique characteristics. The variability of S1 and S2 is determined by the number of keys
in the ToKs and HEToKs tables, with each factor contributing 32 bytes. It is important
to emphasize that most of the communication overhead comes from S3 and C3, which
contain complex parameter quantities. The recorded communication cost (in bytes)
for running HP FLAP is presented in Table 5 below. The communication costs are
computed between the server and a randomly selected client over a randomly selected
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Table 5 PHP FLAP communication cost per message, model, and dataset (in Bytes).

E
n
ti
ty

Dataset Simulated
Dataset

SHAREEDB Surgical-
Binary
Dataset

S
en
t
(S
er
v
er
)

”Encrypted ToKs & HEToKs” 38098 38098 38098

P
ar
am

et
er
s

H
P

F
L
A
P

LR 19022 23846 22252
NB 67829 86914 80635
SGD 19084 23849 22244
MLP 975048 1128510 1077357

”Hibernate” 139 139 139

”Disconnect” 136 136 136

S
en
t
(C

li
en
t)

”Connect” 83 83 83

”Ready” 91 91 91

P
ar
am

et
er
s

H
P

F
L
A
P

LR 19084 23893 22222
NB 67815 86983 80599
SGD 19038 23822 22222
MLP 975031 1128487 1077335

”Disconnected” 107 107 107

training round, for both sent and received messages, and for the three databases used
for testing.

4.6.5 Learning Quality

HP FLAP is a versatile ensemble of four different training models for machine learning:
logistic regression (LR), Gaussian Naive Bayes (Gaussian NB), Stochastic Gradient
Descent (SGD), and Multi-Layer Perceptron (MLP). To thoroughly evaluate the effec-
tiveness and robustness of this framework, a series of experiments were conducted on
the three previously mentioned datasets. Table 6 shows how the results were tracked
and recorded. The acronym of the table can be defined as follows:

� AC: Accuracy
� PR: Precision
� RE: Recall
� F1: F1 Score
� SP: Specificity
� NPV: Negative Predictive Value

The main goal of the HP FLAP framework is not to improve the quality of learning,
but rather to protect the Federated Learning system from possible attacks, especially
those that take advantage of inference shortcomings. However, it is important to keep
in mind that learning quality is still an important metric, especially when it comes to
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Table 6 HP FLAP Learning Quality Results

Model Dataset AC PR RE F1SCORE SP NPV

LR

Simulated 92.40% 92.31% 93.47% 92.88% 91.19% 92.51%
SHAREEDB 75.00% 70.00% 77.78% 73.68% 72.73% 80.00%

Surgical Deepnet 72.62% 71.32% 74.62% 72.93% 70.68% 74.02%

NB

Simulated 90.67% 89.20% 92.53% 90.84% 88.80% 92.24%
SHAREEDB 70.00% 85.71% 54.55% 66.67% 88.89% 61.54%

Surgical Deepnet 65.40% 62.12% 66.67% 64.31% 64.29% 68.70%

SGD

Simulated 82.13% 80.79% 83.42% 82.09% 80.89% 83.51%
SHAREEDB 75.00% 71.43% 62.50% 66.67% 83.33% 76.92%

Surgical Deepnet 64.64% 72.00% 52.55% 60.76% 77.78% 60.12%

MLP

Simulated 90.27% 88.34% 92.41% 90.33% 88.19% 92.31%
SHAREEDB 80.00% 88.89% 72.73% 80.00% 88.89% 72.73%

Surgical Deepnet 65.40% 68.35% 45.00% 54.27% 82.52% 64.13%

machine learning models used for predictions. Accuracy is very important as it is one
of the main factors that determines how useful and successful a model is. The above
results deserve to be considered from many different points of view.
Primarily, there is a clear trend showing that datasets with more records provide
more accurate results for all four models in the HP FLAP framework. This result is
consistent with expectations, as increasing the number of records in a dataset generally
means increasing the amount of data that can be used for localized training at each
client node. This change leads to an improvement in the quality of the local training,
which in turn increases the quality of the global model as a whole. In particular,
the results with the simulated dataset are interesting, as they show more than 90%
accuracy across several quality variables. The SHAREEDB dataset, on the other hand,
achieves only about 80% accuracy in its best version. The surgical deepnet dataset, on
the other hand, has the weakest results, with the highest accuracy of all models not
exceeding 72%. This contrast shows that the details of the dataset have a significant
impact on how well a model performs.
This observed phenomenon can be dissected from two strategic perspectives:

� Potential to improve learning quality: The current study suggests that HP FLAP
could be improved in the future in a way that improves learning quality even in
situations with relatively small data sets. This idea states that the built-in mecha-
nisms of frameworks could be used to improve learning outcomes regardless of how
large the data sets are.

� encouragement of client participation: The results also indicate that the effectiveness
of the framework could be stronger in situations where more clients are involved.
HP FLAP is based on respecting users’ privacy. This could encourage their partic-
ipation in FL cycles, leading to a wider range of data sources, which could improve
overall results.

In short, the results show that HP FLAP may do more than just improve safety.
Some improvements can also be made to improve the quality of learning. Also, the
fact that this framework can grow and still maintain user privacy suggests that it
could lead to even better results as the number of users using it grows. In summary,
HP FLAP can’t be compared to the state of the art of classical ML models applied
to these datasets, such as. [68–70], as they are based on different ideas. However, they
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can be compared to how FL environments are currently protected from attacks and
threats related to privacy and security.

4.7 Comparison to State-of-the Art Approaches

As discussed in the previous chapter, researchers around the world have used a variety
of approaches to try to secure the FL environment. HP FLAP, however, offers new
approaches that can help improve the FL domain as a whole. Embedding both poly-
morphic and homomorphic encryption in FL helps secure messages exchanged between
the main server and participating clients.

4.7.1 Proposed Frameworks vs. Baseline FL

FedAvg [31], the original FL algorithm, was proposed to train the popular Google
keyboard. It enabled collaborative training without sharing raw data, preserving
anonymity and supporting the development of decentralized machine learning applica-
tions. ”Despite the practical privacy benefits, providing stronger guarantees through
differential privacy, secure computation with multiple participants, or their combi-
nation is an interesting direction for future work” [46]. Those words came from the
authors themselves, who clearly pointed out that FedAvg doesn’t embed any secu-
rity mechanisms in its architecture, apart from the concept of preventing data sharing
between servers and clients. Later, several approaches to securing FL algorithms
were implemented, but none of them integrated both polymorphic and homomorphic
encryption to secure the FL environment.

4.7.2 Comparison with Securing Against Active Adversaries
Approach

In [46], the authors presented a novel protocol for ensuring the security of federated
learning aggregation in the presence of active attackers. This protocol is specifically
designed to provide secure vector summation and includes key aspects such as fixed
rounds, minimal communication cost, and the ability to withstand failures. However,
it also has some limitations in terms of its ability to withstand active attacks, ensure
the use of well-formed input, and manage communication overhead. These limitations
need to be further studied and considered in the actual implementation of feder-
ated learning systems. However, HP FLAP combines polymorphic and homomorphic
encryption techniques to ensure the protection of data transmission between the server
and clients. The combination of polymorphic and homomorphic encryption algorithms
is an effective solution to some limitations identified in the previous [46] protocol,
particularly with respect to the ability to fend off active attacks and maintain the
integrity of data security in the federated learning environment.

4.7.3 Comparison with RFA

Compared to Robust Federated Aggregation (RFA) [47], HP FLAP focuses on a new
approach that seamlessly combines polymorphic and homomorphic encryption. The
main goal of RFA is to improve the security of the FL system against poisoning attacks
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by using geometric median-based aggregation. HP however However, HP FLAP guar-
antees that communications between the server and clients are is secured by employing
polymorphic encryption, which ensures that each message is encrypted with distinct
keys. This enhances access control and maintains the confidentiality of the data. Fur-
thermore, the utilization of homomorphic encryption for the aggregation of model
parameters guarantees the preservation of data confidentiality with utmost rigour
during the whole aggregation procedure. This technique demonstrates a high level of
effectiveness in protecting against unauthorized access and potential privacy breaches,
reinforcing RFA’s focus on strengthening resilience against data poisoning attacks.
Nonetheless, it is critical to recognize the complex tradeoffs that arise, as explained
by the authors of the research article (RFA), which navigate the subtle interaction
between the needs of ensuring resilience, optimizing communication efficiency, and
protecting privacy in federated learning algorithms (FL).

4.7.4 Comparison to SecueD-FL

SecureD- FL [49] emphasizes decentralized aggregation with a focus on privacy preser-
vation in federated learning (FL), while HP FLAP focuses on increasing the security
of FL through advanced encryption techniques. While SecureD- FL uses Alternat-
ing Direction Method of Multiplier (ADMM) and applies combinatorial block design
theory to control participants’ communication patterns and minimize privacy loss,
HP FLAP focuses on protecting data through encryption. SecureD- FL also seeks
to reduce privacy risks and improve privacy against honest but curious adversaries
by dynamically grouping participants for communication in each aggregation round.
This combinatorial approach is designed to minimize privacy loss while efficiently
aggregating model updates. In contrast, HP FLAP focuses on encrypting all messages
exchanged between the server and clients with unique keys thanks to polymorphic
encryption to ensure privacy and access control. In addition, homomorphic encryption
is used for secure aggregation of model parameters to ensure data confidentiality dur-
ing aggregation. It is worth noting that SecureD- FL addresses the privacy concerns
of FL by optimizing communication patterns and decentralizing aggregation, while
HP FLAP addresses security concerns mainly through encryption techniques. The
choice between these approaches should depend on the specific security and privacy
requirements of the particular FL application.

4.7.5 Comparison with SEAR

SEAR [51] highlights the server’s ability to infer sensitive content from customer data,
including the use of Generative Adversarial Networks (GANs) and gradient-based
techniques. However, HP FLAP prioritize data security by using polymorphic and
homomorphic encryption. The algorithm SEAR uses the trusted execution environ-
ment (TEE) provided by Intel SGX to perform secure aggregation of locally trained
models in a trusted hardware environment. This strategy protects the data by encrypt-
ing the local models and ensures that only the trusted enclave has the key required for
access and recovery. This effectively prevents the disclosure of sensitive information
during the aggregation process. However, the limited memory capacity of the reserved
processor memory (PRM) in Intel SGX poses a major challenge when aggregating a
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large number of models simultaneously.
Conversely, HP FLAP employs polymorphic encryption to encrypt messages
exchanged between clients and the server, employing distinctive keys for each mes-
sage to amplify access control and data privacy. In addition, homomorphic encryption
is used for aggregation of model parameters, maintaining their encrypted state and
preserving data confidentiality throughout the aggregation process. These encryption
techniques provide a robust and efficient approach to securing FL data without the lim-
itations associated with hardware-based TEEs. Although both strategies address the
security concerns of FL, they differ in their fundamental mechanisms. SEAR relies on
hardware-based TEEs, while the proposed frameworks focus on encryption to enhance
privacy and data security. The choice between these methods should be based on the
exact security and privacy requirements of the particular FL application.

4.7.6 Proposed Frameworks vs. EPPDA

In [53], the authors present the EPPDA (Efficient Privacy-Preserving Data Aggrega-
tion) model, which exploits the homomorphisms of homomorphic encryption for secret
sharing to streamline the iterations of secret sharing and reduce the consumption
of communication, computation, and storage resources. This resource optimization
is especially beneficial in scenarios with multiple training iterations and ultimately
improves system efficiency. In addition, EPPDA incorporates secret sharing to protect
user data, reduce the impact of malicious users, and increase fault tolerance.
On the other hand, HP FLAP place a significant emphasis on privacy and security
by encrypting messages exchanged between clients and the server with unique keys
via polymorphic encryption and aggregating model parameters while keeping them
encrypted via homomorphic encryption. These encryption techniques provide a com-
prehensive and robust security framework that protects FL data from various threats.
Although both approaches address FL security concerns, they differ in their core mech-
anisms. The choice between these methods should be based on the specific security
and privacy requirements of the FL application.

4.7.7 Proposed Frameworks vs. HeteroSAg

In contrast to HP FLAP, the Heterogeneous Quantization approach presented in [55] is
primarily concerned with communication efficiency and resistance to Byzantine attacks
in the ecosystem FL. HP FLAP relies primarily on advanced encryption techniques,
including polymorphic and homomorphic encryption, to secure messages exchanged
between the server and clients while ensuring privacy and access control. In contrast,
HeteroSAg emphasizes privacy preservation, communication efficiency, and Byzan-
tine fault tolerance through innovative techniques. Although both approaches aim to
improve FL, their main goals differ significantly, with the proposed frameworks empha-
sizing data security and privacy, while HeteroSAg focuses on communication efficiency
and Byzantine resilience. The choice between these approaches should depend on the
specific security and privacy requirements of the particular FL application.

The comparison between the proposed frameworks and the state-of-the art of
secured FL algorithms can be summarized in Table 7 below
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Table 7 Comparison of FL Security Approaches

Criteria Proposed
Frameworks

SecureD-FL SEAR HeteroSAg

Encryption
Techniques

Polymorphic &
Homomorphic
Encryption

Homomorphic
Encryption

Trusted Execution
Environment (TEE)

Homomorphic
Encryption

Unique Encryption
Keys for

Parameters

Yes (Polymorphic
Encryption)

Yes (Homomorphic
Encryption)

Yes (TEE-Based
Encryption)

No (Single Key)

Data Privacy &
Access Control

Strong Data
Privacy & Access

Control

Strong Data
Privacy & Access

Control

Strong Data
Privacy & Access

Control

Limited Access
Control

Security Against
Key Compromises

Highly Resilient
(Granular Key

Usage)

Highly Resilient
(Granular Key

Usage)

Highly Resilient
(TEE-Based)

Vulnerable to Key
Compromise

Robustness Against
Attacks

Multi-Layered
Security Approach

Multi-Layered
Security Approach

Multi-Layered
Security Approach

Enhanced Security
Layers

Communication
Efficiency

Efficient with
Enhanced Security

Efficient with
Enhanced Security

Efficient with
Hardware-Based

TEE

Efficient with
Enhanced Security

Byzantine Attack
Resilience

Strong Resilience Strong Resilience Strong Resilience Strong Resilience

Inference Attack
Resilience

High Resilience High Resilience Limited Moderate
Resilience

Bandwidth
Efficiency

Enhanced
Efficiency

Enhanced
Efficiency

Enhanced
Efficiency

Enhanced
Efficiency

5 Challenges and Future Perspectives

There are currently a variety of subtle challenges and exciting opportunities for future
development in the federal learning environment. The difficulties encountered in cre-
ating the HP FLAP Federated Learning Framework are discussed in this chapter. In
addition, the chapter sheds light on the future by addressing potential developments
that could help improve the proposed framework and, by extension, the entire FL field.
By solving pressing problems and envisioning a promising future, Federated Learning
is poised to revolutionize machine learning paradigms and data-driven innovation.

5.1 Challenges

In the setting of HP FLAP, a unique collection of difficulties arises, all of which are
intertwined with the development and deployment of this FL framework.

5.1.1 Heterogeneity

The aspect of heterogeneity is a major obstacle in the proposed framework, espe-
cially with respect to facilitating ”Horizontal Federated Learning (FL) data” This
term encompasses situations where different clients handle data that have identical
attributes. Although the framework effectively handles this particular category of data,
it is important to recognize that this framework does not encompass other potential
methods. This underscores the complexity associated with accommodating different
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data formats and highlights the need for additional research in the broader area of
data heterogeneity.

5.1.2 Complexity and Computation Cost

The issue of complexity and computational cost is of paramount importance, especially
given the resource-intensive nature of encryption methods. Because these algorithms
are critical to maintaining the integrity of the transmitted data, they inherently require
significant computational resources. Incorporating robust encryption algorithms into
the operations of the framework adds an additional layer of complexity and thus
increases data security measures. Consequently, the task of achieving a harmonious
balance between strong security protocols and optimal computational efficiency is a
key challenge that requires innovative approaches to minimize computational overhead
while maintaining the integrity of the system.

5.1.3 Scalability

The scalability concern arises from the increased computational requirements associ-
ated with encryption. The ability of the framework to handle an increasing number of
clients, especially on the server side, may be constrained by the additional processing
costs, affecting the scalability of the system. The increasing number of clients accessing
the server puts more strain on its processing capacity, which can lead to bottlenecks
and a drop in performance. To achieve seamless scalability, it is imperative to explore
efficient optimization strategies that reduce computational overhead while maintaining
system responsiveness and accommodating an increasing number of clients.

5.1.4 Learning Quality

The quality of learning within the proposed framework is a crucial question that arises.
The main goal of HP FLAP is to improve security and resilience against inference
attacks. However, it is important to recognize the inherent tradeoff between security
and quality of learning, which should not be neglected. Prioritizing security measures,
such as encryption and privacy, can detract from improving the quality of model
learning. Maintaining a balance between robust security measures and achieving opti-
mal learning outcomes is an ongoing challenge that requires careful evaluation of the
impact of security measures on the effectiveness of the learning process and the future
performance of the global model.

5.1.5 Resources Limitations

The presence of resource constraints is a major hurdle, especially in the context of fed-
erated learning. In this context, clients often work with limited computing resources,
typically found in smartphones or smart wearables rather than more powerful comput-
ers. The importance of this difficulty becomes even more apparent when considering
the practical application of the proposed framework. The use of encryption and other
security measures may place additional strain on clients’ limited resources. The cur-
rent situation raises concerns about the feasibility and practicality of implementing
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the framework in real-world situations, considering the potential burden on client
devices. To overcome this difficulty, solutions need to be developed that maximize the
efficient use of existing resources and ensure that the framework remains feasible for
implementation, while taking into account the constraints of client settings.

5.2 Future Perspectives

When considering future improvements, it is critical to recognize that the above diffi-
culties have been extensively addressed in academic debate. Several researchers have
actively addressed these challenges and provided new answers that need further study.
Careful consideration of the future prospects reveals a very interesting development
in which the proposed framework fits harmoniously with established methods. The
current convergence has the potential not only to remove current barriers, but also to
increase the effectiveness and adaptability of FL systems, definitely HP FLAP.

5.2.1 Handling Heterogeneity

Innovative solutions are needed to address the heterogeneity of different devices and
data. Fortunately, many methods can be used to control this variability. For exam-
ple, leveraging resource allocation methods [71]can intelligently distribute computing
resources among devices based on their capabilities. This method optimizes resource
usage for balanced and efficient federated learning. In addition, integrating meta-
learning approaches [72] is also a promising approach. Meta-learning can improve the
adaptability of the system to the heterogeneity of client devices and data sources
by allowing the models to learn and adapt quickly to new data distributions. These
techniques, together with the proposed framework, could provide a more flexible and
effective framework for federated learning that can handle heterogeneity.

5.2.2 Computation Cost & Time Reduction

The problem of high computational cost can be reduced by careful implementation
of a number of methods. The use of parallel programming techniques is one such
strategy. Parallel programming makes better use of the computational capacity of
modern devices by breaking large computations into smaller tasks that can be executed
simultaneously. Faster model training and less time spent on computations means less
strain on already overloaded computer systems. The proposed HP FLAP framework
could benefit from the use of parallel programming techniques to dramatically reduce
computational costs while increasing scalability and responsiveness.

5.2.3 Enhancing Scalability

Improving scalability depends on finding workable solutions to the challenges of het-
erogeneity and high computational costs. A mutually beneficial relationship emerges
when these difficulties are addressed with solutions such as resource allocation and
parallel programming. The system’s ability to serve a variety of users is enhanced by
dealing with the heterogeneity of their devices and data. At the same time, reduc-
ing processing costs through methods such as parallel programming ensures that the
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system remains responsive as the number of users increases. Together, these solutions
pave the way for a federated learning system that can serve a large number of users
without sacrificing performance. The combination of these tactics has the potential
to create an ecosystem that can withstand the stresses of real life. In addition, out-
sourcing key creation and management to a third party can be a successful solution
for improving scalability.

5.2.4 Boosting Learning Quality

Implementing a variety of client-side data preprocessing strategies can significantly
improve the standard of learning performance. Strategic preprocessing methods can be
used in data preparation prior to training to improve the quality of input data. Data
quality and utility can be improved by using methods such as feature scaling, outlier
removal, and data synthesis. The overall quality of learning can be greatly improved
by ensuring that the data input to the training process is well prepared and free of
noise or anomalies. Integrating data preprocessing with HP FLAP can improve the
learning process and lead to better model convergence and performance.

Conclusion

To ensure the confidentiality of communications between servers and clients in a
federated learning environment, the HP FLAP architecture uses homomorphic and
polymorphic encryption. The diversity of encryption keys provides security guar-
antees by encrypting each server-client communication with a different key. The
parameters of locally trained models are summarised on the central server without
being decrypted, providing an additional layer of security. Since key reuse within
the FL cycle is extremely rare, the consequences of a compromised key are small.
HP FLAP places a high value on security, but the complexity of encryption makes it
an expensive computation and transmission method. However, they can complement
established approaches to parallelize computation, improve learning efficiency, manage
heterogeneity, and increase scalability.
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CHAPTER 6

GENERAL CONCLUSION

In conclusion, this thesis has explored the dynamic landscape of Artificial Intelligence (AI)
and its derivative, Machine Learning, with a particular focus on the challenges of security
and privacy that have emerged alongside the proliferation of data-driven technologies. The
overarching theme of this research revolves around the pressing need to enhance the security
of Federated Learning, a promising paradigm designed to preserve user privacy in a decen-
tralized manner while maintaining the utility of smart models.
The growth of ML has undoubtedly been remarkable, fueled by advances in computing power
and the versatility of the existing ML algorithms in solving complex data analysis tasks across
various domains. However, as ML models become increasingly integrated into our daily lives
and critical infrastructure, the issues of security and privacy have taken center stage. On one
hand, the vulnerability of ML models to various attacks threatens the integrity of the learning
process and the privacy of user data. On the other hand, privacy concerns have prompted
regulations that restrict access to data, thereby limiting the potential of ML models.
In response to these challenges, FL emerged as a privacy-preserving approach by distribut-
ing models to clients for local training, eliminating the need to centralize sensitive user data.
While FL is a significant step forward, it remains susceptible to security threats including
poisoning, inference and backdoor attacks. While poisoning attacks can affect the quality of
the learning in FL system, inference attacks can enable malicious entities to collect models
exchanged between the FL main server and clients, thus cracking private data, which may
ruin the privacy-preserving identity of FL. This thesis has highlighted the need to enhance
the security measures within the FL domain, recognizing the potential of Polymorphic and
Homomorphic Encryption as powerful tools to bolster FL’s resilience against various attacks,
especially inference attacks.
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The introduction of four novel FL aggregation frameworks, namely PolyFLAG_SVM, PolyFLAM,
PolyFLAP, and HP_FLAP, represents a significant contribution to the field. The first three
frameworks embed Polymorphic encryption in their architecture. However, HP_FLAP em-
beds both Polymorphic and Homomorphic Encryption to secure FL against inference attacks.
Integrating those encryption mechanisms ensure that messages exchanged between the server
and clients remain safeguarded against malicious entities. The use of Homomorphic Encryp-
tion allows secure aggregation of parameters without decryption, while Polymorphic En-
cryption ensures that each message is encrypted with a distinct key, minimizing the risk of
key compromise. This dual-layered security approach has been demonstrated to effectively
counteract threats, including inference attacks. In addition, the proposed frameworks offer
training different ML models to support solving different problems.
Furthermore, the comprehensive evaluation of these frameworks has provided strong em-
pirical evidence of their efficacy. The assessment encompassed theoretical guarantees, time
and space complexity analysis, resource utilization assessments, and learning quality evalu-
ations across diverse datasets. The results have unequivocally demonstrated the substantial
enhancement in security, even in the face of compromised or leaked encryption keys.
In summary, the proposed frameworks offer secure, communication-efficient FL aggrega-
tion approaches, serving as a foundation upon which further advancements and integrations
with existing approaches can be built. These frameworks not only advance the security of
Federated Learning but also contribute to the reliability and trustworthiness of the entire FL
environment. As the field of AI and ML continues to evolve, the importance of addressing
security and privacy concerns in tandem with technological advancements cannot be over-
stated. This thesis has made significant strides in this direction and lays the groundwork for
future research in the quest to harness the full potential of smart models while safeguarding
user data and privacy.

6.1 Comparison to State-of-the Art Approaches

Threats and attacks have hindered the progress of FL as much as ML. For this reason, re-
searchers around the world have attempted to secure the FL environment using a variety of
approaches, as described previously in chapter 4. However, the frameworks proposed in this
research contain new approaches that can contribute to the overall improvement of the FL do-
main. The results of this research show that embedding both polymorphic and homomorphic
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encryption in FL helps secure messages exchanged between the main server and participating
clients.

6.1.1 Compared with Baseline FL

FedAvg was the first research paper to define and introduce the concept of Federated Learning
[63]. "Despite its practical privacy benefits, providing stronger guarantees via differential
privacy, secure multi-party computation, or their combination is an interesting direction for
future work" [63]. These words come from the creators of FedAvg itself, where they clearly
indicated that it didn’t embed any security mechanisms in its architecture, apart from the
concept of precluding data sharing between servers and clients. Later, several approaches
to securing FL algorithms were implemented, but none of them integrated both polymorphic
and homomorphic encryption to secure the FL environment. The framework proposed in this
research complements FedAvg by using security mechanisms to secure messages exchanged
between servers and clients.

6.1.2 Comparison with Securing Against Active Adversaries Approach

The protocol defined in [38] proposed securing FL against active adversaries, by enabling
safe vector summing. Notably, their system is tailored to function well within an environ-
ment where there is only one server with limited trust, utilizing cryptographic primitives
in multiple stages. Their methodology has several benefits, including the protection of pri-
vacy and enhanced security. However, it also exhibits some limits in terms of its ability to
withstand active attacks, ensure the use of well-formed input, and manage communication
overhead. These limitations necessitate more examination and consideration for the actual
implementation of Federated Learning systems. However, the methodology described in this
research, which combines polymorphic and homomorphic encryption techniques, represents
a significant progress in enhancing the security of Federated Learning (FL) by ensuring the
protection of data transmission between the server and clients. The combination of encryp-
tion algorithms employed in this study effectively addresses some constraints identified in
the previous protocol described in [38], particularly its ability to withstand against inference
attacks. This advantage is achieved by minimizing the risk of a successful attack, that if suc-
ceeded to crack one of the used encryption keys, which is not an easy task to be done, will
not threat the whole FL system, where a key is never used again within the FL cycle, even for
the same FL client.
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6.1.3 Comparison with RFA

Compared to robust federated aggregation (RFA) described in [39]’s study, our proposed
research focuses on a different approach based on encryption mechanisms. While the frame-
works proposed in this research provide a unique and synergistic security framework specifi-
cally designed for Federated Learning, the primary goal of RFA is to improve the security of
the FL system against poisoning attacks, solely through the use of geometric median-based
aggregation. The frameworks proposed in this research exhibit a higher degree of resistance
to unauthorized access and potential privacy violations, thus extending the RFA’s capabil-
ity to stand against inference and backdoor attacks. The risk emerging from those types of
attacks is diminished by minimizing the risk of a leaked or cracked encryption key. As it
has been previously explained, an AES key will require a very long time to be cracked, if
cracked. In such a case, this key will not cause any threat to the system since it will not be
used in the FL cycle again. In addition, the time required to crack such an encryption key
is relatively great when compared to the FL cycle.Nevertheless, it is critical to recognize the
complex trade-offs between RFA and the proposed frameworks as they navigate the subtle
interaction between the needs of ensuring resilience, optimizing communication efficiency,
and other considerations.

6.1.4 Comparison with LEGATO

In addition, the FL method named LEGATO [40] was developed to address the pressing
issue of developing robust aggregation strategies in the context of Byzantine attacks in the
Federated Learning paradigm. Their mechanism aims to improve the convergence of gradient
descent algorithms, even in the presence of malicious attacks. However, it is important to
note that the scope of LEGATO is mainly limited to Machine Learning models organized in
layers, such as Deep Learning and neural networks. The frameworks discussed in this study,
on the other hand, are not only resilient against Byzantine attacks, but also against inference
and backdoor attacks, as well as against unauthorized access and accidental disclosure of
data. In addition, the variety of models supported by the frameworks provides users with the
flexibility to use the models for different types of data. However, it is important to recognize
that the choice between these methods should depend on the particular security and privacy
requirements of the Federated Learning application.
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6.1.5 Comparison with SecureD-FL

In addition, the approach presented in [41], named SecureD-FL, leverages the Alternating
Direction Method of Multiplier (ADMM) and employs combinatorial block design theory to
control participant communication patterns and minimize privacy loss, the proposed frame-
works prioritize data privacy through polymorphic and homomorphic encryption. Therefore,
the associated mechanism in SecureD-FL is based on communication-control, rather than
encryption or security mechanisms. In contrast, the proposed frameworks focus on encrypt-
ing all messages exchanged between the server and clients with unique keys, courtesy of
polymorphic encryption, to ensure data privacy and access control. Moreover, homomorphic
encryption is employed for secure aggregation of model parameters, maintaining data con-
fidentiality during aggregation. The choice between these approaches should hinge on the
specific security and privacy requirements of the FL application in question.

6.1.6 Comparison with SEAR

In [42], the algorithm SEAR was presented, which uses the trusted execution environment
(TEE) offered by Intel SGX to perform secure aggregation of locally trained models in a
trusted hardware environment. This effectively prevents the disclosure of sensitive informa-
tion during the aggregation process. However, the limited memory capacity of the reserved
processor memory (PRM) in Intel SGX poses a major challenge when aggregating a large
number of models simultaneously. Conversely, by using encryption techniques, the proposed
frameworks provide a robust and efficient approach to securing FL data without the limita-
tions associated with hardware-based TEEs. While both strategies address the security issues
of FL, they differ in their fundamental mechanisms. SEAR relies on hardware-based algo-
rithms, while the proposed frameworks focus on encryption to enhance privacy and security.
The choice between these methods should be based on the exact security and privacy require-
ments of the particular FL application, as well as the hardware capacity and structure of the
server. In addition, SEAR does not show resistance to inference attacks compared to the
proposed frameworks.

6.1.7 Comparison with EPPDA

Moreover, in [43], the authors present the Efficient Privacy-Preserving Data Aggregation
(EPPDA) model, which exploits the homomorphisms of homomorphic encryption for secret

234



sharing to streamline the iterations of secret sharing and reduce the consumption of commu-
nication, computation, and storage resources. This resource optimization is especially bene-
ficial in scenarios with multiple training iterations and ultimately improves system efficiency.
In addition, EPPDA incorporates secret sharing to protect user data, reduce the impact of
malicious users, and increase fault tolerance. Although EPPDA incorporates homomorphic
encryption into its mechanism, the frameworks proposed by this research is more efficient
due to polymorphic encryption, which requires the use of different keys for each encryption
operation. This results in a higher level of security and improved resistance to various types
of attacks.

6.1.8 Comparison with HeteroSAg

In addition, Heterogeneous Quantization (HeteroSAg) [44] addresses communication effi-
ciency and resilience to Byzantine attacks in the FL ecosystem. Their approach differs from
the frameworks proposed in this research, where the former focuses on communication effi-
ciency and resilience against Byzantine attacks, while the latter prioritizes data security and
privacy and HeteroSAg. Moreover, HeteroSAg’s security is limited to Byzantine resilience
only, while the proposed frameworks extend its security to different types of attacks, includ-
ing inference and backdoor attacks.

6.1.9 Comparison with FLDetector

However, in stark contrast to existing defense mechanisms, exemplified by the previous im-
plementation FLDetector [45], the frameworks proposed in this research take a distinctive
and more technologically oriented approach. FLDetector primarily directs its focus towards
the identification of potentially malicious clients, employing a strategy centered on assess-
ing the consistency of model updates. While such methods offer invaluable insights into the
realm of threat detection, the frameworks proposed in this research fundamentally diverge
in their primary objective. They have devoted their efforts to fortify the underpinning se-
curity and privacy aspects of Federated Learning. To achieve this, they have meticulously
integrated advanced encryption techniques, specifically homomorphic and polymorphic en-
cryption, into the fabric of Federated Learning frameworks. This strategic integration has
empowered these models to provide a comprehensive and robust defense mechanism for se-
curing Federated Learning environments. This approach, thus, addresses not only the crucial
issue of malicious client detection but extends its protective mantle to encompass the broader
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spectrum of data privacy and integrity, safeguarding Federated Learning in a more holistic
and technologically profound manner.

6.1.10 Comparison with FLCert

Compared to the FLCert framework [46], which centers its strategy on classifying customers
into groups and utilizing majority voting among global models to resist poisoning attacks by
malicious clients, the frameworks developed in this research takes a divergent path. These
frameworks prioritize the secure exchange of messages between the server and clients, en-
suring that each message is encrypted with a unique key, thereby reducing the risk posed by
potential key breaches. Our approach is predominantly anchored in encryption, delivering
a comprehensive strategy for safeguarding the privacy and integrity of Federated Learning
environments. While FLCert excels in robustness against malicious clients, providing prov-
able security guarantees even in the presence of a limited number of adversarial actors, the
frameworks proposed in this research complements the security landscape by focusing on
data protection and transmission security. In essence, the choice between these approaches
hinges on the specific security and operational requirements governing Federated Learning
systems, as they each offer distinct advantages and considerations."

6.1.11 Comparison with ELSA

While the proposed frameworks prioritize data encryption and integrity, ELSA [47] revolu-
tionizes secure aggregation protocols to efficiently combat the presence of malicious actors.
ELSA’s core innovation lies in its utilization of distributed trust between two servers, which
enables the preservation of individual client updates’ secrecy as long as one server remains
honest. This ensures robust protection against malicious clients, guarantees end-to-end effi-
ciency, results in a significantly faster and more secure protocol compared to previous work.
ELSA also introduces techniques that maintain confidentiality, even when a server turns ma-
licious, with only a slight increase in execution time and minimal communication overhead,
especially when compared to scenarios with reasonably honest servers. However, ELSA’s
security is predicated on the presence of at least one honest server, leaving room for concerns
in cases where both servers are compromised. However, the frameworks proposed in this
research are not affected by the existence of a malicious entity, where none of the FL entities
will have access to other’s secured data. Therefore, ELSA proved to be more flexible and
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performing with less communication cost, but the frameworks proposed here will be more
safe even in the context of malicious servers.

6.1.12 Comparison with Multi-RoundSecAgg

In contrast to the focus of our previously proposed Federated Learning frameworks on se-
curing data transmission and privacy through advanced encryption techniques, the Multi-
RoundSecAgg framework introduced in [48] addresses a distinct yet equally pressing chal-
lenge long-term privacy preservation in Federated Learning. While our frameworks con-
centrate on encryption and data privacy, Multi-RoundSecAgg excels in long-term privacy
preservation, structured user selection, and fairness considerations. However, it introduces
complexity in terms of multi-round confidentiality guarantees and structured user selection
strategies, potentially increasing computational and operational complexity. Implementing
the framework may also require additional computing and storage resources, which could
pose challenges in resource-constrained environments. Its effectiveness and privacy guaran-
tees may vary depending on specific use cases and data distributions and achieving perfect
fairness in all practical scenarios remains a challenge. Additionally, the modularity of Multi-
RoundSecAgg for large-scale Federated Learning scenarios with many participants and data
sources may require further investigation.

6.1.13 Comparison with Stand-Alone HE Solutions

In contrast to implementations that embed only homomorphic encryption in Federated Learn-
ing (FL) frameworks such as [49–55], the frameworks proposed in this research introduce an
additional layer of security by combining both polymorphic and homomorphic encryption.
This combination significantly enhances data privacy, access control, and the overall robust-
ness of FL against various threats, including data poisoning and model exposure.
The key differentiation in the proposed frameworks lies in their utilization of polymorphic
encryption, wherein each set of parameters exchanged between the server and clients is en-
crypted with a distinct encryption key. This dynamic key assignment offers several distinct
advantages:

• Enhanced Security: By encrypting each set of parameters with a different encryption
key, the proposed frameworks ensure that even if one key is leaked or cracked, it poses
no substantial risk. Since each key is used only for a specific set of parameters, a
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breach of one key does not compromise the security of the entire system. This granular
approach significantly enhances security against potential attacks

• Data Privacy: The individual encryption of parameters with unique keys ensures that
sensitive data remains confidential. Unauthorized access to one set of parameters does
not automatically grant access to others, bolstering data privacy in FL

• Access Control: The dynamic key assignment allows for precise access control. Only
entities with the corresponding decryption keys can access and decrypt specific sets of
parameters, minimizing the risk of unauthorized data access

• Unbreakable Encryption: The use of different encryption keys for each parameter set
contributes to the unbreakable nature of the encryption. Even if an attacker were to gain
access to one key, it would not provide a universal decryption capability, rendering the
encryption highly secure

• Robustness Against Attacks: The combination of polymorphic and homomorphic en-
cryption in the proposed frameworks creates multiple layers of defense against poten-
tial attacks. This multi-tiered security approach significantly enhances the FL system’s
robustness, making it resilient against a wide range of threats

In contrast, implementations that rely solely on homomorphic encryption typically em-
ploy a single encryption key for the entire FL process. While homomorphic encryption offers
data security, it lacks the fine-grained security control provided by polymorphic encryption.
In the event of a key compromise, the entire system’s security is jeopardized. The pro-
posed frameworks address this vulnerability by ensuring that the compromise of one key
does not undermine the overall security of the FL system, making them an attractive choice
for privacy-conscious and security-focused FL applications.

The comparison between the proposed frameworks and the state-of-the art of secured FL
algorithms can be summarized in Table 3 below:
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Table 3: Comparison of FL Security Approaches.

Criteria Proposed Frameworks Homomorphic
Encryption Only

SecureD-FL SEAR HeteroSAg

Encryption Techniques Polymorphic &
Homomorphic Encryption

Homomorphic Encryption Homomorphic Encryption Trusted Execution
Environment (TEE)

Homomorphic Encryption

Unique Encryption Keys
for Parameters

Yes (Polymorphic
Encryption)

No (Single Key) Yes (Homomorphic
Encryption)

Yes (TEE-Based
Encryption)

No (Single Key)

Data Privacy & Access
Control

Strong Data Privacy &
Access Control

Limited Access Control Strong Data Privacy &
Access Control

Strong Data Privacy &
Access Control

Limited Access Control

Security Against Key
Compromises

Highly Resilient (Granular
Key Usage)

Vulnerable to Key
Compromise

Highly Resilient (Granular
Key Usage)

Highly Resilient
(TEE-Based)

Vulnerable to Key
Compromise

Robustness Against
Attacks

Multi-Layered Security
Approach

Limited Security Layers Multi-Layered Security
Approach

Multi-Layered Security
Approach

Enhanced Security Layers

Communication Efficiency Efficient with Enhanced
Security

Efficient but Less Granular Efficient with Enhanced
Security

Efficient with
Hardware-Based TEE

Efficient with Enhanced
Security

Byzantine Attack
Resilience

Strong Resilience Limited Resilience Strong Resilience Strong Resilience Strong Resilience

Inference Attack Resilience High Resilience Limited Resilience High Resilience Limited Moderate Resilience

Bandwidth Efficiency Enhanced Efficiency Standard Efficiency Enhanced Efficiency Enhanced Efficiency Enhanced Efficiency

6.2 CHALLENGES & FUTURE PERSPECTIVES

To ensure the privacy of communications between servers and clients in a Federated Learning
setting, PolyFLAG_SVM, PolyFLAM, PolyFLAP and HP_FLAP makes use of Homomor-
phic and Polymorphic Encryption. The polymorphism of encryption keys used to encrypt
each message exchanged between the server and the participating clients provides security
guarantees to an extent that a leaked or cracked key will not be risky to the whole system,
since it will never be used again in the FL cycle. Additionally, in HP_FLAP, parameters from
locally trained models are aggregated on the central server without being decrypted, adding
an extra level of security. The proposed frameworks places an emphasis on security, but the
intricacy of its encryption makes it an expensive method of computation and transmission,
thus imposing some challenges and issues. However, they can complement well-established
approaches in order to parallelize computing, improve learning efficacy, manage heterogene-
ity, and scale up to overcome such issues and to enhance their feasibility. This chapter delves
into the challenges and future prospects tied to the proposed frameworks, shedding light on
potential obstacles and avenues for future research and development. The thesis wraps up
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with a comprehensive executive summary that encapsulates the entire study, offering crucial
insights, findings, and reflections on its contributions and implications.

6.2.1 Challenges

In the proposed frameworks, a set of difficulties arises, all of which are intertwined with the
development and deployment of this FL framework.

6.2.1.1 Limitation to SVM Model

SVM has demonstrated its effectiveness in addressing Machine Learning challenges, surpass-
ing alternative models in some problems. Nevertheless, the restriction of PolyFLAG_SVM
exclusively to the SVM model may hinder its versatility. This limitation served as the primary
impetus for the development of both PolyFLAM and PolyFLAP which offers five different
ML models as explained earlier.

6.2.1.2 Heterogeneity

The aspect of heterogeneity poses a significant obstacle in the envisioned framework, partic-
ularly concerning the facilitation of "Horizontal Federated Learning (FL) data." This phrase
encompasses situations in which varied clients handle data exhibiting identical attributes.
While the framework effectively handles this particular data category, it’s important to recog-
nize that this framework did not encompass other potential methodologies. This underscores
the intricacy linked with adapting to diverse data formats and underscores the necessity for
additional investigation into the wider realm of data heterogeneity.

6.2.1.3 Complexity and Computation Cost

The issue of complexity and computational cost is of utmost importance, particularly in light
of the resource-intensive characteristics inherent in encryption methodologies. Due to the
critical role of these algorithms in preserving the integrity of communicated data, they in-
herently require substantial computational resources. The inclusion of robust encryption al-
gorithms in the framework’s operations introduces an additional layer of complexity, hence
enhancing data security measures. Consequently, the task of achieving a harmonious equi-
librium between strong security protocols and optimal computational efficiency emerges as
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a pivotal challenge, thereby requiring innovative approaches to minimize computational ex-
penses while upholding the integrity of the system.

6.2.1.4 Scalability

The concern about scalability arises due to the heightened computational requirements asso-
ciated with encryption. The framework’s capacity to handle an increasing number of clients,
especially on the server side, may be constrained by the additional processing costs, thereby
impeding the system’s scalability. The increased number of clients accessing the server places
greater strain on its processing capability, potentially leading to the occurrence of bottlenecks
and a subsequent decline in performance. In order to attain seamless scalability, it is imper-
ative to explore efficient optimization strategies that decrease computational burden while
maintaining system responsiveness and accommodating an increasing client base.

6.2.1.5 Learning Quality

The quality of learning within the proposed framework is a crucial issue that arises. The
primary objective of the proposed frameworks is to enhance security and resilience against
inference attacks. However, it is important to acknowledge the inherent compromise between
security and the quality of learning that should not be neglected. The prioritization of security
measures, like as encryption and data protection, may divert focus from the improvement of
model learning quality. Maintaining a nuanced equilibrium between robust security measures
and achieving optimal learning outcomes is an ongoing challenge that requires meticulous
assessment of how security measures impact the effectiveness of the learning process and the
future performance of the global model.

6.2.1.6 Resources Limitations

The presence of resource limitations is a major hurdle, particularly in the context of Federated
Learning. In this context, clients often work with limited computational resources, which is
commonly found in smartphones or smart wearables, rather than more powerful computers.
The relevance of this difficulty is heightened when considering the practical application of
the suggested framework. The use of encryption and other security measures has the po-
tential to place a further burden on the limited resources of clients. The present situation
gives rise to apprehensions over the feasibility and practicality of implementing the frame-
work in real-life situations, considering the possible strain it may place on client devices. To
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tackle this difficulty, it is imperative to develop solutions that maximize the efficient use of
existing resources, ensuring that the framework stays feasible for implementation while also
considering the constraints of client settings.

6.2.2 Future Perspectives

When considering future enhancements, it is crucial to recognize that the aforementioned dif-
ficulties have been extensively addressed within the academic debate. Multiple researchers
have actively addressed these challenges, providing novel answers that require some fur-
ther investigation. Upon careful consideration of future prospects, a very captivating trajec-
tory emerges, wherein the suggested framework aligns harmoniously with well-established
methodologies. The current convergence has the potential to not only address current ob-
stacles but also provide a period of increased effectiveness and adaptability for Federated
Learning systems, and definitely for the proposed frameworks.

6.2.2.1 Handling Heterogeneity

Innovative solutions are needed to address heterogeneity from varied devices and data. Luck-
ily, many methods may be used to control this variability. For instance, Leveraging Resource
Allocation methods [64] can smartly allocates computational resources among devices based
on their capabilities. This method optimizes resource use for balanced and efficient Federated
Learning. In addition, integrating Meta-Learning approaches [65] is a promising approach
as well. Meta-Learning can improve system adaptability to client device and data source
heterogeneity by allowing models to learn and adapt fast to new data distributions. These
techniques together with the proposed framework might provide a more flexible and effective
Federated Learning framework that can handle heterogeneity.

6.2.2.2 Computation Cost & Time Reduction

The issue of high computational costs can be reduced by careful implementation of a num-
ber of methods. The use of parallel programming techniques is one such strategy. Parallel
programming makes better use of the computing capacity of contemporary devices by decom-
posing large computations into smaller tasks that may be completed simultaneously. Faster
model training and less time spent computing mean less stress on already-strapped computer
systems. The suggested frameworks might benefit from the use of parallel programming
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techniques to drastically reduce computing costs while simultaneously increasing scalability
and responsiveness.

6.2.2.3 Enhancing Scalability

Improving scalability depends on finding viable solutions to the challenges of heterogene-
ity and high computational costs. A mutually beneficial relationship develops when these
difficulties are met with solutions like resource allocation and parallel programming. The
system’s ability to serve a wide variety of users is improved by its approach to the hetero-
geneity of their devices and data. Simultaneously, lowering processing costs using meth-
ods like parallel programming keeps the framework responsive even as the number of users
grows. Together, these solutions pave the path for a Federated Learning framework that can
scale to serve a large number of users without sacrificing performance. The combination of
these tactics has the potential to launch an ecosystem that can handle the stresses of real life.
In addition, offloading keys creation and management to a third-party, may be a successful
solution to boost scalability.

6.2.2.4 Boosting Learning Quality

Implementing a wide variety of client-side data pre-processing strategies can significantly
improve the standard of learning outputs. Strategic pre-processing methods can be added
during data preparation before training to improve the quality of input data. Data quality
and benefit may be improved through the use of methods including feature scaling, outlier
removal, and data synthesizing. The overall quality of learning may be greatly improved by
ensuring that the data input into the training process is well-prepared and free of noise or
anomalies. Integrating data-preprocessing with the proposed frameworks, may enhance the
learning process, leading to better model convergence and performance.
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APPENDIX A

PUBLICATIONS

In this dedicated appendix, I take great pride in presenting a comprehensive compilation of
my scholarly contributions throughout the course of my rigorous doctoral journey. As I em-
bark on this endeavor to enumerate the culmination of countless hours of research, analysis,
and scholarly dedication, I am pleased to include a total of 13 meticulously crafted articles.
Each publication within this list reflects not only the culmination of my own academic growth
but also the invaluable support and mentorship of my advisors and collaborators. These pub-
lications represent the synthesis of knowledge, the pursuit of excellence, and the unwavering
commitment to the pursuit of innovative and meaningful research, all of which have been in-
tegral to my doctoral experience. It is with great enthusiasm and a sense of achievement that
I present this record of my academic contributions, each article a testament to the dedication
and hard work that have been at the core of my doctoral journey.
In the Table 4 below, the list of publications is presented with its relevant details. Within
this appendix, you will find an organized compilation of my publications, meticulously ar-
ranged to provide all pertinent details, and thoughtfully categorized according to their di-
rect relevance to the overarching research pursuits of my doctoral journey. Furthermore, as
you progress through this section, each individual article or sets of articles will be thought-
fully introduced, offering concise insights into their primary objectives and contributions to
the scholarly discourse. This comprehensive structure has been designed to offer readers a
holistic understanding of the scope and impact of my research endeavors, underscoring their
significance within the broader academic landscape.
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A.1 Reviewing Smart Wearables in Diseases Management

Embarking on my research journey, particularly during the second academic term, I immersed
myself in the dynamic realm of smart health. My objectives were twofold: staying current
with the latest research trends in this domain and maximizing the value of my reading time.
Aware of the time-consuming nature of academic reading, I ensured that each reading session
was not just passive consumption but a strategic step towards knowledge acquisition.
To achieve this, I diligently documented my readings, recorded essential insights, and cap-
tured novel ideas. This effort resulted in two well-crafted review articles, both contributing
significantly to the field of wearables in smart health.
The first review, conducted systematically following PRISMA guidelines, examined the use
of smart wearables in Cardiovascular Diseases. This article, highlighting wearables’ role in
cardiovascular health, was published in MDPI-Sensors, as discussed later.
The second review, also published in MDPI-Sensors, explored the application of smart wear-
ables in detecting Occupational Physical Fatigue. This work contributes to the growing
knowledge in the field and emphasizes the practicality of wearable technology in address-
ing occupational health concerns.
These publications showcase the synergy between rigorous research and effective time man-
agement, illustrating my dedication to advancing smart health and wearables’ discourse. This
introduction sets the stage for the comprehensive listing and explanation of my publications,
highlighting the precision and commitment that defined my doctoral research journey.
In this section, two article are fully presented which are respectively:

• Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Lit-
erature Review (MDPI-Sensors / Impact Factor 3.9)

• Smart Wearables for the Detection of Occupational Physical Fatigue: A Litera-
ture Review (MDPI-Sensors / Impact Factor 3.9)
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Abstract: Background: The advancement of information and communication technologies and the
growing power of artificial intelligence are successfully transforming a number of concepts that are
important to our daily lives. Many sectors, including education, healthcare, industry, and others, are
benefiting greatly from the use of such resources. The healthcare sector, for example, was an early
adopter of smart wearables, which primarily serve as diagnostic tools. In this context, smart wearables
have demonstrated their effectiveness in detecting and predicting cardiovascular diseases (CVDs),
the leading cause of death worldwide. Objective: In this study, a systematic literature review of
smart wearable applications for cardiovascular disease detection and prediction is presented. After
conducting the required search, the documents that met the criteria were analyzed to extract key
criteria such as the publication year, vital signs recorded, diseases studied, hardware used, smart
models used, datasets used, and performance metrics. Methods: This study followed the PRISMA
guidelines by searching IEEE, PubMed, and Scopus for publications published between 2010 and
2022. Once records were located, they were reviewed to determine which ones should be included
in the analysis. Finally, the analysis was completed, and the relevant data were included in the
review along with the relevant articles. Results: As a result of the comprehensive search procedures,
87 papers were deemed relevant for further review. In addition, the results are discussed to evaluate
the development and use of smart wearable devices for cardiovascular disease management, and the
results demonstrate the high efficiency of such wearable devices. Conclusions: The results clearly
show that interest in this topic has increased. Although the results show that smart wearables are
quite accurate in detecting, predicting, and even treating cardiovascular disease, further research is
needed to improve their use.

Keywords: cardiovascular diseases; smart wearables; sensors; body sensor networks; machine
learning; smart health; wide body area networks

1. Introduction

Healthcare has always been one of the most important issues that people have cared
about. Given the prevalence of diseases and their impact on people’s lives, researchers
are always looking for methods to improve medical services and promote public health.
In addition, the aging population, shortage of medically trained personnel, lack of equity
in services, epidemic planning, and a host of other problems hinder the growth of public
health worldwide [1]. However, advances in information and communication technology
(ICT) offer effective answers to these challenges. In this context, artificial intelligence (AI)
is considered the most promising tool for improving healthcare, as it has the potential to
be used in virtually all areas of medicine [2] and will transform healthcare for patients
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and communities [3]. This enormous contribution is not due to magic, but to AI’s data-
processing capabilities, which surpass those of humans, especially when large computations
are performed in a short period of time. Even though the majority of AI applications in
healthcare were developed after 2008 [4], their importance is obvious. First, AI has im-
proved the learning capabilities of computers and humans, leading to improved diagnostic
and healthcare procedures [5]. In addition, AI technologies are able to accept common
sense, extract information from raw data, use human-like thought processes, deal with
inaccuracies, adapt to a rapidly changing environment, and even act on their knowledge [2].
These characteristics enable AI tools to think and behave similar to humans at a virtually
unparalleled level, allowing them to articulate clinical patterns and visions beyond human
capabilities [3]. Combining AI capabilities with human intelligence, sometimes referred
to as augmented intelligence, is probably the most effective way to improve healthcare
services [3].

1.1. Cardiovascular Diseases Latest Figures

Cardiovascular diseases (CVDs) are the leading cause of death and are hence recog-
nized as the most dangerous disease in the world. According to the most recent World
Health Organization (WHO) statistics on heart disease, the number of CVD patients world-
wide has increased from 271 million to 523 million between 1990 and 2019, and the number
of deaths caused by this disease has increased from 12.1 million to 18.6 million during
the same period, accounting for 32% of global mortality in 2019 [6]. For example, in the
United States, a person dies from heart disease at least every 34 s [7], and in Canada, a
person dies at least every 5 min [8]. Moreover, cardiovascular disease is a major cause of
both health conflict and economic suffering. According to the Medical Expenditure Panel
Survey, the total cost of CVDs in the United States between 2017 and 2018 was estimated at
USD 378.0 billion, including USD 226.0 billion in expenditures and USD 151.8 billion in
lost future productivity [9]. Figure 1 illustrates the increase in the number of patients and
deaths due to cardiovascular disease worldwide between 1990 and 2019.

Figure 1. Increase in number of patients and deaths due to CVDs.

1.2. CVDs Detection: From Classic to Technology-Assisted

Due to their potentially fatal nature, cardiovascular diseases need the development
of efficient solutions that allow early diagnosis and, ideally, prediction of their onset. The
predictive power of modern technologies could help reduce the global prevalence of CVDs.
Traditional methods for diagnosing these diseases include electrocardiogram, echocardiog-
raphy, coronary angiography, stress testing, magnetic resonance imaging, or intracoronary
ultrasonography. However, new technologies are improving health services and facilitat-
ing the detection of cardiovascular disease, particularly information and communication
technologies (ICTs) and the development of artificial intelligence (AI) and its derivatives.
The novel approaches of AI in cardiology have proven to be successful in providing fast,
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accurate, and less erroneous patient care, which has significant medical and financial impli-
cations. It is more effective and widely used, as the tools and applications offered are at the
level of an expert using real-world data. In general, AI has fantastic potential to transform
cardiology in the near future and is often seen as the next revolutionary step in the field due
to its potential to accelerate and improve patient care. Moreover, AI will soon revolutionize
cardiovascular health, as its tools have the potential to outperform experts in detecting and
predicting cardiovascular disease [10–12]. Therefore, smart wearables that combine AI and
ICT are expected to be very useful in cardiovascular disease detection and prediction.

1.3. Smart Wearables: Definitions and Overview

Smart wearables, also known as smart wearable technology or wearable gadgets,
are a new breed of compact, rugged, and efficient computing devices made possible by
the rapid growth of information and communication technologies and the advancement
of electronics, particularly microprocessors. These devices are being hailed as the next
generation of ubiquitous technology after smartphones, as they allow access to data at
any time and from any location. The topic of smart wearables has evolved rapidly in
recent years, and their technologies are now applicable in many other fields [13–16]. This
section provides a definition of “smart wearables” and a brief overview of the history of
wearable technology. In addition, various categories of smart wearables are discussed in
the upcoming sections.

1.3.1. Smart Wearables: Brief History

In 1950, Alan Turing asked the now famous question “Can machines think?” which
marked the beginning of the era of “Smart Machines” [17]. Since then, researchers around
the world have attempted to answer this question by turning computers into intelligent
devices. Despite its widespread use, the term “Smart” is not uniformly defined and is
presented in different ways by different scholars [18]. In [19], “Smart” devices are defined
as embedded sensors, processors, and network devices that give smart things the ability
to behave based on their own knowledge. In addition, Ref. [20] defines them as objects
that can learn from their environment and interact with humans. Different definitions
focus on the capabilities of the devices. For example, smart wearables are defined by the
authors in [21,22] as devices that can be worn by the user at all times to monitor factors
such as personal data, vital signs, locations, environment, movements, and more. In this
context, a shoe-sized computer developed by Edward Thorp and Claude Shannon in 1961
is widely considered to be the first ever wearable computing device [23,24]. In the 1980s,
Steve Mann developed EyeTap glasses that displayed computer-generated images in one
eye and added textual information to the user’s visual experience [25]. Subsequently, in
1996, the U.S. Department of Defense Navy funded a study to monitor the vital signs of
its troops [26,27], which is widely considered a defining moment in the history of smart
wearables. Since then, smart wearables have gradually evolved from invasive, heavy, and
huge technologies to more adaptable, compact, and lightweight devices. This is because
researchers have expanded their projects in this field to different areas of life such as health,
fitness, sports, fashion, and even other sectors.

1.3.2. Classification of Smart Wearables

Over the past few decades, there have been more than a thousand studies on smart
wearables. However, smart wearables cannot be classified into a specific category. Ac-
cordingly, smart wearables are divided into six groups, as described by the authors of
Ref. [28]:

• Medical;
• Industrial;
• Lifestyle;
• Fitness;
• Entertainment;
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• Gaming.

On the other hand, the smart wearables were categorized by the authors of Ref. [29]
according to their personal features rather than their function. They provided examples
of the three categories into which they fall:

• Watch-type;
• Necklace or wristband-type;
• Headmount display-type.

However, other technologies, such as electronic patches and health apparel, could not
fit within this classification. Therefore, a set of commonly known wearables are displayed
in Figure 2 below.

Figure 2. Set of commonly known wearables.

1.4. Role of Smart Wearables in CVDs

Over the past decade, smart wearables have been increasingly used as health solutions.
Their effectiveness and proliferation has been fueled by advances in performance, size,
style, and durability, among other factors. Examples of smart wearables used to diagnose,
track, and treat cardiovascular disease include wristbands, patches, headbands, eyeglasses,
and necklaces. The implications of CVD wearables are many. For example, they enable
continuous and long-term recording of functional or physiological data, leading to more
accurate diagnosis and better health outcomes for patients. In addition, they enable the col-
lection of necessary data in locations other than physicians’ offices or hospitals, expanding
the capacity of healthcare facilities to serve larger numbers of patients over longer periods
of time. More importantly, the continuous monitoring capabilities of smart wearables
enable more sophisticated knowledge of an individual patient’s physiological state and
ongoing activity, paving the way for more personalized healthcare and treatment. The
devices also became less bulky and aesthetically pleasing, making them less intrusive and
more suitable as everyday wearables. One way that smart wearables such as smartphones
are benefiting from the widespread use of other devices is through pairing [30–33]. Some
reasons for the success of smart wearables adoption and their success points are listed in
Table 1 below.

Table 1. Success reasons and success points of smart wearables.

Powered By Capabilities

Smart wearables

Low power consumption
Compact size

Adaptable styles
Robustness

Continuous functionality
Long-term Monitoring
Real-time data sensing

Communication with Internet
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1.5. Outline and Main Contributions of This Article

In this article, the use of smart wearables in the detection, prediction, and treatment of
cardiovascular disease was investigated. For this purpose, a systematic literature review
was conducted, following the methodology that is explained in Section 2. Subsequently,
in Section 3, the results of the performed search are presented. Later, the obtained results
are analyzed in Section 4 and discussed in Section 5. Then, the challenges hindering the
progress in the use of smart wearables are discussed, and future perspectives to solve these
challenges are presented. Finally, the article is concluded with a concluding section. To the
best of our knowledge, there are no systematic reviews addressing the potential of smart
wearables for early diagnosis of CVDs. For example, in [34], the authors investigated the
application of AI in smart wearables for cardiovascular disease detection. However, the
focus of their research was on smart models rather than hardware; the obstacles that have
slowed the development of this field are barely addressed, and the same is true for future
prospects. Furthermore, in [35,36], the authors explored the use of smart wearables in life
course research, but they did not systematically explore the field or provide a complete
vision of contextual implementations. Motivated by the large role that smart wearables play
in various aspects of daily life and by the lack of a systematic literature review discussing
their role in predicting cardiovascular disease, this article therefore attempts to answer the
following questions:

• What are the applications of using smart wearables to detect and predict cardiovascular
disease?

• What are the different aspects such as hardware and software used in these implemen-
tations?

• To what extent are these implementations feasible?
• What are the challenges and limitations in this area?
• What future perspectives can be pursued to improve the use of smart wearables in

CVDs management?

Therefore, this article answers the above questions and thus contributes to academic
knowledge by:

• Systematically reviewing the use of smart wearables in the treatment of cardiovascular
disease;

• Analyzing and discussing the reviewed implementations in a way that facilitates the
identification of opportunities for improvement in this area;

• Naming the barriers to progress in this area;
• Proposing solutions that can be used to address these barriers;
• Presenting a collection of research questions and findings that could serve as a starting

point for future research.

2. Research Methodology

This section details and explains the methodology used to conduct the systematic
review. The steps described here can be used to conduct the same search and review the
results or repeat the search in a different time period.

2.1. Eligibility Criteria

In conducting this review, PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses ) [37] was used as a guide for preparing a systematic literature review.
The structure of this review was based on the latest PRISMA checklist (PRISMA Checklist
2020) [38]. In accordance with PRISMA standards, multiple sources were searched for
papers that met the scope of this review. Four variables were used to select these materials.
To be considered reputable, a paper must address artificial intelligence or related fields,
present a smart wearable solution, address healthcare, and focus on cardiovascular diseases.
In addition, the material should have been published in a peer-reviewed journal or as a
conference proceedings. In addition, only documents published between January 2010 and
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October 2022 were considered. As a final eligibility criterion, an English language filter was
applied to eligible papers.

2.2. Information Sources

Several academic abstract and citation databases for peer-reviewed literature were
used, including IEEE, PubMed, and Scopus Elsevier, to ensure superior results and to cover
the largest number of documents possible. Each of these three databases provides access to
millions of documents and has powerful, sophisticated search tools to facilitate thorough
literature searches.

2.3. Search Strategy

In order to conduct a thorough search of the above materials, three queries were
formulated. While these queries all follow the same logical structure, they use different
syntaxes to comply with the different rules imposed by each data source. Targeted articles
are found at the intersection of four query blocks, each defining a different topic of interest.
AI, health, wearables, and CVDs (or related areas) are the four basic focus areas. The phrase
“AND” was used to combine areas for a more effective query, while the term “OR” was
used to combine different terms within each area. The three queries used to find what is
being searched for are as follows:

• IEEE: ((("ARTIFICIAL INTELLIGENCE" OR "SMART AGENTS" OR "SMART MA-
CHINES" OR "INTELLIGENT" OR "DEEP LEARNING" OR "MACHINE LEARNING"
OR "NEURAL NETWORK") AND ("HEALTH*" OR "DISEASE" OR "ILL*" OR"CARE")
AND ("WIRELESS SENSORS NETWORK" OR "SMART SENSORS" OR "BODY AREA
NETWORK" OR "WEARABLE" OR "SENSOR") AND ("CARDIOLOGY" OR "CAR-
DIOVASCULAR" OR "HEART" OR "CARDI*"))).

• PubMed: ((ARTIFICIAL INTELLIGENCE) OR (SMART AGENTS) OR (SMART MA-
CHINES) OR (INTELLIGENT) OR(DEEP LEARNING) OR (MACHINE LEARNING)
OR (NEURAL NETWORK)) AND ((HEALTH) OR (DISEASE) OR (ILL) OR(CARE) OR
(HEALTHCARE)) AND ((WIRELESS SENSORS NETWORK) OR (SMART SENSORS)
OR(BODY AREA NETWORK) OR (WEARABLE) OR (SENSOR)) AND ((CARDIOL-
OGY) OR (CARDIOVASCULAR) OR (HEART) OR(CARDIAC)).

• Scopus: TITLE-ABS-KEY(((artificial intelligence) OR (smart agents) OR (smart ma-
chines) OR (intelligent) OR (deep learning) OR (machine learning) OR (neural net-
work)) AND ((health*) OR (disease) OR (ill*) OR (care)) AND ((wireless sensors
network) OR (smart sensors) OR (body area network) OR (wearable) OR (sensor))
AND ((cardiology) OR (cardiovascular) OR (heart) OR (cardi*))) AND (LIMIT-TO
(SRCTYPE, “j”) OR LIMIT-TO (SRCTYPE, “p")) AND (LIMIT-TO(DOCTYPE, “cp”)
OR LIMIT-TO(DOCTYPE, “ar”)) AND (LIMIT-TO( LANGUAGE, “English”)) AND
(LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUB-
YEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR
LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUB-
YEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR
LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010)).

In the case of Scopus, the query was used as described above to retrieve the results.
However, in IEEE and PubMed, additional filters were applied through the graphical user
interface. In both sources, a “Year” filter was added to limit the selection to articles between
2010 and 2021. However, in IEEE, articles with the types “Conferences” and “Journals”
were selected, whereas in PubMed, articles with the types “Clinical Trial” and “Journal
Article” were selected. Finally, a filter was performed in the PubMed interface to limit the
documents to those published in English. On the other hand, Scopus offers the possibility to
limit the search to the title, abstract, or keywords, while the other two sources perform the
search in the whole text of the document. It is worth noting that the search was performed
in October 2021.
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2.4. Selection Process

The data extracted from the records were selected in three steps to determine which
files were relevant to this analysis. The first step was to review the titles and abstracts of all
documents to determine if they were relevant to the topic of this study. The documents that
passed this step were then downloaded. In a second step, we reviewed the downloaded
files to quickly verify their content and determine if they were relevant to our evaluation.
The documents selected in this phase are the ones that are examined in detail. Finally, the
documents were researched and evaluated to extract the data needed to demonstrate the
development of smart wearables for CVDs.

3. Results

The steps mentioned in the previous section led to a systematic result. The results of
this search are listed in this section.

3.1. Study Selection

Initially, 4002 documents were identified from the three libraries based on the above
searches. The search on IEEE yielded 1013 documents, on PubMed 1020, and on Sco-
pus 1969, after which duplicate entries were excluded, removing 1021 and leaving 2981
documents. Then, the aforementioned selection procedure was applied, excluding 2382
documents on the basis of irrelevance and advancing 599 to the next stage. Documents
were classified as irrelevant if they met the search criteria or if they contained the search
terms specified in the search queries but did not deal with cardiovascular disease or were
not wearable systems. In the second phase, full-text screening, the 599 documents were
downloaded and skimmed to assess their suitability. In this phase, 512 documents were
excluded for various reasons, and 87 documents were deemed suitable for this review. All
these details are shown in Figure 3 below that matches the PRISMA diagram (information
flow through the different phases of a systematic review) [37].

Figure 3. Flow of information through the different phases of a systematic review.

3.2. Study Characteristics

Following the search described above, the 87 papers deemed appropriate were care-
fully reviewed and examined to extract all relevant information. From each paper, the year
of publication, disease(s) treated, vital signs recorded, hardware of the wearable device(s),
embedded intelligent models, dataset(s) used, and outcome metrics were extracted. Table 2
below shows all retrieved details from the eligible studies, thus forming one of the main
outcomes of this research, listing all implementations of smart wearables in cardiovascular
disease management between 2010 and 2022 along with their relevant details.
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Table 2. Implementations of smart wearables in detection of CVDs.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[39] 2010 Atrial Fibrillation Electrocardiogram A wearable vest including dry foam ECG acquisition device
A mobile phone (Nokia N85) Not Identified PhysioNet MIT-BIH dataset Sensitivity: 94.56%

Positive Predictive Value: 99.22%

[40] 2010

Right Bundle Branch Block Beats
Premature Ventricular Contraction
Paced Beats
Fusion of Paced and Normal Beats

Electrocardiogram

Plug-In-Based GUI Platform: An Alive Bluetooth ECG heart monitor and
Amoi E72 Microsoft Windows Mobile 5 Smartphone
Machine-Learning-Based Platform: An Alive Bluetooth ECG heart
monitor and an HTC Microsoft Windows Mobile 6 Smartphone

Multilayer Perceptron PhysioNet MIT-BIH dataset Accuracy > 90%

[41] 2010

Sinus Tachycardia
Sinus Bradycardia
Cardiac Asystole
Atrial Fibrillation
Wide QRS Complex

Electrocardiogram

A three-lead ECG device that contain two main parts: NCTU ECG
Aquisition tool as the data acquisition (DAQ) unit and a
wireless-transmission unit.
Medi-Trace 200, Kendall are also used to read the ECG from the body

Not Identified
Dataset collected at MUSE ECG system (GE
health care, USA) in China Medical
University (CMUH) database

Accuracy> 92%

[42] 2011 Premature Ventricular Contraction
Atrial Premature Contraction

Electrocardiogram
Electroencephalogram
Respiratory Rate
Skin Temperature

Wearable Sensor Node and it consists of seven modules: analog front-end
circuits for four physiological signals, a radio communication module, a
storage module, and MSP430F2618 as microcontroller unit (MCU)
Smartphone: HTC HD2 with a 1 GHz CPU and 448 MB RAM (can be
replaced with any android, Windows or IOS phone)

Hidden Markov Model
Layered Hidden Markov Model PhysioNet MIT-BIH dataset Sensitivity: 99.72%

Positive Predictive Value: 99.64%

[43] 2011
Congestive Heart Failure
Malignant Ventricular Ectopy
Ventricular Tachycardia

Electrocardiogram
A wireless ECG sensor
S3C6400 mobile phone
HBE-ZigbeX motes as a wireless sensor network

Multilayer Perceptron PhysioNet MIT-BIH dataset
BIDMC Congestive Heart Failure: 100%
Malignant Ventricular Ectopy: 90.9%
Ventricular Tachyarrhythmia: 83.3%

[44] 2015 Atrial Fibrillation Electrocardiogram Rejiva ECG wearable sensor
and a smartphone Support Vector Machines PhysioNet MIT-BIH dataset Specificity: 77.25%

Sensitivity: 93.13%

[45] 2016 Atrial Fibrillation Electrocardiogram
Photoplethysmogram Samsung Simband wrist band smart watch Elastic Net Logistic model Private Data

Accuracy: 95%
Sensitivity: 97%
Specificity: 94%
AUROC: 99%

[46] 2016 Myocardial Ischemia Electrocardiogram

A smart cloth composed of four units:
Smart cloth unit to measure physiological signal-ECG signal
Signal control unit to control and memorize the status of the device by an
ultra-low power MCU and SD card to save the signal data
Signal sensing unit that has a motion tracking sensor module to capture
the accelerometer signal
Wireless connection unit to transmit the data

A smartphone

Neural Network
PhysioNet MIT-BIH dataset
PhysioNet MIT-BIH Normal Sinus Rhythm
dataset

Accuracy > 76%

[47] 2017 Atrial Fibrillation Electrocardiogram
Photoplethysmogram Samsung Simband wrist band smart watch Convolutional Neural Network

Elastic Net Logistic model Private Data Accuracy: 91.8%

[48] 2017 Heart Attack Electrocardiogram
Body Temperature

Device composed of pulse sensor, a temperature sensor, an Arduino, and a
Low Energy (LE) Bluetooth
A smartphone

Not Identified Private Data

[49] 2017

Ventricular Premature Complex
Atrial Premature Complex
Ventricular Fibrillation
Atrial Fibrillation

Electrocardiogram Bio Clothing One, XYZ life BC1 Artificial Neural Networks

PhysioNet American Heart Association
database
PhysioNet Creighton University Ventricular
Tachyarrhythmia database
PhysioNet MIT-BIH dataset
PhysioNet MIT-BIH Noise Stress Test
database

Accuracy > 75%

[50] 2017 Atrial Fibrillation Electrocardiogram Wrist bracelet designed for the purpose: based on the ultra low power
series Microcontroller STM32L471RG Support Vector Machines Private Data Accuracy: 95%

[51] 2017 Atrial Fibrillation Audio Signal in Radial Artery

The PAG monitoring device consists of four components
audiogram sensor: Panasonic capacitive microphone
analog-digital converter: Embedded in Atmega328P
microprocessor: Atmega328P chip
data storage unit

A smartphone

Convolutional Neural Network
Dataset collected at National Cheng Kung
University Hospital (NCKUH), Tainan,
Taiwan.

Accuracy : 98.92%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[52] 2018 Myocardial Infarction Electrocardiogram ECG sensor using AD8232 and Espressif ESP-32 Wi-Fi + BLE module Convolutional Neural Network PhysioNet PTB Diagnostic ECG Database Accuracy: 84%

[53] 2018

Ventricular Arrhythmia
Junctional Arrhythmia
Supraventricular Arrhythmia
Arrhythmias

Electrocardiogram

a smart clothing consisting of cloth carrier, biosen sor platform, and smart
terminals. In biosensor platform, ADI ECG analog front-end (ADAS1001)
is used for obtaining the ECG signals, Microcontroller (STM32) is used to
realize the data processing and a Bluetooth module is available for data
transfer

Deep Neural Network with a Softmax
Regression model PhysioNet MIT-BIH dataset Accuracy > 94%

[54] 2018 Hypertension Heart Rate A waist belt comprised of three kinds of sensors: three dry electrodes, a
3-axis accelerometer and two pressure sensors with different sensitivities

Logistic Regression
Support Vector Machines Private Data Accuracy: 93.33%

[55] 2018 Atrial Fibrillation Electrocardiogram
Photoplethysmogram Samsung gear device wearable device Convolution–Recurrent Hybrid

Model (CRNN) Private Data Accuracy > 98%

[56] 2018 Atrial Fibrillation Electrocardiogram A smart shirt equipped with ECG sensors
A smartphone

Dataset collected at the Dongsan Medical
Center in South Korea Accuracy: 98.2%

[57] 2018

Ventricular Tachycardia
Ventricular Bradycardia
Premature Atrial Contractions
Premature Ventricular Contractions

Electrocardiogram

for ECG Sensing: ECG body sensor with analog conditioning circuit
(AD8232), Microcontroller unit (MCU) (PIC12F1822), Bluetooth module
(HC-06), and charging controller module
for analysis and display: processing and displaying unit of that process
the ECG signal and display it on thin film transistor (TFT) liquid crystal
display (LCD) consisting of Rpi computer, Bluetooth module, TFT screen,
and power supply

Support Vector Machines PhysioNet MIT-BIH dataset Accuracy: 96.2%

[58] 2019

Myocardial Infarction
Heart Failure
Arrhythmias
Fusion Beats
Supraventricular Ectopic Beats
Ventricular Ectopic Beats

Electrocardiogram
Heart Rate
Respiratory Rate

A patch with electronic circuit is built for the purpose and proposed in the
article and an Android smartphone and a cloud server for data storage
and further analysis

Convolutional Neural Network
PhysioNet PTB Diagnostic ECG Database
St Petersburg INCART 12-lead Arrhythmia
Database

Accuracy: 98.7%

[59] 2019 Atrial Fibrillation Electrocardiogram
A patch with electronic circuit is built for the purpose and proposed in the
article and an Android smartphone and a cloud server for data storage
and further analysis

Decision Tree PhysioNet MIT-BIH dataset Accuracy > 97.18%

[60] 2019
Atrial Fibrillation
Atrial Flutter
Ventricular Fibrillation

Electrocardiogram A wearable ECG sensing device and an Android smartphone and a cloud
server for data storage and further analysis Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy > 94%

[61] 2019 Atrial Fibrillation Electrocardiogram Smart vest equipped with two ECG sensing units Long Short-Term Memory PhysioNet dataset of the 2017 Computing in
Cardiology Challenge

Sensitivity: 83.82%
Specificity: 97.84%
F1-score: 81.43%

[62] 2019 Supraventricular Ectopic Beats
Ventricular Ectopic Beats Electrocardiogram ECG sensing device with a smartphone or tablet Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy > 79%

[63] 2019 Atrial Fibrillation Heart Rate Commercial HR Sensor Long Short-Term Memory PhysioNet Atrial Fibrillation Database
(AFDB) Accuracy: 98.51%

[64] 2019 Arrhythmias
Congestive Heart Failure Electrocardiogram One lead ECG sensor Convolutional Neural Network

PhysioNet MIT-BIH dataset
PhysioNet MIT-BIH Normal Sinus Rhythm
database

Accuracy: 93.75%

[65] 2019 Arrhythmias Electrocardiogram
A device composed of a single-lead heart rate monitor front end AD8232
chip, Atmel’s ATmega128 as a microcontroller and a BLE module
A smartphone is also used

Support Vector Machines
K-Nearest Neighbors
Logistic Regression
Random Forest
Decision Tree
Gradient Boosting Decision Tree

PhysioNet MIT-BIH dataset Accuracy > 77%

[66] 2019 Atrial Fibrillation Photoplethysmogram Wearable wristband device Support Vector Machines Private Data Accuracy: 90%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[67] 2020

Atrial Bigeminy
Atrial Fibrillation
Atrial Flutter
Ventricular Bigeminy
Heart Block
Ventricular Trigeminy
Ventricular Flutter
Ventricular Tachycardia
Supraventricular Tachyarrhythmia
Idioventricular Rhythm
Paced Beats
Nodal (A-V Junctional) Rhythm

Electrocardiogram
SparkFun Single Lead Heart Rate Monitor AD8232 as the data acquisition
device
Smartphone as a gateway to the server

Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 94:13%

[68] 2020 Atrial Fibrillation Electrocardiogram
Photoplethysmogram

Amazfit Healthband 1S for ECG and PPG sensing
smartphone for data reception and analysis Convolutional Neural Network Dataset collected at Peking University First

Hospital

Sensitivity: 80.00%
Specificity: 96.81%
Accuracy: 90.52%

[69] 2020

Left Bundle Branch Block Beats
Right Bundle Branch Block Beats
Atrial Premature Contraction
Ventricular Premature Contraction
Paced Beats
Ventricular Escape Beats

Electrocardiogram

A sensing device composed from a single lead heart rate monitor AD8232
and interfaced with NodeMCU development board having ESP8266
microcontroller capable of connecting to internet via WiFi
Smartphone for the analysis of the data

Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy > 90%

[70] 2020 Cardiovascular Risk

Electrocardiogram
Electroencephalogram
Electromyogram
Heart Rate
Blood Pressure
Respiratory Rate
Blood Sugar Level
Oxygen Saturation Level
Cholesterol Levels

Wearable medical sensors and a wearable smart watch Convolutional Neural Network UCI Cleveland Heart Diseases Dataset Accuracy: 98.5%

[71] 2020 Atrial Fibrillation

Electrocardiogram
Photoplethysmogram
Photoplethysmogram
Oxygen saturation Level
Body Temperature

The sensing device used is composed of three parts: AD8232r for ECG
detection, ADS1115 analog-to-digital converter and SX1276 LoRa chip that
transmits the data to the fog device

The fog device: a low-cost raspberry pi system integrated with Intel
Neural Compute Stick 2 (NCS 2) that is capable of handling deep learning
algorithms

Convolutional Neural Network PhysioNet dataset of the 2017 Computing in
Cardiology Challenge Accuracy: 90%

[72] 2020 Cardiovascular Risk Electrocardiogram
Blood Pressure

An ECG sensing device built with AD8232 unit
A smart watch
raspberry pi with SX1272 unit to transmit the data for LoRa gateway

Convolutional Neural Network UCI Cleveland Heart Diseases Dataset Accuracy: 98.2%

[73] 2020

Aortic Stenosis
Mitral Insufficiency
Mitral Stenosis
Tricuspid Regurgitation

Electrocardiogram
Photoplethysmogram
Gyrocardiography
Seismocardiogram

Shimmer 3 from Shimmer Sensing for ECG detection
A three-axis MEMS accelerometer: (Kionix KXRB5-2042, Kionix, Inc.) to
measure the SCG signal
A three-axis MEMS gyroscope (Invensense MPU9150, Invensense, Inc.) to
record the GCG signal
An ear-lobe photoplethysmography (PPG) sensor

Decision Tree
Random Forest
Neural Network

Dataset collected at Columbia University
Medical Center (CUMC) Accuracy > 90%

[74] 2020

Left Bundle Branch Block Beats
Right Bundle Branch Block Beats
Atrial Escape Beats
Nodal (Junctional) Escape Beats
Atrial Premature Beats
Aberrated Atrial Premature Beats
Nodal Premature Beats
Supraventricular Premature Beats
Premature Ventricular Contractions
Ventricular Escape Beats
Fusion of Ventricular and Normal Beats
Paced Beats
Fusion of Paced and Normal Beats

Electrocardiogram

A sensing device composed of AD8232 single-lead three-electrode ECG
Heart Rate monitor and a ESP8266 Wi-Fi module used to provide wireless
data transmission access to the Arduino Nano and is used to connect it to
the cloud

Convolutional Neural Network PhysioNet MIT-BIH dataset

Accuracy: 99.625%
Sensitivity: 97.736%
Specificity: 99.713%
Precision: 97.835%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[75] 2020 Ventricular Ectopic Beats
Arrhythmias Electrocardiogram Sensing device composed of Raspberry Pi for processing, ADS1115 as

Analog to Digital Converter and AD8232 as ECG sensor Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 95.76%

[76] 2020
Premature Atrial Contractions
Premature Ventricular Contractions
Atrial Fibrillation

Electrocardiogram
Photoplethysmogram

7-lead Holter monitor (Rozinn RZ153+ Series, Rozinn Electronics Inc.,
Glendale, NY, USA)
Smartwatch (Simband 2, Samsung Digital Health, San Jose, CA,USA)

Random Forest
Support Vector Machines

Dataset collected at the ambulatory
cardiovascular clinic at the University of
Massachusetts Medical Center (UMMC)

Best Model Accuracy: 94%

[77] 2020 Arrhythmias Electrocardiogram Sensing device built using Raspberry Pi 3 model B+ and two ECG sensors
AD8232 with a pulse sensor and an analog digital converter ADS1015

Support Vector Machines
Naïve Bayes
Artificial Neural Networks

PhysioNet MIT-BIH dataset Best Model Accuracy: 97.8%

[78] 2020 Atrial Fibrillation Electrocardiogram the wearable system is composed to work on a prototype developed by
Medicaltech srl (Rovereto, Italy)

A Custom model based on
Thresholding of Shannon Entropy
values

PhysioNet MIT-BIH dataset Sensitivity: 99.2%
Specificity: 97.3%

[79] 2020 Atrial Fibrillation Electrocardiogram
The sensing device is composed of Raspberry pi 3, Arduino UNO,
AD8232 single lead ECG sensor, HC-05 Bluetooth, biomedical sensor pad
and battery

Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy: 97.57%

[80] 2020

Atrial Escape Beats
Junctional Escape Beats
Left Bundle Branch Block Beats
Right Bundle Branch Block Beats
Atrial Premature Beats
Aberrated Atrial Premature Beats
Junctional Premature Beats
Supraventricular Premature Beats
Premature Ventricular Contractions
Ventricular Escape Beats
Fusion of Ventricular and Normal Beats
Paced Beats
Fusion of Paced and Normal Beats

Electrocardiogram
Moto 360
NanoPi Neo Plus2
Raspberry Pi Zero

Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy > 98.6 %

[81] 2020
Supraventricular Arrhythmia
Atrial Fibrillation
Arrhythmias

Electrocardiogram A wearable sensing device composed of AD8232 as an ECG sensor,
MCP3008 ias an ADC and Raspberry Pi as a computing unit Support Vector Machines UCI Cleveland Heart Diseases Dataset Accuracy: 72.41%

[82] 2020 Arrhythmias

Electrocardiogram
Body Temperature
Heart Rate
Blood Oxygen Level

A sensing device composed of:
Temperature sensor: MLX90614
Heart rate and blood oxygen sensors: MAX30100
ECG sensor: AD8232
Inter-Integrated Circuit (I2C) communication protocol
Microcontroller: Arduino UNO
Wireless transmission: Wi-Fi chip ESP8266

A smartphone

Long Short-Term Memory
Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 99.05%

[83] 2020 Premature Ventricular Contraction Electrocardiogram A wireless 3-lead ECG sensor from Shimmer Sensing Support Vector Machines PhysioNet MIT-BIH dataset Sensitivity: 96.51%
Predictive Value: 81.92%

[84] 2020 Atrial Fibrillation
Syncope Electrocardiogram

A sensing device composed of:
The SparkFun AD8232 ECG sensing unit
Arduino Mega 2560 microcontroller
Raspberry Pi 3 board
ADXL345 triple-axis accelerometer
HC-05 Bluetooth sensor

A smartphone

Long Short-Term Memory PhysioNet MIT-BIH dataset Accuracy: 97.61%

[85] 2021 Atrial Fibrillation Pulse Plethysmogram
Wrist-type pulse wave monitor
(type: Smart TCM-I, product by: Shanghai Asia & Pacific Computer
Information System CO, Ltd, Shanghai, China)

Time Synchronous Averaging Private Data Accuracy: 98.4%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[86] 2021 Cardiovascular Risk Photoplethysmogram Pulse rate sensor with ATmega32 microcontroller

Support Vector Machines
Naïve Bayes
Random Forest
Decision Tree
Logistic Regression
Artificial Neural Networks
Recurrent Neural Networks

Dataset collected at Framingham University Accuracy: 94.9%

[87] 2021 Ventricular Ectopic Beats
Supraventricular Ectopic Beats Electrocardiogram Ternary second-order delta modulator circuits Support Vector Machines PhysioNet MIT-BIH dataset Accuracy > 98%

[88] 2021

Premature Atrial Contractions
Premature Ventricular Contractions
Atrial Fibrillation
Ventricular Tachycardia
Sinus Bradycardia
Atrial Tachycardia

Electrocardiogram A custom-built ECG Signal acquisition circuit Gramian Angular Fields (GAFs)
Deep Residual Network (ResNet)

PhysioNet MIT-BIH dataset
LTAF database
Simulated Data (Prosim2 Vital Sign
Simulator)

Accuracy: 98.1%
Sensitivity: 97.6%
Specificity: 99.7%
F1 Score: 97.6%

[89] 2021 Arrhythmias
Congestive Heart Failure Electrocardiogram

ARDUINO UNO
ECG SENSOR AD8232
DISPOSABLE ECG ELECTRODES

Support Vector Machines PhysioNet dataset of the 2016 Computing in
Cardiology Challenge Accuracy: 98%

[90] 2021 Atrial Fibrillation Electrocardiogram A consumer-grade, single-lead heart belt (Suunto Movesense, Suunto,
Vantaa, Finland) Not Identified Private Data Accuracy 97.8%

[91] 2021

Atrial Fibrillation
Atrial Flutter
Supraventricular Tachycardia
Ventricular Tachycardia

Electrocardiogram ECG247 Smart Heart Sensor Not Identified Private Data Accuracy > 95%

[92] 2021 Heart Attack

Electrocardiogram
Heart Rate
Body Temperature
Blood Pressure

A device composed of ECG, heart rate, body temperature, and blood
pressure sensors Not Identified Private Data Accuracy: 83%

[93] 2021

Atrial Fibrillation
Ventricular Bradycardia
Ventricular Tachycardia
Bundle Branch Block

Electrocardiogram HealthyPiV3 biosensors Convolutional Neural Network

PhysioNet MIT-BIH dataset
PhysioNet PAF Prediction Challenge
Database for AF records
PhysioNet PTB Diagnostic ECG Database
PhysioNet dataset of the of 2015 bradycardia
Challenge
PhysioNet Fantasia Database and PAF
Prediction Challenge Database for healthy
signals

Accuracy > 98.75%

[94] 2021 Heart Attack Electrocardiogram AD8232 ECG sensor Sequential Covering Algorithm PhysioNet PTB-XL dataset F1 Score: 87.8%

[95] 2021 Heart Attack

Electrocardiogram
Body Temperature
Activity Parameters
Oxygen Saturation Level

Composed of different sensors to collect different vital signs which are:
LM35, MPU 6050, MAX30100 and AD8232 respectively

Support Vector Machines
Linear Regression
K-Nearest Neighbors
Naïve Bayes

Private Data Accuracy: 80%

[96] 2021
Ventricular Premature Beats
Supraventricular Premature Beats
Atrial Fibrillation

Electrocardiogram IREALCARE2.0 Wearable ECG Sensor
Time-Span Convolutional Neural
Network
Recurrent Neural Networks

Private Data
F1 Score: 86.5%
Precision: 87.7%
Recall: 86.8%

[97] 2021 Cardiovascular Risk Electrocardiogram
Oxygen Saturation Level Composed of AD8232 (ECG sensor) and MAX30102 (SPO2 sensor) Convolutional Neural Network

Convolutional Neural Network PhysioNet MIT-BIH dataset Shallow CNN Accuracy: 96.06%
Deep CNN Accuracy: 98.47%

[98] 2021

Heart Failure
Hypertension
Atrial Fibrillation
Peripheral Artery Disease
Myocardial Contraction

Heart Rate
Activity Parameters

GENEActiv and Activinsights Band (Activinsights Ltd.,
Kimbolton, UK) Not Identified To be collected To be provided

[99] 2021 Atrial Fibrillation Heart Rate
Respiratory Rate BioHarness 3.0 by Zephyr Support Vector Machines PhysioNet MIT-BIH dataset Sensitivity: 78%

Specificity: 66%

[100] 2021 Atrial Fibrillation
Bigeminy Arrhythmias Electrocardiogram AD8232 Decision Tree Private Data Accuracy > 95%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[101] 2021

Atrial Fibrillation
Atrial flutter
Left Bundle Branch Block Beats
Wolff-Parkinson-White Syndrome
Atrial Premature Contraction
Premature Ventricular Contraction

Electrocardiogram A smart vest equipped with AD8232 ECG Sensor Shallow Wavelet Scattering Network
(ScatNet) PhysioNet MIT-BIH dataset Accuracy > 96%

[102] 2021 Tachycardia
Heart Rate
Respiratory Rate
Blood Oxygen Level

Medical-grade wearable embedded system (SensEcho, Beijing SensEcho
Science & Technology Co Ltd) Long Short-Term Memory Medical Information Mart for Intensive Care

III (MIMIC-III)
Up to 80% accuracy 2 h before onset of
Tachycardia

[103] 2021 Atrial Fibrillation Photoplethysmogram Samsung Galaxy Active 2 Watch Convolutional Neural Network Private Data
Accuracy 91.6%
Specificity 93.0%
Sensitivity 90.8%

[104] 2021 Arrhythmias Electrocardiogram
A chest sticker that is composed from BMD101 ECG sensing device with
YJ33 power supply, BQ24072 as a power source and JDY-30 as a Bluetooth
module

Convolutional Neural Network PhysioNet MIT-BIH dataset Accuracy: 99.83%

[105] 2022
Supraventricular Ectopic Beats
Ventricular Ectopic Beats
Fusion Beats

Electrocardiogram Polar H10

Decision Tree
Gradient Boosting
k-Nearest Neighbors
Multilayer Perceptron
Random Forest
Support Vector Machines

PhysioNet MIT-BIH dataset Best Model Accuracy: 99.67%

[106] 2022
Supraventricular Ectopic Beats
Ventricular Ectopic Beats
Fusion Beats

Electrocardiogram Polar H10

Decision Tree
Gradient Boosting
k-Nearest Neighbors
Multilayer Perceptron
Random Forest
Support Vector Machines

PhysioNet MIT-BIH dataset Best Model Accuracy: 99%

[107] 2022 Heart Failure
Reduced Ejection Fraction Electrocardiogram Galaxy Watch Active & AppleWatch 6 Convolutional Neural Network Private Data Area Under Curve 93.4%

[108] 2022 Atrial Fibrillation Photoplethysmogram
Electrocardiogram

Samsung GalaxyWatch Active 2
Chest ECG Patch Hybrid Decision Model Private Data Average: 67.8%

[109] 2022 Atrial Fibrillation Photoplethysmogram Custom-built device that contains the PPG sensor MAX30102 Convolutional Neural Network Data obtained from Kaunas University of
Technology F1-score: 94%

[110] 2022 Atrial Fibrillation Electrocardiogram Firstbeat Bodyguard 2, Firstbeat Technologies Not Identified Private Data
Accuracy 98.7%
Sensitivity 99.6%,
Specificity 98.0%

[111] 2022 Supraventricular Ectopic Beats
Ventricular Ectopic Beats Electrocardiogram Custom-built device that contains the ECG AFE sensor

Artificial Neural Networks
Decision Tree
K-Nearest Neighbors

PhysioNet MIT-BIH dataset Accuracy: 98.7%

[112] 2022 Atrial Fibrillation Photoplethysmogram Apple Watch Gradient Boosting Decision Tree Private Data Accuracy: 94.16%

[113] 2022 Congestive Heart Failure
Atrial Fibrillation Electrocardiogram AD8232 sensor Random Forest PhysioNet MIT-BIH dataset Accuracy: 85%

[114] 2022 Cardiovascular Risk
Photoplethysmogram
Body Temperature
Activity Parameters

Custom-built device with Pulse Sensor, DS18B20 temperature sensor and
ADXL 1335 as accelerometer sensor

Naïve Bayes
Decision Tree
K-Nearest Neighbors
Support Vector Machines

Kaggle Human Gait Dataset
Kaggle Heart Disease Prediction Dataset Accuracy: 82%

[115] 2022 Cardiovascular Risk
Heart Rate
Respiratory Rate
Blood Oxygen Level

Not identified (WBAN) Enhanced version of Recurrent
Neural Network named ERNN Private Data Accuracy: 96%

[116] 2022 Cardiovascular Risk

Electrocardiogram
Electroencephalogram
Body Temperature
Blood Oxygen Level
Respiratory Rate
Blood Sugar Level

A custom-built device equipped with electrocardiogram sensor,
electroencephalogram sensor, an electro-mammography sensor, an
oxygen level sensor, a temperature sensor, a respiration rate sensor, and a
glucose level sensor

Long Short-Term Memory UCI Cardiac Arrhythmia Dataset
Average Positive Predictive Value: 96.77%
Average Negative Predictive Value: 95.12%
Average Sensitivity: 95.30%
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Table 2. Cont.

Ref# Year Disease(s) Targeted Vital Signs Collected Hardware Employed Smart Model(s) Used Training Dataset(s) Results Metrics

[117] 2022 ST Elevation Myocardial Infarction (STEMI) Electrocardiogram
Motion Data

Custom-built device with 3-axis accelerometer
(ADXL355), 3-axis gyroscope (LSM6DS3) and single-lead ECG sensors Logistic Regression Private Data Sensitivity: 73.9%

Specificity: 85.7%

[118] 2022 Cardiovascular Risk Electrocardiogram
Motion Data

A custom-built device with accelerometers,
Galvanic Skin Response (GSR) and electrocardiograms (ECG) sensors

Mixed Kernel Based Extreme
Learning Machine (MKELM) Private Data Accuracy: 99.5%

[119] 2022 Cardiovascular Risk Heart Rate Wrist Strap & Rohm BH1790GLC-EVK-001 Development board
BH1790GLC Optical heart rate sensor Convolutional Neural Network Simulated Data F1-Score: Up to 99%

[120] 2022
Myocardial Infarction
Dilated Cardiomyopathy
Hypertension

Pulse Plethysmogram PTN-104 PPG sensor
Support Vector Machines
K-Nearest Neighbors
Decision Tree

Private Data
Accuracy: 98.4%
Sensitivity: 96.7%
Specificity: 99.6%

[121] 2022 Cardiovascular Risk Heart Rate
Blood Sugar Level

Heart rate sensor by Sunrom Electronics
Glucose monitor by Medtonic

Naïve Bayes
K-Nearest Neighbors
Support Vector Machines
Random Forest
Artificial Neural Networks

Private Data

Accuracy: 97.32%
Recall: 97.58%
Precision: 97.16%
F1-Measure: 97.37%
Specificity: 96.87%
G-Mean: 97.22%

[122] 2022 Cardiovascular Risk Electrocardiogram A custom-built device composed of ECG sensor (AD8232) and other
components Random Forest UCI Cleveland Heart Diseases Dataset Accuracy: 88%

[123] 2022 Cardiovascular Risk

Heart Rate
Oxygen Saturation Level
Systolic Pressure
Diastolic Pressure

Custom-built soft transducer equipped with MAX30100 SpO2 and HR
monitor sensor Long Short-Term Memory Kaggle dataset (Not Specified) Accuracy > 93%

[124] 2022 Cardiovascular Risk

Electrocardiogram
Blood Pressure
Pulse Plethysmogram
Body Temperature

Custom-built device equipped with ECG sensor, TMP117 temperature
sensor, Honeywell’s 26 PC SMT blood pressure sensor, and a pulse
oximeter

Recurrent Neural Networks UCI Cleveland Heart Diseases Dataset

Accuracy: 99.15%
Precision: 98.06%
Recall: 98.95%
Specificity: 96.32%
F1-Score: 99.02%

[125] 2022 Congenital Heart Disease Electrocardiogram
Seismocardiogram

Custom-built chest wearable sensor equipped with ECG sensor (ADS1291;
Texas Instruments, Dallas, TX) and seismocardiogram sensor (ADXL355;
Analog Devices, Norwood, MA)

Ridge Regression Private Data -
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3.3. Results of Individual Studies

The systems presented in the eligible studies share common features that allow for
easy classification. Contextually, the studies can be divided into three categories, for
example, according to whether the measuring devices used are commercially available or
not. Systems in the first group use components that are not commonly available; these
components were custom-made by the researchers for the study. Systems that use readily
available technology and commercially available devices comprise the second category.
The final category includes studies that used unspecified devices, making it impossible to
determine whether or not they are now available for purchase. The following categories of
systems were formed according to the devices used.

3.3.1. Studies Using Custom-Built Devices

Throughout the analysis of the eligible documents, it was shown that 55 studies built
their own devices using various vital sign sensors, power resources, storage resources,
communications, and other technical components. Within this group, two subgroups
stood out, the first of which did not name all the components used, particularly the sensor
devices, but, rather, stated that they composed their own wearables from sensor devices.
Thus, in [39,41–43,46,48,50,51,54,56,58–62,66,86,88,92,116,118,123], the authors proposed
custom-built wearables with unspecified components. These studies were able to detect
various cardiovascular diseases such as atrial fibrillation, atrial flutter, atrial premature
contraction, atrial tachycardia, cardiac asystole, cardiovascular risk, fusion beats, heart
attack, heart failure, hypertension, myocardial infarction, myocardial ischemia, premature
atrial contractions, and premature ventricular contractions. Vital signs obtained for this
purpose were radial artery audio signal, blood oxygen level, blood pressure, blood sugar
level, body temperature, diastolic pressure, electrocardiogram, electroencephalogram, heart
rate, motion data, oxygen saturation level, photoplethysmogram, respiratory rate, and skin
temperature. In addition, the databases used for training and the performance metrics are
detailed in Table 2.

On the other hand, several studies used commercially available sensors to develop
their wearable devices. In this context, various sensors such as ECG, accelerometer, and
other sensors were used. For example, in [53,73,104,117,125], the ECG sensors ADAS1001,
Shimmer 3, BMD101, ADXL355, and ADS1291 were used in combination with other
materials to build a wearable device that collects records used to detect or predict cardio-
vascular disease. In contrast, the authors in [114] used the DS18B20 temperature sensor and
ADXL1335 accelerometer to develop the desired wearable system. In addition, the authors
in [52,57,65,67,69,71,72,74,75,77,79,81,89,94,100,101,113,122] used the AD8232 ECG sensor
to collect vital signs data. In these studies, as discussed in Table 2, different processing
units, connector modules, and power sources were used to build the wearable device.
Alternatively, in [82,84,95,97], the authors combined different sensor materials with the
AD8232 ECG sensor in their wearable device. Specifically, the authors in [82,95] used the
MAX30100 blood oxygen sensor in addition to the ECG sensor, whereas the authors in [84]
used the ADXL345 triaxial accelerometer, and the authors in [97] used the MAX30102 pulse
oximeter sensor. Other studies also used different ECG sensors, with the authors in [87]
building their portable devices using the “Ternary Second-Order Delta Modulator Circuits”
to acquire ECG data. In the same context, the authors in [111,124] used the sensor ECG
AFE and other tools to build a wearable device capable of acquiring the necessary vital
signs data. Finally, the authors of [109,119] used MAX30102 photoplethysmography and
BH1790GLC optical heart rate sensors in their wearable devices, respectively.

3.3.2. Studies Using Commercially Available Wearable Devices

The other group of studies consists of studies that used commercially available de-
vices. These devices were capable of recording various vital signs such as activity param-
eters, blood oxygen level, blood pressure, blood glucose level, cholesterol level, electro-
cardiogram, electroencephalogram, electromyogram, heart rate, oxygen saturation level,
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photoplethysmogram, pulse plethysmogram, and respiratory rate. Depending on the
type of device used, three categories can be distinguished, namely, wristband devices,
belts, and others. For example, in [45,47,55,68,70,80,85,98,103,107,108,112], the authors
used smartwatches and smart wristbands to record vital signs. In addition, the authors
in [40,44,49,63,64,76,78,83,91,93,96,102,110,120,121] used various wearable ECG devices
such as smart vests and patches. In addition, the authors in [90,99,105,106] used smart belts
to collect ECG data. Overall, the devices used in all the studies mentioned in this section
can be summarized in the following list:

• Alive ECG Heart Monitor;
• Amazfit Health band 1S;
• Apple Smart Watch;
• Bio Clothing One, XYZ life BC1;
• BioHarness 3.0 by Zephyr;
• ECG247 Smart Heart Sensor;
• Firstbeat Bodyguard Chest Patch 2 by Firstbeat Technologies;
• GENEActiv and Activinsights Band by Activinsights Ltd.;
• Glucose Monitor by Medtonic;
• HealthyPiV3 biosensors;
• Heart Rate sensor by Sunrom Electronics;
• IREALCARE2.0 Wearable ECG Sensor;
• Kimbolton, UK;
• Medical-Grade Wearable Embedded System Beijing Sensecho Science & Tech.;
• Wearable device provided by Medicaltech SRL;
• Moto 360;
• NanoPi Neo Plus2;
• Polar H10;
• PTN-104 PPG Sensor;
• Raspberry Pi Zero;
• Rejiva ECG Wearable Sensor;
• Rozinn RZ153+ ECG Monitor;
• Samsung Galaxy Active 2 Smart Watch;
• Samsung Galaxy Active Smart Watch;
• Samsung Gear Wearable Device;
• Samsung Simband 2 Wrist Band Smart Watch;
• Samsung Simband Wrist Band Smart Watch;
• Shimmer ECG Monitor;
• Single-Lead Heart Belt by Suunto Movesense, Suunto, Vantaa, Finland;
• Wrist-Type Pulse Wave Monitor by: Shanghai Asia & Pacific Computer Info. System.

3.3.3. Studies That Did Not Specify the Devices Used

Finally, in a single study, the device used was not specified. The authors in [115]
mentioned only that they used a wide body area network (WBAN) to record respiratory rate
and blood oxygen levels to detect the presence of cardiovascular risk. Their study achieved
96% accuracy in the classification algorithm, demonstrating high feasibility in detecting
CVDs. Unlike some of the studies excluded in the screening phases (see Section 2.4),
this study mentioned that a wearable device was used, but did not specify which device
was used.

4. Results Analysis

Studies that met the criteria for inclusion in this review, or those that specifically ad-
dress the use of smart wearables for the diagnosis, prognosis, or treatment of cardiovascular
disease, contain a wealth of information worthy of further investigation. In the previous
section, the devices used were mentioned. However, to better understand the field, this
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part examines factors such as the year of publication, vital signs collected, diseases treated,
smart models used, datasets used for training, etc.

4.1. Progress with Years

Once the data are extracted from the papers, it is clear that there has been significant
progress in the field of wearables for CVD research over the past four years, with 78% of
the publications published in 2019 or later. During those years, a total of 68 studies were
published (compared to only 19 in 2010–2018). There are nine in 2019, eighteen in 2020,
twenty-one in 2021, and twenty-one in 2022. The number of publications addressing the
use of smart wearables for cardiovascular disease management has jumped, reflecting both
the growing interest in this area and the widespread acceptance of such devices. The data
from this section are shown as a pie chart in Figure 4 below.

Figure 4. Distribution of studies per year.

4.2. Vital Signs in Use

The electrocardiogram (ECG) is used in 69 of the systems described in the articles
to diagnose disease and identify cardiac abnormalities, although many other methods
have been offered. Electrocardiograms are routinely performed to check the health of
the heart and quickly identify potential problems. An electrocardiogram (ECG) shows
the development of the heart’s electrical activity over time. When the heart muscle cells
are electrically depolarized, the heart muscle contracts. An electrocardiogram records
and amplifies this electrical activity over a period of time. Studies have shown that
smart watches such as the Samsung Active and Apple Watch have significant efficiency
in capturing ECG signals, complementing the accuracy of ECGs performed in a doctor’s
office, clinic, or hospital room. In addition, the P wave, the QRS complex, and the T wave
are the three components of the ECG signal. Figure 3 shows the ECG signal in terms of
these components. In a normal electrocardiogram, the heartbeat is detected by [126]:

• PR interval: measured from the beginning of the P wave to the first deflection of the
QRS complex with a normal range of 120–200 ms;

• QRS complex: measured from first deflection of QRS complex to end of QRS complex
at isoelectric line with a normal range of up to 120 ms;

• QT interval: measured from first deflection of QRS complex to end of T wave at
isoelectric line with a normal range of up to 440 ms (though it varies with heart rate
and may be slightly longer in females).

Twenty more measures, including photoplethysmogram, heart rate, and others, were
also employed in addition to ECG in order to identify CVDs. Table 3 below details the
frequency and utilization of these parameters across studies.
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Table 3. Vital signs used in studies with count and percentages.

Vital Sign Count Percentage

Electrocardiogram 69 79.31%
Photoplethysmogram 15 17.24%

Heart rate 13 14.94%
Body temperature 8 9.20%
Respiratory rate 7 8.05%

Oxygen saturation level 5 5.75%
Blood oxygen level 4 4.60%

Blood pressure 4 4.60%
Activity parameters 3 3.45%

Blood sugar level 3 3.45%
Electroencephalogram 3 3.45%
Pulse plethysmogram 3 3.45%

Motion data 2 2.30%
Seismocardiogram 2 2.30%

Audio signal in radial artery 1 1.15%
Cholesterol levels 1 1.15%
Diastolic pressure 1 1.15%
Electromyogram 1 1.15%

Gyrocardiography 1 1.15%
Skin temperature 1 1.15%
Systolic pressure 1 1.15%

4.3. Diseases Targeted

Because a single document may focus on a single disease or multiple diseases, the
number of diseases studied in these publications exceeds 70. Atrial fibrillation (AFib) is the
most commonly studied disease, with 39 of 87 studies addressing it. AFib is the leading
cause of death and morbidity due to stroke, heart failure, thromboembolism, and reduced
quality of life, and accounts for the majority of these cases [127]. Other conditions are also
being studied, including premature ventricular contractions (PVCs), ventricular ectopic
beats, bradycardia, paced beat (PACE), and many others. Figure 5 is a bar graph showing
the number of diseases found in the 87 papers.

Figure 5. Diseases distribution per studies.

4.4. Smart Models in Use

It is well known that several subfields of artificial intelligence are widely used in
different fields. Two of the best-known subfields of AI are machine learning (ML) and
deep learning (DL); the former is described as a set of techniques that allow a machine to
acquire new information and skills through learning, and the latter is a branch of machine
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learning that focuses on algorithms inspired by the structure and function of the brain,
called artificial neural networks [128,129]. The relationship between AI, ML, and DL is
illustrated in Figure 6. However, in the studies analyzed in this review, many machine
learning and deep learning models were used to detect cardiovascular disease. Although
each publication proposes a different method to detect the disease(s), all agree that some
type of algorithm should be used to classify cardiac abnormalities. Convolutional neural
networks, support vector machines, long short-term memories, and decision trees are the
most commonly used algorithms.

Figure 6. Artificial intelligence, machine learning, and deep learning relation.

The intelligent models of machine learning and deep learning are attracting much
attention and are proving to be very practical [130,131] in the healthcare industry. With this
in mind, it is of great interest to analyze the efficiency of these models in detecting CVDs.
However, this task requires separate studies, as this research focuses on smart wearables as
a whole system. This article aims to fill this gap by discussing the four most commonly
used smart models, namely:

• Convolutional Neural Network (CNN): CNN is a kind of deep neural network used to
analyze visual images. These neural networks are modeled after the neural networks
of the human visual system. Neurons are the basic computational unit of a neural
network, just as they are the basic functional unit of the human nervous system. In
the case of convolutional neural networks, instead of normal matrix multiplication,
convolution is used, a special form of mathematical operation. In addition to the
input and output layers, a convolutional neural network has numerous hidden layers
(a neural layer is a stack of neurons in a single row). A neuron in the input layer
receives an input, analyzes it, and performs computations on it, and then transmits
a nonlinear function called an activation function to produce the final output of a
neuron [132];

• Support Vector Machines (SVMs): SVM is a supervised machine learning model for
two-group classification problems that employs classification techniques. An SVM
model is able to classify new data after receiving a set of labeled training data for each
category [133];

• Long Short-Term Memory (LSTM): LSTM networks are a type of recurrent neural
network (RNN) that can learn sequence dependence in sequence predictions. RNNs
contain cycles that use network activations from a previous time step as inputs to
influence predictions at the current time step. These activations are stored in the
internal states of the network, theoretically preserving long-term contextual timing
information. This method allows RNNs to use a contextual window that changes
dynamically over the course of the input sequence. Complex problem domains such
as machine translation, speech recognition, and others require this behavior [134];

• Decision Trees (DTs): A decision tree is a type of supervised machine learning used to
make classifications or predictions based on answers to a prior set of questions. The
model is a type of supervised learning, meaning that it is trained and evaluated on a
dataset that contains the desired classification. Occasionally, the decision tree may not
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provide a definitive answer or conclusion. Instead, it may suggest possibilities from
which the data scientist can make an informed choice. Because decision trees replicate
human thought processes, it is often easy for data scientists to understand and explain
the results [135].

The machine learning and deep learning models utilized in the studies analyzed in
this review were assessed with different performance metrics such as accuracy, specificity,
sensitivity, precision, recall and F1-score. These parameters are explained in detail in the
literature, with the authors in [129] providing a detailed explanation in this regard, for
example. These parameters can be summarized as follows [129]:

• Accuracy: the fraction of predictions that the model predicted right and is calculated
by dividing the number of correct predictions by the total number of predictions.

• Specificity: is the parameter used to calculate model’s ability to predict a true negative
(no cardiovascular diseases in our case) of each category available.

• Sensitivity: is the parameter used to calculate model’s ability to predict the true
positives (existence of CVDs in our case) of each category available.

• Precision: is the parameter used to calculate what proportion of positive identifications
(existence of CVDs in our case) was actually correct.

• Recall: is the parameter used to calculate what proportion of actual positives (existence
of CVDs in our case) was identified correctly.

The performance of models used by each study is detailed in Table 2. Furthermore, the
list of smart models used in smart wearables for the detection of cardiovascular diseases
is mentioned in Table 4 below, along with the count of use of each model. In this context,
and for more details on the potential of machine learning and deep learning models in
predicting CVDs, readers are advised to refer the work of Solam Lee and his colleagues [34],
which targets these models and discusses their feasibility in this domain.

Table 4. Smart Models Used in Studies.

Smart Model Count

Convolutional neural network 23
Support vector machines 20

Decision tree 10
Long short-term memory 10

Random forest 9
K-nearest neighbors 8

Artificial neural networks 5
Naïve Bayes 5

Not identified 5
Logistic regression 4

Multilayer perceptron 4
Recurrent neural networks 3
Elastic net logistic model 2

Gradient boosting 2
Gradient boosting decision tree 2

Neural network 2
A custom model based on thresholding of Shannon entropy 1

Convolution–recurrent hybrid model (CRNN) 1
Deep neural network with a softmax regression model 1

Deep residual network (ResNet) 1
Enhanced version of recurrent neural network named ERNN 1

Gramian angular fields (GAFs) 1
Hidden Markov model 1
Hybrid decision model 1

Layered hidden Markov model 1
Linear regression 1

Mixed-kernel-based extreme learning machine (MKELM) 1
Ridge regression 1

Sequential covering algorithm 1
Shallow wavelet scattering network (ScatNet) 1

Time-synchronous averaging 1
Time-span convolutional neural network 1
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4.5. Datasets in Use

In all 87 publications examined, at least one dataset was used to train the AI model,
and this is consistently the case. In addition, it was noted that certain sources advocate the
use of multiple datasets in the development and evaluation of a model. The PhysioNet
MIT-BIH dataset, accessible through the PhysioNet library of publicly available medical
research data, is the most popular. Of the 87 total studies, 36 used it. Another 25 studies also
used researchers’ private data. Figure 7 below shows a graphical statistical representation
of the frequency of use of datasets. The MIT-BIH Arrhythmia database is the first publicly
available collection of standardized test material for the evaluation of arrhythmia detectors.
The BIH Arrhythmia Laboratory collected these ambulatory two-channel ECG recordings
from 47 patients between 1975 and 1979 and included 48 30-minute samples [136]. The
PhysioNet MIT-BIH Atrial Fibrillation Database, the PhysioNet MIT-BIH Noise Stress Test
Database (NSTDB), and the PhysioNet MIT-BIH Normal Sinus Rhythm Database were
also consulted.

Figure 7. Training datasets in use.

5. Results Discussion

This study systematically collects and analyzes the literature on the use of smart
wearables for cardiovascular disease diagnosis and prognosis. However, there is more
to be said about the studies discussed so far, especially in terms of their effectiveness
and conformity with the latest research areas in artificial intelligence. This topic will be
elaborated and explored in this section.

5.1. Performance, Usability, and Feasibility

To predict CVDs, many tools have been used. The wide range of research is due to
the wide range of vital signs and devices used to achieve this goal. ECG, BP, HR, and
temperature were all reliable predictors of cardiovascular disease. This is evidenced by the
fact that the results of several studies (described in Table 2) showing the use of different
implementations yielded an accuracy rate of over 99%. However, there are several things
to consider when making a final decision on a wearable gadget. The following is a list of
features that would make a smart wearable more practical:

• Noninvasive: the gadget should not penetrate or pierce the skin to collect data;
• Compact: the wearable device should not be bulky or large, as its main purpose is to

monitor health symptoms without interfering with one’s life activities;
• Affordable: the affordability of the device plays a role in how well it fits into every-

day life;
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• Robust: the device should be durable enough to handle cold, hot, humid, or dry
weather, as well as harsh operating conditions such as light scratches or bumps;

• Ease of use: if the hardware used requires little human input, it should have an
intuitive interface;

• Durable power source: the portable device must be powered reliably enough to collect
meaningful data over an extended period of time.

On the other hand, the electrocardiogram (ECG) is considered the most effective
indicator of cardiovascular disease due to its high accuracy in recording the presence of
such disease and its practicality and reliability in detecting it. Conventional ECG signal
acquisition relies on electrodes, which can be uncomfortable to wear during normal daily
activities. Smart watches and wristbands, on the other hand, are quite effective at capturing
ECG signals and are also convenient for a number of other reasons. They are available to
everyone and are the best option as they combine a variety of useful features with accurate
monitoring of heart rate and other vital signs. Commercially available smart watches and
wristbands are cheap and have simple user interfaces. They are small, are not in the way,
and do not limit people’s options. In addition, they are equipped with reliable power
sources that allow them to last for a long time. Finally, their ability to record a wide range
of biometric data makes them an excellent, if not ideal, option for ECG capture devices and
thus for predicting CVD parameters.

5.2. Latest Tech-Trends and Wearables in CVDs

Alternatively, it is interesting to examine whether or not smart wearables used to
control CVD are consistent with current machine learning practices. Several subfields of
machine learning were identified as current research areas, but “Explainable AI”, “Fed-
erated Machine Learning”, and “Multimodal Machine Learning” were most frequently
mentioned. The compliance of smart wearables used to detect CVDs to those topics is
discussed in the following sections.

5.2.1. Explainable AI

The more complex AI becomes, the more difficult it becomes for humans to understand
and reconstruct the thought process of the algorithm. The entire computational process
becomes a so-called “black box”, something that cannot be understood by humans. These
black box models are created from scratch using nothing but the raw data. They are so
complicated that not even the engineers or data scientists who create them can explain
how their artificial intelligence algorithms arrive at their conclusions. Insight into the
reasoning behind an AI system’s results can be very helpful. Being able to explain a
decision can be critical in allowing stakeholders to challenge or change the conclusion,
in meeting regulatory criteria, or in ensuring that the system works as intended by its
creators [137–139].

In this context, and to address the challenges posed by the black-box nature of AI, ML,
and DL models, explainable AI (XAI) is proposed as a viable solution. The goal of XAI is to
make the results and outputs generated by machine learning algorithms understandable
and reliable to human users. The term refers to a method for describing an AI model
along with its intended effects and possible biases. In AI-driven decision-making, it helps
describe the precision, fairness, transparency, and outcomes of the model. When it comes
to bringing AI models into production, a company’s ability to explain the rationale behind
its decisions is critical to building trust with employees and customers. Companies may
take a more ethical approach to AI development if AI can be explained [137–139].

However, it was found that not a single study mentioned above implemented the
explainable AI. While the aforementioned studies were able to achieve high accuracy
in diagnosing cardiovascular disease, it may be difficult to implement such wearable
technologies into the healthcare cycle if people do not know how the models arrive at
such results. In other words, if the results are not explained, the medical community and
patients will not have confidence in them, or at least be wary of adopting them.
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5.2.2. Federated Machine Learning

The importance of protecting sensitive information has been studied for some time,
leading to the development of a variety of protocols for encrypting communications be-
tween participants. Differential privacy [140], k-order anonymity [141], homomorphic
encryption [142], and other approaches have been developed to protect data before they are
transmitted. While several attacks have been uncovered in ML, such as the model inversion
attack [143] and the affiliation attack [144], none of them are foolproof, as they can infer
raw data by accessing the model.

Federated machine learning, often referred to as federated learning (FL), is a novel idea
recently introduced by Google in the machine learning field [145]. The main concept behind
FL is to eliminate the exchange of user data between peripherals. FL is a collaborative,
distributed/decentralized ML privacy-preserving technology that eliminates the need to
transfer data from peripherals to a central server in order to train a model. Instead, the
models are sent to the peripheral nodes, where they are trained on the local data, and then
sent back to the central aggregation node, where the global model is created without the
nodes ever seeing the embedded data. Fortunately, federated learning has emerged as a
powerful response to user privacy concerns, paving the way for the collection of additional
data to train ML models to improve their accuracy and efficiency.

Furthermore, FL enables training models using data from multiple locations that have
data with different structure and composition, also known as data islands, and integrating
the information into a global trained model, improving the efficiency of the models. In
addition, FL enabled “Learning Transfer”, where models can share their knowledge without
having to transfer users’ private data, and made it possible to deal with heterogeneous
data scattered in multiple data spaces containing different attributes. The main concept of
federated learning is explained in Figure 8 below.

Figure 8. Federated machine learning classical structure.

Federated machine learning has shown promising results in the healthcare industry,
as indicated in [146,147]. However, none of the studies included in this review addressed
the integration of federated learning into wearable devices to make accurate predictions of
cardiovascular disease while maintaining privacy. There could be a few reasons for this.
For example, FL is still in its infancy and is still vulnerable to various challenges [148,149].
As a result, these factors may slow down the widespread use of FL in smart wearables in
cardiology. However, integrating federated learning into smart wearables may lead to the
following outcomes:

• Preserving users’ private data, especially health-related data;
• Enabling analysis of data from multiple sources in addition to the vital signs captured

by the wearables, such as the patient’s medical history derived from electronic health
records and the ECG recorded in real time, to provide more accurate results;
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• Building users’ confidence in smart wearables for cardiovascular disease management
and subsequent product adoption.

5.2.3. Multimodal Machine Learning

Multimodal machine learning is concerned with integrating different and divergent
data sources to benefit from complementary information in a single computational frame-
work that takes care of a single task, and follows this rule in the context of machine
learning (ML), a branch of AI. When it comes to predictive capability, the ability to explore
many datasets simultaneously leads to more trustworthy and accurate results, making
multimodal machine learning an area of high efficiency and amazing potential. To de-
termine a single goal, multimodal machine learning combines information from many
modalities [150].

In this context, data fusion is the process of combining information from many
databases. “The process of merging data to improve state estimates and projections” [151]
is a more precise definition of data fusion. The Joint Directors of Laboratories (JDL) Data
Fusion Subpanel concludes that the method of “data fusion” is essential for dealing with
many types of data. This description is supported by the authors in [152], who state that any
process that deals with linking, correlating, or combining data retrieved from one or more
sources to generate improved information is considered a process that employs data fusion.
Because the literature on data fusion is still relatively young, there is no general agreement
on the optimal way to merge disparate datasets. This is especially true considering that
there are four different methods for performing this [151,152]:

• Early fusion: disparate data sources are merged into a single feature vector before
being used by a single machine learning algorithm.

• Intermediate fusion: takes place in the intermediate phase between input and output
of a ML architecture, when all data sources have the same representation format.

• Late fusion: defines the aggregation of decisions from multiple ML algorithms, each
trained with different data sources.

• Hybrid fusion: defines the use of more than one fusion discipline in a single deep
algorithm.

The approaches to data fusion defined above are illustrated in Figure 9 below. In
addition, none of the smart wearable CVD detection studies reviewed here explored the
use of multimodal ML in their algorithms. However, by using this technology, researchers
can evaluate many datasets simultaneously, which greatly improves the accuracy of their
results. Multimodal ML allows researchers to analyze medical imaging data such as MRIs,
ECGs, and EHR data, giving the public more confidence in the accuracy of our AI models.

Figure 9. Data fusion different approaches.
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6. Challenges and Future Perspectives

Despite the significant role that smart wearables play in the detection of cardiovascular
disease, several issues may arise with their use. In addition, the introduction of new
artificial intelligence tools and concepts presents many new opportunities to improve the
management of heart disease. In this section, challenges and future prospects are discussed
to help future studies select starting points for future investigations.

6.1. Challenges

The following are the most common challenges faced by smart wearables in detecting
cardiovascular disease. These challenges were identified by analyzing the studies listed in
Table 2 and reviewing the literature on smart wearables. Additional information can be
obtained from a variety of sources, including, but not limited to [153–157].

6.1.1. Data Privacy and Confidentiality

AI models built into smart wearable technologies work only as well as the information
they have access to. While the technical structure of the models themselves—including the
cleanliness and suitability of the data—can affect how much data can be used to train AI
models, it is generally accepted that more data can lead to more accurate models. In practice,
however, there are several obstacles that make data collection the most difficult part of
developing AI models. First and foremost is privacy and confidentiality. The security and
privacy of personal data are not only strengthened by people, but also by society in general,
governments, and companies. Numerous laws and regulations have been enacted to
protect personal data, including the European Union’s General Data Protection Regulation
(GDPR) [158], the Chinese People’s Republic of China’s Cybersecurity Law [159], the
People’s Republic of China’s General Principles of Civil Law [160], Singapore’s PDPA [161],
and hundreds of other principles around the world. Although these regulations help
protect private information, they pose new challenges to the traditional AI data processing
model to varying degrees by making it more difficult to collect data to train models, which
in turn makes it more difficult to improve the accuracy of model performance.

6.1.2. Noise and Artifacts

The noninvasive nature of vital signs collection by smart wearables leaves the record-
ings open to a greater amount of background noise, known as “artifacts”. Artifacts are
unwanted signals or signal distributions that distort the actual signal and contribute to
the noise in the data, degrading the quality of the data and reducing the performance and
accuracy of the smart models. Artifacts can be divided into two categories, depending on
where they originate: intrinsic artifacts, which come from the monitored body itself, and
extrinsic artifacts, which are caused by the monitored person’s external environment. The
origin of artifacts can be divided into many categories [162,163]:

• Intrinsic artifacts (also known as physiological or internal artifacts):

– Ocular artifacts: created by ocular motions including blinking, horizontal and
vertical eye movement, fluttering of the eyes, etc.;

– Muscle artifacts: caused by things such as sneezing, swallowing, clenching,
talking, lifting the eyebrows, chewing, contracting the scalp, etc.;

– Respiratory artifacts: resulting from an electrode’s movement while breathing,
which might manifest as slow, repetitive EEG activity;

– Sweat artifacts: result of sweat’s electrolyte concentration shifts on the electrode’s
surface after contact with the scalp and are obtained in wearables that collect vital
signs that are related to skin.

• Extrinsic artifacts (also known as extra-physiological/external artifacts):

– Motion artifacts: EEG monitoring systems are susceptible to motion artifacts due
to the subject’s physical movement;
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– Environmental artifacts: these include, but are not limited to, loss of electrode-to-
scalp contact, electrode rupture, electromagnetic wave interference from nearby
electrical or electronic equipment, etc.

6.1.3. Data Diversity and Heterogeneity

Research in the field of medicine has shown that the use of multiple vital signs
may be more helpful in detecting a disease than the use of a single vital sign. Therefore,
combining multiple vital signs in the analysis process could allow for more accurate
prediction of cardiovascular disease. Combining ECG signals with medical history data
from the electronic health record (EHR) and medical images such as magnetic resonance
imaging (MRI) is a robust example of multiple vital signs that can be analyzed together to
predict cardiovascular disease. However, these data differ in their nature and structure, or
even in the devices used to acquire them. More specifically, ECG data are usually stored
in the form of real numbers, while EHR data may be in the form of clinical reports, health
tests, or other forms, and MRI images are usually stored in different image formats. In this
context, classical machine learning models such as support vector machines are usually
well suited for linear data, but it is well known that images can be analyzed with deep
learning algorithms such as convolutional neural networks. Therefore, it is a difficult task
to analyze these data together given their different formats and structures, even if it is more
practical for disease detection.

6.1.4. User Technology Adoption and Engagement

One of the major barriers to the use of smart wearables to detect and predict cardio-
vascular disease is user acceptance, adoption, and participation. Wearing such sensors is
received differently by users due to concerns about privacy, discomfort, ethics, and other
contextual factors.

Therefore, we may characterize the difficulties as the following set of study questions.
In addition, those questions are illustrated in Figure 10 below (the symbol RQ in the list
below and in Figure 10 refers to the term “research question”):

• RQ1: Disclosure of subject data may be limited by law. If we utilize these records,
how can we ensure that no one’s privacy will be compromised?

• RQ2: There are several potential noise and interference contributors to CVDs detection
data. The question is, how should specialists deal with noisy data and artifacts?

• RQ3: The identification of CVDs may be enhanced by analyzing a variety of data. Can
AI models handle the analysis of diverse datasets?

• RQ4: Did smart wearables earn enough confidence in the field despite their excellent
accuracy in detecting CVDs, and how can this be improved?

Figure 10. Research questions arising from analysing usage of wearables in CVDs detection.
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6.2. Future Perspectives

Cardiovascular disease detection through smart wearables is now a reality. With
the global incidence of this disease and the deaths associated with it, there is a growing
need to improve the overall process and take more measures for proactive and preventive
methods. More research and development on smart wearables is needed to keep up with
the increasing demand.

6.2.1. Preserving Data Privacy and Confidentiality

Newer machine learning methods offer new opportunities to protect the privacy and
security of user data. One potential technique that can help solve privacy problems is
federated learning (FL). Federated learning, a type of collaborative decentralized machine
learning that protects user privacy, does not require data to be transported from edge
devices to a central server [149,164–167]. It is expected that using FL to identify CVDs will
make it easier to collect more data, which in turn will improve detection accuracy.

6.2.2. Artifacts Removal and Data Readiness

Before proceeding with signal processing, it is important to eliminate or reduce all artifacts,
both extrinsic and intrinsic, that might interfere with the signals. References [163,168–170]
detail some of the existing implementations that perform this function. In order to clean
and preprocess the data to improve the accuracy of cardiovascular disease detection, it is
necessary to investigate the automation of noise reduction.

6.2.3. Analysis of Heterogeneous and Diverse Data

Multimodal machine learning is a good solution that allows analyzing data with
alternative structures and formats. Since current cardiovascular disease detection and
prediction implementations usually analyze only one type of data structure (linear, im-
ages, etc.), multimodal machine learning allows analyzing multiple types of data simulta-
neously to improve the overall result of the intelligent model. Learning a complex task by
analyzing data from multiple sources and using complementary knowledge are examples
of what multimodal machine learning is capable of. In this context, multimodal datasets
are described as information with different structures and formats that come from a variety
of sources, each of which contributes a unique set of information (or “modality”) to the
overall dataset. Therefore, using the concept of multimodal ML to analyze different data
such as ECG, EHR recordings, and MRI images can help increase the accuracy of CVD
detection and prediction.

6.2.4. Raising Trust by Enhancing Accuracy, Privacy, and Explainability

Given the prevalence and devastating impact of cardiovascular disease, there is a
growing need for practical and viable solutions that can help detect and even predict the
onset of these conditions. Consequently, smart wearables have proven to be viable in this
area, providing both continuous and real-time monitoring without interfering with daily
life routines. However, there is a great need to improve the prediction of CVDs using smart
wearables, whether through increased accuracy, better explainability, or by addressing
other issues that hinder their adoption by users, such as privacy and ethical constraints.
This is a well-known fact that does not need further explanation, because when it comes to
health, users are only willing to use tools that are highly accurate, understandable, private,
and reliable. In other words, greater trust and wider use of smart wearables as tools for
predicting CVDs will result from improved accuracy, reliability, feasibility, privacy, and
explainability of such devices.

For this reason, we may summarize the outlook into the following trending research
topics. In addition, those research topics are illustrated in Figure 11 below (the symbol TR
in the list below and in Figure 11 refers to the term “trending research topic”):

• TR1: To protect user privacy, smart wearables should employ federated learning for
CVDs detection;
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• TR2: The use of automated artifact and noise removal methods to mitigate the effects
of interference and background noise;

• TR3: Improve the quality of recognition models by analyzing data from numerous
modalities and sources using multimodal ML techniques;

• TR4: Raising precision, explainability, and adaptability will help build users’ confi-
dence in smart wearables.

Figure 11. Research topics that may serve as solutions to the challenges in the domain.

Figure 12 below summarizes the challenges–future solutions relationship and illus-
trates how future views may act as potential solutions in the domain, all of which can assist
to enhance research into the use of smart wearables in the detection of CVDs.

Figure 12. Challenges–future solutions chart.

7. Conclusions

Recently, the use of smart wearables in the diagnosis and prediction of cardiovascular
disease has received increasing attention. This is partly due to the technological potential
of smart wearables and partly due to the data processing power of artificial intelligence
and its derivatives, machine learning and deep learning. In this research, we thoroughly
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investigated the use of smart wearables to treat fatal heart diseases. The review of the
research area showed the high practicality and effectiveness of such methods, reflecting
the growing interest that has surged in recent years. However, given the challenges and
limitations discussed in this review, there is a large window for improvement that smart
wearables should undergo to prove their feasibility and reliability. Increasing accuracy,
automating noise reduction, solving privacy issues, dealing with heterogeneity, and improv-
ing explainability are interesting topics that should be considered when trying to promote
the use of smart wearables in the management of CVDs. As a result, this review provides
a brief overview of a number of relevant topics that can be used as recommendations for
further research.
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Abstract: Today’s world is changing dramatically due to the influence of various factors. Whether
due to the rapid development of technological tools, advances in telecommunication methods, global
economic and social events, or other reasons, almost everything is changing. As a result, the concepts
of a “job” or work have changed as well, with new work shifts being introduced and the office
no longer being the only place where work is done. In addition, our non-stop active society has
increased the stress and pressure at work, causing fatigue to spread worldwide and becoming a
global problem. Moreover, it is medically proven that persistent fatigue is a cause of serious diseases
and health problems. Therefore, monitoring and detecting fatigue in the workplace is essential to
improve worker safety in the long term. In this paper, we provide an overview of the use of smart
wearable devices to monitor and detect occupational physical fatigue. In addition, we present and
discuss the challenges that hinder this field and highlight what can be done to advance the use of
smart wearables in workplace fatigue detection.

Keywords: smart wearables; occupational fatigue; fatigue detection; smart health; productivity
management; heart rate variability; diseases prediction

1. Introduction

Our world has recently been changing at a fast pace. Several global events have
clearly impacted many areas of our lives. For example, the improvement of information
and communication technologies (ICT) has changed many of our concepts, such as ed-
ucational habits, business processes, entertainment methods, health services, and much
more. Nevertheless, some events have had a negative impact on the global economy
and labour market, such as the 11 September attacks, the 2008 economic crisis, and more
recently, the COVID-19 pandemic. Whether it is due to technology having increased the
pace of work or economic stress forcing people to work more to adapt, or that working
life has changed, the pace of business has increased, or work has become more intense
and faster, is yet to be determined [1–8]. In addition, the concept of the “24/7 society”
has also increased time pressure. The need to increase productivity requires the working
hours to be extended, which has lengthened the average working day and shortened the
average recovery times [9]. In addition, the introduction of rotating shifts has contributed
to disrupting the biological clock and circadian rhythms of workers. Therefore, fatigue,
sleep deprivation, and psychosocial stress are considered the main consequences of this
increased work intensity and time pressure [10].
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1.1. Fatigue Definition(s)

Despite its severity and health significance, and although the term fatigue has been
extensively studied recently, it is used in many different meanings and there is currently no
single accepted definition [1]. For example, the authors of Ref. [11] defined it as “a reduction
in physical and/or mental performance as a result of physical, mental, or emotional exertion
that may affect virtually all physical abilities, including strength, speed, reaction time,
coordination, decision making, or balance”. However, Ref. [12] described it as a state that
fluctuates between alertness and drowsiness, whereas Ref. [13] defined it as a state of
the muscles and central nervous system in which prolonged physical activity or mental
processing, in the absence of adequate rest, results in insufficient capacity or energy to
maintain the initial level of activity and/or processing. In addition, Ref. [14] defines
fatigue as a decreased capacity or motivation to work that is accompanied by feelings
of tiredness and sleepiness. Despite the differences between definitions, all agree that
fatigue is associated with or is itself a lack of activity and motivation. Researchers often
distinguish between acute and chronic fatigue [15]. Acute fatigue is clearly due to a single
cause, occurs in healthy people, is considered normal, sets in quickly, and lasts only a short
time. Chronic fatigue, on the other hand, is known to have multiple, additive, or unknown
causes, occurs regardless of activity or exertion, and, according to the author, usually
cannot be eliminated by common means [16]. In addition, researchers distinguish between
different types of acute fatigue, such as: Occupational physical fatigue, occupational mental
fatigue, occupational heat stress, occupational noise stress, and others [17]. Occupational
physical fatigue, which is the subject of this article, is thus defined as the work-related
physical fatigue due to various causes that can be divided into two groups: work-related
and person-related causes and contributors [18].

1.2. Fatigue Is Silent—Never Underestimate It

Fatigue has become a commonplace and almost universal feature of our modern lives.
Increasing fatigue has led to sleep problems and has gradually entered standard disease
patterns [1]. Although acute fatigue has identifiable causes and is considered normal, it
can become pathological if it persists. The consequences of fatigue can range from mild,
infrequent symptoms to severe, disabling symptoms, and even lead to chronic fatigue
syndrome [19]. Consequently, it is important to track fatigue, not only because of its
potential consequences, but also because individuals may not accurately assess their fatigue
level, which requires immediate or real-time measurement [20]. Moreover, this real-time
measurement and assessment is necessary because physicians may erroneously conclude
during routine field examinations that fatigue measured in the field is not severe and will
not lead to certain illnesses [14].

1.2.1. Health Consequences

Studies and research have shown that fatigue is not only widespread in almost all
sectors of the economy, but that there is also a direct relationship between occupational
physical fatigue and various diseases. For example, it has been demonstrated in Refs. [21,22]
that prolonged physical fatigue can weaken the immune system and cause chronic fatigue
syndrome. In addition, studies have shown that 33% of all work-related musculoskeletal
injuries and illnesses in the construction industry in the United States are due to fatigue
and overexertion [23]. Similarly, Refs. [24–26] have also found that physical fatigue is
a leading cause of work-related injuries in the oil, gas, and construction industries. In
addition, fatigue is considered particularly dangerous where work safety is of outermost
importance, such as in public transportation, health care, and other fields. In addition,
numerous studies have found a direct relationship between occupational physical fatigue
and disease. For example, in Refs. [27,28], the authors mentioned that fatigue can lead
to one or more serious, critical, and fatal diseases. Figure 1 below shows some of the
diseases that can be caused by the accumulation and persistence of occupational physical
fatigue [10,14,24–31].



Sensors 2022, 22, 7472 3 of 25

Figure 1. Diseases caused by occupational physical fatigue.

1.2.2. Fatigue and Cardiovascular Diseases

The most critical concept lies in the fact that studies have proven that there is a direct
relationship between occupational physical fatigue and heart disease. This relationship
reaches a level of causality, as persistent fatigue is confirmed as a direct cause of future heart
diseases, or so-called Cardiovascular Diseases (CVDs) [29–31]. More disturbingly, CVDs
are considered the most deadly diseases, causing the most deaths and disability-adjusted
life years (DALYs) worldwide [32,33]. In this context, numerous studies have discussed
the relationship between fatigue and the cardiac system, showing that haemodynamic
correlates, decreased indices of stroke volume and cardiac output, hypertension, myocardial
infarction, cardiac arrest, and acute myocardial infarction are all consequences of prolonged
acute fatigue [10,14,28,34–52]. This causal relationship makes occupational physical fatigue
in the workplace intolerable as it causes one of the most dangerous diseases—cardiovascular
diseases. Therefore, solutions are needed to control fatigue and avoid deterioration of the
health of the workers.

1.3. Detection of Occupational Physical Fatigue

Fatigue is a health symptom to watch out for, and its presence should not be underes-
timated. As mentioned previously, the presence of fatigue can be considered normal, but
its persistence is a dangerous alarm signal for critical health situations. For this reason,
instruments for measuring fatigue are not new concepts, as numerous attempts to detect
fatigue have already been developed and used [53]. For example, subjective questionnaires
were developed in the early 1990s to quantify physical fatigue in the general population,
as proposed in Refs. [54,55], and, later, similar attempts were made with the same goal.
However, because no standardized scale was developed to assess physical fatigue, different
scales were used to measure fatigue, which made it impossible to compare the results of
different studies. In addition, the subjective questionnaire technique, although considered
a low-cost instrument, is subject to recall errors, is considered intrusive because it takes
up workers’ time and attention, and, most importantly, is unable to capture fatigue or
its consequences in real time. To overcome all the above limitations of the questionnaire,
researchers have attempted to collect and analyse various vital signs to detect the presence
of fatigue.
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Detection by Vital Signs

The need to accurately detect physical fatigue in real time requires monitoring and
tracking of some vital signs and biomarkers such as heart rate, heart rate variability (HRV),
skin temperature, electroencephalogram (EEG), electromyography (EMG), jerk metrics, and
others [17,18,53,56,57]. However, some studies have shown that fatigue has no significant
effects on simple measures such as heart rate or blood pressure [14]. Therefore, EEG
is the most commonly-used signal to analyse a person’s level of relaxation and fatigue.
However, EEG is measured with equipment that restricts the worker’s activity and is
therefore considered invasive. Accordingly, other alternatives are crucial to detect physical
fatigue using vital signs without restricting the worker’s activity and movement, such as
the nocturnal autonomic nervous system (ANS) activity. ANS activity is detected using
heart rate variability, motion, and sleep data [19,20,58–60]:

• Heart rate variability (HRV): is an analysis of milliseconds variations in the intervals
between heartbeats and reflects the build-up of self-regulatory forces in the body while
performing a stressful task [19];

• Motion data: consists of the number of steps, acceleration, rotation, and other parame-
ters and is necessary to improve the accuracy of fatigue detection [20];

• Sleep data: it is proved that there is a bidirectional relationship between fatigue and
sleep, where the lack of sleep increases the feeling of fatigue and increasing fatigue
leads to sleep problems [20].

In this context, analysis of heart rate variability data is an efficient method to detect
fatigue in different populations. In particular, low parasympathetic activity has been
associated with the diagnosis of fatigue and burnout [61]. This is possible because HRV
mimics the build-up of self-regulatory forces in the body during stressful activities with
high mental or physical workload. Parameters extracted from HRV data and analysed
to detect fatigue are divided into three main groups: time domain parameters, frequency
domain parameters, and non-linear parameters [19,62–71]. These parameters are presented
and explained in Table 1 below.

Time-domain parameters are used to calculate the amount of variance in measure-
ments of the interbeat interval (IBI), which is the period between successive heartbeats.
Time domain parameters can be expressed in original units, or as the natural logarithm (Ln)
of the original units. On the other hand, the frequency domain parameters evaluate the
absolute or relative power distribution in the frequency bands: very low frequency (VLF),
low frequency (LF), and high frequency (HF). Finally, the nonlinear parameters allow to
measure the unpredictability of a time series [19,71];

In addition, In Table 1, the two terms NN Intervals and RR Intervals are used. The
RR interval signifies the time between two successive heartbeats, measured from peak
(R) to peak (R) on the QRS complex, which is the combination that represents ventricular
depolarization of the heart and is composed of Q wave, R wave, and S wave. However, the
NN interval denotes the RR interval data but with added filtering to eliminate the artefacts
and noise that make some RR intervals unreliable [19,71].
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Table 1. Heart rate variability parameters.

Group Parameter Unit Description

Time domain
parameters

Mean NN (ms) Mean NN ms Mean of NN interval

SDNN (ms) Standard deviation of NN intervals

RMSSD (ms) Square root of the mean squared
differences of successive NN

intervals

pNN50 (ms) Proportion of interval differences of
successive NN intervals greater

than 50 ms

Frequency domain
parameters

VLF (ms2) Power in very low frequency range
(0–0.04 Hz)

LF (ms2) Power in low frequency range
(0.04–0.15 Hz)

HF (ms2) HF ms2 Power in high frequency
range (0.15–0.4 Hz)

LF/HF (ratio) Ratio of LF over HF

Non-linear
parameters

SD1 (ms) Standard deviation of points
perpendicular to the axis of line of

identity or standard deviation of the

successive intervals scaled by
√

1
2√

1
2 var(RRn − RRn+1)

SD2 (ms) Standard deviation of points along
the axis of line of identity, or√

2SDNN2 − 1
2 SD12

SD1/SD2 (ratio) Ratio of SD1 over SD2

1.4. Main Contributions of This Article

This article addresses the use of smart wearables in the detection of occupational
physical fatigue. Since there are already several reviews on the use of smart wearables for
fatigue detection, the topic presented here is a new one. To our knowledge, previous articles
either discussed the use of wearables to detect fatigue in general without distinguishing
between categories, or addressed other categories such as mental or cognitive fatigue, so
the topic of this review is new. Therefore, the main contributions in this article can be
summarized by:

• Discussing the use of smart wearables to detect and monitor occupational physical
fatigue, which is a new topic, as indicated by:

– Presentation of different devices/models used in this field;
– Listing the current state-of-the-art of implementation of smart wearables for

occupational physical fatigue detection, classified by the type of device used
(custom-built vs. commercially available devices), and the vital signs collected;

– Naming the artificial intelligence smart models that were embedded in the smart
wearable systems and that were used to analyse the subjects’ data;

• Investigating the use of smart wearables to predict cardiovascular diseases in the
workplace and how these devices can be used to help maintain both worker health
and company productivity;

• Comprehensively indicating the challenges that may hinder progress in the use of
smart wearables in the workplace and what future prospects can be targeted to
overcome these issues.



Sensors 2022, 22, 7472 6 of 25

Throughout the article, Section 2 discusses the definition, history, and classification of
smart wearables. Then, Section 3 explains the use of smart wearables to detect physical
fatigue in the workplace. Section 4 presents the challenges that hinder the progress of smart
wearables in this area and identifies future directions that can be pursued to overcome
these issues. A concluding section briefly summarizes the entire article.

2. Smart Wearables: A New Computing Concept

The rapid development of information and communication technologies along with the
improvement of electronics, especially microprocessors, has given rise to a new generation
of tiny, robust, and efficient computing devices, such as smart wearables, which can also
be referred to as smart wearable technology or wearable devices. These devices provide
access to data anytime and anywhere and are heralded as the next generation of ubiquitous
technologies after smartphones [72–75]. Smart wearables are a broad technological field
that now has applications in many areas of our lives. In the following, we define the term
“smart wearables” and provide an overview of the history of wearables. In addition, some
classifications of smart wearables are mentioned below.

2.1. Term Definition

The concept of “Smart Machines” was originally launched by Alan Turing in 1950
when he asked his famous question, “Can machines think?” [76]. This question inspired
the translation of the concept into reality, where researchers around the world worked to
turn computers into intelligent machines. However, the term “Smart” is not uniformly
defined in the literature and is introduced in various ways by different researchers [77].
For example, in Ref. [78], the authors define smart objects by their independence, with the
embedded sensors, processors, and network devices giving them the ability to act according
to their own knowledge. The tools embedded in the smart object allow it to collect data,
analyse it, make decisions based on the results, and even interact with humans. In this
sense, smart wearables can be defined as computers embedded in anything that covers the
human body [79]. Other definitions of smart wearables describe their functionality. The
authors in Refs. [80,81] define smart wearables as devices that are equipped with tools to
collect, store, and even analyse human data, and can be worn by the user at any time to
measure parameters such as personal data, vital signs, locations, environments, movements,
and more.

2.2. Smart Wearables; A Brief History

Smart wearables are defined as a subset of the Internet of Things. The term IoT was
coined in 1999 by Kevin Ashton, who proposed a vision of a fantasy world in which all
devices are equipped with sensors and actuators and connected via the Internet so that
they can interact with each other and with people [82]. However, the entire concept of
smart wearables was known decades before Ashton’s statement. In 1961, Edward Thorp
and Claude Shannon developed a small computer that fit inside a shoe and helped them
cheat at a roulette game. This is considered the first wearable computing device ever
known [83,84]. In the 1980s, Steve Mann designed and built the “EyeTap glasses”, a device
that could project computer-generated images onto one eye and support the user’s visual
perceptions with text information [85]. In addition, in 1996, the U.S. Navy Department
of Defense invested in a project to monitor the vital signs of its soldiers, which is also
considered an important milestone in the development of smart wearables [86,87]. Since
then, researchers have expanded their projects in this field to different areas of life such as
health, fitness, sports, fashion, and even other sectors, and smart wearables have gradually
evolved from invasive, heavy, and huge technologies to more adaptable, compact, and
weightless devices [77].
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2.3. Classification of Smart Wearables

Over the past few decades, more than a thousand smart wearables have been re-
searched. Nevertheless, there is no specific standard classification of smart wearables.
Therefore, the authors in Ref. [88], classified smart wearables into six categories, which are:

• Entertainment: used for Augmented Reality (AR), control devices, and smart gloves;
• Lifestyle: used for video and voice calls or gesture controls;
• Fitness: used for measuring step count, acceleration, heart rate, and body temperature;
• Medical: used for hearing aids, heart monitoring, remote patient monitoring, and

much more;
• Industrial: used for remote and hands-free operations related to industrial and busi-

ness goals;
• Gaming: used for gaming, such as AR devices.

In contrast, the authors in Ref. [89] classified smart wearables by their type rather
than functionality. They illustrated their classification in three groups, which are:

• Watch-type: devices that can receive notifications from smartphones such as text
messages and emails;

• Necklace or Wristband-type: devices that are used to monitor people’s health data in
real time;

• Headmount Display-type: devices that can be used for Virtual Reality (VR) and
three-dimensional gaming.

However, this classification may miss some devices such as electronic patches, health
clothing, and others. Figure 2 below shows some smart wearables that are currently in use
in different medical fields.

Figure 2. Some of the currently available smart wearables.

3. Smart Wearables and Occupational Physical Fatigue Detection

Given its serious consequences, occupational physical fatigue requires consistent and
effective medical intervention, regardless of its causes, burdens, costs, and effects. Artificial
intelligence (AI), such as machine learning (ML), the internet of things (IoT), and other vital
signs measurement and analysis tools promise to increase the effectiveness of occupational
physical fatigue detection devices. Improving the performance of microprocessors, com-
bined with their miniaturization, will help improve fatigue detection to enhance clinical
services and meet the growing demand for healthcare services. This is because, on the
one hand, patients demand faster and more personalized care, and, on the other hand,
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physicians are inundated with data that they need to interpret better, while at the same
time they are expected to be more efficient [90,91].

3.1. Smart Wearables and Fatigue: State of the Art

The growing need for real-time fatigue assessment tools has encouraged researchers to
work on the appropriate solutions. Over the past decade, several smart wearable systems
have been developed to detect occupational physical fatigue. These systems can be divided
into three groups in terms of the devices used. The first group includes implementations
that use purpose-built devices, the second group includes implementations that use com-
mercially available devices, and the third group consists of implementations where the
used devices are not specified.

In the first group, researchers built a variety of devices to monitor vital signs to detect
fatigue. The variety of devices stems from the variety of vital signs that can be tracked to
detect fatigue. For example, in Refs. [92–94], heart rate data were collected. In Ref. [92],
the authors developed a system that can detect different types and degrees of fatigue. The
proposed system consists of a smart vest with integrated textrodes, ECG and motion sensors,
and a real-time mobile application. The vest collected ECG and thoracic electroimpedance
data for this purpose. The system proved to be functional and user-friendly for fatigue
risk assessment. In addition, Ref. [93] presented the use of a smart vest with four inertial
measurement devices (IMU) and a Shimmer-3 ECG sensor was presented to detect physical
fatigue and estimate fatigue levels over time. Once the data were collected, they were
analysed using models based on penalized logistic regression and penalized regression,
respectively. Similarly, in Ref. [94], the authors proposed the development of a smart vest
equipped with a SparkFun heart rate monitor, a Grove Galvanic Skin Response (GSR)
sensor, and an MPU-6050 accelerometer/temperature sensor. The vest collects heart rate
data to detect workers’ level of physical fatigue.

In contrast, the authors in Refs. [95,96] used motion data, proposing a novel, non-
intrusive method for monitoring the physical fatigue of construction workers using com-
puter vision technology. Motion data were collected using a 3D motion capture algorithm
and IMU sensors. The sensors are attached to a smart vest worn by the test subjects and are
monitored by the 3D motion cameras placed in the work area. The captured data was then
analysed using Deep Learning algorithms to detect the presence of occupational physical
fatigue. In addition, Ref. [96] used time series methods to predict physical fatigue. To
achieve their goal, they used ratings of perceived exertion (RPE) and gait data. Data were
collected during simulated manual material handling in the laboratory (Lab Study 1) and
during a fatiguing squat with intermittent walking (Lab Study 2). The devices used for data
collection were IMU, which was strapped around the right ankle, and a smartphone-based
IMU sensor strapped around the left lower leg in each study. Data were then analysed using
five time series models: Naïve Method, Autoregression (AR), Autoregressive Integrated
Moving Average (ARIMA), Vector Autoregression (VAR), and the Vector Error Correction
Model (VECM). Those models are explained later in Section 3.3.

Moreover, eye blinks have also been used as a fatigue indicator. In Ref. [97], the
authors demonstrated an electronic patch consisting of a flexible strain sensor based on
a morphologically modulated laser-patterned film of reduced graphene oxide (LPG) fab-
ricated in a one-step process. The strain sensor was used to monitor human fatigue by
analysing the frequency and duration of eye blinks to determine the fatigue level. Similarly,
in Ref. [98], the authors proposed a system capable of assessing fatigue based on eye blinks.
The device used to monitor the eyes consists of two photovoltaic dye cells. The sensors
were attached to the temple of the glasses and positioned on the side of the eye so that they
do not interfere with the user’s vision. The device records several parameters, including
the frequency, duration, and speed of eye blinking, and then analyses the collected data to
detect fatigue.

Besides, in Ref. [99], the authors presented a custom-built Smart Safety Helmet (SSH)
that can track a worker’s head movements and brain activity to detect abnormal behaviour.
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The helmet consists of an inertial measurement unit and dry EEG electrodes, and is capable
of tracking and analysing a worker’s movements to detect fatigue, high stress, or errors to
prevent and reduce workplace injuries and accidents. In addition, the helmet is equipped
with a small motor that vibrates when risk limits are reached.

In the second group, Ref. [100] offered a new application designed to work with data
collected by a Samsung Gear S smartwatch to detect drowsiness in drivers. The smartwatch
collects ECG data and analyses it using an intelligent fast Fourier transform (FFT) model to
detect drowsiness. The application has two main functions: It reminds drivers to rest every
few hours, and it alerts them to nervousness, which can lead to a risky condition.

Finally, in the third group, the authors proposed in Ref. [101] a novel method for
detecting physical fatigue in the workplace using heart rate signals. The authors did not
specify which device was used to collect the subject’s vital signs. However, the model used
to analyse the data was built using the k-nearest neighbours (KNN) method. The proposed
model provided good results with accuracy, sensitivity, and specificity rates of 78.18%,
60.96%, and 82.15%, respectively.

Alternatively, the implementations of smart wearables for monitoring and detection of
occupational physical fatigue in the workplace can be classified based on the collected vital
signs. In this context, heart rate, motion, eye blinks, and electroencephalogram were the
main biometrics tracked by the existing implementations. Figure 3 shows a classification of
these implementations in terms of the vital signs captured and the devices used.

Figure 3. Occupational physical fatigue detection implementations in terms of the vital sign(s) tracked
and the device(s) used [92–100].

3.2. Smart Wearables in Fatigue; A Brief Discussion

Several devices have been used in the literature to determine physical fatigue in the
workplace. The variety of devices stems from the variety of health biomarkers recorded.
Electroencephalogram, electrocardiogram, exercise, eye blinks, and others are good indica-
tors of the presence of fatigue. This is shown by the good results obtained with the different
implementations that use these indicators. However, there are some elements that should
be considered when selecting hardware for detecting fatigue in the workplace. Below is a
list of features that a smart wearable should have for better feasibility:

• Non-invasive: the device should collect data without breaking the subject’s skin or
invading the body;

• Compact: the wearable should be lightweight and small so that it can be used in the
workplace without obstructing the user’s activities and movements;

• Affordable: the price of the device affects its adaptation at the workplace;
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• Robust: the device should be robust to endure mild, hot, wet, or dry environments and
must even withstand harsh working conditions such as minimal scratches or shocks;

• Ease of use: the hardware used should include an easy-to-use interface if it requires
minimal user intervention;

• Durable power source: the wearable should have a durable power source to ensure
usability for at least one complete work shift to collect significant data.

Knowing that EEG signals are collected by placing small metal discs, also known as
EEG electrodes, on the scalp of the subject, devices that use EEG as a vital sign to detect
occupational physical fatigue are the least practical among the other devices. The device
worn on the head may be heavier, immobilizing, and even more expensive compared
to other devices. On the other hand, eyeglasses that record the blinking of the eyes are
considered to be lighter and more comfortable in terms of movement and activity of the
worker. Moreover, devices that are attached to the body, such as vests, smartwatches,
wristbands, ankle bands, or even electronic patches, are considered the most convenient,
portable, compact, and lightweight devices that can be used in the workplace to detect
physical fatigue.

However, it seems necessary to identify different physical activities associated with
the vital signs studied in order to improve the accuracy and robustness of fatigue detection.
The reviewed literature showed that the methods that examined motion with other vital
signs were promising in terms of accurate fatigue detection. However, it is worth noting
that motion data is best captured at the wrist, hip, or feet, while heart rate data is best
captured at the wrist or chest, as they are in close proximity to the major blood vessels to
check the pulse.

All in all, the smart wearable devices for the wrist, such as the smartbands or smart-
watches available on the market, are the best choice for combining the necessary functions
and efficiency in measuring the required vital parameters, such as HR and motion. Smart
watches and wristbands are commercially available at affordable prices and have easy-to-
use interfaces. They are also compact and non-invasive and do not restrict workers in their
activities. In addition, they come with acceptable power sources, so they can last for at least
an entire work shift. Finally, the ability to capture various vital signs provides them with
great efficiency to act as occupational physical fatigue detection devices in the workplace,
and they are even the best choice.

3.3. Artificial Intelligence and Fatigue: Smart Models and Data Analysis

Artificial intelligence has been widely used in health area recently [102]. The term AI
is explained as a technique that allows a machine to mimic human behaviour and design
a working model of the human brain that has the ability to make decisions based on its
learning [102–111]. In addition, machine learning (ML) is a subfield of AI that uses statistical
techniques to allow a machine to improve itself through learning and experience [102–111].
In addition, deep learning (DL) is a special class of machine learning that has led to the
idea of neural networks by simulating how our brain cells, or neurons, work [102–111].
Figure 4 below shows the logical relationship between deep learning, machine learning,
and artificial intelligence. It is worth noting that DL has recently attracted more and more
attention from health researchers due to its high accuracy, sometimes surpassing human
diagnoses [103–111]. The development of AI smart models has helped to develop accurate
and efficient systems that can detect fatigue in the workplace.
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Figure 4. The relationship between AI, ML, and DL.

The authors in Ref. [93] used penalized logistics and multiple linear regression models
to detect and estimate physical fatigue over time. In addition, they used least absolute
shrinkage and selection operator (LASSO) for the feature selection method. Furthermore, in
Ref. [96], the authors compared the use of five time series algorithms for detecting fatigue
at work. For this purpose, they applied naïve method, autoregression (AR), autoregressive
integrated moving average (ARIMA), vector autoregression (VAR), and vector error cor-
rection model (VECM). Similarly, in Ref. [100], the authors used the fast fourier transform
(FFT) time series algorithm for fatigue detection. However, in Ref. [101], the k-nearest
neighbours method was used as an intelligent model for physical fatigue detection. Table 2
below provides a brief definition of each model.

The information presented in Table 2 shows that it is possible to use vital signs not
only to detect occupational physical fatigue, but also to predict its occurrence and estimate
its magnitude in the near future. While the use of classification algorithms is suitable
for detecting physical fatigue, as in Refs. [93,100,101], the implementation of time series
algorithms is suitable for predicting the fatigue state of workers based on past fatigue data,
as the authors did in Refs. [93,96]. However, the information provided shows that robust
classical machine learning algorithms and the latest deep learning models such as support
vector machines (SVMs), deep convolutional neural networks (DCNNs), long short term
memory networks (LSTMs), and others that promise higher accuracy have not yet been
used for fatigue detection in the literature.

On the other hand, the capability of smart wearables may allow researchers to predict
the productivity of future companies or work trends based on current and past fatigue data
of their workers. Such an estimation requires that productivity data is collected along with
fatigue-related vital signs for further analysis and evaluation. To our knowledge, there are
no artificial intelligence or machine learning models that predict productivity based on
fatigue monitoring and detection.
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Table 2. Artificial intelligence models used in occupational physical fatigue detection.

Ref. Algorithm(s) Used Description Used For Performance

[93]

Penalized Logistic

Logistic regression is a predictive analysis used to
describe data and to explain the association among

one dependent binary variable and one or more
nominal, ordinal, interval, or ratio-level

independent variables. However, penalized
logistic regression requires a penalty to the logistic
model for having too many variables, which leads
to shrinking the coefficients of the less contributive

variables toward zero and is also recognized as
regularization [112,113]

Physical Fatigue
Detection:

Classification
Physical Fatigue

Estimation:
Forecasting

Best Model Results:
Sensitivity: 0.96
Specificity: 0.88

Multiple Linear
Regression Models

Multiple linear regression or known as multiple
regression is a method used in statistics to predict

the likely outcome based on several variables,
plotting the association between these multiple

independent variables and single dependent
variables [114]

[96]

Naïve Method

A method that involves using the previous
observation directly as the forecast without any

change and it can be adjusted slightly for seasonal
data [115,116]

Forecast Physical
Fatigue : Forecasting

Best model: VECM
Mean Absolute

Scaled Error (MASE):
0.43 for a 6-steps

ahead fatigue
forecasting

Autoregression (AR)

A time series model that uses observations from
previous time steps as input to a regression

equation to predict the value at the next time
step [116]

Autoregressive
Integrated Moving
Average (ARIMA)

A time series forecasting model that uses time
series data to either better understand the data set
or to predict future trends based on past values. It

is a form of regression analysis that gauges the
strength of one dependent variable relative to

other changing variables [116]

Vector
Autoregression

(VAR)

A time series multivariate forecasting algorithm
that is used when two or more time series

influence each other [116]

Vector Error
Correction Model

(VECM)

A restricted vector autoregression model intended
for usage with no stationary series that are to be

co-integrated [117]

[100] Fast Fourier
Transform

A computational tool that simplifies signal
analysis by computing the discrete Fourier

transform (DFT) and its inverse. It works by
sampling a signal over a period of time and

dividing it into its frequency components used to
improve the computational efficiency [118]

Detection of
Drowsiness:

Classification
-

[101] K-Nearest
Neighbours

A data classification method that guesses how
likely a data point relates to a group depending on
what group the data points nearest to it are [119]

Physical Fatigue
Detection:

Classification

Accuracy: 78.18%
Sensitivity: 60.96%
Specificity: 82.15%

3.4. Occupational Physical Fatigue as a CVD Prediction Parameter

Occupational physical fatigue at the workplace is a normal phenomenon. Its causes
are well known, such as repetitive movements and physical exertion. However, it can
become pathological when it becomes chronic and leads to various diseases, which in some
cases can lead to death [21–52]. However, since there are no static medical formulas that
link occupational physical fatigue to disease, there are no applications to date that can
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predict the future occurrence of disease due to the presence and persistence of fatigue
in the workplace. However, several attempts have been made by researchers to identify
cardiovascular risks based on heart rate variability analysis, using time domain, frequency
domain, and non-linear HRV parameters for this purpose. Those implementations are
discussed below and are also summarized in Table 3 below.

For example, the authors in Ref. [63] used multilayer perceptron (MLP), radial basis
function (RBF), and support vector machines (SVM) to analyse HRV series in conjunction
with classification schemes to predict cardiovascular risks. The created solution was trained
with data collected by the authors and achieved a maximum accuracy of 96.67%. In addition,
Ref. [65] proposed a solution to help physicians predict sudden cardiac death (SCD) using
smart models based on the k-nearest neighbour (k-NN) and multilayer perceptron neural
network algorithms. The models created were based on the PhysioNet databases “Sudden
Cardiac Death Holter” [120] and “MIT-BIH Normal Sinus Rhythm” databases [121]. The
proposed solution has a high accuracy of 99.73%, 96.52%, 90.37%, and 83.96% for the first,
second, third, and fourth one-minute intervals, respectively. Similarly, Ref. [66] proposed
an instrument to predict SCD two minutes before its occurrence. The smart models were
built using SVM and probabilistic neural network (PNN) and trained with PhysioNet
databases “Sudden Cardiac Death Holter” and “MIT-BIH Normal Sinus Rhythm”. The
presented solution proved its efficiency, with SVM and PNN, achieving a maximum mean
SCA prediction rate of 96.36% and 93.64%, respectively.

Table 3. Implementations of cardiovascular risk prediction using HRV.

Ref. Diseases(s) Detected Model(s) Used Dataset(s) Results

[63] Cardiovascular Risk
Multilayer Perceptron (MLP)
Radial Basis Function (RBF)

Support Vector Machines (SVM)
- Accuracy: 96.67%

[65] Sudden Cardiac Death
(SCD)

k-Nearest Neighbor (k-NN)
Multilayer Perceptron Neural

Network

“Sudden Cardiac Death
Holter” [120]

“MIT-BIH Normal Sinus
Rhythm” [121]

Accuracy: 99.73%

[66] Sudden Cardiac Death
(SCD)

Support Vector Machines
Probabilistic Neural Network

(PNN)

Sudden Cardiac Death
Holter“

”MIT-BIH Normal Sinus
Rhythm“

Mean SCA prediction
rate: 96.36%

[67] Cardiovascular Risk

Support Vector Machine (SVM)
Trees Based Classifier

Artificial Neural Networks (ANN)
Random Forest

”Smart Health for
Assessing the Risk of
Events via ECG“ [122]

Sensitivity: 71.4%
Specificity: 87.8%

[68] Ventricular Tachycardia
(VT) Artificial Neural Network (ANN) - Accuracy: 82%

[69] Hypertension Statistical model called MIL - Accuracy: 92.73%

[70] Arterial Hypertension
(AH) -

World Health
Organization’s (WHO)

MONICA project
data [123]

-

Moreover, in Ref. [67], the authors developed novel models to predict cardiovascular
risk in hypertensive patients. The models are based on data mining algorithms such as
Support Vector Machines, Trees Based Classifier, Artificial Neural Networks (ANN), and
Random Forest to provide an automated tool for risk stratification. The models were built
using the “Smart Health for Assessing the Risk of Events via ECG” database [122], available
on the PhysioNet data repository and achieved a sensitivity of 71.4% and a specificity of
87.8% in risk prediction. In addition, in Ref. [68], the authors proposed a solution to predict
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ventricular tachycardia (VT) one hour before its occurrence by using an artificial neural
network (ANN) created with 14 parameters from HRV and respiratory rate variability
(RRV) analysis. The solution created was trained using data collected by the authors and
was accurate in its results up to 82%. Besides, Ref. [69] used photoplethysmography (PPG)
to estimate HRV and predict the occurrence of hypertension in the studied subjects. A
statistical model called MIL was used for the solution, which was trained using the data
collected by the authors and achieved an accuracy of 92.73%. Finally, Ref. [70] further
provided a solution to determine the effects of workplace stress on the risk of developing
arterial hypertension (AH) in the population. The study used data from the World Health
Organization’s (WHO) MONICA project data [123] and was able to establish an association
between workplace stress and the development of AH.

3.4.1. Cvds Prediction: A Brief Discussion

The state of the art in using HRV to predict cardiovascular diseases or cardiovascular
risk is promising, as it serves as an obvious indication that HRV can be collected and
analysed in the workplace to detect not only the presence of fatigue but also the possibility
of risk for developing CVD in the future. However, because there is no clear formula
that can be relied upon to predict health risk due to fatigue, the relationship between
the prevalence of fatigue and the presence of cardiovascular risk is an area that requires
in-depth investigation. However, this area of investigation may be complicated by several
issues, such as the reliability of the results from a medical perspective. In addition, the
debate about the possibility of biased reasoning in predicting the ability of developing
a cardiovascular risk based on fatigue is a research question that should be studied and
analysed in depth to find an appropriate way to link fatigue and CVDs. However, the
question here is: why CVDs, when it has been proven that fatigue can cause many
other diseases?

3.4.2. Why to Predict CVDs at Workplace

Cardiovascular diseases are known as the most deadly diseases worldwide. The
number of deaths caused by these diseases is the highest in the world, and these numbers
are increasing rapidly. According to a study by the World Health Organization (WHO),
the number of deaths caused by CVDs have increased from 12.1 million to 18.6 million
between 1990 and 2019 [33]. In addition, the burden of CVDs are also being studied from
an economic perspective. For example, the “Medical Expenditure Panel Survey” noted
in a report that costs due to CVDs in the United States alone were an estimated USD
378.0 billion between 2017 and 2018. These costs are not limited to expenditures, which
were estimated at USD 226.0 billion, but also include an estimate of USD 151.8 billion in
lost future productivity, which is considered an extremely high number in governments
economics [124]. These facts encourage working on solutions to predict future CVDs in
the workplace, not only to protect workers’ lives, which are the most sacred, but also to
avoid future productivity losses that will impact the national economy and therefore, in
turn, have negative public health consequences.

4. Challenges and Future Limitations

Despite the large role smart wearables are expected to play in detecting occupational
physical fatigue, several challenges may arise during their implementation. In addition,
the emergence of new tools and concepts in artificial intelligence opens up many ideas that
can be used to improve fatigue monitoring and detection in the workplace.

4.1. Challenges

The following are the most common obstacles encountered when using smart wear-
ables to detect occupational physical fatigue [53,125].
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4.1.1. Data Privacy and Confidentiality

The performance of AI models embedded in smart wearable systems depends on the
availability of data. Although achieving highly accurate models depends on the technical
structure of the models themselves—the cleanliness and readiness of the data, and other
aspects—it is common that the availability of more data to train AI models increases
their accuracy. However, in the real world, collecting data is the biggest challenge in
developing AI models for several reasons: most importantly, privacy and confidentiality.
Not only individuals, but also society, governments, and organizations are strengthening
the protection of data privacy and security. In this regard, several regulations and laws
have been enacted, such as the European Union’s General Data Protection Regulation
(GDPR) [126], China’s Cyber Security Law of the People’s Republic of China [127], the
General Principles of the Civil Law of the People’s Republic of China [128], the PDPA in
Singapore [129], and hundreds of principles that have been legislated around the world.
Although these regulations help protect private information, they pose new challenges to
the traditional AI data processing model to varying degrees by making it more difficult to
collect data to train models, which in turn makes it more difficult to improve the accuracy
of model performance [130–134].

4.1.2. Noise and Artefacts

Smart wearables collect vital signs data in a non-invasive way, which makes the
records more susceptible to many external sources of noise. These noisy data are called
artefacts”, which are unwanted signals or signal distributions that interfere with the actual
signal. Artefacts are divided into two main groups depending on their origin: intrinsic
artefacts, which originate from the monitored body, and extrinsic artefacts, which are
caused by the monitored person’s environment. There are different sources of artefacts that
can be grouped according to their origin [135,136]:

• Intrinsic artefacts (also called physiological or internal artefacts)

– Ocular artefacts: any artefact caused by the movement of the eyeball that in-
terferes with EEG recording, such as eye blinks, horizontal and vertical eye
movements, eye flutter, etc.;

– Muscle artefacts: arise from activities such as sniffing, swallowing, clenching,
talking, eyebrow raising, chewing, scalp contraction, etc.;

– Cardiac artefacts: slow waves that are not recorded on the ECG and are due to
the electrical activity of the heart;

– Respiratory artefacts: caused by the movement of an electrode during inhalation
or exhalation and may take the form of slow, rhythmic EEG activity;

– Sweat artefacts: caused by changes in the electrolyte concentration of the elec-
trode due to sweat secretion on the scalp.

• Extrinsic artefacts (also called extra-physiological/external artefacts)

– Motion artefact: The motion of the monitored body in an EEG monitoring system
produces a lot of motion artefacts;

– Environmental artefact: These can occur when contact is lost between the elec-
trode and the scalp, when the electrode bursts, or when electrical or electronic
devices in the environment that generate electromagnetic waves cause interfer-
ence, etc.

Artefacts and noise affects the quality of data, which therefore reduces the performance
and precision of detecting and predicting occupational physical fatigue.

4.1.3. Data Heterogeneity

As mentioned earlier, fatigue in the workplace can be monitored and tracked with
smart wearables. However, accurate and reliable measurement of fatigue requires the
collection of more than one vital sign, such as heart rate and motion, as discussed in
Section 3.2. In addition, embedding other health data, such as some medical tests extracted
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from electronic health records (EHRs), can improve monitoring results. Nevertheless, it is
not easy to analyse data with heterogeneous structures, especially when they are scattered
in more than one data space. Therefore, integrating data from different modalities or
different measurement devices and merging them to monitor and detect occupational
physical fatigue in the workplace is a challenging task.

4.1.4. Some Vital Signs Limitations

Vital signs are considered the most important indicators for detecting physical fatigue.
However, some studies have shown that there is no significant effect of fatigue on simple
signs such as heart rate or blood pressure [14]. This limits the selection to EEG and HRV or
eye-blinks. Since EEG limits the activity of the worker and eye-blinks cannot be readily
detected in some work environments, HRV is considered to be almost the only biomarker
that can detect occupational physical fatigue without affecting the activity of the worker.

4.1.5. Lack of Standard and Unified Fatigue Classification Scale

Although the preliminary results of using smart wearables to detect work-related
physical fatigue are promising, there is no clear standard or unified scale to refer to when
classifying fatigue. Although some questionnaire-based assessment methods have suc-
ceeded in classifying fatigued individuals into different groups, as in Ref. [137], there is no
unified scale that can be used to measure fatigue when using smart wearables. Therefore,
almost all implementations that use smart wearables to detect fatigue look for a binary
result of whether fatigue is present or not. Furthermore, to our knowledge, no study has
validated the use of physiological measures versus the gold standard for assessing physical
fatigue (i.e., blood lactate levels).

4.1.6. Lack of Knowledge about Clear Thresholds of Vital Signs for Severe Physical Fatigue

One of the major challenges in analysing vital signs data obtained from smart wear-
ables is the lack of information on the unique thresholds of individual vital signs for severe
physical fatigue. Although it is clear that accumulation of physical fatigue over a long
period of time can lead to various health problems, there are no clear thresholds for various
vital signs that indicate extreme fatigue. Furthermore, to our knowledge, there are no
formulas that can be used to predict disease based on fatigue data.

4.1.7. Difficulty Going beyond Fatigue Detection toward Diseases Prediction

In the absence of a unified fatigue scale, clear thresholds for severe fatigue, and unam-
biguous formulas that can link accumulation of fatigue symptoms to disease, smart wear-
ables are being used almost as detectors of physical fatigue in the workplace. Researchers
are trying to explore what role smart wearables can play in predicting diseases caused
by persistent fatigue. However, as far as we know, there are no such implementations, as
most applications that predict diseases analyse HRV or other vital signs independent of
fatigue status.

4.1.8. User Technology Adoption and Engagement

One of the most common challenges hindering the use of smart wearables to detect
physical fatigue at work is user acceptance, adoption, and engagement. User acceptance of
wearing such sensors varies due to issues of privacy, comfort, or other social circumstances.

We can therefore summarize the challenges and obstacles as the research questions
mentioned in the following list. In addition, those questions are illustrated in Figure 5
below (the symbol RQ in the list below and in Figure 5 refers for the term research question):

• RQ1: Subject data are private, and laws may restrict their disclosure. How can these
data be used without violating privacy?

• RQ2: Data collected in the workplace are exposed to various sources of noise and
interference. How should noisy data and artefacts be handled?
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• RQ3: Analysing diverse data can improve fatigue detection. Is it possible to analyse
heterogeneous data with AI models?

• RQ4: There are several biometric parameters that can be used to detect occupational
physical fatigue in the workplace. Which one(s) is/are most appropriate and how can
health characteristics be associated with fatigue duration?

• RQ5: Proactive fatigue prediction can help maintain both worker health and orga-
nizational productivity. Is it possible to use smart wearables to predict illness in the
workplace?

Figure 5. Research questions arising from analysing usage of wearables in fatigue detection.

4.2. Future Perspectives and Research Trends

Smart wearables are already being used successfully to detect and monitor fatigue.
However, given the global prevalence of occupational physical fatigue due to changing
work patterns, such as varied and rotating shifts, there is a growing need to improve the
entire process and take further steps toward proactive and preventive approaches. This
growing need requires additional efforts in the development of smart wearables that go
beyond simple fatigue detection.

4.2.1. Preserving Data Privacy

Regulations, laws, user disapproval, and other factors limit the collection of worker
health data. Traditionally, data collected from subjects should be collected on a local
centralized server or distributed to various decentralized storage and processing devices
to create and train AI models that are then able to detect fatigue. Therefore, the model
created has full access to the subject’s data, whether anonymous or labelled by the subject.
Consequently, the data are not private. However, later machine learning approaches
propose new privacy alternatives. For example, federated learning (FL) is a promising
technology that can help solve privacy problems. Federated learning is defined as a type of
collaborative distributed/decentralized machine learning privacy-preserving technology
in which a model is trained without the need to transfer data from edge devices to a central
server. Instead, the trained models are shared between the edge devices and the central
server, which acts as an aggregation station to build the global model without knowing
the embedded data [130–134]. The use of FL in occupational physical fatigue detection
and monitoring is expected to help overcome the privacy issue and therefore facilitates the
collection of more data, which helps improve accuracy.
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4.2.2. Removing Artefacts and Noisy Data

Extrinsic and intrinsic signal artefacts that obscure the signals should be removed or
minimized before processing the signals. Several implementations have already been made
for this purpose, such as those mentioned in Refs. [136,138–140]. Therefore, automation of
noise reduction is an area that should be investigated to clean and preprocess the data to
improve the accuracy of physical fatigue detection in the workplace.

4.2.3. Analysing Diverse and Heterogeneous Data

Medical studies have shown that precise and accurate assessment of occupational
physical fatigue at work requires the use of multiple vital signs rather than a single indi-
cator. However, with the advent of multimodal machine learning technology, it becomes
possible to analyse data read from or collected by multiple devices. Multimodal machine
learning is defined as the ability to analyse data from multimodal datasets, observe a
common phenomenon, and use complementary information to learn a complex task. Here,
multimodal datasets are defined as data observed with multiple sensors, where the output
of each sensor is called a modality and can be associated with a dataset [141]. Multimodal
ML is based on the concept of “data fusion”, which is defined as “the process of combining
data to refine state estimates and predictions”. According to the Joint Directors of Laborato-
ries Data Fusion Subpanel (JDL), the technique referred to as “data fusion” is a must for
processing more than one type of data [142]. In this context, data fusion is divided into the
following three categories:

• Early fusion: can be referred to as a multiple data, single smart model;
• Intermediate fusion: occurs in the intermediate phase between input and output of

a ML architecture when all data sources have the same representation format. In
this phase, features are combined to perform various tasks such as feature selection,
decision making, or predictions based on historical data;

• Late fusion: defines the aggregation of decisions from multiple ML algorithms, each
of which has been trained with different data sources.

Therefore, embedding multimodal ML into smart wearables is crucial to analyse hetero-
geneous data and thus enhancing the accuracy and precision of detection and monitoring.

4.2.4. Raising Accuracy, Increasing Explainability, and Gaining Trust

In the workplace, it is becoming increasingly important to monitor the health of
workers, especially as work pressures increase due to the changing concepts of work
around the world. Given the need to keep an eye on health without hindering workers in
their work, smart wearables are considered as one of the most practical tools that can be
used. However, there is a need to increase the accuracy of fatigue detection with wearables,
improve the explainability of these tools, and eliminate the black box characteristics of the
models embedded in these smart wearables as much as possible. Increased accuracy and
better explainability will help these devices gain trust and, as a result, be used as health
monitoring devices in the workplace.

4.2.5. Using Smart Wearables as Predictive Tool

Smart wearables have demonstrated their high efficiency in monitoring workers’ vital
signs, such as heart rate and other metrics such as movement and activity data. The ability
to capture such parameters in the workplace and in real time, as well as the high accuracy
with which AI and ML models can analyse this data, opens the door to using all of these
capabilities in predicting health problems based on fatigue data. This will help maintain
the long-term health of the working population.

4.2.6. Monitoring Workers Productivity Linked to Fatigue

Furthermore, the use of smart wearables can be extended to productivity management
in companies. This can be achieved by identifying the relationship between worker fatigue
and productivity. To the best of our knowledge, all previous implementations of smart
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wearables for fatigue detection have not considered worker productivity and have not
addressed the identification of the relationship between fatigue and productivity. Detecting
such a link would also help companies increase revenue by improving work processes
while maintaining the health of their employees.

Therefore, we can summarize the future perspectives into the trending research top-
ics mentioned in the following list. In addition, those research topics are illustrated in
Figure 6 below (the symbol TR in the list below and in Figure 6 refers for the term trending
research topic):

• TR1: Integrate federated learning into smart wearables implementations for fatigue
detection to preserve subject privacy;

• TR2: Automate artefact and noise removal algorithms to reduce the impact of interfer-
ence and noise;

• TR3: Use multimodal ML algorithms to analyse data from multiple modalities and
sources to improve the precision and accuracy of recognition models;

• TR4: Use the multimodal ML to step for analysis of more than one vital sign when
possible, rather than limiting analysis to just one biometric parameter;

• TR5: Increase efforts to build predictive models to predict workplace illnesses for a
win-win for both workers and commercial enterprises.

Figure 6. Research topics that may serve as solutions to the challenges in the domain.

To summarize the challenges-future-solutions, and to help boost the research of the
usage of smart wearables in the detection of occupational physical fatigue, Figure 7 below
presents a link between the current top challenging issues and future perspectives that can
serve as possible solutions in the domain.
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Figure 7. Challenges-future-solutions chart.

5. Conclusions

Our world is changing at an accelerating pace, with almost our entire environment
changing within years and sometimes months. The “when”, “where”, and “how” to
work are also concepts that have changed for various reasons, such as the COVID-19
pandemic, which may not be the last to change our notions of work or increase work
pressure. Consequently, work-related fatigue, also known as occupational physical fatigue,
is spreading and becoming more common worldwide. This increases the need for solutions
that can monitor workplace fatigue to prevent workers’ health from deteriorating, especially
because the accumulation of fatigue can seriously affect workers’ health and even lead
to death, according to some studies. However, smart wearables associated with artificial
intelligence and machine learning technologies have proven their effectiveness in detecting
and monitoring fatigue in the workplace, especially when the relevant challenges can be
addressed with the latest and most advanced technologies. They also promise to act as
predictive tools that can limit the serious impact of fatigue on workers’ health.
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A.2 Reviewing Digital Parameters Used in Fatigue Detec-
tion

During my research journey into the realm of Occupational Physical Fatigue detection, a
unique opportunity emerged to contribute further to the field. I observed a conspicuous gap
in the existing literature—an absence of comprehensive reviews pertaining to the digital pa-
rameters and devices employed in tracking and predicting fatigue. Recognizing the signifi-
cance of this uncharted territory, I was motivated to craft a succinct yet informative review
that addresses this crucial aspect of fatigue management. This additional review serves as an
invaluable resource, shedding light on the digital parameters and devices so far overlooked,
and thereby enriching the discourse on Occupational Physical Fatigue detection. Later, this
article was published in the proceedings of the IHSH’2022 conference:

• Detection of Occupational Fatigue in Digital Era; Parameters In Use (IHSH’2022

Conference)
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Abstract—Workplace fatigue is common and widespread
worldwide and in various occupations. This fact is a result of
changing working conditions such as changing shifts, increasing
work pressure, circadian rhythm disturbances, and other factors
that are common in many industries. Since fatigue has serious im-
plications for workers’ health on the one hand and for companies’
productivity on the other, its detection is of great importance to all
stakeholders. Accordingly, the literature presented in this paper
has been studied in depth to investigate the different parameters
that can be used to detect fatigue in the workplace. In addition,
the tools used to detect these parameters are discussed to help
researchers select the best combination of parameters and tools
to detect fatigue in the workplace.

Index Terms—Smart Health, Workplace Fatigue, Fatigue De-
tection, Diseases Prevention, Parameters, Smart Wearables

I. INTRODUCTION

The development and growth of the tools and techniques
that surround us have greatly changed our lives. Indeed, some
habits have changed accordingly, such as educational routines,
medical services, work and job concepts, entertainment and
much more. Nevertheless, new concepts were also introduced
into our knowledge, such as the ”24/7” active society, which
increased the demand for higher productivity, thus increasing
time pressure and work intensity. Increased productivity led to
longer working hours, which lengthened the average workday
and shortened the average recovery time. In addition, increased
productivity led to higher work demands, circadian rhythm
disruptions, social and societal demands, and inadequate sleep.
All of these changes have resulted in fatigue becoming a
significant problem in modern society. Psychosocial stress

and sleep deprivation associated with fatigue are the main
consequences of increased work intensity [1:3].

A. Fatigue Definition(s)

Despite its prevalence, severity, and intense research, there
is no single definition for the term fatigue [4]. For example, the
authors in [5] defined fatigue as a state that fluctuates between
wakefulness and sleepiness. In addition, in [6], fatigue is
defined as a state of the muscles and central nervous system in
which prolonged physical activity, in the absence of adequate
rest, results in insufficient ability or energy to maintain the
original level of activity. Regardless of the different definitions,
all agree that fatigue is related to or is itself a lack of activity
and motivation. Moreover, researchers distinguish between
acute and chronic fatigue and classify acute fatigue into differ-
ent types, such as occupational physical fatigue, occupational
mental fatigue, occupational heat stress, occupational noise
stress and others. Thus, occupational fatigue is described as
work-related fatigue due to various causes, which can be
divided into two groups: work-related and individual-related
causes and contributors [6:8]. In this article, the parameters
used to detect or predict fatigue are listed and discussed.

B. Fatigue Consequences

Acute fatigue is considered normal, but it can become
pathological if it persists and leads to deterioration of health.
Therefore, it is important to track fatigue because people may
not correctly assess their level of fatigue, and even physicians
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may erroneously conclude during routine examinations that
fatigue is not severe and cannot lead to a specific disease [6].

1) Health Risks: Fatigue in the workplace is common in
almost all sectors of the economy. In addition, studies have
shown that persistent fatigue has various health consequences,
such as weakening of the immune system, musculoskeletal
injuries, and the development of chronic fatigue syndrome
[9:11]. In addition, the health consequences may also result
in more serious diseases, such as: Cardiovascular diseases,
cancer, type 2 diabetes, infectious diseases, obesity, gastroin-
testinal diseases and reproductive problems [12,13].

2) Productivity Minimizing: In addition, fatigue has an im-
pact on worker productivity. Numerous studies have examined
that fatigue is negatively related to productivity levels, showing
that a reduction in fatigue is associated with improved daily
activity and work productivity. In addition, early detection and
treatment of fatigue has been shown to improve productivity
on the one hand. On the other hand, improving working
conditions is a key to reducing musculoskeletal problems
and fatigue and thus increasing productivity [14,15]. Figure
1 below shows a brief summary of the costs incurred by
companies due to fatigue. The data in the figure were provided
by [16].

Fig. 1. Diseases caused by Occupational Fatigue

II. FATIGUE DETECTION IN DIGITAL ERA

Fatigue in the workplace is considered normal, but its
persistence can be a dangerous alarm signal of a critical health
condition. Therefore, tools and methods to detect and measure
fatigue are not new concepts, and several attempts have been
made for this purpose, starting with subjective questionnaires
developed in the early 1990s to quantify physical fatigue,
such as: McCorkle and Young’s Symptom Distress Scale and
Rhoten’s Fatigue Scale and Fatigue Observation Checklist
[17,18]. However, since there is no standard scale to assess
fatigue, it is impossible to compare the results of different
studies. In addition, subjective questionnaires are considered
inexpensive and efficient tools for detecting and quantifying
fatigue, but they are subject to recall errors, are considered
intrusive, and cannot detect fatigue in real time. To overcome

all the above limitations of questionnaires, researchers have
attempted to record and analyze various vital signs to detect
the presence of fatigue.

A. From Subjective Questionnaires to Digitization
The need to monitor occupational fatigue in real time

requires monitoring of some vital signs and biomarkers. Given
the serious consequences of occupational fatigue, rigorous
and effective medical intervention is needed, regardless of
the causes, burdens, costs, and effects. In addition, the rapid
development of information and communication technologies
combined with the improvement of microprocessors has given
rise to a new generation of tiny, robust, and efficient computing
devices, such as smart wearables, also known as smart wear-
able technology or wearable devices. These devices provide
anytime, anywhere access to data and are being heralded as
the next generation of ubiquitous technology after smartphones
[19]. The improvement of smart wearables along with Artifi-
cial Intelligence (AI) and Machine Learning (ML) models has
promoted their use in tracking and analyzing vital signs and
thus in detecting fatigue.

B. Fatigue Detection Parameters
Literature indicates that several parameters can be used to

detect fatigue in the workplace. Nevertheless, there are no
references that list all the parameters that can be used in the
detection of fatigue. In this section, the parameters used in
the literature to detect fatigue are presented, discussed, and
explained.

1) Common Fatigue Indicators: The need for accurate
detection of fatigue at work requires monitoring of some
vital signs such as Heart Rate, Heart Rate Variability (HRV),
Electroencephalogram electroencephalogram (EEG), Jerk met-
rics, and others [20]. However, some studies discuss the
effect of fatigue on simple biomarkers such as heart rate,
necessitating the use of other vital signs for accurate results
[6]. Because EEG is measured with equipment that can be
considered invasive and immobilizing, other alternatives are
needed to detect fatigue without restricting worker movement,
such as Nocturnal Autonomic Nervous System Activity (ANS)
monitored from heart rate variability, movement, and sleep
data [21]. Subsequently, heart rate variability and motion are
the most commonly used indicators of fatigue in the literature.

2) Further Fatigue Detection Parameters: Fatigue in the
workplace has been studied extensively by researchers re-
cently, and numerous implementations have been made to
detect it. Whether using smart wearables or other devices,
many parameters can be used to detect or even predict fatigue.
Therefore, an in-depth analysis of workplace fatigue detection
implementations provides a clear idea of almost all parameters
that can be used to detect fatigue. A thorough literature
review shows that fatigue detection parameters can be clas-
sified into four main categories, namely body movement,
work-related information, personal information, and vital signs
[3,5,6,20:63]. However, further details are discussed below,
with each category broken down and explained with relevant
examples.
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• Body Movement
– Activity

∗ Body Move Acceleration [23,59]
∗ Manual Material Handling [25]
∗ Rating of Perceived Exertion [25,42]

– Gait
∗ Changes in posture/gait [29,30]
∗ Force variability [30]
∗ Gait Parameters [25,60]
∗ Head Gestures [28]
∗ Higher risk of slips, trips, and falls [31,32]
∗ Joint Angles Movement [33,34,36]
∗ Posture and Exerted Force [35]
∗ Stride Length, Height,

Width and Duration [36]
∗ Tremor [37]
∗ Working Postures (standing up, back

bending, squatting) [38]
– Motion

∗ Accelerations and inclination angles [23]
∗ Jerk Metrics [43]
∗ Leg Motion [22]
∗ Body Motion [21,24]
∗ Movement Variability [23]
∗ Walking - Squating - Walking Cycle [25]

• Job Related
– Working Environment

∗ Duration of Continuous Work on One
Task [45]

∗ Equipment Malfunction [45]
∗ Hazardous Materials [45]
∗ Noise and other Distractions [45]
∗ Team Make-Up and Group Size [45]
∗ Environment Temperature & Humidity

[40,42,44,45]
∗ Tools & Standard Operating Procedures

[45]
∗ Type of Work [5,46]
∗ Worker Qualifications and Training [45]
∗ Workload and Time Pressure [45]

– Working Shifts
∗ Breaks During Work [45]
∗ Circadian Adjustment [47]
∗ Consecutive Shifts [48]
∗ Overtime Work [3]
∗ Shift Rotation [46,47]
∗ Shift Type [46,48]
∗ Total Work Time [42,46]
∗ Recovery Time [42,46]

• Personal Information
– Gender

∗ Gender [49]
– Lifestyle

∗ Care Giving Duties [45]
∗ Hobbies [45]
∗ Disengagement From Work [45]
∗ Parents with Infant Children [45]
∗ Social Factors [45]
∗ Traffic and Commuting Times [45]

– Medical History: Acute/Chronic Diseases [50]
• Vital Signs

– Autonomic Nervous System (ANS)
∗ ANS activity [51]

– Brain Signals
∗ Electroencephalography (EEG)

[21,28,52,53]
– Circadian Process

∗ Circadian rhythm [61]
∗ A Dark and Quiet Bedroom [45]
∗ Age-Related Changes in Circadian Func-

tion [54]
∗ Circadian Fluctuations Amplitude [54]
∗ Circadian Adaptability to Altered External

Time Cues [54]
∗ Circadian & Homeostatic

Process [45,54]
∗ Multiple Sleep Latency Test (MLST) [21]
∗ Obstructive Sleep Apnea (OSA) [55]
∗ Sleep Need [54]
∗ Sleep Recovery Speed [54]

– Eye Signals
∗ Eyeblinks [26,27]

– Heart Rate & HRV
∗ Heart Rate [20,22:24,29,30,40,41,42,44,56,62]
∗ Heart Rate Variability [20,21,24,57]

– Inner Vital Signs
∗ Body Temperature [56]
∗ Breathing Rate [41]
∗ Thermoregulatory measures [20]

– Muscles Signals
∗ Electromyography (EMG) [20,34,53]
∗ Surface Electromyographic

(sEMG) [39,43]
– Other Heart Parameters

∗ Cardiac Index [6]
∗ Stroke Index [6]

– Skin Signals
∗ Galvanic Skin Response (GSR) [24,63]
∗ Skin Humidity [56]
∗ Skin Temperature [20,41]

The variety of parameters listed above reflects the variety
of possibilities and the variety of ways that can be used to
detect fatigue at work, which makes its detection more feasible
and accurate, provided that the best parameters are chosen.
The information shows that vital signs, especially heart rate
and HRV, and body movement are the most commonly used
parameters to detect fatigue. However, it also shows that some
parameters that are considered unimportant can lead to fatigue
at work. Having a young child or sleeping in a bright and
noisy bedroom may not seem that significant at first glance
when it comes to fatigue. However, the results shown here are
contradictory, as several negligible parameters can be tracked
to detect or even predict fatigue.

III. PARAMETERS CLASSIFICATION

In the previous section, the parameters were grouped based
on their types. However, the classification can be made ac-
cording to different aspects and points of view. For example,
the equipment used to detect the parameters, detectability,
and other concepts are possible classification criteria for these
parameters. In addition, the parameters can be categorized
according to their criticality, where some can be considered
crucial for fatigue detection and others secondary or com-
plementary. This classification can help researchers in select-
ing parameters when developing real-world fatigue detection
applications. In the following sections, some classification
perspectives are listed and discussed.

A. Parameters Classification in Terms of Devices Used

Advances in electronics and microprocessors have led to
the emergence of new generations of devices that can collect
data. The precise, powerful, intelligent and sensory devices
available today are used in many areas of our daily lives.
Considering the variety of parameters that can be used to
detect fatigue in the workplace, many devices and tools can be
used for this purpose. The analysis of studies on fatigue and
the parameters used to detect and predict fatigue provided a
descriptive overview of the devices that can be used in this
context. These devices are listed in Table 1 below, which
shows where each device was used according to the studies
mentioned therein.
The information in the table shows that smartwatches are the
devices that can detect and record most parameters such as
motion, gait, activity, circadian rhythm, Heart Rate and Heart
Rate Variability, internal vital signs, and skin signals. This
result shows the great potential of smartwatches for fatigue
detection in the workplace. In addition, Inertial Measurement
Unit (IMU) sensors and Heart Rate monitors are also widely
used to detect motion and heart rate, respectively. This fact
also favors the development of wearable devices for workplace
fatigue detection, which is the case in most applications that
combine both IMUs and heart rate monitors to develop cus-
tomized smartwatches or other tools for detecting or predicting
workplace fatigue, as the authors did in [21:23].

TABLE I
DETECTION OF PARAMETERS PER DEVICE

Device Body
Movement

Job
Related

Personal
Info

Vital
Signs

Impedance Cardiography - - - [6]

Smartphone Sensors - [21,38] - -
Inertial Measurement Unit (IMU) Sensors [22,23,25,

26,28]
- - -

Electrocardiogram Electrodes (ECG) - - - [22,53]

Heart Rate Monitors (Shimmer Device, SparkFun Heart
Rate Monitor, POLAR S810i™, Polar Vantage NV™)

- - - [23,24,29,30,
40,42,44]

GROVE Galvanic Skine Response Sensor - - - [24]

Accelerometer Sensors [24,36] - - -
RGB Cameras [58] - - -
Laser-Patterned Reduced Graphene Oxide (LPG) Sensor - - - [26]

Optical Sensors of Dye-Sensitized Photovoltaic Cells - - - [27]

Electroencephalogram
Electordes (EEG)

- - - [28]

Smartwatch [60] - - [61:63]

Video Cameras [29] - - -
Interviews & Questionnaires [29] [30,42] [30,42] [30,55]

MYOTON-3 Device - - - [29]

Gait Mat (GAITRite Platinum) [32] - - -
Inclinometers [33] - - -
Magnetic Field-Based Motion Tracking System [34] - - [34]

Motion Capture System [43] - - -
Physiological Status Monitors (PSMs) - - - [41]

Wireless Surface Electromyography (sEMG) System - - - [43]

Wet Bulb Globe Temperature (WBGT) Monitor - [44] - -
Polysomnographic Studies (PSGs) - - - [51]

MEG Recording Devices - - - [52]

Electromyography Electrodes (EMG) - - - [53]

Photoplethysmography (PPG) Sensor - - - [57]

RadioFrequency Sensors & WiFi Devices [59] - - -
Raspberry Pi Sensors [60] - - -
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B. Classification in Terms of Criticality and Usefulness

Furthermore, the parameters can be classified according
to their criticality and usefulness in detecting fatigue. The
information in Tables 1 and 2 confirms that fatigue is mainly
detected by vital signs, especially Heart Rate and Heart Rate
Variability or by movement-related data such as gait, posture,
and motion. However, some studies suggest combining both
HRV and movement data for accurate and feasible detection
[22].
In addition, other parameters, such as circadian rhythm data,
appear to be important for fatigue detection but cannot be
used alone as a fatigue indicator. Therefore, parameters can
be divided into three groups in terms of criticality: critical,
important, and secondary. The first group contains the pa-
rameters that can be used alone to detect fatigue, the second
group contains parameters that are important for accurate
detection but cannot be used alone for detection, and the third
group contains the parameters that can increase the accuracy
of detection without affecting the results if not used. The
following list classifies the parameters from such a perspective:

• Critical Parameters
– Body Movement

∗ Action
∗ Gait & Posture
∗ Motion

– Vital Signs
∗ Autonomic Nervous System
∗ Brain Signals
∗ Eye Signals
∗ Heart Rate & HRV
∗ Muscles Signals
∗ Other Heart Parameters

• Important Parameters
– Job Related

∗ Working Environments
∗ Working Shifts

– Vital Signs
∗ Circadian Process
∗ Inner Vital Signs
∗ Skin Signals

• Secondary Parameters
– Personal Information

∗ Gender
∗ Lifestyle
∗ Medical History

C. Classification in Terms of detectability

In addition, parameters can be classified based on their
detectability. For example, some parameters can be detected
in real time, such as heart rate and body temperature, while
others can be detected asynchronously, such as the occurrence
of social or economic events. In addition, some parameters can
be collected with digital devices, while others require question-
naires or surveys. Below is a list in which the parameters are
ordered according to their recognizability:

• Real Time vs. Asynchronous Parameters:
– Real Time Parameters

∗ Body Movement
· Activity
· Gait & Postures
· Motion

∗ Vital Signs
· Autonomic Nervous System
· Brain Signals
· Circadian Process
· Eye Signals
· Heart Rate & HRV
· Inner Vital Signs
· Muscles Signals
· Other Heart Parameters
· Skin Signals

– Asynchronous Parameters
∗ Job Related

· Working Environment
· Working Shifts

∗ Personal Information
· Gender
· Lifestyle
· Medical History

• Classification By detectability:
– Collected by Digital Devices

∗ Body Movement
· Activity
· Gait & Postures
· Motion

∗ Job Related
· Working Environment
· Working Shifts

∗ Vital Signs
· Autonomic Nervous System
· Brain Signals
· Circadian Process
· Eye Signals
· Heart Rate & HRV
· Inner Vital Signs
· Muscles Signals
· Other Heart Parameters
· Skin Signals

– Collected by Questionnaires or Surveys
∗ Job Related

· Working Environment
· Working Shifts

∗ Personal Information
· Gender
· Lifestyle
· Medical History

IV. CHALLENGES & FUTURE OPPORTUNITIES

The implementation of fatigue detection in the workplace
has made significant progress recently. However, there are still
many challenges in this area. These obstacles are the subject
of study and the interest of researchers to increase the level of
tools and applications used. There are also great opportunities
to improve fatigue detection, whether through the tools used
or through predictive and proactive measures.

A. Challenges and Limitations

Although there are several parameters that can be used to
detect fatigue, challenges can arise, either from the application
of methods and tools for detection or from the nature of the
parameters themselves. The following are the most common
obstacles encountered in the detection of occupational fatigue
[20,64]:

1) Parameters Selection: The wide variety of fatigue detec-
tion parameters increases the chances of tracking and monitor-
ing fatigue in the workplace. However, it is not an easy task to
collect all parameters at once as it requires different devices
and may not be feasible due to irrelevance of data. Therefore,
a combination of the best parameters should be selected
considering the relationship between the data collected and
the minimum number of devices to be used.
Based on the literature reviewed in this article, a combination
of activity, gait, motion, and HRV would be a feasible and
accurate combination to capture and analyze fatigue detection
[22]. In addition, the collection of circadian process data
along with work environment parameters would increase the
accuracy of detection when added to the previous combination.
Moreover, motion data, HRV, and circadian process data
can be collected with a smartwatch, which minimizes the
number of devices needed to collect such a set of parameters.
Consequently, choosing the best combination of parameters is
critical to improve the feasibility of fatigue detection solutions.

2) Data Usability; Artifacts and Noise: Some devices
record fatigue parameters noninvasively, which makes the
recordings more susceptible to many external sources of noise.
Noisy data are also referred to as ”Signal Artifacts”. These are
unwanted signals or signal distributions that interfere with the
actual signal and are classified into two main groups: intrinsic
and extrinsic artifacts [20,64]:

• Intrinsic artifacts: originate from the body being monitored
– Ocular Artifacts: caused by the movement of the eyeball

and interferes with EEG recording
– Muscle Artifacts: arise from activities such as sniffing and

swallowing
– Cardiac Artifacts: noise due to the electrical activity of the

heart
– Respiratory Artifacts: caused by inhalation or exhalation

while recording vital signs
• Extrinsic Artifacts: originate from the environment surround-

ing the body being monitored
– Motion Artifact: motion while recording vital signs
– Environmental Artifact: like interference with waves from

other electronic devices
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3) Lack of Knowledge about Clear Vital Signs Thresholds:
Another obstacle that complicates the use of these parameters
is the lack of information on unique thresholds of each
vital sign for severe fatigue. And although it is obvious that
prolonged accumulation of fatigue can lead to various health
problems, there are no clear thresholds for various vital signs
that indicate extreme fatigue.

4) Lack of Medical Formulas That Links Fatigue to Dis-
eases: Moreover, despite the fact that medical evidence sug-
gests that fatigue can have serious consequences for worker
health, there are no clear medical formulas that directly link
fatigue to illness. The lack of such a formula hinders the use of
fatigue detection tools that can predict the presence of future
illness based on fatigue data.

5) Stepping Further than Detection Towards Prediction:
Because there is no standard scale for measuring fatigue, no
clear thresholds for severe fatigue are known, and no clear
formulas exist for linking fatigue accumulation to disease,
fatigue-related applications are almost used as indicators of
physical fatigue in the workplace. Researchers are trying to
explore how technological devices such as smart wearables
and Artificial Intelligence can be used to predict illness caused
by persistent fatigue. However, as far as we know, there are no
such implementations and most available implementations that
predict diseases analyze HRV or other vital signs independent
of fatigue status.

B. Future Opportunities

Many measures are implemented to detect and monitor
fatigue. However, as fatigue becomes more prevalent in the
workplace, the need to monitor fatigue and draw conclusions
about its existence and persistence increases. Therefore, addi-
tional efforts are needed beyond simple detection.

1) Raise Accuracy by Widening Range of Collected Data:
Work stress is increasing worldwide for various reasons and
requires fatigue monitoring to avoid its negative effects. On the
other hand, the development of sensors is advancing rapidly,
making it easier to collect the data needed to detect fatigue
in the workplace. Accordingly, the ability to collect data is
becoming easier, which provides the opportunity to collect and
analyze the necessary data and select the most appropriate
parameters according to the results.

2) Merge Fatigue with Both Health and Productivity; A
Win-Win Situation: Monitoring work stress can be beneficial
for both workers and companies, because the relationship
between fatigue and productivity is inverse: when fatigue
increases, worker productivity decreases and vice versa. There-
fore, it seems very important to link information on fatigue
with health and productivity indicators and their analysis in
order to increase companies’ productivity while maintaining
workers’ health.

CONCLUSION

Work fatigue has become a feature of our times and a
common characteristic of workers in various sectors around
the world. Whether it is due to constant changes in working

conditions or other global events, it is worth monitoring and
analysing fatigue in order to maintain worker health while
increasing company productivity. This article provides an
overview of the different parameters that can be used to detect
fatigue in the workplace. The aim is to allow those interested
in this area to choose the best parameters or combine some
of them to achieve the best results in detecting fatigue. In
addition, tools that can be used to expand expectations in
this area were discussed, as well as challenges and future
opportunities.
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A.3 Improved ML Models for Prediction of Cardiovascular
Diseases

Following my exploration of smart wearables in disease management, I transitioned into a
critical area of research aimed at enhancing the predictive performance of Machine Learning
models in Cardiovascular Diseases (CVDs). The gravity of CVDs, recognized as the leading
global cause of mortality, served as a compelling impetus behind this phase of my research.
Leveraging cutting-edge technologies, I meticulously crafted a suite of eight distinct Machine
Learning models designed to predict CVDs. In some instances, these models not only met
but exceeded prevailing state-of-the-art benchmarks, achieving classification accuracy rates
surpassing 91.80
The culmination of this effort was the development and subsequent publication of three com-
prehensive articles. Each of these articles delves into the nuances and outcomes of the respec-
tive Machine Learning models, which collectively constitute a significant stride in the field
of cardiovascular health prediction. These articles found their place in different esteemed
events, reflecting the diverse contexts and audiences that have benefited from the insights and
innovations arising from my research. These events are as below:

• Cardiovascular Events Prediction using Artificial Intelligence Models and Heart
Rate Variability (MobiSPC2022 Conference "Best Paper Award" winner)

• Predicting Cardiovascular Events with Machine Learning Models and Heart Rate
Variability (IASKS-JUSPN Journal / published as an extension for the MobiSPC2022

article)

• Machine Learning Models to Predict Cardiovascular Events from Heart Rate
Variability Data (IHSHS’2022 Conference)
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aDépartement de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1,
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dDean of the Faculty of Science and Arts, Islamic University of Lebanon, Wardaniyeh, Lebanon

Abstract

Artificial Intelligence is exponentially evolving into a solution to many of humanity’s complex problems. In this context, healthcare
is benefiting from this technology and all its branches to improve the level of services offered, including cardiac health services.
Cardiovascular diseases have always been among the most common and deadly diseases around the world, as studies have con-
sistently shown. However, Artificial Intelligence services offer several tools to improve the diagnosis of these diseases and even
predict their occurrence. In this study, four models are created and trained with ”PhsyioNet Smart Health for Assessing the Risk of
Events via ECG Database” to analyze the characteristics of heart rate variability and predict the occurrence of heart diseases and
cerebrovascular events. The results obtained support the confidence in the use of Artificial Intelligence in cardiology, where Support
Vector Machines, Deep Neural Networks, and XGBoost achieved an accuracy of 91.80%, 90.19%, and 89.10%, respectively.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Artificial Intelligence, Machine Learning, Diseases Prediction, Cardiovascular Diseases, Heart Rate Variability

1. Introduction
Cardiovascular Diseases (CVDs) cause the most deaths and are therefore known as the most dangerous disease

worldwide. According to the latest figures from the World Health Organization (WHO) in the field of cardiovascular
diseases, the number of deaths caused by them increased from 12.1 million to 18.6 million between 1990 and 2019,
with deaths accounting for 32% of global mortality in 2019. Moreover, cardiovascular diseases are not only a major
cause of health conflict, but also of economic burden. According to ”Medical Expenditure Panel Survey,” the costs

∗ Corresponding author; Tel.: +1-581-624-9394
E-mail address: mohammad.moshawrab@uqar.ca

1877-0509© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.



232 Mohammad Moshawrab  et al. / Procedia Computer Science 203 (2022) 231–238
2 M. Moshawrab et al. / Procedia Computer Science 00 (2019) 000–000

due to CVDs were estimated to be $378.0 billion in the United States alone between 2017 and 2018, including $226.0
billion in expenditures and $151.8 billion in lost future productivity [1,2].

1.1. Artificial Intelligence in Healthcare: A New Cardiology Era
The deadly cardiovascular diseases urge to find efficient solutions that can help in the early diagnosis of these

diseases and, if possible, even predict their occurrence. Traditional methods to detect these diseases include elec-
trocardiogram, echocardiography, coronary angiography, stress test, magnetic resonance imaging or intracoronary
ultrasound. However, technological developments, especially Information and Communication Technologies (ICT),
and the rise of Artificial Intelligence (AI) and its variants are helping to improve the quality of healthcare services and
thus facilitate the diagnosis of CVDs. Moreover, AI tools are considered the next revolution in cardiology as they help
provide faster and more accurate patient care outcomes. Moreover, AI will soon transform the science of heart health,
as its tools could outperform experts in diagnosing or even predicting CVDs [3,4].

1.2. Heart Rate Variability as a CVD Indicator
Recently, interest in the use of heart rate variability (HRV) as an indicator of cardiovascular diseases has increased,

especially with the development of AI and the data analysis capabilities offered by its branches: Machine Learning
and Deep Learning. Moreover, HRV is known as the beat-to-beat variation in heart rate or the duration of the RR
peak interval, where R is a wave of the QRS complex extracted from a cardiac ECG signal. Knowing that changes in
the autonomic regulation of the heart can be read from the temporal variations in heart rate, the parameters extracted
from HRV data are divided into three main categories: Time domain, Frequency Domain and Non-Linear parameters.
These categories are listed in Table 1 below [5].

Table 1. Heart Rate Variability Parameters.
Group Parameter Unit Description

Time Domain Features

Mean NN (ms) Mean of NN interval
SDNN (ms) Standard deviation of NN intervals
RMSSD (ms) Square root of the mean squared differences of successive NN intervals
pNN50 (ms) Proportion of interval differences of successive NN intervals greater than 50 ms

Frequency Domain Parameters

VLF (ms2) Power in very low frequency range (0–0.04 Hz)
LF (ms2) Power in low frequency range (0.04–0.15 Hz)
HF (ms2) HF ms2 Power in high frequency range (0.15–0.4 Hz)
LF/HF (ratio) Ratio of LF over HF

Non-Linear Parameters

SD1 (ms) Standard deviation of points perpendicular to the axis of line of identity or the successive intervals scaled by
√

1
2

√
1
2 var(RRn − RRn+1)

SD2 (ms) Standard deviation of points along the axis of line of identity, or
√

2S DNN2 − 1
2 S D12

SD1/SD2 (ratio) Ratio of SD1 over SD2

1.3. Prediction of CVDs with HRV; State of the Art
The number of studies on CVDs detection using HRV parameters is increasing rapidly. Researchers are using dif-

ferent AI models to analyze various HRV parameters, and AI has proven its efficiency and accuracy in this domain.
For example, in[6], the authors used the Fast Fourier Transform (FFT) with the Blackman Harris window algorithm
to build a model that analyzes various HRV features to predict the occurrence of Ventricular Tachycardia (VT) in the
short term. In addition, the authors developed an Artificial Neural Networks (ANN) classifier in [7] and trained it
with the ”PhysioNet Spontaneous Ventricular Tachyarrhythmia Database” [8] to predict the occurrence of VT. They
measured performance using several metrics, recording 76.60% 82.9% and 71.4% for accuracy, sensitivity, and speci-
ficity, respectively. In addition, the authors in [9] used Multilayer Perceptron (MLP), Radial Basis Function (RBF),
and Support Vector Machines (SVM) to predict cardiovascular risk. Their best model achieved 96.67% accuracy. In
addition, the authors in [10] used SVM to develop a predictive model to predict cardiovascular risk after Myocardial
Infarction, and their model accuracy was 89%.
Moreover, the authors of [11] created models to predict Sudden Cardiac Death (SCD) using the k-Nearest Neigh-
bor and Multilayer Perceptron Neural Network (MLP) algorithms. They trained their models using the ”PhysioNet
Sudden Cardiac Death Holter database” [12] and the ”PhysioNet Normal Sinus Rhythm database” [13], and their
recorded performance measures were 99.73%, 96.52%, 90.37%, and 83.96% accuracy for the first, second, third, and
fourth one-minute intervals, respectively. Furthermore, in [14], the authors did the same with SVM and Probabilistic
Neural Network (PNN) to predict SCD two minutes before its onset. Similarly, the authors trained their models using
the ”PhysioNet Sudden Cardiac Death (SCD) Holter database” [12] and the ”PhysioNet MIT Normal Sinus Rhythm
database” [13] and SVM and PNN recorded prediction rates of 96.36% and 93.64%, respectively.
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On the other hand, in [15], the authors targeted hypertensive patients and developed novel SVM, Tree-Based Classifier,
Artificial Neural Network and Random Forest models to create an automated cardiovascular risk stratification model.
The authors trained their data using the ”Smart Health for Assessing the Risk of Events via ECG database” [16] and
achieved a sensitivity of 71.4% and a specificity of 87.8%. Furthermore, in [17], the authors developed an Artificial
Neural Networks model that analyzes respiratory rate in addition to HRV features to detect Ventricular Tachycardia
one hour before its onset. The performance metrics of their model were 88%, 82%, and 93% for sensitivity, specificity,
and area under the curve, respectively. In addition, the authors in [18] used a statistical model called MIL, to predict
CVDs based on features of heart rate variability. Their model achieved high accuracy, as they mentioned. Finally,
in [19], the authors created K Nearest Neighbor (k-NN), Decision Tree, Naive Bayes, Logistic Regression, Support
Vector Machine, Neural Network, and Vote and trained them with the ”UCI Heart Diseases Repository” [20]. The
models created were able to predict CVDs with 87.4% accuracy.
In this article, several artificial intelligence models were created to predict Cardiovascular Diseases and events. The
models used are: Support Vector Machine (SVM), Deep Neural Networks (DNN), XGBoost, and Neural Oblivious
Decision Ensembles (NODE). Section 2 below explains the dataset used in this study and the preprocessing steps used
to prepare the data for the models. Section 3 explains the models created and the results obtained with these models
are listed and discussed in Section 4.

2. Materials & Methods
2.1. Dataset

The dataset used in this study is the ”PhysioNet Smart Health for Assessing the Risk of Events via ECG Database”
(SHAREEDB) [16] that is offered by the PhysioNet online data repository. This dataset was collected to investigate
the efficiency of classifying hypertensive patients at higher risk for cardiac and cerebrovascular events using heart
rate variability characteristics. It consists of 139 records of 24-hour Electrocardiographic (ECG) Holter recordings.
Each recording contains three ECG signals sampled at a rate of 128 samples per second with a precision of 8 bits.
The population in which the data were collected consisted of 49 women and 90 men aged 55 years and older. They
were followed up for 12 months to record the occurrence of serious cardiovascular and cerebrovascular events such as
Coronary Revascularization, fatal or nonfatal Acute Coronary Syndromes, syncopal events, Myocardial Infarctions,
fatal or nonfatal strokes, and Transient Ischemic Attacks. During the follow-up period, 17 patients experienced a
cardiovascular event, including 11 Myocardial Infarctions, 3 strokes, and 3 syncopal events. In addition, the dataset
contains some demographic and clinical information about the subjects, such as their age, sex, any vascular events,
values of systolic and diastolic arterial pressure, and others.

2.2. Data Filtering & Preprocessing
The ECG signals provided by the SHAREEDB dataset are collected in laboratories and may be susceptible to a

lot of noise that needs to be removed before the data is passed to the AI models. It is very important to clean the data
and remove the noise to obtain high-quality ECG signals that are then analyzed by the models. The data cleaning and
preparation steps used in this study are summarized below:
• Filtering & Artifacts Removal [21]: ECG recordings are susceptible to noise or interference from various

signals, which can be divided into high and low-frequency noise sources. For example, noise can be caused by
electrode interference, muscle motion interference, channel interference, baseline drift, or power line interfer-
ence. Therefore, ECG signals can be cleaned by using the following filters:

– IIR Notch Filters: remove motion artifacts and/or power line interference
– FIR Filters: clean ECG data and are act on the range of ECG data that is between 1 and 100 hertz

• R Peaks Detection [22,23]: The ECG signal reflects the electrical activity of the myocardium and is divided into
three distinct parts: the P wave, the QRS complex, and the T wave. However, the QRS complex is composed
of Q-wave, R-wave and S-wave. The R-peak is the interval between the onset of the QRS complex and the
peak of the R-wave and can be determined using various algorithms such as Hamilton, Christov, Engelse and
Zeelenberg, Pan and Tompkins, Stationary Wavelet Transform and Two Moving Average. According to the
results in [23], Engelse and Zeelenberg provided the best results in detecting R-peaks, which is why they were
used in this study
• Calculation of RR Intervals: Heart Rate Variability is defined as the RR intervals or the difference between

two consecutive R peaks, which are then calculated using the required equations
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• Outliers Removal: After the RR intervals are detected, the outliers, defined as points that are extremely far
from the mean, are removed and replaced with the mean value
• Extract HRV features: Finally, the HRV features were calculated using the appropriate mathematical formulas.

In this study, 26 HRV features were calculated, and despite the high number of features calculated, the use of
all features gave good results

2.3. Artificial Intelligence Models
Cardiology is defined as the healthcare sector that takes care of heart health, and the use of AI in this field is

growing briskly. AI has demonstrated high accuracy and efficiency in detecting CVDs, and sometimes it can go
beyond professional diagnosis and even be used in predicting cardiovascular diseases instead of detecting them due
to its high ability to analyze cardiac data [24,25]. In addition, AI is known for its various branches that are used in
different areas of life around the world. For example, Machine Learning, Ensemble Learning and Deep Convolutional
Neural Networks are AI branches that were used in this study:
• Classical Machine Learning Algorithms[26]: are algorithms that give computers learning potential by training

them with experimental data and generating models based on these data, enabling them to make decisions in
new situations such as: Support Vector Machines, Naı̈ve Bayes, Logistic and Linear Regression and others.
• Ensemble Learning [27]: is a special branch of ML where its algorithms are based on merging predictions from

different models. Some of these models are XGBoost, AdaBoost, GradientBoosting, LightGBM and others.
• Deep Convolutional Neural Network (DCNNs) [26]: are a type of Neural Networks that are used to analyze

data with a grid-like structure. However, these networks are intended for analyzing multidimensional data such
as images and videos. Using these networks to analyze tabular data may require transforming the data used.
Nevertheless, there are several models that offer transformation of tabular data for use in DCNNs, such as Tab-
Net, GrowNet, TreeEnsemble Layers, TabTransformers, Self Normalizing Neural Networks, Neural Oblivious
Decision Ensembles (NODE), AutoInt, and Deep & Cross Neural Networks (DCNs) [28].

3. Construction of AI Models
In this study, different AI models were used to analyze HRV features to detect heart diseases and events. However,

before passing the extracted features to the models, some data fitting steps should be performed, as explained below.

3.1. Data Adjustment
Considering that of the study population, 139 patients, only 17 developed a cardiovascular event in the 12-month

follow up period, the extracted HRV features show an unbalanced identity, with the majority falling into the ”no
cardiovascular event” class. Because the proportion of this class is 122 of 139, the performance of the prediction
models may be negatively affected, suggesting the application of some data adjustments such as balancing and scaling:
• Synthetic Minority Over-sampling Technique (SMOTE): a data expansion in which new samples are drawn

from existing ones to oversample the minority class
• Preprocessing Standard Scaling: the standardization of characteristics is achieved by removing the mean of

the data and scaling it to a unit variance

3.2. Building the Models; hyperparameters to be considered
After applying the necessary data fitting steps to the extracted HRV features, they are then passed to the models

created for fitting with the thresholds listed below:

3.2.1. Classical ML: Support Vector Machines
SVM is a supervised Machine Learning algorithm that is fed labeled training data to learn how to assign labels to

objects based on examples, and then gain the ability to predict the category of new example(s) [26]. The performance
of the SVM model is affected by the following hyperparameters [29]:
• Kernel: the function that converts the input data into the required form
• Regularization: denotes the misclassification or error term and is expressed as hyperparameter ”C”.
• gamma: interpret how far the effect of a single training sample extends
• class weight: used for imbalanced datasets and defines the weight of the classes to be predicted
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3.2.2. Deep Learning: Deep Neural Networks
These networks are algorithms that mimic human brain cells called neurons. In general, these networks use brain

simulations to improve their learning and increase the accuracy of the models. The structure of DNNs consists of more
than two interconnected layers and is affected by the following hyperparameters [30]:
• Number of layers: input, output, and the hidden layers that define the structure of the network.
• Units: denotes the output of each layer.
• Activation function: also known as the ”transfer function”, which defines how the weighted sum of the input

is converted into an output from one or more nodes in a layer of the network
• Number of epochs: a complete pass through all rows of the training data
• Batch size: samples that the model examines within each epoch before updating the weights.
• Learning rates: a variable that controls how the optimizer’s learning rate changes over time
• Momentum: is the ”delay” in learning the mean and variance

3.2.3. Ensemble Learning Algorithms: XGBoost
XGBoost is an Ensemble Learning algorithm that also belongs also to the Machine Learning AI Branch.
• XGBoost [31]: eXtreme Gradient Boosting package is a scalable implementation of the gradient boosting

framework built with an efficient linear model solver and a tree learning algorithm with hyperparameters:
– Booster: the type of model to run at each iteration
– Learning Rate: is the step size shrinkage used during the update to prevent overfitting
– Gamma: specifies the minimum loss reduction required to perform splitting
– Max Depth: the parameter used to control overfitting
– Min Child Weight: defines the minimum sum of weights of all observations required in a child
– Max Delta Step: helps to make the update step more conservative
– Sub Sample: denotes the fraction of observations that are randomly selected for each tree
– Lambdas: is used to handle the regularization part
– Alpha:is used in case of very high dimensionality to make the algorithm run faster during implementation
– Tree Method: Algorithm for tree construction
– Scale Weight: controls the balance of positive and negative weights
– Objective: defines the loss function to be minimized

3.2.4. Deep Convolutional Neural Networks: Neural Oblivious Decision Ensembles
In this study, the following model was used to apply DCNN to the SHAREEDB tabular data:
• Neural Oblivious Decision Ensembles (NODE)[32]: a model with a layered structure built from differentiable

oblivious trees, which are decision tables that decompose the data along dd-splitting features and compare each
feature to a learned threshold. It was trained in an end-to-end manner using backpropagation and is affected by
the following hyperparameters:

– Number of Layers: Number of layers forming the Neural Network
– Number of Trees: Number of trees in each layer
– Depth: Depth of the tree
– Learning Rate: is the shrinkage step size used in the update to prevent overfitting.

3.3. Wrapping Up, Training, Prediction, and Optimization
Once the models were created, they were trained with the fitted version of the extracted HRV features. The obtained

results are explained and discussed in detail in Section 4. Figure 1 shows the overall architecture of the data preparation
steps and the models created in this study.

4. Results & Discussion
The created models were trained with the HRV features. The SVM, DNN, XGBoost, and NODE models were

evaluated with the metrics of Accuracy, Precision, Recall, Specificity, Negative Predictive Value NPV, and F1 Score.
For better measurement, Repeated K-fold Cross Validation [33] was implemented with 10 folds and repeated 5 times.
The results are shown in Table 2 below, and the values of accuracy, precision, recall, specificity, negative predictive
value, and F1 score are denoted as AC, PR, RE, SP, NPV, and F1 , respectively. In addition, the values of the hyperpa-
rameters used are listed in the table. Figure 2 below also shows a graphical representation of the performance of the
models created in this study.
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Fig. 1. Overall Architecture Followed in this Study

Table 2. AI Models Evaluation Metrics.
Model Hyper Parameters Evaluation Metrics

Parameter Value AC PR RE SP NPV F1

SVM

Training(Testing) 0.75(0.25)

91.80% 87.87% 96.66% 87.09% 96.42% 92.06%
Kernel rbf
Regularization(C) 2.66
Gamma 0.141

DNN

Training(Testing) 0.79(0.21)

90.19% 85.18% 95.83% 85.18% 95.83% 90.19%

Layers Input/3 Hidden/Output
Units 512/256/128/64/1
Activation Function tanh/tanh/tanh/sigmoid
Dropout Before Output Layer 0.2
Optimizer SGD
Epochs 6850
Batch Size 250
Learning Rate 0.005
Momentum default

XGBoost

Training(Testing) 0.79(0.21)

89.10% 86.00% 93.80% 85.10% 92.50% 89.10%

Booster gbtree
Learning Rate 0.01
Gamma 0.1
Maximum Depth 10
Minimum Child Weight 0.01
Max Delta Step 0
Sub Sample 0.75
Lambda 1
Alpa 0.01
Tree Method Auto

NODE

Training(Testing) 0.71(0.29)

76.92% 77.77% 73.68% 80% 76.19% 75.67%

Number of Layers 5
Depth 10
Number of Trees 1
Learning Rate 0.1
Batch Size 26

4.1. Discussion

Fig. 2. Models Performance Graphical Representation

In this study, several models were created
to analyze HRV characteristics to detect car-
diovascular risks. The results obtained demon-
strate the high efficiency of AI models in pre-
dicting cardiovascular disease. However, the
results obtained in this study outperformed pre-
vious implementations.
First, the authors in [15]applied similar mod-
els to the same dataset. Nevertheless, the re-
sults obtained in this study exceeded their re-
sults. For example, their SVM model recorded
accuracy, recall and specificity results were
89.00%, 86.30% and 91.80% respectively,
whereas our results are 91.80%, 96.66% and
87.09% for the same performance metrics. In
addition, the performance metrics of their Multi Layer Perceptron (MLP) model were Accuracy: 78.10%, Recall:
86.30%, Specificity: 69.90% and our model recorded 90.19%, 95.83% and 85.18% for the same metrics.
In addition, our SVM model achieved 91.80% accuracy, the highest performance among all previous implementations.
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For example, the SVM models in [9] recorded an accuracy of 88.64%, 82.95% and 82.58% for the Linear, Polyno-
mial and RBF kernels, respectively. Moreover, the accuracy of SVM in [10,15,19] was 79.81%, 89.00% and 85.19%,
respectively. Even though the accuracy is close, other metrics such as Precision and Recall clearly outperform the
previous results by a large margin. Knowing that Recall measures how a model correctly classifies True Positives, the
models presented in this study are more accurate in predicting whether a person will have a cardiovascular disease in
future. The high recall for SVM, DNN, and XGBoost, which are 96.66%, 95.83% and 93.80%, respectively, reflects
the highest ability of all implementations to correctly predict that a person is in the cardiovascular risk zone.
Likewise, the DNN model presented in this article also outperforms all previous implementations. The accuracy of
this model is 90.19%, whereas the multilayer perceptron in [9,15] is 86.67% and 78.10%, and the accuracy of artifi-
cial neural networks in [7,17] is 76.60% and 85.30%. Moreover, precision and recall are significantly higher than the
previous implementations, which also reflects a higher capability in cardiovascular risk detection. Table 3 provides a
detailed comparison between the results of the models presented in this article and the previous implementations. The
sybmoles of the performance metrics used in this table are similar to those in Table 2, and a ”NA” symbol indicates
that the corresponding metric was not mentioned in the associated study.
On the other hand, none of the previous implementations used XGBoost , which also outperformed the previous imple-
mentations with an accuracy of 98.10% and a recall of 94.60%, reflecting high efficiency in predicting cardiovascular
risk, in contrast to the implementation of NODE, which achieved an accuracy of 76.92%, which is not comparable
with the previous implementations.
Finally, the SVM, DNN, and XGBoost models discussed in this study can be considered the most accurate models for
predicting cardiac disease and events. Even the implementations in [11,14] had higher accuracy and relatively higher
recall, but their models were developed to detect sudden cardiac death (SCD) only minutes before its occurrence.
For example, the model mentioned in [11] achieved 99.73% accuracy in predicting sudden cardiac death one minute
before its onset, but the performance drops to 83.93% when the event is predicted four minutes before its occurrence.
However, the models presented here are able to predict cardiovascular disease 12 months before its onset, demon-
strating high efficiency in predicting cardiovascular disease and cardiac events long before their onset, thus increasing
confidence in the use of AI in detecting and predicting cardiac disease and related events.

Table 3. Comparison with Previous Implementations.
Study Model AC PR RE SP NPV F1

Our Study

Support Vector Machines 91.80% 87.87% 96.66% 87.09% 96.42% 92.06%
DNN 90.19% 85.18% 95.83% 85.18% 95.83% 90.19%
XGBoost 89.10% 86.00% 93.80% 85.10% 92.50% 89.10%
NODE 76.92% 77.77% 73.68% 80.00% 76.00% 75.67%

[7] Artificial Neural Network 76.60% 70.70% 82.90% 71.40% NA NA

[9]

Support Vector Machines (Linear Kernel) 88.64% 90.84% 86.36% 90.91% 86.96% NA
Support Vector Machines (Polynomial Kernel) 82.95% 80.85% 79.55% 86.36% 85.37% NA
Support Vector Machines (RBF Kernel) 82.58% 79.45% 77.27% 87.88% 86.44% NA
Multi Layer Perceptron (Top 15 Features) 86.67% 100% 73.33% 100% 78.95% NA

[10] Support Vector Machines 79.81% 21.15% 91.67% 79.08% 99.36% NA

[11]
MLP (A Minute Before the SCD Event) 99.73% NA NA NA NA NA
K-NN (A Minute Before the SCD Event) 98.32% NA NA NA NA NA

[14]
SVM (2 minutes before VF Event) 96.36% NA NA NA NA NA
Penalized Neural Network 93.64% NA NA NA NA NA

[15]
Support Vector Machines 89.00% NA 86.30% 91.80% NA NA
Multi Layer Perceptron 78.10% NA 86.30% 69.90% NA NA

[17] Artificial Neural Network 85.30% 83.30% 88.20% 82.40% 87.50% NA
[18] MIL Statisitcs Algorithm 85.47% 92.11% 86.42% 83.33% NA NA

[19]

Vote 87.41% NA NA NA NA NA
Naı̈ve Bayes 84.81% NA NA NA NA NA
Support Vector Machines 85.19% NA NA NA NA NA

5. Conclusion
AI will one day be destiny, some have said. But what we are witnessing today through the use of these technologies

in many areas of life confirms that they have become a reality and that their use is increasing day by day. Moreover,
AI is expected to evolve the concepts of cardiology and the mechanisms to diagnose its diseases, and even use them
to predict the occurrence of these diseases in the future. In this study, we have presented a group of models capable
of predicting the occurrence of heart diseases or events with high accuracy, which increases the confidence in AI and
its branches in the health field. Furthermore, adapting these models to work in real time will certainly help create
personalized and continuous monitoring that can be used to track patients’ heart health or even monitor the health of
workers who work in stressful environments or for extremely long periods of time.
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Abstract

Artificial Intelligence (AI) is increasingly becoming a potential answer to many of science’s most challenging problems. In
this context, healthcare is using this technology and its advancement to improve the quality of services provided, including
cardiac healthcare services. According to studies, Cardiovascular Diseases (CVDs) are among the most common and
deadly diseases in the world. However, Artificial Intelligence and its branches such as Machine Learning (ML) and Deep
Learning (DL) offer tremendous potential to improve disease diagnosis and even predict its occurrence. In this study, eight
Machine Learning and Deep Learning models are created and trained with "PhsyioNet Smart Health for Assessing the
Risk of Events via ECG Database" to analyze the characteristics of Heart Rate Variability and predict the occurrence of
heart disease and cerebrovascular events. The results support the use of Artificial Intelligence in cardiology, with five of the
proposed models outperforming previous implementations. Specifically, Support Vector Machines, TabTransformers, Deep
Neural Networks, AdaBoost, and XGBoost achieved accuracy rates of 91.80%, 90.38%, 90.19%, 89.50%, and 89.10%,
respectively. Further performance metrics are presented throught the article such as precision, recall and others.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Cardiovascular Diseases, Heart Rate Variability

1. Introduction
Cardiovascular Disease causes the most deaths and is therefore
considered the most dangerous disease in the world. According
to the latest data from the World Health Organization (WHO) in
the field of heart disease, the number of deaths caused by these
diseases has increased from 12.1 million in 1990 to 18.6 million in
2019, accounting for 32% of global mortality in 2019. In addition,
CVDs is a significant source of health conflict and economic hard-
ship. Based on the Medical Expenditure Panel Survey, the cost of
CVDs in the United States between 2017 and 2018 was estimated
at $378.0 billion, including $226.0 billion in expenditures and
$151.8 billion in lost future productivity [1, 2].

1.1. AI in Healthcare: A New Cardiology Era

The potential for AI to automate processes, enhance decision-
making, and enable new discoveries has broad implications, with
possible applications in healthcare [3],transportation [4], industry
[5], luxury [6] and more. Smart health, for instance, is the use of
computational methods, data analysis, and artificial intelligence
to the healthcare industry with the goal of enhancing patient care,
administrative efficiency, and clinical results [3] and in enabling
diseases prediction. However, the deadly nature of Cardiovascular
Diseases necessitates the development of effective solutions that
can help in the early detection of these diseases and, if possible,
even predict their development. Electrocardiogram, Echocardio-
gram, Coronary Angiography, stress test, Magnetic Resonance
Imaging or Intracoronary Ultrasound are traditional methods to
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detect these diseases. However, technological advances, par-
ticularly Information and Communication Technologies (ICTs)
and the growth of Artificial Intelligence and its derivatives, are
improving the quality of healthcare services and facilitating the
detection of CVDs. In addition, AI technologies are considered
the next revolution in cardiology because they can accelerate and
improve patient care outcomes. Moreover, AI will soon transform
the field of cardiovascular health, as its tools could outperform
specialists in detecting or even predicting CVDs [7, 8].

1.2. Heart Rate Variability as a CVD Indicator

Recently, there has been a rise in interest in using Heart Rate Vari-
ability (HRV) as a predictor of CVDs, particularly with the advent
of AI and the data analysis capabilities afforded by its branches:
Machine Learning and Deep Learning. Furthermore, HRV is defi-
ned as the beat-to-beat variation in heart rate or the length of the
RR peak interval, where R is a QRS complex wave taken from
a cardiac ECG signal. Because changes in the autonomic con-
trol of the heart may be interpreted from temporal fluctuations in
heart rate, the parameters retrieved from HRV data are classified
into three types: time domain, frequency domain, and non-linear
parameters [9]. Table 1 below lists these categories:

Table 1. Heart Rate Variability Parameters.

Group Parameter Unit Description

Time
Domain
Parameters

Mean NN (ms) Mean of NN interval

SDNN (ms) Standard deviation of NN intervals

RMSSD (ms) Square root of the mean squared differences of successive NN intervals

pNN50 (ms) Proportion of interval differences of successive NN intervals greater than 50 ms

Frequency
Domain
Parameters

VLF (ms2) Power in very low frequency range (0–0.04 Hz)

LF (ms2) Power in low frequency range (0.04–0.15 Hz)

HF (ms2) HF ms2 Power in high frequency range (0.15–0.4 Hz)

LF/HF (ratio) Ratio of LF over HF

Non-
Linear
Parameters

SD1 (ms) Standard deviation of points perpendicular to the axis of line of identity or the

successive intervals scaled by
√

1
2

√
1
2
var(RRn − RRn+1)

SD2 (ms) Standard deviation of points along the axis of line of identity, or√
2SDNN2 − 1

2
SD12

SD1/SD2 (ratio) Ratio of SD1 over SD2

1.3. Prediction of CVDs with HRV; State of the Art

There has been a surge in recent years in the number of resea-
rches looking at the ability to diagnose CVDs by measuring HRV
characteristics. AI has demonstrated its efficacy and precision in
this field, and researchers are increasingly turning to AI models
to examine a wide range of HRV data.

In [10], for instance, the authors constructed a model to assess
several HRV variables and predict the onset of ventricular tach-
ycardia (VT) using the Fast Fourier Transform (FFT) and the
Blackman Harris window technique. Additionally, the authors
in [11] created an Artificial Neural Networks (ANN) classifier
to predict the incidence of VT and trained it using the "Physi-
oNet Spontaneous Ventricular Tachyarrhythmia Database" [12].
They used a number of different criteria to assess performance,
recording rates of 76.60% for accuracy, 82.9% for sensitivity,
and 71.4% for specificity. In addition, the authors of [13] emplo-
yed Multilayer Perceptron (MLP), Radial Basis Function (RBF),
and Support Vector Machines (SVM) to make predictions about
cardiovascular risk. Accuracy of their best model was 96.67%.

Additionally, authors in [14] employed SVM to create a predi-
ction model to predict cardiovascular risk following Myocardial
Infarction, and the model accuracy was 89%.

In addition, the authors of [15] used the k-Nearest Neighbor
and Multilayer Perceptron Neural Network algorithms to develop
models that predict Sudden Cardiac Death (SCD). Their models
were trained using the "PhysioNet Sudden Cardiac Death Holter
database" [16] and the "PhysioNet Normal Sinus Rhythm data-
base" [17], and their results showed an accuracy of 99.73% for
the first minute, 96.52% for the second minute, 90.37% for the
third minute, and 83.96% for the fourth minute. And in [18],
authors performed the same study using SVM and Probabilistic
Neural Network (PNN) to predict SCD two minutes beforehand.
SVM and PNN achieved 96.36% and 93.64% accuracy in predi-
cting sudden cardiac death using the "PhysioNet Sudden Cardiac
Death Holter database" [16] and the "PhysioNet MIT Normal
Sinus Rhythm database" [17].

Besides, in [19], the authors developed a novel SVM, Tree-
Based Classifier, Artificial Neural Network, and Random Forest
models to automate cardiovascular risk classification for hyper-
tension patients. Using the "Smart Health for Assessing the Risk
of Events through ECG database" [20], the authors were able
to train their data with a sensitivity of 71.4% and a specificity
of 87.8%. In addition, authors in [21] created an Artificial Neu-
ral Networks model that examines respiratory rate in addition to
HRV data to identify ventricular tachycardia an hour before it
manifests. Their model has a sensitivity of 88%, a specificity of
82%, and an area under the curve of 93%. The authors in [22]
also employed a statistical model called MIL to predict CVDs
using HRV characteristics. As they noted, their model was quite
accurate. In addition, the authors of [23] developed and trained a
variety of classification methods, including K Nearest Neighbor,
Decision Tree, Naive Bayes, Logistic Regression, Support Vector
Machine, Neural Network, and Vote. They used the "UCI Heart
Diseases Repository" [24], to train their models. It was shown
that the models had an accuracy of 87.4% in predicting CVDs.

1.4. Outline & Main Contributions

Several AI models were developed in this study to predict CVDs
and related events where eight different models were implemen-
ted. The dataset and the preparation processes that were performed
to get the data ready for the models are described in Section 2.
below. A description of the models developed may be found in
Section 3., while Section 4. contains a listing and discussion of
the results.

Despite the fact that several Machine Learning implementati-
ons have been performed in CVD detection and prediction, this
article aims to propose ML models that have either never been
used in this field or to propose models already in use and improve
their performance. Therefore, this article aims to propose ML
models capable of predicting CVDs with improved performance
that outperforms previous implementations. The result obtained
by the models is a binary result, stating whether a CVD is detected
or not. The article thus contributes to the ML field in predicting
CVDs:

• Proposing use of new models in the prediction of CVDs
• Enhancing and boosting the performance of ML in CVDs
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2. Materials & Methods
2.1. Dataset

The dataset used in this study is the "PhysioNet Smart Health for
Assessing the Risk of Events via ECG Database" (SHAREEDB)
[20] that is offered by the PhysioNet online data repository. This
dataset was collected to investigate the efficiency of classifying
hypertensive patients at higher risk for cardiac and cerebrovascu-
lar events using HRV characteristics. It consists of 139 records
of 24-hour Electrocardiographic (ECG) Holter recordings, each
containing three ECG signals sampled at a rate of 128 samples
per second with a precision of 8 bits. The population from which
the data were gathered included 49 women and 90 men aged 55
and up. They were followed up for 12 months to record the occur-
rence of cardiovascular and cerebrovascular events. During the
follow-up period, 17 patients experienced such event, including
11 Myocardial Infarctions, 3 strokes, and 3 syncopal events. The
dataset also includes some demographic and clinical information
about the subjects, such as their age, sex, any vascular events, and
others. Figure 1 below describes the specifications of the dataset
in use: SHAREEDB.

Fig. 1. SHAREEDB Description and Specs.

2.2. Data Filtering & Preprocessing

Since the SHAREEDB dataset contains Electrocardiogram (ECG)
signals gathered in a laboratory, there may be substantial back-
ground noise that must be eliminated before the data is fed into the
AI models. Before feeding the data into the models, it is crucial
to clean the data and eliminate the noise in order to produce high-
quality ECG signals. Briefly described below are the procedures
used to clean and prepare the data for this study:

2.2.1. Filtering & Artifacts Removal

The 3-channel ECG Holter device was used to record the data
included in the dataset files. A normal ECG signal has a frequency
range of 0.05 Hz to 100 Hz. However, there are a number of signals
interreferences that may affect ECG recordings, including base-
line drift, channel interference, power line interference, muscle
movement interference, and electrode contact interference. Raw
ECG readings often include two forms of noise [25]:

• High frequency noise: current conduction noise, white Gaus-
sian noise, Electromyogram or motion noise.

• Low-frequency noise: baseline drift and electrode contact loss

We can successfully identify the kind of noise and then pick
the approaches to employ to decrease the noise or eradicate the
artifact if we have a thorough grasp of each noise artifact. Various
sounds are caused by various things, including:

• Power Line Interference: is caused by harmonics of ele-
ctromagnetic interference through the power line and the
electromagnetic field of nearby electrical equipment and is
between 50 Hz and 60 Hz.

• White Gaussian Noise: is similar to channel noise in nature
but is difficult to identify its sources because they occur at
different levels and are random in nature.

• Electromyogram/Motion Noise: generated by the electrical
activity of the muscles or the change in the electrode-skin
impedance due to changes in skin temperature, humidity, etc.

• Baseline Drift: low-frequency noise, typically around 1 Hz
and caused by respiration and rapid body movements

• Electrode Contact Loss: is caused by loss of contact between
the electrode and the skin

Because of this, the following filters are effective in getting rid
of both low-frequency and high-frequency artifacts and has been
adopted, in this study, to clean the data before being used:

• IIR Notch Filters: are used to remove power line interference
and/or motion artifacts in a specific frequency spectrum

• FIR Filters: are very stable filters and operate in the range of
1 Hz to 100 Hz making them suitable for ECG data cleaning

2.2.2. R Peaks Detection

The electrical activity of the heart muscle may be seen in an ECG
signal throughout time. The ECG represents the amplified sum of
the electrical depolarization of muscle cells that causes the heart
muscle to contract during a certain time period. Three compo-
nents make up the electrocardiogram signal: The P-Wave, the
QRS complex, and the T-wave. The ventricular depolarization
represented by the QRS complex is the electrical impulse as it
travels through the ventricles. Immediately following each other
in rapid succession are the Q wave, the R wave, and the S wave.
Because HRV is defined as the difference between two succes-
sive RR periods, the R Peaks are the peaks to be discovered in
this investigation. The R Peaks may be found using any of the
available detection methods [26, 27]. These algorithms include:

• Hamilton
• Christov
• Engelse and Zeelenberg
• Pan and Tompkins
• Stationary Wavelet Transform
• Two Moving Average

According to [27], Engelse and Zeelenberg was selected as
the most accurate peak detection algorithm. Although the tests
were performed on a different data set, Engelse and Zeelenberg
was selected for R peak detection in this study based on the
recommendation of authors.

2.2.3. Calculation of RR Intervals

Heart Rate Variability is defined as the RR intervals or the differe-
nce between two consecutive R peaks, which are then calculated
using the required equations.
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2.2.4. Outliers Removal

After the RR intervals are detected, the outliers, defined as points
that are extremely far from the mean, are removed and replaced
with the mean value.

2.2.5. Extract HRV features

Finally, the HRV features were calculated using the appropriate
mathematical formulas. In this study, 26 HRV features were calcu-
lated, and despite the high number of features calculated, the use
of all features gave good results.

2.3. Artificial Intelligence Models

Cardiology is defined as the healthcare sector concerned with
heart health, and the usage of AI in this discipline is rapidly
expanding. AI has showed excellent accuracy and efficiency in
identifying CVDs, and owing to its strong capacity to evaluate
cardiac data, it may sometimes go beyond professional diagnosis
and even be utilized in predicting CVDs rather than detecting them
[28, 29]. Furthermore, AI is notable for its diverse branches that
are applied in various aspects of life all over the globe. Figure 2
below shows the different branches of AI. In this research, AI bra-
nches such as Machine Learning, Ensemble Learning, and Deep
Convolutional Neural Networks were applied:

• Classical Machine Learning Algorithms [30]: are algori-
thms that give computers learning potential by training them
with experimental data and generating models based on these
data, enabling them to make decisions in new situations such
as: Support Vector Machines, Naïve Bayes, Logistic and
Linear Regression and others.

• Ensemble Learning [31]: is a special branch of ML where
its algorithms are based on merging predictions from diffe-
rent models. Some of these models are XGBoost, AdaBoost,
Gradient Boosting, LightGBM and others.

• Deep Convolutional Neural Networks (DCNNs) [30]: are a
type of Neural Networks that are used to analyze data with a
grid-like structure. However, these networks are intended for
analyzing multidimensional data such as images and videos.
Using these networks to analyze tabular data may require
transforming the data used. Nevertheless, there are several
models that offer transformation of tabular data for use in
DCNNs, such as TabNet, GrowNet, TreeEnsemble Layers,
TabTransformers, Self-Normalizing Neural Networks, Neural
Oblivious Decision Ensembles (NODE), AutoInt, and Deep
& Cross Neural Networks (DCNs) [32].

3. Construction of AI Models
In this study, different AI models were used to analyze HRV fea-
tures to detect heart diseases and events. However, before passing
the extracted features to the models, some data fitting steps were
performed, as explained below.

3.1. Data Adjustment

Given that only 17 of the 139 patients in the research suffered a
cardiovascular event throughout the 12-month follow-up period,

Fig. 2. SHAREEDB Description and Specs.

the retrieved HRV features show an unbalanced identity, with the
majority falling into the "no cardiovascular event" class. Because
the percentage of non-defected subjects is 122 of 139, the per-
formance of the prediction models may be harmed, implying the
usage of data modifications such as balancing and scaling:

• Synthetic Minority Over-sampling Technique (SMOTE): a
data expansion in which new samples are drawn from existing
ones to oversample the minority class

• Preprocessing Standard Scaling: the standardization of cha-
racteristics is achieved by removing the mean of the data and
scaling it to a unit variance

3.2. Building the Models; Hyperparameters to be Considered

After applying the necessary data fitting steps to the extracted
HRV features, they are then passed to the models created for
fitting with the thresholds listed below:

3.2.1. Support Vector Machines

SVM is a supervised Machine Learning algorithm that is fed labe-
led training data to learn how to assign labels to objects based on
examples, and then gain the ability to predict the category of new
example(s) [30]. The performance of the SVM model is affected
by the following hyperparameters [33]:

• Kernel: the function that converts the input data into the requi-
red form such as linear, polynomial and radial basis function
(RBF).

• Regularization: denotes the misclassification or error term
and is expressed as hyperparameter "C".

• Gamma: interpret how far the effect of a single training
sample extends

• Class Weight: used for imbalanced datasets and defines the
weight of the classes to be predicted

3.2.2. TabTransformers

TabTransformers is a model based on transformers whose layers
convert categorical feature embeddings into robust contextual
embeddings to achieve higher prediction accuracy, and is affected
by the following hyperparameters [34]:

• Activation Function: defines how the weighted sum of the
input is converted into an output of a node in a network layer

• Number of Heads: specifies the number of heads of attention
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• Dropout: regularization to reduce overfitting and improve
generalization of deep neural networks

• MLP Hidden Units Factors: MLP hidden layer units, as
factors of the number of inputs.

• Learning Rate: is the shrinkage step size used in updating to
prevent overfitting

3.2.3. Deep Neural Networks

These networks are algorithms that mimic human brain cells cal-
led neurons. In general, these networks use brain simulations to
improve their learning and increase the accuracy of the models.
The structure of DNNs consists of more than two interconnected
layers and is affected by the following hyperparameters [35]:

• Number of Layers: input, output, and the hidden layers that
define the structure of the network.

• Units: denotes the output of each layer.
• Activation Function: also known as the "transfer function",

which defines how the weighted sum of the input is converted
into an output from one or more nodes in a layer of the network

• Number of Epochs: a complete pass through all rows of the
training data

• Batch Size: samples that the model examines within each
epoch before updating the weights

• Learning Rates: a variable that controls how the optimizer’s
learning rate changes over time

• Momentum: is the "delay" in learning the mean and variance

3.2.4. AdaBoost

AdaBoost is a meta-estimator that first fits a classifier to the ori-
ginal data and then fits additional copies of the classifier to the
same data, changing the weights of misclassified instances so that
subsequent classifiers examine them extensively, leading to an
improved result [36]:

• Number of Estimators: the number of base estimators or
weak learners to be used in the dataset

• Learning Rate: is the step size used in the update to prevent
overfitting

3.2.5. XGBoost

XGBoost is an Ensemble Learning algorithm that also belongs
also to the Machine Learning AI Branch. XGBoost, eXtreme
Gradient Boosting package, is a scalable implementation of the
gradient boosting framework built with an efficient linear model
solver and a tree learning algorithm with hyperparameters [37]:

• Booster: the type of model to run at each iteration
• Learning Rate: is the step size shrinkage used during the

update to prevent overfitting
• Gamma: specifies the minimum loss reduction required to

perform splitting
• Max Depth: the parameter used to control overfitting, as a

higher depth allows the model to learn relationships that are
very specific to a given sample

• Min Child Weight: defines the minimum sum of weights of
all observations required in a child

• Max Delta Step: makes updating more conservative

• Sub Sample: denotes the fraction of observations that are
randomly selected for each tree

• Lambdas: is used to handle the regularization part
• Alpha: is used in case of very high dimensionality to make

the algorithm run faster during implementation
• Tree Method: Algorithm for tree construction
• Scale Weight: control the weight of positive-negative classes
• Objective: defines the loss function to be minimized

3.2.6. Logistic Regression

Logistic Regression is a Machine Learning algorithm that analy-
zes data for classification and is a supervised algorithm that sorts
data into two categories. The algorithm is named after the function
that is at the core of the method, the logistic function. There are
several forms for LR and in this article we will use binary logi-
stic regression, where the target variable has only two possible
outcomes. The performance of LR is affected by three important
hyperparameters [38]:

• Solver: uses a Coordinate Descent (CD) algorithm that solves
optimization problems by successively performing approxi-
mate minimization along coordinate directions or coordinate
hyperplanes

• Penalty (Regularization): is any modification of a learning
algorithm that aims to reduce its generalization error, but not
its training error

• C: the inverse of the regularization strength in Logistic
Regression

• Class Weight: weight of the classes to be predicted

3.2.7. TabNet

TabNet is a model that uses sequential attention to select which
features to infer at each decision step, and is influenced by the
following hyperparameters [39]:

• Optimizer: an algorithm that modifies the neural network
attributes, such as weights and learning rate.

• Learning Rate: is the step size used in updating to prevent
overfitting

• Batch Size: number of examples per batch.

3.2.8. Deep Convolutional Neural Networks: Neural Oblivious
Decision Ensembles (NODE)

Neural Oblivious Decision Ensembles is a model with a layered
structure built from differentiable oblivious trees, which are deci-
sion tables that decompose the data along dd-splitting features
and compare each feature to a learned threshold. It was trained in
an end-to-end manner using backpropagation and is affected by
the following hyperparameters [40]:

• Number of Layers: Number of layers forming the Neural
Network

• Number of Trees: Number of trees in each layer
• Depth: Depth of the tree
• Learning Rate: is the shrinkage step size used in the update to

prevent overfitting
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3.3. Technical Environment Specifications

To implement this study, the computer used carried the below
mentioned specifications:

• Hardware Specs:

• CPU: Intel(R) Core i7-7500U CPU @ 2.70GHz
• RAM: 16.0 GB DDR4

• Operating System:Windows 10 Home
• Programming Language Used: python 3.9
• Libraries Used:

• wfdb: used to read data from the PhysioNet binary files [41]
• Scipy Signal Library: provides efficient functions for both

IIR Notch and FIR filters [42]
• py-ecg-detectors:provide R Peaks detection algorithms [43]
• Scipy Zscore: used for outliers’ removal [44]
• SMOTE: to apply Synthetic Minority Over-sampling [45]
• SKLearn Preprocessing Standard Scaling: to apply stan-

dard scaling [46]

3.4. Wrapping Up, Training, Prediction, and Optimization

Once the models were created, they were trained using the extra-
cted HRV features. The models were then evaluated using several
performance metrics, namely accuracy, precision, recall, F1
score, specificity, and negative predictive value. The results obtai-
ned are detailed and discussed in the next section. Figure 3 below
describes the overall structure of the implemented system.

Fig. 3. Overall Architecture Followed in this Study.

4. Results & Discussion
The created models were trained with the HRV features. The eight
models were evaluated with the metrics of Accuracy, Precision,
Recall, Specificity, Negative Predictive Value NPV, and F1 Score.
For better measurement, and to be aware of overfitting, Repeated
K-fold Cross Validation [47] was implemented with 10 folds and
repeated 5 times. Beside detection of overfitting, the use of K-fold
cross validation ensure that the recorded results are not obtained
from an optimistic execution. Consequently, the performance gra-
phs are illustrated in Figure 4, 5 & 6 respectively, where the first
shows the graphs for classical ML models, the second shows the
graphs related to Ensemble ML models and the third shows the
graphs of the DL models. In addition, the results are shown in
Table 2 below, and the values of accuracy, precision, recall, spe-
cificity, negative predictive value, and F1 score are denoted as AC,
PR, RE, SP, NPV, and F1, respectively. In addition, the values of
the hyperparameters used are listed in the table.

Fig. 4. Classical ML Models Performance Graphs.

Fig. 5. Ensemble Learning ML Models Performance Graphs.

Fig. 6. Deep Learning Models Performance Graphs.
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Table 2. AI Models Evaluation Metrics & Hyperparameters Used.

# Model
Hyperparameters Used

AC PR RE SP NPV F1Parameter Value

1 Support Vector Machines

Train/Test Split 0.75(0.25)

91.80% 87.87% 96.66% 87.09% 96.42% 92.06%
Kernel rbf

Regularization (C) 2.66
Gamma 0.141

2 TabTransformers

Train/Test Split 0.72(0.28)

90.38% 86.66% 96.29% 91.22% 84% 95.45%

Activation Function Sigmoid
Number of Transformer Blocks 1024

Number of Attention Heads 1024
Dropout Rate 0.25

MLP Hidden Units [1024,512]
Learning Rate 0.05

Epochs 1000

3 Deep Neural Networks

Train/Test Split 0.79(0.21)

90.19% 85.18% 95.83% 85.18% 95.83% 90.19%

Layers Input/3 Hidden/Output
Units 512/256/128/64/1

Activation Function tanh/tanh/tanh/sigmoid
Dropout Before Output Layer 0.2

Optimizer SGD
Epochs 6850

Batch Size 250
Learning Rate 0.005

Momentum default

4 AdaBoost
Train/Test Split 0.79(0.21)

89.50% 87.20% 94.60% 84.90% 93.60% 90.80%Number of Estimators 200
Learning Rate 1

5 XGBoost

Train/Test Split 0.79(0.21)

89.10% 86.00% 93.80% 85.10% 92.50% 89.10%

Booster gbtree
Learning Rate 0.01

Gamma 0.1
Maximum Depth 10

Minimum Child Weight 0.01
Max Delta Step 0

Sub Sample 0.75
Lambda 1

Alpha 0.01
Tree Method Auto

6 Logistic Regression

Train/Test Split 0.71(0.29)

80.73% 76.56% 89.09% 72.22% 86.66% 82.35%
Solver newton-cg

Regularization (Penalty) none
C 3.1

7 TabNet

Train/Test Split 0.79(0.21)

76% 74.70% 82.60% 74.70% 80.50% 76.50%
Learning Rate 0.9

Batch Size 1024
Virtual Batch Size 1024

8 NODE

Train/Test Split 0.71(0.29)

76.92% 77.77% 73.68% 80% 76.19% 75.67%

Number of Layers 5
Depth 10

Number of Trees (per layer) 1
Learning Rate 0.1

Batch Size 26
Epochs 9000

4.1. Discussion

In this study, several models were created to analyze HRV cha-
racteristics to detect cardiovascular risks. The results obtained
demonstrate the high efficiency of AI models in predicting car-
diovascular disease. However, the results obtained in this study
outperformed previous implementations.

First, the authors in [19] applied similar models to the same
dataset. Nevertheless, the results obtained in this study exceeded
their results. For example, their SVM model recorded accuracy,
recall and specificity results were 89.00%, 86.30% and 91.80%
respectively, whereas our results are 91.80%, 96.66% and 87.09%
for the same performance metrics. In addition, the performance
metrics of their Multi-Layer Perceptron model were Accuracy:
78.10%, Recall: 86.30%, Specificity: 69.90% and our model
recorded 90.19%, 95.83% and 85.18% for the same metrics.

In addition, our SVM model achieved 91.80% accuracy, the
highest performance among all previous implementations. For
example, the SVM models in [13] recorded an accuracy of
88.64%, 82.95% and 82.58% for the Linear, Polynomial and
RBF kernels, respectively. Moreover, the accuracy of SVM in
[14, 19, 23] was 79.81%, 89.00% and 85.19%, respectively. Even
though the accuracy is close, other metrics such as Precision and
Recall clearly outperform the previous results by a large margin.
Knowing that Recall measures how a model correctly classifies
True Positives, the models presented in this study are more accu-
rate in predicting whether a person will have a CVD in future.
The high recall for SVM, DNN, and XGBoost, which are 96.66%,
95.83% and 93.80%, respectively, reflects the highest ability of
all implementations to correctly predict that a person is in the
cardiovascular risk zone.
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Likewise, the DNN model presented in this article also outper-
forms all previous implementations. The accuracy of this model is
90.19%, whereas the multilayer perceptron in [13, 19] is 86.67%
and 78.10%, and the accuracy of artificial neural networks in
[11, 21] is 76.60% and 85.30%. Moreover, precision and recall
are significantly higher than the previous implementations, which
also reflects a higher capability in cardiovascular risk detection.
Table 3 provides a detailed comparison between the results of the
models presented in this article and the previous implementati-
ons. The symbols of the performance metrics used in this table
are similar to those in Table 2, and an "NA" symbol indicates that
the corresponding metric was not mentioned in the associated
study.

On the other hand, none of the previous implementations
used XGBoost, which also outperformed the previous imple-
mentations with an accuracy of 98.10% and a recall of 94.60%,
reflecting high efficiency in predicting cardiovascular risk, in
contrast to the implementation of NODE, which achieved an
accuracy of 76.92%, which is not comparable with the previous
implementations.

Finally, the SVM, DNN, and XGBoost models discussed in
this study can be considered the most accurate models for predi-
cting cardiac disease and events. Even the implementations in
[15, 19] had higher accuracy and relatively higher recall, but
their models were developed to detect Sudden Cardiac Death only
minutes before its occurrence. For example, the model mentioned
in [15] achieved 99.73% accuracy in predicting sudden cardiac
death one minute before its onset, but the performance drops to
83.93% when the event is predicted four minutes before its occur-
rence. However, the models presented here are able to predict
cardiovascular disease 12 months before its onset, demonstrating
high efficiency in predicting cardiovascular disease and cardiac
events long before their onset, thus increasing confidence in the
use of AI in detecting and predicting cardiac disease and related
events.

4.2. Challenges & Future Recommendations

Although Machine Learning are ready to play a significant role in
predicting CVDs, there are a number of potential obstacles that
might occur in the course of their deployment. What follows are
some of the most typical problems that arise in such a setting:

• Data Readiness and Availability: Data determines machine
learning model performance. The availability of more data
will help in improving the performance of the smart models
and therefore increase their accuracy in predicting CVDs.
However, the availability of data is prone to different problems
such as the legal or ethical restrictions. However, assumed
available and accessible, the data to be used may be noisy since
digital ECG recordings are more vulnerable to environmental
noise. Artefacts—unwanted signals or signal distribution-
s—interfere with the signal in noisy data. In this context,
Intrinsic Artefacts come from the monitored body, whereas
Extrinsic Artefacts come from their surroundings [48, 49]

• Data Privacy and Confidentiality: Although the technical stru-
cture of the models, data cleanliness and readiness, and other
factors affect model accuracy, more data to train AI models
usually improves their accuracy. For privacy and secrecy con-
siderations, gathering data is the largest hurdle in constructing

AI models in the real world. Society, governments, and organi-
zations are enhancing data privacy and security. The European
Union’s General Data Protection Regulation (GDPR) [50],
China’s Cyber Security Law [51] and hundreds of other pri-
nciples have been legislated worldwide. These restrictions
safeguard private data, but also make it harder to gather data
to train models, which makes it harder to increase model
performance [49]

• Users Acceptability: User acceptability, adoption, and enga-
gement are of the most significant obstacles to using AI and its
branches to identify CVDs. Using those technologies to pre-
dict illnesses has met with mixed reception from users owing
to concerns about privacy, discomfort, and other contextual
factors

• Additional Computation-Cost: Due to the additional compu-
ting imposed by the added tasks such as data balancing and
noise removal, an increase in computation time is obtained,
and thus this imposes additional slowdowns that may impair
the overall performance of the models

However, several approaches have been made to resolve those
challenges in the attempt to enhance the feasibility of using
AI and its descendants to predict cardiac illness. Those soluti-
ons are considered as hot topics that are being studied carefully
nowadays:

• Automating Noise Removal: Before processing the signals,
artifacts, both extrinsic and intrinsic, that obfuscate the signals
should be eliminated or greatly reduced. This goal has already
been accomplished by a number of existing solutions, some of
which are discussed in Refs. [52]. Thus, research into automa-
ted noise reduction to clean and preprocess the data to enhance
the precision of physical tiredness detection in the workplace
is warranted

• Privacy Preserving: Data used in Machine Learning models
training should be stored on a local server or distributed
to decentralized storage and processing devices to con-
struct and train the models. Thus, the model has complete
access to the subject’s data, whether anonymous or label-
led by the subject. Federated learning (FL) may address
this issue. Federated learning is a defined as collabo-
rative distributed/decentralized machine learning privacy-
preserving method that trains models without transferring data
from edge devices to a central server. Instead, edge devices
communicate learned models with the central server, which
works as an aggregation station to create the global model
without understanding the embedded data [53, 54]. The use
of Federated Learning into CVDs prediction would help reso-
lve privacy issues and therefore resolve the challenges in this
regard

• Increase Accuracy, Explainability and Trust: Predicting the
onset of cardiovascular disease is crucial in light of the gro-
wing health burden caused by this condition. The black box
nature of the models used, however, must be reduced as much
as possible, and the accuracy of AI tools and procedures in
this area must be increased. Devices that are more accurate
and easier to explain will be more likely to be employed as
a CVDs prediction device. In this context, several technolo-
gies can be adopted such as the one mentioned in [55] that
automates assessing the quality of a smart model
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Table 3. Comparison with Previous Implementations.

Study Model AC PR RE SP NPV F1

Our Study

Support Vector Machines 91.80% 87.87% 96.66% 87.09% 96.42% 92.06%

TabTransformers 90.38% 86.66% 96.29% 91.22% 84.00% 95.45%

Deep Neural Network 90.19% 85.18% 95.83% 85.18% 95.83% 90.19%

AdaBoost 89.50% 87.20% 94.60% 84.90% 93.60% 90.80%

XGBoost 89.10% 86.00% 93.80% 85.10% 92.50% 89.10%

Logistic Regression 80.73% 76.56% 89.09% 72.22% 86.66% 82.35%

TabNet 76.00% 74.70% 82.60% 74.70% 80.50% 76.50%

NODE 76.92% 77.77% 73.68% 80.00% 76.00% 75.67%

[11] Artificial Neural Network 76.60% 70.70% 82.90% 71.40% NA NA

[13]

Support Vector Machines (Linear Kernel) 88.64% 90.84% 86.36% 90.91% 86.96% NA

Support Vector Machines(Polynomial Kernel) 82.95% 80.85% 79.55% 86.36% 85.37% NA

Support Vector Machines (RBFKernel) 82.58% 79.45% 77.27% 87.88% 86.44% NA

Multi Layer Perceptron (Top15 Features) 86.67% 100% 73.33% 100% 78.95% NA

[14] Support Vector Machines 79.81% 21.15% 91.67% 79.08% 99.36% NA

[15]
MLP (A Minute Before the SCD Event) 99.73% NA NA NA NA NA

K-NN (A Minute Before the SCDEvent) 98.32% NA NA NA NA NA

[18]
SVM (2 minutes before VF Event) 96.36% NA NA NA NA NA
Penalized Neural Network 93.64% NA NA NA NA NA

[19]
Support Vector Machines 89.00% NA 86.30% 91.80% NA NA

Multi Layer Perceptron 78.10% NA 86.30% 69.90% NA NA

[21] Artificial Neural Network 85.30% 83.30% 88.20% 82.40% 87.50% NA

[22] MIL Statistics Algorithm 85.47% 92.11% 86.42% 83.33% NA NA

[23]
Vote 87.41% NA NA NA NA NA

Naïve Bayes 84.81% NA NA NA NA NA

Support Vector Machines 85.19% NA NA NA NA NA

5. Conclusion
Ultimately, AI will determine the fate of humans, they say. How-
ever, the widespread adoption and use of these technologies
today proves that they are no longer science fiction. The field
of cardiology, as well as methods for diagnosing and treating
Cardiovascular Disease, will benefit from the development of AI,
which could one day enable accurate prediction of disease. Rese-
arch has produced a number of models that can accurately predict
the occurrence of cardiac problems or events, boosting confide-
nce in AI and its applications in medicine. If these models are
operational in real time, this will undoubtedly contribute to the
development of personalized and continuous monitoring that can
be used to monitor the heart health of patients or even the health
of workers who work in stressful environments or for extremely
long periods of time.
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Abstract—Among the diseases known to mankind, cardiovas-
cular diseases remain the deadliest and most expensive. However,
Artificial Intelligence offers new solutions that can help diagnose
these diseases and even predict their occurrence with high accu-
racy. In this study, we present several AI models that attempt to
predict cardiovascular diseases. The models created are Support
Vector Machines, AdaBoost, TabNet and TabTransformers. They
were trained using Heart Rate Variability features extracted from
the PhysioNet Smart Health for Assessing the Risk of Events via
ECG Database. The models achieved high accuracies, which were
91.80%, 89.50%, 76.00% and 90.38% for the Support Vector
Machines, AdaBoost, TabNet, and TabTransformers models,
respectively.

Index Terms—Cardiovascular Diseases, Artificial Intelligence,
Machine Learning, Ensemble Learning, Deep Convolutional Neu-
ral Networks, Heart Rate Variability, Predictive Models

I. INTRODUCTION

Cardiovascular Diseases (CVDs) are considered the world’s
deadliest disease, with most deaths resulting from heart disease
or heart-related medical events. The World Health Organiza-
tion (WHO) has mentioned in its reports that the number of
CVD patients increased from 271 to 523 million worldwide
between 1990 and 2019. Moreover, the number of deaths
caused by CVDs increased from 12.1 to 18.6 million during
the same period. In 2019, deaths due to cardiovascular dis-
eases accounted for 32% of all global deaths. These figures
demonstrate that heart disease is not only the leading cause of
deaths but also of health burdens worldwide [1:3].

A. Artificial Intelligence and CVDs
Because of the severity of CVDs, it is important to de-

tect them as early as possible so that treatment with coun-

selling and medications can begin. The classical routines
for diagnosing CVDs vary between electrocardiogram, stress
test, magnetic resonance imaging, echocardiography, coronary
angiography, or intracoronary ultrasound [4]. However, the
rise of Information and Communication Technologies (ICT)
combined with the rapid development of Artificial Intelli-
gence (AI) and its offshoots such as Machine Learning (ML)
and Deep Learning (DL), is changing several concepts that
surround us. As a result, healthcare services are also being
transformed by this technological revolution and have recently
emerged as one of the largest areas of interest for technology
research. AI tools are proving to be highly viable in improving
disease diagnosis and treatment, Ambient Assisted Living
(AAI), clinical robotics activities, medical research, and many
other areas of healthcare. For example, the management of
cardiovascular disease has been improved through the use of
the latest technologies, and AI tools are even considered the
next revolution in heart disease science by enabling faster,
more accurate, and less error-prone patient care. Moreover,
AI is expected to transform cardiology in the near future as
its tools match and sometimes surpass expert performance on
real-world data [5,6].

B. Heart Rate Variability for CVDs Diagnosis

Heart rate variability (HRV) is defined as the variation in
heart rate from beat to beat or the duration of the peak interval.
It is generally believed that the temporal variations in heart
rate reflect changes in cardiac autonomic regulation. Detec-
tion of cardiovascular disease based on heart rate variability
(HRV) characteristics has increased recently, especially with
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the development of data analysis techniques offered by Ma-
chine Learning and Deep Learning. Parameters extracted from
HRV data and analyzed for cardiovascular event detection are
classified into three main groups: time-domain parameters,
frequency-domain parameters, and nonlinear parameters [7]:

• Time Domain Features
– Mean NN (ms): Mean of NN interval
– SDNN (ms): Standard deviation of NN intervals
– RMSSD (ms): Square root of the mean squared differences

of successive NN intervals
– pNN50 (ms): Proportion of interval differences of successive

NN intervals greater than 50 ms
• Frequency Domain Features

– VLF (ms2): Power in very low frequency range (0–0.04 Hz)
– LF (ms2): Power in low frequency range (0.04–0.15 Hz)
– HF (ms2): Power in high frequency range (0.15–0.4 Hz)
– LF/HF (ratio): Ratio of LF over HF

• Non-Linear Parameters
– SD1 (ms): Standard deviation of points perpendicular to the

axis of line of identity or Standard deviation of the successive
intervals scaled by

√
1
2

– SD2 (ms): Standard deviation of points along the axis of line
of identity, or

√
2SDNN 2 − 1

2
SD12

– SD1/SD2 (ratio): Ratio of SD1 over SD2

C. Prediction of CVDs with HRV; State of the Art

Several attempts have been made in the attempt to detect
cardiovascular events using HRV. To this end, researchers have
applied various artificial intelligence models to HRV in the
time domain, frequency domain, and nonlinear features.
For example, the authors in [8] applied the Fast Fourier Trans-
form (FFT) with Blackman Harris windowing to HRV features
in the time domain. The authors created their model to predict
the occurrence of Ventricular Tachycardia (VT) in the short
term. Similarly, the authors in [9] used an Artificial Neural
Networks (ANNs) classifier with the ”PhysioNet Spontaneous
Ventricular Tachyarrhythmia Database.” [10] to predict the
future occurrence of VT events. Model performance metrics
were 76.60% 82.9% and 71.4% for accuracy, sensitivity, and
specificity, respectively. In addition, in [11], in an attempt to
classify cardiovascular risk prediction schemes, the researchers
analyzed various HRV features using Multilayer Perceptron
(MLP), Radial Basis Function (RBF), and Support Vector
Machines (SVM), with the best model achieving 96.67% ac-
curacy. Furthermore, in [12], the authors developed predictive
models based on SVM to improve risk stratification after
acute Myocardial Infarction with their model achieving 89%
accuracy.
In addition, the authors developed a k-Nearest Neighbor (k-
NN) and a Multilayer Perceptron Neural Network (MLP) as
sudden cardiac death (SCD) prediction models in [13]. The
models were compared with the ”PhysioNet Sudden Cardiac
Death Holter database.” [14] and the ”PhysioNet Normal Sinus
Rhythm database” [15] and achieved an accuracy of 99.73%,
96.52%, 90.37%, and 83.96% for the first, second, third, and
fourth one-minute intervals, respectively. Similarly, the authors
in [16] used SVM and Probabilistic Neural Network (PNN)
models to predict SCD two minutes before its occurrence.

They trained the models using the ”PhysioNet Sudden Car-
diac Death (SCD) Holter database” [14] and the ”PhysioNet
MIT Normal Sinus Rhythm database” [15]. SVM and PNN
achieved a maximum mean SCD prediction rate of 96.36%
and 93.64%, respectively.
Furthermore, the authors developed in [17] models for auto-
matic risk stratification of hypertensive patients using SVM,
tree-based classifiers, Artificial Neural Network and Random
Forest. The models were run with the ”Smart Health for
Assessing the Risk of Events via ECG database” [18] and
achieved a sensitivity of 71.4% and a specificity of 87.8%. In
[19], the authors also detected Ventricular Tachycardia one
hour before its onset using an Artificial Neural Networks
model that analyzed not only HRV features but also respiratory
rate variability (RRV). The performance of the model was
reported as sensitivity, specificity, and area under the curve
as 88%, 82%, and 93%, respectively. In addition, the authors
analyzed in [20] HRV characteristics using a statistical model
called MIL, to predict CVDs, and their models achieved
high accuracy. Finally, the authors used in [21] Data mining
algorithms to predict CVDs such as K Nearest Neighbor (k-
NN), decision tree, Naive Bayes, logistic regression (LR),
support vector machine, neural network, and vote. Models
were run with the ”UCI Heart Diseases Repository” [22] and
achieved an accuracy of 87.4%.
In this article, several AI models were used to predict cardio-
vascular diseases, namely, Support Vector Machines (machine
learning), AdaBoost (ensemble learning), and TabNet and Tab-
Transformers (deep convolutional neural networks). In Section
2, the dataset used and the preprocessing steps applied to it
are discussed along with a brief explanation of the different
AI branches. Section 3 explains the models used, while the
results obtained are presented in Section 4.

II. MATERIALS & METHODS

A. Dataset

This study used the PhysioNet Smart Health for Assessing
the Risk of Events via ECG Database (SHAREEDB) [18]
database, which was collected to investigate the feasibility
of classifying hypertensive patients at higher risk for cardiac
events using the Heart Rate Variability features. This dataset
consists of 139 records, each representing a 24-hour electro-
cardiographic (ECG) Holter recording. The 139 subjects who
contributed to this dataset are 49 women and 90 men aged 55
years and older. Subjects were followed up for up to 12 months
to record major cardiovascular and cerebrovascular events
such as fatal or nonfatal acute coronary syndromes, including
Myocardial Infarctions, syncopal events, Coronary Revascu-
larizations, fatal or nonfatal strokes, and transient ischemic
attacks. During the 12-month period, 17 cardiovascular events
were recorded in 17 different subjects, namely 11 Myocardial
Infarctions, 3 strokes, and 3 syncopal events. In addition, the
24-hour recordings include three ECG signals, each sampled
at 128 samples per second with 8-bit accuracy. In addition,
demographic and clinical information is provided with the
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dataset such as: age, gender, any vascular event, systolic and
diastolic arterial pressure values, and others.

B. Data Filtering & Preprocessing

It is well known that electrocardiography data are noisy
for various reasons, and filtering of these data is necessary
to obtain high-quality ECG signals for examination. In this
study, the data is filtered and preprocessed before being fed
into the AI models. The steps applied to prepare the data for
the models are:

• Filtering & Artifacts Removal [23]: knowing that
the frequency of a clean ECG signal is between 0.05
Hertz and 100 Hertz, the collected ECG signals can be
interfered by various external factors. These interferences
may result in high or low frequency noise, such as
baseline drift, channel interference, current conduction
interference, muscle motion interference, or electrode
contact interference, which then require the application
of various filtering methods, such as:
– IIR Notch Filters: are effective in removing current

conduction interference and/or motion artifacts.
– FIR Filters: are filters that operate in the range of 1

hertz to 100 hertz
• R Peaks Detection[24,25]: The ECG signal represents

the electrical activity of the heart muscle over time and
is characterized by three parts: P-Wave, QRS complex,
and T-Wave. The QRS complex includes the Q wave,
R wave, and S wave, which occur in rapid succession.
R-peaks are detected using several common algorithms
such as Hamilton, Christov, Engelse and Zeelenberg, Pan
and Tompkins, Stationary Wavelet Transform and Two
Moving Average. According to [25], Engelse and Zee-
lenbergm have proven to be the most accurate algorithm
for detecting R-peaks, which is why it was used in this
study.

• Calculation of RR Intervals: RR intervals are defined
as the difference between two consecutive R peaks and
represent the plots of the Heart Rate Variability.

• Outliers Removal: After the RR intervals are calculated,
they are corrected by replacing outliers, i.e. points that are
extremely far from the mean, with the mean value

• Extracting HRV Features: Finally, 26 HRV features
were extracted using appropriate mathematical calcula-
tions. Despite the high number of features, the obtained
results prove the high efficiency of using all features.

C. Artificial Intelligence Smart Models

The use of artificial intelligence in healthcare has increased
dramatically recently, especially in cardiology, the healthcare
field that deals with heart disease. Due to the high accuracy of
AI and its branches in detecting cardiovascular diseases, some-
times surpassing even human diagnosis, researchers’ interest
in this field is also increasing. The development of AI models
has helped to develop accurate and efficient systems that can
diagnose or even predict CVDs by analyzing HRV characteris-
tics [26,27]. In addition, AI is currently known with its various

branches that are used in almost all areas of life worldwide.
For example, Machine Learning, Ensemble Learning and Deep
Convolutional Neural Networks are branches of AI that were
used in this study. Figure 1 shows the relationship between
AI and these models, and a brief explanation of each model
is provided below:

• Classical Machine Learning Algorithms [28]: give
computers the ability to learn without being explicitly
programmed by feeding them experimental data to gen-
erate models that enable them to evaluate new situations.
There are many classical algorithms such as Support
Vector Machines (SVM), Linear Regression, Naı̈ve Bayes
and others.

• Ensemble Learning [29]: is a branch of machine learn-
ing that aims to improve predictive performance by
combining the predictions of multiple models. Its imple-
mentations are mainly divided into bagging, stacking, and
boosting algorithms. Some ensemble learning algorithms
are XGBoost, AdaBoost, GradientBoosting, LightGBM,
and other

• Deep Convolutional Neural Network [28,30]: are net-
works that apply filters to input data to create a feature
map that embodies the presence of detected features in
the input. However, Deep Convolutional Neural Networks
are designed to process images and videos that represent
multidimensional input. Therefore, tabular data, such
as that used in this study, must be transformed into
a multidimensional form. However, this conversion is
offered with different models such as: TabNet, GrowNet,
TreeEnsemble Layers, TabTransformers, Self Normaliz-
ing Neural Networks, Neural Oblivious Decision En-
sembles (NODE), AutoInt, and Deep & Cross Neural
Networks (DCNs).

Fig. 1. Artificial Intelligence and its Branches

III. APPLIED MODELS

The models presented in the previous section were used in
this study. However, before the extracted HRV features were
passed to the models, they were treated with some data fitting
steps.

A. Data Adjusting
A detailed examination of the architecture of the extracted

HRV features shows that the majority of samples were clas-
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sified without cardiovascular events (122 of 139 samples).
Knowing that unbalanced data can negatively affect the perfor-
mance of the models, it is necessary to balance the data before
using them. In addition, the data are scaled by normalizing or
standardizing the real-valued input and class variables. These
steps are achieved by performing:

• Synthetic Minority Over-sampling Technique
(SMOTE): a type of data expansion in which new
samples are synthesized from existing ones to oversample
the minority class

• Preprocessing Standard Scaling: Standardization of
characteristics by removing the mean and scaling to a
unit variance.

B. Building and Training Models

Therefore, after the extraction of HRV features and the
necessary data fitting steps, the treated data are passed to
different models built based on the following approaches.

1) Classical ML: Support Vector Machines: Support Vector
Machines (SVM) is a supervised Machine Learning algorithm
that learns to assign labels to objects based on examples,
feeding it training data labeled with the appropriate category
to predict the category of new examples [28]. The performance
of the SVM is affected by the following important hyperpa-
rameters [31]:

• Kernel:. transforms the input data into the desired form,
such as linear, polynomial and radial basis function
(RBF).

• Regularization: represents the misclassification or error
term

• Gamma: defines how far the influence of a single training
sample extends, with low values meaning ”far” and high
values meaning ”close”

• Class weight: defines the weighting of the classes to be
predicted and is effective for imbalanced datasets, which
includes the case studied in this article

2) Ensemble Learning Algorithms: AdaBoost: AdaBoost is
an Ensemble Learning algorithm that falls under the domain
of machine learning.

• AdaBoost [32]: is a meta-estimator that first fits a clas-
sifier to the original data and then fits additional copies
of the classifier to the same data, changing the weights
of misclassified instances so that subsequent classifiers
examine them extensively, leading to an improved result
– Number of Estimators: the number of base estimators

or weak learners to be used in the dataset.
– Learning Rate: is the step size used in the update to

prevent overfitting
3) Deep Convolutional Neural Networks: TabNet & Tab-

Transformers: In this study, the following models were used
to implement DCNN on the tabular data of SHAREEDB.

• TabNet [33]: a model that uses sequential attention to
select which features to infer at each decision step, and
is influenced by the following hyperparameters:
– Optimizer: an algorithm that modifies the neural net-

work attributes, such as weights and learning rate.

– learning rate: is the step size used in updating to
prevent overfitting

– Batch size: number of examples per batch.
• TabTransformers [34]: is a model based on transformers

whose layers convert categorical feature embeddings into
robust contextual embeddings to achieve higher predic-
tion accuracy, and is affected by the following hyperpa-
rameters:
– Activation function: defines how the weighted sum of

the input is converted into an output of a node in a
network layer.

– Number of Heads: specifies the number of heads of
attention

– Dropout: regularization to reduce overfitting and im-
prove generalization of deep neural networks

– MLP Hidden Units Factors: MLP hidden layer units,
as factors of the number of inputs.

– Learning Rate: is the shrinkage step size used in
updating to prevent overfitting

C. Wrapping Up, Training and Predictions

Once the models were created, they were trained using
the extracted HRV features. The models were then evaluated
using several performance metrics, namely accuracy, precision,
recall, F1 score, specificity, and negative predictive value. The
results obtained are detailed and discussed in the next section.

IV. RESULTS & DISCUSSION

The HRV features extracted by the steps described above are
then passed to the models created: SVM, AdaBoost, TabNet,
and TabTransformers. The models were trained with the data
and their performance was measured with the performance
metrics: Accuracy, Precision (also referred to as Positive
Predictive Value PPV), Recall (also referred to as Sensitivity),
Specificity (also referred to as True Negative Rate), Negative
Predictive Value NPV, and F1 Score. To accurately assess the
performance of the models, Repeated K-Fold Cross Validation
[35] was applied to the models. A 10-fold cross validation was
performed and repeated 5 times. The results are shown in Table
1 below, where the performance measures Accuracy, Precision,
Recall, Specificity, Negative Predictive Value, and F1 Score
are denoted as AC, PR, RE, SP, NPV, and F1, respectively.
The table also lists the values of the hyperparameters used.

In addition, Figure 2 graphs the performance of the models,
with parts a, b, and c showing the Area Under Curve for the
SVM, AdaBoost, and TabNet models, respectively, while part
d shows the TabNet training loss graph and part e shows the
training and validation loss for the TabTransformer model.

1) Discussion: In this study, heart rate variability features
were extracted from the 24-hour data set SHAREEDB ECG
and analyzed with different AI models. The models presented
in this study showed high feasibility in predicting cardiovas-
cular events. Despite the high performance metrics recorded
by the different models, our results were comparable to those
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TABLE I
MACHINE LEARNING MODELS EVALUATION METRICS

Model Hyper Parameters Evaluation Metrics

Parameter Value AC PR RE SP NPV F1

SVM

Training(Testing) 0.75(0.25)

91.80% 87.87% 96.66% 87.09% 96.42% 92.06%

Kernel rbf

Regularization(C) 2.66

Gamma 0.141

AdaBoost

Training(Testing) 0.79(0.21)

89.50% 87.20% 94.60% 84.90% 93.60% 90.80%Estimators 200

Learning Rate

TabNet

Training(Testing) 0.79(0.21)

76% 74.70% 82.60% 74.70% 80.50% 76.50%
Learning Rate 0.9

Batch Size 1024

Virtual Batch Size 1024

TabTransformers

Training(Testing) 0.72(0.28)

90.38% 86.66% 96.29% 91.22% 84% 95.45%

Activation Function Sigmoid

Transformer Blocks 1024

Attention Heads 1024

Dropout 0.25

MLP Hidden unit [1024,512]

Learning Rate 0.05

Epochs 1000

Fig. 2. Models Performance Graphical Representation

of previous implementations.
For example, in [17], the authors used the same dataset and
also employed the SVM model. However, our results were bet-
ter in terms of the performance metrics captured. They stated
that their SVM model was considered the most accurate model
in their study, with performance metrics such as Accuracy:
89.00%, Recall: 86.30%, and Specificity: 91.80%, while our
SVM model metrics were: 91.80%, 96.66%, and 87.09% for
the same parameters.
On the other hand, the accuracy of the SVM model presented
in this study is better than all other models in previous
implementations, where the accuracy is 91.80%. In previous
studies, SVMs with linear, polynomial, and RBF kernels in
[11] have achieved an accuracy of 88.64%, 82.95%, and
82.58%, respectively. The same is true for [12,21], where the
accuracy was 79.81%, 89.00%, and 85.19%, respectively.
Similarly, the AdaBoost and TabTransformers models show
better performance compared to other implementations,
achieving an accuracy of 89.50% and 90.38%, respectively.
Even though the results are close in accuracy, the improvement
in precision and recall is very illustrative. Because recall is the

TABLE II
COMPARISON WITH PREVIOUS IMPLEMENTATIONS

Study Model AC PR RE SP NPV F1

Our

Support Vector Machines 91.80% 87.87% 96.66% 87.09% 96.42% 92.06%

AdaBoost 89.50% 87.20% 94.60% 84.90% 93.60% 90.80%

Study TabNet 76.00% 74.70% 82.60% 74.70% 80.50% 76.50%

TabTransformers 90.38% 86.66% 96.29% 91.22% 84.00% 95.45%

[9] Artificial Neural Network 76.60% 70.70% 82.90% 71.40% NA NA

[11]

Support Vector Machines (Linear Kernel) 88.64% 90.84% 86.36% 90.91% 86.96% NA

Support Vector Machines (Polynomial Kernel) 82.95% 80.85% 79.55% 86.36% 85.37% NA

Support Vector Machines (RBF Kernel) 82.58% 79.45% 77.27% 87.88% 86.44% NA

Multi Layer Perceptron (Top 15 Features) 86.67% 100% 73.33% 100% 78.95% NA

[12] Support Vector Machines 79.81% 21.15% 91.67% 79.08% 99.36% NA

[13]
MLP (A Minute Before the SCD Event) 99.73% NA NA NA NA NA

K-NN (A Minute Before the SCD Event) 98.32% NA NA NA NA NA

[16]
SVM (2 minutes before VF Event) 96.36% NA NA NA NA NA

Penalized Neural Network 93.64% NA NA NA NA NA

[17]
Support Vector Machines 89.00% NA 86.30% 91.80% NA NA

Multi Layer Perceptron 78.10% NA 86.30% 69.90% NA NA

[19] Artificial Neural Network 85.30% 83.30% 88.20% 82.40% 87.50% NA

[20] MIL Statisitcs Algorithm 85.47% 92.11% 86.42% 83.33% NA NA

[21]

Vote 87.41% NA NA NA NA NA

Naı̈ve Bayes 84.81% NA NA NA NA NA

Support Vector Machines 85.19% NA NA NA NA NA

measure of a model’s correct classification of true positives,
our model is better able to correctly predict a subject as
potentially having cardiovascular event in the future. With a
recall of 96.04%, 94.60%, and 96.29% achieved by our SVM,
AdaBoost, and TabTransformers models, respectively, this is
the highest ability among all implementations to correctly
predict that a subject is in a cardiovascular risk zone. However,
the TabNet model did not show competitive results, as shown
in the table.
Finally, the SVM, AdaBoost, and TabTransformer models
developed in this study are considered the most accurate
models for predicting cardiovascular events with high accu-
racy and relatively high recall. Nevertheless, the performance
metrics in [13] and [16] are higher than our results, but they
are not comparable with our models because their models
were developed for the prediction of sudden cardiac death
(SDC) only minutes before its occurrence. A further look into
their implementations shows a dramatic decrease in prediction
accuracy as the prediction time interval increases by minutes.
For example, in [13], the accuracy was 99.73% when the SDC
was predicted one minute before its occurrence and drops
to 83.93% when the event is predicted four minutes before
its occurrence. This is in contrast to the models offered in
this study, which are able to predict cardiovascular events 12
months before their occurrence with relatively high perfor-
mance. Consequently, this study highlights the feasibility of
using artificial intelligence models with heart rate variability
features in predicting cardiovascular events, even 12 months
before their occurrence. Therefore, the results reinforce confi-
dence in the use of AI and its ramifications in the prediction
of cardiovascular disease and related events, or at least in its
use as a diagnostic assistant for this deadly disease.
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CONCLUSION

Artificial intelligence and its ramifications are increasingly
entering all aspects of our lives. Moreover, the increase in com-
munication tools combined with AI capabilities is expected
to help cardiologists reach a new level of disease diagnosis
and prediction. The models developed and presented in this
article show high efficiency in predicting cardiovascular events
one year before their occurrence. However, future efforts are
needed to adapt such models with real-time data processing
to improve the personalization of health services and provide
immediate insight into the health status of the population.
Real-time management, for example, will be key to monitoring
people in the workplace to improve their health and increase
their productivity, especially for those working under stressful
conditions or for long periods of time.
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A.4 Toward The Goal; Narrowing Ideas Down

After immersing myself in research and making a notable contribution to publications, I
turned my attention to addressing challenges within the field of Machine Learning (ML). I
honed in on two particularly intriguing research areas: Multimodal Machine Learning and
Federated Learning.
Beside the interest in Federated Learning domain, Multimodal Machine Learning, aimed at
tackling the heterogeneity in ML, captured my interest. This research effort culminated in
a comprehensive long-form review, dedicated to exploring this topic and its applications in
health domain. This review were later published with MDPI:

• Reviewing Multimodal Machine Learning and Its Use in Cardiovascular Diseases
Detection (MDPI-Electronics / Impact Factor 2.9)
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Abstract: Machine Learning (ML) and Deep Learning (DL) are derivatives of Artificial Intelligence
(AI) that have already demonstrated their effectiveness in a variety of domains, including healthcare,
where they are now routinely integrated into patients’ daily activities. On the other hand, data
heterogeneity has long been a key obstacle in AI, ML and DL. Here, Multimodal Machine Learning
(Multimodal ML) has emerged as a method that enables the training of complex ML and DL models
that use heterogeneous data in their learning process. In addition, Multimodal ML enables the
integration of multiple models in the search for a single, comprehensive solution to a complex problem.
In this review, the technical aspects of Multimodal ML are discussed, including a definition of the
technology and its technical underpinnings, especially data fusion. It also outlines the differences
between this technology and others, such as Ensemble Learning, as well as the various workflows that
can be followed in Multimodal ML. In addition, this article examines in depth the use of Multimodal
ML in the detection and prediction of Cardiovascular Diseases, highlighting the results obtained
so far and the possible starting points for improving its use in the aforementioned field. Finally, a
number of the most common problems hindering the development of this technology and potential
solutions that could be pursued in future studies are outlined.

Keywords: multimodal machine learning; multimodal learning; data heterogeneity; data fusion;
model heterogeneity; model fusion; diseases prediction; cardiovascular diseases; Internet of Things;
smart wearables

1. Introduction

Artificial Intelligence (AI) has experienced rapid growth over the past two decades.
The concept of AI has been around since 1950, and the term itself was coined in 1965 at
the Dartmouth Summer Workshop, which is considered the founding event of AI as a
field [1]. However, the growth in Information and Communication Technologies (ICTs)
and the increasing power of computers have contributed significantly to the increasing
feasibility and adoption of AI [2]. AI technologies are becoming more advanced and
are capable of analyzing enormous amounts of data, learning from past experiences,
and making predictions based on patterns and trends [3]. Despite the popularity of
AI, there is no single definition for this technology. Researchers in [4], for example,
defined it as a set of tools and techniques that use principles and devices from various
fields, such as computation, mathematics, logic, and biology, to address the problem
of realizing, modeling, and mimicking human intelligence and cognitive processes.
Furthermore, the authors define in [5] AI as the study of an “Intelligent Agent”, i.e.,
machines that are able to recognize and understand their environment and consequently
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take appropriate actions to increase their chances of achieving their goals. In an attempt
to unify definitions, the authors defined in [6] AI as a program that can cope in an
arbitrary world no worse than a human. These different definitions reflect the different
competencies of AI, which explains the diversity of AI implementations in our daily
lives.

Machine Learning (ML) [7], Deep Learning (DL) [8], Federated Machine Learning
(FL) [9], and Multimodal Machine Learning [10] are all well-known and popular derivatives
of the AI concept that have been adopted by users and applied in various aspects of our
daily lives. These different branches of AI are depicted in Figure 1. In this context, Machine
Learning is defined as a field of study that focuses on the development of algorithms and
statistical models that enable computer systems to learn from data and make predictions
or decisions without being explicitly programmed. It involves the application of various
approaches, such as supervised and unsupervised learning, Reinforcement Learning, and
Deep Learning, that allow computers to automatically improve their performance on a
given task through experience [7].

Figure 1. Artificial intelligence branches.

On the other hand, Machine Learning has demonstrated high efficiency in solving
classification and regression problems. Machine Learning’s ability to extract meaningful
insights and patterns from vast and complicated datasets and use this knowledge to make
accurate predictions, automate decision making, and enable intelligent systems to learn
and adapt in real-time is fundamental to its success. This success has led researchers from
different fields to implement ML algorithms, and their efficiency can be observed in various
fields, such as:

• Healthcare services [11–13];
• Image, speech and pattern recognition [14,15];
• Internet of Things (IoT) and smart cities [14,16];
• Cybersecurity and threat intelligence [17];
• Natural language processing and sentiment analysis [18];
• User behavior analytics and context-aware smartphone applications [14,15];
• E-commerce and product recommendations [14,15];
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• Sustainable agriculture [19];
• Industrial applications [20].

1.1. Machine Learning Domain Challenges

The great success of Machine Learning is not magic but the result of its ability to
analyze large amounts of data at high speed and with high accuracy. However, the field
of ML still suffers from various challenges and obstacles arising from different problems.
Table 1 below summarizes the Machine Learning challenges and categorizes them based
on their source. These challenges have been extensively studied in the literature, and more
details can be found in several articles, such as [9,21–23].

Table 1. Machine Learning domain common challenges.

Group Challenges

Data-Related
Challenges [21,22]

Data Availability and Accessibility [23]
Data Locality [16]

Data Readiness [23]

Data Heterogeneity
Noise and Signal Artifacts

Missing Data
Classes Imbalance

Data Volume Course of Dimensionality
Bonferroni principle [24]

Feature Representation and Selection

Models Related
Challenges [25,26]

Accuracy and Performance
Model Evaluation
Variance and Bias

Explainability

Implementation-Related
Challenges [23,27]

Real-Time Processing
Model Selection

Execution Time and Complexity

General
Challenges [25,26]

User Data Privacy and Confidentiality
User Technology Adoption and Engagement

Ethical Constraints

1.2. Heterogeneity: Motivation(s) Behind Multimodal ML

Advances in sensor technologies, storage concepts, communication networks, and
other tools have driven data collection [28]. According to recent figures from Statista [29],
the total amount of data generated worldwide will reach 64.2 zettabytes or 6.42 × 1016

Megabytes in 2020. This increase exceeded predictions due to increasing demand as a
result of the COVID-19 pandemic, as more individuals worked and studied from home and
increasingly used utilized home entertainment alternatives. For the above reasons, data
volumes are expected to reach 180 zettabytes in the next five years by 2025.

However, these data differ in type, structure, format, usability, lifespan, and other
aspects. This heterogeneity poses several challenges in Machine Learning, as it can make
it difficult to use data from different resources to gain useful insights or build accurate
models. There are many types of heterogeneity, the most common of which are listed
below [21,30,31]:

• Structured vs. unstructured data: structured data are highly organized and usu-
ally follow a specific schema, while unstructured data have no predefined structure
or organization;

• Numeric vs. categorical data: Numeric data are quantitative and can be expressed as
numbers, while categorical data are qualitative and represent discrete values, such as
colors, types, or labels;



Electronics 2023, 12, 1558 4 of 30

• Temporal data: This type of data contains time-stamped information and can be used
to analyze patterns and trends over time;

• Multimodal data: This type of data combines different types of information, such as
text, audio, images, and videos.

Thus, dealing with heterogeneous data requires careful processing and feature engi-
neering to put the data into the form required for a single Machine Learning model [31].
In addition, multiple preprocessing steps may be required to analyze heterogeneous data,
such as normalization, scaling, or other steps. In some cases, however, it may seem impos-
sible to analyze heterogeneous data, even though training the model with this variety of
resources improves its feasibility and increases confidence in its predictions.

For example, Magnetic Resonance Imaging (MRI) analysis using ML models has
shown high efficiency in predicting Cardiovascular Diseases (CVDs), as shown in [32]. In
addition, smart wearables equipped with ML models are also highly feasible in predicting
cardiac disease, as shown in [33]. In addition, the use of Electronic Health Records (EHRs)
collected from various health centers such as clinics, hospitals, or smart homes is also a
good source for Cardiovascular Disease prediction using ML algorithms [34]. However,
trying to merge these three types of data seems to be technically impossible because the first
data source, namely MRI images, are stored in the form of medical electronic image files,
and the data collected by wearables are structured data, while EHRs can be a collection
of both structured and unstructured data, free text reports, medical examination data, or
other formats. In the real world, a physician may analyze all of these data to make a more
accurate diagnosis, though it is not easy to analyze these data sets simultaneously using
the same model. This case is illustrated in Figure 2 below.

Figure 2. Prediction of CVDs with heterogeneous data—a showcase.

In this context, Multimodal Machine Learning is proposed as a solution to the challenge
of data heterogeneity in ML. Multimodal ML gives models the ability to analyze different
data within the same ML workflow, whether by merging different datasets, by merging
different models, or both, to arrive at a single result, such as the diagnosis of CVDs in
the showcase mentioned above [10]. The ability to analyze these heterogeneous data with
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multiple views can be of varying importance to a learning task. Therefore, merging all
of these data sets and treating them with equal importance is unlikely to lead to optimal
learning outcomes [30].

1.3. Machine Learning and Healthcare

The importance of health to human life cannot be overstated, as it is essential
for meeting basic needs, pursuing goals, maintaining relationships, and having an
adequate quality of life, and poor health can have significant financial and societal
consequences. Therefore, researchers are constantly striving to improve the quality
of healthcare services. In this context, Artificial Intelligence and its branches, such as
Machine Learning and Deep Learning, have been incorporated into healthcare services
due to their high feasibility and usability in this field. Machine learning, in particular,
is a powerful tool that has the potential to revolutionize healthcare in many ways [35].
ML has made remarkable progress in healthcare, not because of any mystical powers,
but because of its superior data processing capabilities compared to those of humans.
Because of its speed and precision, thousands of AI applications have already been
developed for healthcare, making it a potentially revolutionary tool for solving a wide
range of healthcare problems [36].

Machine Learning has been used in various areas of healthcare. Whether diagnosing
diseases or even predicting diseases, it has proven to be very useful. Moreover, the devel-
opment of communication tools, such as smart wearables equipped with Machine Learning
and Deep Learning models, has opened the door to real-time continuous monitoring. In
this context, smart wearables have shown high feasibility in predicting various diseases
such as Cardiovascular Diseases [33], diabetes [37], liver disease [38], fatigue and stress [39],
mental illness [40], and many other diseases [41]. In addition, ML models have been used
to increase the efficiency of healthcare decision systems [42]. In addition, ML has also been
used in the field of genomic medicine [43]. Overall, ML has succeeded in transforming
health services and creating personalized digital health services that support physicians
and improve the overall quality of public health [44].

Therefore, considering the importance of healthcare, it is urgent to improve the effi-
ciency of ML. The use of state-of-the-art methods and the removal of obstacles to progress
are essential to improving performance. The challenges described previously are reflected
in the barriers to expanding the use of ML in healthcare, which are common to all ML
implementations across all diseases. With this in mind, new solutions that could help
promote the use of ML will lead to improved applications in a variety of settings.

1. Define the scope of the review: Clearly define the scope and objective of the
review article. What is the main topic or research question that the review aims to
address? What specific subtopics or themes will be covered? 2. Identify the key concepts
and themes: Based on the scope and objective of the review, identify the key concepts
and themes that will be discussed in the article. These should be organized in a logical
and coherent manner that supports the overall objective of the review. 3. Develop a
framework for presenting the review: Once the key concepts and themes have been
identified, develop a framework for presenting the review. This could involve organizing
the content chronologically, thematically, or conceptually, depending on the nature of
the review and the key concepts and themes identified. 4. Clearly articulate the review
framework: Finally, clearly articulate the review framework in the introduction or early
sections of the review article. This will help to orient readers to the overall structure and
organization of the review and make it easier for them to follow the content. Overall, the
goal is to provide a clear and structured overview of the review article that highlights
the key concepts and themes and guides the reader through the content in a logical and
coherent manner.
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1.4. Review Framework: Scope, Outline and Main Contributions

In this article, Multimodal Machine Learning is explored, and its role as a solution
to the challenge of heterogeneity is detailed. In addition, the use of Multimodal ML in
Cardiovascular Disease detection and prediction is technically reviewed to support its use
in this field.

1.4.1. Scope of Research

To achieve the objectives of the study, Multimodal Machine Learning has been
explored, along with the data fusion concept, which is the basis of the technology under
study. In addition, the technical perspectives of Multimodal ML are studied, and the
workflows related to it are examined. Furthermore, a comparison between Multimodal
ML and other known techniques is made in order to distinguish between these different
techniques. On the other hand, distinct areas where Multimodal ML is used are inspected,
and a comprehensive overview of its application in Cardiovascular Diseases, including
the state of the art, is therefore obtained. In addition, these implementations were
analyzed from different perspectives to understand the limitations and future areas of
research. Finally, the challenges and future recommendations associated with advancing
this field are reviewed.

1.4.2. Research Questions

The scope of the article defined in the previous section is summarized by the research
questions mentioned in the list below:

• What is Multimodal Machine Learning?
• What are the motivations for this technology?
• What are the technical perspectives on which Multimodal ML is based?
• What are the differences between Multimodal ML, classical ML, Multimodal datasets,

ensemble ML and other techniques?
• What are the existing Multimodal ML frameworks, and what contributions do each make?
• What is the state of the art in the use of Multimodal ML in CVD prediction, and what

technical summaries can be derived?
• What challenges still impede progress in this area, and what approaches could be

taken to overcome these issues?

1.4.3. Outline

To answer the above questions, the article is outlined as follows. In Section 2, Multi-
modal ML is reviewed from various angles, including technical definition(s), differences
from other domains, such as classical ML, ensemble ML and others, available frameworks,
and other details. Then, in Section 3, the use of Multimodal ML technology in CVD detec-
tion and prediction is presented by listing the state of the art in this field and discussing the
technical details of the implementations mentioned in the literature. Later, in Section 4,
the challenges that hinder progress in this field are discussed, and therefore, some future
perspectives that could help in overcoming these challenges are proposed. This article
attempts to answer the following questions:

1.4.4. Comparison with Previous Review Frameworks

The topic of Multimodal ML has been a hot and trending topic in recent years. As
a result, numerous studies have already addressed this topic, with a large proportion
of these studies reviewing Multimodal ML. However, this article proposes several new
ideas that add to the knowledge of Multimodal ML. First, this study proposes a technical
study for Multimodal ML that, on the one hand, helps to understand this technology
and distinguish it from other existing AI techniques. Moreover, none of the previous
studies proposed a technical review for the use of this technology in CVD detection and
prediction. Moreover, this review discusses in detail the challenges and future ideas in
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this field to help future researchers select the most relevant ideas on which to build their
future work.

1.4.5. Key Findings and Contributions

Consequently, this article is rich in various new points that contribute to the body of
knowledge on Multimodal ML:

• Discuss fusion and its fundamental role in defining the structure of Multimodal ML;
• Establish clear and precise boundaries to distinguish between Multimodal ML, tradi-

tional ML, multimodal datasets, multilabel models, and ensemble learning;
• Propose a new description for the different workflows that can be followed in the

implementation of Multimodal ML algorithms;
• Discuss existing frameworks in the area of Multimodal ML and evaluate the contribu-

tions to this area;
• Review and discuss the state of the art of Multimodal ML in the diagnosis of CVDs;
• Examine the technical details associated with these implementations;
• Present completely and in detail the challenges that hinder Multimodal ML and

the possible future perspectives that can be pursued to increase the efficiency of
the technology.

2. Materials and Methods: What is Multimodal ML?

The human mind processes information from multiple senses simultaneously. Some-
times it is not enough to just hear about a problem; individuals need to see it for themselves
in order to make an informed judgment. For Artificial Intelligence to expand its knowledge
of the world, it must be able to process a variety of information sources that may contradict
each other. This principle also applies to the field of AI known as Machine Learning (ML),
where Multimodal Machine Learning focuses on using numerous data sources to achieve a
single goal by leveraging complementary information in a unified computational frame-
work. The ability to explore diverse data increases predictive power and leads to more
accurate and reliable results, making Multimodal Machine Learning a multidisciplinary
topic with tremendous efficiency and amazing potential [5,10].

2.1. Overview and Definition(s)

Despite the fact that Multimodal Machine Learning is a popular and young research
area that has received much attention, it is still in its infancy [4–6,45]. As a result, there is
no single and universally accepted definition. Nevertheless, all definitions lead to the same
concept: the ability to analyze different data sets to reach a single conclusion. For example,
the authors describe in [4] Multimodal ML as the ability to evaluate data from Multimodal
datasets, identify a common phenomenon, and use complementary knowledge to learn
a complex task. Multimodal datasets are described in this way as data seen with many
sensors, where the output of each sensor is called a modality and can be associated with a
dataset. Similarly, the authors of [5] describe Multimodal ML as the integration of multiple
data sources collected by different instruments, devices, or techniques, followed by the
analysis of these merged data using different ML architectures. In addition, Multimodal
Machine Learning is described in [10] as an area that aims to develop intelligent models
that can process and link data from many sources.

2.2. Multimodal ML and Data Fusion

Multimodal ML brings together data from multiple and disparate modalities to iden-
tify a single task. The discipline behind merging data from multiple sources is called data
fusion. More specifically, data fusion is defined as “the process of combining data to refine
state estimates and predictions” [5]. According to the Joint Directors of Laboratories Data
Fusion Subpanel (JDL), the technique of “data fusion” is a must for processing more than
one type of data [46]. The authors in [46] support this definition by explaining that any
process that deals with associating, correlating, or combining data from one or more sources
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to obtain enriched information is called a process that uses data fusion. In data fusion,
given the novelty of the literature, there is no consensus on how best to combine different
data, especially since there are four different techniques for implementing data fusion,
which may have many names depending on the context and research area [5,46,47]. These
different approaches are illustrated in Figure 3:

• Early Fusion: also called Low-Level Fusion, is the simplest form of data fusion in
which disparate data sources are merged into a single feature vector before being
used by a single Machine Learning algorithm. Therefore, it can be referred to as a
multiple-data, single-algorithm technique.

• Intermediate Fusion: is also referred to as Medium-Level Fusion, joint fusion, or
Feature-Level Fusion, and occurs in the intermediate phase between the input and
output of a ML architecture when all data sources have the same representation format.
In this phase, features are combined to perform various tasks such as feature selection,
decision-making, or predictions based on historical data.

• Late Fusion: also known as decision-level fusion, defines the aggregation of deci-
sions from multiple ML algorithms, each trained with different data sources. In
addition, various rules are used to determine how decisions from different classifiers
are combined, e.g.,:

– Max-fusion
– Averaged-fusion
– Bayes’ rule-based
– Even rules learned using a metaclassifier

• Hybrid Fusion: defines the use of more than one fusion discipline in a single deep
algorithm.

Figure 3. Data fusion approaches.

Based on the information in [4,5], early fusion is the most common form of fusion,
which has the advantage of converting all data into the same representation that can
be classified using robust classical models, such as Support Vector Machines or Logistic
Regression. However, when the input modalities are particularly uncorrelated and have
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widely varying dimensionality and sampling rate, it is easier to use a late fusion approach.
In addition, both early and late fusion offer the most flexibility in terms of the number of
models that can be used to analyze the data, but there is no conclusive evidence that late
fusion is better than early fusion because its performance is highly problem dependent.
Alternatively, intermediate fusion provides more flexibility in terms of how and when
representations learned from Multimodal data are fused. Table 2 discusses the different
features of each approach.

Table 2. Data fusion approach specifications.

Attribute Early Intermediate/Joint Late/Decision

Ability to handle missing data no no yes
Scalable no yes yes
Multiple models needed no yes yes
Improved accuracy yes yes yes
Voting/weighting issues no yes yes
Interaction effects across sources yes yes no
Interpretable yes no no
Implemented in health yes yes yes

2.3. Multimodal ML: Technical Perspectives

The goal of Multimodal Machine Learning, also known as Multimodal Deep Learn-
ing, is to develop algorithms and models that can interpret and learn from data across
multiple modalities, such as text, audio, images, and video. Multimodal ML is a thriving
research area with the potential to transform a wide range of applications, from speech
recognition and language translation to autonomous cars and medical imaging, among
many other areas. Multimodal ML, from a technical perspective, encompasses the var-
ious approaches, algorithms, and architectures used in creating and evaluating these
models. Data preprocessing, feature extraction, model architecture, training methods,
evaluation criteria, generalization, interpretability, and scalability are the most common
possible viewpoints. Understanding the technical aspects of Multimodal ML is essential
for developing efficient models that can leverage complementary instances across many
modalities and make more accurate and robust predictions in the real world. Therefore,
the technical perspectives of Multimodal ML are described below.

2.3.1. Data Preparation

Because Multimodal data are often complex and heterogeneous, they must be thor-
oughly processed before they can be used to train the model. The first step is to recognize
the many modalities in action, then learn how to preprocess them, and finally, merge them
into a single representation that can be fed into the model [4,5,10].

2.3.2. Model Architecture

Multimodal data can be represented in a variety of ways, including concatenation,
fusion, and attentional mechanisms. Choosing the right architecture that can handle the
multiple modalities and learn a combined representation is crucial depending on the data
and the task to be solved [46,47].

2.3.3. Training Strategies

Pretraining individual modalities, joint training of all modalities, and training individ-
ual models and combining them at the time of inference are all viable options for training
Multimodal ML models. Selecting the right training methods is a crucial step in achieving
the desired goal [4,5,10].
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2.3.4. Evaluation Metrics

Following the performance metrics used to evaluate classical ML algorithms, accuracy,
precision, recall, sensitivity, specificity, F1 score, and area under the curve (AUC) are
just some of the measures that can be used to evaluate Multimodal ML algorithms. It is
controversial whether these measures are useful or not when applied to Multimodal data.
As a result, the use of evaluation criteria that consider the success of each modality and the
overall performance of the model is essential [21–23].

2.3.5. Generalization

Multimodal models are often trained on a specific collection of data and may not
generalize well to new data. To assess how well the model can be generalized, it should be
tested and validated with data that are very different from the training data [21–23].

2.3.6. Interpretability

Because of their complexity and the relationships between multiple modalities, Mul-
timodal ML algorithms can be difficult to understand and even more difficult to explain
and interpret. To decipher the decision process of the model, some tools such as attentional
mechanisms and visualization can be used [21–23,48].

2.3.7. Scalability

In Multimodal Machine Learning, scalability is critical because it enables models to
deal with real-world situations where datasets are large and complex, and the amount of
data is constantly growing. To ensure that the models can cope with the increase in data
volume and complexity in the future, it is necessary to develop models that are scalable
to enable effective training and deployment, reduce computational costs, and scale the
models [25–27,48].

2.4. Multimodal ML and Other Technologies: Borderlines

Multimodal Machine Learning is a new and rapidly growing discipline that focuses on
building models that can learn from a variety of data sources. To distinguish Multimodal
ML from other areas of Machine Learning, its characteristic aspects should be highlighted,
such as the use of many modalities and the need for effective integration of these modalities.
Establishing precise terminology and creating an understandable description of the field
will help to differentiate it from other techniques. However, because it is a relatively new
field, there may be an overlap with other areas of Machine Learning, and it will be critical
to accurately define the boundaries of Multimodal ML as the topic evolves.

2.4.1. Multimodal ML vs. Multimodal Datasets

Multimodal datasets are datasets acquired with different sensors, instruments, tech-
nologies, or devices to observe a common phenomenon, where the acquired data are
considered complementary [49]. Consequently, multimodal datasets define the data itself,
regardless of the identity of the algorithms used to analyze the data, whether they have a
multimodal or unimodal architecture. However, merging multimodal datasets and unify-
ing their representation into a single vector and then analyzing them with an ML model is
considered an early fusion approach that is a type of Multimodal ML.

2.4.2. Multimodal ML vs. Multilabel Models

Multilabel Machine Learning algorithms are used to analyze datasets with more than
one target variable. For example, the output of multilabel classification models consists of
multiple classification labels. Moreover, when performing predictions using multilabel ML
algorithms, a given input may belong to more than one label. For example, predicting the
category of a movie may result in horror, action, science fiction, drama, or some or all of
these categories simultaneously. In other words, multilabel classification associates data
with a set of labels. Classification involves learning from a set of examples associated with
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a single label called “l” from a set of disjoint labels called “L”, where |L| > 1. When |L|
= 2, the learning problem is called a binary classification problem, and when |L| > 2, it
is called a multiclass classification problem [50,51]. Thus, Multimodal ML and multilabel
learning differ in the data structure itself, where the former uses data from multiple or
different sources to obtain a single result, while the latter uses data from only one source to
obtain a single classification result with more than two possible outcomes.

2.4.3. Multimodal ML vs. Ensemble Learning

The goal of ensemble Machine Learning is to improve performance and accuracy by
combining numerous models into a single prediction. When making predictions, ensemble
learning uses multiple interconnected models rather than a single model. Ensemble learning
combines the predictions of many models with the goal that the combined predictions
are more accurate and robust than any single model. There are several types of ensemble
learning techniques, including [52,53]:

• Bagging (Bootstrap Aggregating): is the process of training several models using
random subsets of the training data to minimize overfitting;

• Boosting is a technique in which models are trained progressively, and the weights of
misclassified data points are raised to enhance performance;

• Stacking is the process of training many models and combining their predictions with
another model to obtain the final forecast.

Ensemble Learning has proven useful in a variety of applications, including classifica-
tion, regression, and anomaly detection. Following this, although Ensemble Learning uses
multiple ML models to solve one task, the main difference between these two technologies
is that Multimodal ML is able to analyze more than one dataset with more than one model
to solve a task, while Ensemble Learning uses multiple models for the same dataset to solve
a task. Therefore, unlike Multimodal ML, Ensemble Learning does not perform data fusion
to solve the task. Table 3 below summarizes the comparison between Multimodal ML and
other technologies.

Table 3. Multimodal ML vs. other technologies.

Technology \Specs Definition Main Goal Perform Better
than ML Merge Datasources Merge Models

Multimodal Datasets
Datasets that include
multiple modalities

of data

Enable Multimodal
Machine Learning Not Applicable Yes Not Applicable

Multilabel Learning

A supervised
learning technique in

which an instance
can be assigned to

multiple labels

Accurately label
instances with
multiple labels

Not Applicable No No

Ensemble Learning

Combines multiple
models to improve

the accuracy of
the prediction

Improve prediction
Accuracy Yes No Yes

Multimodal ML

Combines multiple
types of models/data

to improve
performance

and feasibility

Improve
Performance Yes Yes Yes

2.5. Multimodal ML Available Frameworks

Multimodal Machine Learning frameworks provide a systematic approach for devel-
oping models that can learn and integrate information from multiple modalities such as
text, audio, images, and other data types. As more and more data are created across multi-
ple modalities, multimodal frameworks for Machine Learning are becoming increasingly
important. These frameworks enable the integration of diverse information, allowing for a
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more comprehensive understanding of complicated events. They’re used in everything
from speech recognition and natural language processing to image and video analysis.
Some of the existing and commonly used Multimodal ML frameworks are:

• MMF (a framework for multimodal AI models) [54]: is a PyTorch-based modular
framework. MMF comes with cutting-edge vision and language pretrained models,
a slew of ready-to-use standard datasets, common layers and model components,
and training and inference utilities. MMF is also utilized by various Facebook prod-
uct teams for multimodal understanding of use cases, allowing them to swiftly put
research into production;

• TinyM2Net (a flexible system, algorithm co-designed multimodal learning framework
for tiny devices) [55]: a unique multimodal learning framework that can handle multi-
modal inputs of images and audio and can be re-configured for individual application
needs. TinyM2Net also enables the system and algorithm to incorporate fresh sensor
data that are tailored to a variety of real-world settings. The suggested framework is
built on a convolutional neural network, which has previously been recognized as one
of the most promising methodologies for audio and visual data classification;

• A Unified Deep Learning Framework for Multimodal Multi-Dimensional Data [56]:
is a framework capable of bridging the gap between data sufficiency/readiness and
model availability/capability. For successful deployments, the framework is verified
on multimodal, multi-dimensional data sets. The suggested architecture, which serves
as a foundation, may be developed to solve a broad range of data science challenges
utilizing Deep Learning;

• HAIM (unified Holistic AI in Medicine) [57]: It is a framework for developing and
testing AI systems that make use of multimodal inputs. It employs generalizable data
preprocessing and Machine Learning modeling steps that are easily adaptable for
study and application in healthcare settings.

• ML4VocalDelivery [58]: a novel Multimodal Machine Learning technique that uses
pairwise comparisons and a multimodal orthogonal fusing algorithm to create large-
scale objective assessment findings of teacher voice delivery in terms of fluency and
passion;

• Specific Knowledge Oriented Graph (SKOG) [59]: a technique for addressing multimodal
analytics within a single data processing approach in order to obtain a streamlined archi-
tecture that can fully use the potential of Big Data infrastructures’ parallel processing.

2.6. Training and Evaluation of Multimodal ML Algorithms

Multimodal Machine Learning is a technique that combines different modalities in an
attempt to solve a complex task. Given that Multimodal ML is based on the concept of data
fusion [46], the training process of a multimodal model may differ depending on the type
of fusion (early, intermediate, or late fusion). Although it is a Machine Learning concept, it
follows the familiar ML workflow, which would be: data preprocessing, model selection,
model training, evaluation, fine-tuning, and deployment, but different steps may occur
depending on the fusion stage.

First, in the case of early fusion, after preprocessing, the different datasets can be
combined and merged into one modality. Once the data are ready and fused, it can
be fed into the model to be trained, and then the other steps can be performed. In the
second case, called intermediate fusion, the data passed to the same model are merged
after preprocessing, then a single model is trained on the fused dataset, and later, the
result of the refined model is fused with other models if they exist. Finally, in the late
fusion approach, each dataset is passed to a different model after preprocessing, then
the models are trained, evaluated, and fine-tuned, and later, the results are merged into
a single result. The three approaches are shown in Figure 4 below.

On the other hand, the evaluation of the Multimodal ML model is also influenced
by the chosen approach of data fusion. Since data fusion applies a single model to
fused data sources, only a single evaluation is required. In the other two approaches,
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intermediate and late fusion, each individual model must be evaluated, and later, the
final model that merges the different models must be evaluated. The performance
measures used to evaluate the Multimodal ML correspond to parameters commonly
used in the classical ML domain, such as accuracy, precision, recall, sensitivity, specificity,
F1 Score, Area Under Curve (AUC) and others [44]. The evaluation step is also shown in
Figure 4 below.

Figure 4. ML workflows based on Multimodal ML approaches.

3. Results: Multimodal ML in Action

Multimodal Machine Learning is a rapidly growing research area that involves
the use of many modalities to evaluate and interpret complicated data, such as images,
audio, and text [5,47]. Numerous real-world applications, including self-driving vehicles,
voice recognition software, and medical imaging, require the ability to integrate and
analyze data from multiple sources. Multimodal ML is based on the notion that multiple
modalities provide complementary information and that merging these modalities can lead
to more accurate and robust models. Multimodal ML has been a hot topic in the scientific
community in recent years, and researchers have been striving to develop new algorithms
and strategies to improve its performance [5,60–62].

3.1. Multimodal ML: Fields of Implementation

The ability to analyze diverse and complementary data increases the success of Ma-
chine Learning algorithms in solving more complex problems. In this context, Multimodal
ML has proven its success in a variety of domains. Some of the most promising application
areas include [5,60–64]:

• Healthcare: in medical imaging, Multimodal ML can be used to integrate information
from different imaging modalities such as MRI, CT, and PET scans to improve diagno-
sis and treatment planning. It can also be used to classify and predict disease based
on a mix of clinical, genetic, and imaging data;

• Autonomous Vehicles: by combining data from numerous sensors, the Multimodal
ML can help self-driving vehicles better understand their surroundings. This has the
potential to improve object recognition, navigation and safety;
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• Natural Language Processing: by blending audio and text data, Multimodal ML can
improve speech recognition and natural language comprehension. This can help voice
assistants, chatbots and other applications improve their accuracy;

• Robotics: by combining inputs from sensors such as cameras, microphones, and
touch sensors, Multimodal ML can be used to improve robot perception and in-
teraction. This has the potential to improve navigation, object recognition, and
human–robot interaction;

• Education: this technology is used in education to analyze student data from numer-
ous sources, such as exams, quizzes, and essays, to make individualized learning
suggestions and improve student performance;

• Agriculture: this technology can revolutionize agriculture by enabling the optimiza-
tion of farming processes. It can be used for crop yield prediction, pest and disease
detection, precision agriculture, and crop optimization by combining data from multi-
ple sources, such as satellite imagery, weather data, and soil moisture sensors;

• Internet of Things (IoTs): this technology can be used in the context of the Internet of
Things to make better use of data provided by networked devices. Multimodal ML can
enable more accurate and robust models for predicting, monitoring, and managing IoT
systems by incorporating data from many sources, such as sensors, cameras, and audio
recordings, leading to advances in areas such as energy management, transportation,
and smart cities.

3.2. Multimodal ML in Healthcare

Multimodal ML is still in its infancy but has been studied and applied in many areas of
life, including healthcare. Multimodal ML is an effective method for assessing health data
from multiple sources and improving predictive ability due to the inherent heterogeneity of
such information [5,62,64]. To date, there are 128 applications of Multimodal ML in health-
care, with neurology and cancer being the most prevalent, as reported in [5]. Multimodal
machine learning has shown promising results in various medical areas, as illustrated in
Figure 5. While the areas depicted in the figure are the most commonly studied to date,
it is worth noting that the potential applications of multimodal machine learning extend
beyond these domains:

Figure 5. Healthcare sectors where Multimodal ML has been implemented so far.
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3.3. Multimodal ML and Cardiovascular Diseases: State-of-the-Art

Cardiovascular Disease, the most deadly disease, is a topic of interest for Multi-
modal ML implementations. For example, in [65], the authors developed a multimodal
data fusion ML model to predict hypertension. Using a Convolutional Neural Network
(CNN)-based model, they analyzed different Electronic Health Records (EHRs) that
were merged with the multimodal data fusion approach. Their model proved its effi-
ciency with an accuracy that reached 94%. In a similar approach, the authors in [66]
created a multimodal data fusion model to predict 30-day hospital readmission of pa-
tients with heart failure. For this purpose, they developed a Deep Unified Network
(DUNs) trained with EHRs from the Enterprise Data Warehouse (EDW) and the Re-
search Patient Data Repository (RPDR). Their model achieved an accuracy of 76.4%. In
addition, the study [67] also implemented a data fusion model to cluster patients with
hypertension. The authors proposed a novel Hybrid Non-Negative Matrix Factorization
(HNMF) method-based model trained with phenotype and genotype information from
the HyperGen dataset [68]. The accuracy of their proposed model reached up to 96%.
In addition, the authors also developed a data fusion model in [69]. Their goal was
to classify different CVDs, so they developed and trained a Text–Image Embedding
network (TieNet) model with Chest X-Ray and free-text radiology clinical reports ex-
tracted from ChestX-Ray14 [70] and OpenI [71] Chest X-Rays datasets. The proposed
model had an Area Under Curve (AUC) of 0.9, as they mentioned. In the same context,
the solution proposed in [72] is a data fusion model developed to classify patients at
potential cardiovascular risk. The model was based on Recurrent Neural Networks and
trained on EHR data, achieving 96% accuracy.

Other implementations proposed model fusion or hybrid multimodal ML architec-
tures to solve their problems. For example, in [73], the authors proposed a hybrid fusion
multimodal ML to predict various cardiac diseases such as atelectasis, pleural effusion,
cardiomegaly and edema. They created several ML models to analyze radiographs and
associated reports obtained from MIMIC-CXR [74] and OpenI [71] Chest X-Ray datasets.
Their proposed solution proved to be better than old implementations in terms of accu-
racy. Similarly, in [75], a multimodal unsupervised learning approach was proposed for
Cardiometabolic Syndrome Detection. The authors applied multimodal hybrid fusion by
combining unsupervised ML models to analyze fused data from metabolome, microbiome,
genetics, and advanced imaging. Furthermore, in [76], the authors proposed a multimodal
fusion-based ML model for stroke prediction. They fused both 3D Convolutional Neural
Network and Multilayer Perceptron models to analyze neuroimaging information and
clinical metadata extracted from the Hotter [77] dataset, which proved to be efficient and
powerful with an AUC of 0.90. In addition, the solution proposed in [78] was used to
predict Pulmonary Embolism (PE) by fusing multiple ML models trained with Computed
Tomography Pulmonary Angiography scans and EHRs. Their model recorded an AUC of
0.947. Furthermore, in [79], the authors developed a Recurrent Neural Network model with
Bidirectional Long-Term Memory (BiLSTM) to predict cardiovascular risk. Their model
was trained with EHR data extracted from the Second Manifestations of ARTerial Disease
(SMART) Study [80] and recorded an AUC of 0.847.

Similarly, in [81], the authors developed a data fusion model to predict Acute Ischemic
Stroke. They used a series of cardiac CT images with EHR recordings to train a Gradient
Boosting classifier that achieved an AUC of 0.856. Similarly, the study [82] proposed a Deep
Convolutional Neural Network (DCNN) data fusion model to analyze Electrocardiograph
(ECG) and Chest X-Ray images to efficiently predict Accessory Pathways (APs) syndrome.
Finally, in [83], the authors proposed a novel tensor-based dimensionality reduction method
using Naive Bayes, SVM, Random Forest, Adaboost, and LUCCK models. The created
models were trained with fused data composed of Salient Physiological Signals and EHR
data. Their solution was able to predict Hemodynamic Decompensation with an AUC
value of 0.89. Table 4 below summarizes and presents the Multimodal ML implementations
in CVDs.
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Table 4. Multimodal ML implementations in Cardiovascular Disease diagnosis and prediction.

Ref Year Type Parameter Studied Predicted Outcome Model Architecture Datasets Used Performance

[65] 2017 Classification EHR Data Hypertension Convolutional Neural Network Data Fusion Private Data Accuracy: 94.8%

[66] 2018 Classification EHR Data Thirty-day readmission risk for
heart failure patients Deep Unified Networks (DUNs) Data Fusion

Enterprise Data
Warehouse (EDW)
Research Patient Data
Repository (RPDR)

Accuracy: 76.4%

[67] 2018 Clustering Phenotype and Genotype Information Hypertension Hybrid Non-Negative Matrix Factorization
(HNMF) model Data Fusion HyperGEN dataset [68] Accuracy: 96%

[69] 2018 Classification
Chest X-Ray
Clinical Free-Text Radiological
Report Scan

Several CVDs Text-Image Embedding network (TieNet) Data Fusion ChestX-Ray14 dataset [70]
OpenI Chest X-Ray dataset [71] AUC: 0.9

[72] 2019 Classification EHR Data Cardiovacsular Risk Prediction Recurrent Convolutional Neural Network Data Fusion obtained from a grade-A hospital
of second class in Wuhan Accuracy: 96%

[73] 2020 Classification MIMIC-CXR Radiographs and
Associated Reports

Atelectasis, Pleural Effusion,
Cardiomegaly, Edema

four pre-trained Vision+Language models:
LXMERT / VisualBERT / UNIER / PixelBERT Hybrid Fusion

MIMIC-CXR Chest X-Ray
Dataset [74]
OpenI Chest X-Ray Dataset [71]

Enhanced accuracy
of classification

[75] 2020 Clustering

Metabolome
Microbiome
Genetics
Advanced Imaging

Cardiometabolic Syndrome Combianation of unsupervised ML Models Hybrid Fusion Private Data -

[76] 2020 Classification Neuroimaging Information
Clinical Metadata Stroke

3D Convolutional Neural
Network
Multilayer Perceptron

Model Fusion Hotter Dataset [77] AUC: 0.90

[78] 2020 Classification
Computed Tomography Pulmonary
Angiography Scans
EHR

Pulmonary Embolism (PE) Combination of ML Models Hybrid Fusion
Data obtained from Stanford
University Medical
Center (SUMC)

AUC: 0.947

[79] 2020 Classification EHR Data Cardiovascular Risk Bidirectional Long Short-Term
Memory (BiLSTM) Recurrent Neural Network Hybrid Fusion

Second Manifestations of
ARTerial Disease
(SMART) Study [80]

AUC: 0.847

[81] 2020 Classification Different Cardiac CT Images and EHR
Data Acute Ischemic Stroke Gradient Boosting Classifiers Data Fusion

obtained from Department
of Neuroradiology
at Heidelberg University
Hospital (Heidelberg, Germany)

AUC: 0.856

[82] 2021 Classification Electrocardiograph (ECG)
Chest X-Ray

Cardiac Accessory Pathways
(APs) Syndrome Deep Convolutional Neural Network (DCNN) Data Fusion Private Data -

[83] 2021 Classification Salient Physiological Signals
EHR Data Hemodynamic Decompensation

Used a novel tensor-based dimensionality
reduction with the below models:
Naive Bayes
SVM
Random Forest
Adaboost
LUCCK

Data Fusion Collected retrospectively from
Michigan Medicine data systems AUC: 0.89
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3.4. Multimodal ML and CVDs: Discussion

Multimodal ML is a method for training different modalities using heterogeneous
data that may not fit the same structure, format, or type that can be used for traditional
ML algorithms. In the field of disease diagnosis, Multimodal ML could be used to train
models on a huge distributed dataset of patient data from different hospitals or clinics.
This method allows information and knowledge to be fused to solve complex problems.
Using a larger, more diverse dataset also allows for more accurate and robust models.
However, the implementation of Multimodal Machine Learning for disease prediction,
especially Cardiovascular Disease, can be discussed from different angles, which are
detailed in this section.

3.4.1. Models Performance: Competition between Multimodal and Classical ML

Data collection is the starting point for the operation of the established pipeline in the
classical ML. It is generally accepted that more data can be used to increase the accuracy of
an already trained Machine Learning model. It is generally accepted that due to the ability
of Multimodal ML to analyze heterogeneous data, the accuracy of the models far exceeds
that of typical ML models where more data are analyzed simultaneously.

In this context, the results presented in Table 4 reflect the high feasibility and
accuracy that Multimodal ML cope with the diagnosis and prediction of Cardiovascular
Disease. For example, the studies [65,67,72] achieved high accuracy records, with the
first recording 94.8% and the other two, 96%. These results are highly comparable to
the state of the art of conventional ML models used for the detection and prediction of
CVDs and cerebrovascular events, with the highest recorded accuracy reaching 91.80%,
as shown in [84]. In addition, the studies [69,76,78] recorded high values for Area Under
Curve (AUC), with the first and second reaching a value of 0.9 and the third up to 0.95
for this parameter. These values demonstrate the high feasibility of these studies, which
are consistent with and even exceed conventional ML algorithms. Moreover, the authors
mention in [73] that their results show improved classification accuracy compared to
conventional ML algorithms.

On the other hand, the results in [66] failed to outperform or even match conventional
ML algorithms, where the recorded accuracy was 76.4%, which is lower than the values
obtained by the latest ML algorithms in predicting ML models [84]. In addition, the
studies [79,81,83] obtained different AUC values of 0.85, 0.86, and 0.89, respectively. These
values are high and feasible, but they are close to but do not exceed the highest results
obtained with classical ML models. Finally, the studies [75,82] did not mention the results
obtained, which makes it impossible to compare their results with the classical ML models
in the field of CVD diagnosis.

Overall, of the thirteen studies presented in Table 4, seven exceeded the results of the
classical ML in terms of accuracy, three matched those results, and only one was obviously
lower than them, and the other two are not comparable because they did not report their
results. In this context, these figures help to confirm the hypothesis that the ability to
analyze heterogeneous data increases the performance and accuracy of the models, which
is a major strength in the field of multimodal ML since more than three-quarters of the
Multimodal ML algorithms either match or exceed the results of the classic ML in the
diagnosis of Cardiovascular Disease.

3.4.2. Real World vs. Research Implementations

The concept of Multimodal ML can be traced back to the early 2000s in the technology
field, where authors in [85] suggested using this concept because the combination of
communication modalities and acquisition devices can produce a wide range of unimodal
and multimodal interface techniques. However, advances in computer technologies, data
transmission, communication techniques, and other aspects have helped to increase the
efficiency of Multimodal ML technology.
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As a result, studies [65,75,85] have used their own data. Although these datasets are
not publicly available, the authors assured that the data are real datasets collected from
various health centers in compliance with medical standards and norms. This confirms that
these studies can be classified as real-world studies. The same is true for [66,72,78,81,83],
where each study used a dataset collected in different medical facilities in compliance with
standard medical norms, making these studies real-world implementations.

On the other hand, the studies [67,69,73,76,79] used publicly available datasets, which
are listed in Table 4. Although these datasets were collected under real-world conditions
and obtained from patients, the study itself cannot be described as a real-world implemen-
tation. Real-world use of multimodal ML models in healthcare can provide a number of
significant benefits, including:

• Improved Diagnostic Accuracy: Multimodal ML models can evaluate multiple sources
of patient data, such as medical imaging, electronic health records, and genetic infor-
mation, to make more accurate and thorough diagnoses. This can help physicians
identify diseases and conditions at an early stage when they are more curable;

• Personalized Treatment: multimodal ML models can be trained on large data sets to
identify trends and predict outcomes for individual patients. This can help physicians
tailor treatments and therapies to the unique needs of each patient, leading to better
outcomes and fewer side effects;

• Efficient Resource Allocation: Multimodal ML models can help physicians allocate
resources more efficiently by identifying patients who are at higher risk for poor
outcomes or need more intensive care. This has the potential to reduce healthcare
costs while improving overall system efficiency;

• Improved patient experience: Multimodal ML models can help clinicians identify
patients who need more individualized care or are at risk for problems or adverse
events. This can help improve patient satisfaction and overall quality of care.

Overall, real-world adoption of Multimodal ML models in healthcare has the potential
to enhance patient outcomes, lower costs, and improve healthcare delivery efficiency.
However, it is critical that these models be created and used in an ethical manner, with
proper protections for patient privacy and data security. That being said, the progress of
Multimodal ML implementations and their real-world execution are promising where most
of the carried applications are applied outside of labs, with real data, which enhances the
trust in this technology and assists its adoption in the production stages.

3.4.3. Use of Smart Wearables and IoTs

Continuous monitoring of patients’ heart rate, blood pressure and other biomet-
ric data through smart wearables and Internet of Things devices could revolutionize
medical treatment. This has the potential to enable earlier detection of medical prob-
lems, more accurate diagnosis, and more personalized treatment approaches. Wearable
technologies that can monitor and interact with the user’s health could enable individ-
uals to participate more fully in their treatment. In addition, Internet of Things (IoT)
devices can enable physicians to monitor patients remotely and deliver treatments more
effectively, reducing demand on healthcare systems and improving access to care for
people in underserved or extremely remote and isolated areas. Smart wearables and In-
ternet of Things (IoT) devices could increase hospital efficiency, save costs, and improve
patient outcomes [86,87].

Consequently, only studies [67,75] considered the use of smart wearables or IoTs
devices in their implementations. The other studies used data collected with other devices.
Therefore, there is a lot of catching up to do in the implementation of multimodal ML
in wearables and IoTs for CVD detection and prediction. Considering the fact that these
technologies can revolutionize healthcare, as mentioned earlier, there is a great need to
increase the use of wearables and IoTs in this field. In Table 5 below, the comparison
between the performance of Multimodal ML and classical ML, the validation in practice,
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and the use of smart wearables and IoTs for the state of the art in predicting CVDs with
Multimodal ML is summarized.

Table 5. Key findings in state-of-the-art of Multimodal ML in CVDs diagnosis.

Ref# Multimodal ML Beats
ML (Performance)

Real-World
Implementation

Smart Wearables/IoTs
Included

[65] Yes Yes No
[66] No Yes No
[67] Yes Public Dataset(s) Yes
[69] Yes Public Dataset(s) No
[72] Yes Yes No
[73] Yes Public Dataset(s) No
[75] Not Available Yes Yes
[76] Yes Public Dataset(s) No
[78] Results Match Yes No
[79] Results Match Public Dataset(s) No
[81] Results Match Yes No
[82] Not Available Yes No
[83] Results Match Yes No

3.4.4. Limitations in the Use of Multimodal ML for Disease Prediction

From this perspective, the use of Multimodal Machine Learning for the diagnosis and
prognosis of CVDs is still in its infancy. Apart from the fact that not all implementations
of Multimodal Machine Learning are superior to traditional ML models, vivid real-world
examples can be observed when discussing this topic. Moreover, it has been rare to see FL
researchers using smart wearables or IoTs in their experiments. This highlights the need
to further investigate the use of such technologies due to their high degree of practicality
and applicability in the field. Other limitations and difficulties encountered in the field
of multimodal ML and its applications in disease prediction are discussed in Section 4.1,
which can also be seen below.

3.5. Multimodal ML in CVDs: A Technical Overview

In Multimodal Machine Learning technology, the main goal is to analyze differ-
ent data with different structures, such as merging EHR data with medical images to
predict the occurrence of Cardiovascular Disease. In this context, each Multimodal ML
implementation follows its own workflow and goes through its own steps to achieve its
goal. In the aforementioned implementations of Cardiovascular Disease detection using
Multimodal ML, different workflows, model structures, and hyperparameters were used
for different implementations. All the related data provided by the authors are listed in
Table 6 below.

Table 6. Technical details for Multimodal models used in the prediction of CVDs.

Ref# Model Workflow Description Training Parameters

[65]
CNN-Based Multimodal
Disease Risk Prediction
(CNN-MDRP) Algorithm

1. Data Representation: text is represented in the form of vector
2. Convolution Layer: perform convolution operation on vectors of 5
words
3. Pool Layer: use the max pooling (1-max pooling) operation on the
input of the convolution layer
4. Full Connection Layer: pooling layer is connected with a fully
connected neural network
5. Classifier: the full connection layer links to a softmax classifier

Iterations: 200
Sliding Window: 7
Running Time: 1637.2 s

[66] Deep Unified Networks
(DUNs)

1. All inner layers of DUNs can learn the prediction task from the training
data to avoid over-fitting
2. The DUNs architecture has horizontally shallow and vertically deep
layers to prevent gradient vanishing and explosion
3. There are only two horizontal layers from the data unit nodes to the
output node, regardless of how many layers deep the architecture is
vertically
4. Only the harmonizing and decision units have learning parameters

Number of epochs: 100
Number of inner layers: 5
Number of inner neurons: 759
Number of maxout: –
Activation function: Sigmoid
Dropout rate of: input layer: 0.397/inner layers
0.433
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Table 6. Cont.

Ref# Model Workflow Description Training Parameters

[67]
Hybrid Non-Negative
Matrix Factorization
(HNMF) model

1. Impute missing values in the phenotypic variables
2. For genetic variants, first annotate the variants and then keep those
that are likely gene disruptive (LGD)
3. The preprocessed phenotypic measurements and genetic variants are
then used as input to the HNMF model
4. The patient factor matrix is then used as the feature matrix to perform
regression analysis to predict main cardiac mechanistic outcomes

Up to 50 iterations

[69] Text–Image Embedding
Network (TieNet)

1. Data Preprocessing and word embedding
2. Training TieNet model
3. Joint Learning for results fusion
4. Evaluation

Dropout: 0.5
L2 Regularization: 0.0001 for.
Adam optimizer with a mini-batch size of 32
Learning Rate of: 0.001
Hidden Layer with 350 units

[72] Recurrent Convolutional
Neural Network

1. Structured Data: extract relevant data, supplement missing data, make
correlation analysis to look for the relation among data and apply
dimension reduction to obtain corresponding structured features
2. Unstructured Textual Data: first, use numerical values to present
unstructured textual data based on work embedding. Then, the features
of textual data are extracted based on RCNN
3. Use Deep Belief Network (DBN) to fuse features and predict disease
risks

up to 200 iterations

[73] VisualBERT, UNITER,
LXMERT, and PixelBER

1. The feature map (7 × 7 × 1024) of CheXNet is first flattened by spatial
dimensions (49 × 1024) then down-sampled to 36 1024-long visual
features
2. Models are then trained with the data
3. Results are fused

Epochs: PixelBERT: 18 / other 3 models 6
SGD optimizer
weight decay 5 × 10−4

learning rate 0.01
Each model can be fit into 1 Tesla K40 GPU when
using a batch size of 16

[75] Collection of
unsupervised ML models

1. Data collection and data features
2. Data preprocessing
3. Network analysis
4. Key biomarker selection and Markov network construction
5. Stratifying individuals with similar biomarker signatures
6. Validation cohort

-

[76]
3D Convolutional Neural
Network
Multilayer Perceptron

All models were trained on a binary classification task using binary
cross-entropy loss

Loss function: Binary cross-entropy loss
Adam optimizer
Initial weights were sampled from a Glorot
uniform distribution
Output layer activation function: Softmax
function
Early stopping used to prevent over-fitting

[78] Different ML models Seven different workflows based on the difference between models Batch Size: 256
Epochs: 200

[79]

Bidirectional Long
Short-Term
Memory (BiLSTM)
Recurrent Neural Network

1. Embedding Layer: To extract the semantic information of radiology
reports
2. Bidirectional-LSTM Layer: to achieve another representation of
radiology reports
3. Dropout
4. Concatenation Layer
5. Dense Layers

Embedding dimension (d): 500
#neurons in LSTM layer: 100
CNN filter size: 5
filters in CNN: 128
neurons in dense layers: 64
Dropout rate: 0.2
Recurrent dropout rate: 0.2
Batch size: 64
epochs: 20
Optimization method ADAM

[81] Gradient Boosting
Classifiers

Integrative assessment of clinical, multimodal imaging, and angiographic
characteristics with Machine Learning
Allowed to accurately predict the clinical outcome following
endovascular treatment for acute ischemic stroke

-

[82] Deep Convolutional
Neural Networks (DCNN)

First Model to analyze ECG
———————————————–
1. Convolutional Neural Network (CNN)
2. A one-dimensional CNN model was used to input the ECG data
3. The network model contained 16 convolution layers
Followed by a fully connected layer
4. Then a Softmax layer, which calculated the probability of each of the
four as the output in the last layer

Second Model to analyze X-Ray images
———————————————–
1. A two-dimensional CNN model

Then apply fusion to merge results

First Model Parameters: Adamax optimizer with
the default parameters β1= 0.9, β2 = 0.999, and a
mini-batch size of 32



Electronics 2023, 12, 1558 21 of 30

Table 6. Cont.

Ref# Model Workflow Description Training Parameters

[83]

Random Forest
Naive Bayes
Support Vector Machine
Adaboost
Learning Using Concave
and Convex Kernels
(LUCCK)

1. Apply feature extraction on fused data composed of Salient
Physiological Signals and EHR data
2. Apply Tensor reduction functionality
3. Train the Machine Learning model

Naive Bayes: (NB) no hyperparameter tuning was
trained
Support Vector Machines: used linear, radial basis
function (RBF), and 3rd-order polynomial kernels
Random Forest: number of trees: 50, 75, and
100/minimum leaf size: 1, 5, 10, 15, and 20/node
splitting criterion: cross entropy and Gini
impurity/number of predictors to sample: [10, 20,
. . . , 100]/maximum number of decision splits for
the decision trees: 0.25, 0.50, 0.75, or 1.0
Adaboost: learning rate: 1

4. Discussion: Challenges and Future Perspectives

Recently, Multimodal Machine Learning (ML) has emerged as an effective method
for studying and analyzing complex data from multiple sources and modalities. How-
ever, dealing with diverse data presents researchers with unique challenges that must be
overcome for efficient analysis and interpretation to increase the feasibility and usability
of multimodal ML [10,48,49,62]. Unifying and standardizing multiple data sources and
establishing links between them are significant obstacles. In addition, data must be normal-
ized and preprocessed to ensure reliability and accuracy. However, future research could
take several approaches to mitigate these challenges and overcome future obstacles. This
section addresses these issues and identifies future perspectives needed to overcome them
and improve multimodal FL.

4.1. Challenges

Multimodal Machine Learning still struggles with various challenges arising from
the use of heterogeneous data with different structures and formats. Moreover, the fusion
process, whether applied to the data itself or to different trained models to recognize a
single result, is a challenging process that requires further research. Therefore, the most
common challenges can be summarized in the following points [10,48,49,62].

4.1.1. Data Availability and Quality

To efficiently train multimodal ML models, large amounts of high-quality data
are needed. However, collecting and processing large amounts of high-quality data in
healthcare can be challenging, especially for rare or complex diseases. Data scarcity or
poor data quality can lead to biased or unreliable models, compromising the accuracy of
predictions and treatment decisions. To develop more robust and effective multimodal
ML models for healthcare, researchers must seek to identify and address data quality
and quantity issues.

4.1.2. Data Representation

Multimodal ML promotes the use of data from multiple sources for presentation. As
a result, there is a high likelihood of dealing with heterogeneous data, which presents a
number of problems. For example, it may be difficult to merge heterogeneous data that do
not overlap in common characteristics or overlap only in a very limited area. In addition,
data from different sources may need to be processed to different extents, especially with
respect to noise reduction and missing data management. This hurdle is clearly reflected in
the fact that until recently, most multimodal representations were simply the concatenation
of unimodal ones [88]. Smoothness, temporal and spatial coherence, sparsity, and natural
grouping have been cited by authors in [89] as qualities for excellent data representation.

4.1.3. Data Integration and Interoperability

Multimodal Machine Learning models are used to integrate and analyze data from
multiple sources, such as electronic health records, medical imaging, and genetic data.
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However, data from different sources may use different formats, standards, or terminolo-
gies, posing significant challenges for data integration and interoperability. Medical images,
for example, may use different file formats or imaging techniques, making it difficult to
compare and analyze data from different studies or sources.

4.1.4. Fusion

It is not easy to learn the ability to merge information from two modalities and
determine the optimal fusion strategy. This is due to the different predictive capacities and
noise structures of the different information coming from different senses. In addition, the
ability to deal with missing data at different levels has a significant impact on the ability to
perform fusion tasks.

4.1.5. Translation

The challenge in translation is not only the heterogeneity of data but also the relation-
ships between modalities. The translation or mapping of data is subjective; for example,
two models may describe the same image in more than one correct way, and a perfect or
uniform translation or mapping may not exist. Several studies argue that while translations
can be quite broad and modality-specific, they still have a number of unifying features.
Accordingly, there are two forms of translation, namely the “Example-Based” and the
“Generative” models. The former relies on a dictionary to translate data across modalities,
while the latter relies on the creation of a model that manages translation according to
uniform or at least explicit standards.

4.1.6. Alignment

Finding connections and correspondences between subelements from two or more
different modalities is called multimodal alignment. This also involves distinguishing
between these linear connections rather than just recognizing them. In this context, there
are few data sets with obvious and identifiable correlations. Therefore, it is challenging to
perform similarity measurements across modalities. Moreover, there may be numerous
alignments without being able to select the optimal one, and not all components in one
modality may match in another.

4.1.7. Explainability and Interpretability

Multimodal Machine Learning models (ML) have shown great promise in health-
care by enabling more accurate and tailored diagnosis and treatment recommendations.
However, these models can be very complicated and difficult to understand, making it
difficult for physicians to understand how the models arrived at a particular decision or
recommendation. The lack of interpretability and openness of these models can affect their
clinical acceptance and confidence.

4.1.8. Co-Learning

Merging different modalities, such as images, text, and sensor data, can increase
model performance and enable more comprehensive analysis of complicated data in
Multimodal Machine Learning. However, there are significant hurdles to this fusion,
including the difficulty of transferring knowledge, representation, and predictive models
across modalities. Each modality has its own characteristics and advantages, and it can
be difficult to successfully integrate these aspects into a coherent representation. In
addition, different modalities may require different strategies for feature engineering,
preprocessing, and modeling.

4.1.9. Increased Computation Cost

When multiple modalities and features are introduced into a Multimodal Machine
Learning model, the complexity of the model may increase, and the performance of the
model may degrade due to the increased difficulty in computing the desired outcome.
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Complex models have higher processing requirements, which can increase inference times
and memory consumption. The complexity of a model makes it more difficult to optimize,
which can lead to an increased risk of over- or under-fitting the data.

4.1.10. Regulatory and Ethical Considerations

Apart from the technical hurdles in developing and implementing multimodal ML
models in healthcare, there are also legal and ethical factors to consider. Depending
on their intended use, these models may be subject to regulatory restrictions, such as
the European Union’s General Data Protection Regulation (GDPR) [90], China’s Cyber
Security Law of the People’s Republic of China [91], the General Principles of the Civil
Law of the People’s Republic of China [92], the PDPA in Singapore [93], and hundreds
of principles that apply around the world. In addition, researchers and clinicians must
ensure that these models are created and used in an ethical manner and that patient
privacy and data security are adequately protected. For example, patient data must be
de-identified and protected from illegal access or disclosure. In addition, maintaining
the fairness and openness of these models is critical to minimize bias and discrimination.
Responsible development and adoption of multimodal ML models therefore require
careful evaluation of these legal and ethical factors to ensure that they deliver safe,
effective, and fair outcomes for patients.

4.1.11. Implementation and Adoption

To fully deliver on their promise to improve healthcare, Multimodal Machine Learning
models (ML) must be integrated into current healthcare processes and systems. However,
several barriers stand in the way of this integration, such as technological, organizational,
and cultural. In addition to the technical challenges mentioned above, resistance to change,
lack of stakeholder participation, and concerns about accountability and obligations are all
examples of organizational and cultural hurdles that may arise.

These challenges give rise to the study questions in the list below (the abbreviation
RQ in the list below refers to the term “research question”):

• RQ1: Multimodal ML needs sufficient data to be trained. Are the needed data sets
available? And is their quality acceptable?

• RQ2: Multimodal ML deals with heterogeneous data that has different formats and
structures. What approaches can be taken to represent the data used in this technology?

• RQ3: How can the heterogeneous data used in Multimodal ML be integrated and shared?
• RQ4: What are the best approaches for fusion, and how to choose between the different

options available?
• RQ5: Given that different models can lead to the same result in different ways, how

does one choose the optimal path?
• RQ6: How to align and link two different modalities, especially in the middle and late

fusion cases?
• RQ7: The Multimodal ML is known for its black box identity. Is there a way to explain

the methods by which a model arrives at its result?
• RQ8: In Multimodal ML, different models can be integrated to solve a complex

task. What techniques can be applied to ensure efficient knowledge transfer between
these models?

• RQ9: Heterogeneity and diversity in both models and data add to computational
costs. How can this problem be dealt with to improve the usability and feasibility of
the models?

• RQ10: How to ensure data exchange between multimodal ML facilities to comply
with existing regulations and laws?

• RQ11: How can trust in multimodal ML be strengthened to promote its adoption in
different areas of life?
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4.2. Future Perspectives

The challenges faced in Multimodal Machine Learning can be solved through different
approaches and perspectives. These solutions have either already been considered but
should be more widely used in the field of Cardiovascular Disease prediction to improve
and increase their usability and feasibility. In this context, the following solutions can serve
as future recommendations.

4.2.1. Use Convenient Tools to Collect More Data

Modern technology has changed the method of data collection and analysis. The use
of smart wearables and Internet-of-Things (IoT) devices has enabled the real-time collection
of vast amounts of data [33,39,86,87]. These data can provide useful insights in a variety
of areas, particularly in healthcare. In addition to these new data sources, current data
sources should be used to create more complete databases. Researchers can gain access
to larger and more diverse data sets by collaborating with other institutions, which can
help them identify patterns and correlations that would not be obvious with smaller data
sets. Collaboration between different institutions could be achieved using a variety of
techniques such as Federated Machine Learning technology, which can help train Machine
Learning models by sharing parameters rather than the data itself [9].

4.2.2. Automate and Boost Data Preprocessing

Creating larger and more comprehensive datasets could help improve the quality of
Machine Learning models but is not yet sufficient. To gain valuable insights, data must
be processed and analyzed using advanced techniques. These techniques include artifact
automation and noise removal, as performed in [94,95]. In addition, it may be necessary
to use techniques such as data augmentation [96] or data normalization [97] and data
resampling [98] to ensure that the data are balanced and ready for model training and to
improve the quality of the overall process.

4.2.3. Employment of Advanced Data Integration Tools

To address the problems posed by the diversity of data formats and structures,
improved methods for data harmonization [99], standardization [100], and normaliza-
tion [97] need to be developed, as well as the use of AI and ML algorithms to automate
these processes. Multimodal ML has the potential to revolutionize healthcare by enabling
thorough and tailored analysis of patient data from numerous sources if these barriers
are overcome.

4.2.4. Embedding Modern Techniques to Enhance Explainability

To address the problems associated with the black-box nature of multimodal ML
models, more explainable and interpretable models are needed that give healthcare
professionals insight into how the models arrive at their judgments. Approaches such
as feature relevance ranking [101], model visualization [102], decision rules [103], prob-
abilistic [104] and neuro-fuzzy approaches [105], and many others can improve the
interpretability of multimodal ML models so that interested parties can make more
informed and confident treatment decisions. In the list below, a brief definition for each
of these tools is presented:

• Feature relevance ranking: include methods such as permutation significance and
partial dependency plots to give insights into the importance and correlations of input
variables, allowing for a better understanding of the model’s decision-making process
and boosting transparency and interpretability in healthcare applications;

• Model visualization: such as decision trees and heatmaps that provide a graphical rep-
resentation of the model’s decision-making process, allowing for better understanding
of the factors that influence the model’s predictions and increasing the transparency
and interpretability of the technology;
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• Decision rules: by providing clear and understandable rationales for the model’s pre-
dictions, decision rules that specify explicit decision criteria based on the input data im-
prove the interpretability and transparency of machine learning models in healthcare.

• Probabilistic approach: employ probabilistic reasoning to represent and manage the
uncertainty inherent in medical data allowing for transparent decision-making that
can be easily understood by healthcare practitioners;

• Neuro-fuzzy techniques: combine the benefits of neural networks and fuzzy logic to
generate more interpretable models that can deal with imprecise and uncertain inputs.

4.2.5. Implementing Necessary Methods to Guarantee Knowledge Transfer

The diversity of datasets and models in the field of multimodal ML can lead to
knowledge transfer problems. Therefore, researchers need to develop novel strate-
gies for multimodal feature selection [106], fusion [46], and modeling that can capture
complementary information from many modalities while minimizing redundancy or
overfitting. Overcoming these obstacles will allow for more robust and accurate multi-
modal ML models that will lead to improved diagnosis, treatment, and patient outcomes
in healthcare settings.

4.2.6. Reducing Computation Cost

Reducing computational costs in multimodal ML is a critical issue. Therefore, re-
searchers need to explore methods for model compression [107] and optimization [108]
that can reduce the computational complexity of the model without compromising its
performance. As an added bonus, Multimodal Machine Learning can benefit from efficient
hardware and software implementations, such as specialized hardware accelerators and
distributed computing frameworks, that can reduce computational load. The use of such
techniques can help build multimodal ML models that are more robust, efficient, and
scalable, and therefore applicable to a wider variety of health problems, leading to faster
and more accurate solutions.

4.2.7. Increase Trust and Feasibility to Raise the Technology Adoption

Researchers, clinicians, information technology experts, and healthcare administrators
must work together to increase confidence in multimodal ML technology. In addition,
cultural and organizational barriers can be reduced by promoting trust and transparency
through open dialog and training. The best way to improve patient outcomes and revo-
lutionize healthcare delivery is to properly integrate multimodal ML models into current
healthcare delivery processes and systems.

The results of the mapping of challenges and solutions can be summarized in the fol-
lowing topics (the symbol TR in the list below refers to the term “Trending Research Topic”):

• TR1: Data collection tools such as smart wearables and IoTs are very helpful in
augmenting the data collected for multimodal ML algorithms;

• TR2: Data harmonization, standardization, and normalization are highly feasible for
integrating heterogeneous data in the multimodal ML domain;

• TR3: Multimodal feature selection and modeling are techniques that can help ensure
knowledge transfer between different modalities in a multimodal ML system;

• TR4: For better explainability and interpretability of a multimodal ML model, de-
cision rules, feature relevance ranking, and model visualization are practical and
feasible methods;

• TR5: Model compression and optimization are great tools for reducing computational
costs in multimodal ML;

• TR6: Current and trending ML topics, such as Federated Machine Learning, can help
overcome privacy and confidentiality issues in the Multimodal ML domain;

• TR7: Increasing feasibility, improving performance, and implementation in real-
world scenarios are all factors that can help expand the adoption of multimodal ML
technology in healthcare and, in particular, in Cardiovascular Disease detection.
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Finally, the challenges that hinder the progress of Multimodal Machine Learning
techniques, along with the solutions and future perspectives that could be pursued, are
presented in Figure 6 below.

Figure 6. Multimodal machine learning challenges–solutions mapping.

5. Conclusions

In summary, Multimodal ML is a new technique that enables the simultaneous use
of multiple models and data types in the creation of complex ML and DL models. Multi-
modal ML has the potential to significantly improve the accuracy and effectiveness of AI
applications, especially in healthcare, where it has already become an important part of
everyday patient care by addressing the problem of data heterogeneity. In particular, the
technical features of Multimodal ML, such as data fusion and workflows, were covered,
and the differences with other technologies, such as Ensemble Learning, were high-
lighted. In addition, an overview of the application of Multimodal ML in the diagnosis
and prediction of Cardiovascular Disease was provided, highlighting the encouraging
results to date and the room for growth in this area. Privacy, bias, and interpretability of
results are just some of the remaining difficulties that need to be addressed, as with any
rapidly evolving technology. However, it is likely that these obstacles can be addressed
through further research and development and that multimodal ML will continue to
play an important role in the development of AI applications in a variety of sectors,
particularly healthcare.
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