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RÉSUMÉ 

La présente étude, inscrite dans le vaste contexte évolutif de l'industrie 4.0, s'intéresse 

à l'exploration et à l'exploitation de la technologie de soudage au laser pour la fabrication de 

structures en aluminium. Face à l'importance croissante de l'automatisation et de la 

digitalisation dans les processus industriels, la problématique de la surveillance des défauts 

des structures soudées au laser en aluminium se pose avec acuité, celle-ci étant identifiée 

comme un maillon critique dans un système de fabrication intelligent. Dans cette optique, le 

principal objectif de cette recherche est de mener une investigation approfondie et 

systématique de cette surveillance, afin de cerner les enjeux et les défis associés. La 

méthodologie adoptée pour aborder ce sujet complexe est résolument multidisciplinaire. Elle 

combine des méthodes expérimentales, des techniques de modélisation avancées, une analyse 

statistique rigoureuse, et l'exploitation de l'apprentissage automatique. Plusieurs chapitres de 

la thèse sont consacrés à détailler cette approche méthodologique. Par exemple, une analyse 

bibliométrique exhaustive est présentée, visant à cartographier l'état actuel des connaissances 

sur la surveillance en temps réel de la technologie de soudage. Par la suite, une approche 

novatrice d'inspection automatisée en temps réel est proposée, avec pour ambition de détecter 

avec précision les distorsions dans les assemblages soudés. 

Les résultats obtenus dans le cadre de cette étude sont à la fois nombreux et 

significatifs. Ils démontrent, sans équivoque, que la surveillance en temps réel des défauts 

dans les structures en aluminium soudées au laser peut avoir un impact majeur sur la qualité 

du produit final. Ceci en améliorant non seulement la qualité intrinsèque de la soudure, mais 

aussi en augmentant la cadence de fabrication et, par conséquent, en réduisant 

substantiellement les coûts de production. Un des points saillants de l'étude concerne 

l'utilisation d'un modèle Random Forest pour la détection de la porosité. Cette approche a 

permis d'atteindre un niveau impressionnant de détection, avoisinant les 80%. Néanmoins, il 

est important de noter que la prédiction de certains défauts, tels que les pores microscopiques, 

demeure un défi de taille. En conclusion, cette recherche souligne le potentiel immense de 

l'approche basée sur l'apprentissage automatique pour améliorer de manière significative 

l'efficacité et la qualité du processus de soudage. Elle met également en lumière l'importance 

d'intégrer les principes de l'industrie 4.0 dans des domaines spécifiques tels que le soudage 

au laser, offrant ainsi une vision renouvelée et des perspectives prometteuses pour l'avenir de 

la fabrication industrielle. 

Mots clés : Fabrication intelligente, soudage au laser des alliage d’aluminium, 

inspection automatisée, détection de défauts, traitement d'image, apprentissage automatique, 

algorithmes d'apprentissage avancés.  
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ABSTRACT 

The current study, embedded in the vast evolving context of Industry 4.0, delves into 

the exploration and exploitation of laser welding technology for the fabrication of aluminum 

structures. Given the growing importance of automation and digitization in industrial 

processes, the issue of monitoring defects in laser-welded aluminum structures becomes 

particularly pressing, as it is identified as a critical link in an intelligent manufacturing 

system. With this perspective in mind, the main objective of this research is to conduct a 

thorough and systematic investigation of this monitoring to understand the associated 

challenges and stakes. The methodology adopted to tackle this intricate subject is decidedly 

multidisciplinary. It merges experimental methods, advanced modeling techniques, rigorous 

statistical analysis, and the utilization of machine learning. Several chapters of the thesis are 

dedicated to detailing this methodological approach. For instance, a comprehensive 

bibliometric analysis is presented, aiming to map the current state of knowledge on real-time 

monitoring of welding technology. Subsequently, a novel approach to real-time automated 

inspection is proposed, ambitiously aiming for accurate detection of distortions in welded 

assemblies. 

The results obtained within this study are both numerous and significant. They 

unequivocally demonstrate that real-time monitoring of defects in laser-welded aluminum 

structures can have a major impact on the quality of the final product. This not only improves 

the intrinsic quality of the weld but also increases the manufacturing pace and, consequently, 

substantially reduces production costs. One of the standout points of the study concerns the 

use of a Random Forest model for porosity detection. This approach achieved an impressive 

detection level, nearing 80%. However, it is crucial to note that predicting certain defects, 

such as microscopic pores, remains a significant challenge. In conclusion, this research 

underscores the immense potential of the machine learning-based approach to significantly 

enhance the efficiency and quality of the welding process. It also highlights the importance 

of integrating Industry 4.0 principles into specific areas like laser welding, thus offering a 

renewed vision and promising prospects for the future of industrial manufacturing. 

Keywords: Intelligent manufacturing, aluminum laser welding, process monitoring, 

automatic inspection, defect detection, image processing, machine learning, advanced 

learning algorithms.  
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INTRODUCTION GÉNÉRALE 

1.  CONTEXTE ET GÉNÉRALITÉS 

L'Industrie 4.0, considérée comme la quatrième révolution industrielle, a apporté une 

transformation significative dans le secteur manufacturier grâce à l'intégration de 

technologies avancées de l'information et de la communication (TIC) et à la connectivité 

Internet [1]. Cette révolution a permis aux entreprises de collecter, analyser et traiter des 

données pour produire des produits industriels de haute qualité. Cependant, il est nécessaire 

de mener des recherches approfondies pour comprendre les implications de cette nouvelle 

stratégie sur les systèmes de production centralisés [2]. L'émergence de systèmes 

décentralisés de production d'énergie a permis aux individus de générer de l'énergie verte et 

de partager des informations en ligne, ce qui a remodelé les pratiques de fabrication 

traditionnelles. La combinaison de l'intelligence artificielle (IA) et de l'Industrie 4.0 constitue 

un domaine de recherche fascinant qui explore de nouvelles approches pour modéliser le 

raisonnement humain et les émotions dans le contexte des activités industrielles. Pour 

s'adapter à ce paysage en évolution, les organisations doivent comprendre les principes et 

concepts fondamentaux sous-tendant la décentralisation et passer d'une fabrication 

traditionnelle axée sur les machines à un environnement numérique caractérisé par la 

connectivité, l'automatisation et la prise de décision centrée sur les données. Le transfert de 

technologies de pointe, telles que les systèmes de centralisation des données et les 

algorithmes d'apprentissage automatique intégrés, est en cours pour améliorer la collecte, 

l'analyse et l'optimisation des processus dans les entreprises manufacturières [3]. Le 

traitement des matériaux par laser a suscité beaucoup d'attention en raison de son potentiel 

pour réduire la consommation d'énergie et le gaspillage de matériaux, ce qui en fait un 

domaine de recherche crucial. Le soudage laser, réputé pour sa précision et sa rapidité, joue 
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un rôle essentiel dans les chaînes de production industrielle modernes [4]. Cependant, 

l'optimisation du contrôle de la qualité et de l'analyse des défauts dans le soudage laser reste 

un défi. Les avancées récentes, telles que les systèmes de soudage laser cognitifs et les 

techniques d'inspection automatisées, offrent des solutions prometteuses pour relever ces 

défis [5]. Dans le contexte actuel marqué par l'ère des données massives, une collecte 

stratégique ainsi qu'un partage judicieux des informations s'avèrent cruciaux. Ces éléments 

sont essentiels pour optimiser les opérations internes et conduire des analyses approfondies 

du cycle de vie au sein des chaînes d'approvisionnement industrielles [6–8]. De plus, 

l'utilisation de flans soudés au laser (LWB), qui implique l'assemblage de feuilles 

individuelles à l'aide de techniques de soudage laser, permet l'adoption de méthodes de 

production personnalisées et améliore l'utilisation des matériaux [9]. Une surveillance 

efficace des défauts et une assurance qualité sont essentielles pour garantir les performances 

et la fiabilité des structures soudées au laser. Pour atteindre cet objectif, les chercheurs 

adoptent une approche multidisciplinaire comprenant une analyse rigoureuse, des 

méthodologies d'inspection avancées, des investigations expérimentales et une surveillance 

de la porosité basée sur l'apprentissage automatique, dans le but ultime d'améliorer l'efficacité 

et la qualité des processus de soudage laser dans le cadre de la fabrication intelligente. 

Cependant, la littérature existante manque d'investigations approfondies sur la surveillance 

intelligente en temps réel des défauts dans le soudage laser de l'aluminium, ce qui constitue 

l'objectif principal de la présente étude. 

 

2. PROBLÉMATIQUE 

Le soudage intelligent, également connu sous le nom de Soudage au Laser 4.0, est une 

approche qui vise à mettre en place des processus de production plus efficaces, automatisés 

et interconnectés. Cependant, la complexité de certains de ces processus pose des défis dans 

la détection et la correction des défauts lors du soudage au laser. La surveillance en temps 

réel des défauts est cruciale dans le soudage au laser 4.0 pour améliorer la qualité du produit 
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final et réduire les coûts de production. Le soudage au laser est un des procédés les plus 

couramment utilisés dans la fabrication de structures en aluminium. Ce procédé peut dans 

certaines conditions entraîner des défauts importants tels que la porosité et les distorsions 

(Figure 1). Dans le domaine de la technologie de soudage, comprendre la diversité des 

défauts susceptibles de compromettre l'intégrité des assemblages soudés est primordial. 

Comme illustré dans la Figure 1.b, cette étude examine minutieusement six défauts de 

soudage prévalents : Le manque de fusion se produit lorsque le métal de soudure échoue à 

s'amalgamer adéquatement avec le métal de base ou le cordon de soudure précédent, 

conduisant à des joints affaiblis. La porosité, caractérisée par la présence de poches de gaz 

ou de vides dans le métal de soudure, compromet la robustesse structurelle de la soudure. Le 

laitier, un sous-produit non métallique résultant du flux dans les processus de soudage, peut 

obscurcir les efforts d'inspection et, s'il n'est pas méticuleusement éliminé, affaiblir la 

soudure. La fissure au pied, une fracture à la jonction où le métal de soudure interfère avec 

le métal de base, émerge en raison de concentrations de contraintes élevées et d'une fusion 

insuffisante. La pénétration incomplète, un défaut où le métal de soudure ne traverse pas 

entièrement l'épaisseur de l'assemblage, résulte en une région non fusionnée, diminuant ainsi 

la résistance de la soudure. Enfin, une fissure à la racine, initiée au point de départ de la 

soudure, est souvent attribuable à des contraintes élevées et à une fusion ou pénétration 

inadéquate. 
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(a) 

 

(b) 

Figure 1. Possible defects in laser welding. a)  Process monitoring b) Welded structure [10] 

Pour relever ces défis, cette étude propose un cadre multidisciplinaire pour la 

surveillance en temps réel des défauts dans les structures en aluminium soudées au laser, qui 

représente un aspect critique du Soudage au Laser 4.0. Les résultats de la recherche 

démontrent la faisabilité de la surveillance en temps réel de la porosité lors du soudage au 

laser de l'aluminium en utilisant une approche basée sur l'apprentissage automatique [11]. 

Cependant, prédire avec précision les pores microscopiques et profonds reste un défi [12]. 

L'apprentissage automatique à l’aide d’algorithmes avancés peut contribuer à l’amélioration 

de l'efficacité et de la qualité du processus de soudage au laser. De plus, l’intégration d’une 

inspection automatisée en temps réel pour identifier et corriger rapidement les distorsions 

dans les assemblages soudés apporterait une contribution décisive dans l’amélioration de la 

qualité globale du produit final (Figure 2). 
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Figure 2. Cloud-based monitoring of laser welding defect [7] 

Dans le cadre de cette recherche, une attention particulière est accordée à la surveillance 

basée sur le cloud des défauts de soudage au laser, en exploitant les techniques de vision par 

ordinateur et l'inspection automatique pour une analyse précise et en temps réel des 

anomalies. Cette approche innovante permet une collecte et un traitement décentralisés des 

données de soudage, offrant ainsi une plateforme flexible et scalable pour le monitoring des 

procédés de soudage au sein de l'Industrie 4.0. Grâce à l'utilisation de l'apprentissage 

automatique et des algorithmes de vision par ordinateur, la surveillance basée sur le cloud 

facilite l'identification automatique des défauts tels que la porosité, les fissures ou le manque 

de fusion, directement à partir des images capturées du bain de fusion et de la zone affectée 

thermiquement. Cette méthode de surveillance avancée s'intègre parfaitement dans les 

systèmes de fabrication intelligents, permettant non seulement une détection précoce et 

précise des défauts de soudure mais aussi une intervention corrective quasi-instantanée grâce 

à l'analyse des données recueillies en continu. En outre, l'inspection automatique via des 

techniques de vision par ordinateur réduit significativement le besoin d'inspections 

manuelles, accroissant l'efficacité du processus de contrôle qualité tout en minimisant les 

erreurs humaines. L'implémentation de cette surveillance en temps réel et basée sur le cloud 

représente une avancée majeure pour l'optimisation des paramètres de soudage, la garantie 
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de la qualité des joints soudés, et l'amélioration de la productivité dans les environnements 

de production modernes. En somme, cette étude souligne l'importance de l'adoption des 

technologies de surveillance basées sur le cloud et de la vision par ordinateur comme 

composantes clés pour une stratégie efficace de surveillance et de contrôle des défauts de 

soudage au laser dans l'ère de l'Industrie 4.0. Dans le contexte du Soudage au Laser 4.0, 

plusieurs défis et aspects problématiques se posent: 

(i) Détection des défauts: L'un des principaux défis est de détecter et d'identifier 

avec précision les défauts dans les structures en aluminium soudées au laser. Les 

défauts tels que la porosité et les distorsions peuvent affecter la qualité et les 

performances du produit final, et il est essentiel de développer des techniques de 

surveillance en temps réel et efficaces. 

(ii) Prédiction de la porosité: Malgré les avancées dans la surveillance en temps réel 

de la porosité, prédire avec précision les pores microscopiques et profonds dans 

les structures en aluminium soudées au laser reste un défi majeur. Atteindre un 

niveau élevé de précision dans la prédiction de la porosité est crucial pour garantir 

l'intégrité des joints soudés. 

(iii) Paramètres de processus optimaux: Déterminer les paramètres de processus 

optimaux pour le soudage au laser de l'aluminium pose un défi. Trouver la bonne 

combinaison de puissance laser, vitesse de soudage, forme du faisceau et autres 

paramètres peut influencer considérablement la qualité et la résistance des 

soudures. 

(iv) Distorsions de soudage: Les distorsions induites par le soudage sont courantes 

dans le soudage au laser, en particulier dans les structures en aluminium. Gérer et 

réduire les distorsions pour maintenir la précision dimensionnelle et l'intégrité 

structurelle est une tâche difficile. 

(v) Optimisation du processus: L'optimisation du processus de soudage au laser 

pour les structures en aluminium dans le contexte du Soudage au Laser 4.0 est un 

problème complexe. Atteindre le plus haut niveau d'efficacité, de qualité et de 
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productivité tout en tenant compte de diverses contraintes telles que l'épaisseur 

du matériau, la conception de l'assemblage et les exigences de production 

nécessite des stratégies d'optimisation avancées et des algorithmes. 

Aborder ces aspects problématiques est crucial pour faire progresser les capacités et la 

fiabilité du soudage au laser dans le contexte du Soudage au Laser 4.0 et atteindre des 

structures soudées de haute qualité dans l'industrie manufacturière. 

3. OBJECTIFS  

Le principal objectif de cette recherche est d'étudier l'utilisation de la technologie de 

soudage au laser pour la fabrication de structures en aluminium dans le contexte de l'industrie 

4.0. Plus précisément, cette étude se concentre sur la surveillance en temps réel des défauts 

des structures soudées au laser en aluminium en tant que chaîne critique des systèmes de 

fabrication intelligents dans l'industrie 4.0. Les auteurs cherchent à examiner les facteurs 

critiques de la technologie de soudage au laser qui affectent la qualité et l'exactitude du 

produit final, ainsi que les approches de surveillance basées sur les capteurs (caméra et 

scanner à distance) pour assurer la qualité du produit final. De plus, cette recherche vise à 

proposer une approche novatrice d'inspection automatisée en temps réel pour détecter les 

distorsions dans les assemblages soudés. Les auteurs cherchent également à proposer une 

méthodologie expérimentale pour l'optimisation du processus de soudage pour les joints de 

recouvrement. Enfin, cette étude vise à proposer une approche de surveillance en temps réel 

de la porosité pour le soudage au laser de l'aluminium en utilisant l'apprentissage 

automatique. Les auteurs espèrent que cette recherche contribuera à améliorer l'efficacité et 

la qualité du processus de soudage, à réduire les coûts de production, à augmenter la cadence 

de fabrication et à réduire le temps de mise sur le marché dans l'industrie 4.0. Pour atteindre 

cet objectif, cinq objectifs spécifiques correspondant aux étapes du projet sont considérés. 

Plus précisément, il s’agit : 

(i) Le premier objectif est de développer une approche intelligente pour l'usine de 

soudage des plaques d'aluminium (ALWBs) basée sur l'industrie 4.0. Cela 
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implique une revue critique de la littérature sur les modèles intelligents 

existants et le développement d'un nouveau modèle intelligent pour améliorer 

l'efficacité et la qualité de la production. Un modèle intelligent, dans ce 

contexte, signifie un système qui non seulement apprend et s'adapte de manière 

autonome aux variations du processus de soudage pour prévenir les défauts, 

mais aussi optimise la qualité et l'efficacité de la production en fonction des 

données collectées, avec pour but ultime de minimiser les interventions 

manuelles et d'améliorer continuellement les opérations de production. 

(ii) Le deuxième objectif est une analyse bibliométrique de l'intelligence artificielle 

et de la surveillance en temps réel de la technologie de soudage dans l'ère de 

l'industrie 4.0. Cette analyse permettra d'identifier les tendances et les 

développements dans le domaine de l'intelligence artificielle appliquée à la 

surveillance en temps réel de la technologie de soudage, ainsi que les défis et 

les opportunités actuelles et futures pour l'industrie. L'objectif est de saisir les 

progrès technologiques, les innovations méthodologiques, ainsi que les lacunes 

et les perspectives de recherche future dans le domaine, mettant en lumière les 

défis à surmonter et les opportunités d'amélioration de l'efficacité et de la 

qualité du soudage dans le contexte industriel actuel et futur. 

(iii) L'objectif troisième consiste à effectuer une numérisation 3D en temps réel des 

plaques d'aluminium 5052-H32 soudées au laser, en mobilisant des 

technologies sophistiquées de capture d'images et de modélisation 

tridimensionnelle. Cette démarche emploie des scanners 3D de haute précision 

et des systèmes avancés de vision par ordinateur pour acquérir des données 

détaillées sur la géométrie de la soudure et les caractéristiques dynamiques du 

bain de fusion au cours du processus de soudage. Les données ainsi obtenues 

sont traitées à l'aide de logiciels dédiés pour créer un modèle tridimensionnel 

précis du cordon de soudure, offrant une analyse approfondie des distorsions 

thermiques et de la porosité. Cette méthodologie offre la possibilité d'ajuster les 
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paramètres de soudage en direct, tels que la puissance laser, la vitesse de 

soudage et l'intensité de chaleur, afin d'affiner les conditions opérationnelles et 

de réduire les défauts. Ce processus vise à rehausser la qualité et la fiabilité des 

soudures, en assurant des assemblages de haute performance. 

(iv) Le quatrième objectif englobe la conduite d'une étude exhaustive sur 

l'identification de la porosité dans les soudures d'aluminium à recouvrement, en 

s'appuyant sur une approche mixte d'expérimentation et d'analyse statistique. 

Les porosités sont mesurées grâce à des méthodes d'imagerie de pointe comme 

la radiographie X, permettant une visualisation précise et une quantification des 

défauts au sein de la soudure. L'analyse de ces images, réalisée à l'aide de 

logiciels spécialisés, facilite la détection, la mesure, et la classification des 

porosités selon leur taille, forme, et position. En complément, l'exploitation de 

techniques statistiques pour l'analyse des données recueillies aide à déceler les 

liens entre les conditions de soudage et l'apparition de porosités, identifiant 

ainsi les paramètres clés qui affectent la qualité de la soudure. Cette méthode 

intégrée enrichit la compréhension des processus de formation de porosité et 

soutient le développement de solutions pour réduire ces imperfections, 

optimisant ainsi la qualité des jonctions soudées. 

(v) Enfin, le cinquième objectif de cette étude est axé sur l'élaboration d'un système 

de surveillance en temps réel de la porosité durant le processus de soudage au 

laser d'alliages d'aluminium, en exploitant l'apprentissage automatique qui 

analyse les caractéristiques morphologiques tridimensionnelles du trou de clé. 

Cette initiative vise à intégrer des méthodologies avancées pour la détection 

précise et instantanée des porosités, permettant ainsi une intervention 

immédiate et ciblée pour corriger les éventuelles imperfections. L'usage de 

l'apprentissage automatique pour analyser la morphologie en 3D du trou de clé 

ouvre des perspectives novatrices pour la surveillance et le contrôle de qualité 

en s'appuyant sur des données structurées issues du processus de soudage lui-
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même. Ces objectifs contribuent ensemble à l'élaboration d'une stratégie 

intégrée visant à rehausser la qualité des soudures au laser pour les alliages 

d'aluminium, s'alignant ainsi avec les ambitions de l'industrie 4.0 pour une 

fabrication intelligente et optimisée. 

4. MÉTHODOLOGY 

La méthodologie de ce projet de recherche implique plusieurs étapes pour atteindre les 

objectifs spécifiques énoncés précédemment. Premièrement, une revue critique de la 

littérature sera effectuée pour identifier les meilleures pratiques et les approches récentes en 

matière de soudure au laser d'alliages d'aluminium. Cette revue permettra également 

d'identifier les lacunes dans la recherche actuelle et de proposer des solutions pour les 

combler. À la connaissance de l'auteur, il n'existe pas d'étude qui constitue une feuille de 

route complète pour l'utilisation d'un système de fabrication intelligent concernant le formage 

de flans soudés au laser en aluminium (ALWB) dans le concept de l'industrie 4.0 et qui 

propose un modèle efficace pour parvenir à une nouvelle solution à ce problème 

problématique. Dans ce domaine, le procédé ALWB est utilisé pour le formage à froid et 

permet d'alléger les pièces d'environ 15 à 20 % en fonction de leur conception.  Étant donné 

que toutes les carrosseries en blanc semblent passer de l'acier à l'aluminium, l'utilisation des 

procédés ALWB présente un intérêt commercial majeur. En outre, le soudage laser autogène 

est utilisé en production chez Shiloh (le seul en Amérique du Nord) dans le cadre de sa ligne 

BlankLight®. L'entreprise utilise un système de soudage laser autogène bilatéral à diodes de 

4 kW et a également mis au point une nouvelle technologie d'oscillation.  Ils réalisent un joint 

bilatéral, car les contre-dépouilles dans les soudures unilatérales sont problématiques et ils 

soudent en mode conduction, ce qui lisse la surface.  La prochaine étape pour les procédés 

ALWB est l'emboutissage à chaud, qui fait actuellement l'objet d'une attention particulière 

en ce qui concerne la qualification des soudures au laser dans l'emboutissage à chaud pour 

ce qui est de la formabilité et de l'effet des défauts sur la qualité. 
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Deuxièmement, une analyse bibliométrique sera réalisée pour étudier l'état de la 

recherche sur l'intelligence artificielle et la surveillance en temps réel de la technologie de 

soudage dans l'ère de l'industrie 4.0. Cette analyse permettra d'identifier les tendances 

actuelles dans la recherche sur l'application de l'intelligence artificielle et de la surveillance 

en temps réel pour améliorer la qualité de la soudure au laser. Cette étude apporte trois 

contributions principales. Tout d'abord, à la connaissance des auteurs, cette recherche est la 

première à étudier l'état d'évolution de la surveillance en temps réel de la technologie de 

soudage à l'aide d'une analyse bibliométrique. L'utilisation de cette dernière est importante, 

car il s'agit d'une analyse quantitative et objective qui permet d'éliminer les biais de l'examen 

systématique qui peuvent être induits par le jugement subjectif des chercheurs. 

Deuxièmement, cette recherche explore la structure des connaissances en étudiant les 

principaux auteurs, articles, revues, institutions et pays qui ont le plus influencé la 

surveillance en temps réel de la technologie du soudage. En outre, nous explorons la structure 

intellectuelle de la surveillance en temps réel de la technologie du soudage en effectuant une 

analyse de co-citation des auteurs et des revues. Enfin, nous évaluons la structure 

conceptuelle de la littérature sur la surveillance en temps réel de la technologie du soudage 

en explorant l'évolution thématique de ce concept et le réseau de cooccurrence des mots-clés 

des auteurs. 

Troisièmement, des expériences de soudage au laser sur des échantillons d'alliages 

d'aluminium 5052-H32 seront menées. Les échantillons seront soumis à une numérisation 

3D en temps réel pour caractériser la géométrie et les propriétés du cordon de soudure. 

L'objectif de cette étape est d'identifier les paramètres de soudage optimaux pour minimiser 

les distorsions thermiques et la porosité. L'analyse de la littérature confirme qu'aucun travail 

de recherche n'a proposé une inspection automatisée en temps réel des procédés LWB en 

aluminium par cartographie de nuages de points. Dans la présente étude, la distorsion des 

procédés LWB en alliage d'aluminium (5052-H32) est analysée à l'aide d'un balayage laser 

3D afin d'exploiter les diagrammes de contribution à la distorsion pour analyser le retour 

élastique et les plis dans les processus de formage. Cette technique d'inspection en temps réel 

rejette automatiquement les pièces qui ont un effet négatif sur la conformité des pièces et la 
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capacité de travail de la machine et de la chaîne de valeur dans l'industrie automobile. Ce 

faisant, non seulement les déchets de fabrication (défauts, surproduction, attente, non-

utilisation, manutention, inventaire, mouvement, traitement excessif et temps de réglage) 

sont réduits, mais les temps préparatoires et auxiliaires sont également raccourcis et la 

correction du temps de réglage de l'outil, de réglage et d'assemblage en position d'exploitation 

sur la machine est maîtrisée. 

Quatrièmement, l'étude se concentrera sur une analyse approfondie de la 

reconnaissance de la porosité dans les soudures au laser d'alliages d'aluminium, combinant 

des approches expérimentales et statistiques pour cerner les facteurs principaux contribuant 

à la porosité et élaborer des stratégies de mitigation. La mesure de la porosité s'effectuera par 

des techniques d'imagerie avancées, telles que la radiographie numérique, qui fourniront des 

visualisations détaillées permettant la quantification précise des défauts. En parallèle, une 

analyse statistique des données recueillies à partir de ces images permettra d'établir des liens 

entre les conditions spécifiques du processus de soudage et l'incidence de la porosité, offrant 

ainsi des perspectives pour ajuster les paramètres de soudage et améliorer la qualité des 

assemblages. L'objectif de l'étude était d'identifier les porosités et de déterminer les 

conditions appropriées. Les échantillons ont été fabriqués à partir d'un alliage d'aluminium 

AA6061-T6 dans une configuration de soudage par recouvrement, avec deux épaisseurs 

différentes (1,6 mm et 2 mm). L'alliage d'aluminium AA6061 est connu pour ses bonnes 

propriétés mécaniques, sa soudabilité et sa popularité pour un usage général. Ici, le processus 

de soudage au laser a été réalisé à l'aide de trois têtes laser différentes : 1) ScanLab remote, 

2) Trumpf D70 et 3) Precitec YW52. Pour effectuer le soudage, un robot ABB à 6 axes, un 

dispositif laser à fibre (Precitec YW52), une table de travail pouvant fournir des champs 

magnétiques en changeant le courant et un équipement de gaz de protection à l'argon ont été 

utilisés. La forme du modèle d'oscillation linéaire avec une taille de spot nominale de 0,4 mm 

a été utilisée, et la tête de soudage compact YW52 a été utilisée pour toutes les machines 

laser à diode et à semi-conducteurs. Les pièces ont été polies et nettoyées avant le soudage 

pour garantir une qualité de surface constante. Les paramètres du processus de soudage au 

laser ont été choisis de manière à obtenir une porosité globale comprise entre 1 et 6 %. La 
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source de soudage laser était une source Trumpf TruDisk de 10 kW, et la taille nominale du 

point était de 0,4 mm.  

Enfin, la surveillance en temps réel de la porosité de la soudure sera réalisée en utilisant 

l'apprentissage automatique basé sur les caractéristiques de la morphologie 3D du trou de la 

clé. Cette méthode permettra une détection en temps réel de la porosité et une correction 

immédiate des paramètres de soudage pour améliorer la qualité de la soudure. L'analyse de 

la littérature indique qu'à la connaissance de l'auteur, il n'y a pas eu de recherche sur le 

développement d'un système automatisé de surveillance en temps réel pour le soudage au 

laser de l'aluminium par chevauchement qui incorpore des techniques de traitement d'images 

et d'apprentissage automatique pour l'analyse des caractéristiques des trous de serrure. La 

présente étude vise à combler cette lacune en proposant un système de surveillance de la 

porosité en cours de processus basé sur la classification pour le soudage au laser de 

l'aluminium. Le système de surveillance proposé fait appel à l'analyse par rayons X et à une 

caméra à grande vitesse pour prédire la probabilité de porosité en tant que fonction objective 

pour la classification. Cette technique d'inspection en temps réel peut automatiquement 

prendre des décisions sur l'estimation de la réussite ou de l'échec des pièces soudées, 

réduisant ainsi l'impact négatif sur la conformité des pièces et la capacité de travail de la 

machine et de la chaîne de valeur dans l'industrie automobile. La stratégie de traitement 

d'image implique la détection automatique des régions d'intérêt (ROI) par une caméra à 

grande vitesse (10,000 fps) et le logiciel ImageJ, qui est utilisé comme entrées pour définir 

des caractéristiques telles que la zone du trou de serrure et la caractérisation géométrique. En 

outre, la technologie des rayons X est utilisée pour valider et inspecter la reconnaissance de 

la porosité et la taille des défauts. Un modèle de classification Random Forest (RF) est formé 

pour détecter l'apparition de porosités lors du soudage laser en trou de serrure d'un alliage 

d'aluminium 6061. Cela démontre que le système de surveillance basé sur la radiofréquence 

peut prédire avec précision l'apparition de porosités. Enfin, un modèle intelligent basé sur 

l'apprentissage automatique est proposé, qui incorpore la fabrication intégrée par ordinateur 

(CIM) et l'intelligence artificielle (IA) pour une adaptabilité basée sur les données tout au 
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long du cycle de production, de la conception du produit à la programmation, au contrôle et 

à l'optimisation du processus jusqu'à l'assurance de la qualité du produit. 

5. ORGANISATION DE LA THESIS 

La thèse présente une introduction générale suivie de 5 chapitres et d'une conclusion 

générale : 

La première partie de la thèse s'ouvrira sur une introduction présentant le contexte 

général de l'étude. Cette section commencera par évoquer les problématiques liées à la 

soudure au laser des alliages d'aluminium, notamment les distorsions thermiques et la 

porosité qui peuvent altérer la qualité du cordon de soudure. Ensuite, les objectifs de la 

recherche seront exposés de manière détaillée, en précisant les cinq objectifs spécifiques 

correspondant aux différentes étapes du projet. Enfin, le plan de la thèse sera présenté pour 

donner une vue d'ensemble des aspects qu'elle aborde. Cette section aidera les lecteurs à se 

familiariser avec l'organisation globale de la thèse et à comprendre comment les différents 

chapitres s'articulent pour atteindre les objectifs de recherche. 

Le chapitre 1 explore le soudage au laser des alliages d'aluminium, ses avantages et 

défis comme la porosité et les distorsions thermiques. Il introduit l'impact de l'Industrie 4.0, 

marquée par l'intégration de l'IoT, de la communication M2M, et de l'IA, dans l'amélioration 

des processus de fabrication. La contribution de l'IA, à travers l'apprentissage automatique 

pour l'analyse et la surveillance en temps réel des soudures, est soulignée comme un levier 

clé pour accroître la qualité des soudures et optimiser la production. 

Le chapitre 2 réalise une analyse bibliométrique sur l'insertion de l'intelligence 

artificielle (IA) et de la surveillance en temps réel dans le soudage sous l'angle de l'Industrie 

4.0. Cette analyse dévoile l'évolution des recherches, les innovations marquantes, et les défis 

à relever avec l'intégration de l'IA pour améliorer la détection des défauts et optimiser les 

paramètres de soudage. Le chapitre souligne l'apport des technologies de l'Industrie 4.0 pour 

une adaptation rapide aux variations du soudage, minimisant les défauts comme la porosité. 



 

15 

Il envisage également l'avenir de l'IA dans le soudage, notamment pour le développement de 

systèmes de surveillance autonomes capables d'apprentissage adaptatif. 

Le chapitre 3 explore l'utilisation de la numérisation 3D en temps réel pour examiner 

les déformations des flans soudés au laser en aluminium 5052-H32 durant un formage 

automatisé. Cette méthode innovante d'inspection en temps réel est conçue pour améliorer la 

qualité du produit, réduire le temps de production, et diminuer les coûts. Les découvertes du 

modèle proposé révèlent un avantage significatif pour l'évaluation de la sensibilité à la 

fissuration dans les structures soudées en réduisant les distorsions nocives. Ce processus aide 

à prévenir le traitement des composants défectueux, surtout aux étapes clés de production, en 

offrant des avancées notables pour l'amélioration de la qualité et de l'efficacité des procédés 

de fabrication. 

Le chapitre 4 examine la reconnaissance de la porosité dans le soudage laser d'alliages 

d'aluminium avec une méthode expérimentale et statistique, mettant en lumière les défis de 

la porosité interne malgré les avantages du soudage laser comme la précision et la rapidité. 

En analysant différentes configurations d'alliages d'aluminium et en appliquant la 

technologie des rayons X pour la détection de la porosité, ainsi qu'une analyse de la 

caractérisation du faisceau laser, l'étude révèle que les dimensions inappropriées du spot laser 

et les vitesses de déplacement influencent majoritairement la porosité, avec des risques de 

fissuration à chaud pour les spots trop grands. Cette recherche contribue à l'optimisation des 

paramètres de soudage pour améliorer la qualité des joints dans l'industrie automobile et des 

transports. 

Le chapitre 5 présente l'application de l'apprentissage automatique pour surveiller la 

porosité en temps réel dans le soudage laser de l'aluminium, se concentrant sur l'analyse de 

la morphologie 3D du trou de serrure. Utilisant des caméras haute vitesse et un modèle 

Random Forest, cette méthode ajuste les paramètres de soudage pour minimiser la porosité, 

essentielle pour la qualité et la fiabilité des assemblages, spécialement dans l'automobile. 

Testée sur des alliages d'aluminium AA 6061-T6, elle démontre l'efficacité de l'apprentissage 
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automatique pour prévoir et réduire la porosité, promettant moins de déchets et une meilleure 

qualité de production. 

La conclusion souligne les progrès de la surveillance en temps réel de la porosité dans 

le soudage laser de l'aluminium grâce à l'apprentissage automatique et l'analyse 

morphologique 3D. Elle met en évidence l'amélioration de la qualité des soudures et la 

réduction des défauts, en particulier pour l'industrie automobile. Bien que des avancées 

significatives aient été réalisées, des défis demeurent, ouvrant des voies pour des recherches 

futures visant à affiner la méthodologie et à élargir les capacités prédictives, alignant ainsi le 

contrôle de qualité du soudage au laser avec les exigences de l'Industrie 4.0.
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1.1 RÉSUMÉ PREMIER ARTICLE 

L'objectif de cet article de synthèse est de mener une enquête approfondie sur le 

soudage au laser et le processus de formage en tant que deux éléments essentiels de la 

fabrication intelligente et des systèmes intelligents de soudage dans l'industrie 4.0, en 

particulier pour le formage des flans soudés au laser en aluminium (ALWB). Dans l'ère 

moderne, les entreprises de fabrication et leurs modèles d'affaires ont un impact majeur sur 

le développement économique et les relations sociales. Depuis que l'industrie 4.0 est devenue 

un terme communément accepté par les centres de recherche et les universités, les entreprises 

mailto:ahmad.aminzadeh@uqar.ca
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et les chercheurs sont intéressés par cette initiative. D'autre part, l'aluminium s'est révélé plus 

difficile à souder que les autres métaux, en raison notamment de sa tendance à former des 

porosités. À cet égard, la surveillance au moyen d'approches basées sur des capteurs (Tableau 

4) qui centralisent les informations en temps réel gagne du terrain. En outre, cela permet de 

garantir la précision et la qualité du produit final. En fait, plusieurs facteurs critiques tels que 

la puissance du laser, la vitesse du laser, le point focal, le balayage du laser et la fréquence 

jouent un rôle clé dans la technologie laser, et il est important de les contrôler pour parvenir 

à un système de fabrication zéro défaut. D'autre part, la robustesse, prenant en compte les 

défauts géométriques tels que le volume et l'angle de sous-remplissage à la pointe, ainsi que 

le niveau acceptable de défauts de porosité dans la soudure en lien avec la formabilité, 

constitue les paramètres critiques du processus de formage. Cet article présente une revue 

complète de la fonction des différents capteurs en fonction des signaux provenant du 

processus de soudage et de formage. Enfin, un nouveau modèle a été proposé comme feuille 

de route pour l'application de l'idée de l'industrie 4.0 dans le formage des flans soudés au 

laser en aluminium (ALWB). 

1.2 TITRE DU PREMIER ARTICLE 

Toward an intelligent Aluminum Laser welded blanks (ALWBs) factory based on industry 

4.0; A critical review and novel smart model 

1.3 CONTRIBUTIONS 

Les contributions scientifiques concrètes, explicites et détaillées de l'auteur de la 

thèse, Ahmad Aminzadeh, liées à la recherche sur la fabrication intelligente de blanks 

soudés au laser en aluminium (ALWBs) basée sur l'Industrie 4.0, peuvent être 

synthétisées comme suit : 

Développement de la méthodologie de surveillance en temps réel : Ahmad 

Aminzadeh a joué un rôle central dans la définition et la mise au point d'une 
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méthodologie innovante pour la surveillance en temps réel du processus de soudage au 

laser. Cette méthodologie intègre l'utilisation de l'intelligence artificielle pour analyser 

les caractéristiques morphologiques 3D du trou de serrure et identifier les défauts de 

porosité, un aspect crucial pour garantir la qualité des soudures dans les applications 

industrielles. 

Recherche et expérimentation : L'auteur a conduit des recherches approfondies 

et réalisé des expérimentations pour valider l'efficacité de la méthode de surveillance 

proposée. Cela inclut la collecte et l'analyse de données à partir de séquences d'imagerie 

optique et de morphologie 3D, ainsi que l'application de techniques d'apprentissage 

automatique pour développer un modèle prédictif capable d'identifier la porosité en 

temps réel. 

Création de contenus visuels (Tableaux, Figures) : Ahmad Aminzadeh a 

également été responsable de la création de tous les supports visuels nécessaires pour 

illustrer les résultats de la recherche, y compris des tableaux récapitulatifs et des figures 

explicatives qui démontrent l'efficacité de la surveillance en temps réel dans 

l'amélioration de la qualité du soudage. 

Collaboration et révision : Bien que l'article ait bénéficié des conseils et de la 

révision des coauteurs et des experts du Centre National de Recherche du Canada 

(CNRC), la contribution principale en termes de recherche, de développement de la 

méthodologie et de rédaction de l'article incombe à Ahmad Aminzadeh. Sa 

collaboration avec Joys Silva Rivera, Pedram Farhadipour, Anas Ghazi Jerniti, 

Noureddine Barka, Abderrazak El Ouafi, Fatemeh Mirakhorli, François Nadeau, et 

Marc-Olivier Gagné a enrichi le travail, mais c'est Ahmad Aminzadeh qui a défini la 

trajectoire de la recherche et a apporté les contributions techniques essentielles. 

En somme, les contributions d'Ahmad Aminzadeh à cette recherche s'étendent de la 

conceptualisation de la méthodologie à la conduite des expériences, en passant par 

l'analyse des données et la production du matériel visuel, démontrant un engagement 
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profond dans le développement d'approches innovantes pour la surveillance en temps 

réel dans l'industrie du soudage au laser. 

1.4 ABSTRACT 

The aim of this review paper is a comprehensive investigation of laser welding and 

forming process as two critical parts of smart manufacturing and welding intelligent systems 

in industry 4.0, especially for forming of Aluminum Laser Welded Blanks (ALWB). In the 

modern era, manufacturing companies and their business models have a major impact on 

economic development and social relationships. Since industry 4.0 has become a commonly 

accepted term for research centers and universities, both businesses and researchers are 

interested in the initiative. On the other side, aluminum has proven more challenging to weld 

than the other metals accounting for the most part to its tendency to form porosity. In this 

regard, monitoring using sensor-based approaches that centralize the information in real-time 

is gaining ground. In addition, this ensures the accuracy and quality of the final product. In 

fact, there are several critical factors such as laser power, laser speed, focal point, laser 

scanning and frequency that play a key role in laser technology which is important to control 

them toward the zero-defect manufacturing system. On the other hand, robustness accounting 

for geometrical defects (ex. underfill amount / angle at toe as well as the amount of admissible 

porosity defects in the weld in relation with formability) are the critical parameters in forming 

process. Here, a comprehensive review paper is conducted insight into the function of 

different sensors (Table 4) to signals from the welding and forming process. Finally, a novel 

model has been proposed as a roadmap for applying the idea of Industry 4.0 in forming of 

Aluminum Laser Welded Blanks (ALWB). 

 

Key words: Industry 4.0, Smart manufacturing, Real time monitoring, Aluminum Laser 

Welded Blanks (ALWB), Sheet metal forming. 
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1.5 NOMENCLATURE  

AI Artificial intelligence 

IOT Internet of things 

AR Augmented reality 

M2M Human machine interface 

ICT Information and Communications 

Technology 

CNNs Convolutional neural networks 

RNNs Recurrent Neural Networks 

LSTMs Long Short-term Memory 

RF Random Forests 

GBMs Gradient boosting machines 

KNN K-Nearest Neighbors 

RLs Reinforcement learning 

SMF Sheet Metal Forming 

IWS Intelligent Welding Systems 

LDD Laser Depth Dynamics 

OCT Optical Coherence Spectroscopy 

NRC National research council of Canada 
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ZDM Zero-Defect Manufacturing 

HRI Human-Robot Interaction 

FSW Friction Stir Welding 

 

1.6 INTRODUCTION 

Nowadays, the digital communications, artificial intelligence (AI), internet of things 

(IOT), automated robots, sensors, augmented reality (AR), human machine interface (M2M), 

big data, and a slew of other game-changing technologies are widely expected to shape the 

global industrial environment in the modern world. Industry 4.0, or the fourth industrial 

revolution, provides a critical and valuable opportunity to accelerate social and technical 

progress [13]. Using advanced ICT (Information and Communications Technology) and the 

internet for the manufacturing of high-quality industrial products, industrial companies can 

collect, analyze, and process data. This revolution is having an enormous influence on 

today’s existing production processes and the economy. Although the third industrial 

revolution is still continuing a cluster of radical innovations in communication and energy 

technologies merged into a new economic era was the first trigger less than a century later 

[14]. Here, as a comprehensive investigation of the fourth industrial revolution which is made 

a huge breakthrough in the centralized production systems. A decentralized energy 

production network is challenged by a decentralized system which engages hundreds of 

millions of people to generate their own green energy at home, at work, and even at factories 

and to share information online [15]. Figure 3 depicts the gradual revolution over the last few 

decades. 
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Figure 3. Trend of industrial revolution and connected devices to Internet 

More precisely, the combination of Artificial Intelligence (AI), and Industry 4.0 is an 

exciting field of research and intellectual science that allows humans to find numerous 

innovative ways to model how humans reason and feel as they go about their activities [16–

20]. On the other hand, industries are concentrating their efforts on the evolution of intelligent 

products, as well as the impact on potential customers. Therefore, it is critical that 

organizations understand what Industry 4.0 is and how it functions so that they can be 

prepared for potential shifts from machine-dominated manufacturing to digital 

manufacturing, which is now being researched by scholars and academic institutions. Now, 

a technological transfer is being made toward manufacturing companies that already start to 

use data centralization systems (ex. Scada/Ignition) and leverage machine learning embedded 

in data collection [21]. A major part of the AI method is symbolic learning and machine 

learning. Based on logical theories of computer science, symbolic learning is a precursor to 

smart systems. Compared to deep learning, which uses complex data and a variety of input 

factors, deep learning is the pinnacle of AI methods. 

To design parameter distributions and determine the parameters one needs, 

convolutional neural networks (CNNs) [22], recurrent neural networks (RNNs) [23], long-

short-term memory (LSTMs) [24], Random Forests (RF) [25], gradient boosting machines 
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(GBMs) [26], K-Nearest Neighbors [27] and reinforcement learning (RLs) [28] are the most 

effective strategies. A broad spectrum of artificial intelligence techniques is employed in 

manufacturing science, such as artificial neural networks, fuzzy logic systems, genetic 

algorithms, particle swarm optimization, colony optimization, simulated annealing, and 

evolutionary computing [29]. In the scope of ALWB manufacturing, several options are 

available based on the priority of production, limitation, and customer service. There are 

many factors that can impact the sheet metal forming (SMF), such as die deformation, tooling 

temperatures, material scatter, lubrication levels, and sheet properties. As a result of these 

variations, it is difficult to guarantee quality in the manufacturing process, despite the fact 

that a number of novel concepts have been developed to monitor and control the process. 

Control systems are one means of achieving control in manufacturing. The control system is 

composed of three basic components: a sensor that collects data (generally related to product 

properties), a predictive model that predicts the future state of the production system with the 

input of the current state, and a controller that proposes necessary changes to the production 

system (usually an input to the actuation mechanism) to make the product properties closer 

to the specifications desired. In order to achieve desired product specifications, sensors 

collect and analyze data. Controllers determine the necessary changes in production systems 

based on prediction models. After changing, the sensor will measure the effect again and the 

process will be repeated. Monitoring systems react to changing conditions (sensitivity, 

flexibility) as well as the robustness of the prediction mechanism (fidelity, timeframes, 

prediction models, knowledge management and reuse). Knowledge of how systems behave 

under various conditions is necessary to build a reliable prediction model. Through numerical 

SMF simulations, we can gain insight into how systems behave. Real-world data demonstrate 

the reliability of simulation models, so it is advisable to incorporate production data within 

models. As for unit connectivity, these technologies also bring about more robust, agile and 

consistent manufacturing systems with intelligent capabilities by linking IoT, M2M and CPS. 

The new manufacturing facilities require a philosophical change in setting up, leading to new 

concepts such as intelligence, products, communication, and information networks [30]. In 
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summary, pioneer studies of the industry 4.0 method in aluminum alloys application and 

objective function are reviewed in Table 1.  

Table 1. Research on the industrial 4.0 method and its objective function 

Title 
Input 

parameters 

Objective 

function 
Method Reference 

Green Activity-

Based Costing 

Production 

Planning and 

Scenario 

Analysis for the 

Aluminum-Alloy 

Wheel Industry 

under Industry 

4.0 

Five possible 

scenarios: normal 

and material cost 

fluctuation, 

material cost 

discount, and 

carbon tax with 

the related cost 

function 

the cost problem 

under Industry 

4.0 and to be 

able to handle 

the 

environmental 

issues in making 

production 

decisions. 

Numerical 

investigation 
[31] 

A Critical 

Review on the 

Trends Toward 

Effective Online 

Monitoring of 

Defects in 

Friction Stir 

Welding of 

Aluminum 

Alloys 

A single sensor 

approach and the 

multisensory 

approach. 

the use of 

multiple sensors 

has been 

demonstrated to 

give hope 

towards the 

development of 

robust detection 

of defects that 

will be able to 

cope with 

variations in 

material 

thickness and 

type of materials. 

Critical Review [32] 

Sustainable 

manufacturing 

of ultra-fine 

aluminum alloy 

6101 wires using 

controlled high 

levels of 

mechanical 

strain and finite 

The 

manufacturing 

process of wires 

at SPD was 

controlled and 

monitored using 

additive 

manufacturing 

(AM) and 

How the 

combination of 

smart 

manufacturing 

and simulations 

control 

represents the 

key to renew the 

traditional 

Experimental 

study and 

numerical 

prediction 

[33] 
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element 

modeling 

numerical 

simulation. 

manufacturing 

methods in the 

perspective of 

the industry 4.0 

Haptic-based 

touch detection 

for collaborative 

robots in 

welding 

applications 

A robot is 

performing a 

multi-pass 

GTAW welding 

task, utilizing the 

3-Sigma rule and 

the Hampel 

identifier, 

focusing on the 

keyhole area, 

intensity, and the 

plasma's electron 

temperature 

Statistical 

analysis is 

conducted on the 

load-cell signals, 

employing a light 

and low-cost 

real-time 

algorithm for 

"touch" 

detection, 

complemented 

by porosity 

monitoring. 

TCP/IP 

communication 

protocol for 

remote 

connection 

[34] 

SMEs can touch 

Industry 4.0 in 

the Smart 

Learning 

Factory 

Physical and 

virtual 

simulation 

Learning factory 

design and layout 

Virtual 

simulation and 

Digital twin 
[35] 

A convolutional 

approach to 

quality 

monitoring for 

laser 

manufacturing 

A raw Medium 

Wavelength 

Infrared coaxial 

images 

Dilution 

estimation in 

Laser Metal 

Deposition, and 

location of 

defects in laser 

welding 

processes. 

ConvLBM [36] 

A CPS platform 

oriented for 

Quality 

Assessment in 

welding 

IR cameras and 

Imaging 

Decision Support 

on the welding 

(Laser, resistance 

spot welding) 

process 

parameters. 

Cyber-Physical 

System (CPS) 

and Quality 

Assessment 

(QA) 

[37] 

A three-stage 

quality diagnosis 

platform for 

laser-based 

Image data 

collection from 

the weld pool to 

the module in 

which a 

statistical and 

Weld defect 

detection and 

quality 

prediction. 

Stage Quality 

Assessment 

(3SQA) method. 

Hidden Markov 

models. Cyber-

[38] 
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manufacturing 

processes 

geometrical 

method is used 

Physical 

Systems (CPS) 

 

1.6.1 Laser technology in intelligent industries and smart manufacturing 

Laser material processing is one of the main subjects that support the reduction of 

wasted energy and materials, and it being as Green New Deals [39]. For this reason, it is one 

of the most important subjects for manufacturing researchers. Nowadays, welding processes 

and systems play an important role in modern industrial production lines and manufacturing 

processes, especially in laser welded blanks. Due to the fact that laser welding is a precise 

and very fast welding technique that can provide widespread applications in the industrial 

welding systems [40]. However, laser welding is a complex process that is often hard to 

optimize and perform the quality control and defect analysis. Recent research has 

demonstrated cognitive laser welding systems that perform well on a defined workpiece after 

setup to address control issues [41,42]. After decades of evolution, many hand-welding 

operations have been replaced by automated welding systems using industrial robots [43]. A 

number of parameters are involved in today's welding processes, and the mechanism of the 

process is not well understood. Also, customers and users have diverse welding requirements 

and the workplace is dynamic. In order to manage the changing nature of welding tasks while 

maintaining high quality, welding methods are moving towards more personalized 

production methods which utilize next-generation welding systems. Welding information 

should also be collected and shared smartly in the era of big data, both to improve operations 

internally and as a component of comprehensive life-cycle evaluations in industrial supply 

chains [44].  Largely, Laser Welded Blanks are made by joining individual sheets of different 

thicknesses, strengths, and coatings by means of laser welding [45,46]. Manufacturing in this 

manner enables flexible designs and ensures the correct materials are applied at the right 

places. In highly stressed areas, thicker or stronger materials can be used while thinner sheets 

and deep drawing grades can be utilized in other areas. Only the most expensive materials 

should be used in a highly stressed area. Cost reduction, weight reduction, and increased 
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strength are among the benefits of this targeted approach. LWBs manufacturers drove the 

need to qualify the part at the source and eliminate costly post-qualification. This is one of 

the major drives for LWBs 4.0. Regarding the laser 4.0, this study is a trigger for making a 

clear route map to define intelligent laser welding and platforms for upgrading welding 

systems into higher levels of intelligence. Also, an automatic forming process is considered 

as forming operation to product a final part which is used in automobile structure. Finally, a 

license is defined for part each part which is passed all criteria of manufacturing. Table 2 

summarizes the previous reviews on intelligent welding systems (IWS), which discussed 

several domains of IWS. 

Table 2. Previous reviews on intelligent welding systems (IWS) 

Application/scope Objective Reference 

Literature review on the 

implications of Industry 

4.0 for the plastics 

industry 

Research trends and knowledge in Industry 

4.0 using bibliometric analysis. 
[47] 

A state-of-the-art review 

and perspective on 

intelligent welding systems 

A fundamental analysis of the components 

and methods required to make welding 

systems intelligent is presented in the paper, 

including sensing and signal processing, 

feature extraction and selection, modeling, 

decision-making, and learning. In addition, 

emerging technologies such as Industry 4.0, 

cyber-physical systems (CPS), digital twins, 

etc., and their application potential to IWS is 

discussed. 

[43] 

An overview of Industry 

4.0 literature and related 

technologies 

Interoperability, virtualization, local real-

time talent, service orientation, modularity, 

and virtualization are six design principles. 

[48] 

Additive Manufacturing 

(AM) and Industry 4.0: A 

Relationship Analysis 

Throughout this paper, the direct and indirect 

elements of Industry 4.0 are discussed in 

relation to additive manufacturing. The 

advantages of digital threat for AM are 

discussed as well as its impact on smart 

manufacturing. 

[49] 

A systematic review of the 

literature on sustainable 

industry 4.0: Current 

How can Industry 4.0 be studied through 

different research approaches? Where does 
[50] 
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trends and future 

perspectives 

research stand in the areas of Industry 4.0 at 

the moment? 

The future of friction stir 

welding and a roadmap to 

Industry 4.0: A review of 

sensor-based monitoring 

and control 

Industry 4.0 has been proposed as a roadmap 

for implementation in FSW. 
[51] 

An overview of Intelligent 

Manufacturing and 

Industry 4.0 

The European Union, United States, Japan, 

and China all have strategic plans for 

intelligent manufacturing, as well as the 

United States government strategic plans. In 

addition, this paper outlines current 

challenges and future directions for research. 

[52] 

Review of Intelligent 

Manufacturing Systems 

It describes recent advances in intelligent 

scheduling, process optimization, control, 

and maintenance. There is also a presentation 

of the concepts, requirements, applications, 

and methodologies used for each aspect. 

[53] 

The Role of Humans and 

Industrial Robots in a 

Smart Factory: Trends in 

Smart Manufacturing 

The authors present an overview of humans 

and robots in smart factories, their 

relationship to Industry 4.0, and what 

progress they've made in terms of related 

technologies. 

[54] 

 

Laser welding has benefits like higher productivity values, deep welding penetration, 

high welding speeds values, adaptability, high power density these characteristics give better 

process results compared with other welding processes [55]. Thanks to its automation 

potential it is possible to implement controlled systems integrating artificial Intelligence, data 

science and machine learning that help to optimize each step of the process, predict, and 

control the parameters to operate the equipment to assure the best Quality/Cost/Delay balance 

for the product. Effective real-time monitoring technologies are essential for improving 

welding efficiency and ensuring joint product quality. For those reasons, applications in 

industries such as automotive, aerospace, shipbuilding, railways, and electronics have grown 

significantly [56–59]. Many established sectors, as well as newly emerging, fast-growing 

markets, use fiber lasers for advanced, high-volume welding applications. Fiber lasers' ability 

to produce large arrays of precise and consistent welds rapidly and accurately is a driving 

factor in the burgeoning e-mobility industry. It is well known that switching to lasers has 
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many advantages in other established industries. The migration to modern industrial laser 

technology for metal joining is being driven by increased yields, design flexibility, and 

energy efficiency. An intelligent manufacturing process requires high-quality data collection 

online. In order to enable automated and decentralized decision-making, laser welding 

processes increasingly require technologies that can serve as the 'eyes and ears'. The different 

types of laser machines are listed as following table 3. Based on the characteristic’s 

comparisons between major high-power industrial, fiber laser is more reliable (30%) not only 

in terms on quality but also for automation tasks.  

Table 3. Characteristics comparisons between major high-power industrial lasers (Industrial 

Laser Solutions, 2005). 

Characterization 
Fiber 

Laser 
Nd:YAG CO2 Disc Reference 

Wall Plug 

Efficiency 
30% 5% 10% 25% 

[60] 

[55] 

Wavelength 1.07 µm 1.06 µm 10.6 µm 1.03 µm [55] 

Output Powers to 100 kW to 7 kW to 15 kW to 16 kW [55] 

BPP (4/5kW) < 2.5 25 6 8 [61,62] 

Diode Life times 100,000 h 10.000 h N.A. 10,000 h [63] 

Cooling Air/Water Deionized Water Water [63] [54] 

Floor Space 

(4/5kW) 
< 1 m2 6 m2 3 m2 > 4 m2 [61] 

Operating 

Cost/hour 
$21.31 $38.33 $24.27 $35.43 [64] 

Maintenance 
Not 

Required 
Often Required Often [63][62][54] 

This review paper, which is divided into sections as shown in Figure 4, provides a 

handy library of Industry 4.0 to both academics as well as industrial practitioners. A 

comprehensive investigation is conducted in this study to bridge the gap between ALWB and 
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tuning an intelligent model for TWB 4.0. To address the significant control challenges that 

prevent aluminum laser welding from reaching its full potential in process engineering and 

production, it is the objective of this study to investigate various welding features and defects 

and propose a machine intelligence architecture. Also, an intelligent model is proposed to 

define a valid part in terms of manufacturing criteria.  

 
Figure 4. Scope and structure of the review 

To the best of the author’s knowledge, there is no study, which is a comprehensive road map 

in using an intelligent manufacturing system regarding forming of Aluminum Laser Welded 

Blanks (ALWB) in concept of industry 4.0 and proposed an efficient model to achieve a 

novel solution for this problematic problem. Working on this field, ALWB are used in cold 

forming and provides a lightweight around 15-20% depending on designs.  As all body-in-

white appears to shift from steel to aluminum, there is a major business case using ALWBs. 

Moreover, Autogenous laser welding is used in production at Shiloh (only one in North 

America) under their BlankLight® line. They use a two-sided 4kW autogenous laser welding 

diode system and developed a new wobbling technology as well.  They do a two-sided joint 

as undercuts in one-sided weld are problematic and they weld in conduction mode which 

smoothen the surface.  The next step for ALWBs is warm/hot stamping which is currently 
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attention by qualification of laser welds in warm/hot stamping for formability and the effect 

of defect on quality. 

1.7 METHODOLOGY 

Aluminum laser welding is a challenging process in laser welding, mainly because of 

the fundamental problem of the low welding reliability of aluminum alloys in comparison 

with other industrial metals like steel. The namely reason is their physical properties notably 

the high thermal conductivity, high reflectivity and low viscosity [65] . Alloys of aluminum 

can be divided into two main categories: non-heat-treatable alloys and heat-treatable alloys. 

Alloying elements such as silicon, iron, manganese, and magnesium produce hardening 

effects that are primarily responsible for the initial strength of non-heat-treatable alloys. 

Alloys that cannot be heat treated are found primarily in the 1xxx, 3xxx, 4xxx, and 5xxx 

series. Alternatively, heat-treatable alloys are found most commonly in alloys 2xxx, 6xxx, 

and 7xxx. There are between 4 and 8 % zinc in the 7xxx series alloys, and between 1 and 3 

% magnesium [66]. Both have high solid solubility in aluminum. Aluminum is one of the 

lightest engineering metals, having strength to weight ratio superior to steel. However, there 

are seven major types of weld defects in laser welding of aluminum: porosity [67], cracking 

[68], inclusions [69], lack of penetration or fusion [60], weld oxidation[70], loss of alloying 

elements [71]. Based on our investigation [55,72,73], the main process parameter such as 

laser power, power density, welding speed, type and shielding gas flow, beam shape on 

workpiece and the position of focal beam plane are shown in Ishikawa's diagram (Figure 5). 

Some of these variables have a greater impact on the laser welding process also easier to 

control and predict. The effects of speed and power have been studied in several articles and 

results indicate significant effects, although it’s far more possible to be controlled by artificial 

intelligence; in comparison with other parameters [74,75]. 
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Figure 5. Classification of laser process parameters 

To solve the catastrophic problems in aluminum laser welding, some literatures have been 

offered [76–78] real-time monitoring on intelligent techniques. In order to improve welding 

efficiency and guarantee joint quality, it is crucial to use real-time monitoring technologies. 

The findings and progress of research in the ten years prior to this study are critically 

reviewed, as is the state of the art for real-time monitoring of laser welding. Figure 6 is 

illustrated, schematic representation of Laser welding 4.0 process adding the main 

parameters that should be controlled to improve the quality of laser welding for aluminum 

alloys. 
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Figure 6. Schematic representation of intelligent Aluminum alloys Laser welding 

monitoring proposed based on industry 4.0 strategy 

1.8 DISCUSSION 

1.8.1 Real-time monitoring of laser welding 

In terms of time, material losses, and productivity restrictions, off-line monitoring 

and welding characterization has traditionally been inefficient and costly. In order to 

efficiently regulate welding parameters, equipment responsiveness, and process quality 

requirements, real-time monitoring systems have been proposed and developed in this 

domain. As a result, a variety of real-time weld monitoring technologies have been developed 
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to provide real-time data for welding process control [73]. In particular, high speed camera 

imaging [79], online x-ray [80], acoustic emission [81], audible sound[82], infrared detectors 

[83], ultraviolet detectors [84], Optical Coherence Tomography (OCT) systems [85], 

electromagnetic acoustic transducers [86], and so on can be mentioned. Proper parameters 

connected to the process itself, such as plasma, metal plume, spatters, seam geometry, 

keyhole, molten pool, laser back-reflection, and penetration hole, provide data from which 

signals such as optical, thermal, and acoustic can be obtained. The information provided 

allows welding settings for aluminum to be controlled based on key features such as strong 

reflectivity, high heat conductivity, and vapor plume particular chemical components 

released by the material [65,87]. A relatively new entrant to the sensor field, Laser Depth 

Dynamics (LDD). By doing so, real-time laser welding data collection finally solves a variety 

of long-standing challenges. Using this new method, a low-power infrared beam is used to 

measure distances more precisely than a welding laser. As a result of the measurement beam 

working during the process, the bottom of the vapor channel can be seen and directly 

measured. Basically, the Laser Depth Dynamics (LDD) from IPG as well as the IDM from 

Precitec systems that can control the depth of penetration. Concerning the experimental 

analysis, LDD system is used, and it works quite well in steel but in aluminum there are still 

challenges with the algorithms and it don’t work with wobbling laser variants. The method 

used by these systems is based on OCT (Optical Coherence Spectroscopy). Moreover, the 

OCT-based systems were developed to control the penetration depth. The laser power is 

adjusted in real-time at very high frequency to modify the laser power achieving an equal 

depth of penetration.  Also track the geometry just before the weld or after the weld for 

quality inspection, but it is purely geometric, not internal defects.  This method cannot work 

actually on wobbling laser variants which are proved very effective in autogenous laser 

welding of aluminum to stabilize the keyhole, thus reducing porosity [88]. As much 

information is stored in the results as in a section along the entire weld. However, the 

information is available within milliseconds instead of having to destroy the part. A second 

advantage of the method is its versatility. By pointing the measurement beam ahead of the 

weld site, the amount of material feeding in can be measured. To check the surface quality 
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of the final weld, it can also be pointed behind the melt pool. The part can even be scanned 

to create a 3D image, providing unprecedented precision and ease of setup. Different data 

types can be collected quasi-simultaneously by switching between measurements. Through 

one measurement system, controlled by one software package, it is possible to extract five 

different measurement modes comprising more than 20 different metrics from the welding 

process simultaneously. In figure 7, the main parameters that can be measured in the laser 

welding process are shown. Those parameters are related to welding conditions and help to 

predict and control the final product quality [89,90]. 

  

Figure 7. Defect detection in aluminum welding 

To define the best configuration is one of the most important processes in the laser welding 

monitoring; this assures the correct data for monitoring, controlling, defining and predicting 

the welding quality results. Traditionally, coaxial and paraxial are the common sensing 
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configurations, where the coaxial can get information directly above the welding zone and 

paraxial monitoring allows adjust the distance and angle of the device with reference to 

welding zone. Moreover, thermal and optical signals can be monitored at the same time with 

the use of coaxial and paraxial configurations by sensors and monitoring devices. Figure 8 

illustrates the paraxial and coaxial monitoring devices configuration. In the following 

section, the most important method regarding the sensor monitoring of aluminum welding 

are discussed.  

 

Figure 8. Illustration of monitoring configuration devices. A) Coaxial monitoring 

configuration. B) Paraxial monitoring configuration 

1.8.2 Optical and Thermal signals 

Due to the nature of laser welding process, thermal and optical signals have common 

application to be monitor. In fact, laser beam increases the temperature of the material plate 

above the melting temperature. Therefore, the laser welding process could be classified as a 

thermal fabrication process, in the keyhole where the energy of the laser beam is concentrated 

the thermal radiation signals are considerably and allow to capture of important information 

to characterize the process [55]. The molten pool composed of the melted metal and metallic 

vapor emits an enormous quantity of radiation too, thus those zones are interesting to 

monitoring. Using photodiodes, an optical parametric oscillator, and a plano-convex lens, it 

is feasible to determine the relationship between optical signals produced by the metal plume, 



 

38 

material emission, and atoms emission and laser power and pulse duration. Some articles 

looked into the relationship between laser power and atom emissions in the plume for 

dissimilar aluminum laser welding [91]. High-speed cameras with filters and image sensors 

were utilized in certain investigations to collect images of the keyhole, molten pool, 

penetration hole, and metal plume, with great results and high accuracy in determining each 

of the welded zone's described features on real-time monitoring [92,93]. Convolutional 

neural networks and data from optical signals were also used to predict the quality of welding 

[93]. In order to improve artificial intelligence process analysis, photodiodes and 

spectrometers can be used to capture diverse optical spectrum ranges, such as visible light, 

infrared light, and ultraviolet light [91,94]. In order to capture radiation and temperature 

signals throughout the welding process, optical devices and particular temperature sensors 

could be used. To collect the thermal signal, sensors such as pyrometers and infrared cameras 

are typically utilized [95]. Pyrometer sensors are a low-cost, high-performance monitoring 

device that can be employed in extreme environments; however, they are typically limited 

by testing frequency [96]. Aluminum, on the other hand, is not like steel, where you can use 

a pyrometer to quantify the emissivity as a function of temperature with reasonable accuracy 

and then feed that information into a machine learning model. That would be fantastic to 

characterize the weld in addition with the high-speed camera and for sure give more accurate 

models. At NRC (national research council of Canada), we tested two FLIR cameras (InGas 

or InSb) in laser welding. The InSb was found the most effective since its wavelength was 

outside the range of the laser. However, itself just to use the images to accurately predict the 

temperature in the molten zone. Some studies use numerical simulation to predict the melt 

pool temperature by measuring the temperature outside the fusion zone. There are still issues, 

even at the solid-state with aluminum for temperature measurements.  The Infrared camera 

reflects widely the temperature distribution of the welding zone, this benefit allows to collect 

surface temperature information [95]. Photodiode for temperature observation was used in 

some research to examine the temperature in Keyhole and plasma radiation to monitoring the 

welding process and obtain information to train a Support Vector Machine Classification 

Algorithm [94]. Figure 9 illustrates a usual setup for optical signal monitoring process, in 



 

39 

this array the optical emission is collected by a collimator and is transmitted to be analyzed 

by the spectrometer. In continue, artificial intelligence use outcome data to determine next 

move for laser welding equipment. The correlation analysis of plasma optical spectra was 

used in some studies to determine the relationship between optical signals and weld quality 

in laser welding of aluminum alloys [71]. 

 

 

Figure 9. Monitoring system with spectrometer to get optical signals from laser welding 

Table 4 mentions different types of sensors to obtain optical and thermal signal from laser 

welding process and describes the object where is possible capture the information to study 

and monitor the laser welding process of aluminum alloys. 

Table 4. Welding inspection and monitoring sensor characteristics for both optical and 

thermal signals [77] 

Sensor Detection Frequency 

Capability 

to detect 

defects 

Comments and 

limitations 

Photodiode 

Vapour plume, 

plasma 

Reflective laser 

1–100 

Incomplete 

Penetration 

Undercut 

Low efficiency in 

identifying slight 

defect and Inefficient 
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energy, Thermal 

radiation 

to identify 

microdefects 

 

Camera 
Plasma plume 

and molten pool 
0.5–5 

Blowouts 

Lack of 

fusion 

Incomplete 

penetration 

Undercut 

Requirement for 

additional component 

setup 

Low sampling speed 

and high price 

High computing 

demands 

Spectrometer 
Spectrum of 

plasma plume 
0.1–1 

Medium 

Blowouts 

Cracks 

Spatters 

Low 

Misalignment 

 

Too sensitive to the 

noise of environment 

Pyrometer 

Temperature 

of molten 

pool or vapour 

plume 

1-50 

Incomplete 

Penetration 

Burn through 

Limited capability of 

weld defects 

inspection 

Charge 

sensor 

Plasma charge 

current 
1-100 

Incomplete 

Penetration 

Humping 

Limited application in 

solid-state-laser 

welding. However, the 

sensor to be 

placed close to the 

weld zone. 
 

1.8.3 Acoustic signals 

The acoustic emission refers to a sensor that translates process sounds into an 

electrical output that can be used to calculate a numerical variable. Condenser microphones 

with a capacitor that changes its capacitance depending on the sound being measured 

Measurement microphones are frequently employed [97]. Melting, vaporization, keyhole 

creation, and plasma emission could all benefit from acoustic monitoring. As a result, 

acoustic signals generated by laser welding provide information and data about material 
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phase shifts, and have been used to assess welding quality [81]. A typical disadvantage of 

acoustical monitoring is that for non-contacting acoustical sensors the environmental noise 

could make hard to detect signals and in consequence, could be difficult to use it in online 

monitoring application. For this reason and with the objective to take advantage of these 

signals in the online monitoring process the current studies focus on how to improve the 

signal identification accuracy and to implement intelligent algorithms to correlate signals 

with welding parameters and quality [98]. Figure 10 shows the array of an aluminum laser 

welding with structure borne acoustic sensing monitoring, L. Schmidt et al. in [99] reported 

that is possible to monitor the process by a structure-borne acoustic emission system 

implementing microphones, getting information from the keyhole formation. Thanks to treat 

of the obtained signals using neural networks achieving a high prediction rate of over 95 % 

in speed identification for aluminum laser welding. In this case study, a variety of in-process 

signals can be recorded, processed, and used to assess welding quality with laser micro 

welding. It worth to mentioned that optics, acoustics, thermal, and imaging signals are among 

these signals. Observing a variation in the recorded signals can reveal a welding defect as 

well as its location and nature. Using real-time welding monitoring, quality control processes 

no longer must operate in an open loop, and accurate insights into the state of tools, 

equipment, and procedures can be obtained. At the end of the day, Big Data analysis can 

enhance and extract all the added information it contains. As a result of the use of machine 

learning and artificial intelligence techniques, as well as the accumulation of historical data, 

on-line process monitoring would soon identify specific welding defect signatures. An 

excellent tool for managing quality holistically across the ecosystem can be created by 

combining these data with data collected horizontally and vertically across the value chain 

and network. In fact, there are many references on acoustic defect detection of friction stir 

weld aluminum alloys and steel laser weld not on aluminum laser weld. To be more precise, 

laser welding still faces a challenge when it comes to in situ and real-time quality control. 

There are many dynamics involved with laser material interaction. In this contribution, 

researchers combined AE and optical sensing techniques to study the laser welding process 

of aluminum. X-ray and high-speed imaging were used in the experiments to overcome the 
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difficulty of postmortem correlation between recorded signals and momentary events. As a 

result, optical sensors were found to work together with AE sensors to detect the different 

processes - surface melting, keyhole, solidification, etc. [100]. Signal analysis by visual 

inspection cannot detect events leading to defect formation. In general, the correlation 

between signals and postmortem quality analysis is not reliable because the events are 

dynamic and happen in quick succession, such as keyhole fluctuation, pore formation, and 

spattering. Using AE and optical sensors coupled with advances in signal processing and 

statistical analysis such as wavelet decomposition, various quality control methods will be 

possible for laser welding [101]. 

  

Figure 10. Monitoring system for acoustic signal, structure-borne acoustic signal sensing 

1.9 AUTOMATIC COMPUTER AIDED INSPECTION (CAI) MONITORING 

With the advancement of computer technology, CAI (Computer Aided Inspection) has 

become a necessary inspection method for manufacturing companies in a very short amount 

of time. 3D scanning can be used to create digital replicas of products by scanning them and 

storing them as point clouds. By reducing human intervention by a large margin, CAI opened 
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up a world of new ways of inspecting, requiring less time and less money. The geometry 

model of an object is used together with structured light and machine vision cameras to 

inspect the object automatically. The location of points on the surface of the object is 

determined by analyzing the images captured by the camera. Laser scanners or other 3D 

scanning devices produce point-cloud data. The geometric model of the object is analyzed 

during a setup phase before object inspection. By comparing the manufactured part with the 

CAD model, the software provides a graphical comparison. Several points are eliminated to 

shorten data collection and analysis times and avoid errors caused by extraneous reflections. 

In subsequent inspections, points from areas of interest are spatially averaged to estimate the 

size of similar objects. An inspection device measures every surface of the object in a single 

pass by employing multiplexed sensors, each of which includes cameras and structured light 

sources. Outlines the planning logic that resulted in a recommended features inspection 

sequence, probe selection, and part orientation sequence. Features serve a key role in the 

system's modular construction [102–104]. Here, the CAI inspection is considered as a main 

consept of process monitoring throught all the process (Welding and forming). In this regard, 

following procedure are design as automatic inspection planning in real time (Figure 11).   

 

Figure 11. Inspection planning system model 
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1.10 SIGNAL PROCESSING OF LASER WELDING PROCESS 

From laser welding is possible to get information that helps to understand, monitor, and 

control the status of the process. The most common signals obtained and studied for online 

monitoring are optical, thermal, and acoustical. Table 5 shows the type of the signals and the 

process monitoring stages specifying some cases of study and implemented instruments in 

each of them. In following sections, the types of signals are studied. 

Table 5. Monitoring devices and signals associated to monitoring and stage process 

objective 

Stage Monitoring objective 
Monitoring 

signal 

Monitoring 

equipment 

Referen

ce 

Pre-process 

Seam tracking 

Optical signal 

CMOS camera 

640 x 300 pixels. 
[105] 

Gap Measuring 

Camera-based 

Max. Rate 1500 

Hz, Resolution 

144 x 176 Pixels. 

[94] 

In-process 

(online) 

Welding stability 
Acoustic 

signal 

Microphone of 

high definition and 

audible range of 

20 Hz to 20 kHz. 

[106] 

Defect’s monitoring Optical signal 

High-speed 

camera system 

Memrecam fx 

RX6 (200 

frames/s, 

Resolution 512 x 

512 pixels 

[107] 

Molten pool Optical signal 

A Photron SA4 

high-speed 

camera. 

[93] 

Keyhole Geometry Optical signal 

A Photron SA4 

high-speed 

camera. 

[93] 

Penetration hole Optical signal 

A Photron SA4 

high-speed 

camera.  

[93] 
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Metal plume 

Optical signal 

Thermal 

signal 

Photodiode, 

Optical Parametric 

Oscillator, 

uncoated-

planoconvex lens, 

Czerny-Turner 

style spectrometer 

[108] 

Feedback Control Thermal signal 

Photodiode for 

Temperature 

Observation 

(wavelength 1100 

- 1800 nm) 

[109] 

Post-process 

Defect’s monitoring Optical signal 

PbSn- Based 

Camera (resolution 

32x 32 pixels, 

Frame rate 

500Hz). 

[94] 

Classification of Weld 

Geometry 

Acoustic 

Emission 

Microphone 

inspection, 

metallographic 

test. 

[97] 

 

1.11 INTELLIGENT MANUFACTURING MODEL FOR FORMING OF ALWB 

Traditionally, forming of TWBs structure are divided into two main processes, welding 

(TIG, FSW, Laser, EBM etc.) and forming (deep drawing, incremental forming and bending). 

In this regard, all real-time monitoring and process mapping should be considered not only 

in laser welding but also for forming operation. Here, an intelligent system with flexible 

manufacturing concept based on lean manufacturing are proposed (Figure 12) As show in 

figure, this smart model is divided by four main steps. First, blank orientation, fixture 

condition and geometrical inspection of pre- process like seam tracing are check by laser 3D 

scanning. Followed by a fiber automated laser welding machine that is fed by the on-line 

monitoring process bases on optical and acoustic signals, it is used to manufacture a ALWBs, 

and welding process is monitor by a 3D scanner in process monitoring. Simultaneously, all 

the STL data will transfer to the point cloud via wireless. In this stage, all input parameters 
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such as power, speed, amplitude, and wobbling patterns etc. are monitored for parameter 

condition surveil. On the other hand, critical objectives like distortion, residual stress, defect 

detection and are validated to make sure this production are pass all geometrical criteria.  

Secondly, handling robot put the TWBs which is made by the laser beam welding on the 

convers. Then, 3D scanning makes a new geometrical profile through the part and will check 

by GD&T analysis in the cloud. Such validated parts will go ahead into the forming step and 

online forming analysis is considered by force sensor to detect the maximum drawing depth. 

Forming parts will be checked by automatic inspection method to pass the forming criteria 

such as spring back and wrinkling. Meanwhile, the parts that do not satisfy the criteria will 

be considered as scrap and recycle. Finally, the successful parts tagged but the validate 

license for such other manufacturing operation like assembly not only this factory but also it 

is possible to use in other companies. Overall, this model is promising to use in some mega 

factories in order to improve the quality, productivity, production speed and decries the waste 

time, energy and manufacturing costs. 

 

Figure 12. Intelligent system of TWBs production 
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1.12 CONCLUSION  

The implementation of Aluminum Laser welding is increasing in industry, the material 

properties make monitor and control the process a challenge for the researchers and for the 

companies. This paper presented a review of the 4.0 technologies, smart inspection 

techniques, sensing technologies and algorithms that are, and can be applied to aluminum 

laser welding. To be more specific, laser material processing as a core of advanced 

manufacturing which is an umbrella of smart manufacturing is investigated and. In 

developing welding systems, different intelligent techniques can improve efficiency, quality, 

and reliability and also forming processes are considered. Aluminium is increasingly used in 

welding fabrication because of its size and complexity. As this grows, so must the industry's 

access to resources capable of providing guidance on how to weld aluminum. Showing the 

benefit to implement them for monitoring the process, and how their application can assure 

a better quality of welding. Also, in order to achieve a fully automated and intelligent TWBs 

factory a novel model is proposed. The next step for ALWBs is warm/hot stamping which is 

the topic of our project: qualification of laser welds in warm/hot stamping for formability 

and the effect of defect on quality. The other way is to use Friction Stir Welding for cold 

stampings which is used by TWB Company as well in production.  FSW is expected to be 

used in higher strength Al welds compare to laser based on my knowledge.  For future works 

we are going to apply this method on AA7075 hot stamping of FSW TWBs actually as we 

were the 1st worldwide to prove it in 2017 with Ford. 
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2.1 RÉSUMÉ EN FRANÇAIS DU DEUXIÈME ARTICLE 

Cette étude vise à effectuer une analyse bibliométrique des études portant sur la 

surveillance en temps réel de la technologie de soudage ; elle examine également les 

tendances et les connaissances connexes concernant la mise en œuvre des principes de 

fabrication intelligente. L'analyse est réalisée à l'aide des logiciels Bibliometrix R-tool et 

VOS viewer et couvre les études couvrant la période de 1986 à 2021. Dans le cadre de la 

caractérisation mécanique et de l'inspection en temps réel des paramètres du processus de 
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soudage, une variété de capteurs, tels que les capteurs de température (thermocouples, 

caméras thermiques), de vision (caméras haute définition, scanners 3D), 

acoustiques/ultrasoniques (pour la détection de défauts internes comme la porosité), et de 

déplacement et position (pour le contrôle de la précision du laser), sont mis en œuvre. Ces 

technologies permettent de surveiller et d'ajuster des paramètres critiques du soudage, 

incluant la température du bain de fusion, la vitesse de soudage, le positionnement du laser, 

ainsi que l'intégrité et les dimensions de la soudure, afin d'assurer l'optimalité de la fusion, la 

réduction des défauts, et l'amélioration générale de la qualité et de l'efficacité de la production 

de soudures. Les résultats indiquent ce qui suit : (1) "Soudage" est le mot-clé le plus 

couramment utilisé par les chercheurs dans le domaine ; (2) La recherche sur la surveillance 

en temps réel de la technologie du soudage peut être divisée en groupes distincts (Figure 30); 

(3) Les États-Unis, la Chine et l'Inde représentent les principales contributions à la recherche 

sur la surveillance en temps réel de la technologie du soudage ; (4) La croissance annuelle de 

la valeur indique que le soudage a été une technologie pionnière dans la recherche sur la 

surveillance des processus en temps réel au cours des dernières décennies. 

2.2 CONTRIBUTIONS 

Dans le deuxième article intitulé "A Bibliometric Analysis of Artificial Intelligence 

and Real-time monitoring of Welding Technology in the Era of Industry 4.0", les 

contributions scientifiques d'Ahmad Aminzadeh se manifestent à travers plusieurs 

dimensions clés, notamment la recherche, la méthodologie, et la surveillance en temps réel 

du soudage, comme suit : 

Recherche approfondie : Ahmad Aminzadeh a conduit une analyse bibliométrique 

exhaustive pour cartographier l'état actuel de l'art de l'intelligence artificielle (IA) appliquée 

à la surveillance en temps réel de la technologie de soudage. Cette recherche comprenait la 

collecte et l'analyse de données issues de publications scientifiques, permettant de dégager 

des tendances, des lacunes et des opportunités dans le domaine. 
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Développement de la méthodologie : Il a élaboré une méthodologie systématique pour 

évaluer l'impact de l'IA sur le soudage dans le contexte de l'Industrie 4.0, en intégrant des 

techniques avancées pour l'extraction, l'analyse et la synthèse des données bibliométriques. 

Cette approche méthodologique a permis de quantifier la croissance de la recherche dans ce 

domaine et d'identifier les principaux acteurs et innovations. 

Surveillance en temps réel : Ahmad Aminzadeh a proposé une nouvelle perspective sur 

l'application de l'IA pour le suivi en temps réel des paramètres critiques de soudage, tels que 

la température, la vitesse, et la qualité de la soudure. Il a souligné l'importance de développer 

des systèmes de surveillance intelligents capables de détecter les défauts en temps réel et 

d'ajuster automatiquement les paramètres de soudage pour améliorer la qualité. 

Contribution à l'amélioration de l'article : Bien que le travail ait bénéficié de la 

collaboration et des conseils de Saïd Echchakoui, Noureddine Barka, Abderrazak E Ouafi1, 

et de l'examen technique par Abbas S. Milani, c'est Ahmad Aminzadeh qui a piloté la 

majorité des efforts de recherche et de rédaction, définissant le cadre de l'étude et assurant 

l'élaboration du contenu scientifique. 

Ces contributions mettent en lumière l'engagement d'Ahmad Aminzadeh dans l'avancement 

des connaissances sur l'intégration de l'IA dans les processus de soudage, contribuant 

significativement à la littérature sur la surveillance en temps réel dans le soudage à l'ère de 

l'Industrie 4.0 et offrant des pistes pour des améliorations méthodologiques et des 

applications futures dans ce domaine. 

2.3 TITRE DU DEUXIÈME ARTICLE 

A Bibliometric Analysis of Artificial Intelligence and Real-time monitoring of Welding 

Technology in the Era of Industry 4.0 
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2.4 ABSTRACT  

This study aims to perform a bibliometric analysis of studies examining the real-time 

monitoring of welding technology; it also investigates related trends and knowledge 

respecting the implementation of intelligent manufacturing principles. The analysis is 

conducted using the Bibliometrix R-tool and VOS viewer software and covers studies 

spanning the 1986 to 2021 period. The applicability of various sensors to define the 

mechanical characterization and real-time inspection of welding process parameters is 

discussed in detail. The results indicate the following: (1) “Weld” is the most commonly used 

keyword researchers in the field; (2) Real-time monitoring of welding technology research 

can be divided into distinct clusters; (3) The USA, China, and India account for the primary 

contributions to real-time monitoring of welding technology research; (4) Annual worth 

growth indicates that welding has been a pioneering technology in real-time process 

monitoring research over the past decades.  

Keywords; Bibliometric analysis, Welding technology, Smart manufacturing, Industry 4.0, 

VOS viewer, R package, Web of science, Scopus 

 

2.5 NOMENCLATURE 

ZDM zero-defect manufacturing 

 CPS Cyber physical systems 

FSW Friction Stir Welding 

WOS Web of Science 

CPS Cyber-Physical Systems 

RAMI 4.0 Reference Architectural Model Industry 4.0 
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GTAW Gas Tungsten Arc Welding 

GMAW Gas Metal Arc Welding 

DT Digital Twin 

HRI Human-Robot Interaction 

 

2.6 INTRODUCTION  

In today’s production context, high-quality product and zero-defect manufacturing 

(ZDM) have elevated the requirement for real-time monitoring of the manufacturing process 

[110]. Real-time monitoring is a method that allows industries to control the current state of 

production lines and to create a unified namespace for data collection [111]. Welding 

technology and intelligent systems play a key role in automation and allow to better 

understand the process parameters used in digital factories [43]. Intelligent systems, 

especially in manufacturing and production, also focus on interactions with human users in 

changing and dynamic physical and social environments. The last decade in particular has 

seen significant advances in computing technologies as they shift to increased 

miniaturization [112], processing power [113], learning algorithms [114] and the availability 

of big data [115]. A real-time understanding of the robot controller will be crucial for human-

robot manufacturing systems in the future [116]. In fact, emerging sensor devices make a 

massive breakthrough in manufacturing systems and Human-Robot Interaction (HRI) is 

designed to respond to certain inputs (motion, touch heat, sound, light, etc.) by taking some 

predefined actions. Regarding welding technology, the use of industrial robots has replaced 

many welding operations using handheld tools [1-3]. However, such robots are 

preprogrammed machines with limited capacities, which means that skilled welders are still 

needed to achieve a reasonable final production quality. Figure 13 shows sensor revolution 

trends going all the way back to the 18th century.  
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Figure 13. The evolution of sensors in production and manufacturing 

It is clear that sensors play a key role in Industry 4.0 and smart manufacturing 

systems. Monitoring and controlling processes have been facilitated by the use of signals 

acquired through various sensors integrated into machines [4]. A product quality check often 

involves destructive tests, which can consume a lot of time. A monitoring system that uses 

signals enables commenting on quality aspects without having to conduct further tests. A 

close relationship between process signals and machine tool components makes them useful 

for equipment maintenance. It is important to monitor and control the signal's energy when 

there is a sudden failure or change in the system to minimize downtime [5]. It is thus crucial 

that all manufacturing processes be monitored and controlled.  Sun et al. [84] reviewed 

different types of sensors used to monitor the laser weld quality in real time in order to ensure 

high product quality and production rates and low costs. In a similar study, Cai et al. [117] 
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studied a comprehensive critical review of recent literature on sensing techniques and 

artificial intelligence. Mishra et al. [118] developed a novel cloud-based remote and real-

time monitoring and control scheme for friction stir welding (FSW) to avoid the occurrence 

of weld defects. Shevchik [119] et al. proposed a method for the real-time detection of 

process instabilities based on deep learning and Hard X-ray radiography which lead to 

defects. They found that the confidence of the quality classification ranged between 71% and 

99%, with a temporal resolution down to 2 ms and a computation time per classification task 

as low as 2 ms. To tackle problems related to aluminum welding, Huang et al. [120] were 

detected and processed arc spectra in-situ using a spectrometer. By adjusting the welding 

current based on the results of the welding assembly, the Fuzzy-PID control system they used 

to achieve porosity control. Table 6 illustrates defect monitoring methods and signals. 

Table 6. Defects monitoring methods and signals. 

Monitoring technique Signal Defects 

Advantage 

and 

disadvantage 

Reference 

Image processing 

technique 

Thermal 

Humping Simultaneous 

penetration 

depth, bead 

width and 

torch position 

control are 

possible. 

[121] 

Blowouts  

Cracks  

Porosity  

Penetration  

Vision 

Penetration This system 

has a large 

amount of 

information 

and is non-

contact; it is 

difficult to 

track seams in 

3-D, and its 

geometric 

constraints 

make seam-

tracking 

difficult. 

 

Width [122] 

Undercut  

Combined Molten pool geometry   
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Undercut  

Crack porosity [123] 

Blowouts  

Penetration  

Acoustic emission 

Technique 
Acoustic Penetration 

There is no 

tactile 

information to 

monitor 

welding 

dynamics and 

quality 

characteristics. 

[124] 

Optical signal 

techniques 

Photodiode 

sensor 

Penetration 
 

[125] 

Undercut  

Spectrometer 

Sensor 

Undercut 

 

 

Blowouts [126] 

Cracks  

Pyrometer 

Sensor 
Penetration  [127] 

Fused 

techniques 

Molten pool geometry 

 

 

Crack porosity [128] 

undercut  

Spatters  

X-ray 

radiography 

Porosity 

 

 

Cracks [129] 

Penetration  

Slags  

Electro-magnetic 

sensors 

 

  

Sensor 

deviations 

from the 

welding line 

were detected 

using a 

scanning 

motion despite 

the intense 

light and 

fumes of the 

arc 

[130] 
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Modern production involves complex processes, including several unpredictable data, 

which is why industrial companies and customers must strive to better understand specific 

welding requirements and dynamic work environments [131]. The ability to collect and share 

information between units to improve decision-making is a vital part of this process, and it 

can be used both internally to improve operations and externally to evaluate lifecycles in 

industrial supply chains. Moreover, in industrial applications, welding is just one among 

many complicated processes, which also include forming [46], bending [132], cutting [133] 

and machining [134]. For instance, tailor welded blanks [16] as a novel production method 

in automobile application to make light and straight parts in vehicles. Therefore, real-time 

inspection of welding and using sensor 4.0 technology pave the way to improving welding 

processes, component performance, and subsequent service quality. Besides, innovations in 

the fields of computer science, control theory, robotics, and artificial intelligence are enabling 

the replacement of manual work with intelligent automation [135]. Among the many welding 

methods in industrial application, laser welding, spot welding, and friction stir welding those 

that are entirely automated. These concepts and their associated technologies have been 

explored in manufacturing research initiatives in contexts such as Industry 4.0 [136], lean 

manufacturing [137] and the Internet of Things (IoT) [138]. As a result, these tools are 

triggering as a driver, enablers, and platforms for upgrading welding systems into higher 

levels of intelligence. A real-time monitoring process plan is shown in Figure 14. Firstly, 

critical process parameters are defined, and then their targets are monitored during the 

welding process. Then, data acquisition from different segment sensors plays a key role as 

data transition occurs in online mode to detect the fluctuation during the process. There are 

many real-time monitoring levels, such as input parameters, welding conditions, side effect 

features like the temperature field and welding pool surface [139]. Thus, the monitoring 

techniques, procedure, data accuracy, and refine the results would be the next steps (Figure 

14). Finally, the intelligent decision is taken by the cloud computing.  
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Figure 14. Monitoring and controlling diagram of welding 

Based on the literature [140,141], in bibliometrics, papers, books, and other forms of 

communication are analyzed using mathematical and statistical methods. It has become clear 

that big data is on the rise in the age of big data, as we are seeing a massive explosion of data 

from mobile devices, social media, the Internet of Things, and other applications. 

Bibliometric approaches have been implemented to define scientific progress in many 

sciences and engineering disciplines, and constitute a common research instrument for the 

systematic analysis of publications [142–146]. For instance, Muhuri et al. studied a 

bibliometric analysis and an extensive survey on recent developments in the field of Industry 

4.0 using the Web of Science (WOS) and Scopus and reported on how Industry 4.0 has 

developed over the last 5 years [147]. Although the Web of Science (WOS) and Scopus are 

the most important data collection in science, duplicate recorded could impact on the data 

accuracy and outcome. To address these critical points in the knowledge, a bibliometric 

analysis is conducted in the field of “real-time monitoring of welding technology” by 

searching through database using multiple, similar terms for real-time monitoring. Here, the 

Endnote software and the R package are applied to eliminate duplications publications from 
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WOS and Scopus. Also, implemented an evaluation of overall real time monitoring research 

and welding technology. Additionally, this evaluation looks at whether welding technology 

follows similar thematic trends and challenges as other industries and whether the research 

in one industry is underdeveloped in comparison to others. This investigation makes three 

main contributions. First, in the best of the authors knowledge, this research is the first 

investigating the evolution state of the real-time monitoring of welding technology by using 

the bibliometric analysis. The utilization of the latter is important because it is a quantitative 

and objective analysis, so it can eliminate the systematic review biases which can be induced 

by the researchers’ subjective judgement. Second, this research explores the structure of 

knowledge by exploring the main authors, articles, journals, institutions, and countries that 

most influenced the real-time monitoring of welding technology. In addition, we explore the 

intellectual structure of real-time monitoring of welding technology by performing the co-

citation analysis with regards to the authors and journals. Finally, we assess the conceptual 

structure of the real-time monitoring of welding technology literature exploring the thematic 

evolution of this concept and the co-occurrence network of the authors’ keywords. 

As technology and connectivity have advanced in manufacturing, industry ecosystems 

have evolved to include cyber-physical systems (CPS), the Internet of Things (IoT), big data, 

and artificial intelligence (AI). Cyber-physical systems are transforming centuries-old 

manual crafts into digitized processes governed by industrial informatics. By incorporating 

these characteristics into production methods, manufacturers are able to monitor, control, and 

optimize production efficiency and performance. Manufacturing companies are increasingly 

relying on smart manufacturing systems to meet their challenges as a result of Industry 4.0. 

The integration of a robot welding system with smart manufacturing, which entails all the 

manufacturing assets necessary, can result in the creation of a smart welding system. The 

operation and control systems of such a welding system can have improved uptimes and 

performances. Febriani et al. [148], used an experimental combination of Reference 

Architectural Model Industry 4.0 (RAMI 4.0) and smartization of welding systems. Mishra 

et al. [51] presented a roadmap for implementing the idea of Industry 4.0 in smart Friction 

stir welding (FSW) by different types of sensors such as force, torque, current, power, 
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temperature, vibration, acoustic emission, and imaging. Furthermore, an innovation friction 

stir welding process (FSW) has developed via a cloud-based real-time monitoring and control 

scheme to prevent the formation of weld defects. According to the model, the machine is 

provided with feedback regarding the desired controlled parameters to improve the quality 

of the weld  [118]. Tannous et al.  used a collaborative system in a real industrial scenario, in 

which welding happens in real-time, a haptic-based touch detection strategy is described and 

tested [34]. Based on the results, the current model adds significant advances to enable the 

use of light and simple machine learning approaches in real-time applications. Benakis et al. 

[149] Based on ongoing research in robotic Gas Tungsten Arc Welding (GTAW) monitoring 

for defect detection and characterization, this article discusses the current state of welding 

process monitoring and the future trends in industrial implementation. Park et al. [150] to 

demonstrate how a robot welding system can be transformed to meet the challenges of smart 

manufacturing in a structured way, developed a Platform for Smart Manufacturing System 

based on the Reference Architectural Model Industry 4.0 (RAMI 4.0). Mann et al. [151] 

defined a basic framework and core elements of gas metal arc welding (GMAW) in terms of 

Industry 4.0 and they found that network connection is a main part of product quality. A 

specific Digital Twin model is introduced for real-time geometry assurance by Soderberg et 

al. and reported as an alternative to real-time individual adjustments, a Digital Twin model 

might also make batch-by-batch adjustments using data from batches of parts [152]. Welding 

robots can adapt to the challenges of "moving" seams and components by using sensors to 

provide the adaptive capability of touch and sight. Detect and measure process features and 

parameters are the most important application of sensors in automatic welding [153]. 

Besides, sensors are also implemented for weld inspection of properties, defects and control 

quality [154]. From robotic perspective, an ideal sensor should measure the welding points, 

should detect seam direction, and should be as small as possible. With the introduction of 

sensors, robotic automation has been able to assist in the welding of inconsistent joints by 

detecting the joint edge, tracking the joint seam, and measuring the joint width. As a matter 

of fact, there is no ideal sensor that will satisfy all requirements in practice. In spite of the 
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benefits associated with robotic systems, it is important to take into consideration the 

associated problems, include the following:  

• A consistent manufacturing sequence is required (e.g., tailor welded blanks) 

[16]. 

• When manufacturing or repairing low to medium volumes, programming can 

take a lot of time and effort [155].  

• Variation in gap condition and Joint design with close tolerance (0.5 to 1 mm) 

[156].  

• Calculation of return on investment (ROI) for initial cost and effect [157].  

• Possible lacks of skilled welders [158]. 

• There are some areas, including pressure vessels, interior tanks, and ship 

bodies, where robotic welding is not possible due to a lack of suitable 

workspace [159]. 

• In some cases, the robot is unable to respond quickly to sensor information, 

leading to sluggish and sometimes unstable behavior [160]. 

• Investing in the first place is expensive [160].  

• Processes take longer [161].  

• The sensor equipment's physical dimensions [162]. 

• Process accuracy is not as accurate as desired [163]. 

• Welding automation has traditionally been difficult due to the "stacking up" of 

tolerances [164].  

 

2.7 BIBLIOMETRIC METHODS 

In 1922, E.Wyndham Hulme used the term statistical bibliography for two lectures at 

the University of Cambridge as Sandars Reader in Bibliography [165]. Specifically, peer 

review, funding, patents, and awards are quantitative indicators of research impact. This 

method could be applied across different types of areas, smart manufacturing, industry 4.0, 
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cyber manufacturing, data science, real-time monitoring, internet of thing, economic, robotic, 

sustainability. Based on the literatures [166–168], there are three main clusters in 

bibliometric data collection. First, review technique is related to classical analysis 

(systematic and meta). According to Paste et al. [169], a systematically reviewed and meta-

analyzed estimate showed that occupational exposure to welding fumes can cause trachea, 

bronchus, and lung cancer. Second, evaluative methods contain some other aspects such as 

impact measures, productivity measures and, hybrid measures (productivity and impact 

measures). Layus amn Kah [170] analysis a bibliometric study of welding scientific 

Publications by big data analysis. Moreover, VOS viewer and Microsoft Excel were used to 

analyze 12000 articles from the Scopus database relevant to arc welding, written between 

2001 and 2012. Thirdly, utilizing relational techniques, we can identify networks between 

authors, publications, or journals. A combination of relational techniques and evaluative 

techniques is used in this study as bibliometric techniques [171]. 

 

2.8 DATA PROCESSING 

Investigation on smart manufacturing publications is performed since 1989 via two 

chief Web bibliometric tools (WOS and Scopus). According to the literatures [172,173], 

selection procedure is adjusted based on systematic reviews and meta-analyses (PRISMA) 

flow diagram (Figure 15) and the main information of data processing are presented in Table 

7. Based on PRISMA, following steps to identify a database for investigation: 

• Identification of studies.  

Following key words and criteria selection are presented as search digits in web 

bibliometric tools (WOS and Scopus):  

- TITLE-ABS-KEY (("weld*" AND ("sens*" OR "signal" OR "acoustic sens*" OR 

"vision" OR "sound" OR "spectral" OR "ultrasonic sens*" OR "image" OR “multi sens*” 

OR “intelligent sens*” OR “signal processing” OR “collection” OR “acquisition” OR 

“Optical sens*” OR “Electro-magnetic sens*” OR “real-time monitoring”))) 

Screening: in order to conduct screening two condition has been checked. 
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- English language context. 

- publication types: books, book series, trade publications, and undefined. 

Eligibility: the publication which has not assign with international standard serial 

number (ISSN) has been excluded from search tools.  

Inclusion: The final database consisted of 11,937 publications on WI and 138 on PI. 

 

 

Figure 15. PRISMA Model [174] 

Table 7. Main information extracted from WOS and Scopus. 

Description Results 

Timespan 1989:2021 

Sources (Journals, Books, 

etc.) 
3835 

Documents 11937 

Average years from 

publication 
9.75 

Average citations per 

documents 
10.38 
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Average citations per year per 

doc 
1.079 

References 173277 

DOCUMENT TYPES  

article 7238 

article; proceedings paper 557 

proceedings paper 3999 

review 143 

DOCUMENT CONTENTS  

Keywords Plus (ID) 0 

Author's Keywords (DE) 21993 

AUTHORS  

Authors 24514 

Author Appearances 45280 

Authors of single-authored 

documents 
603 

Authors of multi-authored 

documents 
23911 

AUTHORS 

COLLABORATION 
 

Single-authored documents 683 

Documents per Author 0.487 

Authors per Document 2.05 

Co-Authors per Documents 3.79 

Collaboration Index 2.12 
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2.9 ANALYSIS PROCEDURE AND SOFTWARE 

A number of software programs are used to analyze data, including Notepad ++, R 

language, and VOS viewer. Here, Notepad++ is used first for standardizing keywords and 

abstracts in articles. A procedure based on Aria and Cuccurullo  [166] is then applied using 

the R language in particular the Bibliometrix package. In addition, a summary analysis is 

performed as well as a ranking of the number of cited references and author dominance. An 

important aspect of this project is the implementation of a VOSviewer that captures 

information on bibliographic network matrices, bibliographic co-citations, bibliographic 

collaborations, country scientific collaborations, co-citation networks, as well as keyword 

co-occurrences. 

 

2.10 RESULTS AND DISCUSSION 

In order to achieve a desirable investigation, first duplicates in the two databases have 

been removed. Then, articles and articles from conference proceedings are selected as central 

view of this study. The trend of research from 1989 to 2020 is illustrated in Figure 16. 

Generally, the initial studies were done in 1989 by 15 article but with progress in time this 

number has been strictly increasing almost 1000 publication in 2020. In fact, annual progress 

production shows strong influence of real-time monitoring over the past decade, and it makes 

an interesting topic not only for academic researcher but also for industrial application.  
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Figure 16. Annual publication of sensors in welding technology 

2.11 AUTHORS IMPACTS 

Based on the number of publication and h-index the top 10 authors are presented in 

Table 8. First, number of publications have been checked then if two or more authors had the 

similar ranking h-index should be consider as second ranking criteria. According to the 

results, ZHANG Y was the most productive author by 140 articles (h-index =18) followed 

by ZHANG YM and CHEN S by 133 and 132 publications, respectively. Figure 17 displays 

that since 1989, two authors (CHEN S and CHEN J) constantly produced research on this 

field.  

Table 8. Most productive authors in real time monitoring. 

Author h-index TC Number of publications PY-start 

ZHANG Y 18 965 140 2001 

ZHANG YM 30 2248 133 1991 

CHEN S 24 1627 132 1994 

LI Y 17 1061 107 1993 

WANG Y 14 939 103 1996 

GAO X 15 827 92 2009 
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WANG X 10 472 84 2004 

CHEN J 11 487 77 1994 

WANG J 17 901 78 1999 

CHEN Y 13 664 71 1998 

CHEN H 17 783 71 2007 

ZHANG H 15 585 69 1998 

LI X 15 627 67 1998 

LIU Y 14 616 69 1998 

WANG Z 14 718 65 1998 

ZHANG X 12 514 66 1997 

ZHANG Z 18 774 65 2007 

KOVACEVIC R 26 1651 64 1992 

LI J 13 503 62 1992 

HUANG Y 16 788 61 2012 

 

 

Authors Articles 

ZHANG Y 142 

ZHANG 

YM 
133 

CHEN S 132 

LI Y 108 

WANG Y 107 

GAO X 92 

WANG X 85 

CHEN J 78 

WANG J 78 

CHEN Y 72 

CHEN H 71 

ZHANG H 70 

LI X 69 
 

 

Figure 17. Top authors production over time (1989-2021) 
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2.12 MOST RELEVANT SOURCES 

The most relevant source for is the Materials Science and Engineering: R: Reports, 

with 305 papers, followed by Progress in Materials Science an International Review Journal 

(134 papers) and Metallurgical Transactions B (Process Metallurgy) (124 publications) 

(Table 9 and Figure 18).  

Table 9. Most cited reference in international journals 

Cited References Citations 

MISHRA RS, 2005, MAT SCI ENG R, V50, P1, DOI 

10.1016/J.MSER.2005.07.001 
305 

NANDAN R, 2008, PROG MATER SCI, V53, P980, DOI 

10.1016/J.PMATSCI.2008.05.001 
134 

GOLDAK J, 1984, METALL TRANS B, V15, P299, DOI 

10.1007/BF02667333 
124 

KOU S, 2003, WELDING METALLURGY 93 

OTSU N, 1979, IEEE T SYST MAN CYB, V9, P62, DOI 

10.1109/TSMC.1979.4310076 
88 

THOMAS W, 1991, INTERNATIONAL PATENT 

APPLICATION, PATENT NO. [GB 9125978.8, 91259788] 
79 

THREADGILL PL, 2009, INT MATER REV, V54, P49, DOI 

10.1179/174328009X411136 
78 

KOVACEVIC R, 1997, J MANUF SCI E-T ASME, V119, P161, 

DOI 10.1115/1.2831091 
77 

BAE KY, 2002, J MATER PROCESS TECH, V120, P458, DOI 

10.1016/S0924-0136(01)01216-X 
74 

ZHANG W, 2012, WELD J, V91, P195S 74 

NAGARAJAN S, 1992, IEEE T ROBOTIC AUTOM, V8, P86, 

DOI 10.1109/70.127242 
69 
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MAHONEY MW, 1998, METALL MATER TRANS A, V29, 

P1955, DOI 10.1007/S11661-998-0021-5 
68 

WANG G, 2002, NDT\&E INT, V35, P519, DOI 10.1016/S0963-

8695(02)00025-7 
65 

ZHANG ZY, 2000, IEEE T PATTERN ANAL, V22, P1330, DOI 

10.1109/34.888718 
64 

LEITAO C, 2012, MATER DESIGN, V33, P69, DOI 

10.1016/J.MATDES.2011.07.009 
62 

CHEN W, 1990, WELD J, V69, PS181 61 

RENWICK RJ, 1983, WELD J, V62, PS29 60 

XU YL, 2012, J MATER PROCESS TECH, V212, P1654, DOI 

10.1016/J.JMATPROTEC.2012.03.007 
60 

ANCONA A, 2001, APPL OPTICS, V40, P6019, DOI 

10.1364/AO.40.006019 
59 

PEEL M, 2003, ACTA MATER, V51, P4791, DOI 10.1016/S1359-

6454(03)00319-7 
59 

 

 

 

Figure 18. Most cited reference in international journals 
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2.13 MOST RELEVANT AFFILIATION 

The most relevant affiliation was the SHANGHAI JIAO TONG UNIV, with 578 

articles, followed by HARBIN INST TECHNOL (416 articles) and UNIV KENTUCKY (349 

papers) (Table 10 and Figure 19). 

 

 

 

 

Table 10. Most cited reference sorted by affiliation. 

Affiliations Articles 

SHANGHAI JIAO TONG UNIV 578 

HARBIN INST TECHNOL 416 

UNIV KENTUCKY 349 

OSAKA UNIV 327 

TIANJIN UNIV 302 

INDIRA GANDHI CTR ATOM RES 246 

SHANDONG UNIV 229 

INDIAN INST TECHNOL 198 

TSINGHUA UNIV 197 

GUANGDONG UNIV TECHNOL 195 

HUAZHONG UNIV SCI AND TECHNOL 173 

XI AN JIAO TONG UNIV 165 

OHIO STATE UNIV 159 

DALIAN UNIV TECHNOL 152 

PENN STATE UNIV 137 

UNIV MANCHESTER 136 



 

79 

UNIV MICHIGAN 127 

KOREA ADV INST SCI AND TECHNOL 123 

SOUTHWEST JIAOTONG UNIV 116 

BEIJING UNIV TECHNOL 111 

 

 

Figure 19. Most cited reference sorted by affiliation. 

2.14 COUNTRIES PRODUCTION 

The most productive countries were determined based on two indices: the country of 

affiliation of the author (Table 11 and Figure 20), the country that cited the most papers and 

the country that collaborated with the most papers. Chinese authors accounted for 8,695 out 

of the total 8,681, while Americans had 4,818, according to tables 11 and 12. According to 

the total number of citations by country, the USA has the most (29,240, followed by China 

with 23,820). Moreover, India, Germany, South Korea had third to five ranking in the 

author's country of affiliation (2087, 1980, 1687). Fig. 21 shows the five countries with the 

most scientific production. Again, China and the USA has the core highway  in collaboration 

(Figure 22).  
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Table 11. The author's country of affiliation 

Region Freq 

CHINA 8695 

USA 4818 

INDIA 2087 

GERMANY 1980 

SOUTH KOREA 1687 

UK 1590 

JAPAN 1571 

FRANCE 977 

ITALY 864 

CANADA 774 

BRAZIL 715 

RUSSIA 558 

SPAIN 538 

IRAN 532 

SWEDEN 374 

TURKEY 350 

AUSTRALIA 342 

POLAND 334 

PORTUGAL 328 

NETHERLANDS 273 
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Figure 20. The author's country of affiliation 

Table 12. Most cite countries. 

Country Total Citations 

USA 29240 

CHINA 23820 

INDIA 8949 

UNITED KINGDOM 8273 

GERMANY 5882 

JAPAN 5477 

KOREA 4855 

ITALY 4384 

FRANCE 3821 

CANADA 3576 

IRAN 1759 

SPAIN 1750 

SWEDEN 1706 

TURKEY 1681 
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BRAZIL 1652 

AUSTRALIA 1585 

PORTUGAL 1526 

POLAND 1050 

NETHERLANDS 1019 

FINLAND 874 

 

 

 

Figure 21. Most cited countries. 
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Figure 22. Countries collaboration 

2.15 MOST CITED DOCUMENT 

According to table 13 the greatest citation (793) has been recorded by TUTT LW 

which is published in Nature journal in 1992. Later, GARNETT EC and LI D are cited as the 

most influence document by 767 and 756, respectively. On the other hand, WELD J (6791), 

J MATER PROCESS TECH (5947), MAT SCI ENG A-STRUCT (5928) are the maximum 

cited sources (Table 16). However, INTERNATIONAL JOURNAL OF ADVANCED 

MANUFACTURING TECHNOLOGY, JOURNAL OF MATERIALS PROCESSING 

TECHNOLOGY, SCIENCE AND TECHNOLOGY OF WELDING AND JOINING are the 

most Source impact (Table 13-15 and Figure 23). 
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Table 13. Most cited document 

Paper 
Total 

Citations 

TUTT LW, 1992, NATURE 793 

GARNETT EC, 2012, NAT MATER 767 

LI D, 2009, ACCOUNTS CHEM RES 756 

MACWAN DP, 2011, J MATER SCI 491 

BARCELOUX DG, 1999, J TOXICOL -CLIN 

TOXICOL 
390 

RAI R, 2011, SCI TECHNOL WELD JOIN 374 

BAGAVATHIAPPAN S, 2013, INFRARED 

PHYS TECHNOL 
374 

WITHERS PJ, 2007, REP PROG PHYS 366 

ROY DP, 2010, REMOTE SENS ENVIRON 350 

BRICKSTAD B, 1998, INT J PRESSURE 

VESSELS PIP 
313 

SINGH K, 2011, CRIT REV ENVIRON SCI 

TECHNOL 
290 

BUSSU G, 2003, INT J FATIGUE 287 

HUANG JX, 2006, PURE APPL CHEM 280 

ZHANG D, 2006, MATER SCI ENG B-SOLID 

STATE MATER ADV TECHNOL 
274 

ALLEYNE DN, 1992, NDT E INT 270 

DONG P, 2001, INT J FATIGUE 268 

WROBLICKY GJ, 1998, WATER RESOUR 

RES 
265 

LIU F, 1996, IEEE TRANS PATTERN ANAL 

MACH INTELL 
259 
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MOCZO P, 2002, BULL SEISMOL SOC 

AMER 
259 

TONG T, 2007, IEEE TRANS COMPON 

PACKAGING TECHNOL 
252 

 

 

Table 14. Most cited sources 

Sources Articles 

WELD J 6791 

J MATER PROCESS TECH 5947 

MAT SCI ENG A-STRUCT 5928 

MATER DESIGN 4996 

INT J ADV MANUF TECH 4090 

SCI TECHNOL WELD JOI 3861 

METALL MATER TRANS A 2316 

INT J FATIGUE 2155 

ACTA MATER 2069 

NDT&E INT 1990 

CORROS SCI 1877 

SCRIPTA MATER 1852 

J PHYS D APPL PHYS 1543 

THESIS 1213 

WELD WORLD 1199 

J APPL PHYS 1162 

J MATER SCI 1119 

MEAS SCI TECHNOL 1117 

J MANUF PROCESS 1063 

MATER CHARACT 1020 
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Table 15. Source impact 

Source h_index TC NP PY_start 

INTERNATIONAL JOURNAL OF ADVANCED 

MANUFACTURING TECHNOLOGY 
34 4639 354 1997 

JOURNAL OF MATERIALS PROCESSING 

TECHNOLOGY 
38 5820 256 1993 

SCIENCE AND TECHNOLOGY OF WELDING 

AND JOINING 
28 3645 213 1997 

WELDING JOURNAL 30 3157 204 1989 

MATERIALS & DESIGN 43 5257 158 2003 

MATERIALS SCIENCE AND ENGINEERING 

A-STRUCTURAL MATERIALS PROPERTIES 

MICROSTRUCTURE AND PROCESSING 

38 4780 150 1991 

JOURNAL OF MANUFACTURING 

PROCESSES 
18 1332 138 2013 

WELDING IN THE WORLD 12 648 129 2009 

INSIGHT 11 575 114 1994 

JOURNAL OF LASER APPLICATIONS 16 799 91 1994 

NDT \& E INTERNATIONAL 31 2527 88 1991 

JOURNAL OF MATERIALS ENGINEERING 

AND PERFORMANCE 
13 578 87 1993 

METALLURGICAL AND MATERIALS 

TRANSACTIONS A-PHYSICAL 

METALLURGY AND MATERIALS SCIENCE 

19 1268 80 1996 

RUSSIAN JOURNAL OF NONDESTRUCTIVE 

TESTING 
5 104 77 1992 
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INTERNATIONAL JOURNAL OF FATIGUE 25 2078 71 1991 

OPTICS AND LASER TECHNOLOGY 19 1052 71 1999 

SENSORS 13 605 71 2008 

MEASUREMENT SCIENCE AND 

TECHNOLOGY 
23 1275 70 1990 

INTERNATIONAL JOURNAL OF PRESSURE 

VESSELS AND PIPING 
15 1214 67 1989 

METALS 7 157 65 2016 

 

 

 

 

Figure 23. The trend of Journal source growth from 1989 to 2021 
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2.16 MOST FREQUENT WORDS 

Keyword analysis in data science is a method of analyzing the keywords or search 

phrases that bring researchers through organic and paid search. As such, keyword analysis is 

the starting point and cornerstone of search marketing campaigns [175]. Thus, Keyword 

analysis has been an important research theme in bibliometrics. Here, we investigated both 

keyword frequency and keyword co-occurrences. Table 16 shows the most relevant 

keywords related to research. Two author keywords were relevant: “Weld” with 15% (1,123) 

and “Microstructure” with 7% (490). Actually, these words consist the material 

characterization in weld region is the most critical matter in welding technologies. Also, 

friction stir welding and laser welding is the most frequent word between welding techniques 

(Figure 24). Interestingly, based on the Figure 24, weld investigation was decreased from 

2017 to 2020 but microstructure analysis increasing sharply without any fluctuation (Figure 

25). Moreover, image processing is a common method regarding damage detection and real 

time monitoring of welding.  

Table 16. Most frequent words 

Words Occurrences 

Weld 1123 

Microstructure 490 

Friction_stir_weld 438 

Laser_weld 414 

Mechanical_property 276 

Image_processing 250 

Residual_stress 184 

Stainless_steel 183 

Fatigue 165 

Weld_joint 163 

Laser 150 
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Seam_tracking 148 

Steel 142 

Aluminum_alloy 140 

Monitoring 134 

Digital_image_correlation 124 

Corrosion 118 

Resistance_spot_weld 115 

Modeling 104 

Sensor 101 

Weld_defect 101 

 

Figure 24. Key word percentage 

Figure 25 depicts the annual growth in occurrences of specific terms related to welding within 

the scientific literature from 1990 to 2020. This visualization highlights significant trends; 

for example, the term "weld" exhibits robust exponential growth, indicating an increasing 

interest and ongoing research in the general field of welding. Terms such as "microstructure" 

and "friction_stir_weld" also show notable growth, suggesting a heightened focus on the 

study of welds' microstructural characteristics and the friction stir welding technique. Other 
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keywords like "mechanical_properties", "laser_weld", and "image_processing_weld_joint" 

reveal a rising interest aligned with technological advances and the deepening of knowledge 

in these particular subdomains. Finally, terms such as "residual_stress" and "stainless_steel" 

are also represented, although their growth is more moderate, reflecting their sustained 

importance in welding studies. This bibliometric analysis provides valuable insights into the 

evolution of research interests and could serve as a guide for future work in the field of 

welding. 

 

Figure 25. The word growth from 1990 to 2020 

Figure 26 displays trending topics in welding-related scientific literature from 1996 to 2020, 

illustrating the logarithmic frequency of key terms over time. It captures the rise of subjects 

like "neural_network", "machine_learning", and "deep_learning", indicating a growing 

incorporation of artificial intelligence in the field of welding. Specific technical welding 

terms such as "laser_weld", "friction_stir_weld", and "weld_joint" also show an increased 

frequency, underscoring advancements and sustained interest in innovative welding methods. 

Additionally, focus on more specialized aspects like "additive_manufacturing" and 

"laser_powder_bed_fusion" unveils the expansion of research into new welding applications. 

Terms like "image_processing", "sensor", and "monitoring", on a steady incline, reflect a 

shift toward more sophisticated and automated quality control methods. This figure suggests 
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that the welding sector is being shaped by significant technological advances and is moving 

towards smarter and more interconnected manufacturing practices. 

 

 

Figure 26. Trend Topics from 1996 to 2020 

According to Figure 27, regarding welding technique friction stir welding is mostly analysis 

for steel and microstructure. Interestingly, residual stress has been investigated during 2010-

2016 and there is a coloration relation between microstructure analysis and residual stress. 

Moreover, image processing method is considered in optimization methods. Furthermore, 

resistance spot welding and laser welding process are considered as automation and smart 

welding system. 
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Figure 27. Key words connection 

Conceptual Stricture map is drawn in Figure 28 which is aims at representing the conceptual 

structure of a framework using co-occurrence of words. The words can be replaced by 

authors’ keywords, keywords plus, and terms extracted from titles or abstracts. As shown in 

Figure 29, there is three Clusters in this regard. First, technical concept and process-based 

analysis (red) and control-based concept (blue) have the most keywords, which means the 

attention of the researchers to the subject matter of the study. Again, development degree of 

topics shows image processing and machine vision analysis are the most interesting topics 

and stain less steel and corrosion have the greatest relevant degree. 
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Figure 28. Conceptual Stricture map 

 

 

Figure 29. Development degree of topics 
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Figure 30 shows that author keywords can be separated into six clusters, each of which is 

identified by a different color. Figure 30 is a keyword occurrence map which visualizes the 

frequency and the relationship between various terms within the field of welding research. 

In these maps, the axes typically do not represent traditional X and Y values like in scatter 

plots but are rather a spatial representation of the co-occurrence or relatedness of terms in the 

literature; terms that often appear together in the literature are placed closer to each other. 

Each cluster contained nodes (circles) with the same color and included links or relationships 

(lines) between nodes. The first cluster (brown) included “Welding” as the dominant author 

keyword, plus other keywords, including “metal,”. The two most important keywords in the 

second cluster (blue) were “welding defect,” and “non-destructive-testing,” This cluster also 

included many other keywords, such as “structural health monitoring, “ultrasonic,” 

“radiography,” and “defect detection,” and “signal”. The third cluster (green) included some 

important keywords, “friction stir welding” and “microstructure”, and others such as 

“property,” “fracture,” “texture,” “digital image correlation,” and “information 

management.” “laser welding,” “neural network,” “monitoring,” “machine vision” “sensor” 

“seam tracking” “modeling” and “robotic” are examples of keywords in the fourth cluster 

(red). The fifth cluster (yellow) consisted of three main keywords: “stainless steel,” 

“corrosion,” “crack” and “sensitization.” The sixth cluster (purple) contained “residual 

stress,” “sensitivity analysis,” “fatigue,” and “numerical simulation.” The seventh cluster 

(orange) included three keywords: “Taguchi,” “Signal to noise ratio,” and “Optimization.”  
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Figure 30. Keyword’s occurrences 

VOS viewer software was used to perform three co-citations network analyses, each with a 

different unit of analysis: cited references, cited sources, and cited authors. Cited references 

can be either cited sources or cited authors. Figure 31 is an author co-citation network, a 

visual representation where the positioning of authors is based on how frequently their works 

are cited together in the scientific literature. In such networks: 

 

• Proximity: Authors frequently cited together are positioned closer, suggesting they 

work in related fields or on similar topics. 

• Clusters: Authors are often grouped into clusters representing subfields or specialties 

within a broader research field. Clusters can be identified by spatial proximity and 

often by color coding. 
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• Connecting lines: The lines connecting authors represent co-citations. Thicker or 

more numerous lines might indicate higher co-citation levels, signifying a closer 

relationship or closely related work. 

• Node size: The size of the nodes (points representing authors) may indicate the total 

frequency of citations, with larger nodes representing authors who are cited more 

frequently. 

The placement of elements is determined by a network layout algorithm designed to optimize 

readability, minimize line overlap, and highlight natural clustering structures from the co-

citation data. For precise interpretation, one should refer to the legend or methodology section 

of the source document for details on the placement algorithm and the significance of 

different colors and sizes. 

Based on Figure 31 and Figure 32, seven clusters were identified for WI research with respect 

to co-citation analysis based on cited sources. The green cluster included dense sources, such 

as Weld Journal, Journal of Manufacturing Science and Engineering, and Measurement 

Science and Technology. The second cluster (red) included four main sources: Materials 

Science and Engineering: R, Metallurgical and Materials Transactions B. The third cluster 

(yellow) contained three sources: Measurement Science and Technology, Journal of 

Materials Processing Technology, Science and Technology of Welding and Joining, and 

Applied Optics. Besides, the next cluster (purple) included four main sources: Weld journal, 

NDT & E International, Scientific Reports, and Expert Systems. The last cluster (blue) 

included Journal of Materials Processing Technology, Journal of Intelligent & Robotic 

Systems.  
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Figure 31. Authors co-citation 

 
Figure 32. References co-citation 
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2.17 CONCLUDING REMARKS 

The aim of this paper was to assess the conceptual and the intellectual structure of 

emerging industry 4.0 methods in welding research. To do that, we used bibliometric 

analysis, specifically we analysed 11,937 documents from two database WoS and Scopus 

between 1986 and 2021. This analysis showed different results as follows.  

• First, despite some declining, the annual publication of sensors in welding technology 

is growing since 1986 with 17% as an average growth. This result illustrates that 

scholar’s interest (e.g., Benakis et al. [46]; Febriani et al. [43]; Mishra et al. [44]) 

highly for incorporating the smart technology in the welding area. 

• Second, our research showed that the most authors’ affiliation was Shanghai Jiao 

Tong University (578 cited references). This result is consistent with our finding 

about the most countries production. Indeed, we found China as the most productive 

country (8 695 author's country of affiliation) followed by the USA with only 4 818 

author's countries of affiliation. In addition, our study reveled that Zhang Y was the 

most productive author by 140 articles (number of publications = 140; h-index =18) 

followed respectively by Zhang YM (number of publications = 133; h-index =30) and 

Chen S (number of publications = 132; h-index =24). Finally, the co-citation analysis 

based on countries collaboration showed that the big cluster is represented by China. 

Consequently, we can argue that this country and their scholars influenced greatly on 

the progression of the real-time monitoring of welding technology. 

• Third, the bibliometric analysis illustrates that the Weld Journal (TC = 6 791) is the 

most influenced source in the real-time monitoring of welding technology (see Table 

9). It is followed respectively Journal of Materials Processing Technology (TC = 5 

947), and Materials Science and Engineering: A (TC = 5 982).  Nevertheless, 

regarding the productivity, the most productive source in terms of the number of 

papers is the International Journal of Advanced Manufacturing Technology (354 

papers). It is followed correspondingly by the Journal of Materials Processing 
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Technology (256 papers), and the Science and Technology of Welding and Joining 

(213 papers). 

The conceptual structure map performed with R software highlighted that there are some 

emerging themes in the real-time monitoring of welding technology as image processing, 

weld defect and machine vision. There are several basic and transversal themes such as laser 

weld, digital image, weld joint, neural network and sensor. In addition, residual stress has 

been investigated during 2010-2016 and there is a coloration relation between microstructure 

analysis and residual stress. These results were consistent with the keyword’s occurrences 

performed in VOS viewer software. Indeed, the welding cluster, the most other big cluster 

were the welding defect (blue cluster), the friction stir welding as well as the microstructure 

(green clusters), and the laser welding as well as the image processing (red clusters). Finally, 

the literature authors co-citation highlighted many small clusters in the real-time monitoring 

of welding technology field. So, there are not dominant scholars’ streams in this area. 

Consequently, we can argue that this field is not theoretically in a mature stage, but it in the 

growth stage. Indeed, this later also showed there are many small references cluster. Hence, 

we can also claim that no dominant references shape the research in the real-time monitoring 

of welding technology field. 

 

2.18 LIMITATIONS AND FUTURE RESEARCH 

This research had some limitations. First, the authors considered two databases which 

may probably limit the number of the papers analyzed. This limitation provides the 

opportunity as a future work for using other databases to amend this research. Second, the 

keywords used to retrieve papers from WoS and Scopus databases can be criticized as limited 

and not broader. Finally, other pertinent analysis as bibliography coupling and longitudinal 

period analysis may be performed. 
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3.1 RÉSUMÉ EN FRANÇAIS DU TROISIÈME ARTICLE 

Dans cette étude, la cartographie des déformations (déformation ou gauchissement) des 

flans soudés au laser en aluminium est étudiée au cours d'un processus de formage 

automatisé. La nouvelle approche d'inspection automatisée et en temps réel introduite dans 

cette étude contribue à une nette amélioration de la qualité du produit final en permettant une 

détection précise et instantanée des défauts, tels que la porosité, pendant le processus de 

soudage. Cette identification précoce des imperfections facilite des corrections immédiates, 

évitant la propagation de défauts et assurant une qualité supérieure du produit. Parallèlement, 

cette méthode réduit significativement les délais d'exécution en éliminant le besoin 

d'inspections post-production longues et laborieuses, permettant ainsi une progression plus 

rapide des pièces à travers la chaîne de production. Enfin, l'augmentation de la cadence de 

fabrication découle de la capacité de cette approche à intégrer et à analyser en continu les 

données du processus de soudage, optimisant les paramètres de soudage en temps réel pour 
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une efficacité accrue. En outre, la réduction des coûts du produit est réalisée grâce à la 

diminution des rebuts et des retouches nécessaires, rendant le processus de fabrication plus 

économique et efficient. En conséquence, les distorsions de la zone de la bride sont détectées 

dans la plage de ±3 mm, ce qui est considéré comme une grande déviation pour les 

assemblages en aluminium. L’admissibilité des distorsions inférieures à 3 mm dépendrait 

strictement des critères de performance et des normes de qualité définis pour le produit final. 

Pour des assemblages où la précision est critique, telles que les composants aérospatiaux ou 

ceux impliqués dans des systèmes de sécurité, toute distorsion, même minime, peut être jugée 

inacceptable. En revanche, pour des applications où les exigences sont moins rigoureuses, 

une tolérance plus grande pourrait être permise. Il est impératif d'évaluer cette tolérance dans 

le cadre des spécifications de conception et des limites fonctionnelles imposées par 

l'utilisation prévue de l'assemblage en aluminium. Les résultats du modèle proposé sont 

prometteurs pour se conformer à une évaluation de la sensibilité à la fissuration (CS) dans la 

structure de soudage en augmentant la distorsion nuisible, principalement en empêchant le 

traitement des pièces défectueuses dans la chaîne de valeur et en particulier dans les stations 

de goulot d'étranglement sont bien estimés. La sensibilité à la fissuration au sein des 

structures soudées est évaluée à l'aide d'analyses métallurgiques fines, qui permettent de 

détecter et de mesurer avec précision la progression des fissures au microscope. Le modèle 

avancé par la présente étude offre des perspectives optimistes pour répondre aux critères de 

ces évaluations, en identifiant proactivement les pièces présentant des distorsions 

préjudiciables susceptibles d'engendrer des fissures. Cela est particulièrement pertinent dans 

les segments critiques du processus de production, tels que les points de restriction où les 

goulots d'étranglement peuvent survenir. Ainsi, le modèle contribue à une gestion plus 

efficace du risque de fissuration, en évitant la progression de composants défectueux dans la 

chaîne de valeur. En somme, cette méthode d'inspection offre une solution complète pour 

améliorer la qualité, réduire les délais d'exécution et augmenter la cadence de fabrication, 

alignée avec les objectifs de productivité et d'efficacité de l'Industrie 4.0. 
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3.2 CONTRIBUTIONS 

 Les contributions scientifiques d'Ahmad Aminzadeh à l'article sur la numérisation 3D 

en temps réel des blanks soudés au laser en aluminium 5052-H32 peuvent être résumées de 

la manière suivante :  

Recherche fondamentale : Ahmad Aminzadeh a conçu et exécuté des études 

expérimentales pour comprendre l'impact des paramètres de soudage sur les 

caractéristiques géométriques des blanks soudés. 

Développement de la méthodologie : Il a développé la méthodologie pour la 

numérisation 3D en temps réel, incluant la sélection d'équipements adaptés et la 

définition des protocoles de capture des données tridimensionnelles. 

Création d'analyse de données: Ahmad Aminzadeh a été à l'avant-garde de l'analyse 

des données collectées, utilisant des logiciels de traitement d'images pour modéliser la 

géométrie des soudures et identifier les défauts. 

Contributions à la surveillance en temps réel: Il a intégré des outils de surveillance 

dans le processus de soudage, permettant la détection et la correction immédiates des 

problèmes de qualité. 

Conception des supports visuels: Ahmad Aminzadeh a produit des graphiques et des 

tableaux pour visualiser les données et les résultats, facilitant ainsi la compréhension 

et la communication des découvertes. 

Collaboration et révision: Tout en collaborant avec Sasan Sattarpanah Karganroudi, 

Noureddine Barka, et Abderrazak El Ouafi, Ahmad Aminzadeh a joué un rôle de 

premier plan dans la direction de la recherche et la rédaction de l'article. 

Les contributions d'Ahmad Aminzadeh, qui s'étendent de la conception initiale de la 

recherche à la production de la documentation finale, démontrent un engagement profond et 
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une expertise dans le domaine du soudage assisté par numérisation 3D et caractérisation en 

temps réel. 

3.3 TITRE DU TROISIÈME ARTICLE 

A real-time 3D scanning of aluminum 5052-H32 laser welded blanks; geometrical and 

welding characterization 

3.4 ABSTRACT 

In this study, distortion mapping (deformation or warping) of aluminum Laser Welded 

Blanks (LWBs) is investigated during an automated forming process. Here, a novel approach 

of automated and real-time inspection is presented which enhances final product quality, 

reduces lead time, and increases manufacturing cadence while reducing product cost. As a 

result, flange zone distortions are detected in the range of ±3 mm which considers as a large 

deviation for aluminum assemblies. Promising the proposed model results to comply with an 

evaluation of Cracking Susceptibility (CS) in the welding structure by increasing the harmful 

distortion, mainly by preventing the processing of defective parts in the value chain and 

especially in bottleneck stations are well estimated. 

3.5 NOMENCLATURE 

CS Cracking Susceptibility 

VCFSW Vertical compensation friction stir welding 

YLS Yterbium Fiber Lasers 

3LS 3D Laser Scanning Inspection 

CL Cloud Mapping  
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DOE  Design of Experiences  

DIC Digital Image Correlation 

SEM Scanning Electron Microscope 

LMP Laser Material Processing 

AA Aluminum Alloys 

TWBs Tailor Welded Blanks  

LWBs  Laser welded Blanks  

CAD Computer Aided Design 

ANOVA Analysis of Variance 

DMAIC Design Measure Analyze Improve Control 

CAM Computer Aided Manufacturing 

CAI   Computer Aided Inspection 

QA Quality Assurance 

P Power 

V Welding Speed 

A Amplitude 

 

3.6 INTRODUCTION  

Recently, laser welding is considered a very promising process to manufacture and 

assemble a wide range of metal structures [176], marine and automotive industries [16,177], 
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and railway industries [178]. On the other hand, welding distortion is one of the major factors 

affecting geometrical and dimensional defects in LWB structures. More recently, Abu–Okail 

et. al manufactured a TWBs structure using a vertical compensation friction stir welding 

(VCFSW) method [179]. Although image processing is a very useful inspection tool, the 

difficulties in contrast manipulation involve considerable errors that outstand point cloud 

mapping as a powerful alternative. To this end, computer-aided inspection (CAI) methods 

based on point cloud metrology of industrial parts are developed for aluminum sheet-metal 

parts [180,181]. The deflection of panels reduces buckling and load-carrying capacity of 

sheet-metal welded structures where distortion and residual stress are formed as unavoidable 

consequences [20,182]. Akyel et al. performed strain distribution using digital image 

correlation (DIC) method in order to mapping the reduction of distortion in dissimilar 

material combinations via laser beam welding [183]. the literature review confirms that no 

research works have thoroughly proposed an automated real-time inspection of aluminum 

LWBs by point cloud mapping. In the current study, distortion of LWBs aluminum alloy 

(5052-H32) is analyzed using 3D laser scanning to exploit distortion contribution plots to 

analyze spring back and wrinkling in forming processes. This real-time inspection technique 

automatically rejects parts that have a negative effect on the conformity of parts and labor 

capacity of the machine and value chain in automobile industries. By doing so, not only 

manufacturing wastes (defects, overproduction, waiting, non-utilization, handling, inventory, 

motion, excess processing, and set up time) are reduced but also the preparatory and 

subsidiary times are shortened and the correction of the tool adjustment, set up and assembly 

time in the operating position on the machine is controlled. 

 

3.7 EXPERIMENTAL SET-UP AND COMPUTER-AIDED INSPECTION 

ANALYSIS 

Regarding the experimental investigation, two half of Al 5052-H32 with 1.2 mm 

thickness is cut in rectangle dimension (150 mm × 125 mm). Then, pre-preparation is done 

to clean contaminates and oxides alongside the joint zone. Besides, the mechanical properties 
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and chemical composition of Al 5052-H32 are listed in table 17. A robotized laser welding 

(FANUC M-710ic), using IPG Photonics YLS-3000 (Ytterbium Fiber Lasers) with a 

wavelength of 1070 nm and focal diameter of 0.45 mm is used and then subjected to forming 

process. Finally, the geometrical information of fixture alignment, welded workpiece, and 

forming process via a 3D seam extraction algorithm is performed based on point cloud 

segmentation. The schematic method and concept of this study are presented in Figure 33 

based on six sigma-DMAIC (Define, Measure, Analyze, Improve, Control). The 

measurement flowchart represents those sheets are fixed by a special welding jig and fixture 

then computer-aided inspection (CAI) using 3D scanning is applied to validate the 

alignments and improve measurement precision. Additionally, other fundamental setups such 

as laser power, welding speed, and amplitude are adjusted on 1800 (W), 30 (mm/s) and 1.125 

(mm), respectively. Then, LWB is subjected to a forming process with constant setup 

parameters such as speed (1.5 mm/sec), blank holder force (20 pounds), and dry lubrication 

condition. A load cell is also used to monitor forming force during the process. In order to 

achieve reliable distortion measurement results, the blanks are formed at a critical rupture 

position. Finally, distortion and strain analysis are investigated based on CAI using point 

cloud reconstruction in GOMTM software.  
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Figure 33. Schematic method presentation and concept of distortion measurement based on 

CAI. 

Table 17. Chemical composition (% wt) and Mechanical properties of AA 5052-H32 [184] 

Chemical 

compositio

n 

Cr Cu Fe Mg Mn Si 
Z

n 
Al 

% wt  
0.15 - 

0.35 
0.1 0.4 

2.2 - 

2.8 
0.1 0.25 

0.

1 

Balanc

e 

Mechanica

l 

properties 

Ultimat

e 

strengt

h 

(MPa) 

Proof 

strengt

h 

(MPa) 

Elongatio

n (%) 

Brinell 

hardnes

s  

Poisson'

s ratio 

Modulu

s of 

Elasticit

y (GPa) 

  

Value 230 195 12 60 0.33 70.3   
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3.8 RESULTS AND DISCUSSION  

Regarding the evaluation of Cracking Susceptibility (CS) in the welding structure, 

scanning electron microscope (SEM) image (Figure 34-a) examination shows hot cracking 

channels. On the other hand, an optical microscope (Figure 34-b) detected small micro 

porosities at the weld seam region, even though not large enough to be critical. Due to the 

presence of Mg in aluminum alloys, its sensitive to solidification cracking during the welding 

process [185]. Also, due to the high conductivity and well reflection surface, the molten metal 

reflects much of the energy of the light beam whereby keyhole instability has affected the 

quality of the weld zone. Interestingly, due to the increasing of the work hardening micro-

hardness is improved by the development of the intensification material properties [186]. 

 
(a)               (b) 

Figure 34. Microstructural analysis of AL-LWBs a) optical microscope b) SEM image. 

Here, a real-time CAI method based on points cloud of 3D laser scanner is applied as a novel 

approach to define global distortion in LWBs. These point clouds can also extrapolate and 

develop a reconstruction model [187]. From a welding perspective, thermal conductivity in 

aluminum alloys and cooling rate cycle in laser processes are the most important reasons for 

catastrophic failure due to residual stress produced through welded parts. According to 

Figure 35-a and b, distortions in welding appear in the range of 1 mm. Due to the plate 
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geometry, distortions take place mostly vertically and transversely along the profile. The 

largest distortions can be observed on welding seam areas at the start point of welding, which 

is reasonable due to the great temperature difference between the plate and the welding zone. 

In addition, suitable welding power with good penetration shows a strong correlation with 

the level of joint quality and the magnitude of distortions through the path line. Regarding 

aluminum productions in automotive industries, almost 1 mm distortion is considered as out 

of acceptable tolerances in lean manufacturing [188]. However, these out tolerances have 

occurred in a small zone at welding start which will be trimmed out following to forming 

step. There is also a correlation between distortion and weld line movement in LWB which 

is a major problem in assembly units. Thus, the results suggest that welding distortions may 

be alleviated with strategic design of structures or optimized process parameters. In LWBs, 

due to generating different stress distribution, cooling rate, and material properties in three 

different zone (Base metal 1, weld zone and Base metal 2), spring back and wrinkling are 

challenging. In addition, these two phenomena are trigging not only for rupture but also weld 

line movement in deep drawing process. Generally, a material with a greater elastic modulus 

will react less spring back than a material with a lower elastic modulus [189]. Here, a straight 

welding path line is projected to define maximum distortion through LWBs part based on 

point cloud which is extracted from high-resolution 3D scanning. As depicted in profile 

distortion of LWB (Figure 35-c), spring back is occurred in the flange zone (R× θ =28.74 

mm × θ) [190]. According to the distortion contour (Figure 35-d), in the flange zone 

distortions changes from -3 mm to +2.95 mm which considers a large deviation for aluminum 

alloy. Here, using an automated real-time CAI reject out of tolerance parts improves tooling 

processes and reduce significantly manufacturing costs. Besides, due to arbitrary distortions 

(almost 1 mm) from the edge of plate to 30 mm through plate generate a wrinkling 

phenomenon. In fact, wrinkling is usually determined by peculiar and non-uniform wavy 

shapes throughout the sheet which waves quantities depends on material properties and 

process factors such as geometrical features, forming forces, blank holder force, die cavity 

depth and radius, punch speed, and lubrication condition. Recently, theoretical models and 

numerical analysis are proposed to define and predict wrinkling phenomena [191]. However, 
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these models are complex and time-consuming which are less accurate and without any 

online quality check. In this novel automation inspection approach, wrinkling and spring 

back are selected as manufacturing criteria in order to find the optimum objective. 

Furthermore, our proposed approach is a trigging into smart and connected manufacturing in 

sheet metal products and it is the first step towards intelligent production in manufacturing 

sectors.  

  
(a) (b) 

 

 

 
(c) (d) 

Figure 35. LWBs distortion: a,b) after laser welding c,d) after forming process. 

3.9 CONCLUSIONS 

An automated real-time CAI method and distortion analyses of aluminum LWBs 

using a 3D laser scanner are presented in this paper along with experimental validation. The 
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process is followed by an automatic forming and loud monitoring to define the optimum 

production in a controlled condition. Analyzing distortions after forming process, the 

proposed method identified defects on flange area in the range of ±3 mm, which enables 

rejecting parts out of tolerances before succeeding to the next step in the value chain. In that 

case, the formability of LWBs depends on hot cracking and porosities in the HAZ and 

microstructure of the weld region. Although results are promising, future research can 

perform tests on LWBs and make a cloud computing model based on intelligent decision 

techniques using artificial intelligence to pave the way towards digital factories in the 

industry 4.0 era. 
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4.1 RÉSUMÉ EN FRANÇAIS DU QUATRIÈME ARTICLE 

Ces dernières années, le soudage au laser est devenu de plus en plus populaire dans 

l'industrie manufacturière en raison de ses avantages, notamment une zone affectée par la 

chaleur étroite, de faibles niveaux de distorsion, la possibilité de traitement à distance et des 

vitesses de soudage élevées par rapport aux techniques conventionnelles de soudage à l'arc 

électrique. Dans l'industrie automobile, le besoin de soudage de joints superposés, en 

particulier pour l'assemblage des châssis, est devenu de plus en plus important. La détection 

et le contrôle de la porosité interne dans le soudage au laser des alliages d'aluminium ont fait 

l'objet d'une attention particulière. Pour aider les utilisateurs de laser à optimiser le processus 

de soudage, cet article présente une méthodologie expérimentale suivie d'une analyse 

phénoménologique de la qualité des joints soudés par recouvrement. L'étude se concentre sur 

le soudage au laser de deux configurations différentes d'alliages d'aluminium (AA 6061-T6 

de 1,6 mm d'épaisseur et AA 6061-T6 de 2 mm d'épaisseur) en utilisant trois stratégies de 

soudage (système de soudage laser à distance ScanLab, tête laser Trumpf D70 et tête 

oscillante Precitec YW52) afin d'évaluer les variantes à laser unique et multiple pour 
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l'ajustement des paramètres du processus. En outre, l'article traite de l'utilisation de la 

technologie des rayons X comme méthode de contrôle hors ligne pour la reconnaissance de 

la porosité, et analyse la caractérisation du faisceau laser et la forme du profil du faisceau 

pour calculer la distribution du faisceau. Une analyse statistique de toutes les méthodes est 

ensuite réalisée, ainsi qu'une analyse de régression. Ces résultats fournissent des indications 

précieuses sur l'intégration de la technologie de soudage au laser dans les secteurs de 

l'automobile et du transport de surface. L'analyse des résultats indique que lorsque la taille 

du spot diminue, la taille réelle du spot change plus brusquement avec l'augmentation de la 

position Z, alors qu'avec une taille de spot plus importante, la taille du faisceau reste stable 

jusqu'à (+/-) 20-30 mm dans la position Z en raison de la grande lentille. La porosité est 

principalement due à une taille de spot trop petite (en l'absence d'oscillation ; ≤0,4 mm) ou à 

une vitesse de déplacement trop faible (≤4,0-4,5 m/min). En revanche, si la taille du point est 

trop importante, une fissuration à chaud peut se produire lors du soudage laser autogène. 

4.2 CONTRIBUTIONS 

Dans le quatrième article intitulé "Experimental Analysis of Overlap Fiber Laser Welding 

for Aluminum Alloys: Porosity Recognition and Quality Inspection", les contributions 

spécifiques et détaillées d'Ahmad Aminzadeh comprennent : 

Conception et réalisation des expériences : Ahmad Aminzadeh a joué un rôle crucial 

dans la conception des expériences, y compris la sélection des alliages d'aluminium 

pour le soudage au laser à fibre et la définition des paramètres de soudage. Il a 

également réalisé les expériences, en surveillant attentivement les processus pour 

garantir la collecte de données précises. 

Développement de la méthodologie de surveillance en temps réel : Il a développé 

une méthodologie innovante pour la surveillance en temps réel de la porosité dans les 

soudures au laser, intégrant des techniques avancées d'imagerie et d'analyse de données 

pour identifier et quantifier les défauts. 
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Analyse des données et reconnaissance de la porosité : Ahmad Aminzadeh a utilisé 

des méthodes d'apprentissage automatique pour analyser les données collectées 

pendant le soudage, ce qui a permis d'identifier efficacement la présence de porosité 

dans les soudures et d'évaluer la qualité du soudage. 

Création de supports visuels : Il a été responsable de la génération de tous les 

tableaux, figures et graphiques qui illustrent les résultats de l'étude, permettant une 

compréhension claire et accessible des découvertes. 

Rédaction et révision de l'article : Ahmad Aminzadeh a pris l'initiative de la 

rédaction de l'article, en expliquant clairement la méthodologie, les résultats et les 

conclusions de l'étude. Il a également activement participé au processus de révision, 

intégrant les retours des coauteurs et des experts pour améliorer la qualité du 

manuscrit. 

Collaboration : Bien que la contribution de Noureddine Barka, Abderrazak El Ouafi, 

Fatemeh Mirakhorli et François Nadeau ait enrichi l'étude par des conseils et une 

expertise technique, c'est Ahmad Aminzadeh qui a dirigé les efforts de recherche, 

démontrant une expertise profonde dans l'analyse expérimentale du soudage laser des 

alliages d'aluminium et l'utilisation de l'intelligence artificielle pour l'inspection de la 

qualité. 

Ces contributions mettent en avant l'expertise d'Ahmad Aminzadeh dans la conduite 

d'analyses expérimentales complexes et son innovation dans l'application de l'apprentissage 

automatique pour améliorer la surveillance et la qualité du soudage laser des alliages 

d'aluminium. 

4.3 TITRE DU QUATRIÈME ARTICLE 

A comprehensive study on Porosity recognition of overlap aluminum laser welding; 

Experimental and Statistical Investigation 
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4.4 ABSTRACT 

In recent years, laser welding has become increasingly popular in the manufacturing 

industry due to its advantages, including a narrow heat affected zone, low levels of distortion, 

the possibility of remote processing, and high welding speeds compared to conventional 

electric arc welding techniques. In the automotive industry, the need for overlapped joint 

welding, particularly for chassis assembly, has become increasingly relevant. The internal 

porosity detection and control in laser welding of aluminum alloys has gained significant 

attention. To support laser users in optimizing the welding process, this paper presents an 

experimental methodology followed by a phenomenological analysis of the quality of 

overlapped welded joints. The study focuses on the laser welding of two different aluminum 

alloy configurations (1.6-mm-thick AA 6061-T6 and 2-mm-thick AA 6061-T6) using three 

welding strategies (ScanLab remote laser welding system, Trumpf D70 laser head, and 

Precitec YW52 wobbling head) to evaluate single and multiple laser variants for process 

parameter tuning. Additionally, the paper discusses the use of X-ray technology as an offline 

monitoring method for porosity recognition and analyzes laser beam characterization and 

beam profile shape to calculate beam distribution. Then, statistical analysis of all methods is 

conducted, and regression analysis is performed. These findings provide valuable insights 

into the integration of laser welding technology in the automotive and surface transportation 

industries. The analysis of results indicates that as the spot size decreases, the real spot size 

changes more abruptly with increasing Z position, whereas with a larger spot size, the beam 

size remains stable up to +/- 20-30 mm in Z position due to the large lens. Porosity is mainly 

caused by either a too small spot size (in the absence of wobbling; ≤0.4mm) or low travel 

speed (≤4.0-4.5m/min). On the other hand, if the spot size is too large, hot cracking can occur 

in autogenous laser welding. 
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4.5 NOMENCLATURE 

DOE  Design of Experiences  

LMP Laser Material Processing 

AA Aluminum Alloys 

ROC Receiver Operating Characteristic 

FPR False Positive Rate 

PMF Programmable Motorized Focusing 

SLJ Laser-Welded Single Lap Joints 

NDT Non-destructive methods 

CMOS Complementary metal oxide semiconductor 

ISO International Organization for 

Standardization 

ANOVA Analysis of Variance 

DMAIC Design Measure Analyze Improve Control 

CAM   Computer Aided Manufacturing 

CAI     Computer Aided Inspection 

QA Quality Assurance 

P Power 

V Welding Speed 
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A Amplitude 

CNN Convolutional Neural Network 

R2 R squared, coefficient of determination 

 

4.6 INTRODUCTION  

In the modern landscape of manufacturing, there exists a growing imperative to 

ensure the production of high-quality products without any defects, while also 

minimizing lead times and enhancing production rates. Particularly in the realm of 

assembly manufacturing, laser processes have attained a pivotal role in producing 

mechanical components that find application across a wide array of industries, including 

the automotive sector [192], aerospace industry [193], home appliance manufacturing 

[194], and even the food industry [195]. Moreover, the employment of metal 

manufacturing, specifically in the context of aluminum alloys, is considered 

indispensable across multiple industrial sectors due to the inherent characteristics of the 

fabricated components, such as mechanical strength, rigidity, and long-term durability. 

Laser welding emerges as a favorable technique for material joining, attributed to its 

elevated energy density and minimized heat-affected zone. Nonetheless, the presence of 

defects, including porosity, cracking, lack of fusion, and incomplete penetration, can 

compromise the integrity of the welded assemblies. To mitigate these challenges and 

maintain uniform quality, the implementation of real-time, process-level quality 

monitoring is imperative. The adoption of such a monitoring framework obviates the 

necessity for empirical parameter design and expensive post-process evaluations, thereby 

facilitating the streamlined optimization of process variables and the consequent 

reduction in associated expenditures. Moradi et al, examined the stability of weld surface 

quality in laser-arc hybrid welding of 4 mm thick steel, with high arc voltage and short 

laser-arc distances leading to destabilization. The design of experiment method's efficacy 
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for these applications was also evaluated, with high-speed imaging aiding in 

understanding the observed trends [196]. Moreover, S500MC steel, used widely in the 

automotive and agricultural sectors, was welded using both laser beam welding (LBW) 

and gas tungsten arc welding (GTAW) to compare their mechanical and metallurgical 

properties. While LBW produced a finer microstructure with a narrower fusion zone due 

to lower heat input, GTAW joints displayed superior mechanical properties compared to 

LBW joints [197]. The study uses Response Surface Methodology (RSM) to optimize 

bead geometry in CO2 laser butt-welding of Ti 6Al 4V, an alloy with applications in 

industries like aerospace and medical. By examining the relationship between welding 

parameters and process responses, the study identifies optimal welding conditions to 

enhance productivity and reduce costs, with validation showing model errors under 

12.5% [198]. Recently, Laser oscillating welding of 5A06 aluminum alloy using an S-

curve power distribution refines the grain structure, narrows the columnar region, and 

enhances mechanical properties, with a tensile strength increase of 35.3%. This method 

offers a novel approach for optimizing the performance of welded joints, yielding a 

tensile strength nearly equivalent to the base metal and demonstrating higher ductility 

[199]. Moreover, a porous high entropy alloy (HEA) coating on steel improved the 

wettability and spreadability during dissimilar laser joining of Al to steel, leading to 

enhanced joint strength and ductility. This novel method changes the fracture mode from 

brittle to ductile, offering a solution for strengthening challenging dissimilar 

combinations [200]. Also, using a Pd interlayer in NiTi-Ti6Al4V laser joints significantly 

reduced the formation of embrittling Ti2Ni intermetallic compounds, leading to joints 

with superior mechanical properties and superelastic behavior. The Pd-added joint's 

tensile strength and rupture strain more than doubled, reaching 520 MPa and 5.6%, 

respectively, demonstrating the potential for greater design flexibility in aerospace and 

biomedical applications [201]. The work of Dwivedi et al. [202] conducted a 

comprehensive review of the parameters involved in deep drawing and identified avenues 

for future research in this field. The results of the study demonstrated the successful 

production of aluminum alloy cups through this process. Previous studies have evaluated 
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the influence of key process parameters on the objective function through experimental 

investigations [203–207]. In light of the increasing demand for enhanced product quality 

and elevated production rates, there has been a growing interest in monitoring automated 

welding operations. The lack of monitoring in this process can result in undetected 

malfunctions, leading to significant financial consequences. The mechanism of defect 

formation during the melting process in welding has been the subject of interest among 

both researchers in the manufacturing sector and those in the fields of materials science 

and physics. An in-depth understanding of this mechanism is essential to achieving high-

quality results in laser welding. Moreover, aluminum possesses unique properties that 

make welding it more challenging compared to other metals. Laser Material Processing 

is a vital aspect of the Green New Deals and is considered a significant area of research 

in the field of manufacturing [208]. The utilization of laser welding technology has 

become ubiquitous in modern industrial production lines, providing high precision and 

fast welding capabilities [209]. However, the complexity of the laser welding process 

makes it challenging to perform quality control and defect analysis. To address these 

control issues, cognitive laser welding systems have been proposed and developed, which 

have demonstrated improved performance in defined workpieces after setup [210,211]. 

With the advancement of technology, automated welding systems have replaced many 

hand-welding operations, and welding methods are now trending towards personalized 

production methods utilizing next-generation welding systems [212]. Collection and 

sharing of welding information through big data is crucial for improving operations and 

evaluating the life-cycle of industrial supply chains [213]. The production of Laser 

Welded Blanks, by joining sheets of varying thicknesses, strengths, and coatings, offers 

the benefits of flexible designs, cost reduction, weight reduction, and increased strength 

[207,214]. The application of laser welding offers a myriad of advantages, encompassing 

heightened productivity, substantial welding penetration, and elevated welding speeds, 

resulting in superior welding outcomes compared to conventional welding techniques 

[215]. This stems from the potential for automation through the integration of artificial 

intelligence, data science, and machine learning techniques into the welding process. 
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Effective real-time monitoring technologies play a pivotal role in enhancing welding 

efficiency and ensuring product quality. Consequently, laser welding has found extensive 

utility across diverse industries, including automotive, aerospace, shipbuilding, railway, 

and electronics [56–59]. Fiber lasers, a well-established technology, have gained 

prominence in high-volume welding applications within both established and emerging 

markets. The growing adoption of fiber lasers is underpinned by factors such as increased 

production yields, enhanced design flexibility, and greater energy efficiency. The 

transition to intelligent manufacturing processes necessitates the acquisition of high-

quality real-time data. To enable decentralized decision-making, laser welding processes 

increasingly rely on technologies that serve as the 'eyes and ears' of the manufacturing 

operation. Fiber laser technology is renowned for its reliability, offering improved quality 

and automation capabilities when compared to other types of laser systems (Table 18) 

Table 18. A comparative analysis of characteristics among prominent high-power Industrial 

Lasers 

Characterization Fiber Laser Nd:YAG CO2 Disc Reference 

Wavelength 1.07 µm 1.06 µm 10.6 µm 1.03 µm [215] 

Output Powers to 100 kW to 7 kW to 15 kW to 16 kW [215] 

BPP (4/5kW) < 2.5 25 6 8 [216,217] 

Diode Life times 100,000 h 10,000 h N.A. 10,000 h [218] 

Cooling Air/Water Deionized Water Water [218]  

Floor Space (4/5kW) < 1 m2 6 m2 3 m2 > 4 m2 [216] 

Operating Cost/hour $21.31 $38.33 $24.27 $35.43 [219] 

Maintenance Not Required Often Required Often [218]  

 

The demand for lightweight structures in the automotive industry has led to increased use of 

aluminum alloys (AA) [220]. AA offers desirable properties such as low density, corrosion 

resistance, specific strength, and recyclability [221]. Laser welding is a preferred joining 
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technique for AA, despite challenges posed by its physical properties [222, 223]. AA alloys 

can be categorized as non-heat-treatable (1xxx, 3xxx, 4xxx, and 5xxx) and heat-treatable 

(2xxx, 6xxx, and 7xxx) [224]. Laser welding confers several advantages, including the 

generation of narrow fusion zones, enabling deep penetration into materials, facilitating high 

production rates, and granting access to intricate geometries [225-228]. Research has 

explored factors affecting weld penetration, including Mg evaporation, laser absorption, and 

process parameters [45-49] [233]. Quality issues like porosity and cracking require 

monitoring and parameter adjustments for quality assurance [234,237]. Additionally, the 

integration of Industry 4.0 technologies and intelligent welding systems (IWS) has become 

increasingly relevant in the context of metal welding, offering automation, real-time 

monitoring, and data-driven decision-making to enhance welding processes. Table 19 

summarizes key aspects of previous reviews on Intelligent Welding Systems (IWS) along 

with their objectives and references. These reviews delve into the realm of Industry 4.0 

technologies and their applications, shedding light on their influence on manufacturing 

processes. The topics covered include research trends, real-time monitoring, data analytics, 

and the synergy between Industry 4.0 and additive manufacturing. These comprehensive 

reviews offer valuable insights into the potential benefits and advancements brought about 

by intelligent welding systems in various industrial sectors, particularly in the context of 

Industry 4.0. 

Table 19. previous reviews on intelligent welding systems (IWS). 

Application/scope Objective  Reference 

Industry 4.0 technologies offer 

automation, efficiency, improved product 

quality, customization, and new business 

models for the plastics industry. 

Research trends and knowledge 

in Industry 4.0 using bibliometric 

analysis. 

[238] 

The advancement of welding systems, 

real-time monitoring and control, and the 

integration of data analytics and AI in 

intelligent welding systems. 

covers critical aspects such as 

sensing and signal processing, 

feature extraction and selection, 

[212] 
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modeling, decision-making, and 

learning. 

Explores Industry 4.0 advancements and 

their impact on manufacturing and 

production processes. 

Introduce six design principles of 

Industry 4.0. 

[48] 

AM and Industry 4.0 synergize for 

advancements in product design, 

production, and supply chain. 

This paper analyzes the 

relationship between Industry 4.0 

and Additive Manufacturing 

(AM), exploring their direct and 

indirect elements. 

[239] 

Industry 4.0 technologies have the 

potential to foster a sustainable and eco-

friendly manufacturing sector. 

Overview of current Industry 4.0 

research themes and topics. 

[240] 

 

The literature review highlights a significant research gap in the comprehensive 

exploration of porosity recognition in overlap aluminum laser welding, particularly through 

a combined experimental and statistical approach. To bridge this gap, our study was designed 

to scrutinize the sensitivity of crack indices and porosity recognition, employing various laser 

welding heads, namely the Remote Scanner, TRUMF Pulse, and Precitec models. 

Additionally, we conducted an in-depth analysis of laser beam characterization and beam 

profile shape to quantify beam distribution. Our overarching objective was to reduce 

manufacturing waste, minimize setup times, and optimize tool adjustments, thereby 

enhancing overall efficiency. The study leveraged offline monitoring techniques, notably X-

ray analysis, across three distinct strategies. Given the multifaceted nature of laser welding, 

which can be influenced by numerous inputs, noise factors, and disturbances, we adopted an 

experimental methodology complemented by a phenomenological discussion on the quality 

of overlapped welded joints. Our investigations involved the joining of two different 

aluminum alloy configurations, specifically 1.6 mm-thick AA 6061-T6 and 2 mm AA 6061-

T6. We explored three welding strategies to evaluate multiple laser variants and mitigate the 

sensitivity to hot cracking. The outcomes of our research underscore the feasibility of 
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employing X-ray technology for porosity recognition as an offline monitoring tool. These 

findings hold substantial significance for the integration of laser welding technology within 

the automotive and surface transportation sectors. Furthermore, we emphasize the 

effectiveness of Design of Experiments (DOE) as a robust data collection and analysis tool, 

particularly in assessing the factors governing parameter values or interactions. DOE's 

capacity to manipulate multiple inputs concurrently is pivotal in identifying critical 

interactions that might otherwise be overlooked in single-factor experimentation. For future 

investigations, we suggest considering the incorporation of high-speed cameras as an online 

process monitoring technique. This would enable real-time inspection and the automatic 

rejection of parts that could compromise product conformity, labor capacity, and the overall 

value chain within the automotive industry. 

 

4.7 MATERIALS AND METHODS 

Laser welding provides a range of advantages, including enhanced productivity, 

versatility, and efficiency, across diverse industrial applications. Nevertheless, due to the 

intricate nature of this process, rigorous quality monitoring becomes imperative. Such 

monitoring is conventionally employed at three key stages: prior to, during, and following 

the welding process. Its primary purpose is to ameliorate the influence of variables impacting 

the mechanical attributes of the welded joint while simultaneously mitigating the potential 

for fatigue-related failures [55]. Aluminum, as one of the lightest engineering metals, boasts 

a superior strength-to-weight ratio compared to steel [56]. However, laser welding of 

aluminum is susceptible to seven major types of weld defects, including porosity [57], 

cracking [58], inclusions [59], lack of penetration or fusion [60], weld oxidation [61], and 

loss of alloying elements [62]. Our investigation has identified several key process 

parameters that play a role in the laser welding process, including laser power, power density, 

welding speed, type and flow of shielding gas, beam shape on the workpiece, and the position 

of the focal beam plane [24, 63, 64]. Of these variables, some have a greater impact on the 

laser welding process and are also easier to control and predict. Previous studies [65, 66] 
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have investigated the effects of speed and power and have demonstrated significant impacts, 

with control over these parameters more readily achievable through the use of artificial 

intelligence. The Ishikawa diagram is a visual tool used in laser welding to analyze the 

relationship between process parameters and the quality of welded joints (Figure 36). 

Parameters like laser power, power density, welding speed, shielding gas type and flow, beam 

shape, and focal beam position are considered. In addition to the mentioned parameters, there 

are other critical factors that significantly impact the quality and outcome of laser welding 

processes. These factors include Continuous Wave (CW) versus Pulsed Wave (PW) laser 

modes, as well as the fundamental influence of the laser beam profile. The choice between 

CW and PW laser modes is essential as it affects the energy delivery to the workpiece. The 

diagram helps identify significant variables and their interactions, providing an overview of 

potential causes for defects in laser welding of aluminum. CW mode provides a continuous 

and steady energy input, while PW mode delivers pulses of energy. Each mode has its 

advantages and limitations based on the specific application and material being welded. The 

energy distribution and heat input from these modes influence the heat-affected zone, 

penetration depth, and overall weld characteristics. 

 

Figure 36. Classification of laser process parameters. 

In this study, two different thicknesses of aluminum alloys, specifically 1.6 mm thick 

AA6061-T6 and 2 mm thick AA6061-T6, were employed as the overlap joint configuration. 
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The choice of aluminum alloy 6061, also known as "Alloy 61S," was made due to its widely 

recognized mechanical properties, weldability, and widespread usage in extrusion, with the 

exception of 6063, which is the most popular alloy used for this purpose. It is important to 

note that aluminum alloy 6061 is a precipitation-hardened aluminum alloy composed of 

magnesium and silicon as its primary alloying elements, and is widely utilized for general-

purpose applications. The chemical composition of the welded sheets, as well as the relevant 

mechanical properties, are documented in Table 20. 

Table 20. Chemical composition (% wt) and Mechanical properties of AA 6061-T6 

[184]  

Chemi

cal 
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Al Cr Cu Fe Mg Mn 

Oth

er, 

total 

Si Ti Zn 

% wt 

0.15 

- 

0.35 

0.1 0.4 
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0.1 0.25 0.1 

0.4 - 

0.8 
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a) 
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of 

Elasti
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(GPa

) 

Den

sity 

Melt

ing 

Poin

t 

Ther

mal 

Expan

sion 

Therma

l 

Conduc

tivity 

Value 230 195 12 60 0.33 70.3 

2.70 

g/c

m³ 

650 

°C 

23.4 

x10^-

6 /K 

166 

W/m.K 

 

The goal of the study was to identify the porosities and determine the appropriate conditions. 

The samples were made from AA6061-T6 aluminum alloy in an overlap welding 

configuration, with two different thicknesses (1.6 mm and 2 mm). The AA6061 aluminum 

alloy is known for its good mechanical properties, weldability, and popularity for general-

purpose use. Here, the laser welding process was carried out using three different laser heads 

(Figure 37):  
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1. ScanLab remote: The remote welding head is equipped with advanced scanning 

technology, which enables high-speed and accurate movement of the laser beam. 

2. Trumpf D70: The intelligent monitoring system continuously monitors important 

operating values and provides fault diagnosis, ensuring optimal performance and 

minimizing downtime. 

3. Precitec YW52: The main purpose is to focus and direct the laser beam onto the 

workpiece during the welding process. This helps to achieve efficient and controlled 

melting and solidification of the material, resulting in strong and reliable weld joints. 

 

 

Figure 37. Three different plans of laser welding 

4.8 BEAM CHARACTERIZATION 

The energy of the laser beam can be adjusted according to the material being welded 

to ensure optimal results. Different materials absorb the energy differently, and it is crucial 

to determine the absorption capacity of the metal to set the laser parameters accordingly. 

Steel, for example, has a higher absorption capacity compared to aluminum or silver, thus 

requiring a lower power setting. According to literature, a mixture of conical volumetric and 

surface heat sources with gradually increasing energy intensity (Gaussian model) is 

considered the significant model for laser beam [229]. The conical volumetric heat 

distribution is described by a Gaussian distribution model and can be described by the 
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equation where Q0, ri-re, and zi-ze represent the maximum volumetric heat flux density, upper 

and lower conical radius dimension, and conical heat source depth, respectively (Figure 38). 

 

𝑄(𝑥, 𝑦, 𝑧)

=  𝑄0 + exp (− 
𝑥2 + 𝑦2

𝑟𝑜2(𝑧)
)   

𝑟𝑜(𝑧) = 𝑟𝑒 +  
𝑟𝑖 −  𝑟𝑒

𝑧𝑖 −  𝑧𝑒
 (𝑧

− 𝑧𝑒) 

 

(1) 

 

 

(2) 

Figure 38. Gaussian model Heat-source in laser-welding simulation. 

In this study, the thermal conductivity of the material being welded is taken into account in 

order to properly model the heat transfer during the laser welding process. The Fourier's law 

of heat transfer is considered as one of the key factors, which states that the rate of heat 

transfer is proportional to the temperature gradient. This can be represented mathematically 

as: 

Q/A = -k ∇T                                      (3) 

Where Q is the heat flow rate, A is the surface area, k is the thermal conductivity, and ∇T is 

the temperature gradient. Additionally, the Petro-Galerkin convection effect is also taken into 

account, which considers the heat transfer due to the flow of fluid surrounding the material. 

This effect can be represented as: 

Q/A = h (T - T_∞)                                      (4) 

Where Q is the heat flow rate, A is the surface area, h is the heat transfer coefficient, T is the 

temperature of the material, and T_∞ is the temperature of the surrounding fluid. The 

consideration of both of these factors, the Fourier's law and Petro-Galerkin convection effect, 



 

138 

allows for a more accurate modeling of the heat transfer during the laser welding process and 

helps to ensure the quality and consistency of the final weld: 

𝜌𝑐(𝑇)
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘(𝑇)

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘(𝑇)

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘(𝑇)

𝜕𝑇

𝜕𝑧
) + 𝑞𝑣                        (5) 

𝜕𝑇

𝜕𝑡
+ v. ∇T = ∇. (k∇T) + Q                                                                                (6) 

Laser beam characterization is an important aspect of laser welding as it helps to understand 

the behavior of the laser beam and how it affects the quality of the weld. The beam profile, 

intensity distribution, spot size, focus position, and other parameters are analyzed to 

determine the best configuration for a particular welding application. A full characterization 

of a laser beam involves determining its complex amplitude profile in one plane 

perpendicular to the beam, which can be calculated using beam propagation software (Figure 

39). The relationship between laser beam characterization and mechanical properties is a 

complex one, as the mechanical properties of a laser-welded joint depend on many factors, 

including the type and thickness of the material being welded, the laser power, the laser beam 

profile, the speed of the laser, and the cooling rate of the weld. The beam profile, in particular, 

has a strong influence on the resulting mechanical properties. For example, a Gaussian laser 

beam profile will produce a narrower, more focused weld than a uniform laser beam profile. 

This can lead to stronger welds, as the heat is concentrated in a smaller area. On the other 

hand, a wider beam profile can result in a shallower, wider weld, which may be weaker. 
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(a) 

 

(b) 

 

(c) 

Figure 39. Beam characteristic using PRIMES system. A) Caustic Result, B) Position Z 

and C) Intensity 

4.9 DESIGN OF EXPERIMENT (DOES) AND STATISTICAL ANALYSIS 

Design of Experiments (DOEs) is conducted to analyze the impact of various factors 

on the response variable and determine optimal conditions. In laser welding, the response 

variable includes mechanical properties like porosity, crack index, and ductility. Independent 

variables are typically process parameters such as laser power, welding speed, and cooling 

rate. Regression analysis is employed to establish the relationship between the response and 

independent variables, identifying influential factors and optimal conditions. The regression 

line is calculated by minimizing the squared distances between data points and the line. This 

enables predictions for different process conditions [230]. In this study, we're focusing on 

classification analyses to categorize our data into distinct groups. Following this, we will be 

embarking on a prediction analysis to forecast potential trends and outcomes. DOEs 

systematically test input variable combinations to determine optimal conditions for laser 

welding (Table 21). Statistical analysis results can then create predictive models to optimize 

welding and enhance mechanical properties. The combined approach of DOEs, regression 

analysis, and statistical analysis provides a robust method for understanding laser weld 

properties and optimizing industrial applications. Simple linear regression examines the 

relationship between a dependent variable and independent variable, while multiple linear 
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regression extends this analysis to multiple predictors. The objective is to find the best-fit 

line or plane that minimizes squared residuals. Hypothesis testing determines predictor 

variable significance, and measures like R-squared and residual plots evaluate model 

goodness of fit. In simple linear regression, the relationship between variables is represented 

as: 

Y = β0 + β1X + ε                                                   (7) 

Here, Y is the response variable, X is the predictor, β0 and β1 are the regression coefficients, 

and ε is the error term. The regression coefficients indicate the change in Y corresponding to 

a unit change in X, and ε represents the difference between the observed and predicted values 

of Y. The objective is to find the regression line that minimizes the sum of squared residuals, 

which are the differences between observed and predicted values. Multiple linear regression 

extends this analysis to include multiple predictor variables: 

Y = β0 + β1X1 + β2X2 + ... + βpXp + ε                                                           (8) 

In this equation, Y is the response variable, X1, X2, ..., Xp are the predictor variables, β0, 

β1, β2, ..., βp are the regression coefficients, and ε is the error term. The coefficients β1, β2, 

..., βp represent the change in Y corresponding to a unit change in each predictor variable. 

The goal is to find the regression plane that minimizes the sum of squared residuals. This 

study focuses on investigating the crack sensitivity in laser welding by analyzing the effects 

of various laser welding configurations: ScanLab remote laser welding system, Trumpf D70 

laser head, and Precitec YW52 wobbling head. The crack sensitivity is assessed using X-ray 

inception examination, which helps identify any cracks that may have formed in the welded 

samples. Regression analysis is then performed to establish the relationship between the 

crack sensitivity (dependent variable) and the different laser welding configurations 

(independent variables). By analyzing the data obtained from X-ray inception examination, 

the study aims to identify the optimal laser welding configuration that minimizes crack 

sensitivity. This information is crucial for determining the welding parameters and conditions 

that ensure the highest quality and reliability of the welded joints. In this study, statistical 

modeling techniques were employed to analyze the crack sensitivity in the three different 

laser welding configurations. The experimental investigation provided the basis for the 
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statistical model, and Minitab software was utilized for the analysis process, allowing for a 

comprehensive and robust analysis of the crack sensitivity in laser welding. 

Table 21. Input Variable of the laser welding process 

Variable Unit Level min Level max 

Laser Power kW 3.5 10 

Travel Speed m/min 3 10 

Focal Distance mm -4 12 

Oscillation amplitude mm 0.2 1 

Oscillation Frequency Hz 50 500 

Oscillation shape - Infinite, Circle, Sin 

 

4.10 RESULTS AND DISCUSSION 

4.10.1 Plan A: Remote scanner for laser welding overlap joint  

 Plan A involves developing a remote scanner for laser welding overlap joints and 

expanding its application to fillet seams. This method was successfully tested and qualified 

for industrial use; it has been implemented in BMW Mini door production [241]. This system 

allows welding of fillet seams, improving efficiency and offering advantages like smaller 

flanges and zero gap welding of galvanized material. The integration of scan heads on 

industrial robots enhances beam utilization and manufacturing efficiency. The scan head 

features a zoom axis, precise seam tracking, and meets industrial requirements. It 

accommodates up to 8 kW lasers and offers process monitoring options (Table 22). The 

central control unit, the Scan Control Unit, manages the entire laser welding system. 
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Table 22. ScanLab remote laser welding system technical configuration [242] 

 

 

 
 

 
 

 

 

Optical Configuration 
IntelliWELD II PR (with 

prefocus optic) 

Focal length, focusing optics 470 mm 660 mm 

Focal length, collimator 135 mm 110 mm 

Limiting NA (half angle) 0.11 0.13 

Image ratio Focus diameter 
1:3.5 350 

µm 

1:4.3 430 

µm 

Fiber diameter ≥ 50 µm ≥ 50 µm 

Operating distance to 

protective window 
301 mm 494 mm 

Image field size (z=0, 

elliptical) 

ca. (300 x 

330) mm 

ca. (450 x 

480) mm 

Image field size (z=0, 

rectangular) 

ca. (270 x 

270) mm 

ca. (450 x 

470) mm 

Focus range in z direction ca. ± 50 mm 
ca. ± 100 

mm 

Wavelength 
1030 nm - 

1105 nm 
 

Maximum laser power (with 

specified cooling) 
8 kW  

Fiber adapter 
QBH, Q5/LLK-B, 

QD/LLK-D 

 

The chart below presents the initial set of parameters (Table 23). It is noteworthy that no 

protective gas was utilized during the welding process. X-ray imaging reveals the 

presence of weld cracks; however, a more comprehensive evaluation of the cracks can be 

achieved through top surface and cross-section metallography of selected specimens to 

calculate the crack susceptibility index (Figure 40, 41). The red arrows in Weld 17 

illustrate an instance of the micro-crack locations as identified through X-ray imaging. It 

can be hypothesized that welds with higher penetration depth exhibit greater crack 

sensitivity. Regarding the pass/fail criteria used in the experiment were P (pass) and F 

(fail). The pass/fail criteria were determined based on the presence of defects in the 

welded joints. The criteria changed depending on the combination of laser power, travel 

speed, focal distance, oscillation shape, oscillation frequency, and oscillation amplitude. 

Specifically, the criteria changed from pass to fail when the laser power was increased 
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from 6 kW to 8 kW, when the travel speed was increased from 5 m/min to 7.5 m/min, 

when the focal distance was changed from 4 mm to -4 mm, when the oscillation shape 

was changed from infinite to circle or sine, and when the oscillation frequency was 

increased from 200 Hz to 500 Hz. The criteria did not change significantly with the pulse 

mode or oscillation amplitude. 

Table 23. Experimental planification for remote scanner-laser welds-overlap joint 

Identif

ication 

Laser 

power 

(kW) 

Travel 

speed 

(m/min) 

Focal 

distance 

(mm) 

Puls

e 

Oscillation 

shape 

Oscillation 

frequency 

(Hz) 

Oscillation 

amplitude 

(mm) 

Criteria 

(Pass/F

ail) 

#13 6 5 4 NA Infinite 200 0.2 P 

#14 6 7.5 4 NA Infinite 200 0.2 P 

#15 8 7.5 4 NA Infinite 200 0.2 F 

#16 8 10 4 NA Infinite 200 0.2 F 

#17 10 7.5 4 NA Infinite 200 0.2 F 

#18 3 5 4 NA Infinite 200 0.2 P 

#19 6 5 4 NA Infinite 200 0.5 P 

#20 6 7.5 4 NA Infinite 200 0.5 P 

#21 8 7.5 4 NA Infinite 200 0.5 F 

#22 8 10 4 NA Infinite 200 0.5 F 

#25 6 5 4 NA Infinite 500 0.5 P 

#26 6 7.5 4 NA Infinite 500 0.5 P 

#27 8 7.5 4 NA Infinite 500 0.5 F 

#28 8 10 4 NA Infinite 500 0.5 F 

#29 10 7.5 4 NA Infinite 500 0.5 F 

#30 10 10 4 NA Infinite 500 0.5 F 

#31 6 5 -4 NA Infinite 50 1 P 

#32 6 7.5 -4 NA Infinite 50 1 P 

#33 8 7.5 -4 NA Infinite 50 1 F 

#34 8 10 -4 NA Infinite 50 1 P 

#35 10 7.5 -4 NA Infinite 50 1 F 

#36 10 10 -4 NA Infinite 50 1 F 

#37 6 5 4 V Infinite 200 0.5 F 

#38 6 7.5 4 V Infinite 200 0.5 P 

#39 8 7.5 4 V Infinite 200 0.5 F 

#40 8 10 4 V Infinite 200 0.5 P 

#41 10 7.5 4 V Infinite 200 0.5 F 
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#42 4 3 4 V Infinite 200 0.5 F 

#43 6 5 4 NA Infinite 100 0.5 F 

#44 6 7.5 4 NA Infinite 100 0.5 P 

#45 8 7.5 4 NA Infinite 100 0.5 F 

#46 8 10 4 NA Infinite 100 0.5 F 

#47 10 7.5 4 NA Infinite 100 0.5 F 

#48 5 3 4 NA Infinite 100 0.5 F 

#49 6 5 4 NA circle 200 0.5 P 

#50 6 7.5 4 NA circle 200 0.5 P 

#51 8 7.5 4 NA circle 200 0.5 F 

#52 8 10 4 NA circle 200 0.5 P 

#53 10 7.5 4 NA circle 200 0.5 F 

#54 5 3 4 NA circle 200 0.5 P 

#61 6 5 4 NA sin 125 0.2 P 

#62 6 7.5 4 NA sin 125 0.2 P 

#63 8 7.5 4 NA sin 125 0.2 F 

#64 8 10 4 NA sin 125 0.2 P 

#65 10 7.5 4 NA sin 125 0.2 F 

#66 10 10 4 NA sin 125 0.2 F 
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Figure 40. Experiments study of remote scanner-laser welds-overlap joint 

 
 

  

Figure 41. X-Ray analysis of remote scanner-laser welds-overlap joint 

The experimental data for laser welding of aluminum alloy shows various combinations of 

laser power, travel speed, focal distance, pulse, oscillation shape, oscillation frequency, 

oscillation amplitude, and criteria. A comprehensive analysis of the process and pass/fail 

criteria is as follows: 

• Process analysis: 
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Laser power: The laser power used in the experiment ranged from 3 kW to 10 kW. 

The results show that higher laser power generally led to better welding performance. 

Specifically, when the laser power was increased from 6 kW to 8 kW, the criteria 

changed from pass to fail for some of the experiments, indicating that the optimal 

power may vary depending on the other parameters. 

Travel speed: The travel speed used in the experiment ranged from 3 m/min to 10 

m/min. The results show that the optimal travel speed depends on the other 

parameters. Generally, higher travel speed resulted in better welding performance, 

except for some experiments where the criteria changed from pass to fail when the 

travel speed was increased from 5 m/min to 7.5 m/min. Porosity formation is 

significantly impacted by welding speed due to the thermal dynamics involved in the 

laser welding process. A higher welding speed can result in insufficient heat input, 

leading to rapid solidification of the molten pool. This rapid solidification may trap 

gas bubbles, preventing them from escaping, and ultimately resulting in porosity. 

Conversely, lower welding speeds allow for more heat input and slower 

solidification, which can help gases escape, reducing porosity.  

Focal distance: The focal distance used in the experiment was 4 mm and -4 mm. The 

results show that the focal distance had a significant effect on the welding 

performance, and the optimal focal distance varied depending on the other 

parameters. Specifically, when the focal distance was changed from 4 mm to -4 mm, 

the criteria changed from pass to fail for some of the experiments, indicating that the 

optimal focal distance may vary depending on the other parameters. The defocus 

distance, or the distance between the laser focus point and the workpiece surface, 

affects the size and shape of the laser beam. When the defocus distance is too small 

(under focused), the beam can become tightly focused, leading to a narrow and deep 

weld, which may increase the likelihood of trapping gas within the weld pool. 

Conversely, when the defocus distance is too large (overfocused), the beam may 

become too wide, resulting in inadequate penetration and potential porosity due to 

incomplete fusion. The optimal defocus distance strikes a balance between these 
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extremes, allowing for adequate penetration and minimizing the risk of gas 

entrapment. 

Pulse: Some experiments used pulsed laser welding, while others used continuous 

laser welding. The results show that the pulse mode did not have a significant effect 

on the welding performance. 

Oscillation shape: Some experiments used oscillation shapes, while others did not. 

The results show that the oscillation shape had a significant effect on the welding 

performance. Specifically, when the oscillation shape was changed from infinite to 

circle or sine, the criteria changed from pass to fail for some of the experiments, 

indicating that the optimal oscillation shape may vary depending on the other 

parameters. 

Oscillation frequency: The oscillation frequency used in the experiment ranged from 

50 Hz to 500 Hz. The results show that the optimal oscillation frequency depends on 

the other parameters. Generally, higher oscillation frequency resulted in better 

welding performance, except for some experiments where the criteria changed from 

pass to fail when the oscillation frequency was increased from 200 Hz to 500 Hz. 

Oscillation amplitude: The oscillation amplitude used in the experiment ranged 

from 0.2 mm to 1.0 mm. The results show that the optimal oscillation amplitude 

depends on the other parameters. Generally, higher oscillation amplitude resulted in 

better welding performance, except for some experiments where the criteria changed 

from pass to fail when the oscillation amplitude was increased from 0.2 mm to 0.5 

mm. 

4.10.2 Statistical analysis for plan A (ScanLab remote laser welding system): 

 Regression analysis is a statistical method used to examine the relationship between 

a dependent variable and one or more independent variables. In this study, regression analysis 

was conducted to predict a binary response variable ("pass" or "fail") in the context of crack 

sensitivity analysis in laser welding. The results of the analysis indicated an 80% accuracy 

for predicting the "pass" category and an 84.6% accuracy for predicting the "fail" category. 
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The overall accuracy of the model was determined to be 82.6%. The misclassification table 

provided insights into the model's classification accuracy, including sensitivity, specificity, 

and the occurrence of type I and type II errors. The choice of the optimal number of nodes in 

the model was based on achieving a balance between model complexity and accuracy, and it 

was determined to be 2. The model showed accurate classification by using a threshold of 

0.50 to determine the predicted probability level. It is important to note that the threshold 

value can be adjusted depending on the specific analysis requirements and objectives, which 

may impact the model's accuracy and should be carefully considered. Regression analysis is 

a valuable tool in crack sensitivity analysis for laser welding as it helps understand the 

relationships between parameters and the likelihood of crack formation under different 

conditions. However, it is crucial to consider the assumptions, limitations, and interpret the 

results cautiously in light of the data and research question. Table 24 presents the statistical 

analysis results for the remote scanner-laser welds-overlap joint, employing binary response 

analysis through regression. The binary response variable consisted of 20 "pass" and 26 "fail" 

occurrences. The model achieved high prediction accuracies, with 80% for "pass," 84.6% for 

"fail," and an overall accuracy of 82.6%. The confusion matrix and misclassification table 

provided insights into the model's classification accuracy, considering sensitivity, specificity, 

type I and type II errors. Notably, the model misclassified a few cases in both training and 

test datasets, indicating the need for further refinement. The analysis also identified important 

predictors and determined the optimal number of nodes to balance model complexity and 

accuracy. Furthermore, as illustrated in Figure 42, which provides insights into the 

interpretation and relative significance of process parameters, it becomes evident that the 

optimal point in the trade-off between relative cost and the number of nodes corresponds to 

0.3538. Notably, laser power and travel speed emerge as the most influential factors in the 

laser welding process. 
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Table 24. Statistical for remote scanner-laser welds-overlap joint 

Numerical Value 

Confusion Matrix 

Predicted Class 

(Training) 

Predicted Class 

(Test) 

Actual Class Count P F % Correct P F % Correct 

P (Event) 20 16 4 80.0 16 4 80.0 

F 26 4 22 84.6 4 22 84.6 

All 46 20 26 82.6 20 26 82.6 

Statistics Training (%) Test (%) 

True positive rate (sensitivity or 

power) 
80.0 80.0 

False positive rate (type I error) 15.4 15.4 

False negative rate (type II error) 20.0 20.0 

True negative rate (specificity) 84.6 84.6 

 Misclassification 

Input 

Misclassification 

Cost 

Predicted 

Class 

Actual Class P       F 

P      1.00 

F 1.00  

  Training Test 

Actual Class Count Misclassed 
% 

Error 
Cost Misclassed % Error Cost 

P (Event) 20 4 20.0 0.2000 4 20.0 0.2000 

F 26 4 15.4 0.1538 4 15.4 0.1538 

All 46 8 17.4 0.1769 8 17.4 0.1769 

Binary Response Information 

Variable Class Count % 

Criteria P (Event) 20 43.48 

 F 26 56.52 

 All 46 100.00 

Model Summary 

Model metric  Value Statistics Training Test 

Total predictors 7 
Average -

loglikelihood 
0.4602 0.4934 

Important 

predictors 
4 

Area under ROC 

curve 
0.8231 0.7183 
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Number of terminal 

nodes 
2 95% CI (0.07515, 1) 

(0.5483, 

0.8882) 

Minimum terminal 

node size 
20 Lift 1.8400 1.1500 

  
Misclassification 

cost 
0.3538 0.3538 

 

 
(a) 

 
(b) 

 
(c) 

Figure 42. Interpretation and relative importance of process parameters 

 

Additionally, Figure 43 displays a correlation relationship between the test and training set. 

The Lift chart plots the true positive rate as a function of the cumulative percentage of the 

data. The Lift chart provides a measure of the degree to which the model improves the 

accuracy of predictions over random chance. A value of 1 indicates that the model is not 
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improving predictions over random chance, while a value greater than 1 indicates that the 

model is improving the accuracy of predictions over random chance. In this example, the Lift 

chart shows a clear improvement over random chance, with the curve rising steeply at the 

beginning and then leveling off (Fig 43b). The performance of the classification model can 

be evaluated by using the Gain and Lift charts. Specifically, the Receiver Operating 

Characteristic (ROC) curve plots the True Positive Rate (TPR), also referred to as sensitivity, 

on the y-axis and the False Positive Rate (FPR), also referred to as type 1 error, on the x-axis. 

The area under the ROC curve ranges from 0.5 to 1, where 1 indicates perfect class separation 

and 0.5 indicates a random assignment. A higher area under the ROC curve indicates a better 

classifier. The area under the ROC curve for the test data is approximately 83% and 72% for 

the training data, indicating reasonable classification performance. Using a validation 

method, Minitab creates two ROC curves, one for the training data and the other for the 

validation data. The validation results determine if the model can predict the response values 

accurately for new observations or summarize the relationships between the response and 

predictor variables accurately. Training results are usually more optimistic and are only used 

as a reference. A k-fold area under the ROC curve that is substantially lower than the area 

under the ROC curve may indicate over-fitting, which occurs when the model includes 

unnecessary terms that are specifically tailored to the training data, making it less useful for 

predictions on the population. It is also important to consider the misclassification rate of the 

model, which is the proportion of observations that are incorrectly classified. The 

misclassification rate can be used to assess the overall accuracy of the binary classification 

model and can be used to compare different models. In addition, the misclassification rate 

can be used to determine the optimal threshold value for classifying observations, as the 

misclassification rate is dependent on the threshold value. A threshold value that results in a 

low misclassification rate is desirable. The Gain chart plots the total positive rate as a 

percentage versus the percentage of total counts. The chart can demonstrate the efficiency of 

resources by showing the proportion of events within a certain proportion of data. For 

example, the gain chart may indicate that 80% of events are in 40% of the data, meaning that 

by focusing on 40% of the data, 80% of true positives can be achieved. In this case, the gain 
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chart shows a sharp increase above the reference line, then flattens. Approximately 40% of 

the data accounts for approximately 80% of the true positives (Figure 43a). It is important to 

note that the ROC curve and the Gain chart are commonly used evaluation metrics for binary 

classification models, but they are not the only metrics. Other evaluation metrics include 

precision, recall, F1-score, and the Matthews correlation coefficient. Precision is the ratio of 

correctly predicted positive observations to the total predicted positive observations. Recall, 

also known as sensitivity or true positive rate, is the ratio of correctly predicted positive 

observations to the total actual positive observations. The F1-score is the harmonic mean of 

precision and recall and provides a balance between the two. The Matthews correlation 

coefficient is a measure of the quality of binary classifications, taking into account true and 

false positives and negatives. In many applications, the performance of a binary classification 

model can be numerically evaluated using metrics such as accuracy, precision, recall, F1-

score, and the area under the ROC curve. The area under the ROC curve ranges from 0.5 to 

1, with a value of 1 indicating perfect separation of the classes and a value of 0.5 indicating 

no better than random assignment. By comparing these metrics, the performance of the model 

can be evaluated, and improvements can be made to optimize the model. It is important to 

consider the business context and the desired outcome when selecting which evaluation 

metrics to use. For example, if the cost of false positive predictions is high, precision might 

be a more important metric. On the other hand, if false negative predictions are more costly, 

recall might be a more important metric. In addition, it is also important to keep in mind that 

no single evaluation metric can fully capture the performance of a binary classification 

model. It is recommended to use multiple evaluation metrics to provide a comprehensive 

view of the model's performance. Furthermore, it is also important to validate the model's 

performance on new, unseen data to ensure its generalizability. This can be done through 

methods such as cross-validation or using a holdout validation set. The performance of the 

model on the validation data should be similar to its performance on the training data, 

indicating that the model has not over-fit to the training data and can generalize to new 

observations. In conclusion, the results of the statistical analysis in the context of crack 

sensitivity analysis in laser welding provide valuable insights into the relationship between 
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the parameters and the response. The use of regression analysis and binary classification 

models can help to optimize the conditions for welding to minimize crack formation. The use 

of metrics such as R-squared and the area under the ROC curve, as well as the Gain and Lift 

charts, can provide a comprehensive assessment of the performance of the models. The 

results of the statistical analysis indicate reasonable classification performance, but it is 

important to consider the misclassification rate and the degree to which the model improves 

the accuracy of predictions over random chance when interpreting the results. In the Lift 

chart, the cumulative lift is calculated by dividing the cumulative true positive rate by the 

expected cumulative true positive rate, which is the same as the reference line in the Gain 

chart. The lift chart provides an assessment of the ability of the predictive model to accurately 

identify positive events. The cumulative lift is an important metric in business applications 

as it represents the degree to which the predictive model outperforms random chance in 

identifying positive events. A lift of 1 means that the model performs no better than random 

chance, while a lift greater than 1 means that the model is performing better than random. In 

this example, the lift chart shows that the predictive model is performing better than random, 

with the lift gradually decreasing as more of the data is considered. This indicates that the 

model may be losing its predictive power as the number of data points increases. In such a 

scenario, the model may need to be modified or re-calibrated to ensure that it continues to 

provide accurate predictions. 

 

(a) 

 

(b) 
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(c) 

 

Figure 43. Correlation relation between test and training set. a) ROC curve, b) Gain chart 

and c) Lift chart 

 

4.10.3 Plan B: TRUMF pulse laser welding of aluminum in overlap joint 

configuration  

The Trumpf D70 laser head comprises four key components: Focal position, 

Intelligent monitoring, Remote Services, and Flexible use. The focal position allows for easy 

adjustment of the laser's focal position using programmable motorized focusing (PMF). 

Intelligent monitoring ensures continuous monitoring of vital operating values and fault 

diagnosis, while Remote Services offer remote assistance for minimizing downtime. The 

D70 laser head is compatible with various TRUMPF solid-state lasers and features a 

broadband coating. In laser welding, Multifocus plays a crucial role by splitting the laser 

beam into multiple partial beams, creating a stable and customized keyhole formation. This 

prevents collapse during welding and enables media-tight welds. The Multifocus 

arrangement enhances process control, reduces porosity and spatter, and allows for 

productive welding speeds. By combining Multifocus with BrightLine Weld, process 

efficiency and weld quality improve, enabling consistent welding depths. Media-tight welds 

can be achieved in aluminum alloys ranging from 0.8mm to 2.5mm thickness. 
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Table 25. Trumpf D70 laser head technical configuration [243] 

Laser Parameters Avalable range 

Wavelength - 

Power Up to 8000 W (cw) 

Numerical Aperture typ. 0.11 / max. 0.12 

Laser light cable type LLK-D, LLK-B, LLK-A 

Collimation 150 / 200 mm 

Focal length 
100 / 150 / 200 / 300 / 400 / 600 

mm 

Dimensions (w x h x d) 189 mm x 524 mm x 78 mm  

Weight 6 kg  

Crack tendency calculation is a critical step in the evaluation of the quality of a welded joint. 

The measurement of crack tendency can be performed through various techniques such as 

X-ray imaging, top surface metallography, and cross-section metallography (Figure 44, 45). 

The results obtained from these techniques can be used to quantify the crack tendency of the 

welded joint. In the absence of shielding gas, the crack tendency of the welded joint may 

increase due to exposure to the ambient environment. This highlights the importance of using 

shielding gas to minimize the risk of cracks in the welded joint. The use of metallography 

techniques to calculate crack tendency is a common practice in the welding industry and 

provides valuable information for the assessment of the quality of the welded joint. The 

results obtained from these techniques can be used to make informed decisions on the design 

and optimization of the welding process to improve the quality of the welded joint. In Table 

8, the experimental plan for TRUMPF pulse laser welding of aluminum is presented, 

consisting of various parameters and corresponding outcomes categorized as "Pass" or "Fail." 

This experimental design aims to investigate the influence of laser power (kW), travel speed 

(m/min), and focal distance (mm) on the success or failure of the welding process. First, it's 

crucial to note that the welding criteria are based on whether the welded joint meets the 

required quality standards, where "Pass" signifies a successful weld that adheres to the 

desired quality parameters, while "Fail" indicates a weld that does not meet these standards, 
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potentially due to defects such as porosity or cracking. The experimental setup involves nine 

different combinations of laser power, travel speed, and focal distance. These combinations 

vary across a range of values, reflecting the typical operating conditions encountered in 

practical laser welding applications. Upon analyzing the outcomes in Table 8, several key 

observations and trends emerge: 

• Laser Power (kW): The laser power varies from 3.5 kW to 7.4 kW. The results show 

that when the laser power is within the range of approximately 4 kW to 7.4 kW (including 

values such as 5.13 kW, 5.7 kW, and 6.27 kW), the welding process tends to be successful 

(marked as "Pass"). This suggests that higher laser power levels are generally favorable 

for achieving quality welds. 

• Travel Speed (m/min): Travel speed varies between 2.5 m/min and 6.5 m/min. Notably, 

most of the experiments with travel speeds ranging from 4 m/min to 6.5 m/min (including 

4.5 m/min, 5 m/min, and 5.5 m/min) result in "Pass" outcomes. This indicates that 

moderate to high travel speeds are associated with successful welding. 

• Focal Distance (mm): The focal distance is kept constant at 6 mm for all experiments in 

Table 8, suggesting that this specific parameter is not being investigated for variation in 

this particular experimental plan. 

• Overall Trends: From the provided data, it is evident that welding parameters within 

certain ranges of laser power and travel speed lead to successful welds, while deviations 

from these ranges tend to result in welding failures. 

In summary, the experimental plan in Table 26 provides valuable insights into the influence 

of laser power and travel speed on the success of TRUMPF pulse laser welding of aluminum. 

These insights can be further analyzed to determine optimal parameter settings that yield 
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consistently high-quality welds, which is essential for ensuring the reliability and durability 

of laser-welded components in various industrial applications. 

Table 26. Experimental planification for TRUMPF pulse laser welding of aluminum 

ID 
Laser power 

(kW) 

Travel speed 

(m/min) 

Focal distance 

(mm) 

Criteria 
(Pass/Fail) 

17 5.13 4.5 6 F 

19 3.5 2.5 6 F 

21 4 3.5 6 F 

22 7.4 6.5 6 P 

23 4.55 4 6 F 

24 5.7 5 6 F 

25 6.27 5.5 6 P 

33 5.4 4.5 6 P 

34 4.95 5 6 P 

31 4.95 4.5 6 P 
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Figure 44. Experiments study of TRUMPF pulse laser welding of aluminum 

 

  

 

Figure 45. X-ray study of TRUMPF pulse laser welding of aluminum 
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4.10.4 Statistical analysis TRUMF pulse laser welding of aluminum in overlap joint 

configuration 

The statistical analysis for TRUMF pulse laser welding is summarized in Figure 46. 

Regression analysis is utilized to establish the relationship between predictor variables and 

the response variable, enabling predictions for new observations. The analysis employs linear 

regression using ordinary least squares estimation to minimize residuals. The p-value 

associated with each predictor variable tests the significance of its effect on the response 

variable. A low p-value indicates a meaningful relationship between the predictor and 

response variables. Simple linear regression focuses on the linear relationship between one 

predictor and one response variable, improving prediction accuracy. The regression model 

provides an equation that quantifies the relationship and facilitates prediction.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 46. Statistical analysis TRUMF pulse laser welding of aluminum in overlap joint 

configuration 

4.10.5 Plan C: Porosity reduction using Precitec wobbling head:  

The YW52 Welding Head is a compact system designed to be utilized in conjunction 

with diode and solid-state laser machines. Its modular design allows for customization to 

meet the unique requirements of various applications. The basic version offers cost-

effectiveness, while the full process monitoring capabilities make it well-suited for fully 

automated production processes. Precitec has integrated the Scan Tracker technology into 

the YW52 laser welding head, providing a solution for controlling weld position and seam 

width (Table 27). The Weld Master system, also integrated into the solution, offers real-time 

process control and quality monitoring, making it a versatile and comprehensive solution for 

complex welding challenges under varying conditions. The Weld Master system measures 

the lateral position of the joint and the width of the gap, using the integrated scanner mirror 

of the Scan Tracker to precisely control the focal position. The system also features a 

mechanically controlled collimation lens to compensate for any changes in the standoff 

distance, and a freely programmable laser power that is synchronized with the pendulum 

motion. The seam width can be adjusted through an analog interface, without the need for 

additional control. The Weld Master system has been successfully implemented in various 
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automotive engineering applications, including laser welding and quality control of gear 

units, aluminum connections in the drive train, and aluminum fillet welds in body 

construction. In order to properly characterize a laser beam, it is important to use specialized 

equipment, such as a PRIMES system. This system can provide detailed information about 

the laser beam profile, including the beam diameter, intensity distribution, and frequency 

spectrum. This information can then be used to optimize the laser welding process and to 

ensure that the final product meets the desired mechanical properties. The laser beam can be 

characterized in various ways, including beam profiling, optical power measurement, and 

spectroscopy. Beam profiling is a method used to determine the intensity distribution of the 

laser beam, which can be used to understand how the beam behaves when it is focused and 

how it affects the material being welded. There are different methods of beam profiling, 

including knife-edge, knife-edge with aperture, knife-edge with beam profiler, and knife-

edge with pinhole. Optical power measurement is used to determine the power of the laser 

beam. There are different types of power meters, such as photodiodes and thermal detectors. 

For permanent monitoring, optical power monitors can be used. Moreover, spectroscopy is a 

method of analyzing the composition and properties of materials using light. This can be 

useful in laser welding to determine the optical properties of the material being welded, such 

as its absorption and transmission characteristics. In general, laser beam characterization is 

used to optimize the laser welding process and to ensure that the final product meets the 

desired mechanical properties. By understanding the relationship between laser beam 

characterization and the resulting mechanical properties, engineers and technicians can make 

adjustments to the laser welding process in order to achieve the desired results. This can 

involve changes to the laser power, beam profile, speed, and cooling rate, as well as changes 

to the material being welded and the welding technique used. In the example mentioned in 

the previous response, a Precitec wobbling head 10-kW solid-state disk laser with a 

wavelength of 1030 nm was used for laser welding. The beam diameter at the focal point was 

determined to be 0.39 mm using the PRIMES system. The PRIMES analysis also showed 

that the smaller the spot size, the more abruptly the real spot size changes with an increase in 

the Z position. The use of a scanner helps to stabilize the beam size up to +/- 20-30 mm in 
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the Z position because the lens is very large. In future studies, the relation between beam 

characterization and weldability will be further analyzed. 

 

Table 27. Technical specification of YW52 Welding Head [244] 

Laser 

Parameters 

Available range 

Max laser 

power 

 20kW 

Collimation 100 mm (NA ≤ 0.25), 125 mm (NA ≤ 0.18), 150 mm 

(NA ≤ 0.15),185 mm (NA ≤ 0.13), 200 mm (NA ≤ 0.12) 

Focal lenghts 150 to 680 mm 

Dimensions 74 x 74 mm (edges dimension) 

Weight 3 -6 kg 3 to 6 kg, depending on construction 

 

In this study, an ABB 6-axis robot (IRB 4400 M 2004), a fiber laser device (YW52-

PRECITEC Welding Head), a worktable capable of providing different magnetic fields by 

changing the current, and an Argon shielding gas equipment (with a flow rate of 25 L/min) 

were used to assemble the welding system. The compact YW52 Welding Head is suitable for 

use with both diode and solid-state laser machines and offers modular design, enabling 

customers to customize the package to meet their specific requirements. The basic version is 

cost-effective, while the complete system, with its full process monitoring features, is ideal 

for fully automated production processes. The welding system features a linear oscillation 

pattern with a nominal spot size of 0.4mm, fiber size of 200μm, and lens size of 300μm. To 

ensure consistent material surface quality, the workpieces were polished with sandpaper and 

cleaned with absolute ethyl alcohol. The parameters were selected to produce an overall 

porosity range of 1-6%. The nominal spot size was 0.4mm, and no shielding gas was used. 

To assess weld cracks, X-ray images and metallography of the top surface and cross-sectional 

metallography of the samples were analyzed. The formation of porosity was eliminated when 

the welding speed was higher than 5.5m/min. Table 11 presents an experimental plan for 

YW52-PRECITEC welding head overlap joint. The table contains several welding 

parameters such as laser power, travel speed, focal distance, oscillation amplitude, oscillation 

frequency, maximum pore diameter, porosity amount, ISO 13919-2 criteria, and crack index. 
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The laser power used in this experiment ranges from 4 kW to 8.25 kW. Higher laser power 

is expected to increase the heat input and penetration depth of the weld. Weld #44 has the 

highest laser power of 8.25 kW, while weld #62 has the lowest power of 4 kW. Travel speed 

is another critical parameter that determines the quality of the weld. It is the rate at which the 

laser beam moves along the joint during welding. The travel speed used in this experiment 

ranges from 4.5 m/min to 8 m/min. Weld #62 has the lowest travel speed of 4.5 m/min, while 

weld #51 has the highest speed of 8 m/min. Focal distance is the distance between the laser 

source and the workpiece surface. It affects the spot size and the energy density of the laser 

beam at the workpiece surface. The focal distance used in this experiment is fixed at 12 mm 

for all welds. Oscillation amplitude and frequency are additional parameters used to enhance 

the welding quality. Oscillation amplitude refers to the maximum distance of the welding 

head's lateral movement during welding. The amplitude used in this experiment ranges from 

0.2 mm to 1 mm. Oscillation frequency refers to the number of times per second that the 

welding head oscillates during welding. The frequency used in this experiment ranges from 

200 Hz to 500 Hz. Maximum pore diameter and porosity amount are critical factors that 

affect the weld's quality. Welds with high porosity amounts may lead to reduced strength, 

which could cause the weld to fail under load. The ISO 13919-2 criteria provide a measure 

of the weld's quality, and the crack index indicates the tendency of the weld to form cracks 

(Figure 47). Weld #43 has the lowest porosity amount of 0.17%, while weld #62 has the 

highest porosity amount of 16.16%. In summary, the data provided in Table 28 provides an 

experimental plan for YW52-PRECITEC welding head overlap joint. The experimental plan 

considers critical parameters such as laser power, travel speed, focal distance, oscillation 

amplitude, oscillation frequency, maximum pore diameter, porosity amount, ISO 13919-2 

criteria, and crack index to achieve the desired welding quality. The results obtained from 

the experimentation showed that the porosity formation was significantly impacted by the 

welding speed and defocus distance. At welding speeds higher than 5.5m/min, the formation 

of porosity was eliminated, and majority of the welds at speeds higher than 6m/min passed 

class B and C of ISO13919. In fact, ISO 13919-1:2016 is an international standard that 

provides guidelines for arc welding of metallic materials. It establishes general requirements 
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for quality, such as the formation of acceptable welds, the use of proper welding techniques 

and equipment, and the selection of appropriate filler materials. It also includes specific 

requirements for welds made by the manual, semi-automatic and automatic processes. Class 

B and C of ISO13919 refer to the quality level of the weld, where Class B welds are suitable 

for critical applications requiring high quality, and Class C welds are suitable for general 

applications where lower quality is acceptable. Additionally, a positive defocus distance of 

+12 showed less tendency to form porosity. The results also showed that the welding power 

had a significant impact on the quality of the welds, with majority of the welds at a power 

higher than 6kW passing class B and C of ISO13919. Moreover, the heat input was adjusted 

in such a way as to obtain optimum penetration depth, and it did not show any significant 

correlation with the porosity fraction. These findings highlight the importance of carefully 

controlling the welding parameters in order to produce high-quality welds with minimal 

porosity formation. 

Table 28. Experimental planification YW52-PRECITEC welding head overlap joint. 

Weld 

# 

Laser 

power 

(kW) 

Travel 

speed 

(m/min) 

Focal 

distance 

(mm) 

Oscillation 

amplitude 

(mm) 

Oscilation 

Frequency 

(Hz) 

ɸmaximum 

pore (mm) 

Porosity 

amount 

(%) 

ISO 

13919-

2 

Crack 

index 

17 5.5 5 12 1 500 1.22 4.40% 
Fail 

all 
0.03 

20 5.5 5 12 0.5 500 1.34 5.65% 
Fail 

all 
0.11 

36 6 6 12 1 400 0.98 0.21% 
pass 

D 
0 

41 6.75 6.5 12 1 400 0 0.00% 
pass 

B 
0.06 

43 7 7 12 1 400 0.58 0.17% 
pass 

B 
0.04 

44 8.25 8 12 1 400 0 0.00% 
pass 

B 
0.12 

48 6 6.5 12 0.5 400 0.51 0.22% 
pass 

B 
0.01 

49 6 6.5 12 0.2 400 0.8 0.61% 
pass 

C 
0.05 

50 6.5 7 12 0.2 400 0.66 0.50% 
pass 

C 
0.06 
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51 7.5 8 12 0.2 400 0 0.00% 
pass 

B 
0.16 

21 5.5 5 12 0.5 200 1.29 3.67% 
Fail 

all 
0.01 

22 5.5 5 12 0.8 200 0.85 1.88% 
pass 

D 
0.01 

62 4 4.5 6 1 500 1.64 16.16% 
Fail 

all 
0 

59 5 6 6 1 400 1.34 2.63% 
Fail 

all 
0.01 

52 5.5 6 6 1 400 1.1 0.62% 
pass 

C 
0.05 

 

 

 

Figure 47. X-ray analysis for Weld top surface- no 

shielding gas 

4.10.6 Microstructure Analysis  

To further expand on the findings, it is important to note that the microstructural 

analysis and micro-hardness tests helped in identifying the influence of the stitch weld shape, 

depth penetration, and weld geometry on the mechanical properties of the welded joints. 

Additionally, the chemical composition analysis provided valuable insight into the 

microstructure and chemical phases present in the welded region, further supporting the 
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observations from the microstructural analysis and hardness tests. As seen in Figure 48 (a-

d), increasing the input parameters such as power, speed, and amplitude led to an increase in 

the depth of penetration, from 2.2mm to 2.8mm. This increase in depth of penetration could 

potentially result in a higher sensitivity to crack formation, which should be considered in 

future experiments. It is noteworthy that the frequency for all the tests was adjusted to 400Hz, 

which could have played a role in the results obtained. Despite no cracks being observed 

under optical microscopy, suspicions of cracks were revealed through x-ray images, 

indicating the need for further investigation in this regard. 

 

(a) (b) (c) (d) 

 

Figure 48. Microstructure analysis 

4.10.7 Statistical analysis Plan C. Crack index and porosity amount 

The following equations provide a regression equation and its interpretation for the 

porosity amount. These equations present a rough approximation of the relationship 

between the independent and dependent variables, which can be represented graphically. 

Figure 49 and Figure 50 present the regression between Laser Power and Maximum Pore 

(mm), and Travel Speed (m/min) and Maximum Pore (mm), respectively. These graphs 

provide visual representation of the relationship between the independent and dependent 
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variables, offering insights into the impact of these parameters on porosity formation in 

laser welding. According to Figure 49, In our comprehensive examination of laser welding 

dynamics, regression analysis shed light on a crucial relationship: as laser power increases, 

there's a consistent decrease in the maximum pore size, as quantified by the equation 

Y=7.512−1.802x. This inverse correlation not only underscores the significance of laser 

power in the welding process but also offers a tangible metric for its impact. An adjusted 

R-squared value of 81.01% further solidifies the robustness of this relationship, suggesting 

that a large portion of the variability in pore size can be attributed to changes in laser power. 

This insight holds profound implications for the welding industry, implying that careful 

calibration of laser power can lead to enhanced weld quality by mitigating porosity—a 

recurrent challenge in the field. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 49. Regression for Laser power vs maximum pore (mm) 

According to Figure 50, In the realm of laser welding, our analysis spotlighted a pivotal 

relationship between travel speed and the maximum pore size. The derived regression 

equation Y=7.588−1.773X indicates a pronounced inverse correlation, suggesting that as the 

travel speed increases, there's a consistent decrement in the maximum pore size. This insight 

is further bolstered by an adjusted R-squared value of 71.10%, reflecting that travel speed 

can account for a significant portion of the variability observed in pore size. Such findings 

emphasize the critical role of travel speed in the welding process, with faster speeds 

potentially yielding superior weld quality through diminished porosity. This discovery offers 

a valuable avenue for industry professionals to refine their welding techniques and achieve 

enhanced outcomes. 
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(a) 

 
(b) 

 

(c) 

 

(d) 

Figure 50. Regression for travel speed vs. maximum pore (mm) 

 

In the comprehensive visualization using a Bubble Plot, the relationship between laser power 

(4-7 kW) and travel speed (4.5-7 m/min) was distinctly mapped (Figure 51). Each bubble's 

position on the plot elucidates the interplay between laser power and travel speed, while its 

size could represent an additional parameter, such as the frequency of specific combinations 

or perhaps the resulting weld quality. Such a plot can reveal patterns or clusters, indicating 

optimal combinations of laser power and travel speed that yield desired outcomes. By 

studying the distribution and size of the bubbles, we can gain insights into the synergistic 
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effects of laser power and travel speed, potentially unveiling zones of efficiency or regions 

of concern in the welding process. 

 

 

Figure 51. Bubble plot of laser power (Kw) vs Travel speed (m/min) 

4.11 CONTOUR PLOT 

In statistical analysis, contour lines can be used to represent the relationship between 

two variables and the frequency of occurrence of a third variable. For example, in a three-

dimensional plot of welding process parameters (such as laser power, travel speed, and 

penetration depth), contour lines can indicate the constant levels of porosity or crack index 

for a given set of parameters. In this way, contour lines can provide insight into the optimal 

process parameter combinations for reducing porosity or preventing cracks in the welded 

joint. In laser welding, contour lines can be used to visualize and interpret the effect of 

process parameters on the weld quality and identify the optimal parameter combinations for 

specific applications. A contour line, in mathematics and cartography, refers to a curve that 

connects points of equal value for a given function of two variables. It is essentially a cross-

section of the three-dimensional representation of the function that lies parallel to the (x,y) 

plane. In topographical maps, contour lines join points of equal elevation above a reference 

level, such as mean sea level, and illustrate valleys, hills, and the slope of terrain. The 
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contour interval, which is the difference in elevation between successive contour lines, 

provides information on the steepness of slopes. The gradient of the function is always 

perpendicular to the contour lines, and closer lines indicate steeper variations. The concept 

of a level set is a generalization of contour lines for functions with multiple variables. 

Contour lines can be traced on a visible three-dimensional model or interpolated from 

estimated surface elevations, with the method of interpolation affecting the reliability of the 

isolines and their representation of slope, peaks, and pits. The arrangement of contour lines 

allows for the inference of the relative gradient of a parameter and its estimation at specific 

locations. According to Figure 52, the contour plot provides an insightful visualization of 

the intricate relationship between the Crack Index, Maximum Pore size, and the associated 

process parameters (Laser Power, Travel Speed, Focal distance, and Oscillation frequency) 

in the context of laser welding processes. On the x-axis, the Crack Index serves as an 

indicator of the weld's structural integrity, while the y-axis represents the Maximum Pore 

size, a key determinant of weld quality. The contours on the plot capture varying Laser 

Power levels, offering a third dimension of data. 

• Interplay laser power (figure 52a): 

A preliminary observation would be to understand how the Crack Index and Maximum Pore 

size interact. Regions, where contours are closely spaced, might indicate rapid changes in 

Laser Power as either Crack Index or Pore Size changes. Conversely, widely spaced 

contours suggest that Laser Power changes more gradually across those regions. The 

contour lines, each representing a specific Laser Power level, can be studied to determine 

optimal settings. For example, if there's a particular range of Laser Power that's ideal for 

welding (neither too low nor too high), the associated contour can be traced to understand 

the combinations of Crack Index and Pore Size that yield that power. It's essential to identify 

any "hotspots" or "cold spots" on the plot—regions where Laser Power is consistently high 

or low, respectively. These zones can provide insights into particularly challenging or 

favorable combinations of Crack Index and Pore Size. Understanding this plot has direct 

practical implications. For instance, if a specific region indicates a high Crack Index and 

large Pore Size but requires low Laser Power, it might suggest a need to adjust the welding 
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process or technique to mitigate these unfavorable outcomes. While the contour plot 

provides a wealth of information, further analyses, perhaps using advanced statistical or 

machine learning techniques, could delve deeper into predicting Laser Power based on the 

other two parameters, or even exploring causal relationships. In conclusion, the contour plot 

serves as a comprehensive visual tool, capturing the complex interdependencies between 

the Crack Index, Maximum Pore size, and Laser Power. Through careful analysis, it offers 

valuable insights that can guide optimization strategies in the laser welding process. 

• Interplay travel speed (figure 52b): 

The contour plot vividly illustrates the interplay between the crack index, maximum pore 

size, and travel speed in the context of laser welding. With the crack index represented on 

the x-axis and the maximum pore size on the y-axis, the contours capture various levels of 

travel speed. The relationship between the crack index and maximum pore size can be 

directly observed from the distribution of data points. If data points cluster in specific 

regions of the plot, it indicates a strong association between certain crack index values and 

pore sizes. The contours represent constant travel speeds. By tracing these contours, one 

can infer how travel speed varies with changes in both crack index and pore size. Closely 

spaced contours suggest rapid changes in travel speed across small changes in crack index 

or pore size. Widely spaced contours indicate regions where travel speed remains relatively 

constant despite variations in the crack index or pore size. Look for regions where the 

contours are particularly dense or sparse. Dense regions might indicate sensitive areas where 

slight changes in crack index or pore size lead to significant shifts in required travel speed. 

Sparse areas could suggest stability in the process parameters. Given the critical nature of 

crack index and pore size in determining weld quality, understanding their relationship with 

travel speed is invaluable. If certain combinations of crack index and pore size consistently 

result in optimal travel speeds (as indicated by specific contour levels), these combinations 

can be targeted in welding processes for enhanced outcomes. The contour plot serves as a 

roadmap for laser welding practitioners. By navigating the interdependencies between crack 

index, pore size, and travel speed, welders and engineers can fine-tune their processes. For 
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example, if aiming for a specific travel speed is crucial for a particular application, this plot 

can guide the necessary adjustments in crack index and pore size to achieve that speed. 

• Interplay focal distance (figure 52c): 

The contour plot visualizes the intricate relationship between the Crack Index, Maximum 

Pore Size, and Focal Distance in the context of laser welding processes. The x-axis 

represents the Crack Index, while the y-axis corresponds to the Maximum Pore Size in 

millimeters. A glance at the plot reveals how these two parameters interact and influence 

the focal distance. The contours represent constant values of the Focal Distance in 

millimeters. This is the distance at which the laser beam is focused, and it plays a crucial 

role in determining the quality and characteristics of the weld. By examining the contour 

lines, one can observe regions where the Focal Distance remains relatively constant, 

indicating specific combinations of Crack Index and Maximum Pore Size that lead to stable 

focusing conditions. Conversely, areas where contour lines are closely spaced might 

indicate rapid changes in the Focal Distance for slight variations in the other two parameters, 

highlighting sensitive zones in the process. For practitioners, understanding these 

interactions is invaluable. For instance, if there's a target Focal Distance that's known to 

yield optimal welding results, this contour plot can guide the selection of Crack Index and 

Maximum Pore Size to achieve that specific focal point. Conversely, if certain Crack Index 

or Pore Size values are observed during a welding process, this plot can predict the resulting 

Focal Distance, allowing for adjustments in real-time. If there are areas on the contour plot 

where the Focal Distance varies drastically over a small range of Crack Index or Maximum 

Pore Size, it might indicate regions of instability in the welding process. Such insights can 

guide further investigations or optimizations to enhance the overall weld quality. In 

summary, this contour plot offers a rich visualization of the complex interplay between three 

pivotal parameters in laser welding. By understanding the depicted relationships, 

professionals can make more informed decisions, leading to improved weld characteristics 

and outcomes. 
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• Interplay oscillation amplitude (figure 52d): 

The contour plot offers an insightful visual exploration into the relationship between the 

crack index, maximum pore size, and oscillation amplitude in the context of laser welding. 

The x-axis, representing the crack index, and the y-axis, depicting the maximum pore size, 

intersect to illustrate regions of varying oscillation amplitudes, as delineated by the contour 

lines. The positioning and density of the contour lines might indicate how changes in the 

crack index affect the maximum pore size, and vice versa. For instance, closely spaced 

contour lines suggest regions where oscillation amplitude varies rapidly, pointing to 

sensitive areas in the process parameters. The contour values represent different oscillation 

amplitudes. Regions with higher amplitude values might suggest combinations of crack 

index and pore size that result in more pronounced oscillations during welding. Conversely, 

lower amplitude values could signify stable regions with minimal oscillations. Areas with 

densely packed contours can signal rapid changes in oscillation amplitude and might be 

zones of concern or require closer attention. On the other hand, areas with widely spaced 

contours may represent regions of stability, where variations in crack index or pore size 

have minimal impact on oscillation amplitude. Understanding these relationships is pivotal 

for optimizing the welding process. For instance, if a particular combination of crack index 

and pore size results in high oscillation amplitude, it may necessitate adjustments in the 

welding parameters or technique to maintain product quality and integrity. In conclusion, 

this contour plot serves as a valuable tool for understanding the intricate relationships 

between the crack index, maximum pore size, and oscillation amplitude in laser welding. 

By identifying patterns and regions of interest, welding professionals can make informed 

decisions to optimize the process and achieve desired outcomes. The presented contour plot 

provides a nuanced visualization of the relationship between the Crack Index, Maximum 

Pore Size, and Oscillation Frequency in the context of a specific process. On the horizontal 

axis, we have the Crack Index, while the vertical axis represents the Maximum Pore Size 

(in mm). The contours, depicted with varying intensities or colors, represent different 

oscillation frequencies (in Hz). 
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• Interplay oscillation frequency (figure 52e): 

The positioning of the contour lines can give insights into how oscillation frequency varies 

with changes in both the Crack Index and Pore Size. For instance, closely spaced contours 

in a specific region would indicate rapid changes in oscillation frequency for small changes 

in either the Crack Index or Pore Size. Dense contour regions might signify areas where 

specific combinations of Crack Index and Pore Size lead to higher or lower oscillation 

frequencies. Such regions could be of particular interest, as they might represent optimal or 

sub-optimal operating conditions. The gradient of the oscillation frequency can be inferred 

from the orientation of the contours. If the contours are more vertical, it suggests that the 

oscillation frequency is more sensitive to changes in the Crack Index. Conversely, 

horizontal contours would indicate sensitivity to changes in Pore Size. Understanding the 

relationship between these three parameters is crucial. For instance, if there's an area where 

the oscillation frequency remains stable (flat contour lines) across a range of Crack Index 

and Pore Size values, this might be an ideal operating zone. Conversely, regions with steep 

gradients might require careful control of process parameters to avoid rapid changes in 

oscillation frequency. While the contour plot provides a snapshot of the current 

understanding, further experiments or simulations might help refine the contours, especially 

in regions with high variability or where data might be sparse. In summary, the contour plot 

offers a holistic view of the interdependencies between the Crack Index, Maximum Pore 

Size, and Oscillation Frequency. Such insights are invaluable for process optimization, 

quality control, and understanding underlying physical phenomena. 
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(a) (b) 

 
(c) 

 
(d) 

 
(e) 

Figure 52. Contour plot for process parameters 

 

4.12 CONCLUSION  

In conclusion, our research delved into how laser welding parameters namely power, 

speed, and defocus distance influence the porosity fraction and crack sensitivity in welded 

joints. Here are the key findings: 

• This research examined the influence of laser welding parameters (power, speed, 

defocus distance) on porosity fraction and crack sensitivity in welded joints. The 
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highest porosity was noted at a speed of 5m/min, and the lowest at a defocus distance 

of +12. 

• Regression analysis revealed a positive correlation between laser power and porosity 

fraction; however, travel speed had no significant effect. The weld geometry, stitch 

weld shape, and penetration depth significantly influenced the mechanical properties 

of the joints. 

• Porosity in laser welding can result from a small spot size or low travel speed. A large 

spot size can lead to hot cracking in autogenous laser welding, but wobbling can 

reduce porosity by enlarging the weld pool. 

• In overlap joints, the interface width should be 1.6 times the top sheet's thickness. 

The load case in single-lap shear specimens is a mix of flexion/tension and depends 

on overlap length and sheet thickness. Finite element analysis followed by lap-shear 

tensile testing can help determine optimal conditions. 

• The study had limitations like a small sample size and a narrow range of tested 

variables. Future research could benefit from a broader experiment scope, alternative 

welding techniques, and further analysis on the impact of interface width and overlap 

length on mechanical properties. 
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5.1 RÉSUMÉ EN FRANÇAIS DU CINQUIÈME ARTICLE 

Dans le cadre de l'avancement des techniques de soudage au laser, particulièrement 

pour les alliages d'aluminium dans l'industrie automobile, cette étude introduit une 

approche novatrice pour la surveillance en temps réel de la porosité à l'aide de 

l'apprentissage automatique. En examinant la morphologie 3D du trou de clé de 

soudure, la recherche vise à identifier et à atténuer la porosité, un défaut courant qui 

compromet l'intégrité mécanique des soudures. Utilisant un modèle de Random Forest 

(RF), entraîné sur un vaste ensemble de données d'images de trous de clé avec des 

niveaux de porosité associés, l'étude fournit un cadre prédictif pour évaluer la qualité 

de la soudure en temps réel. La méthodologie implique la capture de données du bain 

de soudure en cours de processus par imagerie coaxiale à haute vitesse, facilitant un 

mécanisme d'ajustement innovant en temps réel pour optimiser les paramètres de 

soudage et réduire la porosité. Malgré une précision significative dans la détection de 

mailto:ahmad.aminzadeh@uqar.ca
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la porosité, l'étude reconnaît les complexités de prédiction des pores micro et sous la 

surface. Les résultats soulignent l'efficacité du modèle RF dans la surveillance en temps 

réel de la porosité et mettent en lumière la relation nuancée entre les dynamiques de 

trou de clé et la formation de porosité, contribuant des perspectives précieuses au 

développement continu des technologies de soudage intelligentes. Cette recherche 

marque un pas en avant dans l'intégration de l'apprentissage automatique avec le 

contrôle des processus de soudage, promettant des améliorations dans la qualité et 

l'efficacité des opérations de soudage au laser dans le cadre de l'Industrie 4.0. 

5.2 CONTRIBUTIONS 

Dans l'article "Real-time porosity monitoring of aluminum laser welding using machine 

learning based on keyhole 3D morphology characteristics", les contributions scientifiques 

spécifiques et notables d'Ahmad Aminzadeh englobent: 

Innovation dans la surveillance de la porosité : Ahmad Aminzadeh a conceptualisé 

et développé une méthodologie novatrice pour le suivi de la porosité en temps réel 

dans le soudage laser de l'aluminium, se basant sur l'analyse des caractéristiques 

morphologiques 3D du trou de serrure. Cette approche représente une avancée 

significative en permettant une détection précise et immédiate de la porosité pendant 

le processus de soudage. 

Intégration de l'apprentissage automatique : Il a conçu et mis en œuvre un système 

basé sur l'apprentissage automatique, en utilisant spécifiquement l'algorithme de la 

forêt aléatoire (Random Forest), pour analyser les données visuelles et géométriques 

collectées et prédire la présence de porosité. Cela démontre une application pratique 

et efficace de l'IA dans l'amélioration de la qualité du soudage. 

Création de supports visuels et analyse des données : Ahmad Aminzadeh a été 

responsable de la collecte, du traitement et de l'analyse des données, ainsi que de la 
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création des tableaux, figures et graphiques qui illustrent clairement les résultats et 

les découvertes de l'étude, rendant l'information accessible et compréhensible. 

Méthodologie expérimentale rigoureuse : Il a établi une méthodologie 

expérimentale solide, y compris la sélection des matériaux, la configuration des 

expériences de soudage laser, et la collecte des données de manière structurée pour 

garantir la fiabilité et la validité des résultats. 

Collaboration et leadership : Bien qu'il ait bénéficié des conseils et de l'expertise 

technique de Noureddine Barka, Abderrazak El Ouafi et de l'équipe du CNRC 

(Fatemeh Mirakhorli, François Nadeau, Siyu Tu et Marc-Olivier Gagné), c'est Ahmad 

Aminzadeh qui a dirigé la recherche, prouvant ses compétences en gestion de projet 

et en leadership scientifique. 

Les efforts d'Ahmad Aminzadeh dans la conduite de cette recherche ont abouti à une 

contribution significative dans le domaine du soudage laser, en particulier dans l'optimisation 

de la qualité du soudage à travers la technologie de surveillance innovante basée sur 

l'apprentissage automatique, démontrant ainsi son expertise et son impact dans le domaine. 

5.3 TITRE DU CINQUIÈME ARTICLE 

 Real-time porosity monitoring of aluminum laser welding using machine learning 

based on keyhole 3D morphology characteristics 

5.4 ABSTRACT 

In the context of advancing laser welding techniques, particularly for aluminum alloys 

in the automotive industry, this study introduces a novel approach to real-time porosity 

monitoring using machine learning. By examining the 3D morphology of the welding 

keyhole, the research aims to identify and mitigate porosity, a prevalent defect that 

undermines the mechanical integrity of welds. Utilizing a Random Forest (RF) model, trained 
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on an extensive dataset of keyhole images with associated porosity levels, the study provides 

a predictive framework for assessing weld quality in real-time. The methodology involves 

capturing in-process weld-pool data through high-speed coaxial imaging, facilitating an 

innovative real-time adjustment mechanism to optimize welding parameters and reduce 

porosity. Despite achieving significant accuracy in porosity detection, the study 

acknowledges the complexities of predicting micro and deep subsurface pores. The findings 

underscore the efficacy of the RF model in real-time porosity monitoring and highlight the 

nuanced relationship between keyhole dynamics and porosity formation, contributing 

valuable insights to the ongoing development of intelligent welding technologies. This 

research marks a step forward in integrating machine learning with welding process control, 

promising enhancements in the quality and efficiency of laser welding operations within the 

framework of Industry 4.0. 

5.5 NOMENCLATURE 

ISO International Organization for 

Standardization 

SVM Support Vector Machine/ Machine à 

vecteurs de support 

PCA Principal Component Analysis  

TWBs Tailor Welded Blanks  

LWBs    Laser welded Blanks  

CAD Computer Aided Design 

ANOVA Analysis of Variance 

DMAIC Design Measure Analyze Improve Control 
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CAM   Computer Aided Manufacturing 

CAI     Computer Aided Inspection 

QA Quality Assurance 

P Power 

V Welding Speed 

A Amplitude 

CNN Convolutional Neural Network 

R2 R squared, coefficient of determination 

ML Machine Learning 

Random Forest RF 

CPU Central processing unit 

GPU Graphics Processing Units  

Inline coherent imaging (ICI) 

Region Of Interests ROI 

Mean Squared Error MSE 

Out Of Bag OOB 

MDA Mean Decrease Accuracy 

5.6 INTRODUCTION  

The contemporary manufacturing scenario is witnessing an escalating demand for the 

fabrication of superior-quality mechanical components characterized by minimal defects and 
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abbreviated lead times, while concurrently amplifying the manufacturing tempo. The 

adoption of deformation-centric manufacturing methodologies, notably laser-driven 

processes, has emerged as indispensably crucial in catering to these requisites. Laser-induced 

processes, encompassing laser welding, laser cutting, and laser drilling, have acquired 

extensive endorsement across a plethora of industrial domains, prominently within the 

automotive sector, courtesy of their inherent advantages including elevated precision, 

swiftness, and adaptability. These attributes render laser processes as an exemplary choice 

for the production of high-caliber mechanical components. Moreover, the versatility of laser 

processes is further exemplified by their capacity to cater to a diverse spectrum of materials, 

including metals, plastics, ceramics, and composites, thereby broadening their applicability 

across various applications. Within the automotive industry, laser welding and cutting 

techniques are ubiquitously employed owing to their high precision, speed, and flexibility, 

which are instrumental in fabricating high-quality mechanical components. The engagement 

with metal manufacturing, particularly concerning aluminum alloys, is imperative for 

attaining the desired levels of strength, stiffness, and enduring durability [245–249]. 

Numerous investigations have delved into the exploration of process parameters and their 

consequent impact on product quality with the aim to optimize metal manufacturing for 

enhanced efficiency and quality. These advancements are pivotal in steering towards the 

realization of zero-defect manufacturing, thereby significantly reducing lead times across 

various industrial sectors. Through a meticulous analysis and optimization of process 

parameters, these studies not only foster a profound understanding of the intricacies 

underlying metal manufacturing processes but also pave the way for substantial 

improvements in operational efficiency and product quality. The reverberations of these 

advancements extend beyond merely achieving manufacturing excellence and play a crucial 

role in bolstering the competitive edge of industries in a rapidly evolving global 

manufacturing landscape [16,46,250–252]. Over recent decades, an escalating demand for 

lightweight structures has been observed, engendering an amplified utilization of aluminum 

alloys (AA) within the automotive sector. The exceptional attributes of AA, encompassing 

low density, commendable corrosion resistance, high specific strength, appealing aesthetic, 
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and inherent recyclability, have significantly propelled their burgeoning demand. 

Concomitant with the widespread deployment of AA, scholarly endeavors have been 

embarked upon to devise diversified joining techniques for this material. However, the 

domain of aluminum laser welding presents a formidable challenge, primarily attributed to 

the suboptimal welding reliability of aluminum alloys when juxtaposed with other industrial 

metals such as steel. This predicament predominantly emanates from their distinct physical 

properties, notably the high thermal conductivity, elevated reflectivity, and low viscosity. 

These inherent properties of aluminum alloys necessitate meticulous process control and 

advanced technological interventions to surmount the challenges poised in laser welding 

applications, thereby ensuring the structural integrity and long-term performance of the 

resultant welded joints [65]. Aluminum alloys are bifurcated into two predominant 

categories: Non heat-treatable and heat treatable. The initial tensile strength of non-heat-

treatable alloys is principally dictated by the hardening effect imbued by alloying elements 

such as silicon, iron, manganese, and magnesium. These non-heat-treatable alloys are 

predominantly encountered in the 1xxx, 3xxx, 4xxx, and 5xxx series. Conversely, the heat-

treatable alloys are chiefly located within the 2xxx, 6xxx, and 7xxx alloy series. Among 

these, the 7xxx series alloys are characterized by the inclusion of zinc, constituting between 

4 and 8%, and magnesium, constituting between 1 and 3%. This categorization not only 

elucidates the inherent structural distinctions but also underscores the varying mechanical 

properties and potential applications of these aluminum alloys within the industrial 

landscape. The meticulous understanding and exploitation of these alloy series, in accordance 

with their distinct mechanical and thermal properties, are instrumental in leveraging 

aluminum alloys for diverse applications, especially in scenarios demanding superior 

strength-to-weight ratios and corrosion resistance [66]. The increasing adoption of aluminum 

alloys, however, also beckons a concomitant need for advanced manufacturing and joining 

techniques to ensure the durability and reliability of the assembled structures. This, in turn, 

instigates a fertile ground for academic and industrial research aimed at addressing the 

challenges and harnessing the opportunities presented by the widespread utilization of 

aluminum alloys in automotive applications [253]. The burgeoning demand for lightweight 
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structures within the automotive domain has catalyzed the adoption of Aluminum Alloys 

(AA) due to their notable attributes such as low density and high specific strength [254] This 

trend has ignited a slew of research initiatives aimed at devising various joining techniques 

for AA [255]. Despite the promise, aluminum laser welding exhibits challenges primarily 

attributed to the distinctive physical properties of AA like high thermal conductivity and 

reflectivity when compared to other industrial metals like steel [65] The categorization of 

aluminum alloys into non-heat treatable and heat treatable, each with their unique series and 

alloying elements, adds a layer of complexity in handling AA [66]. The trajectory of 

employing laser welding techniques for amalgamating AA has been upward owing to its 

unique advantages such as high-power density leading to a narrow fusion zone and heat-

affected zone [253] [256], and high weld accessibility for complex geometries [254]. Diverse 

studies, including those by Janasekaran et al. [256] and Beiranvand et al. [257], have explored 

the optimization of process parameters and the impact of alloy composition on weld quality, 

proposing real-time monitoring methodologies to refine the welding process. Various studies 

have explored the optimization of process parameters and the impact of alloy composition 

on weld quality, proposing real-time monitoring methodologies to enhance the welding 

process [258] Aminzadeh et al. [46–49] delved into examining the ramifications of key 

process parameters on aluminum laser welding, offering a real-time monitoring approach to 

mitigate defects like undercut, porosity, and cracking. Research endeavours have extensively 

probed into understanding defect formation, particularly porosity, which detrimentally 

impacts joint quality. Techniques like high-speed imaging and X-ray transmission have been 

employed to elucidate the dynamics of keyhole and molten pool during welding, shedding 

light on porosity formation mechanisms [260] Real-time monitoring during welding 

processes, segmented into pre-processing scanning, in-process monitoring, and post-process 

diagnosis [261] has been emphasized as a pivotal stride towards defect mitigation and quality 

assurance. The different stages of welding monitoring, depicted in Figure 53 [117], 

encompass a pre-processing scanning stage chiefly aimed at addressing the seam tracking 

challenge, where the joint gap between workpieces is meticulously scanned to ascertain the 

alignment of the laser beam spot with the gap's center, thereby facilitating the formation of 
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reliable joints. Transitioning to the in-process monitoring stage, the focus shifts to the real-

time observation of welding characteristics including the keyhole, molten pool, plasma, and 

spatters, among others, employing a variety of equipment. This stage enables the prediction 

and adjustment of the welded joint's quality by analyzing the dynamic alterations in these 

characteristics, leveraging advanced AI-based methodologies for enhanced accuracy and 

real-time modifications. 

 
 

(a) (b) 

Figure 53. Flowchart for real-time monitoring of laser welding [117] 

Recent studies by Xu et al. have illuminated those significant fluctuations in keyhole 

formation during laser welding are a critical factor contributing to the emergence of bubbles 

and pores [262]. However, a holistic online porosity monitoring framework for laser welding 

processes remains elusive in existing literature. A novel endeavor to address this lacuna 

manifested in the proposal of a deep-learning-based in-process porosity monitoring scheme. 

This scheme employs a Convolutional Neural Network (CNN) model with an automatic 

feature-learning capability to extract salient features from high-dimensional weld-pool image 

data, captured using a high-speed camera [263]. The laser welding technique, renowned for 

its high energy density and narrow heat affected zone, has ascended as a favorable alternative 

to traditional material joining processes [264]. Yet, the integrity of welded components could 

be undermined by defects induced during the laser-induced material melting-solidification 

sequence, such as porosity, cracking, lack of fusion, and incomplete penetration. These 



 

191 

adversities necessitate a trial-and-error approach for process parameter design and invoke the 

deployment of expensive post-process metrology for quality inspection, highlighting the 

imperative for real-time process-level quality monitoring schemes in laser welding processes. 

The lack of online process surveillance could obscure malfunctions, accruing significant 

costs in the process. The distinctive attributes of aluminum, alongside real-time monitoring 

challenges such as the deployment of diverse monitoring tools, expansive IT infrastructures, 

reporting dilemmas, and network and connectivity inadequacies, represent the pragmatic 

challenges frequently confronted by modern industries. The incorporation of industrial lasers 

in welding applications has been extensively acknowledged for offering substantial 

advantages, embodying a confluence of speed, precision, robustness, and accessibility that 

fosters time and cost efficiencies in serial production, alongside facilitating more efficacious 

product designs. The literature review underscores a discernible void in research concerning 

the development of an automated real-time monitoring system for overlap aluminum laser 

welding that melds image processing and machine learning techniques for the analysis of 

keyhole features. This study endeavors to bridge this gap by proposing a classification-based 

in-process porosity monitoring scheme for aluminum laser welding. The envisaged 

monitoring system leverages X-ray analysis and high-speed camera technology to 

prognosticate the probability of porosity as an objective function for classification. This real-

time inspection methodology is capable of autonomously rendering decisions on the pass or 

fail estimation of welded components, thus mitigating the adverse impact on the conformity 

of parts and the labor capacity of the machine and value chain in the automobile industry. 

The image processing strategy encompasses the automatic detection of regions of interest 

(ROI) by a high-speed camera (720 frames) and ImageJ software, which are harnessed as 

inputs to delineate features such as keyhole area and geometrical characterization. A 

Convolutional Neural Network (CNN) model with automatic feature-learning capacity is 

then deployed to extract features from the high-dimensional weld-pool image data. 

Additionally, X-ray technology is utilized to validate and inspect the porosity recognition 

and size of defects. A Random Forest (RF) classification model is trained to detect the 

occurrence of porosity in keyhole laser welding of 6061 Aluminum alloy, achieving a 
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classification accuracy of nearly 80%. This attests that the RF-based monitoring scheme can 

accurately forecast the occurrence of porosity. Finally, an intelligent machine learning-based 

model is propounded which integrates computer-integrated manufacturing (CIM) and 

artificial intelligence (AI) for data-enabled adaptability throughout the production cycle, 

from product design to process scheduling, control, optimization, and product quality 

assurance. This manufacturing paradigm embraces techniques such as smart scheduling and 

predictive maintenance which are indispensable for real-time monitoring. Figure 54 

illustrates the proposed monitoring chart. 

 

 

Figure 54. Propose Monitoring chart 
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5.7 MATERIALS AND METHODS 

5.7.1 Experimental procedure 

Laser Welding (LW) technology has emerged as a preferred methodology for 

permanent connections in industrial applications, attributed to its superior productivity, 

versatility, and minimized distortion among other advantages, as compared to traditional 

welding methods [265].  However, the process is complex with the quality of the joint being 

influenced by various factors including microstructural defects and changes in laser beam 

properties. Ensuring joint quality is critical for industrial utilization, necessitating 

comprehensive quality monitoring throughout the welding process [266].  Aluminum, 

although lightweight and having a higher strength-to-weight ratio compared to steel, presents 

challenges in laser welding. It is prone to several weld defects such as porosity, cracking, and 

inclusions, which are influenced by various process parameters [67]. Based on recent 

research [55,72,73], has graphically outlined these parameters in Ishikawa's diagram (Figure 

55), highlighting some as more impactful and controllable through artificial intelligence 

[74,75]. The detection and analysis of porosity, a common defect in aluminum welding, 

require a deep understanding of its root causes, which could range from improper material 

cleaning to high heat input during welding. Image recognition techniques, employing high-

speed cameras and X-ray imaging systems, have proven to be effective tools for real-time 

monitoring of the welding process, facilitating the analysis of keyhole and molten pool 

dynamics leading to porosity formation. Additionally, real-time monitoring of process 

variables such as laser power and welding speed allows for in-process adjustments to 

minimize porosity risk. In summary, effective porosity detection and analysis in aluminum 

welding are crucial for maintaining quality control in industrial manufacturing. Employing a 

combination of image recognition and real-time monitoring techniques can significantly aid 

in identifying the root causes of porosity, enabling timely adjustments to the welding process, 

thus mitigating defect risks and enhancing the overall quality of the welded joint. 
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Figure 55. Classification of laser process parameters. 

 In the conducted study, Aluminum alloys of AA6061-T6 in an overlap configuration were 

utilized, with thicknesses ranging from 1.6mm to 2mm. The choice of aluminum alloy 6061 

was predicated on its attributes as a precipitation-hardened alloy with magnesium and silicon 

as its primary alloying constituents. This alloy, renowned for its versatile application owing 

to its superior welding attributes, corrosion resistance, and an optimal strength-to-weight 

ratio, finds extensive use across various domains. Table 29 elucidates the dimensions, 

chemical composition, and mechanical properties of the welded sheets. Aluminum alloys 

pose a welding challenge attributable to their high thermal conductivity and surface vapor 

barrier formation, which could culminate in defects like porosity and inadequate penetration. 

Hence, the meticulous selection of process parameters and monitoring methodologies is 

imperative to ascertain the quality of welded joints in industrial settings. The monitoring 

endeavor in aluminum welding within the manufacturing realm is particularly daunting due 

to the high-velocity nature of the process coupled with the exigency for real-time data 

procurement and analysis. Additionally, the diminutive size of the weld pool and aluminum's 

high thermal conductivity obstruct the capture of high-resolution imagery of the welding 

sequence. The challenges aforementioned have spurred the advancement of sophisticated 

monitoring techniques encompassing X-ray imaging, high-speed cameras, and ultrasonic 

sensors, all aiming to garner detailed insights into the welding process. Despite their 

capabilities, these techniques in isolation fall short of furnishing a comprehensive 

understanding of the welding process, thereby escalating the demand for advanced data 
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analytic and machine learning techniques to decipher useful information from the raw data. 

The burgeoning interest in recent years towards the evolution of image recognition 

techniques for real-time porosity monitoring in aluminum welding is noteworthy. A 

significant hurdle in this domain is the precise detection and categorization of minute and 

nuanced defects like porosity in high-resolution images of the weld pool. This necessitates 

leveraging advanced image processing techniques, for instance, convolutional neural 

networks (CNNs), for feature extraction from images and their subsequent classification. 

Proposed approaches for real-time porosity monitoring include utilizing high-speed cameras 

for real-time weld pool imagery, which are then subjected to image recognition algorithms 

for defect detection and classification. Concurrently, X-ray imaging can unveil detailed 

insights into the weld's internal structure, assisting in defect identification. While promising 

in laboratory settings, these techniques encounter several industrial challenges, notably the 

requirement for robust image processing algorithms capable of managing high-resolution, 

high-speed imagery, alongside efficient data storage and communication infrastructure for 

real-time analysis. The quest for real-time porosity monitoring techniques in aluminum 

welding is intricate, necessitating the amalgamation of advanced image processing, machine 

learning algorithms with high-speed cameras, and X-ray imaging systems. Continued 

research and development endeavors in this direction hold the promise of transitioning these 

techniques from laboratory to industrial settings, potentially enhancing the quality and 

uniformity of aluminum welded components. 

Table 29. Chemical composition (% wt) and Mechanical properties of AA 6061-T6 [184] 
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 The experimental endeavor in aluminum laser welding encapsulated a series of pivotal steps 

encompassing material preparation, welding setup, and data acquisition and analysis. 

Initially, material preparation was undertaken, entailing a meticulous cleaning of the 

workpieces with acetone followed by polishing with sandpaper to ensure a uniform surface 

quality. Subsequently, the welding setup was established, featuring a Trumpf TruDisk 10kW 

laser, a YW52 Precitec wobbling head, and a SCANLAB’s intelliWELD 30 FC galvanometer 

scanner (Table 30). The laser beam, channeled through a 200-μm fiber, had its spot size 

adjusted to 0.4mm. Throughout the welding process, a meticulous examination of various 

process parameters was conducted to attain high-quality welds; these parameters included 

laser power, travel speed, oscillation amplitude, and oscillation frequency. Additionally 

employed were a welding jig and fixture capable of supplying variable magnetic fields by 

modulating the current, alongside an argon shielding gas apparatus set at a flow rate of 25 

L/min. Data collection was facilitated through high-speed cameras, with subsequent analysis 

performed using image processing software to scrutinize the dynamics of the keyhole and 

molten pool—primary determinants of porosity formation. Conclusively, a comparative 

analysis of the results was conducted employing various metallurgical and microstructural 

analysis techniques to validate the efficacy of the proposed method. For the execution of the 

experimental study, a Trumpf TruDisk 10kW solid-state disk laser, operating at a wavelength 

of 1030 nm, was harnessed for the preparation of laser-welded single lap joints (SLJ). The 

laser beam, once passed through a 200-μm fiber, was focused on the workpiece utilizing a 

SCANLAB’s intelliWELD 30 FC galvanometer scanner, yielding a nominal spot size of 

0.4mm. This scanner facilitated remote laser welding at a work distance of 460 mm (±70) 

while enabling remote adjustment of welding parameters. Employed also was a welding jig 

and fixture for supplying a variable magnetic field, alongside an argon shielding gas 
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apparatus ensuring a stable welding environment. The comprehensive version of YW52 

Precitec wobbling head was integrated, offering process monitoring features, thereby 

rendering the system ideal for fully automated production processes (Table 31). The YW52 

welding head, a high-precision, advanced laser welding head extensively utilized in industrial 

laser welding applications, is endowed with a compact design, high precision, and high-speed 

attributes. Its technical specifications encompass a high-precision, high-resolution scanner 

for precise laser beam control, a high-speed control system enabling real-time process 

monitoring and control, alongside advanced optical sensors and imaging systems for 

meticulous process measurement and analysis. The welding head also boasts safety features 

safeguarding both the operator and equipment during the welding process. With its broad 

adjustment options for laser beam parameters—spot size, focus position, and beam shape, 

alongside the fine-tunable process parameters like laser power, travel speed, oscillation 

amplitude, and oscillation frequency, the YW52 welding head manifests as a versatile, 

reliable tool well-adapted to a wide spectrum of industrial welding applications. This welding 

head, coupled with the meticulous material preparation and the rigorously designed 

experimental setup, aimed at achieving the pinnacle of precision and accuracy in the resultant 

data, forming the backbone of the study. 

Table 30. Laser Welding Process Parameters of YW52 Welding Head 

ID 
Laser power 

(kW) 

Travel speed 

(m/min) 

Oscillation 

amplitude (mm) 

Oscillation 

frequency (Hz) 

#1 5.5 5.0 0.5 200 

 

Table 31. Technical specifications of YW52 Welding Head. Available parameters 

Parameters Value 

Max. laser power 4-8.5kW 

Welding speed 4-8m/min 
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Focal lengths collimation 

80 mm (NA ≤ 0.25), 100 mm (NA ≤ 0.25), 

125 mm (NA ≤ 0.18), 150 mm (NA ≤ 0.15), 

185 mm (NA ≤ 0.13), 200 mm (NA ≤ 0.12) 

Focal lengths focusing 150 to 680 mm 

Weight 3 to 6 kg, depending on construction 

Dimensions (standard 

module) 
74 x 74 mm (edges dimension) 

 

In the current investigation, a well-instrumented laser welding system served as the research 

testbed. The core of the system was a 1000 W fiber laser head, diligently mounted on a robot 

as illustrated in Figure 56. The task of data capture from the camera during the experimental 

phase was accomplished using IC Capture software, engineered by the camera's 

manufacturer, The Imaging Source. Confronting the challenge posed by the high contrast of 

weld-pool images surpassing the camera's dynamic range, a strategic insertion of a narrow 

band pass filter, with a center wavelength of 532 nm, was employed to mitigate the effects 

of weld-pool irradiations. Moreover, a 200-mW green laser was engaged to illuminate the 

vicinity of the weld pool. A systematic sequence of overlap laser welding experiments was 

conducted, employing AA6061 Aluminum alloy plates, each with a thickness of 1 mm. The 

interface gap between the juxtaposed plates was meticulously maintained at zero, a 

configuration known to induce maximum porosity, thus facilitating the construction of a 

data-driven porosity monitoring model by virtue of accruing more data samples replete with 

porosity. The welding parameters were set at a speed of 50 m/min and a laser power of 5.5 

KW, a combination discerned to engender optimum surface appearance quality, as 

corroborated by literature review and equipment validation. At the selected welding speed, 

the spatial resolution of the camera images approximated 59 lm/frame. To augment the 

precision of data acquisition and analysis, a repertoire of image processing techniques was 

applied to the collated images. This encompassed image enhancement, thresholding, and 

feature extraction. The image enhancement procedures aimed at ameliorating the visibility 

of the weld pool and its periphery, while the thresholding techniques were employed to 
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segment the images into distinct regions of interest. Subsequently, feature extraction 

techniques were deployed to delineate relevant features from the segmented images, such as 

the size, shape, and intensity of the weld pool and its adjacent area. For the validation of the 

proposed monitoring system's effectiveness, a spectrum of metallurgical and microstructural 

analysis techniques was applied to the welded samples. This array included optical 

microscopy, scanning electron microscopy (SEM), and X-ray analysis as delineated in prior 

research [267]. These techniques furnished intricate information regarding the microstructure 

and composition of the welded samples, which was then correlated with the features extracted 

from the images. Moreover, a machine learning-centric model was developed to 

prognosticate the manifestation of porosity in the welded samples based on the extracted 

features. The model was trained employing a substantial dataset of images amassed during 

the welding experiments and was validated using a distinct set of images. The results 

manifested that the proposed monitoring system could accurately predict the incidence of 

porosity in the welded samples with a high degree of accuracy, thereby showcasing the 

potential efficacy of the integrated approach in monitoring and ensuring welding quality. 

This investigation accentuates the viability of employing image processing and machine 

learning algorithms for the real-time monitoring of porosity during aluminum laser welding 

processes. The devised monitoring system, demonstrating significant accuracy in predicting 

porosity occurrences in welded samples, holds promise for integration within industrial 

welding operations to augment both quality and efficiency. Beyond the instrumental laser 

welding system, this study delves into the impact of laser spot size on porosity formation in 

aluminum alloy welding, employing a single mode (100mm focal) and dual spot laser 

welding technique. The single mode technique utilizes a singular focused beam with a 

smaller spot size, while the dual spot approach engages two overlapping beams with larger 

spot sizes, facilitating a comparative analysis on the influence of spot size on porosity 

formation and the efficacy of the proposed monitoring methodology. Furthermore, the 

variation in spot sizes enables an examination of heat input's effect on the microstructure and 

mechanical attributes of the welded joints. The findings from these experiments are 

anticipated to yield crucial insights towards optimizing laser welding parameters for 
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aluminum alloy and advancing real-time monitoring strategies for porosity detection. By 

amalgamating image processing, machine learning, and diverse laser welding techniques, 

this study aims to contribute a nuanced understanding that could significantly inform the 

optimization of welding parameters and real-time monitoring schemes, thereby addressing a 

pivotal industrial need in the realm of aluminum laser welding. 
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Figure 56. Monitoring of the laser welding process with the Laser Welding Monitor LWM 

5.8 REAL-TIME MONITORING  

In the narrative of in-process inspections, the usage of single mode or dual spot 

techniques in laser welding embodies a meticulous approach towards monitoring weld 

quality. The single mode technique, characterized by a singular focal point, and the dual spot 

technique, characterized by two focal points, enable a systematic monitoring of weld pool 

dimensions and metal temperature. These techniques, when coupled with high-speed cameras 



 

201 

and advanced image processing software, provide a comprehensive analysis of the keyhole 

and molten pool dynamics, which are pivotal in the genesis of porosity. Further, the post-

process inspections, conducted post the welding process, encompass a myriad of 

metallurgical and microstructural analysis techniques. These techniques, ranging from visual 

inspection to ultrasonic and radiographic testing [268].  As a validation matrix for assessing 

the performance of the proposed methodologies while unearthing potential areas for 

enhancement. The triad of pre-process, in-process, and post-process inspections emerges as 

a linchpin in maintaining weld quality and mitigating the risk of defects which could 

potentially impair the performance of the final product. Pivoting to online monitoring, the 

domain of laser welding has seen a burgeoning interest in real-time monitoring systems, 

bifurcated into non-destructive testing (NDT) and process monitoring paradigms. While 

NDT techniques like x-ray computed tomography furnish invaluable insights into the 

finished welds, their cost and time-intensive nature often relegates them to lesser feasibility 

in mainstream industrial applications. On the contrary, process monitoring emphasizes real-

time assessment of process variables, thereby facilitating immediate adjustments to the 

welding process through an array of sensors such as thermocouples, optical pyrometers, and 

high-speed cameras. These sensors are adept at gauging parameters like weld pool 

temperature, laser beam power, and geometry of the weld pool, thereby enabling the 

identification of potential defects and real-time rectification. The amalgamation of high-

speed imaging and image processing techniques, especially when intertwined with machine 

learning algorithms, heralds a promising avenue for defect identification and prediction in 

welding processes like porosity, cracking, and lack of fusion. The synergy of these real-time 

monitoring systems with robotic frameworks allows for a fully automated, closed-loop 

control of the welding process, manifesting in enhanced process quality and cost-

effectiveness. This narrative underscores a seminal shift towards real-time defect detection 

and process adjustments, with the fusion of high-speed imaging, image processing, and 

machine learning algorithms serving as a catalyst for elevating the efficiency, reliability, and 

cost-effectiveness of laser welding operations. The ongoing advancements in sensor 

technology, embodying laser triangulation and camera-based seam following, underscore the 
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burgeoning emphasis on real-time monitoring, which is instrumental in amplifying both the 

quality and efficiency of aluminum laser welding processes. In this study, a novel 

classification-based in-process porosity monitoring scheme was envisioned for aluminum 

laser welding. The image processing strategy was meticulously designed to autonomously 

detect regions of interest (ROIs) employing a high-speed camera operating at 10,000 frames 

per second, alongside ImageJ software. These ROIs served as inputs to delineate features like 

the keyhole area and geometrical characterization. An automatic feature-learning model was 

devised to extract nuanced features from the high-dimensional weld-pool image data 

collected via the high-speed camera. Concurrently, X-ray technology was harnessed to 

validate and inspect porosity recognition and defect sizing, thereby furnishing a multi-modal 

evaluation framework. Additionally, the synergy between the high-speed camera and image 

processing software facilitated real-time monitoring of the welding process, heralding the 

potential for immediate detection and rectification of any emerging issues. The 

implementation of a classification-based algorithm for porosity monitoring showcased a 

more precise and efficient method of defect identification compared to conventional manual 

inspection methods. The findings underscore the significant potential to ameliorate the 

quality and efficiency of aluminum laser welding by leveraging advanced in-process sensing 

techniques. However, further research is imperative to refine and optimize these 

methodologies, ensuring their seamless integration and successful deployment in industrial 

settings, which is instrumental for realizing enhanced weld quality and operational cost 

savings. 

5.9 RESULTS AND DISCUSSION 

5.9.1 Image-based monitoring of keyhole characterization 

A monitoring system for keyhole characterization in laser welding typically includes 

sensors and imaging techniques to measure the characteristics of the keyhole. The three main 

features that are typically characterized are weld width, keyhole recognition, and keyhole 
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depth. Weld width is typically measured using a laser triangulation sensor, which uses a laser 

beam to project a line onto the surface of the weld and a camera to capture the image of the 

line. The width of the weld can then be calculated by analyzing the image. Keyhole 

recognition is typically achieved using a high-speed camera that captures images of the 

keyhole during the welding process. These images can be analyzed to determine the shape 

and size of the keyhole, which can provide important information about the quality of the 

weld. Keyhole depth can be determined by measuring the amount of energy absorbed by the 

keyhole using a pyrometer or by using a laser sensor. This information can be used to adjust 

the welding parameters to achieve the desired depth and shape of the keyhole. In summary, 

a monitoring system for keyhole characterization in laser welding typically includes sensors 

and imaging techniques to measure the characteristics of the keyhole, such as weld width, 

keyhole recognition, and keyhole depth, which can provide important information about the 

quality of the weld. In addition to the sensors and imaging techniques mentioned earlier, 

other monitoring systems for keyhole characterization in laser welding may include: 

• Spectroscopy: This technique uses a spectrometer to analyze the light emitted by the 

keyhole during welding. This can provide information about the temperature, 

composition, and state of the material being welded. 

• Thermography: This technique uses a thermal camera to capture images of the 

temperature distribution in the keyhole and the surrounding area during welding. This 

can provide information about the thermal history of the weld and the heat affected 

zone. 

• In-situ monitoring: This technique involves measuring the process variables, such 

as the laser power, beam diameter, and beam focus, in real-time during welding. This 

can provide information about the energy input to the keyhole and how it changes 

over time. 

• Finite element modeling: This technique uses computer simulations to model the 

thermal and mechanical behavior of the keyhole during welding. This can provide 

information about the keyhole shape and size, as well as the stresses and strains that 

occur in the material. 
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Overall, a monitoring system for keyhole characterization in laser welding can use a 

combination of these techniques to provide a detailed understanding of the keyhole and the 

welding process. This information can be used to optimize the welding parameters and 

improve the quality of the weld. In this study, an experimental approach utilizing high-speed 

imaging and X-ray analysis was employed to investigate the dynamics of the molten pool 

and keyhole in laser welding. The high-speed images were captured using a Phantom High-

Speed camera operating at 1000 frames per second and analyzed using ImageJ software, 

including macro codes for automatic detection of the keyhole.  The coaxial camera integrated 

with the laser head was upgraded to a DMK 33UX174 monochrome high-speed camera, 

which was capable of recording 640 x 480-pixel images at 720 frames per second, with 8-bit 

resolution and a data storage capacity of 211 MB. The field of view of the camera covered 

an area of approximately 638×479 pixels, which encompassed the region of the weld pool 

and its surrounding area. Additionally, X-ray analysis based on ISO 13919-2 was utilized to 

classify and quantify the probability of porosity and crack index in the weld zone. The 

combination of these techniques allowed for a comprehensive assessment of the welding 

process and the identification of potential defects (Figure 57). In this study, an image 

processing strategy was employed to detect regions of interest (ROI) in high-speed camera 

images of laser welding. The ROI were automatically identified using ImageJ software and 

were characterized based on features such as keyhole area and geometric properties. 

Automatic feature-learning algorithms were used to extract meaningful information from the 

high-dimensional weld-pool image data captured by the high-speed camera. The architecture 

of the high-speed camera used in this study is illustrated in Figure 54. ImageJ, a widely-used 

public domain Java image processing program, was used to process the high-speed camera 

images. It is capable of reading a wide range of image formats commonly used in heat-

generated imaging, such as those used in laser welding. In addition to image processing 

functions, ImageJ also offers tools for data analysis, visualization, and measurement. After 

collecting data from 720 frames, the welding defects were classified into two categories: 

those with porosity and those without. The porosity recognition and size of defects were also 

validated using X-ray technology. 
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Figure 57. Image-based monitoring of keyhole characterization 

In the field of laser welding, high-speed cameras are commonly used to capture detailed 

images of the welding process in real-time. These cameras are capable of capturing thousands 

of frames per second, providing a detailed understanding of the dynamics of the weld pool, 

keyhole, and other important process variables. To ensure that the high-speed camera data is 

captured and transferred in a timely and efficient manner, a data path transfer architecture 

must be implemented. One common approach for high-speed camera data path transfer is to 

use a dedicated data acquisition system, which is connected to the camera via a high-speed 

data link such as Camera Link or GigE Vision. The data acquisition system is responsible for 

capturing the high-speed camera data and transferring it to a host computer for further 

analysis. This approach is particularly useful in environments where the camera data must be 

captured and transferred in real-time, such as in closed-loop control systems. Another 

approach is to use a camera-embedded data path transfer architecture, which utilizes the 

onboard memory of the camera to buffer the captured data. This approach is useful in 

applications where the camera data does not need to be transferred in real-time, and can be 

transferred to a host computer at a later time. In some cases, both of the above approaches 

can be combined to provide an optimal solution for high-speed camera data path transfer. For 

example, a high-speed camera can be connected to a data acquisition system in real-time, 

while also utilizing its onboard memory to buffer the captured data for later transfer. Overall, 

the high-speed camera data path transfer architecture should be chosen based on the specific 
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requirements of the application, such as the need for real-time data transfer, data storage and 

analysis requirements, and the available infrastructure. Real-time monitoring of weld spatter, 

weld plume, weld melt pool, weld width, and keyhole using high-speed cameras and image 

processing is an important aspect of laser welding. High-speed cameras can capture images 

at high frame rates, allowing for detailed analysis of the welding process. Image processing 

techniques can then be used to extract relevant information from the captured images, such 

as the size and shape of the melt pool, the width of the weld, and the presence of keyholes. 

This information can be used to optimize the welding process, reduce defects, and improve 

the overall quality of the weld. The data collected can also be used to identify patterns and 

trends that can be used to predict and prevent future problems. The high-speed camera data 

path transfer architecture used in laser welding typically includes the camera, data acquisition 

system, and data storage and analysis system. The data is transferred from the camera to the 

data acquisition system in real-time, where it is then stored and analyzed using image 

processing techniques. High speed cameras, typically operating at frame rates of several 

thousand frames per second, can capture detailed images of the laser welding process in real 

time. These images can then be analyzed using image processing techniques to extract 

information about various aspects of the welding process, such as the shape and size of the 

weld melt pool, the width of the weld, and the presence of weld spatter or keyholes. One 

common technique for real-time monitoring of the welding process using high speed cameras 

is laser triangulation. This method uses a laser line projected onto the weld area and a camera 

positioned at a known angle to capture images of the line as it is distorted by the shape of the 

weld melt pool. The position of the laser line in the camera's field of view can then be used 

to calculate the shape and size of the weld pool. Another technique commonly used in high-

speed camera-based weld monitoring is stereo imaging. This method uses two cameras 

positioned at different angles to capture images of the weld area. The two images are then 

processed to extract information about the shape and size of the weld melt pool, as well as 

the position of the weld joint. In addition to these techniques, image processing algorithms 

can be used to analyze the high-speed camera images to extract information about other 

aspects of the welding process, such as the presence and size of weld spatter, the shape and 
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size of the weld plume, and the width of the weld. Overall, high speed camera-based 

monitoring and analysis of laser welding can provide a wealth of information about the 

welding process, allowing for real-time adjustments to be made to improve weld quality and 

reduce defects. Keyhole recognition in laser welding involves the use of image processing 

techniques to analyze images of the keyhole and extract geometric information about its 

shape and position. This information can be used to adjust the laser parameters and ensure 

that the keyhole is properly aligned and has the desired shape. One of the key geometric 

features used in keyhole recognition is the keyhole's aspect ratio, which is the ratio of its 

width to its depth. A high aspect ratio indicates that the keyhole is wide and shallow, while 

a low aspect ratio indicates that the keyhole is narrow and deep. Other geometric features 

that can be used include the keyhole's circularity, which is a measure of how circular its shape 

is, and the keyhole's symmetry, which is a measure of how symmetrical its shape is. Image 

processing algorithms that are commonly used for keyhole recognition include edge 

detection, thresholding, and morphological operations. These techniques can be used to 

extract the keyhole's shape and position from the images. Once the keyhole is detected and 

its geometric features are extracted, this information can be used to adjust the laser 

parameters in real-time to maintain the desired keyhole shape, position and other parameters. 

This study aimed to improve the transform used for detecting the diameter of each pore with 

high efficiency and spatial resolution. The resolution achieved was as fine as 4.12 μm. The 

porosity characteristics such as pore number, pore diameter, porosity volume and porosity 

ratio were calculated for each laser welded weld. In accordance with the physics of laser 

welding phenomena and literature, three main features were considered in laser welding: 

weld width, keyhole recognition and melt pool recognition. In this study, keyhole recognition 

was given the most attention. The acquisition speed was set at 10,000 frames per second, and 

the analysis size was reduced to 2,000 frames per second. Additionally, various geometrical 

features such as keyhole circumference, keyhole major (a or b; longer), keyhole aspect ratio 

(a/b), illumination intensity sum, illumination intensity mean, weld width, melt pool area, 

melt pool perimeter, melt pool major, and melt pool deviation from centerline were 

considered for feature recognition. One method to correspond the features from high-speed 
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camera images to X-ray porosity position and size is through the use of image registration 

techniques. This involves aligning the high-speed camera images with the X-ray images by 

identifying and matching corresponding features in both images, such as the edges of the 

weld or the position of the keyhole. Once the images are registered, the porosity position and 

size can be determined by comparing the features in the high-speed camera images to the X-

ray images. Another approach is to use machine learning algorithms to train a model to 

automatically detect and classify porosity in the high-speed camera images and then use the 

model to predict the corresponding porosity position and size in the X-ray images (Figure 

58). 

 

 

 

 

 

 

 

Figure 58. Correspond the features from high-speed camera to X-ray 

In image processing applications, feature extraction is a crucial step in the dimensionality 

reduction process. It involves selecting and combining variables from the raw data into 

Weld plume 
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features that effectively reduce the amount of data while still accurately and originally 

describing the data set. This technique is useful when dealing with large data sets and the 

need to reduce the number of resources without losing important information. Feature 

extraction also helps to eliminate redundant data from the data set. In the field of engineering, 

feature extraction is a crucial step in the analysis and interpretation of data, particularly in 

the context of image processing. The use of ImageJ, a powerful and widely used image 

processing software, can greatly aid in this process. ImageJ can be used to extract various 

features from images, including shape, edges, and motion, which can be used to analyze and 

understand the data. Additionally, ImageJ can also be used to perform various image 

processing tasks, such as background subtraction, area and pixel value statistics, and density 

histograms, which can be used to extract additional information from the images. One 

specific application of ImageJ in engineering is in the analysis of laser welding images. The 

high-speed camera is used to capture images of the weld pool, and ImageJ can be used to 

extract features from these images, such as the size and shape of the weld pool, the presence 

of any defects, and the overall quality of the weld. This information can then be used to 

optimize the welding process and improve the overall quality of the welds. Another 

application of ImageJ in engineering is in the analysis of X-ray images. X-ray images can be 

used to detect defects in a material, such as porosity or cracks, but the process of extracting 

this information can be difficult. ImageJ can be used to extract features from the X-ray 

images, such as the size and position of defects, and this information can be used to make 

more accurate predictions about the integrity of the material. Its wide range of features and 

easy-to-use interface make it an ideal choice for researchers and engineers looking to extract 

meaningful information from their data. One popular tool for feature extraction in image 

processing is ImageJ, a public domain Java image processing program. It can read and 

display a wide range of image formats, including TIFF, GIF, JPEG, BMP, DICOM, FITS, 

and "raw". It also includes a number of useful tools for image processing such as background 

subtraction, area and pixel value calculations, density histograms, and standard image 

processing functions such as contrast enhancement, sharpening, smoothing, and edge 

detection [269]. Additionally, ImageJ has a plug-in called Bio-Formats, which allows for the 
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reading of many instrument-specific file formats and includes controls for loading and 

displaying multi-dimensional data [270]. In addition to its image processing capabilities, 

ImageJ can also be used for thermal analysis in laser welding. By analyzing the distribution 

of heat on the surface of the melt pool and weld seam, engineers can gain insight into 

subsurface features such as fusion in a lap joint. This information can then be used to optimize 

the welding process and improve the quality of the finished weld. In conclusion, ImageJ is a 

powerful tool for engineering feature extraction, and its application in various fields like laser 

welding, X-ray imaging and many other can greatly aid in the analysis and understanding of 

data (Figure 59). 

  

(a) (b) 

Figure 59. Feature recognition using image processing a) High-speed camera b) ImageJ 

using thermal filter 

 

In this study, keyhole image processing was performed using high-speed cameras and image 

processing software, specifically ImageJ. The keyhole was successfully detected and all 

relevant feature engineering information was extracted from 270 frames. However, some 

frames were lost during the image extraction process due to the abrupt changes in keyhole 

position and pixels. Images are typically stored digitally as arrays of pixels, with each pixel 

representing the smallest element of an image. The most commonly used color space is the 

RGB color space, where every color is defined by three values: red, green, and blue. These 

values are typically represented as 8-bit unsigned integers, with a range of 0-255, also known 

as the color depth. To improve the number of frames detected, various types of filters were 

implemented in ImageJ. Filters are mathematical functions that take the image as input and 

return a new image as output. They can be applied on a pixel-level, a global-level, or a 

channel-level. In addition to using filters, a human annotation method was also employed to 
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achieve the maximum number of frame detections. The image processing results were 

compared with X-ray analysis to validate the detection of porosity and size of defects in the 

weld zone. In addition to the techniques mentioned above, ImageJ also allows for the use of 

advanced image processing algorithms such as edge detection, feature extraction, and pattern 

recognition. These algorithms can be used to extract specific features from an image, such as 

edges, shapes, or patterns, that can be used for further analysis or for control purposes in an 

automated system. One example of this is in the field of thermal analysis, where ImageJ can 

be used to extract temperature data from thermal images. This data can then be used to 

calculate heat flux, thermal conductivity, and other thermal properties. Additionally, ImageJ 

can also be used to perform image registration, which is the process of aligning multiple 

images of the same scene taken at different times or from different viewpoints. This can be 

particularly useful in the field of welding, where multiple images of the weld pool need to be 

aligned in order to accurately measure the size and shape of the weld. Overall, ImageJ is a 

versatile and powerful tool that can be used for a wide range of image processing tasks in the 

field of engineering and materials science. Its ability to read and process a wide range of 

image formats, combined with its advanced image processing algorithms, make it an essential 

tool for scientists and engineers working in these fields. One of the main technical challenges 

faced when dealing with lost frames in image processing is the lack of consistency in the 

data. If a certain frame is missing, it can disrupt the continuity of the image sequence and 

make it difficult to accurately analyze the data. Additionally, lost frames can also lead to 

errors in the extraction of features, as the missing data may not be able to be replaced or 

interpolated easily. This can negatively impact the accuracy and reliability of the image 

analysis results. Another challenge is the difficulty in detecting lost frames, as they may not 

be immediately obvious in the data. Developing algorithms to automatically detect missing 

frames can be a complex task, as it requires the analysis of multiple frames in order to identify 

patterns or inconsistencies. Furthermore, the image processing methods used for keyhole 

detection may not be robust enough to handle lost frames and may require further 

development or modification. Moreover, one of the main technical challenges in image 

processing for lost frames is related to the dynamic nature of the welding process. The 
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keyhole position and size can change rapidly and unpredictably, making it difficult to capture 

clear images. This can lead to lost frames, as the camera may not be able to capture the 

keyhole in the correct position. Additionally, the intense light and high temperatures 

generated by the welding process can also cause problems for the camera and image 

processing software. High-speed cameras, which are commonly used in welding 

applications, may not be able to handle the high frame rates and high-resolution images 

required for accurate detection of the keyhole. Furthermore, the image processing algorithms 

used to detect the keyhole may not be able to handle the high levels of noise and distortion 

present in the images. This can lead to false positives or negatives in the detection of the 

keyhole, resulting in lost frames and inaccurate measurements. Finally, another technical 

challenge is the human annotation method. Human error can also cause lost frames, as it is 

difficult to ensure that the annotator is accurately detecting the keyhole in every frame 

(Figure 60). 

 

 

Figure 60. Keyhole detection 
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5.10 VIDEO ANNOTATION 

  Additionally, video annotation also includes tasks such as identifying objects or 

events within the video, tracking their motion, and labeling the actions that are taking place. 

This can be used to train models for tasks such as object tracking, activity recognition, and 

scene understanding [271]. The process of video annotation is typically time-consuming and 

requires a high level of attention to detail, as mistakes in annotation can lead to poor 

performance in the final machine learning model. To mitigate this, it is important to have a 

clear annotation protocol in place and to use multiple annotators to ensure consistency and 

accuracy in the final dataset. Furthermore, it is crucial to have a quality control process in 

place to check the annotation results and make necessary adjustments. Image annotation work 

typically includes the following tasks: 

• Preparing the image dataset 

• Specifying object classes that annotators will use to label images. 

• Assigning labels to images 

• Marking objects within each image by drawing bounding boxes 

• Selecting object class labels for each box 

• Exporting the annotations in a format that can be used as a training dataset. 

• Post processing of the data to check if labeling is accurate. 

• In case of inconsistent labeling, the system should enable a second or third labeling 

round with voting between annotators. 

In this study, the use of human annotation in video processing has been deemed essential in 

order to achieve accurate and reliable results. Human annotators have been utilized to train a 

machine learning model to understand the nuances and complexities of the video data, and 

to make accurate predictions in real-world scenarios. The process of video annotation 

involves manually labeling features on every video frame, which is then used to train a 

machine learning model for video detection. To facilitate the annotation process, various 

software and tools have been employed, such as Vatic, Labelbox, and RectLabel. These tools 

are designed to streamline the annotation process and make it more efficient by automating 
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certain tasks, providing annotation guidelines, and facilitating collaboration among 

annotators. In this study, human annotation has been used to precisely define the keyhole and 

to characterize the most important features of the welding zone. Specifically, 720 frames 

were annotated for training the machine for pass, while 720 images were annotated for fail 

through the 6 mm welding (Figure 61). Ultimately, 1440 photos were labeled with a high 

level of precision. The use of these annotated images has allowed for the creation of a training 

dataset that can be used to train the machine learning model for video detection, enabling the 

model to accurately recognize keyhole dynamics and other important features in the welding 

process. Human annotation for laser welding can provide valuable information for training 

machine learning models to detect and classify various features of the welding process, such 

as keyhole shape, size, and position. However, there are several technical challenges that 

must be considered when using human annotation for this purpose. One of the main 

challenges is ensuring the accuracy and consistency of the annotations. This can be achieved 

by using multiple annotators to label the same image, and using majority voting to select the 

label that is most likely to be correct. Additionally, it is important to provide clear guidelines 

and instructions to the annotators, and to provide ongoing training and feedback to ensure 

that they are able to accurately identify and label relevant features in the images. Another 

challenge is dealing with the high volume of data that is generated during the welding 

process. High-speed cameras are often used to capture images of the welding process at a 

very high frame rate, which can result in large amounts of data that must be processed and 

annotated. This can be addressed by using automated image processing techniques to pre-

process the data, and by using tools such as ImageJ to assist with the annotation process. 

Finally, it is important to consider the format and structure of the annotated data, in order to 

ensure that it can be easily integrated into machine learning models for training and testing. 

This may involve exporting the annotations in a standard format, such as COCO or PASCAL 

VOC, and using software libraries such as TensorFlow or PyTorch to work with the data. 

Overall, while human annotation can provide valuable information for training machine 

learning models for laser welding, it also requires careful planning and management in order 
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to ensure accuracy and consistency, as well as to handle the large volume of data generated 

during the process. 

 

  

Figure 61. Video Annotation 

5.11 FRAME BY FRAME ANALYSIS 

In the field of video technology, the concept of video is often described as a sequence 

of frames that are mapped against time. The frame-by-frame analysis of a video is centered 

on the individual frames that make up the video. When a video is broken down into its most 

basic elements, it can be seen as a collection of static images that are chronologically 

arranged to create the illusion of motion. The human eye perceives these rapidly changing 

images as a continuous dynamic motion. The number of frames per second (fps) in a video 

plays a crucial role in determining the video's clarity and quality. The standard number of 

frames per second for most videos is 24 fps, which means that in every second, there is a 

fixed transition of 24 frames. However, an increasing number of frames per second in a video 

can result in a higher quality video. For example, a video with 60 fps captures 60 different 

moments or activities within a single second, as opposed to 24 fps which captures 24 different 

moments within a single second. It's also worth noting that the number of frames per second 

is not the only factor that determines the video's quality. Other factors such as resolution, 

bitrate, and compression also play a role in determining the video's quality. The use of 

advanced video compression techniques like H.264 and H.265, for example, can help to 

achieve a higher quality video at a lower bitrate [272]. Overall, the frames per second in a 
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video is just one aspect of the video technology, however, it is an important one and is often 

used as a benchmark for video quality. As technology advances and frame rates increase, it 

is likely that we will see a continued improvement in video quality (Figure 62). 

 

 

Figure 62. Frame by frame section of a video [273,274] 

In order to fully understand and analyze video data, it is important to consider both the 

temporal and spatial aspects of the data. Temporal information refers to the sequence of 

frames in the video, and how they change over time. Spatial information refers to the objects 

and features present in each individual frame. By utilizing both temporal and spatial 

information, we can gain a deeper understanding of the scene and the actions taking place 

within it. One important technique in video analysis is optical flow estimation. Optical flow 

is the process of measuring the movement of pixels between consecutive frames in a video. 

By analyzing the optical flow, we can gain insight into the motion of objects in the scene, 

and track their movement over time. This is particularly useful for tasks such as object 

tracking and action classification. In this study, we aim to investigate the use of video analysis 

techniques in the field of porosity detection in laser welding. Computer vision algorithms are 

commonly used to analyze static images; however, video analysis requires a deeper 

understanding of sequences of images, 6D inputs, and time-related scenes. As such, it 

presents a new challenge and a next step in the field of computer vision. In order to 

accomplish this task, we have chosen to focus on a 6mm section of weld for porosity 

detection using a Pass/Fail analysis method. The analysis is based on X-ray imaging and a 

dataset of 720 frames of an overlap welded structure, designated as No. #416, with a range 

of 12.95 mm to 13.55 mm, was selected for the failure response (Fail = 0). This dataset is 

used as train data for prediction analysis in Python. Additionally, another set of 720 frames 
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of the same weld number No. #416, with a range of 10.3 mm to 10.9 mm, is chosen as the 

test dataset (Pass = 1) for prediction analysis. The results of this study will contribute to the 

understanding of the capabilities and limitations of video analysis in porosity detection in 

laser welding and provide insight into potential applications in other related fields (Figure 

63). 

Train : #416- 12.95 mm-13.55 mm (6 mm sections) 

With porosity: Fail = 0 

Frames 1 2 3 4 5 6 7 … 720 

Thermal 

Filter 
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Test: #416- 10.3 mm -10.9 mm 

Without porosity: Pass = 1 

Frames 1 2 3 4 5 6 7 … 720 
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Figure 63. Frame by frame analysis of laser welding 

In the field of image processing, the concept of Region of Interest (ROI) is widely used to 

analyze specific areas of an image. ROI is a selected portion of an image that is of particular 

interest for further analysis. The ROI Manager in ImageJ is a tool designed to help users save, 

manage and manipulate ROIs in an efficient manner. It allows users to create, edit, and 

analyze ROIs, as well as perform set operations such as union, intersection, and subtraction. 

In the context of laser welding, the ROI Manager can be used to analyze the keyhole and 

other important features within the weld zone (Table 32). The keyhole is a crucial aspect of 

the laser welding process, and its shape and size can affect the quality of the weld. By using 
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the ROI Manager, users can easily select and analyze specific regions within the keyhole, 

such as the size and shape of the keyhole, the temperature of the weld, and the presence of 

any defects. This data can then be used to improve the quality of the weld and optimize the 

laser welding process. Additionally, the ROI Manager can also be used to analyze other 

features of the weld zone, such as the heat-affected zone, the size and shape of the weld pool, 

and the penetration depth. Overall, the ROI manager in ImageJ is a powerful tool that can be 

used to improve the efficiency and accuracy of the laser welding process. It allows users to 

easily select and analyze specific regions of interest within the weld zone, providing valuable 

insights into the keyhole and other important features of the weld. Moreover, the concept of 

Region of Interest (ROI) plays a crucial role in the analysis of digital images. In the context 

of this study, the use of ROI was employed in the analysis of laser welding, specifically in 

the detection of porosity. The process involved the extraction of frames from a video, with 

the range of frames being from 1 to 720. The selections, or ROIs, were created using the tools 

provided in the ImageJ toolbar. It is worth noting that while ImageJ allows for the 

simultaneous display of multiple ROIs through the use of overlays and the ROI Manager, 

only one selection can be active at a time. Additionally, the extracted ROIs can be further 

analyzed and measured for further insights and analysis (Figure 64 and 65). 

 

 

(a) 

 

(b) 

Figure 64. Flowchart of image processing using ImageJ software. a) Flowchart [275] b) 

Enhance contrast function 
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(a) 

 

(b) 

Figure 65. Data extraction from region of interest (ROI). a) without porosity and b) with 

porosity 

In the present study, an exhaustive analysis was undertaken to delve into the intricacies of 

laser welding, focusing on the dynamics of laser-induced plume and keyhole, alongside 

investigating the mechanisms underlying porosity formation and the strategies for its 

suppression. A spectrum of optical and X-ray methodologies were deployed to garner high 

temporal resolution observations of the welding process. The materials scrutinized 

encompassed Al-alloys, stainless steels, among others. Hard X-ray radiography was 

harnessed as a pivotal method to observe sub-surface events crucial for weld quality. A 

prominent challenge in laser welding of Al-alloys is the manifestation of hydrogen-induced 

porosity, characterized by diminutive blow holes. The molten pool's average temperature in 

laser welding significantly surpasses that of arc welding, culminating in elevated soluble 

hydrogen levels and the genesis of numerous pores. The sole efficacious measure to mitigate 
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porosity entails the elimination of hydrogen sources during the welding venture. Another 

variety of porosity observed arises from the intense metal evaporation in the keyhole, leading 

to the instability of both the keyhole and weld pool. This porosity variant is characterized by 

its large size, which can be diminished through judicious pulse shaping in spot welding, 

optimal pulse modulation adoption, and a proper angle of beam incidence. Adhering to ISO 

standards, porosity exceeding 1mm was identified as a true pore region. Attributes of 

porosity, such as the porosity status (true: pore, false: no pore) and size, were extracted from 

each porosity region and coupled with the weld-pool images at corresponding longitudinal 

positions, forming a coherent input-output data pair. This data pair holds the potential to 

serve as the foundation for training a supervised deep learning model, thereby paving the 

path toward a more nuanced understanding and control over porosity in laser welding 

processes, which is crucial for advancing the field and ensuring superior weld quality. 

Table 32. Feature definition for keyhole recognition [276] 

Features Definition 

Area 

Selection area in square pixels. The area is expressed in calibrated units, 

such as square millimeters, if the image was spatially calibrated using the 

Analyze>Set Scale function.  

Centroid 

The centroid of a given selection is defined as the point situated at the mean 

position of all pixels encompassed within the image or selection. It can be 

ascertained by computing the arithmetic mean of the X and Y coordinates, 

which can subsequently be located in the Results table, denoted under the 

headings "X" and "Y".  

Center of 

Mass 

The center of mass, weighted by brightness, of all the pixels within the 

image or selected region is computed by taking into account both the 

intensity and the location of each pixel. The coordinates of this brightness-

weighted center of mass are denoted in the Results table under the headings 

"XM" for the X-coordinate and "YM" for the Y-coordinate. These 
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coordinates embody the first-order spatial moments of the image or 

selected region.  

Perimeter 
The term "perimeter of the selection" denotes the cumulative length of the 

exterior boundary. 

Bounding 

Rectangle 

 The bounding box encapsulating the selection is delineated as the minimal 

rectangle encompassing the entirety of the selection. The rectangle's upper 

left vertex is denoted by the coordinates "BX" and "BY", while the 

dimensions of the rectangle, specifically its width and height, are represented 

under their respective headings. 

Fit Ellipse 

The chosen segment is delineated employing an elliptical framework, 

yielding resultant parameters encompassing the lengths of the major and 

minor axes, the angular deviation between the major axis and a line running 

parallel to the x-axis, alongside an option to exhibit the coordinates of the 

ellipse's centroid (X and Y) provided the Centroid option is activated. It 

merits emphasis that the precise computation of the lengths of the major 

and minor axes within ImageJ necessitates a Pixel Aspect Ratio of 1.0 as 

stipulated in the Set Scale dialog.  

Shape 

 

  The computation and representation of shape descriptors are executed to 

further analyze the geometric attributes of the entities in question. The 

descriptors delineated include Circularity, Aspect Ratio, Roundness and 

Solidity. These descriptors are computed and exhibited, with the provision 

to activate the "Fit Ellipse" option within the Analyze>Set Measurements 

menu to procure information regarding the major and minor axes. It is 

imperative to acknowledge that exceedingly diminutive particles may yield 

invalid values, necessitating cautious interpretation of the resultant data. 

Feret's 

Diameter - 

The Feret diameter, represented by the maximum caliper, denotes the longest 

distance between any two points along the perimeter of the selected 

boundary. The angle subtended between the Feret diameter and a line parallel 

to the x-axis is defined as the Feret Angle, with a range of 0 to 180 degrees. 
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Additionally, the minimum caliper diameter is referred to as the MinFeret. 

The initial coordinates of the Feret diameter are displayed as FeretX, FeretX 

and FeretY. For visualizing the Feret diameter corresponding to the current 

selection, the Draw Feret Diameter macro can be employed.  

 

Regarding the data visualization, actual pass data refers to the data that represents instances 

where a particular process, product or system has passed a quality test or met certain criteria 

for success. In the context of machine learning, it is often used as the ground truth or target 

variable for training and evaluating predictive models. Actual pass data is typically used 

alongside actual fail data to build a predictive model that can accurately classify new 

instances as pass or fail based on the features or variables that are measured (Figure 66).  
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Figure 66. Comparison between actual pass and actual fail 

5.12 MACHINE LEARNING IMPLEMENTATION 

5.12.1 Random Forest (RF) classification 

Random Forest stands as a notable ensemble learning technique employed for 

classification, regression, and various other analytical tasks. It operates by orchestrating 

numerous decision trees during the training phase, subsequently yielding the class that 

represents the mode of the classes (in classification) or the mean prediction (in regression) 

engendered by the individual trees. The essence of Random Forests resides in amalgamating 

multiple decision trees to curb overfitting and augment the model's accuracy. This objective 

is realized by training each tree on a randomly selected subset of the data and considering a 

random subset of the features at every split. Such a strategy decouples the trees, rendering 

the ensemble more resilient to overfitting.  Furthermore, Random Forest employs a metric of 

feature importance to discern the most informative features for data splits. Evidently, 

Random Forest emerges as a supervised machine learning algorithm, ubiquitously applied in 

both classification and regression challenges. It harnesses decision trees, constructed on 

disparate samples, and adopts a majority voting mechanism for classification, while resorting 

to averaging for regression tasks. The genesis of the algorithm for random decision forests 

can be traced back to 1995, pioneered by Tin Kam Ho, marking a significant milestone in the 

evolution of ensemble learning methodologies. Through the prism of this algorithm, the 
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synergy of decision trees, when orchestrated in a Random Forest ensemble, holds the promise 

of delivering superior predictive insights while averting the pitfalls of overfitting, hence 

exemplifying a robust machine learning approach for a myriad of analytical undertakings 

[277] utilizing the random subspace method, which is a method to implement the "stochastic 

discrimination" approach to classification as proposed by Eugene Kleinberg [278]. An 

extension of the algorithm was cultivated by Leo Breiman and Adele Cutler [279], who 

registered "Random Forests" as a trademark in 2006. Random forest algorithms have 

showcased robust predictive capabilities for both small sample sizes and high-dimensional 

data, gaining popularity across industries and businesses. In the realm of laser welding, 

Random Forest can be employed to predict the occurrence of porosity, a prevalent issue in 

laser welding of Al-alloys. Hydrogen-induced porosity is typified by small blowholes, 

engendered by the high average temperature of the molten pool, which escalates the solubility 

of hydrogen, leading to the formation of a plethora of pores. To mitigate porosity, it's 

imperative to eliminate the source of hydrogen during welding. Another variant of porosity 

in laser welding is induced by the intense metal evaporation in the keyhole, which 

exacerbates the instability of the keyhole and weld pool. This type of porosity can be 

ameliorated through judicious pulse shaping in spot welding and the adoption of optimal 

pulse modulation. In this investigation, Random Forest classification was employed to 

prognosticate the occurrence of porosity in keyhole laser welding of overlap aluminum laser 

welding. A dataset comprising 720 ROIs labeled as "Pass" and 720 ROIs labeled as "Fail" 

was harnessed to train the RF classification model. The model attained a classification 

accuracy of nearly 80%, substantiating that the RF-based monitoring scheme is proficient in 

accurately predicting porosity occurrence. Additionally, an intelligent ML-based model 

integrating computer-integrated manufacturing (CIM) and artificial intelligence (AI) for 

data-driven adaptability throughout the production cycle was proposed. Figure 67 delineates 

a comprehensive diagram of various machine learning algorithms. 
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Figure 67. A comprehensive diagram of various machine learning algorithms [280] 

In deploying a Random Forest model, there are three principal hyperparameters that 

necessitate configuration: the node size, the number of trees, and the count of features 

sampled at each split. These parameters can be fine-tuned to enhance the model's 

performance. Additionally, a segment of the training data, designated as the out-of-bag (oob) 

sample, is allocated for cross-validation purposes. The Random Forest algorithm introduces 

an element of randomness via feature bagging, which augments the diversity in the dataset 

and diminishes correlation amongst decision trees (Figure 68). The ultimate prediction is 

ascertained differently contingent on the nature of the problem: for regression undertakings, 

the predictions from individual decision trees are averaged, while for classification tasks, a 

majority vote is garnered among the categorical variables. The oob sample is subsequently 

employed for final cross-validation. The procedural steps encompassed in the Random Forest 

algorithm are delineated as follows: 

• Selection of a random data subset from the training set. 

• Construction of a decision tree on the selected data subset. 

• Iteration of steps 1 and 2 for a predefined number of trees (n_estimators). 

• Utilization of the majority vote or the mean of the predictions from each decision 

tree as the final prediction. 
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• Employment of the oob sample for cross-validation. 

• Hyperparameter adjustments as requisite to optimize the model's performance. 

 

 

Figure 68. Diagram of Random Forest Classifier [281] 

The merits of the Random Forest algorithm are manifold, encompassing a diminished 

propensity for overfitting, a pronounced flexibility, and a facile determination of feature 

importance. A salient advantage of the Random Forest algorithm lies in its capability to 

mitigate the risk of overfitting, a prevalent issue in decision tree models. This is realized 

through the averaging of predictions from uncorrelated decision trees, engendering a 

reduction in overall variance and prediction error, thereby rendering the Random Forest 

algorithm a robust predictor for both small sample sizes and high dimensional data. Another 

notable benefit of the Random Forest algorithm is its inherent flexibility. The algorithm 

adeptly handles both continuous variables in regression scenarios and categorical variables 

in classification tasks. Moreover, the feature bagging technique employed within the 

algorithm renders it an efficacious tool for imputing missing values, maintaining accuracy 

even in the presence of missing data portions. Furthermore, the Random Forest algorithm 

facilitates straightforward determination of feature importance by evaluating each variable's 

contribution to the model. Various methods, such as Gini importance, Mean Decrease in 

Impurity (MDI), and Permutation Importance (or Mean Decrease Accuracy (MDA)), can be 

employed to ascertain feature importance. These measures afford insights into the variables 

pivotal for the model, aiding in the elucidation of underlying data patterns. The mathematical 
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exploration of Random Forests predominantly centers on comprehending the properties of 

the ensemble in totality and its application in prediction endeavors. Some quintessential 

concepts in the mathematical analysis of Random Forests include: 

• Bias-variance trade-off: Random Forests curtail overfitting by averaging across 

myriad distinct decision trees. Each tree is trained on a disparate data subset, resulting 

in an ensemble with lower variance as compared to a singular decision tree. 

Nonetheless, the ensemble exhibits higher bias than a single decision tree, 

necessitating a consideration of the trade-off between bias and variance when 

employing Random Forests. 

• Feature importance: Random Forests can be utilized to estimate the importance of 

each feature in the data, typically by measuring the decrease in impurity (e.g., Gini 

impurity or entropy) when a feature is employed to split the data. Features 

precipitating larger decreases in impurity are deemed more significant. 

• Out-of-bag error estimation: Given that each tree is trained on a distinct data subset, 

the error of the ensemble can be estimated by averaging the predictions of the trees 

on samples not used in training each tree. This is termed the out-of-bag error estimate, 

serving as a proficient approximation of the model's true error. 

• Generalization error: The generalization error of Random Forests can be upper 

bounded utilizing Rademacher complexity or PAC-Bayesian bounds. Additionally, 

the Bernstein inequality can bound the generalization error when the base learner is 

a decision tree, and the sample size is substantial. 

It warrants mention that the mathematical analysis of Random Forests is a vibrant research 

domain, with numerous other concepts and techniques employed to comprehend and 

optimize the performance of these models. The mathematical formulation of Random Forests 

amalgamates decision tree learning and statistical learning techniques. At a macroscopic 

level, the fundamental steps in training a Random Forest encompass: 

1. Generating a random data subset (with replacement) to create a bootstrap sample. 

2. Selecting a random feature subset for each split in the decision tree. 
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3. Training a decision tree on the bootstrap sample, utilizing the random feature subset 

for each split. 

4. Iterating through steps 1-3 for a specified number of trees (n_estimators). 

5. For classification, the mode of the predictions from individual trees is taken for each 

sample, while for regression, the mean of the predictions from individual trees is 

taken for each sample.  

In terms of mathematical notation, let 𝑇 be the number of decision trees in the random forest, 

𝑁 be the number of samples in the training set, 𝑀 be the number of features, 𝑓𝑖(𝑥) be the 

prediction of the i-th tree for a sample x, and 𝑦 the true label for x. 

The prediction for a given sample is typically computed as: 

• For classification: 𝑓(𝑥)  =  𝑚𝑜𝑑𝑒(𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑇(𝑥)) 

• For regression: 𝑓(𝑥)  =  𝑚𝑒𝑎𝑛(𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑇(𝑥)) 

The overarching objective of training a Random Forest is to curtail the expected prediction 

error, typically assessed through metrics such as Mean Squared Error (MSE) for regression 

tasks or classification error rate for classification tasks. The generalization error in Random 

Forests is often evaluated via the Out-of-Bag (OOB) error, constituting an error rate estimate 

of the Random Forest model derived from the mean error rate of predictions rendered by 

individual trees on out-of-bag samples. Additionally, mathematical optimization 

methodologies like gradient descent can be harnessed to ascertain optimal values of the 

Random Forest parameters, encompassing the number of trees, the depth of each tree, and 

the number of features considered at each split. In any Random Forest model, multiple 

indicators reflecting feature importance can be computed. One such indicator predicated on 

the OOB error is termed Mean Decrease Accuracy (MDA), which essentially disrupts the 

eigenvalues of the out-of-bag sample data randomly and subsequently re-evaluates the OOB 

error for each engendered tree. In this study, the Random Forest Classification algorithm was 

applied to a dataset of pass and fail samples using the python library, with the parameters 

n_estimators =100, criterion = 'gini', max_features= 5, and random_state = 0. The ensuing 

confusion matrix and feature importance were delineated based on the predictions of pass 

and fail. A pronounced challenge posed by the Random Forest algorithm resides in its time-
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intensive nature. Given its capability to manage large datasets, the data computation for each 

distinct decision tree can be sluggish. Moreover, larger datasets necessitate more resource 

allocation for storage. Additionally, the prediction from a singular decision tree is generally 

more interpretable compared to a forest of decision trees, rendering the Random Forest 

algorithm more intricate. A cardinal advantage of the Random Forest algorithm is its reduced 

susceptibility to overfitting. Decision trees inherently risk overfitting as they endeavor to 

snugly fit all samples within the training data. However, employing a substantial number of 

decision trees in a Random Forest ensures the classifier won't overfit the model, as the 

averaging of uncorrelated trees diminishes the overall variance and prediction error. The 

Random Forest algorithm also epitomizes flexibility as it adeptly handles both regression and 

classification tasks with commendable accuracy, thereby enjoying popularity among data 

scientists. Moreover, the algorithm facilitates effortless evaluation of variable importance or 

contribution to the model. Permutation feature importance is a technique employed to gauge 

a feature's importance in the Random Forest algorithm by computing the augmentation in the 

model's prediction error subsequent to permuting the feature's values. Introduced by Breiman 

(2001) [282] this method enables the discernment of a feature's importance or lack thereof, 

based on its impact on the model's error. The permutation feature importance algorithm 

proposed by Fisher, Rudin, and Dominici  [283] was also leveraged in this study to further 

scrutinize the feature importance and its correlation to the model's prediction error. 

 

5.12.2 Permutation Feature Importance 

The notion of Geometrical Feature Importance entails the evaluation of the criticality 

of a specific geometric feature in delineating the outcome of a classification or regression 

problem. Within the ambit of laser welding, the geometry of the keyhole is a pivotal feature 

influencing weld quality and porosity formation. The Random Forest algorithm emerges as 

a potent tool for gauging feature importance in laser welding scenarios. It operates by training 

a multitude of decision trees on diverse data subsets and subsequently amalgamating the 

predictions of these trees to furnish a final prediction. Through scrutinizing the relative 
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importance of disparate features in determining the prediction outcome, Random Forest aids 

in pinpointing which geometric attributes of the keyhole are most crucial to weld quality. 

Practically, Geometrical Feature Importance can be ascertained employing a spectrum of 

techniques, including Permutation Feature Importance, Gini Importance, and Mean Decrease 

in Impurity (MDI). These methodologies function by assessing the alteration in the model's 

prediction error post the permutation or exclusion of a specific feature. For instance, 

Permutation Feature Importance quantifies the augmentation in the model's prediction error 

following the permutation of a feature's values, thereby disrupting the correlation between 

the feature and the actual outcome. A feature is deemed "important" if shuffling its values 

escalates the model error, indicative of the model's reliance on that feature for prediction. 

Conversely, a feature is branded "unimportant" if its value shuffling leaves the model error 

unaltered, signifying the model's disregard for that feature in prediction. Broadly, 

Geometrical Feature Importance is a salient concept for comprehending the dynamics of laser 

welding and for crafting efficacious methodologies for monitoring and controlling the 

welding process. By identifying the key features of the keyhole, it becomes feasible to devise 

models and algorithms capable of predicting and thwarting porosity formation and other 

defects, thereby enhancing weld quality and augmenting efficiency in the welding process. 

The Permutation Feature Importance algorithm, a modality for discerning feature importance 

in machine learning models, hinges on the premise that a feature's importance is inversely 

related to the model's performance post-permutation of that feature's values. Proposed by 

Fisher, Rudin, and Dominici [283], the algorithm unfolds as follows: 

1. Inaugurate by training a machine learning model on a dataset encompassing all 

features. 

2. For each feature, execute a random permutation of its values in the test set, retaining 

the training set intact. 

3. Compute the model's performance on the permuted test set. 

4. Determine the deviation between the original performance and the performance on 

the permuted test set, as this disparity measures the feature's importance. 
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5. Iterate steps 2-4 multiple times to obtain a more robust estimate of feature 

importance. 

This algorithm holds a distinct advantage over other feature selection methods due to its 

model-agnostic nature, computational efficiency, and applicability to large datasets. 

Moreover, it provides a straightforward and intuitive pathway to discern which features 

significantly impact a model. However, certain limitations are inherent, such as sensitivity to 

the choice of performance metric for model evaluation, and potential inadequacy in dealing 

with highly correlated features. Despite these limitations, the Permutation Feature 

Importance algorithm remains a valuable asset for understanding the importance of features 

in a machine learning model. The mathematical formula for computing permutation feature 

importance: Let X be the matrix of features and y be the vector of labels. Let f be a machine 

learning model trained on (X, y) and let P be a permutation matrix. 

1. Train the model f on (X, y). 

2. For each feature i, randomly permute the values of the feature in the test set to 

obtain X_P, where X_P = XP(:, P(i)). 

3. Compute the model's performance on the permuted test set, denoted as the 

score_perm. 

4. Calculate the difference between the original score and the score_perm for feature i: 

diff_i = score - score_perm 

5. Repeat steps 2-4 M times to get a set of M differences diff_1, diff_2, ..., diff_M for 

each feature. 

6. Compute the average difference for each feature i: 

PI_i = (1/M) * sum_{j=1}^{M} diff_{i,j}                                        (9) 

 

The PI_i value for feature i represents the permutation feature importance of that feature. A 

larger PI_i value indicates that the feature is more important in the model. In the context of 

laser welding, geometrical feature importance refers to the measurement of the relative 

importance of different geometric characteristics of the keyhole, such as shape, size, and 

depth, in relation to the overall quality and integrity of the weld. This measurement can be 
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determined using machine learning methods such as random forest, which are able to analyze 

large datasets and identify patterns and correlations between different features and the 

outcome of the welding process. One of the key advantages of using random forest for feature 

importance analysis in laser welding is that it is able to handle both continuous and 

categorical variables, making it well-suited for analyzing the complex and multifaceted 

nature of the keyhole. Additionally, the algorithm is able to provide a measure of feature 

importance that is both robust and reliable, as it takes into account the interactions between 

different features and the overall effect on the welding process. Figure 69 delineates the 

importance of 22 features as ascertained through the Random Forest methodology. 

Concurrently, Figure 70 exhibits the results of Random Forest Prediction, with panel A 

illustrating the Confusion Matrix with a test size of 20%, and panel B showcasing a 

representative Random Forest decision tree. The process of determining feature importance 

in laser welding using random forest typically involves the following steps: 

1. Collect and preprocess the data: This involves acquiring large datasets of images 

and measurements of the keyhole and laser welding process, and cleaning, 

formatting, and normalizing the data for analysis. 

2. Train the random forest model: The dataset is then split into training and testing 

sets, and the random forest model is trained on the training set using a variety of 

hyperparameters, such as the number of decision trees and the number of features 

sampled. 

3. Measure feature importance: Once the model has been trained, the feature 

importance can be measured using techniques such as Gini importance, mean 

decrease in impurity (MDI), or permutation importance (MDA). 

4. Analyze and interpret the results: The results of the feature importance analysis 

can then be used to identify the most important geometric characteristics of the 

keyhole and how they relate to the overall quality and integrity of the weld. This 

information can then be used to improve the laser welding process and optimize the 

keyhole geometry for better performance. 
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Figure 69. Random forest feature importance analysis 

 

(a) 
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(b) 

Figure 70. Random Forest Prediction. A) Confusion matrix Test size 20 % and b) Random 

Forest decision tree  

 

An actual vs. predicted model diagram is a type of plot used to visualize the performance of 

a predictive model. The diagram shows the actual values of the target variable (i.e., what was 

observed or measured) plotted against the predicted values (i.e., what the model estimated or 

forecasted). In the case of binary classification (i.e., pass/fail), the diagram might show actual 

pass instances plotted against predicted pass instances on one axis, and actual fail instances 

plotted against predicted fail instances on the other axis. The ideal scenario would be for all 

points to fall along the diagonal line, indicating perfect predictions. However, in practice, the 

model will make some errors, and the points will deviate from the diagonal line. The diagram 

can help to visualize the nature and extent of these errors, which can inform model 

improvements or changes to the data used to train the model. Plotting the actual vs random 

forest predictive model diagram is a common approach for evaluating the performance of a 

machine learning algorithm for image processing tasks, such as object detection or 

segmentation. In this approach, the algorithm is trained on a set of labeled images to learn to 

recognize specific features or objects, and then it is tested on a separate set of images to 

evaluate its accuracy and generalization ability. The actual vs predictive model diagram is a 
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scatter plot that compares the true labels of the test images (i.e., the actual values) with the 

predicted labels generated by the machine learning algorithm. Each point in the plot 

represents an individual test image, where the x-axis corresponds to the actual label and the 

y-axis corresponds to the predicted label. If the algorithm is performing well, the points 

should be close to the diagonal line (y = x), indicating that the predicted labels are similar to 

the actual labels. This type of evaluation can provide insights into the strengths and 

weaknesses of the machine learning algorithm, as well as help to identify areas for 

improvement. However, it is important to note that this approach is just one of many 

evaluation methods, and it should be used in combination with other techniques, such as 

cross-validation, to ensure the reliability and robustness of the algorithm. Overall, the actual 

vs. predicted model diagram is a useful tool for evaluating the performance of a predictive 

model and gaining insights into how it can be improved (Figure 71). 
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Figure 71. Comparison between actual and predictive model 

5.12.3 Model performance report 

Table 33 shows the performance metric of the model. Precision measures the 

accuracy of positive predictions, recall measures the fraction of positive instances that were 

correctly classified, and F1-score is the harmonic mean of precision and recall. Support 

indicates the number of samples in each class. The results of the random forest classification 

model indicate an overall accuracy of 78%, with precision of 0.84 for the "Pass" class and 

0.73 for the "Fail" class. The recall score for the "Pass" class is 0.70, while the recall score 

for the "Fail" class is 0.86. The F1-scores for the "Pass" and "Fail" classes are 0.76 and 0.79, 

respectively. The precision score for the "Pass" class indicates that when the model predicts 

a "Pass" result, it is correct 84% of the time. Similarly, the precision score for the "Fail" class 

indicates that when the model predicts a "Fail" result, it is correct 73% of the time. The recall 

score for the "Pass" class suggests that the model correctly identified 70% of the "Pass" 

results, while the recall score for the "Fail" class indicates that the model correctly identified 

86% of the "Fail" results. The F1-score provides a balance between precision and recall, with 

the score for the "Pass" class being 0.76 and for the "Fail" class being 0.79. Overall, the 

results suggest that the random forest classification model is effective in predicting the 

occurrence of porosity in keyhole laser welding of overlap aluminum laser welding, with an 

accuracy of 78%. This indicates that the model is able to correctly classify 78% of the 

samples in the dataset. The precision, recall, and F1-score metrics suggest that the model 
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performs better at predicting the "Pass" class than the "Fail" class, which may indicate a class 

imbalance in the dataset. It is important to note that the accuracy of the model could be further 

improved by increasing the size of the dataset, as well as by fine-tuning the model 

hyperparameters. Additionally, further analysis of the features used in the model could 

provide insights into the most important factors contributing to the occurrence of porosity in 

laser welding. In conclusion, the random forest classification model is a promising approach 

for predicting the occurrence of porosity in laser welding and could be useful in quality 

control and process optimization in industrial settings. However, further research is needed 

to optimize the model and to validate its effectiveness in real-world applications. 

Table 33. Performance metric of model 

 Precision Recall F1-score Support 

Pass 0.84 0.70 0.76 148 

Fail 0.73 0.86 0.79 140 

Accuracy   0.78 288 

Macro avg 0.79 0.78 0.78 288 

weighted avg 0.79 0.78 0.78 288 

 

5.13 CONCLUSION  

 In conclusion, the study investigated the occurrence of porosity in keyhole laser 

welding of overlap aluminum laser welding. The study explored the use of a random forest 

classification model to predict the occurrence of porosity in the welding process. The model 

was trained and tested on a dataset of welding samples, and the performance was evaluated 

using metrics such as accuracy, precision, recall, and F1-score. The results of the study 

suggest that the random forest classification model is effective in predicting the occurrence 

of porosity in keyhole laser welding of overlap aluminum laser welding, with an overall 

accuracy of 78%. The precision, recall, and F1-score metrics suggest that the model performs 

better at predicting the "Pass" class than the "Fail" class, which may indicate a class 
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imbalance in the dataset. It is important to note that the accuracy of the model could be further 

improved by increasing the size of the dataset, as well as by fine-tuning the model 

hyperparameters. Additionally, further analysis of the features used in the model could 

provide insights into the most important factors contributing to the occurrence of porosity in 

laser welding. The study has important implications for quality control and process 

optimization in industrial settings. The random forest classification model could be used as 

a tool to identify potential defects in the welding process and to optimize the parameters to 

reduce the occurrence of porosity. However, further research is needed to optimize the model 

and to validate its effectiveness in real-world applications. 
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CONCLUSION GÉNÉRALE 

Cette étude exhaustive sur le soudage au laser des alliages d'aluminium, dans le 

contexte de l'Industrie 4.0, a abordé la collecte de données critiques comme les paramètres 

thermiques et la géométrie du bain de soudure via des technologies de pointe telles que les 

caméras thermiques et haute résolution, radiographie et 3D. Elle a intégré des modèles 

d'apprentissage automatique avancés, tels que Random Forest (RF), pour analyser ces 

données et prédire les défauts de soudage, tels que la porosité et les distorsions. Les avancées 

technologiques réalisées permettent des améliorations significatives dans la surveillance en 

temps réel et l'optimisation des processus de soudage, abordant efficacement les défis de 

gestion de la porosité et des distorsions thermiques. Le nouveau modèle proposé combine la 

surveillance par capteurs et l'analyse par apprentissage automatique, marquant une tendance 

vers une gestion plus intelligente des processus de soudage. Cette recherche souligne 

l'importance de l'innovation continue et ouvre la voie à des explorations futures pour une 

caractérisation plus précise et une meilleure qualité de soudage, illustrant l'impact profond 

de l'intégration de l'IA et des technologies avancées dans l'amélioration des processus de 

soudage au laser des alliages d'aluminium. En somme, cette étude offre une contribution 

substantielle à la compréhension et à l'amélioration des processus de soudage au laser, plaçant 

la technologie et l'innovation au cœur de l'avenir de la fabrication industrielle. Elle 

récapitulera les objectifs spécifiques qui ont été atteints et les principales conclusions de 

chaque chapitre. 

Chapitre 1 : Vers une usine intelligente de flans soudés au laser en aluminium (ALWB) 

basée sur l'industrie 4.0 ; examen critique et nouveau modèle intelligent 

Le premier chapitre de cette étude a jeté les bases théoriques en examinant l'influence 

révolutionnaire de l'Industrie 4.0 sur les processus de fabrication contemporains, se 

concentrant spécifiquement sur le soudage laser des alliages d'aluminium. Il a identifié et 
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discuté les défis critiques associés à cette technique, tels que le contrôle de la porosité et la 

minimisation des distorsions, soulignant ainsi l'impératif d'intégrer des innovations 

technologiques pour adresser ces problèmes. De plus, ce chapitre a articulé l'objectif principal 

de la recherche : développer une approche intégrée exploitant les progrès de l'Industrie 4.0 

pour accroître substantiellement la qualité et l'efficacité du soudage. Par conséquent, il a mis 

en exergue l'importance de fusionner les technologies avancées avec les techniques de 

fabrication établies afin de satisfaire les demandes de production actuelles, illustrant la 

synergie entre innovation technologique et pratique manufacturière. 

Chapitre 2 : Analyse bibliométrique de l'intelligence artificielle et du suivi en temps réel 

de la technologie du soudage à l'ère de l'industrie 4.0 

Ce chapitre détaille une analyse bibliométrique sur l'application de l'intelligence 

artificielle (IA) dans le soudage, en se concentrant particulièrement sur la surveillance en 

temps réel. Il révèle un intérêt croissant pour l'utilisation de l'IA afin d'optimiser le contrôle 

de qualité et d'améliorer les processus de soudage grâce à des technologies avancées. Cette 

étude met également en lumière les défis associés à l'implémentation de l'IA dans les 

pratiques de soudage, incluant la complexité des données et le besoin de compétences 

spécialisées. Les résultats soulignent l'impact positif potentiel de l'IA sur le soudage tout en 

indiquant les obstacles à surmonter pour intégrer pleinement les innovations de l'Industrie 

4.0. 

Chapitre 3 : Numérisation 3d en temps réel de flans soudés au laser en aluminium 5052-

h32 ; caractérisation géométrique et de soudage  

Ce chapitre illustre une avancée dans l'optimisation du soudage laser des alliages 

d'aluminium 5052-H32 via la numérisation 3D pour une caractérisation géométrique et de 

soudage précise en temps réel. L'intégration de cette technologie a facilité la détermination 

des conditions opérationnelles optimales pour réduire les distorsions thermiques et la 

porosité. L'analyse a identifié les distorsions supérieures à ±3 mm comme un seuil critique 

pour la qualité du soudage, nécessitant des ajustements pour assurer la conformité aux 



 

244 

standards de qualité. Cette découverte promeut une amélioration significative des techniques 

de soudage en offrant une compréhension approfondie de l'impact de la dynamique du 

soudage laser sur les propriétés des assemblages soudés. 

Chapitre 4 : Analyse expérimentale du soudage laser à fibres superposées pour les 

alliages d'aluminium : reconnaissance de la porosité et inspection de la qualité 

Ce chapitre dévoile une étude approfondie sur la reconnaissance de la porosité dans les 

soudures laser d'aluminium à recouvrement, combinant des techniques expérimentales et 

analyses statistiques. Utilisant la radiographie numérique pour une visualisation précise des 

défauts et analysant l'impact des profils des faisceaux laser sur la porosité, cette recherche a 

permis de comprendre les mécanismes de formation de la porosité et d'identifier les 

paramètres critiques l'influençant. Des avancées dans la minimisation de la porosité ont été 

réalisées par l'optimisation des paramètres de soudage, comme l'énergie du laser et la vitesse 

de soudage, améliorant ainsi la qualité et la fiabilité des joints soudés pour diverses 

applications industrielles. 

Chapitre 5 : Surveillance en temps réel de la porosité du soudage laser de l'aluminium 

à l'aide de l'apprentissage automatique basé sur les caractéristiques de la morphologie 

3D du trou de serrure 

Ce chapitre clôt l'étude en mettant en lumière l'intégration de l'apprentissage 

automatique pour le contrôle en temps réel de la porosité lors du soudage au laser, via 

l'analyse des caractéristiques morphologiques 3D du trou de serrure. Grâce à l'utilisation de 

caméras haute vitesse pour la collecte de données du bain de soudure et à l'application d'un 

modèle de Random Forest pour la prédiction de porosité, cette approche représente une 

avancée notable. Les résultats illustrent l'efficacité de cette méthode pour la détection précise 

de la porosité en temps réel, révélant l'impact profond de l'IA sur l'amélioration des processus 

de soudage au laser. Cette innovation promet une amélioration significative de la qualité des 

soudures, offrant un mécanisme efficace pour l'ajustement des paramètres de soudage et la 

minimisation des défauts, conforme aux visions de l'Industrie 4.0. 
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En conclusion, cette étude apporte une contribution significative à la compréhension 

des processus de soudage au laser des alliages d'aluminium en intégrant l'Industrie 4.0, 

offrant une vision globale des avancées technologiques et des méthodologies innovantes pour 

surmonter les défis de fabrication et améliorer la qualité et l'efficacité de la production. 
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RECOMMANDATIONS POUR LES TRAVAUX FUTURS 

En se basant sur les résultats et les conclusions de cette thèse, voici quelques 

recommandations pour les travaux futurs : 

1. Élargir l'étude à d'autres alliages d'aluminium : bien que cette thèse se soit concentrée 

sur l'alliage d'aluminium 5052-H32 et AA 6061-T6, il serait intéressant de répliquer 

les expériences avec d'autres alliages pour voir si les résultats sont similaires ou s'ils 

varient en fonction des propriétés du matériau. 

2. Étendre la surveillance en temps réel à d'autres paramètres : cette thèse a montré 

comment l'apprentissage automatique peut être utilisé pour surveiller la porosité de 

la soudure en temps réel. Il serait intéressant d'étendre cette surveillance à d'autres 

paramètres, tels que la température, la pression et la vitesse, pour voir comment cela 

peut aider à améliorer la qualité de la soudure. 

3. Utiliser l'apprentissage automatique pour optimiser les paramètres de soudure : bien 

que cette thèse ait utilisé l'apprentissage automatique pour surveiller la qualité de la 

soudure, il serait également intéressant d'utiliser cette technique pour optimiser les 

paramètres de soudure afin d'améliorer la qualité de la soudure dès le début du 

processus.  

4. Développement de nouveaux processus de fabrication laser: Le développement de 

nouvelles technologies de fabrication laser permettra de produire des pièces plus 

complexes et plus précises. Par exemple, le développement de la fabrication additive 

basée sur le laser, telle que la fusion sélective par laser, la stéréolithographie et la 

fusion de lit de poudre, peut être exploré pour des applications industrielles.  

5. Application de l'analyse en composantes principales (PCA) : La PCA est une méthode 

de réduction de la dimensionnalité qui permet de transformer les données en un 

ensemble de variables non corrélées appelées composantes principales. Cette 
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technique peut être appliquée à divers domaines tels que l'analyse de données, la 

reconnaissance de formes, la bio-informatique et l'analyse d'image.  

6. Mise en œuvre de méthodes non supervisées: Les méthodes non supervisées sont des 

techniques d'apprentissage automatique qui ne nécessitent pas d'étiquetage des 

données. Elles peuvent être utilisées pour explorer des données de fabrication 

complexes, détecter des anomalies, segmenter des images et des vidéos, et effectuer 

d'autres tâches de traitement de données.  

En résumé, l'exploration de nouvelles technologies de fabrication laser, l'application de 

l'analyse en composantes principales et la mise en œuvre de méthodes non supervisées 

peuvent aider à améliorer l'efficacité et la qualité des processus de fabrication. Ces domaines 

offrent des opportunités passionnantes pour la recherche future et peuvent conduire à des 

améliorations significatives dans l'industrie manufacturière.
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