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« Ogum veio da beira mar 

Foi mamãe Iemanjá quem mandou 

Saravá Ogum de Malê no Ilê 

Foi mamãe Iemanjá quem mandou » 

Ode to Ogum, from a fragment of 

Ogum de Malê, a song by Jackson do 

Pandeiro, and written by Laesse Miranda 

and Antônio Nuñes. Recorded at 78 RPM, 

Columbia 3107, 1960, matrix number 

CBO-2295 (A-side). 

In Afro-Brazilian religious cults, 

Iemanjá is the goddess of the seas. Ogum 

Beira-mar, also a god, guards the shores and 

tides, and makes the connection between land 

and the kingdom of Iemanjá. 

 

 

 

  



 

x 

 

 



 

 

ACKNOWLEDGEMENTS 

The development of this thesis brings with it an immersion in a journey that goes 

beyond the academic goals, which is already a challenge. In this way, I express here my 

sincere acknowledgements to everyone who participated in one way or another of this 

journey. 

First, I would like to express my gratitude to my thesis supervisor, Simon Bélanger, 

which provided me the opportunity to do a doctorate, trusted and supported in several ways, 

and always allowed me to work in an independently way. I’m also grateful for the 

professional opportunities I had as Assistant teacher and Lecturer, at UQAR, and as Earth 

Observation Scientist, at ARCTUS Inc. 

I extend my acknowledgements to my co-supervisor, Jean-Éric Tremblay, for his 

experience and constructive comments along the development of this work, as well as the 

other committee members of this thesis project, Christian Nozais and Mathieu Cusson. I also 

thank the thesis committee, Michel Gosselin, Cédric Fichot and Jean-Pierre Blanchet, for the 

interest they showed to evaluate this work. 

From the warm reception, passing through days in the field or doing laboratory 

analysis, discussing codes or papers, or just present in relaxation time, I salute all my 

colleagues of AQUATEL Lab of today and erstwhile: Alexandre Théberge, Zélie 

Schuhmacher, François-Pierre Danhiez, Lucas Freitas, Thomas Jaegler, Zoe Amorena, 

Claudia Carrascal-Leal, Geneviève Arboit, Rémi Constanzo, Yanqun Pan, Brigitte Légaré, 

Soham Mukherjee, Rakesh Singh, Raphäel Mabit, Loïc Dallaire, Véronique Thériault, Alycia 

Boismenu, Daniela Walch, and Josiane Lavoie-Bélanger. 

Doing regular fieldworks in the Bay of Sept-Îles would not be possible without the 

expertise of captains Glenn Galichon and Serge Galienne, and the logistical support of Julie 



 

xii 

Carrière (INREST) and Claudy Deschênes. I also thank the collaboration of Jean-Luc Shaw, 

Kim Demers, Aurélie Le Hénaff, Laurence Paquette, Manon Picard, and Jonathan Gagnon. 

The access to laboratory facilities and materials, fieldwork equipment, and all 

university-related bureaucracy can be difficult to reach and an extremely time-consuming 

task. Fortunately, these were done smoothly along my doctorate thanks to the following 

persons: Jonathan Coudé, Steeven Ouellet, Bruno Cayouette, Pascal Rioux, Melanie Simard, 

Claude Belzile, Marie-José Naud, Sophie Banville, Danie Massé, Diane Proulx, Edith 

Plourde, and Thomas Buffin-Bélanger. 

I’m grateful to my past scientific advisors, which greatly contributed to the 

development of my scientific curiosity and rigor, they are: Valdenir Furtado, Luis Conti, João 

Lorenzzetti, José Stech, and Claudio Barbosa. I also thank my colleagues Marcelo Curtarelli, 

Joaquim Leão, Igor Ogashawara and Fernanda Sampaio, for sharing their experiences with 

me while collaborating to develop my scientific skills. 

As part of this journey, I thank all support that I received from my parents, Eronides 

(in memorian) and Fátima, and all family and friends who contributed to this cause, Maju, 

Luiz, Gilda, Mara, Beto and Ricardo. Finally, this PhD is also a conquer of my family, my 

life partner Inês, and my two daughters, Iara and Flora. 

 

 

 



 

 

FOREWORD 

The development of this thesis was only possible thanks to research projects awarded 

to (or in collaboration with) the Laboratoire d'optique aquatique et de télédétection 

(AQUATEL), at the Université du Québec à Rimouski (UQAR), and scholarships grants 

awarded to the author, as detailed below. 

The first research project was the Canadian Healthy Oceans Network (CHONe-2), 

funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) in 

partnership with Fisheries and Ocean Canada and INREST (representing the Port of Sept-

Îles and City of Sept-Îles). Specifically, this thesis is part of the CHONe Project 2.1.2, which 

major objective was “to evaluate and model how natural and anthropogenic stressors 

interact to impact pelagic and benthic communities along a sub-arctic coastline and develop 

bay-scale condition indicators”. Because of common objectives and the possibility to 

integrate the same methodology in other areas (although the same regional context), this 

thesis contributed to other two research projects: WISE-Man and RQM 1. The WISE-Man 

Project (WaterSat Imaging Spectrometer Experiment [WISE] for Optically Shallow Inland 

and Coastal Waters Assessment) was funded by the Canadian Space Agency through the 

FAST program, Fisheries and Oceans Canada through the Coastal Environmental Baseline 

Program, and Québec-Ocean. The RQM 1 (subproject “Eelgrass meadows in Québec: 

Evolution and status”) was funded by the Réseau Québec Maritime. The scholarships were 

provided by the Fonds de Recherche du Québec – Nature et technologies (FRQNT), through 

a grant of the Merit Scholarship Program for Foreign Students (PBEEE); the Fondation de 

l’UQAR, through a Research Merit Scholarship; CHONe-2; a NSERC Discovery Grant of 
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This thesis is divided in five sections: a general introduction, the main body of the text 

with three research articles, and a general conclusion. The general introduction situates this 

thesis in an environmental science perspective and provides major guidelines to concepts that 

are explored along all the sections. Major research questions and the thesis objectives are 

presented in the end of the introduction. The research articles are written in journal-specific 

formats and, while containing original data and analysis, they also provide future 

perspectives in each domain explored in the manuscripts. The general conclusion integrates 

the work developed in each research article into a broader perspective and provides ideas for 

future work and research priorities. Finally, a supplementary material for each research 

article (annex) and a complete list of references for all the thesis is provided after the general 

conclusion. 
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BIO-OPTICAL PROPERTIES AND REMOTE SENSING APPLICATIONS FOR 

MAPPING THE DISTRIBUTION OF PRIMARY PRODUCERS IN NEARSHORE 

AREAS OF THE ESTUARY AND GULF OF SAINT LAWRENCE 

ABSTRACT 

The relationship between nature and humanity is in the spotlight in the 21st century, 

while the proximity of coastal zones is one of the most attractive areas in the world for human 

settlements due to their unique offer of environmental (social, economical, and ecological) 

goods. Notwithstanding, nearshore areas host diverse ecologically relevant and sensitive 

habitats. In this context, while forming the basis of trophic chains, primary producers such 

as phytoplankton and foundation species of coastal vegetated habitats constitute key 

organisms of such ecosystems. Specifically in northern high latitudes, the rising temperatures 

and sea-ice loss due to global warming are about twice as fast as in mid-latitudes (Arctic 

amplification), with consequences for ocean, coastal and nearshore processes. Because of the 

natural wide spatial and temporal variability of oceanographic and watershed processes 

acting over nearshore areas, the ability to monitor and manage them often represent a 

challenge for stakeholders, scientists, and decision-makers. Earth observation satellites 

(EOS) present themselves as a singular tool to address spatial and temporal variabilities of 

primary producers in nearshore areas. However, the possibility to retrieve biogeochemical 

information of surface waters from EOS applications requires knowledge about their optical 

properties. The main objectives of this thesis were to establish a baseline of knowledge about 

the optical properties and develop remote sensing tools to better understand the variability of 

primary producers in nearshore waters of subarctic and cold temperate environments. This 

thesis is composed of three research papers using a combination of in situ (ship-based) and 

satellite-based approaches to achieve these goals. The studied areas included nearshore 

subregions of the estuary and Gulf of St. Lawrence (EGSL), Eastern Canada, being the 

coastal areas near the Bay of Sept-Îles (BSI), the Manicouagan (MAN) Peninsula, Forestville 

(FV), Rimouski bay (RIB), and L’Isle Verte bay (IVE). In the first article, BSI, MAN and 

FV subregions were investigated using (distinct) in situ sampling design strategies, and all 

field campaigns collected optical and biogeochemical quantities (molar and dry-mass 

concentrations) to investigate their major relationships. The bio-optical properties of 

nearshore waters of the north part of EGSL are under the influence of major (or local) organic 

matter-rich riverine discharges. Specifically, it was shown that the absorption coefficient of 

the chromophoric dissolved organic matter (CDOM) strongly dominates the absorption 

budget, and that these waters have very low mass-specific backscattering coefficient. These 

factors characterize a strongly light-absorbing and weakly light-scattering medium, resulting 
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in low reflectance values and with implications for the applications of optical remote sensing 

approaches. Despite the dominance of terrigenous absorbing components, the biomass of 

phytoplankton was not negligible (chlorophyll-a concentrations ≥ 1 mg m-3). Overall, the 

sampling strategy revealed a complex interplay of spatial (between and within subregions) 

and temporal (seasonal, synoptic, and circadian) variabilities acting of nearshore EGSL and 

influencing its optical properties. In the second article, we hypothesized that the composition 

of major phytoplankton assemblages in BSI subregion will covary with temperature and the 

bulk optical properties of the environment. The in situ sampling revealed a strong seasonal 

(spring to autumn) pattern modulating the composition of phytoplankton assemblages, while 

statistically significant differences of temperature and bio-optical properties between the 

different groups were observed. Before the freshet, spring bloom was dominated by large 

(microphytoplankton) cells (diatoms), and the succession followed a shift towards 

nanophytoplankton and picophytoplankton cells throughout summer and fall. Whilst 

confirming the hypotheses, it was also demonstrated the capability to retrieve the major 

phytoplankton assemblages from EOS sensors, with possible applications to monitoring 

programs. The third article used a long-term time series (~40 years) from EOS (Landsat 

missions) to address the interannual and decennial variability of seagrass (eelgrass, Zostera 

marina L.) meadows coverage in intertidal areas of BSI, MAN, RIB, and IVE subregions of 

EGSL. From the methodological aspect, knowledge about the variabilities of optical 

properties and tides were essential to optimize EOS approaches. The area of the meadows 

presented a significantly increasing trend (10 to 20-fold greater than the initial surface area, 

considering the period from 1984 to 2022). Particularly, in MAN and BSI subregions the 

observed growing trend was towards land. Overall, this thesis focused on the retrieval of the 

spatial distribution of two important primary producers (i.e., phytoplankton assemblages and 

seagrass meadows) using EOS approaches in changing EGSL nearshore subregions. An 

avenue of possibilities remains to be explored through incorporating EOS approaches in 

nearshore EGSL zones in social-ecological systems, where the environment and its 

interaction with the anthroposphere can be modeled and predicted. Nonetheless, this thesis 

represents a first step towards a more representative sampling of these two important 

environmental variables. 

Keywords: nearshore habitats, bio-optical properties, CDOM, backscattering 

coefficient, phytoplankton seasonal succession, remote sensing, eelgrass meadows, Zostera 

marina, Landsat, Saint Lawrence Estuary 

 

 

 

 



 

 

RÉSUMÉ 

La relation entre la nature et l'humanité est une préoccupation grandissante du 21e 

siècle, alors que la proximité des zones côtières est l'une des zones les plus attractives au 

monde pour les établissements humains en raison de leur offre unique de biens 

environnementaux (sociaux, économiques et écologiques). En effet, les zones littorales 

abritent divers habitats écologiquement pertinents et sensibles. Dans ce contexte, tout en 

constituant la base des chaînes trophiques, les producteurs primaires tels que le 

phytoplancton et les espèces fondatrices des habitats végétalisés côtiers constituent des 

organismes clés de tels écosystèmes. Plus précisément dans les hautes latitudes 

septentrionales, la hausse des températures et la perte de glace de mer due au réchauffement 

climatique sont environ deux fois plus rapides qu'aux latitudes moyennes (amplification 

arctique), avec des conséquences sur les processus océaniques, côtiers et littoraux. En raison 

de la grande variabilité spatiale et temporelle naturelle des processus océanographiques et 

des bassins versants agissant sur les zones littorales, la capacité de les surveiller et de les 

gérer représente souvent un défi pour les parties prenantes, les scientifiques et les décideurs. 

Néanmoins, les satellites d'observation de la Terre (SOT) se présentent comme un outil de 

choix pour aborder les variabilités spatiales et temporelles des producteurs primaires dans les 

zones côtières. Cependant, la possibilité de récupérer des informations biogéochimiques sur 

les eaux de surface à partir d'applications SOT nécessite une connaissance de leurs propriétés 

optiques. Les principaux objectifs de cette thèse étaient d'établir une base de connaissances 

sur les propriétés optiques et de développer des outils de télédétection pour mieux 

comprendre la variabilité des producteurs primaires dans les eaux côtières des 

environnements subarctiques et tempérés froids. Cette thèse est composée de trois articles de 

recherche utilisant la combinaison d'approches in situ (basées sur des navires) et satellitaires 

a été utilisée pour atteindre ces objectifs. Les zones étudiées comprenaient des sous-régions 

littorales de l'estuaire et du Golfe du Saint-Laurent (EGSL), dans l'est du Canada, étant les 

zones côtières proches de la Baie des Sept-Îles (BSI), Forestville (FV), la baie de Rimouski 

(RIB), and la baie de L’Isle Verte (IVE). Dans le premier article, les sous-régions BSI, MAN 

et FV ont été étudiées en utilisant des stratégies de conception d'échantillonnage in situ 

(distinctes), et tous les échantillons incluent (1) les propriétés optiques et (2) les quantités 

biogéochimiques (concentrations molaires et de masse sèche) pour étudier leurs principales 

relations. Les propriétés bio-optiques des eaux littorales de la partie nord de l'EGSL sont sous 

l'influence de débits fluviaux majeures (ou locaux) riches en matière organique. Plus 

précisément, il a été montré que le coefficient d'absorption de la matière organique dissoute 

chromophore (MODC) domine fortement le bilan d'absorption, et que ces eaux ont un 

coefficient de rétrodiffusion spécifique très faible (par rapport à la concentration en matière 

particulaire en suspension). Ces facteurs caractérisent un milieu absorbant fortement la 

lumière et diffusant faiblement la lumière, ce qui entraîne de faibles valeurs de réflectance et 
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des implications pour les applications des approches de télédétection optique. Malgré la 

dominance des composantes optiques d'origine terrigène dans le bilan d'absorption, la 

biomasse de phytoplancton n'est pas négligeable (concentrations en chlorophylle-a ≥ 1 mg 

m-3). Dans l'ensemble, la stratégie d'échantillonnage a révélé une interaction complexe des 

variabilités spatiales (entre et au sein des sous-régions) et temporelles (saisonnières, 

synoptiques et circadiennes) agissant sur l'EGSL près du rivage et influençant ses propriétés 

optiques. Dans le deuxième article, nous avons émis l'hypothèse que la composition des 

principaux assemblages de phytoplancton dans la sous-région de BSI covarie avec la 

température et les propriétés optiques globales de l'environnement. La stratégie 

d'échantillonnage in situ a révélé un fort cycle saisonnier (du printemps à l'automne) 

modulant la composition des assemblages de phytoplancton, tandis que des différences 

statistiquement significatives de température et de propriétés bio-optiques entre les différents 

groupes ont été observées. Avant la crue des rivières au printemps (mi-mai), l'efflorescence 

de phytoplancton était dominée par de grandes cellules microphytoplanctoniques 

(diatomées), et la succession suivait un déplacement vers des cellules de nanophytoplancton 

et de picophytoplancton tout au long de l'été et de l'automne. Tout en confirmant les 

hypothèses, il a également été démontré la capacité d’estimer les principaux assemblages de 

phytoplancton à partir des capteurs SOT, avec des applications possibles aux programmes de 

surveillance. Le troisième article a utilisé une série temporelle à long terme (~ 40 ans) de 

SOT (missions Landsat) pour aborder la variabilité interannuelle et décennale de la 

couverture des herbiers marins (zostère marine, Zostera marina L.) dans les zones intertidales 

de BSI, MAN, RIB and IVE sous-régions littorales de l'EGSL. D'un point de vue 

méthodologique, la connaissance des variabilités des propriétés optiques et des marées était 

essentielle pour une meilleure utilisation des approches SOT afin d'obtenir les meilleurs 

résultats. La superficie des herbiers a présenté une tendance à l'augmentation significative 

(10 à 20 fois supérieure à la superficie initiale, en considérant la période de 1984 à 2022). En 

particulier, dans les sous-régions MAN et BSI, la tendance croissante observée était vers la 

terre (continent). Dans l'ensemble, cette thèse s'est concentrée sur l'analyse de la distribution 

spatiale et temporelle de deux importants groupes de producteurs primaires (i.e., les 

assemblages phytoplanctoniques et les herbiers de zostère) grâce aux approches SOT dans 

les sous-régions côtières changeantes de l'EGSL. Une voie de possibilités reste à explorer en 

incorporant des approches SOT dans les zones EGSL côtières dans les systèmes socio-

écologiques, où l'environnement et son interaction avec l'anthroposphère peuvent être 

modélisés et prédits. Néanmoins, cette thèse représente une première étape vers un 

échantillonnage plus représentatif de ces deux variables environnementales importantes. 

Mots clés : habitats côtiers et littoral, propriétés bio-optiques, MODC, coefficient de 

rétrodiffusion, succession saisonnière du phytoplancton, télédétection, herbiers de zostère, 

Zostera marina, Landsat, Estuaire du Saint Laurent 
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GENERAL INTRODUCTION 

ENVIRONMENTAL SCIENCES AND SYSTEMS ECOLOGY 

Humanity is living in the Anthropocene era (Ellis et al., 2010; Folke et al., 2021; Lewis 

and Maslin, 2015) and facing challenges such as world climate change (IPCC, 2022). 

Consequently, the relationships between society and nature are in the spotlight in the twenty-

first century. Social-ecological systems (SES), which can be defined as a set of critical 

resources (natural, socio-economic, and cultural) whose flow and use is regulated by a 

combination of ecological and social systems (Redman et al., 2004), is an useful concept in 

this context (see Folke et al., 2005; Ostrom, 2009). In turn, the so-called ecosystem-based 

approach guide to best management practices and protection of the environment through the 

scientific reasoning, while also considering the humans’ interaction with the natural 

ecosystem with sustainability (Browman and Stergiou, 2004; Christensen et al., 1996; Leslie 

and McLeod, 2007). 

In the discipline of environmental sciences, the ecologist Pierre Dansereau, author of 

the pioneering work “Biogeography: An ecological perspective” (Dansereau, 1957), also 

attempted that the theoretical framework of systems approach developed in ecology, with the 

seminal works of Arthur Tansley, Raymond Lindeman and G. Evelyn Hutchinson, among 

others, should also be incorporated in the study of the interaction of human and the 

environment (Audet, 2012). In fact, the ecosystem-based management is tightly related with 

and has advantages when analyzed through the lens of systems ecology (Kay et al., 1999; 

Van Assche et al., 2019). 

Therefore, one may expect in social-ecological systems the perspectives of complexity, 

evolution, self-organization, and adaptation, constant in the general system theory (for 

reference, see Meadows, 2008; von Bertalanffy, 1950). Perhaps the most fundamental 
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concept of general systems theory is the interaction of the different elements of a simple 

conceptual model (Figure 1), where the dynamic of a system can be inferred by stocks (input 

and outputs) and processes. In this example, if the input is provided, and knowing the 

mechanisms of the process involved in the transformation of it, it is possible to predict the 

output. The idea of predictability through modeling approaches are central in general systems 

theory. 

 

Figure 1. Conceptual model from general systems theory. 

 

Particularly in environmental systems, a critical step in developing models is the 

adequate sampling for inputs and outputs (this last also for verification purposes, see 

Nordstrom, 2012). Ecosystems exhibit wide variability of spatial, temporal, and 

organizational scales, while it is important to note that the observer imposes his perceptual 

bias when investigating such systems (Levin, 1992). In summary, it is very important to 

address this problematic in SES and, consequently, in ecosystem-based management 

approaches.  
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NEARSHORE ENVIRONMENTS AND PRIMARY PRODUCERS 

This thesis focuses on nearshore environments, which is an integral part of a coastal 

SES. Coastal zones are one of the most attractive areas in the world for human settlements 

(Small and Nicholls, 2003). This phenomenon occurs mainly due to its socioeconomic 

benefits, which includes access to ocean navigation, coastal fisheries, tourism, and recreation. 

Notwithstanding, anthropogenic modification of coastal and nearshore environments is 

substantive and presents an increasing trend, which can have deleterious effects to human 

itself (Doney, 2010; Turner et al., 1996). 

Nearshore environments are naturally dynamical systems because of the simultaneous 

interaction of hydrosphere, lithosphere, cryosphere (in high latitudes), and atmosphere 

processes. Examples of processes acting in nearshore environments are the freshwater and 

groundwater discharge (watershed processes), ocean (-or estuarine) waters exchange, tidal 

and wave regime, material input (organic and inorganic), and climatic events. Thus, it is 

important to consider de various spatial and temporal scales of processes in coastal SES 

management (de Jonge, 2000). 

A formal investigation of spatial and temporal scales acting in ocean was introduced in 

the so-called Stommel Diagram (Stommel, 1963), firstly used to describe the distribution of 

variabilities of the sea level. Later, the disciplines of ecology and biological oceanography 

used the same graphical concept to explain other phenomena, such as the scales of variability 

of phytoplankton, zooplankton, and fish populations (Vance and Doel, 2010). Figure 2 shows 

an example of a biological version of the Stommel Diagram applied to the ocean, where the 

variabilities of biomass (z-axis; e.g., zooplankton) are superimposed by the main sources of 

oceanographic data (ships, moorings, and satellites; from Kaiser et al., 2020). It is important 

to note the diversity of scales and processes (legend in Fig. 2) acting in this example, but also 

the complementarity of the three different sources of data to address oceanographic 

phenomena, and the singularity of the satellite approach. However, one may expect even 

more complexity in nearshore environments.  
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Figure 2. Example of a Stommel Diagram applied to a biological system, highlighting the 

role of the most common sources of data in oceanography: ships, moorings, and satellites. 

Source: Kaiser et al. (2020); Marine Ecology: Processes, Systems, and Impacts; p. 218. 

Reprinted with permission by Oxford University Press. 

 

Salt marshes, mangroves, seagrass meadows, macroalgal beds and microphytobenthic 

films, besides the pelagic habitat itself, are examples of ecologically relevant habitats that 

are found in nearshore environments. The ecological and economic importance of these 

habitats is vast, including nursery of diverse species, primary production, nutrients cycling, 

carbon storage, and coastline protection as representative examples. Notwithstanding, a high 

economic value of ecosystem services is attributed to these biomes (Costanza et al., 2014). 

For practical purposes, ecosystem services can be simply defined as the benefits people 

obtain from ecosystems. 
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The synthesis of organic matter from inorganic matter by autotrophs organisms (i.e., 

primary production) constitutes the basis of trophic chains in food webs, and the most 

important process is the photosynthesis. In an ecosystem, the energy sources and associated 

trophic linkages that supports food webs are key to understand its structure and function 

(Lindeman, 1942). In nearshore environments of high latitudes, for example, stable isotopes 

analysis revealed the complex contribution of the different primary producers, but also the 

relative importance of allochthonous organic matter from terrestrial sources (Corbisier et al., 

2004; McMahon et al., 2021; St. Pierre et al., 2020). In these high latitude regions, the 

primary producers can include phytoplankton, macroalgae, seagrass, sea ice algae, and 

microphytobenthos. 

Specifically in the pelagic environment, the knowledge about the composition of 

phytoplankton assemblages is of particular interest for biogeochemical models, as they are 

intrinsically related to ecological processes (Le Quéré et al., 2005), and it can also be used to 

access the ecosystem health (Tett et al., 2008). 

Because of their characteristic of foundation species (i.e., species that play a major role 

in creating and maintaining a habitat) and to constitute the base of trophic chains, the 

characterization of primary producers is primarily important in nearshore environments. 

Next, we examine how remote sensing, particularly in the optical domain, can address the 

problem of spatial and temporal sampling in coastal and nearshore areas. 

 

OPTICAL REMOTE SENSING OF NATURAL WATERS 

Remote sensing, through Earth Observation satellites, has advantages when compared 

to other approaches to sample the coastal environment, such as its acquisition repeatability 

(temporal resolution), spatial coverage, and synoptic view. In particular, the retrieval of 

biogeochemical information of surface waters has been developed (and are in constant 

development) since the launch of the first space-based experimental sensor dedicated to 
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ocean color remote sensing, the Coastal Zone Color Scanner experiment (CZCS), which 

operated from 1978 to 1986 (McClain, 2009). A decade after CZCS, the Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS) was an ocean color remote sensing mission that operated 

from 1997 to 2010 and initiate the long term systematic and uninterrupted Ocean Colour 

Radiometry (OCR) era. Among others, the Moderate Resolution Imaging Spectroradiometer 

(MODIS), aboard Terra and Aqua satellites, are sensors still in operation (since 1999). An 

emblematic modeling approach that uses ocean color remote sensing products (namely the 

chlorophyll-a concentration, Chla) is the estimation of global net primary production (NPP) 

by phytoplankton (e.g., Antoine et al., 1996; Behrenfeld and Falkowski, 1997; Longhurst et 

al., 1995). Phytoplankton was found to account for approximate 50% of Earth NPP (Field et 

al., 1998). OCR provided biogeochemical proxies of the surface ocean that has transformed 

our understanding of the ocean response to climate variability (e.g., Behrenfeld et al., 2006). 

Due to their coarse spatial resolutions, OCR sensors that are adequate for the global 

ocean are not suitable for application in coastal and nearshore areas (see Bissett et al., 2004; 

Moses et al., 2016). The ability of remote sensing products in addressing the spatial and 

temporal scales of variability will be determined by their spatial and temporal specifications. 

Additionally, the capability of discrimination of targets will strongly vary in function of the 

spectral and radiometric resolutions of the sensor, besides the spatial resolution as well. 

Targeting the Essential Biodiversity Variables (EBV; Pereira et al., 2013) monitoring across 

coastal zones, Muller-Karger et al. (2018) defined what they called the H4 imaging, where 

sensors characteristics of spatial, spectral, and temporal resolutions, as well as radiometric 

quality, were described to better achieve this purpose. Apropos, an EBV is defined as a 

measurement required for study, reporting, and management of biodiversity change, and 

could be used as the basis for monitoring programs worldwide (Pereira et al., 2013). 

Notwithstanding, since the beginning of the twenty-first century several ocean color sensors 

onboard satellite missions have been launched and others are scheduled (IOCCG, 2023a, 

2023b), with technical characteristics that goes towards an ideal H4 imaging for nearshore 

environments. 
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According to Muller-Karger et al. (2018), H4 imaging should combine the following 

characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) 

spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared 

spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for 

atmospheric correction and aquatic vegetation assessments; (3) radiometric quality with high 

signal to noise ratios (SNR > 800; relative to signal levels typical of the open ocean), 14-bit 

digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization 

sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize 

sunglint; and (4) temporal resolution of hours to days. It is important to note that there are no 

current or planned sensor that combine all these characteristics. Instead, there are sensors that 

combine some of them, and the choice of using one or another will depend specifically on 

the objectives of the application. 

 

The discipline of aquatic optics (Jerlov, 1968; Kirk, 2011) establishes a formal link 

between OCR and aquatic biogeochemistry. The propagation of light energy through a 

medium which absorbs, scatters and contains internal sources can be fully described by the 

radiative transfer equation (RTE; forward problem) [Mobley, 1994; Preisendorfer, 1976]. 

Two basic physical (radiometric) quantities of the light field are the radiance (𝐿, in units of 

W m-2 nm-1 sr-1) and the irradiance (𝐸, in units of W m-2 nm-1), and the spectral dependence 

of light is represented by the wavelength (𝜆, in nm). The most common (and desired) physical 

quantity that can be obtained from (optical) remotely sensed images is the remote-sensing 

reflectance (𝑅rs, in units of sr-1), an apparent optical property (AOP), given by: 

𝑅rs(𝜆) =
𝐿w(𝜆)

𝐸d(0+, 𝜆)
  ,                                                                (1) 

where 𝐿w(𝜆) is the water-leaving radiance and 𝐸d(0+, 𝜆) is the downwelling irradiance (0+ 

indicates that it is referred to just above the water surface). 
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The optical characteristics of a light-transmitting medium can be specified in terms of 

its inherent optical properties (IOPs), being the absorption coefficient (𝑎, in units of m-1) and 

the volume scattering function (𝛽(𝜓, 𝜆), in m-1 sr-1, where 𝜓 is the scattering angle) the main 

quantities. The so-called optical closure states that, ideally, it should be possible to build a 

light field model from measured values of IOPs and given boundary conditions (e.g., bottom 

reflectance and sea surface state), which would precisely replicate radiometric measurements 

made at the same time (e.g., Gallegos et al., 2008). Nevertheless, estimating IOPs through 

satellite approaches (using 𝑅rs(𝜆), for example) constitute an inverse problem (from the RTE 

perspective), and the possibility of multiple solutions from the same input characterize a 

typical ill-posed problem (Defoin-Platel and Chami, 2007). 

The spectral and spatial characteristics of the underwater light field are determined 

through the numerical integration of the RTE over all depths and angles, using as inputs the 

quality and geometry of the illumination conditions and IOPs. Notwithstanding, 

simplifications of the RTE, or semi-analytical approaches, were proposed by several studies, 

such as the ones presented by Morel and Prieur (1977), or the quasi-single scattering 

approximation (QSSA, Gordon et al., 1988, 1975). For practical purposes, a simple  

approximation relating IOPs and 𝑅rs can be understood as (Lo Prejato et al., 2020): 

𝑅rs(𝜆) ∝
𝑏b(𝜆)

𝑎(𝜆)
  ,                                                                (2) 

where 𝑏b(𝜆) is the backscattering coefficient, obtained by integrating 𝛽(𝜓, 𝜆) in the 

backward direction (2π). The total 𝑎(𝜆) and 𝑏b(𝜆) can be considered as a sum of partial 

contributions of the water itself, suspended particles (including phytoplankton) and the 

coloured dissolved organic matter (CDOM), and these are commonly referred to as the 

optically active constituents (OACs) of the aquatic medium. The partial contribution from 

OACs to the IOPs can be related in a quantitative way, while it varies in optically different 

waters (more details in the section dedicated to Article 1). 
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The equation 2 exhibits a general relationship between 𝑅rs(𝜆) and IOPs in optically deep 

waters, i.e., without the influence of the bottom. However, coastal and nearshore 

environments where the contribution of the bottom (or benthos) affects 𝑅rs(𝜆) signals are 

known as optically shallow waters (see Albert and Mobley, 2003), and should be considered 

in remote sensing approaches. Although this work acknowledges the existence of optically 

shallow areas in the studied areas, its influence in 𝑅rs(𝜆) is restricted only to very shallow 

depths (maximum of ~3 m of water column, as will be shown later), and is out of the scope 

of this thesis. Figure 3 shows a schematic diagram illustrating the bio-optical properties and 

its link with the remote sensing approach of a nearshore environment. 

Therefore, the estimation of biogeochemical-relevant information of surface waters by 

optical remote sensing is possible because the OACs shapes the IOPs which, in turn, will 

strongly influence the 𝑅rs(𝜆) signals. Furthermore, the amount and quality of light that 

reaches the bottom of coastal waters (benthic habitat) will also depend on IOPs, with 

consequences to the photosynthesis processes of benthic primary producers. Since 𝑅rs(𝜆) are 

more tightly related to IOPs than directly to OACs (see Werdell et al., 2018), the 

characterization and understanding of the drivers of its variability is a primary requirement 

when using remote sensing optical approaches to investigate nearshore environments. 

In summary, integrating both aquatic optics and remote sensing tools to understand 

light dynamics in natural waters and the distribution of benthic primary producers’ in 

nearshore environments can provide valuable data that can be used to access the ecosystem 

state. 

 



 

10 

 

Figure 3. Schematic diagram illustrating the main components and relationships of bio-optical properties and remote sensing 

of a costal environment. 
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AREAS OF STUDY AND PROBLEMATICS 

The study areas of this thesis contemplate coastal and nearshore zones of the Estuary 

and Gulf of the St. Lawrence (EGSL; Fig. 4), East Canada. The EGSL connects the Great 

Lakes with the North Atlantic Ocean and encompasses one of the largest estuaries in the 

world (El-Sabh and Silverberg, 1990). Propitious conditions to phytoplankton growth occurs 

because of the upwelling of deep waters near the outlet of the Saguenay Fjord and because 

of other physical controls such as stratification (see Therriault et al., 1990). This gives the 

pelagic system of EGSL a very productive character and sustains a rich ecosystem that 

includes big marine mammals (e.g., beluga, blue, fin, humpback, and minke whales). In turn, 

common habitats found in nearshore zones of EGSL are seagrass meadows, macroalgal beds, 

and microphytobenthic films. Seagrass meadows are particularly dominant in some intertidal 

areas of EGSL (Jobin et al., 2021). 

However, besides of being one of the coastal systems most studied in the world (from 

the oceanographic viewpoint), there is a lack of knowledge about the variability of bio-optical 

properties in nearshore areas of EGSL. This might hinder and/or add uncertainties in satellite 

estimations of water quality parameters, but also information about the distribution of 

submerged aquatic vegetation. Nearshore EGSL areas is expected to be influenced by river 

discharges bringing large amounts of (dissolved and particulate) terrigenous matter, which, 

in turn, will shape the optical properties of these environments. Consequently, common 

techniques applied to retrieve information about phytoplankton assemblages in the open 

ocean, where the bulk optical properties of the water generally covaries with phytoplankton, 

may not be valid for such dynamical optical environments of nearshore EGSL. 
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Figure 4. The nearshore areas of the estuary and Gulf of St. Lawrence (EGSL) 

contemplated in the three research articles of this thesis. The inset shows EGSL (red box) 

in the world and North America context. 

 

In such scenario, and addressing only the overlooked nearshore zones of EGSL, the 

following research questions can be posed: How bio-optical properties of nearshore areas are 

compared to central parts of EGSL? What temporal scales are important in governing the 

variability of bio-optical properties and the composition of phytoplankton? Is it possible to 

retrieve information about different groups of phytoplankton from optical remote sensing? 

How is the actual spatial distribution of the benthic primary producers in EGSL? How is the 

temporal evolution of seagrass meadows? 
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By developing tools to answer these research questions, the same framework (with 

adaptations) could be used to address complex spatial and temporal patterns of nearshore 

environments worldwide. 

 

THESIS OBJECTIVES AND STRUCTURE 

The main objectives of this thesis were to establish a baseline of knowledge about the 

variability of optical properties and develop remote sensing tools to better understand the 

variability of primary producers in nearshore waters of subarctic and cold temperate 

environments. The thesis is composed by three research articles and a general conclusion. 

The study sites (or subregions of EGSL) and its links with the different articles are shown in 

Figure 4. 

To achieve the goal of this thesis, a comprehensive in situ dataset (ship-based approach) 

of bio-optical properties was built in the context of different research projects. The objective 

of the first article was to contribute to the knowledge on bio-optical variability in nearshore 

environments of the EGSL, where local river input is likely to dominate optical variability. 

A secondary objective was to investigate domain scales (spatial and temporal) that are known 

to be driven by regional climatic, geomorphological, and hydrodynamical processes. 

The objective of article 2 was to identify the major phytoplankton assemblages and 

their respective environmental niches, in respect to nutrient concentrations, physical 

parameters (temperature and salinity), and bio-optical properties. Through the hypotheses 

that the composition of major phytoplankton assemblages in a nearshore coastal area will 

covary with temperature and the bulk optical properties of the environment, the potential of 

using sea surface temperature (𝑆𝑆𝑇) and 𝑅rs(𝜆) [at selected wavelengths], retrieved from 

remote sensing, was demonstrated. 

Finally, the objective of article 3 was to build a long-term dataset of seagrass 

distribution in ecologically significant areas of EGSL (Fig. 4) using satellite imagery. The 
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analysis of the dataset allowed to access yearly and decadal (1984-2022) changes of spatial 

variability in areal cover of the seagrass meadows. 

The general conclusion revisits the main findings and limitations of the research 

articles of the present study, but also shed light to some gaps of knowledge and provide new 

insights for future work. 

From the perspective of environmental sciences and systems ecology presented in the 

beginning of this chapter, this thesis aims to contribute to the knowledge of some important 

“stocks” of nearshore zones of the EGSL, with potential to use them in modelling frameworks 

(as in Fig. 1). The stocks include the distribution of major phytoplankton assemblages 

(Article 2) and the seagrass meadows coverage (Article 3). Also, in this case, both stocks 

could act either as input or output of a model. Because the two stocks explore the advantages 

of spatial and temporal information that can be obtained by Earth Observation satellites, the 

knowledge about aquatic optics was primarily important (Article 1). 
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1.1 ABSTRACT 

The inherent optical properties and the optically significant constituents in nearshore 

zones of the Estuary and Gulf of St. Lawrence (EGSL), eastern Canada, were systematically 

investigated. Molar and dry-mass concentrations of dissolved organic carbon (DOC), 

phytoplankton pigments, and suspended particulate matter (SPM) were determined together 

with the absorption coefficients of chromophoric dissolved organic matter, 𝑎cdom; non-algal 

particles, 𝑎nap; phytoplankton, 𝑎phy; and particulate backscattering coefficient, 𝑏bp. The 

sampling design allowed analysis at different spatial scales and considered some intra-

regional differences in distinctive zones (subregions) of the EGSL’s north shore (separated 

by ~ 102 km), as well as within subregions (samples separated by ~ 100 to 101 km). Temporal 

analysis focused on seasonal variability (sampling time separated by ~ 101 to 102 days). 

Optical indices, such as the spectral slopes of 𝑎cdom and 𝑎nap, pigment ratios, mass-specific 

absorption and backscattering coefficients, and particulate matter fractioning (inorganic and 

organic) allowed a detailed characterization of the dissolved organic matter pool and 

provided useful information about particulate matter assemblages. The 𝑎cdom was highly 

correlated with DOC and was found to have a conservative mixing behavior as the dominant 

process controlling its distribution, although differences among and within subregions were 

noted and related to differences in local river endmembers and seasonality. The 𝑎cdom also 

dominated the absorption budget, even in long wavelengths of the visible range (e.g., 

550 nm). Despite the highly light-absorptive characteristic of the waters, phytoplankton 

biomass was not negligeable, as shown by mean chlorophyll-a (Chla) concentrations 

generally above 1 mg m-3. Analysis of the spectral shape of 𝑎phy and pigment ratios revealed 

a seasonal modulation in the composition of phytoplankton assemblages and 

photoacclimation. The optical properties of particulate matter showed a very dispersed 

relationship when compared to dry-mass concentration proxies in the study area, but the 

extremely low SPM-specific 𝑏bp values encountered were explained by the organic-rich 

characteristic of the nearshore zones of the EGSL. Short-term variability (atmospheric 

events) and the hydrodynamical regime also resulted in substantial variability in the optical 
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properties of these areas. Overall, we provide a general parametrization for the relationships 

among the investigated inherent optical properties and dry-mass concentrations, which, in 

turn, will provide a baseline for tuning and developing regional remote sensing algorithms 

for the retrieval of biogeochemically relevant constituents of the water. 

Keywords: aquatic optics, nearshore environments, CDOM, phytoplankton, suspended 

particulate matter, remote sensing 
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1.2 RÉSUMÉ 

Les propriétés optiques intrinsèques et les constituants optiquement significatifs dans 

les zones littorales de l'estuaire et du Golfe du Saint-Laurent (EGSL), dans l'est du Canada, 

ont été systématiquement étudiés. Les concentrations en carbone organique dissous (COD), 

pigments phytoplanctoniques et matières particulaires en suspension (MPS) ont été 

déterminées ainsi que les coefficients d'absorption de la matière organique dissoute 

chromophorique (𝑎cdom), particules non algales (𝑎nap), phytoplancton (𝑎phy), et le 

coefficient de rétrodiffusion de particules (𝑏bp). Le plan d'échantillonnage a permis une 

analyse à différentes échelles spatiales et a pris en compte certaines différences intra-

régionales dans des zones distinctives (sous-régions) de la rive nord de l'EGSL (séparées par 

~ 102 km), ainsi qu'au sein des sous-régions (échantillons séparés par ~ 100 à 101 km). 

L'analyse temporelle s'est concentrée sur la variabilité saisonnière (temps d'échantillonnage 

séparés par ~ 101 à 102 jours). Les indices optiques, tels que les pentes spectrales de 𝑎cdom 

et 𝑎nap, les ratios de pigments, les coefficients d'absorption et de rétrodiffusion spécifiques 

à la masse et le fractionnement des particules (inorganiques et organiques) ont permis une 

caractérisation détaillée de la matière organique dissous et fourni des informations utiles sur 

les assemblages de particules. Le 𝑎cdom était fortement corrélé avec le COD et s'est avéré 

avoir un comportement de mélange conservatif le long d'un gradient de salinité en tant que 

processus dominant contrôlant sa distribution, bien que des différences entre et au sein des 

sous-régions aient été notées et liées aux différences dans les rivières locales et la 

saisonnalité. Le 𝑎cdom a également dominé le budget d'absorption, même dans les longues 

longueurs d'onde de la gamme du visible (par exemple, le vert à 550 nm). Malgré le caractère 

très absorbant de la lumière des eaux, la biomasse phytoplanctonique n'est pas négligeable, 

comme le montrent les concentrations moyennes de chlorophylle-a (Chla) qui sont presque 

toujours supérieures à 1 mg m-3. L'analyse de la forme spectrale de 𝑎phy et des ratios 

pigmentaires a révélé une modulation saisonnière dans la composition des assemblages 

phytoplanctoniques et la photoacclimatation. Les propriétés optiques de la matière 

particulaire ont montré une relation très dispersée par rapport aux proxys de MPS dans la 
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zone d'étude, mais les valeurs extrêmement faibles de 𝑏bp spécifiques à MPS rencontrées ont 

été expliquées par la caractéristique riche en matière organique des zones littorales de 

l'EGSL. La variabilité à court terme (événements atmosphériques) et le régime 

hydrodynamique ont également entraîné une variabilité importante des propriétés optiques 

de ces zones. Dans l'ensemble, nous fournissons une paramétrisation générale des relations 

entre les propriétés optiques inhérentes étudiées et les concentrations de masse molaire et 

sèche, qui, à leur tour, fourniront une base pour le réglage et le développement d'algorithmes 

de télédétection régionaux pour la récupération des constituants biogéochimiques pertinents 

de l'eau.  

Mots-clés : optique aquatique, milieux côtiers, CDOM, phytoplancton, particules en 

suspension, télédétection 
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1.3 INTRODUCTION 

Coastal zones are highly productive ecosystems that provide habitat for a wide variety 

of life. Because they are among the most attractive areas in the world for human settlements 

(Small and Nicholls, 2003), they are subject to extensive anthropogenic modification (Brown 

et al., 2017; Doney, 2010; Turner et al., 1996). Given the intrinsic dynamics of processes 

acting on coastal zones, their natural variability will occur over a wide range of spatial and 

temporal dimensions (de Jonge, 2000; Stommel, 1963). As is true for all ecosystems, the 

scientific study of coastal and nearshore environments is biased by the scale of the 

investigation, and this will have consequences on the patterns of variability observed (Levin, 

1992). In this context, Earth Observation Satellite Missions (EOSM; a list of notations used 

is provided in Table 1) is another way to sample coastal regions, complementing and 

improving traditional monitoring strategies based on field campaigns (Dekker et al., 2018; 

Klemas, 2010). 

Satellite remote sensing, particularly sensors with ocean color capabilities, has 

contributed substantially to our understanding of offshore marine biogeochemical cycles 

since the late 1970s (IOCCG, 2020, 2008; McClain, 2009). Recent advances by EOSM have 

shown that it is also promising tool for monitoring coastal zones at unprecedent spatial and 

temporal scales (Moses et al., 2016; Muller-Karger et al., 2018; Werdell et al., 2018). 

In addition to the optical sensor design characteristics (see Muller-Karger et al., 2018, 

for a thorough discussion on this matter), the quality of the satellite-derived biogeochemical 

information will depend on the success of the method (or algorithms) used to retrieve the 

optically significant constituents of seawater. The theoretical basis of these algorithms relies 

on the relationships between these constituents and the inherent optical properties (IOPs) 

and, subsequently, the apparent optical properties (AOPs). 
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Table 1 

List of acronyms and symbols, their definition, and units (if applicable) 

Notation Definition Unit 

AOPs Apparent Optical Properties - 

BSI, MAN, FV, 

and PMZA-

RIKI 

Subregions investigated in this study: Bay of Sept-Îles, 

Manicouagan Peninsula, Forestville, and a moored buoy 

station in the St. Lawrence Estuary, respectively 

- 

CDOM Chromophoric Dissolved Organic Matter - 

DFO Fisheries and Oceans Canada  

DOM Dissolved Organic Matter - 

EGSL Estuary and Gulf of St. Lawrence - 

EOSM Earth Observation Satellite Missions - 

IOPs Inherent Optical Properties - 

Bio-optical parameter 

𝑎(𝜆) Total absorption coefficient m-1 

𝑎cdom(𝜆), 
 𝑎cdom

∗ (𝜆) 

CDOM absorption coefficient and DOC-specific CDOM 

absorption coefficient 

m-1, 

m-1 μM-1 

𝑎nap(𝜆), 

𝑎nap
∗ (𝜆) 

Non-algal particles absorption coefficient and SPM-

specific non-algal particles absorption coefficient 

m-1, 

m2 g-1 

𝑎p(𝜆) 
Particulate absorption coefficient (𝑎p(𝜆) =  𝑎nap(𝜆) +

𝑎phy(𝜆)) 
m-1 

𝑎phy(𝜆), 

 𝑎phy
∗ (𝜆) 

Phytoplankton absorption coefficient and Chla-specific 

phytoplankton absorption coefficient 

m-1, 

m2 mg-1 

𝑎w(𝜆) Pure water absorption coefficient m-1 

𝑏b(𝜆) Backscattering coefficient m-1 

𝑏bp(𝜆), 

𝑏bp
∗ (𝜆) 

Particulate backscattering coefficient, SPM-specific 

particulate backscattering coefficient 

m-1, 

m2 g-1 

𝑏bw(𝜆) Backscattering coefficient of pure seawater m-1 
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Table 1 (cont.) 

 

From the perspective of ocean color capabilities, the final desired parameters are 

derived from remote sensing reflectance (𝑅rs(𝜆)), an AOP retrieved after removing the 

atmospheric contribution from the top-of-atmosphere signal (Werdell et al., 2018). 𝑅rs(𝜆) is 

tightly related to IOPs namely the spectral absorption coefficient (𝑎(𝜆)) and the volume 

scattering function (𝛽(𝜓, 𝜆)), than directly to the optically significant constituents of 

Notation Definition Unit 

Chla Chlorophyll-a concentration mg m-3 

DOC Dissolved Organic Carbon concentration μM 

PIM Particulate Inorganic Matter concentration g m-3 

POM Particulate Organic Matter concentration g m-3 

PPC Photoprotective Carotenoids (see text for details) mg m-3 

PSC Photosynthetic Carotenoids (see text for details) mg m-3 

𝑅rs(𝜆) Remote sensing reflectance sr-1 

𝑆f 
“Size factor” parameter for phytoplankton packaging effect 

(dimensionless) 
- 

𝑆nap Spectral slope of non-algal particles absorption coefficient nm-1 

𝑆λ1−λ2
 

CDOM spectral slope. λ1 and λ2 refer to the wavelength 

range (see text for details) 
nm-1 

𝑆R CDOM slope ratio (dimensionless) - 

SPM Suspended Particulate Matter concentration g m-3 

TAP Total Accessory Pigments (see text for details) mg m-3 

𝛽(𝜆, 𝜓) 
Volume scattering function, with 𝜓 being the scattering 

angle 
m-1 sr-1 

𝛾 Spectral slope of particulate backscattering (dimensionless) - 

𝜆 Wavelength of light in vacuo nm 
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seawater because of the physical nature of the inversion problem (see the review of Werdell 

et al., 2018). This relationship can be approximated as 𝑅rs(𝜆) ∝ 𝑏b(𝜆) ∙ 𝑎(𝜆)−1 (Lo Prejato 

et al., 2020; Morel and Prieur, 1977), where the spectral backscattering coefficient (𝑏b(𝜆)) is 

the integration of 𝛽(𝜓, 𝜆) in the backward direction (𝜓 = 90 to 180º). 

The total absorption, 𝑎(𝜆), can be decomposed by the additive contributions of the 

coefficients of absorption (eq. 3) of chromophoric dissolved organic matter (𝑎cdom(𝜆)), non-

algal particles (𝑎nap(𝜆)), phytoplankton (𝑎phy(𝜆)), and pure water itself (𝑎w(𝜆)). Similarly, 

𝑏b(𝜆) can be decomposed by the additive contributions of the coefficients of backscattering 

(eq. 4) of particulate matter (𝑏bp(𝜆)) and water (𝑏bw(𝜆)). 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎cdom(𝜆) + 𝑎nap(𝜆) + 𝑎phy(𝜆) ,                                                (3) 

𝑏b(𝜆) = 𝑏bw(𝜆) + 𝑏bp(𝜆) ,                                                (4) 

Understanding the relationships between IOPs and the optically significant constituents 

of seawater remains a central field of research in satellite ocean color remote sensing. The 

chemical composition of the chromophoric dissolved organic matter (CDOM) (Carder et al., 

1989), the characteristics of particles (composition, size distribution, and geometric shape) 

(Stramski et al., 2004), and the nature of phytoplankton assemblages (Bricaud et al., 1995) 

will result in substantial variability in IOPs compared to the molar and dry-mass 

concentrations proxies of the optically significant constituents. Given the complex 

interaction of biological activity, terrestrial runoff, and resuspension events that modulate 

characteristics of the IOPs in coastal and nearshore zones, an assessment of these 

relationships at regional and local scales is a prerequisite because of the considerable 

variability that exists worldwide (e.g., Babin et al., 2003; Tzortziou et al., 2006). 

The Estuary and Gulf of Saint Lawrence (EGSL) system is a prominent coastal feature 

in eastern Canada and one of the world’s largest estuarine systems (El-Sabh and Silverberg, 

1990a), connecting the Great Lakes to the Atlantic Ocean. Even though several studies 

examined IOP variability in the EGSL (see subsection 1.1), most focused on some aspects of 
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the bio-optical state, and the methods used to retrieve the IOPs varied widely among studies. 

Still, to the best of our knowledge, none of these studies focused on or sufficiently sampled 

nearshore environments of the EGSL (depths shallower than 30 m), even though these 

shallow regions are more susceptible to direct anthropic disturbances (Murphy et al., 2019). 

The north shore of the EGSL is heavily influenced by numerous rivers that drain 

relatively large boreal watersheds and carry massive amounts of terrigenous optically 

significant constituents into the nearshore waters (Jaegler, 2014). Furthermore, the IOPs in 

these areas will strongly impact the amount of light that reaches the benthic surface, with 

consequences for the vegetated coastal habitats that are commonly found in the region (e.g., 

Murphy et al., 2021). 

The objective of our study was to contribute to the knowledge on bio-optical variability 

in nearshore environments of the EGSL, where local river input is likely to dominate optical 

variability. Relationships between IOPs and biogeochemical parameters were studied to 

further develop algorithms to EOSM for monitoring purposes. We concentrated particularly 

on comparing our results with known relationships available worldwide. A secondary 

objective was to investigate domain scales (spatial and temporal) that are known to be driven 

by regional climatic, geomorphological, and hydrodynamical processes. 

 

1.3.1 Inherent optical properties in the Estuary and Gulf of St. Lawrence: an 

overview 

The characterization of IOPs in the EGSL was first performed in representative areas 

(transects) of the main body of the EGSL during the summers of 1989 and 1990, when the 

variabilities of 𝑎phy(𝜆) and 𝑎cdom(𝜆) were investigated (Babin et al., 1995, 1993; Nieke et 

al., 1997). Between 1997 and 2001, a series of field campaigns was conducted by the 

Fisheries and Oceans Canada (DFO), in distinct seasonal periods for each year (covering 

from spring to fall). During these campaigns, samples were collected to measure several 

optical and biogeochemical parameters across the EGSL (Çizmeli, 2008). This dataset 
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allowed the evaluation and development of regional remote sensing algorithms for suspended 

particulate matter concentration (SPM, particularly its inorganic fraction, PIM) and Chla, and 

provided information on the spatial and temporal variability of these parameters (Larouche 

and Boyer-Villemaire, 2010; Yayla, 2009). The campaigns conducted in 2000 and 2001 

provided a more complete set of IOPs, i.e., 𝑎cdom(𝜆), 𝑎nap(𝜆), 𝑎phy(𝜆), and 𝑏bp(𝜆) 

(Çizmeli, 2008). From this dataset, Roy et al. (2008) investigated the effect of pigment 

packaging on 𝑎phy(𝜆), and Montes-Hugo and Mohammadpour (2012) developed a model to 

estimate SPM from 𝑅rs(𝜆), while accounting for 𝑎cdom(𝜆) effects. 

From a field campaign conducted in May 2007, which followed a transect in the main 

channel of the EGSL, Xie et al. (2012) investigated the absorption budget with special 

attention to 𝑎cdom(𝜆) and its relationship with salinity. The effects of different fractions of 

particulate matter on their respective absorption coefficients (𝑎𝑝(𝜆) = 𝑎nap(𝜆) + 𝑎phy(𝜆)), 

and on the total scattering coefficient were investigated by Mohammadpour et al. (2017). By 

combining some of the previously mentioned datasets, Montes‐Hugo and Xie (2015) 

developed a model to estimate 𝑎phy(𝜆) from 𝑅rs(𝜆) for the Lower St. Lawrence Estuary. For 

a specific region of the upper estuary, Mohammadpour et al. (2015) verified that a model to 

retrieve SPM from 𝑅rs (near-infrared to red ratio model) achieved better results when 

partitioning the model for different classes of PIM / SPM. Finally, Bélanger et al. (2017) 

presented a seasonal characterization (from late spring to fall) of 𝑎cdom(𝜆), 𝑎nap(𝜆), 

𝑎phy(𝜆), and 𝑏bp(𝜆) in a central portion of the St. Lawrence Estuary, although their study 

focused on the radiometric quality collected by an autonomous system (moored buoy). 

Although these studies contributed to a better understanding of the general bio-optical 

variability in the EGSL and over an even wider context (see, for example, Bricaud et al., 

1998, 1995), they were often limited in time to few field campaigns (e.g., Mohammadpour 

et al., 2017; Xie et al., 2012) or did not cover a wide spatial domain (e.g., Bélanger et al., 

2017). 
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1.4 METHODS 

1.4.1 Study area and sampling design 

The present study used a comprehensive dataset of IOPs and molar and dry-mass 

concentrations proxies of optically significant constituents. The dataset includes samples 

collected in four geographically distinct areas of the EGSL (hereafter referred to as 

subregions; Fig. 5) within the Lower St. Lawrence Estuary (from the Saguenay River to 

Pointe-des-Monts) and on the north shore of the Gulf of St. Lawrence, near Sept-Îles. The 

first subregion is a relatively deep station (330 m) in the middle of the Lower St. Lawrence 

Estuary, where optical profiles and water samples were collected near a moored platform (the 

PMZA-RIKI buoy) maintained by DFO (see Bélanger et al., 2017, for more details). The 

other three subregions are nearshore environments on the north shore of the EGSL, where 

the spatial sampling strategy occurred in relatively shallow waters (Fig.5). 

The Bay of Sept-Îles (BSI; Fig. 5b) is a relatively protected coastal embayment that 

hosts diverse human activities, including an important harbor mainly dedicated to heavy 

industrial activities (i.e., mining). The BSI subregion is subject to water exchange with the 

Gulf of St. Lawrence, and is also influenced by small rivers and streams that flow into the 

bay (Shaw, 2019). It is important to note that this subregion is also influenced by a major 

river, i.e., the pristine Moisie River (average discharge of 490 m3 s-1), which is located just 

east of the bay. 
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Figure 5. (a) Map of the Estuary and Gulf of St. Lawrence (EGSL) showing the sampling 

areas in the regional context; the inset shows EGSL’s general localization in the North 

America context. The spatial distributions of sampling stations are shown for subregions 

(b) Bay of Sept-Îles (BSI), (c) Manicouagan Peninsula (MAN), and (d) coastal Forestville 

(FV) 
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The second nearshore subregion is a prominent geomorphological feature (delta), the 

Manicouagan Peninsula (MAN; Fig. 5c), which is influenced by the discharge of three major 

rivers: Betsiamites (discharge ~ 340 m3 s-1), Aux-Outardes (discharge ~ 390 m3 s-1), and 

Manicouagan (discharge ~ 1000 m3 s-1). These three rivers have their flow regulated by 

hydroelectric dams, with peak discharges in winter (Jaegler, 2014), and are known to form 

distinct river plumes in the Lower St Lawrence Estuary (Fauchot et al., 2008). Most of the 

above-mentioned rivers from BSI and MAN subregions were included in the sampling 

strategy to assess the local endmembers (see Figs. 5b and 5c). Finally, the third subregion 

corresponds to the coastal area near the city of Forestville (FV; Fig 5d). The FV subregion is 

relatively more exposed to the main body of the estuary and has a more gradual bathymetry 

characteristic compared to the other subregions. 

The dataset consists of in situ profiles and discrete surface, subsurface, and riverine 

water samples, collected within the scope of different research projects. This exceptional 

dataset provided a unique opportunity to investigate different spatial and temporal 

variabilities in the bio-optical conditions of the nearshore environment in the northern part 

of the EGSL (Table 2). 

The PMZA-RIKI station was sampled 19 times, between June and October 2015. The 

largest number of samples was from the BSI subregion, where 11 field campaigns were 

carried out between August 2016 and June 2019, but most samples covered the 2017 seasonal 

cycle (nine field campaigns from April to October). The BSI campaigns varied from 1 to 5 

days, and the number of discrete samplings ranged from 2 to 42 (average ~ 15) per campaign 

at 44 stations, for a total of 170 water samples. In the MAN subregion, a single eight-day 

campaign took place in August 2019, with 85 discrete samples collected over 68 stations. 

Finally, the FV subregion was sampled on a one-day campaign in September 2017, and seven 

discrete samples were taken from different stations along the coast. 
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Table 2 

Summary of the sampling strategy 

 

1.4.2 Bio-optical data 

The optical and biogeochemical data used in this study were mainly collected from 

discrete samples. Data were obtained either by in situ instrumentation or by laboratory 

analyses of water samples. Optical parameters from in situ vertical profiles (e.g., 𝑏bp(𝜆)) 

were matched with discrete samples for biogeochemical or other optical parameters (e.g., 

𝑎cdom(𝜆), 𝑎p(𝜆)) from the closest measured depth. The physical and biogeochemical 

parameters were temperature (ºC), salinity, Secchi disk depth, dissolved organic carbon 

concentration (DOC), SPM, and phytoplankton pigment concentrations, including Chla. The 

IOPs include 𝑎cdom(𝜆), 𝑎nap(𝜆), 𝑎phy(𝜆), and 𝑏bp(𝜆). Water samples were mainly collected 

with a Niskin bottle (or bucket) and were kept cool in a sun-protected container until further 

laboratory procedures, which were done each day immediately after the field work and 

consisted mainly of filtration operations. A total of 281 discrete samples were considered in 

this study (Table 2), although not all parameters were available all the time for each sample, 

Sampling 

area 

Number of 

campaigns 
Period 

Number 

of stations 

Number of samples 

Surface Subsurface River 

PMZA-

RIKI 
19 

June - October 

2015 
1 19 0 

Not 

applied 

BSI 11 

August 2016, 

April - October 

2017, June 2019 

44 121 9 40 

MAN 1 August 2019 68 67 15 3 

FV 1 September 2017 7 7 0 0 

Total 32 
June 2015 - 

August 2019 
120 214 24 43 
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mainly due to logistical constraints. When appropriate, the total number of samples (𝑛) 

considered in the analysis is presented. 

 

1.4.2.1 Temperature, salinity, and molar and dry-mass concentrations 

High-precision salinity (± 0.0003, in practical salinity units, PSU) was measured on 

discrete water samples using a calibrated Portasal salinometer (model 8410A, Guildline 

Instruments, Smiths Falls, ON). In addition, in situ vertical profiles of temperature and 

conductivity were made with a CTD probe (SBE19, Sea-Bird Scientific, Bellevue, WA). 

Total and dissolved organic carbon (TOC and DOC) were determined on a high-temperature 

combustion Shimadzu TOC-Vcpn carbon analyzer, following the procedures described in 

Zhang and Xie (2015). DOC samples were filtered on precombusted Whatman GF/F filters 

and were quality-controlled using TOC samples (non-filtered). SPM was determined with 

the gravimetric method (Van der Linde, 1998), and the organic and inorganic fractions 

concentrations (POM and PIM, respectively) were determined by obtaining the organic 

matter lost on ignition (LOI) after combustion of the filters (Whatman GF/F) for 3 h at 

500 ºC. 

Phytoplankton pigment concentrations were determined from filtered (Whatman GF/F) 

water samples through high-performance liquid chromatography (HPLC) analysis, following 

the method described in Zapata et al. (2000). Chla is the sum of monovinyl chlorophyll-a, 

chlorophyllids and the allomeric and epimeric forms of chlorophyll-a. Finally, Chla was also 

determined by fluorometric methods (in triplicate) following Parsons et al. (1984), and these 

values were used in the absence of HPLC measurements once the two methods showed good 

correlation. 
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1.4.2.2 Inherent optical properties 

We determined the absorption coefficients from measurements made using a benchtop 

PerkinElmer Lambda-850 spectrophotometer equipped with an integrating sphere (used for 

particles only). Briefly, CDOM absorbance (𝐴(𝜆)) was measured with filtered water samples 

(0.2 m pore size) placed in a quartz cuvette (with a length [𝐿] of 1 or 10 cm, depending on 

sample absorbance). A cuvette containing nanopure water, at the same temperature as the 

samples, was used as a reference. A baseline correction was applied by considering the 

average values over a 5-nm interval, centered at 685 nm (Babin et al., 2003; Matsuoka et al., 

2012). Finally, the 𝑎cdom(𝜆) was obtained by the relation 𝑎cdom(𝜆) = 2.303𝐴(𝜆) 𝐿⁄ . 

For 𝑎p, a known volume of water was filtered through Whatman GF/F glass-fiber 

filters, which retain particles larger than 0.7 m (i.e., nominal filter pore size). The filters 

were placed inside the integrating sphere following the quantitative filter technique (Röttgers 

and Gehnke, 2012, and references therein), and the absorbance values were subtracted from 

those of the reference (blank) filters. Similarly, the 𝑎nap(𝜆) was obtained by placing the 

filters into the integrating sphere after phytoplankton pigment extraction using methanol 

(Kishino et al., 1985). Absorbance measurements were also corrected for the pathlength 

amplification (Stramski et al., 2015) and converted into absorption using the equation 

𝑎
p nap

(𝜆) = 2.303𝐴(𝜆)(𝐹area 𝑉𝑜𝑙⁄ ), where 𝐹area (m2) is the clearance area of the filter 

occupied by the particles (in the filtration process) and 𝑉𝑜𝑙 (m3) is the volume of water 

filtered. A baseline (null-point) correction was performed for 𝑎nap measurements, assuming 

that its values were equal to 𝑎p in the near-infrared region, averaged between 745 and 755 

nm (i.e., 𝑎phy(NIR) = 0, or 𝑎p(NIR) =  𝑎nap(NIR)). The wavelength (𝜆) varied from 230 to 

800 nm for 𝑎cdom(𝜆) and 290 to 800 nm for 𝑎p(𝜆) and 𝑎nap(𝜆). Finally, 𝑎phy(𝜆) was 

determined by subtracting 𝑎nap(𝜆) from 𝑎p(𝜆). 

The in situ 𝑏bp was determined using a HydroScat-6P (HS6) backscattering meter 

(HOBI Labs Inc., Bellevue, WA). The HS6 measures the volume scattering function at a 
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scattering angle of 140º, 𝛽(140), and it was set to measure at six wavelengths (394, 420, 470, 

532, 620 and 700 nm). The 𝑏bp is derived from 𝛽(140) after correction for attenuation along 

the detector’s viewing pathlength, using the total absorption coefficient measurements from 

another in situ instrument, the a-Sphere (HOBI Labs Inc.), and for the effects of temperature 

and salinity on the pure seawater scattering, following Doxaran et al. (2016) and Maffione 

and Dana (1997), as implemented in the Riops R package 

(https://github.com/belasi01/Riops). 

 

1.4.2.3 Bio-optical indices 

Given the approximately exponential decrease in 𝑎cdom(𝜆) with increasing 

wavelength, an exponential model (eq. 5) was used to derive information about the optical 

properties of CDOM (Bricaud et al., 1981; Jerlov, 1968): 

𝑎cdom(𝜆) = 𝑎cdom(𝜆0)𝑒−𝑆(𝜆−𝜆0)  ,                                                                (5) 

where 𝜆0 is a reference wavelength (nm). The spectral slope (𝑆, nm−1) describes the 

approximate exponential rate of decrease in absorption with increasing wavelengths. 𝑆 can 

be a proxy for the chemical and structural nature of the dissolved organic matter pool (e.g., 

molecular weight, aromaticity), providing information about its sources and transformation 

(Fichot and Benner, 2012, 2011). Several wavelength ranges are described in the literature 

for the determination of 𝑆 (𝑆(𝜆1−𝜆2)). In this study, 𝑆 was calculated within fixed ranges for 

comparison with the literature: 275 to 295 and 350 to 400 nm (Helms et al., 2008), 320 to 

412 nm (Danhiez et al., 2017), and 350 to 500 nm (Babin et al., 2003). The CDOM slope 

ratio (𝑆𝑅) was obtained by the ratio 𝑆(275−295):𝑆(350−400) (Helms et al., 2008). Fittings were 

performed either using a nonlinear least-squares Levenberg-Marquardt (NLS L-M) algorithm 

(𝑆(350−500)), or by loglinear functions (all other 𝑆). All slopes were calculated following the 

procedures according to the original work in which they were published. 
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Similarly, 𝑎nap(𝜆) was fitted to an exponential decay function (eq. 5), and the slope of 

non-algal particles 𝑆nap was obtained by taking the wavelength range from 380 to 730 nm 

but excluding the 400-480 and 620-710 nm ranges to avoid potential contamination of 

residual pigment absorption from 𝑎p (Babin et al., 2003). 

Besides chlorophyll-a concentration, 𝑎phy(𝜆) is also influenced by community size 

structure and pigment composition (Lohrenz et al., 2003). We have evaluated the package 

effect from phytoplankton on 𝑎phy(𝜆) using the approach of Ciotti et al. (2002). Briefly, the 

𝑎phy(𝜆) shape is reconstructed using a linear combination of two endmember’s spectra 

(Ciotti et al., 2002, their equation 3) representing the contributions of the smallest 

(picophytoplankton) and largest (microphytoplankton) cell sizes. The picophytoplankton 

spectrum endmember used here was provided by Ciotti and Bricaud (2006). The retrieved 

parameter, 𝑆f (“size factor”; dimensionless), is restricted to a variation from 0 to 1, with 

values tending toward 0 when large-celled phytoplankton are dominant and values tending 

toward 1 when small-celled phytoplankton dominates. Nonetheless, 𝑆f can be a proxy for 

either the phytoplankton cell size or changes in accessory pigment concentrations that do not 

co-vary with Chla and algal size, since the blue-to-red ratio in 𝑎phy(𝜆) tends to flatten the 

spectra due to increased concentrations of the latter (Ferreira et al., 2017). 

The photoacclimation state of phytoplankton, i.e., the adjustments to the structure and 

function of the photosynthetic apparatus in response to changes in growth irradiance (Graff 

et al., 2016), was also evaluated using pigment concentrations grouped into three classes: 

photoprotective carotenoids (PPC), photosynthetic carotenoids (PSC), and total accessory 

pigments (TAP). TAP was considered as the sum of all chlorophylls b and c, Mg 2,4 divinyl 

pheoporphyrin a5 monomethyl ester, and all carotenoids (peridinin, fucoxanthin, 19′‐

butanoyloxyfucoxanthin, 19′‐hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, 

crocoxanthin, diadinoxanthin, diatoxanthin, violaxanthin, zeaxanthin, alloxanthin, lutein, 

𝛽, 𝜀‐carotene, and 𝛽, 𝛽‐carotene). 
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Since the allocation of certain pigments in one of the classes (PPC or PSC) is subject 

to variations due to specific functions according to the phytoplankton group, we used the 

approach proposed by Kauko et al. (2019). In short, different pigment allocations in each 

class were compared, and the authors concluded that a strict approach using only pigments 

involved in the xanthophyll cycle in the PPC class yielded better results when compared to 

its relationship with 𝑎phy(𝜆). Thus, PPC includes the pigments diadinoxanthin, diatoxanthin, 

violaxanthin, and zeaxanthin, while PSC includes peridinin, fucoxanthin, 19′‐

butanoyloxyfucoxanthin, 19′‐hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, and 

alloxanthin. 

The spectral dependency of 𝑏bp was modelled as a power-law function (Reynolds et 

al., 2016): 

𝑏bp(𝜆) = 𝑏bp(𝜆0) × (
𝜆

𝜆0
)

𝛾

 ,                                                                (6) 

where 𝛾 is a dimensionless parameter describing the spectral dependency of 𝑏bp 

relative to a reference wavelength (𝜆0). In our study, we used mostly 𝜆0 = 550 nm (as in 

Reynolds et al., 2016), but also 𝜆0 = 555 nm (as in Blondeau-Patissier et al., 2017). 

To assure the validity of equation 6, the retrieved 𝛾 and 𝑏bp(550) were used to compute 

the fitted (fit) 𝑏bp(𝜆), and its residual differences (in percent values), were calculated as 

100 × [𝑏bp
fit (𝜆) − 𝑏bp

obs(𝜆)] 𝑏bp
obs(𝜆)⁄ , as in Reynolds et al. (2016). The means and standard 

deviations of the residual difference were always less than 5 and 7%, respectively, 

independently of the wavelength. These relatively low values indicate that the coefficients 

obtained in equation 6 - 𝛾 and 𝑏bp(𝜆0) - can be used as good predictors of the spectral shape 

of 𝑏bp(𝜆) in our study area. 

Finally, the mass-specific IOPs for the absorption and backscattering coefficients were 

calculated to establish a basis for comparison with other studies worldwide, since they have 

become a necessary step in the parametrization of (semi) analytical bio-optical models at 
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regional scales (Blondeau-Patissier et al., 2017; Brando et al., 2012; Le et al., 2015). The 

DOC-specific CDOM absorption coefficient (𝑎cdom
∗ (𝜆)) was obtained by the ratio 

𝑎cdom(𝜆): DOC; the Chla-specific phytoplankton absorption coefficient (𝑎phy
∗ (𝜆)) was 

obtained by the ratio 𝑎phy(𝜆): Chla; the SPM-specific non-algal particles absorption 

coefficient (𝑎nap
∗ (𝜆)) was obtained by the ratio 𝑎nap(𝜆): SPM; and the SPM-specific 

particulate backscattering coefficient (𝑏bp
∗ (𝜆)) was obtained by the ratio 𝑏bp(𝜆): SPM. 

 

1.4.3 Spatial and temporal analysis, ancillary data, and statistics 

The first spatial analysis considered the four main subregions (Fig. 5) as different 

subsets of data, to check whether they were subject to distinct oceanographic and watershed 

processes (the average distance for a mean latitude/longitude for each subregion was ~ 102 

km). The second spatial analysis explored the variability found in a single field campaign for 

the same subregion (the average distance between stations was ~ 100 - 101 km). In this case, 

the 11 field campaigns of BSI and 1 field campaign for both MAN and FV were considered. 

The temporal analysis focused on seasonal variability (~ 101 - 102 days) in each 

subregion where data were available, so only data from the BSI and the PMZA-RIKI 

subregions were considered. Daily and tidally induced variations were also investigated for 

illustrative purposes. The bio-optical properties of a single station located in the middle of 

the Bay of Sept-Îles (PT-01; Fig. 5b), which was visited several times during the first week 

of June 2019, were examined in comparison with tidal fluctuations and meteorological 

forcing. For this analysis, local ancillary data were used to access tidal height, air 

temperature, wind velocity and direction, and precipitation. While precipitation was available 

through the Environment and natural resources Canada website (www.climat.meteo.gc.ca), 

all the others were obtained from the St. Lawrence Global Observatory (SLGO) website 

(www.ogsl.ca/en). 
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Descriptive statistics (minimum, maximum, mean, standard deviation) and one-way 

ANOVA (analysis of variance) were used to quantitatively compare the populations 

identified by spatial and temporal variability. Data were confirmed to exhibit normal 

distributions using the Lilliefors test prior to all ANOVAs. When a significant difference was 

revealed between tested groups (p-value < 0.05), differences between pairs of means were 

assessed using the Tukey honest significant difference criterion. 

Finally, regression analysis consisted of fitted equations; for example, in the power 

form 𝐴 ∙ 𝑥𝐵, where 𝑥 is the independent variable and 𝐴 and 𝐵 are regression coefficients, 

generally obtained by the NLS L-M algorithm (unless explicitly mentioned). We determined 

the performance metrics of regressions using mean absolute error, 𝑀𝐴𝐸 (and its 

correspondent, the Mean Absolute Percentage Error, 𝑀𝐴𝑃𝐸), as well as the 𝑏𝑖𝑎𝑠 (together 

with the percentage bias, 𝑃 − 𝑏𝑖𝑎𝑠), as suggested by Seegers et al. (2018). Furthermore, we 

report the coefficient of determination (𝑅2) and the root mean square error (𝑅𝑀𝑆𝐸). All data 

manipulations, statistics, and plots were done using Matlab (MathWorks) software. 

 

1.5 RESULTS 

The results are first presented considering the general bio-optical relationships, 

separating the analysis into i) the optical properties of CDOM, ii) the optical properties of 

the particulate matter (including phytoplankton), and finally iii) the absorption budget. The 

spatial (within each subregion) and seasonal variability are presented in subsection 3.4; 

subsection 3.5 provides an exploratory analysis with a mechanistic interpretation of how the 

combined effects of tidal and meteorological forcing can drive some optical properties at the 

scale of a subregion. 

The sampling design covered a wide range of environmental conditions. If we consider 

only marine (or brackish) stations, samples were collected from depths as shallow as 0.5 m 

to as deep as 176 m (excluding the single station of the PMZA-RIKI subregion); temperature 
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and salinity ranged from ~ 0.3 to 18.1ºC and from 3 to 31, respectively; and Secchi depths 

varied from 0.5 to 9 m. The general relationship between molar and dry-mass concentrations 

of DOC, Chla and SPM are provided in Figure 6, which highlights the differences between 

subregions as well as marine versus riverine samples. 

 

Figure 6. Relationship between molar and dry mass concentrations of (a) dissolved organic 

carbon (DOC) and chlorophyll-a (Chla); (b) DOC and suspended particulate matter (SPM); 

and (c) SPM and Chla. The colored symbols distinguish the four subregions of this study: 

The Bay of Sept-Îles (BSI), the Manicouagan Peninsula (MAN), the coastal area of 

Forestville (FV), and the buoy station (PMZA-RIKI). Marine (or brackish) stations are 

represented by circles, while stations located in the main channels of local rivers are 

represented by squares 

 

The DOC values (Fig. 6a, 6b) of the compared groups (river samples from different 

subregions were grouped, for practical purposes) had significant differences (one-way 

ANOVA, p < 0.05). The range of DOC for marine stations varied from 92 to 724 μM, 

corresponding to samples with a more brackish or saltier character, respectively. DOC mean 

and standard deviation for the PMZA-RIKI subregion were lower (𝜇 ± 𝜎 = 142 ± 22 μM) 
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compared to the BSI or MAN subregions (248 ± 132 and 190 ± 63 μM, respectively). The 

mean DOC values from riverine stations (1081 ± 483 μM) were significantly higher than all 

other groups. 

The range of Chla (Fig. 6a, 6c) varied by about two orders of magnitude (from 0.22 to 

17.3 mg m-3) and grouped samples were significantly different from each other (p < 0.05). 

This was especially true for samples from the FV subregion, which had higher concentrations 

(8.7 ± 6.2 mg m-3). The BSI (1.9 ± 1.7 mg m-3) and MAN (3.6 ± 2.5 mg m-3) subregions also 

significantly differed from each other. 

No significant difference was found for SPM (Fig. 6b, 6c), which varied from 1.3 to 

53.5 g m-3 (marine samples only). The lowest values of SPM (< 1 g m-3) were found in 

riverine samples, mainly dammed rivers from the MAN subregion. Moreover, SPM 

concentrations from the PMZA-RIKI samples showed a distinctive bimodal distribution. The 

BSI and MAN subregions had similar means and standard deviations (9.9 ± 8.4 and 9.5 ± 6.3 

g m-3, respectively). 

The percentage of organic matter in the suspended particulate matter ([POM ∶ SPM] ∙

100, in %), i.e., the POM fraction, varied from 13 to 69%, with a mean value of 25% (marine 

samples only). Riverine samples were significantly higher than most of the marine 

subregions, with a mean value of 50%. No relevant correlations were found among DOC, 

Chla, and SPM for marine samples. However, DOC and SPM in river samples (squares in 

Fig. 6b) showed a moderate 𝑅2 and a relatively low error (Table 3). Next, we further examine 

the variability of each molar and dry-mass concentrations presented above in relation to IOPs. 
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Table 3 

Summary of fitted regressions and associated errors for the power model 𝑦 = 𝐴 ∙ 𝑥𝐵, where 𝑦 is the dependent variable, 𝑥 is 

the independent variable, and 𝐴 and 𝐵 are the regression coefficients. The reported metrics are the mean absolute error, 𝑀𝐴𝐸 

(and the mean absolute percentage error, 𝑀𝐴𝑃𝐸); 𝑏𝑖𝑎𝑠 (and the percentage bias, 𝑃 − 𝑏𝑖𝑎𝑠); coefficient of determination, 𝑅2; 

and the root mean square error, 𝑅𝑀𝑆𝐸. The considered subset of the data and the corresponding scatterplot figure are also 

indicated 

 

  

Dependent 

variable 

Independent 

variable 

Locale or 

subset type 

Ref. 

Fig. 

Coefficients 𝑴𝑨𝑬 

(𝑴𝑨𝑷𝑬) 

𝒃𝒊𝒂𝒔 

(𝑷 − 𝒃𝒊𝒂𝒔) 
𝑹𝟐 𝑹𝑴𝑺𝑬 

𝑨 𝑩 

DOC SPM Rivers 6b 7.8·102 0.18 2.9·102 (33%) -8.0·100 (11%) 0.47 3.5·102 

𝑎phy(676) Chla BSI 9a 2.1·10-2 0.76 5.6·10-3 (16%) -9.0·10-4 (3%) 0.67 1.2·10-2 

𝑎phy(676) Chla MAN 9a 2.7·10-2 0.82 8.2·10-3 (10%) 4.1·10-3 (5%) 0.52 2.1·10-2 

𝑎phy(676) Chla FV 9a 9.5·10-3 0.91 8.4·10-3 (18%) -2.1·10-3 (10%) 0.95 9.3·10-3 

𝑎phy(676) Chla PMZA-RIKI 9a 1.8·10-2 1.07 8.3·10-3 (16%) 2.3·10-3 (3%) 0.98 1.2·10-2 
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Table 3 (cont.) 

 

 

Dependent 

variable 

Independent 

variable 

Locale or 

subset type 

Ref. 

Fig. 

Coefficients 𝑴𝑨𝑬 

(𝑴𝑨𝑷𝑬) 

𝒃𝒊𝒂𝒔 

(𝑷 − 𝒃𝒊𝒂𝒔) 
𝑹𝟐 𝑹𝑴𝑺𝑬 

𝑨 𝑩 

𝑎nap(443) SPM Rivers 9b 1.5·10-1 0.64 2.1·10-1 (34%) -1.1·10-1 (3%) 0.88 3.7·10-1 

𝑏bp(550) SPM Marine 9c 8.1·10-3 0.31 7.9·10-3 (50%) -2.7·10-3 (20%) 0.17 1.3·10-2 

𝑎p(NIR) PIM Rivers 10b 2.7·10-2 0.80 4.2·10-2 (37%) -1.0·10-2 (21%) 0.91 1.0·10-1 

𝑎p(440)

− 𝑎p(NIR) 
POM Rivers 10c 2.4·10-1 1.10 2.0·10-1 (35%) -6.0·10-2 (6%) 0.82 3.4·10-1 

𝑏bp(550) POM ÷ 2 Marine 10d 1.5·10-2 0.39 8.2·10-3 (49%) -2.8·10-3 (19%) 0.16 1.3·10-2 

𝑏bp
∗ (555) 𝑎nap

∗ (555) Marine 10f 4.0·10-2 0.61 6.1·10-4 (35%) -1.0·10-4 (12%) 0.66 7.1·10-4 
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1.5.1 Optical properties of dissolved organic matter 

The optical properties and environmental characteristics associated with the DOM pool 

are presented in Figure 7, and the associated relevant regressions (equations, coefficients, 

and performance metrics) are shown in Table 11 (Annex 1). We chose 350 nm as a reference 

wavelength, as reported in a number of studies (e.g., Fichot and Benner, 2012; Massicotte et 

al., 2017; Xie et al., 2012), and used both for comparisons and later in the discussion. 

A strong relationship between 𝑎cdom(350) and DOC was observed (Fig. 7a) for all 

samples (riverine and marine), although PMZA-RIKI samples had slightly lower absorptions 

for a given DOC value compared to other subregions. The linear model presented in Table 

11 (and shown in Fig. 7a) had a high 𝑅2, and relatively low errors considering the whole 

dataset. However, if the lower range of the 𝑎cdom(350) values were considered, as for 

PMZA-RIKI, the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 were high. 

The potential linkages between DOC and 𝑎cdom in different spectral ranges were 

investigated through the relationships between 𝑎cdom
∗ (350) and various spectral slopes (𝑆). 

The strongest relationship was found with the slope between 275 and 295 nm, 𝑆275−295 (Fig. 

7b), as revealed by the moderate to high 𝑅2 and low errors from the regressions for marine 

samples from the BSI and MAN subregions (Table 11, Annex 1), using the same equation 

form presented by Fichot and Benner (2012). The inset in Figure 7b depicts the same 

relationship, but for 𝑆320−412, revealing it as a poor predictor of 𝑎cdom
∗ (350) for this dataset. 

The 𝑎cdom
∗ (350) range found in the EGSL (and local rivers) ranges from 6.6·10-3 to 4.8·10-

2 m-1 𝜇M-1. We also notice a regional difference in the 𝑎cdom
∗ (350) versus 𝑆275−295 

relationship, with more absorbing DOM for a given spectral slope in the MAN subregion. 

Some river samples from the BSI subregion also showed this behavior, particularly those 

with characteristically and significantly lower discharges (Rivière aux Foins and Rivière 

Poste). Nevertheless, there is also a noticeable slight decrease in 𝑆275−295 from the river-to-

marine continuum for some samples. 
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Figure 7. General characterization of the optical properties of the chromophoric dissolved 

organic matter (CDOM) pool showing their relationships with dissolved organic carbon 

concentration (DOC) and spectral slopes. The relevant fitting equations, coefficients, and 

performance metrics for (a), (b), and (c) are provided in Table 11 (Annex 1). (a) CDOM 

absorption coefficient at 350 nm (𝑎cdom(350)) vs DOC. The black dashed line shows the 

fitted linear model (Table 11). (b) DOC-specific 𝑎cdom(350), 𝑎cdom
∗ (350), vs the CDOM 

spectral slope between 275 and 295 nm (𝑆275−295). The ellipse indicates samples of the 

riverine endmembers, which were expected to have lower influence in the BSI subregion 

(i.e., with lower discharge in comparison to others). The curve of Fichot and Benner (2011) 

is shown for comparative purposes. The inset graphic illustrates the same relationship but 

for the CDOM spectral slope between 320 and 412 nm (𝑆320−412). (c) Relationship 

between the estimated DOC, modelled from CDOM absorption coefficients at 275 and 295 

nm (see text), and the measured DOC. (d) Frequency distribution of the CDOM spectral 

slope between 350 and 500 nm (𝑆350−500). The Gaussian curve illustrates a normal 

distribution among the marine samples. The color code is the same as in Fig. 6  
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Taking this relationship into consideration, Fichot and Benner (2011) developed a 

model to predict DOC from 𝑎cdom measured at two wavelengths (275 and 295 nm; see Table 

11). We have reparametrized this model for our EGSL samples, by splitting the dataset into 

two groups, 𝑎cdom(275) < 15 and 𝑎cdom(275) ≥ 15 m-1, since a single model for the whole 

dataset provided unsatisfactory results for the lower ranges of DOC. The results obtained 

yielded moderate and very high coefficients of determination (0.69 and 0.98, for the lower 

and upper range of 𝑎cdom(275), respectively), and very low associated errors for both groups 

(Fig. 7c). 

Since 𝑆350−500 is a widely used metric for describing 𝑎cdom spectral behavior in coastal 

and estuarine systems (e.g., Babin et al., 2003; Noernberg et al., 2020; Para et al., 2010), we 

presented its distribution for the EGSL (marine samples only; Fig. 7d). It was found to be 

close to normal, with a mean of 0.0159 nm-1 and a standard deviation of ±0.0009 nm-1. 

The 𝑎cdom(350) versus salinity relationships are presented in Figure 8a and compared 

to those reported for the central parts of the EGSL by Xie et al. (2012). The equations 

provided in Table 11 (Annex 1) for BSI and MAN subregions consider the median river 

𝑎cdom(350) as freshwater endmembers (salinity = 0). From the presented linear models, a 

conservative mixing behavior can be observed, particularly for the MAN and to a lesser 

degree for BSI subregion. However, it is important to note that the 𝑎cdom(350) values in five 

endmembers from BSI varied widely and, the sampling strategy in this subregion also 

examined seasonal variability in 2017 (see Fig. 8a inset). Moreover, the median freshwater 

BSI endmember is more than twice that of MAN in terms of 𝑎cdom(350). Data from the 

PMZA-RIKI and FV subregions are close to the reference EGSL line from Xie et al. (2012), 

suggesting that the endmember is the same in that part of the Lower St. Lawrence Estuary. 

The adjusted linear model for the MAN subregion (Table 11) is also very similar to that for 

the Saguenay Fjord, reported in (Xie et al., 2012). 

The relationship between 𝑆(275−295) and salinity (Fig. 8b) for BSI was notably different 

from the others, with lower spectral slope values for a given salinity. We see a similar trend 
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with salinity for 𝑆R (Fig. 8b, inset). Overall, the spectral indices (Fig. 7b, Fig. 8b) indicate 

that CDOM in the BSI tends to have a flatter spectral slope compared to CDOM from the 

Lower St. Lawrence Estuary. 

 

Figure 8. Optical properties of the chromophoric dissolved organic matter (CDOM) and 

their relationships with salinity. (a) CDOM absorption coefficient at 350 nm (𝑎cdom(350)) 

vs salinity. The median value of the river endmembers (salinity = 0) is shown for the Bay 

of Sept-Îles (BSI) and Manicouagan peninsula (MAN) subregions. The reference lines of 

Xie et al. (2012) are for the Estuary and Gulf of St. Lawrence (EGSL) and for the Saguenay 

Fjord (SF). The inset shows the variability of 𝑎cdom(350) for the riverine endmembers in 

the BSI subregion. (b) Relationship between 𝑆275−295 and salinity. The inset illustrates the 

same relationship but for the CDOM spectral slope ratio (𝑆R) with the same salinity range. 

The relevant fitting equations, coefficients, and performance metrics for (a) and (b), while 

considering the two most numerous datasets (BSI and MAN) separately, are provided in 

Table 11 (Annex 1). The color code is the same as in Fig. 6  
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1.5.2 Optical properties of particulate matter: phytoplankton and non-algal 

particles 

Relationships between optical properties of particulate matter and dry-mass 

concentrations at selected wavelengths are shown in Figure 9. The relationship between the 

red peak of the absorption coefficient of phytoplankton, 𝑎phy(676), and Chla (Fig. 9a) had 

moderate to high 𝑅2 among all samples in general (Table 3). In contrast to BSI and MAN, 

stronger 𝑅2 (and lower errors) were found for the PMZA-RIKI and FV subregions. The 

𝑎phy(676) varied from as low as 0.0065 m-1, from a subsurface sample collected offshore in 

the BSI subregion, to 0.3394 m-1 in PMZA-RIKI. 

 

Figure 9. General relationships of the optical properties of particulate matter and dry mass 

concentrations of chlorophyll-a (Chla) and suspended particulate matter (SPM). (a) 

Phytoplankton absorption coefficient at 676 nm (𝑎phy(676)) vs Chla; (b) absorption 

coefficient of non-algal particles at 443 nm (𝑎nap(443)) vs SPM; and (c) the particulate 

backscattering coefficient at 550 nm (𝑏bp(550)) vs SPM. The reference lines showed in 

(a), (b), and (c) are from the studies of Bricaud et al. (1995), Babin et al. (2003), and 

Reynolds et al. (2016), respectively. The color code is the same as in Fig. 6 

 

The 𝑎nap(443) and SPM relationship (Fig. 9b) showed a relatively high dispersion 

among the marine samples, especially those of the MAN subregion, where the standard 

deviation for 𝑎nap(443) was high (𝜎 = ±0.0546 m-1). However, this relationship is 

comparable (same order of variability) with those obtained by Babin et al. (2003) for coastal 
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waters around Europe. Considering only marine samples, 𝑎nap(443) varied from around 

0.0119 m-1 to 2.1223 m-1 (the high value was from a shallow [1.1 m] sample in the BSI 

subregion). We can also observe a strong relationship between 𝑎nap(443) and SPM for the 

river samples (𝑅2 = 0.88, Table 3), with 𝑎nap(443) lying well above the marine samples, 

suggesting more absorbing particles per unit SPM in the freshwater realm. 

The relationship between 𝑏bp(550) and SPM is depicted in Figure 9c. As for 

𝑎nap(443), 𝑏bp(550) versus SPM also showed relatively high dispersion, but the power-law 

fitting revealed a very low 𝑅2 (Table 3) with higher errors than other regressions (𝑀𝐴𝑃𝐸 = 

50%). Considering the whole dataset (𝑛 = 120), the mean 𝑏bp(550) value was 0.0178 with 

a standard deviation of 0.0140 m-1. It is important to note that the reference line of Reynolds 

et al. (2016) in Figure 8c corresponds to their so-called “organic-dominant particles.” 

To obtain more insights on the nature of particle assemblages in our study area, more 

relationships between particulate matter optical properties were explored and compared to 

those reported in the literature (Fig. 10). First, the spectral slope of non-algal particles (𝑆nap; 

Fig. 10a) showed a normal distribution. The BSI subregion showed relatively lower values 

than other subregions (0.0076 ± 0.0008 nm-1), reflecting the distinct particle assemblages 

among the nearshore EGSL zones, but similarities with river endmembers (not shown). The 

highest values of 𝑆nap were found for the MAN subregion (0.0090 ± 0.0007 nm-1). 

The absorption characteristics of particulate matter were investigated following 

Konovalov et al. (2014), considering the different contributions of mineral (PIM) and organic 

(POM) particles to the absorption coefficients. We found a strong relationship (𝑅2 = 0.91; 

Table 3) between 𝑎p in the near infrared region, 𝑎p(NIR) (mean 𝑎p between 745 and 755 

nm), and PIM for the river samples (squares on Fig. 10b). Figure 10b also shows the 

occurrence of marine particles in the BSI subregion that tend to absorb more in the NIR 

region for a given concentration of PIM, while the relationship’s dispersion is lower than for 

the MAN subregion. As in Konovalov et al. (2014), we plotted POM versus 𝑎p(440) −

𝑎p(NIR), assuming that the subtraction of 𝑎nap(NIR) from total particulate absorption in the 
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blue (440 nm) would yield a good approximation of the POM-related absorption. Again, we 

found a strong relationship when considering the river samples (Table 3, Fig. 10c). In 

contrast, the relationship for the marine environment was comparatively more dispersed, but 

still significant. 

The relationship between 𝑏bp(550) and POM had a scattered distribution (Fig. 10d), 

but of the same order as the curve of Reynolds et al. (2016) for their organic-dominant 

particles subset (as previously mentioned for the 𝑏bp(550) vs SPM relationship). One may 

note that our proxy for organic matter (POM), as obtained by the LOI method, can be 

considered inaccurate compared with traditional CHN analyzers used to measure POC 

directly from filters (as for the studies of Konovalov et al., 2014, and Reynolds et al., 2016). 

However, simply dividing our POM by a factor of 2 (as suggested by Konovalov et al., 2014), 

gave us a useful indicator to compare with studies that report POC. Therefore, the POM used 

in this study was a useful proxy showing the interplay among organic and inorganic fractions 

of the particulate matter. 

The spectral dependency of 𝑏bp, as expressed by the fitted parameters 𝛾 and 𝑏bp(550), 

is presented in Figure 10e. We found no significant differences between subregions in 𝛾, 

which had a global mean of -0.46 (± 0.30). The lowest value of 𝛾 (-1.44) was from a BSI 

subregion station located far offshore, while the highest value (0.66) the station closest to the 

mouth of the Moisie River, under the plume influence (also for BSI subregion). A weak 

relationship was also found between 𝛾 and 𝑏bp(550) (not shown), suggesting that 𝑏bp spectra 

become flatter as water turbidity increases. 

Finally, the 𝑏bp
∗ (555) vs 𝑎nap

∗ (555) showed a strong relationship (Fig. 10f), with a 

moderate 𝑅2 and relatively low errors (Table 3). One may note that the calculation of these 

two parameters uses three variables that were obtained using different methods: 𝑏bp(𝜆), 

𝑎nap(𝜆), and SPM. 
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Figure 10. Characteristics and relationships of the optical properties of particulate matter 

and dry mass concentrations of particulate organic matter (POM) and particulate inorganic 

matter (PIM). The relevant fitting coefficients (power model) and performance metrics for 

(b), (c), (d), and (f) are provided in Table 3 (a) Frequency distribution of the non-algal 

particles spectral slope (𝑆nap). The Gaussian curve displayed illustrates the normal 

distribution among the marine samples. (b) Particulate absorption (𝑎p) in the near-infrared 

region (mean of 𝑎p between 745 and 755 nm), 𝑎p(NIR) vs PIM. (c) The result of the 

subtraction of 𝑎p(NIR) from the particulate absorption coefficient at 440 nm (𝑎p(440)) vs 

POM. The reference lines of (b) and (c) are from the study of Konovalov et al. (2014). (d) 

Relationship between the particulate backscattering at 550 nm (𝑏𝑏𝑝(550)) and POM 

divided by 2. The reference line is from the study of Reynolds et al. (2016). It is worth 

mentioning that the reference curves on (c) and (d) are originally provided in terms of 

particulate organic carbon concentration (POC), and here we made the rough estimation 

POM = POC × 2. (e) Spectral slope of 𝑏bp, 𝛾, vs 𝑏bp(550) The inset shows the frequency 

distribution of 𝛾. (f) Relationship between the SPM-specific 𝑏bp(555) and 𝑎nap(555), i.e., 

𝑏bp
∗ (555) and 𝑎nap

∗ (555). The reference line is from the study of Blondeau-Patissier et al. 

(2017). The color code is the same as in Fig. 6 
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1.5.3 Absorption budget 

The relative contribution of the three (non-water) components of the absorption 

coefficient (CDOM, non-algal particles, and phytoplankton) are presented by ternary 

diagrams for selected wavelengths in the blue, green, and red regions (443, 550, and 676 nm; 

Fig. 11a-c, respectively). As expected, 𝑎cdom dominates the absorption budget in the shorter 

wavelengths, but it is also important in longer wavelengths. For example, at 443 nm, 89% of 

the observations had more than 70% of the absorption budget related to 𝑎cdom; at 550 nm, 

89% of the observations of 𝑎cdom contributed to more than half of the absorption budget. 

The 𝑎cdom is not negligible even at 676 nm: these accounted for 14% of the observations, 

contributing more than 40% of the total absorption. 

 

Figure 11. Ternary plots illustrating the relative contribution of CDOM (𝑎cdom), non-algal 

particles (𝑎nap) and phytoplankton (𝑎phy) to total absorption coefficient (minus the 

contribution of water) for wavelengths (a) 443, (b) 550, and (c) 676 nm. The relative 

proportions were normalized from 0 to 1, in such way that 𝑎cdom +  𝑎nap + 𝑎phy = 1. The 

readings for the three components, and for each sample, should consider its corresponding 

axis and tick orientation (and corresponding grid). The color code is the same as in Fig. 6 

 

Some samples had relatively low contributions of 𝑎cdom, even at 443 nm (< 50%; Fig. 

11a), notably that were collected in the middle of the estuary in summer (PMZA-RIKI 

subregion) and those collected in April 2017 in BSI subregion, just before the freshet. In the 

red portion of the visible spectrum (676 nm), some samples maintained a very high 
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contribution of 𝑎cdom to the absorption budget (>50%; Fig. 11c), with the majority from 

shallow waters influenced by river plumes that were sampled during early June (2017 and 

2019) campaigns in the BSI subregion. Other than CDOM, it is also important to note that 

BSI samples had a distinct behavior in relation to particulate matter contributions when 

compared to other subregions. In longer wavelengths, the non-algal particle contribution was 

larger in the BSI, while the phytoplankton contribution to total particulate matter was greater 

in all other subregions (Fig. 11b, 11c). 

 

1.5.4 Spatial (subregion) and seasonal variability 

The seasonal variability and the variability within each subregion domain is presented 

for selected variables in Figure 12. A seasonal DOC modulation can be observed for the BSI 

subregion (Fig. 12a): samples collected in early June 2017 (𝜇 ± 𝜎 = 307 ± 110 𝜇M) and 

2019 (324 ± 161 𝜇M) were significantly higher than most samples collected at other times 

of the year. Chla (Fig. 12b) showed no significant seasonal variability, although relatively 

higher values were observed in both April and early May 2017. SPM values from the June 

2019 field campaign in the BSI subregion had the highest values (15.7 ± 12.1 mg m-3), and 

these were significantly higher than some of the other campaigns (notably from the 

September to October period) (Fig. 12c). 

The seasonal and subregional variabilities of 𝑎cdom(350) are shown in Figure 12d. A 

marked seasonal pattern can be seen for the BSI subregion in 2017, as revealed by the median 

and the interquartile intervals. In BSI, CDOM increased from April to early June, followed 

by a decrease until July (but see also August 2016), a slight increase in September, and a 

decline in October. Although the sampling strategy can spatially bias this type of analysis, 

we consider our results to be representative of the variability found in the BSI area because 

the same stations were revisited, revealing distinct oceanographic characteristics in each field 

campaign. The range (minimum and maximum values) spans approximately one order of 

magnitude during some campaigns, such as those conducted during June 2019, in the BSI 
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subregion as well as the August 2019 field campaign in the MAN subregion. In contrast, 

despite the seasonal coverage of the PMZA-RIKI subregion (June to November 2015), the 

values of 𝑎cdom(350) remained low compared to the nearshore waters along the EGSL’s 

north shore, with values ranging from 1.13 to 2.22 m-1 only. 

The relative contribution of phytoplankton to total particulate absorption 

(𝑎phy(443): 𝑎p(443)) is presented in Figure 12e. All groups were significantly different 

from each other (p < 0.05). Unlike other subregions, all field campaigns in the BSI subregion 

(except that of mid-April 2017) presented mean values lower than 0.5 (50%). A seasonal 

modulation in the BSI subregion was also observed, with the highest contribution of 

𝑎phy(443): 𝑎p(443) observed in mid-April 2017 (88%), and the lowest values (𝜇 < 20%) 

found in June 2019. 

Significant differences (p < 0.05) were found for seasonal and subregional values of 

𝑏bp(550) (Fig. 12f), notably the higher values measured during the June 2019 field campaign 

(BSI subregion). 

The mean and standard deviation of the bio-optical indices describing some properties 

of the 𝑎phy(𝜆) and phytoplankton pigment ratios are presented in Table 4, in which each 

subregion and field campaign were considered separately. Overall, it is possible to infer that 

the BSI subregion had a markedly seasonal pattern of phytoplankton assemblages, as 

revealed either by proxies related more to size distribution (𝑎phy
∗ (676); the 

𝑎phy
∗ (443): 𝑎phy

∗ (676) ratio; and the 𝑆f parameter) or by the photoacclimation state (the 

TAP:Chla and PPC:PSC indices). 

The FV subregion was significantly different from others in relation to 𝑎phy
∗ (676) and 

the blue-to-red ratio (𝑎phy
∗ (443): 𝑎phy

∗ (676)). The mean values of 𝑆f were always below 0.4, 

with the minimum values observed in the FV subregion, followed by the samples collected 

in April and mid-September 2017 in the BSI subregion. 
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Figure 12. Variability (median, 25th and 75th percentiles, minimum, maximum and 

outliers) of (a) DOC, (b) Chla, (c) SPM, (d) 𝑎cdom(350), (e) 
𝑎phy(443)

𝑎p(443)
, and (f) 𝑏bp(550). 

Data are shown as a function of different sampling strategies: type (marine or river), 

location (BSI, MAN, FV, PMZA-RIKI) and different legs of these same campaign (BSI 

only). The number of observations (𝑛) is provided for each sampling strategy, and the 

vertical grey dashed lines delimit the 2017 seasonal period for BSI. No boxplots are shown 

when 𝑛 < 5. The color code is the same as in Fig. 6
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Table 4 

Mean (𝜇) and standard deviation (𝜎) for chlorophyll concentration (Chla), the chlorophyll-specific phytoplankton absorption 

at 676 nm (𝑎phi
∗ (676)), the 𝑎phi

∗ (443) : 𝑎phi
∗ (676) ratio, the size parameter from the phytoplankton absorption coefficient 

(𝑆𝑓), and the ratios of total accessory pigments (TAP) to Chla, and the photoprotective to photosynthetic carotenoids 

(PPC:PSC). Rows represent each field campaign (or a single location, as for the PMZA-RIKI subregion) 

  

Spatial / temporal 

partition 

Chla 

[mg m-3] 

𝒂𝐩𝐡𝐲
∗ (𝟔𝟕𝟔) 

[102 m2 mg-1] 

𝒂𝐩𝐡𝐲
∗ (𝟒𝟒𝟑): 

𝒂𝐩𝐡𝐲
∗ (𝟔𝟕𝟔) [dim.] 

𝑺𝒇 

[dim.] 

TAP: Chla 

[w w-1] 

PPC:PSC 

[w w-1] 

 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

BSI: late Aug 2016 1.47 0.13 2.22 0.26 1.96 0.12 0.31 0.03 — — — — 

B
S

I 
2
0
1
7
: 

mid Apr 9.19 5.28 1.29 1.11 1.57 0.02 0.17 0.01 0.81 0.02 0.19 0.03 

early May 2.89 2.15 1.73 0.21 1.87 0.16 0.27 0.04 0.78 0.04 0.24 0.09 

mid May 1.08 0.58 1.94 0.46 3.08 1.13 0.30 0.05 0.69 0.12 0.26 0.15 

early Jun 2.02 0.79 1.89 0.36 2.49 0.45 0.35 0.02 0.94 0.09 0.38 0.10 

mid Jun 1.95 1.28 1.99 0.38 2.21 0.41 0.31 0.06 0.92 0.07 0.34 0.10 

mid Jul 1.67 1.03 1.91 0.10 2.09 0.42 0.38 0.11 1.04 0.13 0.32 0.08 

early Sep 1.69 0.54 1.53 0.26 1.92 0.17 0.25 0.04 0.89 0.04 0.42 0.07 

mid Sep 2.32 1.08 1.66 0.53 1.55 0.15 0.17 0.02 — — — — 

early Oct 1.76 0.34 1.75 0.13 2.04 0.30 0.30 0.02 0.91 0.04 0.24 0.03 
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Table 4 (cont.) 

Bold values indicate groups that were significantly different from at least three or more other groups, as revealed by the Tukey 

honest significant criterion, that followed the one-way analysis-of-variance (ANOVA). 

 

 

Spatial / temporal 

partition 

Chla 

[mg m-3] 

𝒂𝐩𝐡𝐲
∗ (𝟔𝟕𝟔) 

[102 m2 mg-1] 

𝒂𝐩𝐡𝐲
∗ (𝟒𝟒𝟑): 

𝒂𝐩𝐡𝐲
∗ (𝟔𝟕𝟔) [dim.] 

𝑺𝒇 

[dim.] 

TAP: Chla 

[w w-1] 

PPC:PSC 

[w w-1] 

 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

BSI: early Jun 2019 1.63 1.57 2.10 0.66 2.27 1.85 0.25 0.08 0.68 0.11 0.28 0.14 

MAN: Aug 2019 3.63 2.54 2.15 0.35 1.65 0.20 0.19 0.06 0.92 0.10 0.23 0.17 

FV: mid Sep 2017 8.68 6.18 0.99 0.38 1.33 0.32 0.06 0.09 — — — — 

PMZA-RIKI: Jun to 

Nov 2015 
4.27 4.09 1.99 0.41 1.73 0.28 0.27 0.10 0.82 0.09 0.21 0.07 
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1.5.5 Tidal and meteorological effects 

The short-term temporal variability of selected inherent optical properties (𝑎cdom(350) 

and 𝑏bp(550)) was investigated at a single station (PT-01; Fig. 5) of the BSI subregion, 

which was sampled eight times over the course of five days in June 2019 (Fig. 13a, 13b). 

This station was in the middle of the bay. Interestingly, the northerly and easterly winds 

changed direction to southerly on 2 June, and increased in velocity, reaching (and remaining) 

over 10 m s-1 on 3 June (Fig. 13a). Concurrently, the air temperature dropped to ~ 6ºC (from 

an air mass coming from the EGSL), and a substantial amount of precipitation (> 20 mm) 

fell between 2 and 3 June. 

The impact of this meteorological event on the optical properties can be clearly noticed, 

with much higher values of both 𝑎cdom(350) (~ 19 m-1) and 𝑏bp(550) (~ 0.09 m-1) being 

observed on 4 June compared to earlier samples (Fig. 13b). We noted strong changes in these 

variables even during a single day, reflecting changes in the hydrodynamical regime due to 

tidal oscillations. 

Figure 13c illustrates the effect of vertical thermohaline stratification in a relatively 

deep station (OUT-R05; Fig. 5) of the MAN subregion. A strong vertical thermal and saline 

gradient was observable, which is typical in nearshore zones of the EGSL. At this station, we 

collected water samples at the surface (~ 0.5 m) and at 5 m (approximately the base of the 

pycnocline). The temperature and salinity differences of these two samples were ~ 6.5 ºC and 

7, respectively. The surface value of 𝑎cdom(350) was four times higher at the surface, while 

the 𝑏bp(550) was two times higher. These changes in water column IOPs resulted in visually 

different water colors (Fig. 13d). 
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Figure 13. Meteorological (synoptic) and hydrodynamic forcing and variability in inherent 

optical properties of nearshore zones of the Estuary and Gulf of St. Lawrence. (a) Wind 

velocity and direction, air temperature, and precipitation. (b) Semi-diurnal tidal variability, 

chromophoric dissolved organic matter absorption coefficient at 350 nm, and particulate 

backscattering coefficient at 550 nm, for the same period. (c) Vertical stratification of the 

water column as shown by temperature and salinity profiles, with a photo (d) depicting 

water samples collected at different depths 

 

1.6 DISCUSSION 

The variabilities of absorption and backscattering coefficients (both magnitudes and 

spectral shapes) were systematically examined in nearshore waters of the Estuary and Gulf 

of St. Lawrence (EGSL). Although the sampling strategy was far from exhaustive in respect 

to covering all spatial and temporal variability, we consider the dataset used in this study to 

be representative of the optical variability of nearshore EGSL waters, especially those 

influenced by rivers draining boreal watersheds, which is the case for most of the north shore, 

from Tadoussac to Natashquan and beyond. 
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We first discuss the general bio-optical relationships and compare them to existing 

literature worldwide, considering the dissolved organic matter, the particulate matter pool, 

and the absorption budget separately. Next, we examine the seasonal and intra-regional 

variabilities of optically significant constituents between nearshore zones and central parts 

of the EGSL, focusing on differences of molar and dry-mass concentrations. The seasonal 

variabilities in phytoplankton-related bio-optical properties are also discussed. Finally, we 

consider the implications of short-term meteorological and oceanographic processes on 

optical variability. 

The tangled dynamics of DOC, SPM, and Chla, evidenced by the scattered 

relationships between these variables (Fig. 6), illustrate the optical complexity of the 

underwater light field in the nearshore zones of the EGSL. This clearly demonstrates the need 

to improve our understanding of the relationships between IOPs and optically significant 

constituents for remote sensing applications in the nearshore zones. Overall, these results 

confirm the Case-2 nature (sensu Morel and Prieur, 1977) of the water masses encountered 

in our study areas. 

 

1.6.1 Bio-optical variability 

1.6.1.1 Dissolved organic matter 

As expected, we found a strong relationship between 𝑎cdom(𝜆) and DOC, which 

followed a (quasi-) continuum from the fresh-to-marine environment (Fig. 7a, 7c). However, 

we observed consistently higher values of 𝑎cdom(350) per unit of DOC compared to the 

global relationship reported by Massicotte et al. (2017), which revealed higher 𝑎cdom
∗ (350) 

values in the boreal riverine endmembers of our study area. This was also confirmed by the 

relatively higher values found for the DOC-specific UV absorbance at 254 nm (SUVA254, m2 

gC-1) for rivers (4.86 ± 0.51) when compared to samples from freshwater ecosystems at 

approximately the same distance from the shoreline (also reported by Massicotte et al., 2017). 



 

58 

Briefly, SUVA254 is a metric used as a proxy for assessing both chemical and biological 

reactivity of the DOM pool (Asmala et al., 2013; Massicotte et al., 2017; Weishaar et al., 

2003) and may be related to the proximity of its sources. It is also important to note the lower 

absorption per unit of DOC of the samples collected in the middle of the lower estuary, at the 

PMZA-RIKI subregion (pink circles in Fig. 7a). This indicates that the endmember source of 

DOM in the central part of the estuary differs markedly from nearshore zones in MAN and 

BSI, or even that DOM is more degraded in water samples taken more offshore in the EGSL. 

The relationship between 𝑎cdom
∗ (350) and 𝑆275−295 also reinforces the dominance of 

terrigenous DOC in the DOM pool for our river-dominated coastal regions, as reported by 

Fichot and Benner (2012). One may note that the lower values of 𝑆275−295 reported here 

(from 0.011 to 0.022 nm-1), in comparison to those of Fichot and Benner (2012) in the 

northern Gulf of Mexico (their Fig. 7b; approximately 0.013 – 0.045 nm-1), suggest that the 

DOM pool exported to the nearshore zones of the EGSL was subject to less photobleaching 

and was composed of a large fraction of terrigenous DOM, especially those samples coming 

from the small rivers that flow into the bay of the BSI subregion. This influence overcomes 

the potential interference of high phytoplankton productivity on the DOM pool (Danhiez et 

al., 2017), even for subregions with relatively higher values of Chla (e.g., MAN). 

Nevertheless, some marine samples had higher values of 𝑆275−295 compared to their local 

riverine endmembers, which suggests that DOM with higher molecular weights are found 

just after riverine waters enter the sea; this is idea is supported by the studies of Fichot and 

Benner (2012) and Xie et al. (2012), in which slopes correlated negatively with DOM 

molecular weight. However, flocculation - a process known to occur in this interface - is 

expected to reduce the mean molecular weight of the DOM pool (Asmala et al., 2014). 

We also found small regional differences in the relationship between 𝑎cdom
∗ (350) and 

𝑆275−295 (Fig. 7b); this is consistent with the findings of Fichot and Benner (2011), who 

compared Gulf of Mexico and Beaufort Sea samples. Despite this small regional difference, 

we reparametrized the model of Fichot and Benner (2011) for all subregions of the EGSL by 

dividing the dataset into two groups based on a threshold of 𝑎cdom(275) (i.e., 15 m-1). The 
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very good performance of the model (Fig. 7c; Table 11, Annex 1) suggests that 𝑎cdom(𝜆), 

which is obtained by a relatively simpler and less expensive analysis than analytical DOC 

procedures, could be routinely used for an approximation of DOC. In addition to the lower 

range of 𝑎cdom(𝜆) in central parts of the EGSL (e.g., the PMZA-RIKI subregion), the same 

equations could also be applied to some extent these areas, since both 𝑎cdom(𝜆) and DOC 

are within the range of previously reported values (Barber et al., 2017; Çizmeli, 2008; Nieke 

et al., 1997; Tremblay and Gagné, 2009; Xie et al., 2012). 

Our average of 𝑆350−500 agrees with other values reported from around the world, 

although in the lower part of the range reported for coastal regions, for example, around 

Europe (Babin et al., 2003), the northwestern Mediterranean Sea (Para et al., 2010), and a 

subtropical estuary in Brazil (Noernberg et al., 2020). However, in the EGSL and especially 

in nearshore zones, the strong influence of riverine water discharge makes 𝑆275−295 a more 

reliable descriptor of the DOM pool. The low CDOM spectral slopes reported here for both 

spectral ranges of the EGSL indicate that surface-water CDOM is dominated by large 

aromatic DOM from a terrestrial origin, which is consistent with chemical proxies reported 

in the literature (Barber et al., 2017; Tremblay and Gagné, 2009). 

Relationships of 𝑆275−295 values to salinity levels also differed between subregions. 

These results suggest that the terrestrial DOM pool inputs in MAN have lower molecular 

weights and may have been exposed to greater photobleaching compared to those in BSI. 

This interpretation is supported by other studies (Fichot and Benner, 2012; Helms et al., 

2008), including that of Xie et al. (2012) in the EGSL. One possible explanation for these 

differences is the presence of dams on the rivers sampled in the MAN subregion, which 

increases the length of time DOM spends in the watershed and, consequently, increases its 

exposure to photobleaching and/or biodegradation processes. Indeed, the impact of dams on 

sedimentation processes was observed in cores in a region of the EGSL near BSI (Boyer-

Villemaire et al., 2013), and one would expect some effects to also occur in the pelagic 

system. Moreover, the presence of dams on major rivers of the EGSL’s north shore was found 
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to alter natural cycling of the CDOM pool compared to CDOM conditions in undammed 

rivers (Jaegler, 2014). 

It is important to note that the dissimilarities observed in the rivers sampled in this 

study may also be linked to individual watershed characteristics. For example, the four minor 

rivers in the BSI subregion (that flow into the bay) have consistently higher 𝑎cdom(𝜆) and 

lower 𝑆275−295 values than the nearby Moisie River, one of the major rivers on the north 

shore. Those smaller watersheds are in lower areas of the north shore and may have relatively 

larger proportions of wetlands, a known source of DOM in the terrestrial environment (e.g., 

Mattsson et al., 2005), compared with the Moisie watershed, which drains higher areas. 

As reported by previous studies on central regions of the EGSL (Nieke et al., 1997; Xie 

et al., 2012), we observed a conservative mixing behavior of the DOM pool (Fig. 8a; Table 

10, Annex 1), but some caveats should be considered. Major regional differences were found, 

particularly in the nearshore BSI and MAN subregions, with a tighter relationship between 

𝑎cdom(𝜆) and salinity in the latter. The higher variability found in this relationship for BSI 

is explained both by the more diverse sampling strategy (seasonal variability) and differences 

among the rivers’ endmember values (salinity equal to 0), as shown by the inset of Figure 

8a. In such conditions, the conservative mixing behavior should consider multiple 

endmembers, as for example in Stedmon et al. (2010). 

The conservative mixing behavior of CDOM may be of particular interest for 

hydrodynamical and coupled ecological studies (Le Fouest et al., 2018; Stedmon et al., 2010). 

More importantly, these results indicate that satellite-derived 𝑎cdom(𝜆) may be used as a 

proxy for salinity to trace river runoff in nearshore environments, but local relationships must 

be determined even within the EGSL realms. Moreover, although we have found that 

conservative mixing of CDOM in the nearshore zones is a dominant process, it is important 

to emphasize that other processes that known to alter the DOM pool in such dynamic areas, 

such as flocculation (Asmala et al., 2014) and autochthonous phytoplankton production 

(Danhiez et al., 2017), may also have significantly impacts. 
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1.6.1.2 Suspended particulate matter 

Suspended particulate matter was found to have a complex and heterogenous nature in 

nearshore waters along the north shore of the EGSL., as revealed by its dry-mass 

concentration (SPM and the inorganic and organic fractions, PIM and POM) and optical 

proxies (IOPs, i.e., absorption and backscattering coefficients). 

The more complex nature of marine particle assemblages is revealed by the strong 

relationships obtained between particulate absorption proxies (𝑎p(𝜆) and 𝑎nap(𝜆)) and mass 

concentrations in river samples (square symbols in Fig. 9b, 10b, 10c; Table 3) in contrast to 

the weak relationships observed in marine samples. For example, the relationship between 

𝑎nap(443) and SPM in the marine samples was unlike those from other locations around the 

world (see, for example, Babin et al., 2003; Bowers and Binding, 2006), and even for 

previous relationships reported for central parts of the EGSL (Çizmeli, 2008). 

We speculate that this behavior, which occur in the continuum between rivers and 

nearshore EGSL waters, may be due to any of four possible processes: flocculation, sorption 

of organic matter onto mineral particles, biological transformation of the organic matter pool, 

and the heterogeneous nature of sediment resuspended from the bottom. Flocculation has 

major implications in the organic matter pool, and this aggregation process is particularly 

common in these transition zones (Asmala et al., 2014; Lisitsyn, 1995). The process of 

sorption between (dissolved and particulate) organic and (particulate) inorganic matter has 

several geochemical implications, and it commonly occurs in estuarine systems (Hedges and 

Keil, 1999). Organic matter decomposition by heterotrophic bacteria was found to be very 

important along the St. Lawrence Estuary and Saguenay Fjord (Bourgoin and Tremblay, 

2010). Finally, sediment resuspension events increase the number of particles in the water 

column, and they will be consequently less sorted in terms of size, shape, and density, 

compared to riverine inputs. This latter process will be discussed later in subsection 4.2.3. 
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These four processes can all significantly alter particle size distributions as well as 

organic and inorganic matter pools in rivers and nearshore zones of EGSL, which has 

implications on the relationships between IOPs and optically significant constituents. 

The spectral slope of non-algal particles (𝑆nap; Fig. 10a) had consistently lower values 

compared with different localities around the globe, for example coastal waters of Europe 

(Babin et al., 2003), Northern Australia (Blondeau-Patissier et al., 2017), and a subtropical 

estuary in Brazil (Noernberg et al., 2020). In some cases, the reported values are comparable 

with our dataset, e.g., the MAN subregion and the Irish Sea (Bowers and Binding, 2006). 

Methodological differences in both the 𝑎nap(𝜆) analyses (e.g., integrating sphere versus 

transmission-reflectance technique) and the fitting procedures (e.g., spectral ranges, baseline 

correction, etc.) may also yield differences when comparisons with the literature are done. 

More importantly, the 𝑆nap values in the marine samples agreed well with those of the 

riverine samples, and significant regional differences between the BSI and MAN subregions 

were also observable. This result indicates that the nature of particulate matter differs within 

the nearshore waters of the EGSL. 

Although a relatively lower contributions of the 𝑎p(𝜆) is expected in the near-infrared 

(NIR) compared to the visible, we found non-negligeable values in our dataset; this has also 

been found in several studies (e.g., Bowers and Binding, 2006; Röttgers et al., 2014; Stramski 

et al., 2007; Tzortziou et al., 2006). Furthermore, we found 𝑎p(NIR) to be very well 

correlated with PIM, especially for the river samples. This result indicates that 𝑎p(NIR) can 

be a useful proxy for the concentration of suspended inorganic particles but may be limited 

to situations where mineral composition does vary much. 

The 𝑏bp(𝜆) values reported here span about three orders of magnitude and cover typical 

values found both in oceanic and coastal zones (Antoine et al., 2011; Neukermans et al., 

2012; Reynolds et al., 2016). However, our values are more concentrated around the mean, 

indicating relatively lower variability, compared with these other studies. 
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By partitioning Arctic marine samples into three classes, from mineral- to organic-

dominated particles with an intermediate class, Reynolds et al. (2016) investigated the 

influence of particle composition on 𝑏bp(𝜆). Considering the 𝑏bp(550) – SPM relationship, 

these authors found a general decreasing trend of lowering values in the exponent values 

(equivalent of coefficient 𝐵 from the equation in Table 3) from mineral- to organic-

dominated samples. The fitted value found in our study (Table 3) was about three times lower 

than the one reported by (Reynolds et al., 2016) for the organic-dominated samples. 

Reynolds et al. (2016) also reported that these organic-dominated samples had 

generally higher (closer to 0) values for the spectral slope (𝛾) of 𝑏bp(𝜆). In comparison, the 

𝛾 values we found in this study were higher, sometimes even greater than 0 (Fig. 10e). Taking 

this into consideration, we suggest that the 𝑏bp(𝜆) reported in this study was more influenced 

by organic matter than those previously reported in the literature. This can be partially 

supported by the CDOM-laden waters characteristic of the nearshore zones of EGSL, as 

previously discussed. 

The relatively strong relationship observed between 𝑏bp
∗ (λ) and 𝑎nap

∗ (λ) has already 

been reported for regions in Australia (Blondeau-Patissier et al., 2017; Blondeau‐Patissier et 

al., 2009). Although these variables differ to a similar degree, our data revealed lower 𝑏bp
∗ (λ) 

values in relation to the same 𝑎nap
∗ (λ) compared with these earlier studies (Fig. 10f). 

Nevertheless, a decreasing trend of 𝑏bp
∗ (λ) from mineral- to organic-dominant particles was 

also observed by Reynolds et al. (2016) (see their Table 2). For instance, our global mean 

values of 𝑏bp
∗ (550) was 0.0022 m2g-1 (𝜎 = ± 0.0013), which is less than three times the mean 

value reported by Reynolds et al. (2016) in their organic-dominant samples. This result shows 

the strong influence of organic particles on the low backscattering efficiency of particulate 

matter encountered in the nearshore zones of the EGSL. 

The relatively poor relationships between IOPs and SPM make it difficult to estimate 

SPM from remote sensing. Given the complexity of the optical properties of particles found 

in the EGSL, particularly the distributions of SPM and POM to SPM ratios for nearshore 
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zones, we argue that more complete studies involving particle size distribution (PSD), 

composition (refractive indexes), and size-fractioned samples would help to better 

understand the role of optically significant constituents in IOPs (as in Koestner et al., 2020; 

Neukermans et al., 2012; Reynolds et al., 2016, for scattering properties), and consequently 

in the 𝑅rs(𝜆) signals. 

 

1.6.1.3 Visible light absorption budget 

The nearshore EGSL zones were high in CDOM throughout our sampling campaigns, 

and this is echoed by the large contribution of CDOM to the absorption budget (Fig. 11). The 

CDOM levels that we measured exceed measurements made in other coastal regions around 

the world, using the same ternary plot comparisons (Babin et al., 2003; Blondeau-Patissier et 

al., 2017; Noernberg et al., 2020), even in some regions that were reported were reported to 

be CDOM-dominated, e.g., the central-east Arctic ocean (Gonçalves-Araujo et al., 2018). 

Similar ternary distributions were reported by Cannizzaro et al. (2013), for river plumes in 

the northeastern Gulf of Mexico, a situation very similar to what we encounter in the 

nearshore EGSL waters. 

The study of Xie et al. (2012) showed that CDOM at 440 nm dominates the absorption 

budget in the estuarine region of the EGSL, while the phytoplankton (𝑎phy(440)) was 

dominant in the gulf stations. This major differences in IOPs between the estuary and gulf 

regions was already reported for specific absorption components, like 𝑎cdom(𝜆) and 𝑎phy(𝜆) 

(Babin et al., 1995, 1993; Nieke et al., 1997; Roy et al., 2008). Moreover, this may be related 

to the different hydrographic and oceanographic processes occurring in these areas (Fuentes-

Yaco et al., 1997a; Koutitonsky and Bugden, 1991; Therriault and Levasseur, 1985). 

Besides the generally higher contribution of 𝑎phy(𝜆) to the absorption budget for the 

gulf region, higher phytoplankton productivity and standing stock is expected for the Lower 

St. Lawrence Estuary throughout the summer (Therriault and Levasseur, 1985). Although 
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𝑎cdom(𝜆) dominates the absorption budget in all subregions, the differences we encountered 

in BSI were marked by a relatively lower phytoplankton contribution compared to non-algal 

particles (Fig. 11), and this may be explained by their proximity to the Gulf of St. Lawrence. 

Because the other subregions are more under the influence of the Lower St. Lawrence 

Estuary, their higher phytoplankton contribution could be sustained by major differences in 

the adjacent marine endmembers (here we use marine in the sense of more offshore waters 

of the estuary and gulf regions, compared to the nearshore transition zones). 

 

1.6.2 Seasonal and short-term bio-optical variability 

1.6.2.1 Nearshore zones versus central parts of the EGSL 

Compared to previously reported values of DOC for the St. Lawrence system (e.g., 

Barber et al., 2017; Tremblay and Gagné, 2009), the nearshore EGSL zones had higher than 

central parts of the lower estuary or the gulf, magnitudes similar to those reported for the 

Upper St. Lawrence Estuary, and values lower of those reported for surface waters of the 

Saguenay River. In addition, the consistently higher DOC values in the sampled boreal rivers 

suggests that they are the main DOM sources in these nearshore zones. Nevertheless, the 

𝑎cdom(𝜆) values of nearshore marine surface samples that we present were consistently 

higher than other values reported for the EGSL (Çizmeli, 2008; Nieke et al., 1997; Xie et al., 

2012), even for regions of the EGSL known to have higher DOM, such as the lower estuary 

near the mouth of the Saguenay River. 

The 𝑎cdom(𝜆) distribution in EGSL is controlled by the major rivers. This will have an 

impact on the seasonal cycle, with the spring freshet being the main process controlling 

𝑎cdom(𝜆) in central parts (Çizmeli, 2008). This seasonal pattern of riverine discharge also 

seems to be the main process controlling 𝑎cdom(𝜆) in the nearshore zones of the EGSL, but 

with a greater influence of local rivers. This is observable particularly in the BSI subregion, 

where the median 𝑎cdom(𝜆) values, at the stations visited in 2017 (Fig. 12d) follow the 
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discharge patterns of the Moisie River and the minor rivers (data not shown). In this way, 

when local river discharges peak, the nearshore zones will be more greatly influenced by 

water masses with lower salinity and higher 𝑎cdom(𝜆) levels. On contrary, the PMZA-RIKI 

subregion had consistently higher salinities, and consequently lower 𝑎cdom(𝜆) levels 

compared to the nearshore zones, although the seasonal signal was also noticeable. This result 

implies that central parts of the EGSL are more stable in terms of CDOM variability. Another 

interesting result is the relatively low 𝑎cdom(𝜆) levels found in the BSI samples in April. 

This result suggests that terrestrial DOM inputs in these regions are comparatively very 

limited during winter and early spring. 

Chla variability observed in the nearshore EGSL zones was in the expected range, 

considering values reported in central areas of the EGSL (Çizmeli, 2008; Laliberté et al., 

2018). In the lower estuary region, phytoplankton productivity and biomass are high 

throughout the summer (June to September) due to continuous nutrient replenishment to the 

euphotic zone via the upwelling zone (upstream of the Lower St Lawrence Estuary), and the 

maintenance of a stable mixed layer (Therriault and Levasseur, 1986, 1985; Vézina et al., 

1995). In addition to the freshwater runoff, the gulf region exhibits a complex 

hydrodynamical circulation, with eddies, upwellings, and fronts (Koutitonsky and Bugden, 

1991; Le Fouest et al., 2005). These characteristics give phytoplankton productivity in the 

gulf a more heterogeneous character (Fuentes-Yaco et al., 1997b; Levasseur et al., 1992), 

being generally more oligotrophic than the lower estuary region (Laliberté et al., 2018; Le 

Fouest et al., 2005). 

These regional differences may explain the higher mean Chla values observed in the 

PMZA-RIKI, MAN, and especially the FV subregions compared to the BSI subregion. The 

high Chla (>10 mg m-3) encountered in the FV subregion in September 2017 might have been 

due to local upwelling along the north shore of the lower estuary. Another interesting feature 

of the gulf is the subsurface chlorophyll maximum that is nearly always present in summer 

(Vandevelde et al., 1987). This feature was only observed at those stations farthest from the 

shore in the BSI subregion, and only early May 2017 field campaign (not shown). 
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In terms of SPM variability, the average values of the nearshore EGSL zones were 

lower than those reported for the maximum turbidity zone (Upper St. Lawrence Estuary), 

which varied from ~ 10 to as high as 300 g m-3 (Lucotte and D’Anglejan, 1986). In contrast, 

observed SPM values in nearshore subregions were higher than those reported by Larouche 

and Boyer-Villemaire (2010), which covered a wide area of the whole EGSL, during spring, 

summer, and fall. This can be explained by differences in the sampling strategy since the 

stations in our study were considerably shallower overall. Interestingly, similar or lower 

values of SPM were found in boreal rivers samples compared to marine samples, indicating 

other sources of suspended particulate matter in the nearshore water column. The relatively 

conservative mixing of DOC (or CDOM) along the salinity gradient, the moderate 𝑅2 

revealed from regressions between DOC and SPM in the river samples (Fig. 6b), and the 

absence of such a correlation in the marine samples also reinforce this interpretation. 

The variability of the POM fraction for our study areas was within the range of 

previously reported values for the EGSL, but with a lower mean value compared to offshore 

zones (~ 39%, Çizmeli, 2008). However, the mean SPM values we measured in nearshore 

waters (~ 9 g m-3) were up to one order of magnitude greater compared to the 2008 study. In 

summary, although a lower percentage of POM was observed, the absolute concentration of 

organic matter in these areas greatly exceeded the values one would expect in offshore parts 

of the EGSL. 

An inverse phase in variability can be observed between 𝑎cdom(350) and 

𝑎phy 𝑎p⁄ (443) for the BSI subregion during the April-Oct. 2017 sampling season (Fig. 12d, 

8e). We also noticed a somewhat lagged response for 𝑎phy 𝑎p⁄ (443) during mid May and 

early June sampling. These results indicate that the relative contribution of phytoplankton to 

the total particulate absorption covaries with CDOM levels in this region, emphasizing the 

importance of freshwater runoff on phytoplankton at this spatial scale. Interestingly, the 

samples obtained in April 2017 in the middle of the bay showed low 𝑎cdom(350) and high 

Chla and 𝑎phy 𝑎p⁄ (443), indicating that the phytoplankton spring bloom probably occurred 

prior to the spring freshet which, in turn, severely reduced light availability in these nearshore 
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waters. Future studies aiming at documenting the phytoplankton spring bloom should 

probably begin as early as March. 

 

1.6.2.2 Phytoplankton 

Phytoplankton variability was assessed using both pigment assemblage and its spectral 

absorption spectra (𝑎phi(𝜆)). In the EGSL, both the effects of size (Tremblay et al., 1997, 

2000) and pigments (Roy et al., 2008, 1996) are expected to characterize phytoplankton 

communities and their adaptation to the light field exposure. However, Babin et al. (1995, 

1993) examined the spatial variability of 𝑎phi
∗ (𝜆) in spring and found major differences, 

mainly between gulf estuary regions, while Roy et al. (2008) confirmed the hypothesis that 

cell size would be of greater importance during spring bloom periods, while pigment 

composition would play a more important role during other seasons, in response to light 

availability and water stratification, as expected. 

We found evidence for strong seasonal variability for 𝑎phi(𝜆) and pigment-related 

variables (Table 4). This indicates phytoplankton communities underwent a seasonal 

succession in the nearshore areas; this was particularly noticeable in the BSI subregion. 

Seasonal variability of phytoplankton communities has already been observed in the lower 

estuary region, and pigment composition was found to be useful for their identification (Roy 

et al., 1996). 

Although photoprotective to photosynthetic carotenoids ratios are mostly used to assess 

phytoplankton photoacclimation within communities (and mostly vertically), we found them 

useful for computing and comparing the results for our dataset, considering the objectives of 

this study. Interestingly, the stricter approach using only the pigments involved in the 

xanthophyll cycle in the PPC class (Kauko et al., 2019) provided better results when 

compared to other groups (not shown). This may be related to the high phytoplankton 

diversity found in the seasonal domain. 
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We observed a few instances synchronized variability between 𝑆f and the pigment 

ratios (not shown), which suggests that the pigment packaging effect, given by the 𝑆f 

parameter, reflects both the effect of cell size and the co-varying accessory pigments. This 

was particularly true for the stations with higher Chla, e.g., MAN subregion and during April-

May for the BSI subregion. These results agree with observations during bloom events 

reported by Roy et al. (2008), where the effect of cell size was dominant for 𝑎phi(𝜆), and 

mostly related to diatoms. On the other hand, the lack of such a match in the remaining data 

suggests that pigments that do not covary with cell size may play an important role in shaping 

𝑎phi(𝜆). These results emphasize that bio-optical studies addressing the seasonal variability 

of phytoplankton communities in the EGSL should consider both pigment concentrations and 

cell size distribution, along with microscopic identification, if possible, given the complexity 

of the issue. 

Overall, the standing stock of nearshore surface phytoplankton communities was found 

not to be negligeable, with mean Chla values always higher than 1 mg m-3. Nevertheless, the 

phytoplankton grow in highly absorbing waters with relatively higher SPM (more turbid) 

conditions than are found in central parts of the EGSL. Based on the absorption and pigment 

proxies examined in this study, we found that seasonal phytoplankton succession occurs in 

these optically complex waters. However, a more complete understanding of the community 

structure and its role in the regional ecosystem’s functioning is needed. 

 

1.6.2.3 Short-term optical variability 

Lastly, we have demonstrated that short-term temporal events (on the order of days; 

Fig. 12) can strongly modify IOPs in the water column within a very short time frame. For 

example, the relatively abundant precipitation observed in early June 2019 increased land 

runoff around BSI, dramatically increasing the CDOM and particulate inputs that reached 

the central part of the bay. In addition, the strong winds associated with the same event may 

have remobilized previously deposited sediments (particles), as suggested by the higher 
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𝑏bp(550). Similarly, the effects of meteorological cold fronts were found to modify IOPs in 

a river-influenced coastal area in the Gulf of Mexico (D’Sa et al., 2006). 

Along with seasonal variability and these episodic events, circadian fluctuations 

induced by tides also modulate hydrodynamical and biological processes (Shaw, 2019; 

Vandevelde et al., 1989). Consequently, we could also verify that tidal fluctuations rapidly 

(within hours) alter the IOPs in the central part of the bay (BSI subregion). This effect has 

spatial consequences in the surface waters (Fig. 13b, from a Eulerian perspective) and in the 

vertical stratification of the IOPs (Fig. 13c, 13d). Although beyond the scope of this work, 

vertical optical variability needs more in-depth investigations to provide details on its 

consequences to the underwater light regime, particularly to the attenuation coefficient of 

downwelling irradiance, which primarily affects the amount of light reaching the benthos. 

Coupled hydrodynamical models can be an asset in such matters, given the dominant 

conservative mixing behavior of 𝑎cdom(350) as well as its relative optical dominance on 

absorbing light. These short-term variations at a fixed coastal station have implications for 

monitoring programs based on sparse punctual sampling. 

 

1.7 CONCLUSIONS 

We have documented, for the first time, the spatial and seasonal variability of bio-

optical properties in nearshore zones of the EGSL. The complexity of their relationships 

emphasizes the importance of considering regional differences and seasonality and reinforces 

our general premise that a more complete understanding of the optically-significant 

constituents that shape IOPs is needed for remote sensing applications. These considerations 

may well apply globally to nearshore areas in large estuaries. 

The nearshore waters of the EGSL revealed an estuarine-like behavior, with the 

seawater (in this case, the water found in the middle of the estuary or gulf) being measurably 

diluted by freshwater from land runoff. In most cases dilution in the nearshore zones is not 
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confined to a semi-enclosed geomorphological feature, which contradicts the classic 

definition of an estuary (as in Pritchard, 1967). Notwithstanding, the circulation was found 

to be estuarine in nature at the mouth of the bay in the BSI subregion (Shaw, 2019). 

We also confirmed the dominant conservative mixing behavior of CDOM in these 

areas, although differences among multiple riverine endmembers and other processes, such 

as flocculation and phytoplankton production products, need to be considered. The 

watersheds of local rivers are the main DOM sources of CDOM-dominated nearshore EGSL 

waters. We showed that the dynamics of resuspension events have a great influence on the 

magnitudes of certain IOPs. 

The characteristics of CDOM-laden waters in these areas revealed the DOM pool to be 

a major factor in the underwater light environment. This has a great impact on the pelagic 

ecosystem, as we showed with the seasonal similarities between phytoplankton proxies and 

seasonal modulation of 𝑎cdom(350). A more in-depth analysis of the DOM pool, like using 

excitation-emission matrix spectroscopy (Coble, 1996; Stedmon et al., 2003), could provide 

further explanations of variability at the molecular level, since we surmised that there were 

molecular weight differences between the subregions of BSI and MAN, and also in the river-

to-sea continuum, using the spectral slope 𝑆275−295 as a proxy. 

Globally, nearshore zones are known to be net heterotrophic systems, especially those 

influenced by large amounts of land runoff (Smith and Mackenzie, 1987). The particle-

associated heterotrophic bacterial production was found to greatly contribute to total bacterial 

production in a coastal Arctic ecosystem and to positively correlate with temperature and 

POM concentrations (Garneau et al., 2009). Therefore, it is evident that particulate matter 

transformations - like the biological uptake together with flocculation and sorption processes 

- will have an important impact of the optical properties of non-algal particulate matter. State-

of-art investigations of this variability are required to clarify these processes. 

The separation of dry-mass concentration of particles into organic and inorganic 

fractions (POM and PIM, respectively) was found to be a useful descriptor of the optical 
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characteristics of assemblages. Also, interestingly, was the general flattening trend of  𝑏bp(𝜆) 

with increasing turbidity. Considering the very low 𝑏bp
∗ (λ) reported here, we concluded that 

particles in the nearshore waters of the EGSL (back)scatter less visible light per unit of 

particulate mass (SPM), compared to other regions worldwide, and this may have ecological 

implications. Specifically, we argue that this means that more light is available in the red 

region of the spectrum which, in turn, would benefit phytoplankton and other photosynthetic 

benthic organisms. Indeed, even with the relatively higher DOC and SPM values reported in 

this study (compared to central portions of the EGSL), the absolute Chla values were not 

negligeable. This agrees with the idea that phytoplankton primary production in these regions 

is also an important component in local ocean budgets (Terhaar et al., 2021). Furthermore, a 

large portion of the intertidal and shallow subtidal areas are dominated by vegetated habitats, 

particularly seagrass meadows. 

We found IOP characteristics and conditions similar to those reported for river-

influenced coastal regions in the northeastern Gulf of Mexico (Cannizzaro et al., 2013; Le et 

al., 2015). Interestingly, the nearshore zones of this area are marked by the presence of 

continuous seagrass meadows (Cannizzaro et al., 2013), and IOP heterogeneity was found to 

be strongly linked with land use and land cover of the watersheds of the main rivers (Le et 

al., 2015). This highlights the importance of watershed management on controlling the 

nearshore processes, particularly at local scales of the EGSL. 

The results presented here represent a first step towards developing local-scale remote 

sensing products for these regions (e.g., Mabit et al., 2022). For such products, radiometric 

data collected concomitantly with the present dataset will permit evaluation of empirical 

relationships as well as allow the verification of optical coherence between measured IOPs 

and AOPs through radiative transfer simulations (optical closure). Emerging satellite 

technologies and the synergy of using multi-resolution sensors will favor not only the 

scientific community investigating these environments, but also help to improve their 

management. The bio-optical investigation presented here brings new insights into the 
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variability of fundamental absorption and backscattering coefficients in these areas, which, 

in turn, will have consequences on satellite-based estimations of biogeochemical variables. 
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2.1 ABSTRACT 

The seasonal and spatial variability of surface phytoplankton assemblages and 

associated environmental niches regarding major nutrients, physical (temperature and 

salinity), and optical characteristics (inherent and apparent optical properties) were 

investigated in an anthropized subarctic coastal bay, in the Gulf of St. Lawrence: the Bay of 

Sept-Îles (BSI), Québec, Canada. Seven major phytoplankton assemblages were identified 

by applying a combined Principal Component Analysis and Hierarchical Cluster Analysis 

procedures, using pigment concentrations and <20 µm autotrophic cell abundances as inputs. 

The resulting phytoplankton groups from BSI (n = 7) were more diverse than at a station 

monitored in a central portion of the St. Lawrence Estuary (n = 2). The temporal distribution 

of the phytoplankton assemblages of BSI reflected the major seasonal (spring to fall) signal 

of a nearshore subarctic environment. Before the freshet, spring bloom was dominated by 

large (microphytoplankton) cells (diatoms), and the succession followed a shift towards 

nanophytoplankton and picophytoplankton cells throughout summer and fall. Most of the 

phytoplankton assemblages occupied significantly different environmental niches. Taking 

temperature and the bio-optical properties (ultimately, the remote sensing reflectance) as 

inputs, a framework to classify five major groups of phytoplankton in the BSI area is 

validated. The demonstrated possibility to retrieve major phytoplankton assemblages has 

implications for applying remote sensing imagery to monitoring programs. 

Keywords: bio-optics, phytoplankton assemblages, phytoplankton phenology, 

nutrients, CDOM, HPLC, flow cytometry, remote sensing. 

 

  



 

77 

2.2 RÉSUMÉ 

La variabilité saisonnière et spatiale des assemblages de phytoplancton de surface et 

des niches environnementales associées aux macronutriments, les caractéristiques physiques 

(température et salinité) et optiques (propriétés optiques intrinsèques et apparentes) ont été 

étudiées dans une baie côtière subarctique anthropisée, dans le golfe du Saint-Laurent : la 

baie de Sept-Îles (BSI), Québec, Canada. Sept principaux assemblages de phytoplancton ont 

été identifiés en appliquant une analyse en composantes principales et un regroupement 

hiérarchique, en utilisant des concentrations de pigments et des abondances de cellules 

autotrophes <20 µm comme entrées. Les groupes de phytoplancton issus de BSI (n = 7) 

étaient plus diversifiés comparé aux eaux de la partie centrale de l'estuaire du Saint-Laurent 

(n = 2). La distribution temporelle des assemblages phytoplanctoniques de BSI reflète le 

signal saisonnier marqué (du printemps à l'automne) d'un environnement subarctique côtier. 

Avant la crue des rivières au printemps (mi-mai), l'efflorescence de phytoplancton était 

dominée par de grandes cellules (microphytoplankton; diatomées), et la succession a suivi 

un déplacement vers des cellules de nanophytoplancton et de picophytoplancton tout au long 

de l'été et de l'automne. La plupart des assemblages de phytoplancton occupaient des niches 

environnementales significativement différentes. En prenant la température et les propriétés 

bio-optiques (c-à-d, la réflectance de télédétection) comme entrées, une classification en cinq 

grands groupes de phytoplancton dans la zone BSI est proposée et validée. La possibilité de 

documenter les principaux assemblages de phytoplancton à l'aide de l'imagerie de 

télédétection est démontrée et pourrait être intégrée à un programme de surveillance à long 

terme de la baie. 

Mots-clés : bio-optique, assemblages de phytoplancton, phénologie du phytoplancton, 

nutriments, CDOM, HPLC, cytométrie en flux, télédétection 
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“…phytoplankton (…), I still think 

are one of the best systems to study in 

ecology.” 

Elena Lichtman, in ASLO’s 2021 

G. Evelyn Hutchinson Award Talk 

 

2.3 INTRODUCTION 

Coastal and nearshore transitional zones host diverse productive ecosystems and are 

commonly associated with high biodiversity. While energy sources and trophic linkages are 

complex (Lindeman, 1942; McMahon et al., 2021), primary production by phytoplankton is 

an important component of such ecosystems (Cloern et al., 2014; Winder et al., 2017). The 

variability of composition, biomass and production of phytoplankton communities will have 

a wide range of spatial and temporal scales, with temperate and polar coastal regions 

presenting a markedly complex seasonal pattern (Carstensen et al., 2015; Cloern and Jassby, 

2008). 

Phytoplankton assemblages are of particular interest for biogeochemical models, as 

they are intrinsically related to ecological processes (Le Quéré et al., 2005). Ocean color 

products derived from Earth Observation platforms can provide information about 

phytoplankton assemblages composition or their ecological roles (IOCCG, 2014). However, 

from the remote sensing perspective, the optical complexity of coastal and nearshore waters, 

and the general greater contribution of the chromophoric dissolved organic matter (CDOM) 

and particles other than phytoplankton to the bulk optical variability often hinders the ability 

to extract quantitative (and qualitative) information about phytoplankton in these 

environments (Sathyendranath et al., 1989). 

Notwithstanding, trait-based concepts can be successfully used to explain the 

distribution of major phytoplankton assemblages along environmental gradients (Litchman 
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et al., 2010; Roselli and Litchman, 2017). This approach may include diverse strategies of 

nutrient utilization (Litchman et al., 2007) that are modulated by temperature and light 

constraints (Edwards et al., 2016). Specifically, because various phytoplankton assemblages 

have different light requirements, the spectral quality of the light environment (or optical 

niches) will have consequences on shaping their composition (Hintz et al., 2021; Stomp et 

al., 2007). 

In this study, we hypothesize that the composition of major phytoplankton assemblages 

in a nearshore coastal area will covary with temperature and the bulk optical properties of 

the environment. To test this hypothesis, the seasonal and spatial variability of the 

phytoplankton assemblages were investigated in a subarctic coastal bay (the Bay of Sept-

Îles, Québec, Canada). The main objective was to identify the major assemblages and their 

respective environmental niches, in respect to nutrient concentrations, physical parameters 

(temperature and salinity), and bio-optical properties. We evaluated and demonstrated the 

potential of using sea surface temperature (SST, ºC) and the remote sensing reflectance 

(𝑅rs(𝜆), sr-1, where λ indicates light wavelength), at selected wavelengths, to discriminate 

the major classes of phytoplankton assemblages found in the study area. SST and 𝑅rs(𝜆) are 

quantities that can be estimated by operational satellite sensors (see reviews of Minnett et al., 

2019; and Werdell et al., 2018; respectively). 

Understanding and predicting the effects of environmental change on natural 

communities and its consequences for ecosystem functioning is a major goal in ecology 

(Roselli and Litchman, 2017). In the context of climate change affecting coastal ecosystems 

(Harley et al., 2006), and particularly in Arctic and subarctic regions (Wassmann et al., 2011), 

the development of efficient tools to study and monitor phytoplankton assemblages is urgent. 

Furthermore, being subject of alteration of anthropogenic origin, problems related to 

phytoplankton such as eutrophication and harmful algal blooms in coastal zones are of major 

concern (Cloern, 2001; Glibert et al., 2005). 
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2.4 METHODS 

2.4.1 Study area and sampling design 

The study area comprises the region around and within the Bay of Sept-Îles (BSI), in 

the north shore of the Gulf of St. Lawrence (GSL), Canada (Figure 14). The BSI is a semi-

enclosed bay with a relatively narrow (~5 km) connection to the gulf and sheltered by the 

Sept-Îles archipelago. The bay has approximately 100 km2 and a great proportion of it 

(~40%) is occupied by intertidal zones and depths shallower than 2 m. BSI has a mesotidal 

regime (with an average amplitude of 2 m), which varies in semidiurnal cycles, while its 

circulation patterns is also influenced by the inflow of four small rivers (Shaw, 2019). The 

Moisie River outlet (annual average discharge of ~490 m3 s-1), located ~20 km east of the 

bay, can also influence the nearshore waters of the region (Araújo and Bélanger, 2022; 

Normandeau et al., 2013). Besides, the BSI is considered as one of the coastal areas of the 

GSL likely to be most influenced by human activities, with the presence of harbors, major 

industrial ports and fisheries (Dreujou et al., 2021). Moreover, the BSI is a known region of 

occurrence of the toxic dinoflagellate Alexandrium catenella (previously known as 

Alexandrium tamarense, see Boivin-Rioux et al., 2021; John et al., 2014) in summer months, 

which was found to be linked to the Moisie River runoff (Weise et al., 2002). 

The dataset used in this study consist of in situ profiles and discrete surface water 

samples collected on an array of stations, within the scope of the interdisciplinary project 

Canadian Healthy Oceans Network (CHONe2; see Ferrario et al., 2022, for further details 

about the project). More details about the sampling strategy and methods are found in Araújo 

and Bélanger (2022). The dataset provided a unique opportunity to investigate the spatial – 

order of 100 to 101 km – and seasonal variability of phytoplankton and bio-optical conditions 

of the nearshore environment of BSI (Figure 14; Table 5). The stations (Figure 14C) were 

sampled during seven field campaigns from late spring to early fall 2017 (BSI-1 to BSI-7, 

from early May to October), and one time in 2019 (BSI-8, early June). For comparison 

purposes, we also included a station in the middle of the St. Lawrence Estuary (the AZMP – 
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Atlantic Zone Monitoring Program – buoy location, at Rimouski (RIKI) station, Figure 14B), 

visited on eleven occasions from July to October 2015 (described in Bélanger et al., 2017). 

 

 

Figure 14. (A) The Estuary and Gulf of St. Lawrence in the North America context, and (B) 

study area sampling locations: the Bay of Sept-Îles and the AZMP buoy. (C) Spatial 

distribution and number of revisits of the sampling stations in the Bay of Sept-Îles 
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Table 5 

Summary of the sampling strategy: dates and number of water samples. AZMP is the 

acronym for the Atlantic Zone Monitoring Program buoy location, and BSI is for the Bay 

of Sept-Îles 

Key to field campaign location and survey: 

period of sampling 

Number of 

samples (n) 

AZMP: from 23 July to 24 October 2015 11 

BSI-1: early May (4 and 5) 2017 13 

BSI-2: mid-May (21 and 22) 2017 13 

BSI-3: early June (6 and 7) 2017 14 

BSI-4: mid-June (22 and 23) 2017 10 

BSI-5: July (18) 2017 5 

BSI-6: September (6) 2017 6 

BSI-7: October (7) 2017 6 

BSI-8: June (1, 2, 4 and 5) 2019 30 

Total 108 

 

The discrete surface water samples were collected with a Niskin bottle (or bucket) and 

were kept cool in dark conditions until further laboratory procedures, which were made each 

day immediately after the cruise and consisted mainly of filtration operations. Optical and 

biogeochemical parameters obtained using in situ vertical profiles were matched to the 

closest measure of the depth of the discrete water sampling. A total of 108 samples was 

considered in this study (Table 5). 
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2.4.2 Phytoplankton assemblages 

Phytoplankton assemblages were identified using a combined Principal Component 

Analysis (PCA) and Hierarchical Cluster Analysis (HCA) procedures, using pigment 

concentrations and cell abundances grouped in size classes as primary inputs. 

Phytoplankton pigments were determined using High Performance Liquid 

Chromatography (HPLC), following the procedure described by Zapata et al. (2000). Briefly, 

water samples were filtered through 25 mm (or 47 mm) GF/F glass fiber filters, flash frozen 

in liquid nitrogen, and stored in cryogenic vials at -80ºC until further analysis. The pigment 

extraction was made using methanol, followed by sonification and centrifugation procedures, 

before placing the samples in the HPLC analyzer (Agilent Technologies 1200 series). 

Detection and quantification of the pigments were estimated as described in Bidigare et al. 

(2005). 

A total of twenty accessory pigments were considered in the analysis: chlorophylls b 

(Chlb), c1, c2 and c3, Mg 2,4 divinyl pheoporphyrin a5 monomethyl ester (MgDVP), peridinin 

(Peri), 19'-butanoyloxyfucoxanthin (But), fucoxanthin (Fuco), neoxanthin, prasinoxanthin, 

violaxanthin, 19'-hexanoyloxyfucoxanthin (Hex), diadinoxanthin, alloxanthin (Allo), 

diatoxanthin, zeaxanthin (Zea), lutein, crocoxanthin, alfa and beta-carotene. Total 

chlorophyll-a (Chla) was considered as the sum of monovinyl chlorophyll-a, chlorophyllids 

and the allomeric and epimeric forms of chlorophyll-a. 

Autotrophic cells (i.e., phycoerythrin- and phycocyanin-containing cyanobacteria and 

autotrophic eukaryotes) abundances (in cells mL-1) were measured by flow cytometry. 

Duplicate 4 mL samples were placed in cryovials and fixed with glutaraldehyde Grade I 

(Sigma; 0.1% final concentration) in the dark at room temperature for 15 min, flash-frozen 

in liquid nitrogen, and then stored at -80°C until analysis. The analysis was made using a 

CytoFLEX flow cytometer (Beckman Coulter) fitted with a blue (488 nm) and a red laser 

(638 nm). The forward scatter, side scatter, orange fluorescence from phycoerythrin (582/42 

nm BP) and red fluorescence from chlorophyll (690/50 nm BP) were measured using the blue 
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laser. The red laser was used to excite the red fluorescence of phycocyanin (660/20 nm BP). 

Polystyrene microspheres of 2 µm diameter (Fluoresbrite YG, Polysciences) were added to 

each sample as an internal standard. Pico- (<2 µm) and nano-autotrophs (2-20 µm) were 

discriminated based on a forward scatter calibration using algal cultures. Since the abundance 

of phycocyanin-containing cyanobacteria was generally low (i.e., <100 cells mL-1), they were 

not included in the analysis. 

Prior to applying the PCA/HCA algorithms, each pigment was normalized by Chla and, 

together with cell abundances (pico- and nano-autotrophs), were standardized (z-scores), 

given the different nature (units) of inputs. The normalized and standardized data were then 

submitted to the PCA and the number of Principal Components (PCs) that explained most of 

the variability (> 80%) were selected to proceed to the HCA. 

The HCA method classifies objects (i.e., phytoplankton pigments and size class 

abundances) into groups (or clusters) that are similar. In this study, the clustering approach 

using Ward's minimum variance method (Ward, 1963) and paired Euclidean linkage 

distances was applied (as in Neukermans et al., 2016; and Reynolds and Stramski, 2019). 

The output of the HCA is a dendrogram in which the user defines a linkage distance cutoff 

value, which, in turn, will determine the number of clusters. For the optimal linkage distance 

value retrieval, we used the iterative L method procedure (Neukermans et al., 2016; Salvador 

and Chan, 2004). We also report the cophenetic correlation (Sokal and Rohlf, 1962), as a 

measure of how accurately a dendrogram maintains the pairwise distance between data 

objects. 

 

2.4.2.1 Size-classes contribution to biomass 

The fractional contribution of different size classes of phytoplankton to Chla – 𝑓pico 

(picophytoplankton, mean diameter [D] < 2 µm); 𝑓nano (nanophytoplankton, D = 2 to 20 

µm); and 𝑓micro (microphytoplankton, D > 20 µm) – was examined using two different 
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approaches. The first approach (as in Uitz et al., 2006) uses the weighted contributions of 

seven diagnostic pigments concentrations (Fuco, Peri, Allo, But, Hex, Zea, and Chlb) to 

determine 𝑓pico
HPLC, 𝑓nano

HPLC, and 𝑓micro
HPLC. For comparison, a second approach used 

picophytoplankton cell abundances (cells mL-1) obtained from flow cytometry analysis. It 

includes eukaryotes and cyanobacteria cell abundances (𝐴euk and 𝐴cy, respectively), with 

Chla cell quotas taken for the prasinophyte Micromonas pusilla (𝑄Mic, equal to 2×10-8 

µg Chl cell-1; Montagnes et al., 1994) and the cyanobacteria Synechococcus sp. (𝑄Syn, equal 

to 1×10-9 µg Chl cell-1; Morel et al., 1993), respectively. Thus, the fractional contribution of 

picophytoplankton, 𝑓pico
FC , was determined by 𝑓pico

FC =

103[(𝐴euk × 𝑄Mic) + (𝐴cy × 𝑄Syn)] 𝐶ℎ𝑙𝑎⁄ . 

 

2.4.2.2 Taxonomic analysis by light microscopy 

Phytoplankton cell identification was performed on selected samples (n = 16) to the 

lower rank possible (groups, genus, and species). Samples were preserved in acidic Lugol’s 

solution and kept in the dark at 4ºC until analysis. The counting of cells >2 µm was performed 

using an inverted fluorescence microscope (Zeiss Axiovert 10) following the Utermöhl 

method with settling columns of 25 mL (Lund et al., 1958). A minimum of 400 cells were 

counted over at least three transects of 20 mm. Autotrophic phytoplankton were distributed 

in 10 taxonomic groups plus a group of unidentified flagellates. Unidentified cells accounted 

for an average of 20% of total cells abundance and, from those, ~60% were smaller than 5 

µm. 

 

2.4.4 Major nutrients and physical parameters 

Concentrations of nitrite (NO2
−), nitrate (NO3

−) + NO2
−, phosphate (PO4

3−), and silicate 

(Si(OH)4
4−) were determined using a colorimetric method with an Autoanalyzer 3 (Bran + 
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Luebbe), as described in Bluteau et al. (2021). Prior to analytical procedures, water samples 

were filtered through 25 mm GF/F filters in acid-wash syringes and Swinnex. Concentrations 

of NO3
− were determined by difference. 

High-precision salinity (± 0.0003, in practical salinity units, PSU) was measured on 

discrete water samples using a calibrated Portasal salinometer (model 8410A, Guildline 

Instruments, Smiths Falls, ON). In situ vertical profiles of temperature and conductivity were 

taken using a calibrated CTD probe (SBE19, Sea-Bird Scientific, Bellevue, WA). 

 

2.4.5 Inherent and apparent optical properties 

The spectral backscattering and absorption coefficients (𝑏b(𝜆) and 𝑎(𝜆), respectively, 

in m-1) are inherent optical properties (IOPs) that are related to the remote-sensing reflectance 

(𝑅rs(𝜆)), an apparent optical property, by the means of 𝑅rs(𝜆) ∝ 𝑏b(𝜆) 𝑎(𝜆)⁄  (Morel and 

Prieur, 1977). Hence, the characterization of the IOPs is a primary requirement for 

discriminating phytoplankton assemblages when considering optical approaches (Reynolds 

and Stramski, 2019). 

The total absorption coefficient, 𝑎(𝜆), is decomposed by the additive contributions of 

pure water itself (𝑎𝑤(𝜆)), chromophoric dissolved organic matter (𝑎cdom(𝜆)), non-algal 

particles (𝑎nap(𝜆)), and phytoplankton (𝑎phy(𝜆)) (eq. 7). Similarly, 𝑏b(𝜆) is decomposed in 

backscattering of pure water (𝑏bw(𝜆)) and particulate matter (𝑏bp(𝜆)) (eq. 8). 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎cdom(𝜆) + 𝑎nap(𝜆) + 𝑎phy(𝜆) ,                                                (7) 

𝑏b(𝜆) = 𝑏bw(𝜆) + 𝑏bp(𝜆) ,                                                (8) 

The determination of the above IOPs for the present dataset is described in Araújo and 

Bélanger (2022). Briefly, 𝑎cdom(𝜆), 𝑎nap(𝜆), and 𝑎phy(𝜆) were determined using a benchtop 

PerkinElmer Lambda-850 spectrophotometer, equipped with an integrating sphere (used for 
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particles only). The in situ 𝑏bp was determined at six wavelengths using a HydroScat-6P 

(HS6) backscattering meter (HOBI Labs Inc., Bellevue, WA), and was corrected for salinity 

variations and loss due to attenuation along the pathlength. The spectral dependency of 𝑏bp 

was modelled (non-least-squares algorithm) using a power-law function, as 𝑏bp(𝜆) =

𝑏bp(𝜆0)[𝜆 𝜆0⁄ ]𝛾, where 𝛾 is a dimensionless parameter describing the spectral dependency 

of 𝑏bp relative to a reference wavelength (𝜆0; defined as equal to 550 nm in this study). Low 

residual differences (means < 5%) between measured and modelled values of 𝑏bp assured 

the validity of this equation on describing its spectral shape in the study area (Araújo and 

Bélanger, 2022). Seawater absorption and backscattering coefficients were retrieved from 

tabulated values available in the literature (IOCCG, 2018; Morel, 1974; Zhang et al., 2009). 

The 𝑅rs(𝜆) was derived from in situ radiometric measurements using a Compact 

Optical Profiling System (C-OPS; Biospherical Instruments Inc., San Diego, CA), and 

followed the procedures described in Bélanger et al. (2017) and Mabit et al. (2022). Briefly, 

the system was equipped with sensors that measured the above-water downwelling 

irradiance, 𝐸d(𝜆, 0+), and the upwelling radiance from vertical profiles in the water column, 

𝐿u(𝜆, 𝑧). The processing schema included the extrapolation of 𝐿u(𝜆, 𝑧) to assess the water-

leaving radiance, 𝐿w(𝜆, 0+). The 𝑅rs(𝜆) is then calculated using 𝑅rs(𝜆) =

𝐿w(𝜆, 0+) 𝐸d(𝜆, 0+)⁄ . C-OPS radiometry data are collected at 19 wavelengths, thus, 𝑅rs(𝜆) 

was interpolated using a piecewise cubic polynomial function to obtain 1-nm resolution, 

while preserving its spectral shape (Reynolds and Stramski, 2019). 

 

2.4.6 Statistical analysis 

Descriptive statistics (mean and standard deviation) and one-way Analysis of Variance 

(ANOVA) were used to quantitatively compare the populations identified by the clusters 

obtained by the PCA / HCA procedures. Data were confirmed to exhibit normal distributions 

using the Lilliefors (or Kolmogorov-Smirnov) test prior to all ANOVAs, and differences 
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between pairs of means (pairwise comparisons) were assessed using the Tukey Honest 

Significant Difference (Tukey’s HSD) criterion post-hoc test. In the following, when a 

population of data presents significant difference, it means that ANOVA presented a p-value 

less than 5% of significance level (p < 0.05). Additionally, when individual groups (clusters) 

are compared to others (pairwise comparisons), the Tukey’s HSD criterion is used. All data 

manipulations and statistics were done using Matlab (MathWorks) software. 

 

2.5 RESULTS 

2.5.1 Clusters of phytoplankton assemblages 

The normalized and standardized phytoplankton pigments concentrations (n = 20) and 

pico- and nano-autotrophic cell abundances (eukaryotic and cyanobacteria; n = 4) were 

submitted to the Principal Component Analysis (PCA), and the seven first principal 

components explained 80.3% of the variance in the data set. In sequence, the projections of 

the original data on the principal component vector space (scores) were computed and the 

seven first columns were used as input in the Hierarchical Cluster Analysis (HCA). Figure 

15 shows the dendrogram as obtained by HCA, as well as the procedure used to determine 

the linkage distance and subsequent number of clusters (L method; Salvador and Chan, 

2004). 

The inset of Figure 15A shows the reductional approach necessary to obtain a lower 

number of groups, consisting of applying the L method to a limited range of possible clusters 

(Neukermans et al., 2016; Salvador and Chan, 2004). This approach revealed to be more 

adequate to our analysis, since the obtained linkage distance cutoff (Figure 15B) divided the 

dataset in seven groups, containing between 8 and 26 samples, in each individual cluster. The 

cophenetic correlation value for the HCA was 0.62, comparable to other reported values in 

the literature (e.g., Neukermans et al., 2016). 
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Figure 15. (A) Linkage distance as a function of the number of clusters obtained from the 

dendrogram (shown in (B)). The L-method (Salvador and Chan 2004) is first applied 

considering all dataset (n =108), and then to a restricted range for the number of clusters 

(inset). The resulting “knee” corresponds to a linkage distance cutoff of 11.9, which divides 

the input dataset in seven clusters. (B) Dendrogram obtained from the Hierarchical Cluster 

Analysis. The dashed line corresponds to the linkage distance cutoff, and the number above 

each cluster shows the corresponding number of samples. The clusters are denoted by PraD 

(purple), PryD (red), Cy (blue), Dia (yellow), Cry (orange), CryP (teal) and Chlo (green) 

 

The variability of selected inputs is shown in Figure 16, whereas the mean and standard 

deviation of all 24 inputs are presented in Table 13 (Annex2). Only the pigment 19' 

butanoyloxyfucoxanthin (But) did not present significant difference considering the seven 

classes of phytoplankton assemblages (one-way ANOVA, p > 0.05). The analysis of cell 

abundances and pigments to Chla ratios within the groups revealed a complex co-occurrence 

of diverse phytoplankton groups, as the assignment of taxonomic classes from pigment 

signatures is not always a straight-forward task (Roy et al., 1996). Despite these inherent 

limitations, we assessed characteristics of each group that could be used to distinguish them 

from the others. For such analysis, we used available information compiled in the literature 

that links phytoplankton pigments to taxonomic classes (e.g., Roy et al., 1996; Gibb et al., 

2000; Kramer and Siegel, 2019). 
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Figure 16. Variability (median, 25th and 75th percentiles, minimum, maximum and 

outliers) of (A) four classes of phytoplankton cell abundances (B and C) and eight 

accessory pigments to Chla ratios concentrations. The autotrophic cells concentration is 

separated by eukaryotes and phycoerythrin-containing (PE-) cyanobacteria, and by pico- 

(<2 μm) and nano-size (>2 and <20 μm) classes. The color code, associated to each cluster 

group, is the same as in Figure 15 

 

The relative distribution of phytoplankton groups identified by light microscopy (LM) 

are presented in Figure 32 (Annex 2). The correspondence between the seven clusters and 

the taxonomic analysis by LM was not straight-forward since it is nearly impossible to 

discriminate and identify cells smaller than 3 µm as this cell size is close to the resolution of 

LM and because the strong coloration of the acidic Lugol’s solution, used to preserve the 

samples, make it difficult to distinguish autotrophic from heterotrophic cells (see Tremblay 
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et al., 2009). On the contrary, HPLC pigment concentrations and flow cytometry 

measurements both account for autotrophic cells of this size. Moreover, a high number of 

unidentified cells (average 20%) and, specifically, unidentified flagellates (between 25 and 

50%, Figure 32) were assigned by the LM technique. Besides, LM analysis revealed the 

presence of important species that helped in the interpretation of the composition of the 

phytoplankton assemblages. 

The first cluster (purple) presented the highest means (and significantly higher than 

almost all other groups) picoeukaryotes cell counts and Chla-normalized pigment 

concentrations of neoxanthin, prasinoxanthin, violaxanthin, and Chl b. Moreover, there were 

significantly higher means (although not the highest) concentrations of nanoeukaryotes, Chl 

c1, ß-carotene and Perid. From these characteristics, we related this group to the presence of 

prasinophytes (possibly Micromonas sp.) and dinoflagellates (hereafter referred to as PraD). 

From the LM analysis, the prasinophyte Pyramimonas spp. was representative for the group 

PraD. 

The second cluster (red) presented the highest means of nanoeukaryotes, Perid, Hex, 

and diadinoxanthin, while picoeukaryotes, Chl c1 and c2, prasinoxanthin and ß-carotene were 

also significantly higher than other groups (but not the highest). We related this group to a 

relative dominance of prymnesiophytes and dinoflagellates (PryD). The LM analysis 

confirmed the presence and a relative high abundance of the prymnesiophyte 

Chrysocromulina spp. in this group. The dinoflagellates Gymnodinium spp. and Heterocapsa 

rotundata were always representative in samples of groups PraD and PryD, while the toxic 

Alexandrium catenella was also identified in these groups. Interestingly, the maximum 

concentration of A. catenella (2920 cells L-1) was observed in an anomalous sample (PryD-B; 

Figure 32, Annex 2) with a very high concentration of the diatom Skeletonema costatum. 

The third cluster (blue) presented the highest means of pico- and nano-phycoerythrin-

containing cyanobacteria, Zea, Chl c3, and ß-carotene, but also higher picoeukaryotes, 

neoxanthin, prasinoxanthin and Chl b. Thus, this group was related to a marked characteristic 

of occurrence of cyanobacteria (Cy), possibly Synechococcus sp. While presenting relatively 
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high Fucoxanthin to Chla, the LM revealed in this group high abundances of the diatoms 

Lennoxia faveolata, Leptocylindrus minimus, Skeletonema costatum, Thalassiosira conferta, 

and Chaetoceros spp., but also the dinoflagellate H. rotundata. 

The fourth (yellow) and most numerous cluster (n = 26) presented the highest means 

of Fuco, Chl c1 and c2, and was attributed to a dominance of diatoms (Dia). Cells enumerated 

by LM analysis revealed high abundances of the genus Chaetoceros (C. debilis, C. 

convolutes, C. gelidus, and Chaetoceros spp.) and the species Thalassiosira nordenskioeldii. 

Furthermore, the taxonomic groups identification of samples from group Dia revealed higher 

dominance of diatoms in relation to others (>50%, Figure 32), as expected. 

The fifth (orange) and sixth (teal) clusters both presented the highest means of Allo and 

crocoxanthin, but the former had the highest means of α-carotene, while the latter had the 

highest means of MgDVP. We attributed these groups to be related to a marked presence of 

cryptophytes, but the sixth group had some important contribution from prasinophytes. 

Therefore, these groups were denoted as Cry and CryP, respectively, with Hemiselmis 

virescens and Plagioselmis prolonga var. nordica being a representative species. Moreover, 

these two groups were the most similar based on the dendrogram (Figure 15B). Finally, the 

seventh (green) cluster presented the highest mean of lutein, but also significantly higher 

concentrations of Zea than other groups (except Cy). We attributed this group to a relatively 

greater contribution of chlorophytes (Chlo) to the phytoplankton assemblages. 

The numerical abundance of micro-, nano-, and pico-phytoplankton size classes were 

examined in Figure 33 (Annex2). First, nanophytoplankton abundances obtained from flow 

cytometric measurements were compared to those obtained by light microscopy (LM), 

including unidentified cells (Figure 33A). Both measurements are comparable in terms of 

absolute values, but LM systematically underestimates the number of cells, comparatively, 

indicating a limitation of the former method to adequately account for this size class. 

Furthermore, a comparison of distribution of the three size classes abundances (Figure 33B, 

with microphytoplankton abundances retrieved from the LM analysis) revealed a strong 
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numerical dominance of picophytoplankton in all samples, except 5 samples where 

picophytoplankton represented ~50% of total cell abundance. 

The fractional contribution of phytoplankton size classes to Chla (𝑓pico, 𝑓nano, and 

𝑓micro) are shown in Figure 17. The two methods used to estimate 𝑓pico (𝑓pico
FC  and 𝑓pico

HPLC) 

were compared (Figure 17A) and presented a coefficient of determination (R2) of 0.35. In 

general, the correspondences between the two methods presented different patterns when 

considering the different groups, with 𝑓pico
FC  underestimating 𝑓pico in comparison to 𝑓pico

HPLC, 

especially for the groups Dia, Cry, CryP, and Chlo, which were restricted to the lower range 

of variability (<25%). Nevertheless, the groups with higher values of 𝑓pico, PraD and Cy, 

were noticeable in both methods. 

Although the Uitz et al. (2006) method (used to determine 𝑓HPLC) was developed using 

global relationships and may have constraints on applying to a coastal / nearshore dataset, as 

the one presented in this study, we investigated the size fractioned contributions of 

phytoplankton in the ternary diagram presented in Figure 17B. The different clustering 

groups presented distinguishable patterns of distribution. Most samples presented 𝑓micro
HPLC 

higher than 50%, with the most noticeable contribution of this fraction for Dia. Specifically, 

the groups PraD and Cy presented a dispersion from 𝑓micro
HPLC towards 𝑓pico

HPLC, while this 

dispersion for the groups CryP, PryD, and, particularly for Cry, were towards 𝑓nano
HPLC. 

Overall, the phytoplankton communities were well discriminated by the PCA / HCA 

procedures. Despite the picophytoplankton numerical dominance, the total biomass was 

dominated by microphytoplankton, with some variations within clusters. 
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Figure 17. Relative (or fractional, 𝑓) contributions of phytoplankton size classes to Chla, 

for each phytoplankton cluster. (A) Two methods to obtain the picophytoplankton 

fractional contribution to chlorophyll-a (𝑓pico): 𝑓pico
FC  and 𝑓pico

HPLC (see text for details). (B) 

Ternary plot of 𝑓pico
HPLC, 𝑓nano

HPLC, and 𝑓micro
HPLC. This approach (pigment-based) considers a 

global relationship using seven diagnostic pigments as inputs (Uitz et al. 2006). The color 

code is the same as in Figure 15 

 



 

95 

2.5.2 Seasonal and spatial variability 

The Chla biomass, the seasonal succession, and spatial variabilities within 

phytoplankton clusters are shown in Figure 18. In Bay of Sept-Îles (BSI), Chla medians were 

always between 1 and 3 mg m-3 for all groups, except for Chlo whose median is 0.66 mg m-3 

(Figure 18A). No group is significantly different from the others, but PryD and Dia presented 

higher means of Chla. In comparison, only two groups were present at AZMP (Dia and PraD) 

in the middle of the Lower St. Lawrence Estuary, during the period from July to October 

2015, and Chla values were generally higher than in BSI, with values ranging from 1.02 to 

11.43 mg m-3 (Figure 18B). 

The seasonal evolution of the phytoplankton clusters of BSI are shown in Figure 18C, 

where the bars represent the relative contribution of each group during each campaign. 

Firstly, in early May 2017 (BSI-1) only the group Dia was found in BSI surface waters. About 

two weeks later (BSI-2), the group Dia was replaced mainly by the groups Cry, CryP, and 

Chlo. Interestingly, the dominance of groups CryP and Chlo (but also some samples from 

Dia) was also observed in the field campaign of early June 2019 (BSI-8). In June 2017 (BSI-

3 and 4) only groups PraD and PryD were found in BSI, followed in July (BSI-5) by the 

occurrence of PryD, Dia, and Cy. Finally, only group Cy was found in fall (BSI-6 and 7). 

Although BSI-1, 6, and 7 were characterized by a single group, the other field 

campaigns presented heterogeneity regarding the phytoplankton assemblages, and their 

spatial distribution is shown in Figures 18D-H. The dominant groups in BSI-2, Cry and CryP, 

were generally found inside and outside the bay, respectively (Figure 18D). This spatial 

separation was even clearer in BSI-3 for the groups PraD (inside) and PryD (outside). In BSI-

5, the sample correspondent to Cy is in a station outside the bay. In the 2019 campaign (BSI-

8), beside the dominance of CryP, the group Chlo was distributed in the riverine (freshwater) 

plumes, while two Dia samples are distributed in-between the islands east of the bay. These 

results evidence the seasonal succession of phytoplankton assemblages, but also reveal that 

the spatial variability, at this scale, is also important. 



 

96 

 

Figure 18. Temporal and spatial variability of the phytoplankton clusters. (A) Boxplots 

showing the variability of Chla for each cluster, for the Bay of Sept-Îles (BSI). (B) Bars 

showing the temporal variability of Chla in the AZMP buoy station (DOY = Day of Year). 

The color of the bars corresponds to the class of phytoplankton clusters. (C) Relative 

distribution of phytoplankton clusters for AZMP and for the temporal series in BSI (BSI-1 

to 8; Table 5). (D-H) Spatial distribution for each campaign that presented noticeable 

variability of phytoplankton clusters 
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2.5.3 Major nutrients and physical environment 

The relationships between major nutrient concentrations, associated to each 

phytoplankton assemblage, are shown in Figures 19A and 19B, and the physical 

environment, as determined by temperature and salinity, are shown in Figure 19C. The mean 

and standard deviation of each variable for the Bay of Sept-Îles (BSI) of Figure 19 (plus 

nitrite and nutrient concentrations ratios) are summarized in Table 6. Samples from the 

Lower St. Lawrence Estuary (AZMP, squares in Figure 19) were differentiated from those 

of BSI. In addition, other samples from BSI were considered as outliers. First, two samples 

from the group Dia, in the campaign BSI-8 (Figure 18H), had environmental (and optical) 

characteristics typical of those from the group Chlo. This might be related to lateral advection 

of phytoplankton cells. Secondly, few samples from groups Chlo (2) and CryP (1) were found 

to have anomalous values of physical and optical (not shown) variables. These samples were 

obtained in turbulent hydrodynamic conditions close to riverine discharges. Water sampling 

might not reflect the same conditions as the data acquired by the in situ instrumentation 

(CTD, HS6, C-OPS). In the following, these outliers are not considered. 

The nutrients and physical environment at the Lower St. Lawrence Estuary station 

(AZMP) are markedly different from those of BSI, when considering the same phytoplankton 

groups of these two locations. Nitrate and phosphate concentrations values were higher for 

AZMP (Figure 19B), while silicate concentrations were similar (Figure 19A). However, if 

only the group Dia is considered, silicate concentrations were also higher at AZMP (except 

for one sample). Interestingly, the Dia samples from AZMP were also associated with higher 

temperatures (mean of 8.2ºC) than the ones from BSI, but with slightly lower salinities (mean 

of 27.6) (Figure 19C). 
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Figure 19. Nutrient concentrations and physical parameters relationships associated with 

each phytoplankton cluster. (A) Silicate ([Si(OH)4
4−]) versus nitrate ([NO3

−]); (B) phosphate 

([PO4
3−]) versus nitrate concentrations; and (C) temperature versus salinity. Samples from 

the Lower St. Lawrence Estuary station (AZMP) are presented by squares, and outliers 

from the Bay of Sept-Îles (BSI) are presented by diamonds. The gray-shaded area 

corresponds to undetectable nitrate levels (~0 µM) 
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Table 6 

Mean and (plus or minus) standard deviation of nutrient concentrations and physical parameters for each of the seven clusters 

of phytoplankton (PraD, PryD, Cy, Dia, Cry, CryP, and Chlo), for the Bay of Sept-Îles (BSI) region 

Environmental 

variable 
PraD PryD Cy Dia Cry CryP Chlo 

Nitrate, [NO3
−] 

(µM) 
0.22 ±0.32 0.49 ±0.58 0.51 ±0.56 0.16 ±0.32 1.38 ±0.67 1.54 ±0.18 2.64 ±1.07 

Nitrite, [NO2
−] (µM) 0.10 ±0.04 0.09 ±0.03 0.17 ±0.05 0.03 ±0.04 * 0.09 ±0.02 0.08 ±0.04 0.12 ±0.04 

Silicate†, 

[Si(OH)4
4−] (µM) 

12.89 ±5.93 18.01 ±9.18 7.63 ±3.49 2.44 ±3.88 * 12.57 ±1.84 11.97 ±4.07 16.28 ±7.28 

Phosphate, [PO4
3−] 

(µM) 
0.07 ±0.04 * 0.07 ±0.02 * 0.27 ±0.13 0.14 ±0.06 0.28 ±0.05 0.32 ±0.07 0.23 ±0.08 

([NO3
−] + [NO2

−]) ∶
[Si(OH)4

4−] (dim.) 
0.02 ±0.02 0.04 ±0.04 0.12 ±0.12 0.15 ±0.16 0.12 ±0.05 0.14 ±0.09 0.23 ±0.22 

([NO3
−] + [NO2

−]) ∶
[PO4

3−] (dim.) 
4.87 ±5.02 7.27 ±6.50 2.00 ±1.13 1.21 ±1.30 5.21 ±1.89 4.84 ±2.57 13.07 ±6.60 

Salinity† (PSU) 21.11 ±4.14 22.43 ±4.08 27.81 ±2.53 29.11 ±1.94 24.11 ±1.63 24.13 ±3.82 16.82 ±3.62 * 

Temperature† (°C) 10.85 ±2.44 12.20 ±1.17 10.09 ±2.00 2.72 ±1.50 * 5.76 ±0.74 6.24 ±0.72 6.55 ±0.57 

All variables presented significantly difference (one-way ANOVA, p < 0.05). Bold values indicate groups that were significantly 

higher (Tukey’s HSD criterion) than at least four or more other groups. Conversely, the asterisk (*) indicate when a group of 

samples were significantly lower than at least four or more other groups. 
† Smirnov-Kolmogorov test rejects the null hypothesis at the 5% significance level, but Lilliefors test does not. 



 

 

All nutrient concentrations, nutrient ratios, and physical parameters were significantly 

different for the seven phytoplankton clusters (one-way ANOVA, p < 0.05). Samples from 

BSI-4, BSI-5, and BSI-6 (stars in Figure 19) field campaigns (Figure 18C, from mid-June to 

early September 2017) presented undetectable nitrate concentration (~0 µM). Thus, depleted 

nitrate conditions were noticeable for samples of groups PraD, PryD and Cy (right side of 

Figs. 19a and 19b). Although we do not differentiate these samples from others of the same 

group in Table 6, silicate concentrations values for these population of samples were 

generally lower for PraD and PryD (comparing to the same groups in BSI-3), and higher for 

Cy (comparing to the same group in BSI-7). Notwithstanding, phosphate concentrations 

values (in the nitrate-depleted conditions) were comparable with others of PraD and PryD, 

and slightly lower for Cy. A single sample from group Cy (BSI-6) presented a nitrate 

concentration much higher than the detection limit (~0.36 µM), and it corresponded to the 

station farthest from the shore. 

The nitrate concentrations associated to the different groups in BSI, as analyzed by 

pairwise comparisons (Tukey’s HSD criterion), revealed that Chlo has higher concentration 

than all other groups, while CryP was higher than PraD, PryD, Cy, and Dia. Nitrite 

concentrations was higher in Cy than all other groups (except Chlo), while Dia has 

significantly lower concentrations than all other groups. 

In non-depleted [NO3
−] conditions, silicate concentrations (Figure 19A; Table 6) in 

groups PraD, PryD, and Cy presented very low variability. In Dia, silicate concentrations 

were significantly lower than all other groups (except Cy). Two groups, PraD and PryD, 

presented significantly lower values of phosphate concentrations (Figure 19B, Table 6) than 

others (Cy, Cry, CryP, and Chlo). Moreover, [PO4
3−] in Chlo was significantly higher than 

Dia (besides Prad and PryD). 

Nutrient ratios are commonly used to assess elemental limitation for phytoplankton 

production. The nitrate (plus nitrite) to silicate and the nitrate (plus nitrite) to phosphate ratios 

(dimensionless) are presented in Table 6. The [NO3
−] + [NO2

−]: [Si(OH)4
4−] means were lower 

for groups PraD and PryD and highest for group Chlo. Nevertheless, Chlo also presented 
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higher [NO3
−] + [NO2

−]: [PO4
3−] means than all other groups (minus PryD), while Dia was 

significantly lower than Chlo and PryD. 

The groups PraD, PryD, and Cy were found in warmer waters than the other groups 

(Figure 19C, Table 6). Conversely, the group Dia presented significantly lower temperatures 

when compared to all other groups. Dia and Cy (specifically the blue circles in Figure 19) 

were found in saltier waters (>28), while group Chlo presented significantly lower salinities 

than all other groups but PraD. Also noticeable is the narrow range of temperature (~8 ºC) 

and salinity (~30) of some samples of group Cy, which were collected on BSI-7 (October 

2017, Figure 18C). The groups associated with the presence of cryptophytes, Cry and CryP, 

and Chlo, presented low variability of temperatures (small standard deviation, Table 6). 

The separation of group Cy between campaigns BSI-5 and 6 (stars in Figure 19) and 

BSI-7 were done because of the different environmental conditions in which the two sets of 

samples were found (e.g., nitrate depletion, temperature, salinity). The set of samples of 

group Cy in BSI-5 and 6 presented more similar environmental conditions to those of groups 

PraD and PryD. Similarly, optical conditions of group Cy from BSI-5 and 6 were close 

related to these groups (not shown). Therefore, in the following presentation of results only 

the set of BSI-7 are considered for the group Cy. 

 

2.5.4 Optical characterization 

The total and component-specific spectral absorption and backscattering coefficients 

are presented in Figure 20. For each graph (A-F), each phytoplankton group curve is 

represented by the sample having the highest counts of median values (mode), calculated for 

unitary wavelength within the visible spectral range (400 to 700 nm). Descriptive statistics 

and tests for some optical properties shown in Figures 20 and 21 are presented in Table 7, 

for selected wavelengths, in the perspective of satellite remote sensing applications. 
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Figure 20. Inherent optical properties spectra: absorption coefficients of (A) chromophoric 

dissolved organic matter (𝑎cdom(𝜆)); (B) non-algal particles (𝑎nap(𝜆)); and (C) 

phytoplankton (𝑎phy(𝜆)); (D) total absorption coefficient (𝑎(𝜆)); (E) particulate 

backscattering (𝑏bp(𝜆)); and (F) total backscattering coefficient 𝑏b(𝜆). For each graph, the 

different lines represent the median spectra for each cluster of phytoplankton groups, and 

the color code is the same as in Figure 15 

 

For most phytoplankton assemblages, CDOM absorption coefficient (𝑎cdom, Figure 

20A) was approximately one order of magnitude higher than the other absorption 

components in wavelengths shorter than 500 nm. As expected, the group Chlo, found in 

fresher waters (Table 6) presented significantly higher  𝑎cdom(465) than other groups, minus 

PraD and CryP (Table 7). In contrast, groups likely to be more related to marine end-member 

waters (with saltier characteristics), such as Dia and Cy, presented lower values of 𝑎cdom(𝜆). 

The non-algal particles absorption (𝑎nap, Figure 20B) spectra were much lower than 

𝑎cdom, but had similar relative magnitudes when considering individual groups of 

phytoplankton, suggesting a co-variation between these two optical components. For 
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example, 𝑎nap(465) in group Chlo was significantly higher than all others, while Dia and 

Cy values were significantly lower than for PraD and Cry. 

The phytoplankton absorption coefficient spectra (𝑎phy, Figure 20C) were also much 

lower than 𝑎cdom or 𝑎nap and, thus, its influence in the total absorption coefficient (𝑎, Figure 

20D) are minimal (see also Araújo and Bélanger, 2022). For example, the fractional 

contribution of 𝑎phy to the non-water absorption coefficient (= 𝑎cdom + 𝑎nap + 𝑎phy) was 

maximal in the blue peak of 𝑎phy (~465 nm), but higher mean values reached only 6.2 and 

5.4% for groups Dia and Cy. Nevertheless, significantly higher values of 𝑎phy(465) and 

𝑎phy(665) were found for group PryD, which also presented higher Chla values (Figure 

18A). 

As expected, the 𝑎(𝜆) reflects the additive effects of 𝑎cdom and 𝑎nap, especially in the 

blue and green regions of the spectrum, while in the red the pure water absorption (𝑎w) 

dominates the absorption budget. 

The particulate (𝑏bp) and total (𝑏b) backscattering coefficients are shown in Figures 

20E-F. Most phytoplankton groups presented similar spectral characteristics of 𝑏bp (and 𝑏b), 

but group Chlo was higher than others in all wavelength ranges. Interestingly, the spectral 

variability of 𝑏bp from group Chlo presented an odd behavior compared to the others, with 

increasing values with increasing wavelength. This group has significantly higher values of 

the spectral slope (𝛾) of 𝑏bp, resulting in significantly higher 𝑏bp(655) (Table 7). 

 



 

 

Table 7 

Mean and (plus or minus) standard deviation of temperature, inherent optical properties (including ratios), and remote sensing 

reflectance, at selected wavelengths, for each of the seven clusters of phytoplankton (PraD, PryD, Cy, Dia, Cry, CryP, and 

Chlo) 

Optical parameters PraD PryD Cy (BSI-7) Dia Cry CryP Chlo 

𝑎cdom(465) [m-1] 1.45 ±0.76 1.05 ±0.49 0.29 ±0.04 0.34 ±0.27 * 1.29 ±0.43 0.88 ±0.52 2.18 ±0.71 

𝑏bp(665) [m-1] 1.80 ±0.64 1.28 ±0.16 1.10 ±0.43 1.67 ±1.13 1.81 ±0.54 1.73 ±0.95 3.64 ±1.64 

𝑏b 𝑎⁄ (465) [⋅102, dim.] 1.48 ±0.76 1.13 ±0.16 3.46 ±0.77 5.34 ±1.71 1.61 ±0.54 2.34 ±0.78 1.61 ±0.97 

𝑏b 𝑎⁄ (566) [⋅102, dim.] 4.68 ±2.09 3.63 ±0.49 7.14 ±1.98 10.41 ±3.16 4.81 ±1.64 6.03 ±2.24 5.86 ±2.60 

𝑏b 𝑎⁄ (665) [⋅102, dim.] 3.22 ±1.10 2.35 ±0.21 2.31 ±0.83 3.37 ±2.00 3.30 ±0.91 3.23 ±1.59 6.81 ±1.81 

𝑅rs(465) [⋅103, sr-1] 0.67 ±0.34 0.46 ±0.18 2.04 ±0.36 2.60 ±0.93 0.74 ±0.19 0.98 ±0.31 0.57 ±0.47 

𝑅rs(566) [⋅103, sr-1] 1.81 ±0.72 1.54 ±0.38 3.58 ±0.61 4.67 ±1.47 2.03 ±0.37 2.41 ±0.78 2.60 ±1.07 

𝑅rs(665) [⋅103, sr-1] 1.34 ±0.40 1.25 ±0.22 1.17 ±0.26 1.75 ±1.01 1.48 ±0.39 1.61 ±0.85 3.12 ±0.96 

All variables presented significantly difference (one-way ANOVA, p < 0.05). Bold values indicate groups that were significantly 

higher (Tukey’s HSD criterion) than at least four or more other groups. Conversely, the asterisk (*) indicate when a group of 

samples were significantly lower than at least four or more other groups.mukher 

 

 



 

 

The spectra of backscattering to total absorption coefficient ratio (𝑏b 𝑎⁄ ) and the remote 

sensing reflectance (𝑅rs) are shown in Figure 21, for each phytoplankton assemblage. As for 

individual IOPs (Figure 20) the 𝑏b 𝑎⁄  and 𝑅rs shown for each group corresponds to the mode 

(spectral domain) of median values for individual wavelengths. Although similarities are 

expected when comparing these two variables, it is important to note that inelastic scattering 

by water molecules (Raman) and by CDOM and phytoplankton pigments (fluorescence) are 

not considered in 𝑏b 𝑎⁄ . Furthermore, the approach we used does not consider changes in 

IOPs along the water column, that could result in changes in the light field in highly stratified 

waters (particularly in 𝐿w, and consequently in 𝑅rs). Notwithstanding, this latter situation is 

likely to happen under some circumstances in our study area (Araújo and Bélanger, 2022). 

 

Figure 21. Spectra of (A) the ratio of total backscattering to total absorption coefficients 

(𝑏b 𝑎⁄ (𝜆)), and (B) the measured remote sensing reflectance (𝑅rs(𝜆)). The vertical gray 

dashed lines on (B) indicates the original spectral bands of the C-OPS instrument used to 

derive 𝑅rs. For each graph, the different lines represent the median spectra for each cluster 

of phytoplankton groups, and the color code is the same as in Figure 15 

 

Most phytoplankton groups presented similar shape and magnitudes of the 𝑏b 𝑎⁄  

spectra, which was observed in all wavelength ranges. The two exceptions were for groups 

Dia and Chlo that peak in green (~560 nm) and red (~640 nm) regions, respectively. The 
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combination of lower 𝑎 and at-average 𝑏b values give significant higher values of 𝑏b 𝑎⁄  in 

the blue (465) and green (566) regions for group Dia (Table 7). Similarly, the significantly 

higher values of 𝑏b 𝑎⁄ (665) for the group Chlo is explained by the high 𝑏bp in the red region 

associated with this group, which is found in waters heavily influenced by terrigenous inputs. 

Dissimilarities between 𝑏b 𝑎⁄  and 𝑅rs were observable mainly in the red spectral range 

(>620 nm) and are mostly due to inelastic scattering processes affecting 𝑅rs. However, the 

characteristics of 𝑏b 𝑎⁄  spectra that are distinguishable for the phytoplankton groups Dia and 

Chlo are also observed in 𝑅rs (Figure 21B, Table 7). 

 

2.5.5 Seasonal succession and framework for remote sensing estimations 

The variability of phytoplankton assemblages and nutrient concentrations, physical 

parameters, and optical properties revealed a clear seasonal signal, as summarized in Figure 

22. Since riverine discharges are a major controlling factor in the optical environment in the 

BSI region (Araújo and Bélanger, 2022), the Moisie River discharge for years 2017, 2019, 

and the climatological median (1965-2021) is depicted in Figure 22A. It is expected to reflect 

the seasonality of the smaller rivers discharging directly into the bay (i.e., rivières Hall, des 

Rapides, aux-foins, Poste). The mean value of the discharge peaks of 2017 and 2019 (~2,500 

m3 s-1) were 60 % higher than the historical median (from 1965 to 2021). 

The group Dia occurred in BSI in April - early May (Figure 22B), before the spring 

freshet, and is related to the spring bloom, a common feature at high latitude estuaries 

(Carstensen et al., 2015). Lower water temperatures and the lowest absorbing characteristics 

(due to lower 𝑎cdom and 𝑎nap) are found. 
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Figure 22. Seasonal succession of phytoplankton assemblages in the Bay of Sept-Îles. (A) 

Moisie River discharge for years 2017, 2019, and climatological median (1965-2021). 

Source: Ministère de l'Environnement et de la Lutte contre les changements climatiques 

(https://www.cehq.gouv.qc.ca/). (B) Phytoplankton assemblages distribution (see Table 13 

in Annex 2 for details of samples collected in April 19); and (C) environmental conditions 

as showed by nutrient concentrations and physical parameters (Temperature and Salinity, T 

and S) along the year 2017. The durations of the events of both occurrence of 

phytoplankton assemblages and environmental conditions are extrapolated from punctual 

field campaigns (BSI-1 to BSI-7, refer to Table 5), represented by vertical transparent lines 

 

Our interpretation of the spring bloom starting in the BSI region earlier than BSI-1 

campaign (early May) is supported by samples collected in mid-April 2017 (Table 13, Annex 
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2; not used in this study due to incomplete dataset), where biomass (Chla) and Fucoxantin to 

Chla ratio were among the highest. The Dia samples observed in campaign BSI-1 were likely 

related to the end of the spring bloom, as indicated by the low nitrate and silicate 

concentrations. The presence of a subsurface chlorophyll maximum (SCM), a common 

feature in the Gulf of St. Lawrence (Vandevelde et al., 1987), was observed during field 

campaign BSI-1 (see Figure 34; Annex 2), with similar phytoplankton composition despite 

much higher Chla values (Table 13). Silicate and phosphate concentrations were comparable 

at the surface and within SCM, although SCM nitrate levels were one order of magnitude 

higher than surface samples. 

The groups associated with cryptophytes, Cry and CryP, occurred approximately in 

phase with the peaks of the spring freshet (Figure 22B), and were characterized by an increase 

in temperature and decreasing salinities. As expected, the freshet increased the amount of 

CDOM and non-algal particles in the water column, increasing its absorbing and 

backscattering characteristics. Samples collected in the 2019 field campaign (BSI-8), in early 

June, had similar characteristics of those collected in BSI-2 (mid-May 2017), reflecting the 

timing of freshet peaks in each year. 

The group Chlo was also dominant during the spring freshet and was found in the 

vicinity of river plumes (Figure 18H), characterized by lower salinities. This group was 

characterized by lower Chla values than others and was associated with very turbulent 

conditions (field observation). The significantly higher nitrate to phosphate ratio in this group 

(Table 6) reflects the generally higher values of [NO3-] in the riverine endmembers (data not 

shown), in comparison to marine samples. Moreover, the suspended sediment- and CDOM-

laden waters of river plumes waters generate the highest absorption and backscattering 

coefficient values of BSI. The highest 𝑏b (𝑏bp) values in the red portion of the spectrum 

characteristic of Chlo are explained by higher values of the spectral slope of 𝑏bp (𝛾), which 

likely reflects higher concentrations of particulate organic matter (Araújo and Bélanger, 

2022). 
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After the spring freshet, as water temperature continue to increase, the groups PraD 

and PryD occupied the BSI region, and this last throughout the summer. Significant lower 

phosphate concentrations were found to be associated with these two groups (Table 6), while 

nitrate depletion occurred a few days after their appearance (in-between BSI-3 and BSI-4 

campaigns, Figure 22B). The nitrate-depleted conditions then continued in summer up to 

early fall. 

The group dominated by PE-containing cyanobacteria, Cy, began dominating BSI 

waters in early fall, although its presence was already noted in mid-summer at the station 

farthest from the shore (BSI-5, Figure 18G). In mid-fall (BSI-7) nitrate concentrations are 

restored (Figure 19A, Table 6). 

The shape and relative magnitudes of remote sensing reflectance (𝑅rs(𝜆)) reflected the 

importance of the bio-optical environment for the determination of phytoplankton 

assemblages in nearshore waters of BSI. Strong differences in 𝑅rs (Figure 21B; Table 7), in 

the blue, green, and red bands (465, 566, and 665 nm, respectively), and in SST (Figure 19C; 

Table 6) between assemblages of phytoplankton suggested the potential of using 

multispectral and thermal infrared radiometer sensors onboard Earth Observation platforms 

to infer about them. An inverse framework where hypothetical satellite-derived SST and 

𝑅rs(465), 𝑅rs(566), and 𝑅rs(665) are used as inputs in the classification of BSI waters is 

therefore proposed (Figure 23). 

Firstly, the group Chlo presented the highest values of 𝑎cdom(465) and 𝑏bp(665), 

resulting in low values of 𝑅rs(465) and very high values of 𝑅rs(665) and, consequently, 

were found in more reddish waters. Considering this, using a simple threshold of the ratio 

𝑅rs(665) 𝑅rs(465)⁄ , the group Chlo can be separated from others. Secondly, the lowest 

values of 𝑎cdom and 𝑎nap for group Dia resulted in the highest values of 𝑅rs(465) and 

𝑅rs(566), comparatively to other groups. Thus, the sum of 𝑅rs in these two wavelengths is 

used to target group Dia, and SST is also included to better distinguish it from group Cy. 
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Figure 23. Idealized framework to separate the different phytoplankton assemblages using 

satellite-derived sea surface temperature (SST) and remote sensing reflectance in the blue 

(𝑅rs(465)), green (𝑅rs(566)), and red (𝑅rs(665)) regions of the spectrum 

 

In a third step, taking advantage of different temperature niches occupied by the 

phytoplankton assemblages, another threshold is used to separate groups Cry and CryP from 

groups Cy, PraD, and PryD. Finally, the lower 𝑎cdom of Cy, and its influence on 𝑅rs(465), 

is used to separate this group from PraD and PryD (Figure 23). 

In a simple validation exercise, the presented framework was applied to the in situ 𝑅rs 

and SST measurements to verify its coherence. When compared to the original discrimination 

of the seven phytoplankton assemblages (re-grouped in five, as in Figure 23; n = 72) 

determined by the PCA/HCA method, the result of this empirical inversion succeeds 92%. 

The samples where this procedure failed refer mainly to some isolated groups in the context 

of other dominant groups in the same field campaign, as for example a single PraD (Figure 

18D) and a Dia sample (Figure 18H). 
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To test the applicability of this framework in real imagery, we processed two Landsat 

8 images from 2017 (April 4 and May 15, stars in Figure 22B), downloaded as Level-1 

Collection 2 data and distributed by the United States Geological Survey (USGS). The 𝑅rs(𝜆) 

thresholds presented in Figure 23 were tested and adjusted while contemplating the Spectral 

Response Function of the Operational Land Imager (OLI) of bands 2 (blue), 3 (green), and 4 

(red). The two images were atmospherically-corrected using the dark spectrum fitting 

algorithm implemented in ACOLITE software (Vanhellemont, 2020a, 2019). For SST 

retrieval, the images of the Thermal Infrared Sensor (TIRS) were processed using the 

Thermal Atmospheric Correction Tool (TACT), also implemented in ACOLITE 

(Vanhellemont, 2020b, 2020c). 

The application of the proposed framework in the two images (Figure 24) successfully 

targeted the dominance of group Dia in early April, as both 𝑅rs values in the blue and green 

were higher than 0.005 sr-1 and SST values were the lowest when compared to other periods. 

Following the freshet, the classification of the image from mid-May also could detect the 

presence of the group Cry/CryP in nearshore waters of BSI, while the group Dia were more 

restricted to offshore waters. The occurrence of group Cy at this period of the year is probably 

a misclassification due to the overestimation of 𝑅rs in the blue region from the atmospheric 

correction procedure (see Mabit et al., 2022). In this case, the classified group Cy would 

actually represent a dominance of phytoplankton assemblages from groups PraD/PryD. 

Nevertheless, the application of the framework in remote sensing imagery showed to be 

suitable. 
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Figure 24. Application of the exposed framework shown in Figure 23 in satellite images of 

the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) of Landsat 8. 

The atmospherically corrected images of the blue, green, and red bands, the sea surface 

temperature, and the resulting classification of the groups of phytoplankton assemblages 

are shown for two dates: April 4 and May 15, 2017  
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2.6 DISCUSSION 

The potential for identification of major phytoplankton assemblages from pigment 

concentrations and <20 µm autotrophic cell abundances, in a dynamic nearshore subarctic 

environment, was evaluated. The combined PCA and HCA techniques applied to these 

proxies demonstrated to be a good indicator of distinctive communities of phytoplankton in 

the studied area, and it was confirmed, to some extent, by the LM taxonomy analysis. This 

dataset was comprehensive in terms of temporal (seasonal, from mid-spring to early fall) and 

spatial (order of 100 to 101 km) scales. However, winter conditions, early phytoplankton 

spring bloom and pre-bloom (March-April), and mid-summer (August) conditions are 

missing. 

The seven clusters revealed relevant characteristics associated to the following groups 

(Figure 16; Table 13, Annex 2): prasinophytes and dinoflagellates (PraD); prymnesiophytes 

and dinoflagellates (PryD); cyanobacterias (Cy); diatoms (Dia); cryptophytes (Cry); 

cryptophytes and prasinophytes (CryP); and chlorophytes (Chlo). These phytoplankton 

assemblages have been reported elsewhere in subarctic and temperate estuaries and coastal 

areas (Blais et al., 2022; Roy et al., 1996; Vallières et al., 2008; Vaulot et al., 2008). However, 

the nomenclature adopted in this study reflects pigment ratios characteristics used to 

distinguish the major phytoplankton assemblages but are not necessarily related to higher 

biomass or numerical dominance of one or another taxonomic class. 

The combination of flow cytometry and HPLC pigment analysis revealed 

complementary to each other on assigning the major classes of phytoplankton assemblages. 

For example, the presence of certain pigments (e.g., prasinoxanthin, 19'-

hexanoyloxyfucoxanthin) allowed the determination of groups PraD and PryD, and they also 

presented a high number of picoeukaryotes (Figure 16). Micromonas pusilla and 

Chrysocromulina sp. are candidate species to be representative of these clusters, respectively, 

as they are ubiquitous in cold marine environments (see review of Vaulot et al., 2008). In 

addition, the ability to count the phycoerythrin-containing cyanobacteria) using flow 
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cytometry, while phycoerythrin is a pigment not detected by standard HPLC method, was an 

asset to identify assemblages dominated by cyanobacteria (group Cy), which is probably 

related to Synechococcus sp. 

The biomass variability along the size spectrum of phytoplankton communities brings 

with them relevant ecological information (Cloern, 2018; and references therein). The 

approach of Uitz et al. (2006) partitioned the relative contribution to Chla of three different 

size classes, and it showed coherency with our interpretation of community structure of the 

seven identified groups. The fractional contribution of picophytoplankton to Chla (𝑓pico) 

estimated from HPLC pigments (𝑓pico
HPLC) and from flow cytometry (𝑓pico

FC ) were coherent, 

especially for groups PraD and Cy (Figure 17A). 

The overall dominance of 𝑓micro
HPLC over other fractions was noticeable for most of the 

phytoplankton assemblages, and comparable to other boreal coastal regions, such as in the 

Western English Channel and North Sea (Barnes et al., 2014). The general higher 

contribution of 𝑓micro is expected in areas with relatively high biomass (Chla) and 

replenished nutrient conditions (Brewin et al., 2019; Cloern, 2018). The dispersion from 

𝑓micro (right corner of the ternary diagram shown in Figure 17B) towards 𝑓nano (upper 

corner), for Cry, Cryp, and PryD, and towards 𝑓pico (left corner), for PraD and Cy, agreed 

with the inferred characteristics of each group. 

The samples from the middle of the Lower St. Lawrence Estuary (at PMZA station), 

collected from mid-summer to fall season (Table 5), presented only two phytoplankton 

assemblages (Dia and PraD), but relatively higher biomass compared to BSI. The nearshore 

BSI region has more variability in terms of physical and optical conditions than the PMZA 

location and, consequently, a more diverse microbial community, including phytoplankton, 

is expected. Although Dia and PraD assemblages were found in both PMZA and BSI, their 

nutrient and physical environment were very distinctive (Figure 19, Table 6). The higher 

concentrations of all nutrients and high salinity values at PMZA are due to upwelled waters 
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in the Lower St. Lawrence Estuary (Therriault et al., 1990) while BSI is influenced by the 

Gulf of St. Lawrence waters (see Koutitonsky and Bugden, 1991). 

The seasonal variability of the phytoplankton assemblages is a common feature in 

temperate and polar coastal waters and estuaries (e.g., Ansotegui et al., 2003; Trefault et al., 

2021). In addition, local river discharge in these environments is a major driver of 

phytoplankton composition (Domingues et al., 2005), biomass and production, particularly 

during the spring freshet (Malone et al., 1988). Overall, we found that the seasonal succession 

of the phytoplankton assemblages in surface waters of BSI is intrinsically related to changes 

in the environmental niches that are largely driven by bio-optical conditions and sea surface 

temperature. 

Before the spring freshet, the group Dia fully occupied BSI surface waters, as expected 

for high-latitude spring blooms dominated by large cells (diatoms) (Carstensen et al., 2015; 

Tremblay et al., 2006). The low nutrient concentrations found during BSI-1 campaign 

suggest that phytoplankton growth was nutrient-limited at the time. While silicate depletion 

has been found to be responsible for the termination of an Arctic diatom bloom (Krause et 

al., 2019), the fact that silicate concentrations of ~0.2 – 1.1 µM persisted after nitrate had 

reached extremely low values of <0.1 µM indicates that the latter presumably drives bloom 

termination in the surface waters of BSI (Figure 19). A major shift in the coastal light 

environment occurs when freshet brings massive concentration of terrigenous optical 

constituents. 

During higher riverine discharges, the assemblages associated with cryptophytes (Cry 

and CryP) occupy the waters of BSI. The assemblages associated with chlorophytes (Chlo) 

were also found during the spring freshet and, due to the proximity of the riverine discharges, 

the highest absorbing and turbid conditions conferred to them less biomass compared to other 

assemblages. 

After freshet and with warmer temperatures in surface waters, the assemblages 

composed by dinoflagellates co-occurring with smaller phytoplankton cells (PraD and PryD) 
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replace groups Cry and CryP in BSI. These assemblages were characterized by nitrate-

depleted conditions just after their first appearance in BSI-3 (Figure 22), and with lower 

concentration of phosphate. Nitrate-depleted conditions were also found to be associated with 

phytoplankton communities related to small prymnesiophytes and prasinophytes in the North 

Atlantic and Chukchi Sea (Hill et al., 2005; Sieracki et al., 1993). Notably, the occurrence, 

or even blooms, of the toxic dinoflagellate A. catenella are likely associated to these two 

groups, as previously reported in summer for BSI (Weise et al., 2002) and the Lower St. 

Lawrence Estuary (Fauchot et al., 2008; Roy et al., 2021). 

At the end of summer and throughout fall, the assemblage associated with a high 

abundance of PE-containing cyanobacteria (Cy) dominates BSI waters. However, the 

environmental niche they occupy is distinguishable from those of PraD and PryD only by 

fall (BSI-7), when nitrate concentration levels are replenished, and salty (and less absorbing) 

waters from the Gulf of St. Lawrence are found. 

The seasonal variability of surface nutrients followed the general pattern of the Gulf of 

St. Lawrence, especially regarding the establishment of nitrate-depleted conditions in the 

summer (Blais et al., 2019; Tremblay et al., 2000). Nutrient concentrations in the nearshore 

and coastal areas of the Bay of Sept-Îles were consistently lower than those of upwelled 

waters in the Lower St. Lawrence Estuary (AZMP buoy, Blais et al., 2019). 

The ratio [NO3
−]: [PO4

3−] was consistently lower than the Redfield value (16:1) but 

showed large differences between phytoplankton assemblages (Table 6). The lowest values 

observed for this ratio here are typical of coastal areas, including estuaries, indicating that N 

is generally the limiting factor for phytoplankton growth (Howarth et al., 2021; and 

references therein). Moreover, Howarth et al. (2021) also demonstrated that, in addition to 

the contribution of continental runoff to nutrient loads in coastal areas, the adjacent ocean 

also strongly affects nutrient availability in these areas. This scenario is consistent with our 

results for nitrate concentrations in BSI during late fall. 
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The seasonal (spring to fall) succession of phytoplankton assemblages in BSI region 

exhibit a shift from large cells, in the spring bloom (group Dia), to smaller ones (nano- and 

pico-phytoplankton size classes) from summer to fall. This shift started after the spring 

freshet, towards nanophytoplankton (cryptophytes, groups Cry and CryP), followed by pico- 

and nano-eukaryotes such as those of groups PraD and PryD, coexisting with dinoflagellates, 

and finally cyanobacteria (group Cy). 

The CDOM-laden characteristic of the nearshore waters of BSI makes the 𝑎cdom a 

determining IOP in shaping the 𝑅rs, especially at shorter wavelengths (~ <600 nm). Another 

characteristic of BSI waters (and other nearshore zones of the St. Lawrence Estuary; see 

Araújo and Bélanger, 2022) is the generally flatter spectral shape of the particulate 

backscattering coefficient (approximately −1 < 𝛾 < 0.5) comparatively to other coastal 

waters (e.g., Antoine et al., 2011). Furthermore, the specific 𝑏bp(𝜆) in relation to dry-mass 

concentration of suspended particles is very low compared to other regions, a characteristic 

of the particulate and dissolved organic-rich waters of BSI (Araújo and Bélanger, 2022). This 

is also reflected in the relatively lower 𝑅rs(𝜆), particularly in the red region of the spectrum, 

expected for a determined concentration of particles, when compared to other regions (Mabit 

et al., 2022). 

Phytoplankton absorption (𝑎phy) represents a small fraction of the total absorption 

budget in BSI and, consequently, 𝑅rs(𝜆) signals are more sensitive to other optically active 

constituents than phytoplankton itself. This result implies that algorithms used to 

discriminate major phytoplankton assemblages that rely only on phytoplankton optical 

properties may have limited applications in BSI, as it is the case for other optically complex 

waters (e.g., Arctic ocean; Reynolds and Stramski, 2019). Nevertheless, significant 

differences in 𝑎phy spectra between some groups were found. Moreover, analysis of the 

spectral shape of 𝑎phy and the Chla-specific 𝑎phy also revealed significant differences in the 

seasonal domain (Araújo and Bélanger, 2022). Taking these results into consideration, the 

phytoplankton absorption can be an asset to assess the major phytoplankton assemblages in 
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BSI, as demonstrated for diverse locations by other studies (e.g., Hoepffner and 

Sathyendranath, 1991, 1993; Devred et al., 2006; Oliveira et al., 2021; Sun et al., 2022). 

Recent satellite missions and respective sensors covers the blue (~465 nm), green 

(~566 nm), and red (~665 nm) region of the spectrum, and with a relevant spatial resolution 

(order of ~101 m) for the scale of this study (see review of Werdell et al., 2018), allowing the 

retrieval of the remote sensing reflectance (𝑅rs) in these spectral bands. Another common 

satellite-derived parameter is the sea surface temperature (Minnett et al., 2019). Temperature 

is a major controlling factor of phytoplankton phenology (e.g., Trombetta et al., 2019) and it 

was found to explain well the phytoplankton primary production in the estuary and Gulf of 

St. Lawrence, under low nutrient concentration circumstances (Babin et al., 1991). The 

results of the framework shown in Figure 23 and its application in remote sensing imagery 

(Figure 24) demonstrated that sensors onboard Earth Observation platforms can be used to 

infer about the general seasonal pattern of the major phytoplankton assemblages in the BSI 

region. 

Although the proposed approach is empirical in nature, its foundations remits to the 

general bio-optical background and physical environment in which each assemblage is 

contextualized. Operational satellite missions such as the Landsat 8-9, carrying the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), Sentinel-2, carrying 

the MultiSpectral Instrument (MSI), and Sentinel-3, carrying the Ocean and Land Colour 

Instrument (OLCI), are examples of sensors that could be used to investigate the variability 

of the phytoplankton assemblages in coastal zones. The suitability of application of this 

approach was shown in two scenes collected by Landsat 8 OLI/TIRS (Figure 24). However, 

inherent constraints to optical remote sensing such as persistent cloud cover over target 

regions and difficulties in atmospheric correction (a necessary step to obtain 𝑅rs from top-

of-atmosphere radiances) in highly absorbing waters, as it is the case of nearshore regions of 

the estuary and Gulf of St. Lawrence (Mabit et al., 2022), will limit their application. Another 

important constrain to consider is the potential difference of temperatures used in this study, 
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collected by in situ thermometers, to those collected by satellite radiometers, which are 

related to the sea surface skin temperature (see Donlon et al., 2002; Minnett et al., 2011). 

Our general hypothesis that the composition of major assemblages in a coastal area will 

covary with temperature and the bulk optical environment (IOPs) is confirmed. Furthermore, 

the premise that the IOPs characterization is a necessary step to investigate the phytoplankton 

assemblages using optical approaches (as in Reynolds and Stramski, 2019) in a coastal area 

was also confirmed. Nevertheless, the composition of phytoplankton assemblages likely 

reflected major traits that were shaped by different environmental niches. 

 

2.7 CONCLUSIONS 

Given the intrinsic dynamic of coastal and estuarine areas, understanding the ecology 

of phytoplankton is a major challenge for scientists and, consequently, are often overlooked 

by stakeholders, managers, and policy makers. The application of the proposed framework 

to retrieve major phytoplankton assemblages using satellite imagery would favor the 

monitoring of Essential Biodiversity Variables in coastal ecosystems (Muller-Karger et al., 

2018), deriving information about their distribution and with potential to extend it to 

functional traits. Although developed in the context of the subarctic Bay of Sept-Îles, similar 

approaches could be successfully implemented in other coastal regions, especially those that 

experience strong seasonal variability. 

In view of ecological modelling (coupled with hydrodynamical modelling, as for an 

aquatic system), the information about major phytoplankton assemblages derived by satellite 

could be integrated into a monitoring program including automated buoys to collect high 

frequency meteorological and oceanographic data (Eulerian perspective), and regular (space 

and time) field campaigns to collect target biogeochemical and optical parameters. 

Global warming has an important role in restructuring major phytoplankton 

assemblages (Benedetti et al., 2021) and developing new tools to systematically monitor 
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these microorganisms that are key to coastal ecosystems are urged. Moreover, bringing the 

scientific knowledge developed in this study into a broader context, such as its mapping onto 

a Social-Ecological-Environmental System, as presented by Ferrario et al. (2022), would 

bring benefits to society. 
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3.1 ABSTRACT 

The ecosystem services and functions of seagrass meadows are indisputable. In this 

study, the dynamics of surface area coverage of eelgrass (Zostera marina L.) meadows at 

broad spatial scales (meters to kilometers) and at an annual to decadal temporal scales were 

investigated in four relatively contrasting subregions of the estuary and Gulf of Saint 

Lawrence (EGSL), Eastern Canada, encompassing cold temperate and subarctic 

environments. To achieve this, Landsat imagery reflectance products from the Thematic 

Mapper (TM), the Enhanced Thematic Mapper Plus (ETM+), and the Operational Land 

Imager (OLI) sensors were accessed and processed through a freely cloud computing 

platform (Google Earth Engine). The meadows in all subregions occur mainly in intertidal 

zones, and the processing of the images considered the restrictions imposed by tidal and water 

optical properties variabilities, as well as limitations by the sensors design. The classified 

polygons encompass at least a 25% coverage of eelgrass in a determined patch, while the 

classification accuracy showed very good agreement (overall accuracy of 91% and kappa 

coefficient of 0.81) when compared to coastal ecosystem habitats maps generated by 

photointerpretation (and with field verification). From the 39-year period analyzed (1984 – 

2022), the surface area coverage of the meadows presented a dramatic increase reaching 10 

to 20-fold. For some subregions, the expansion of meadows was towards land – i.e., starting 

closer to subtidal areas. However, relative short-term losses (interannual scale) can occur 

differently among the subregions. While remaining an open question, the relationship 

between the dynamical coverage of eelgrass at interannual and decennial scales with 

environmental variables should be targeted for better understanding these complex nearshore 

systems. Overall, the results revealed these nearshore EGSL zones as important areas for 

biodiversity, while the (blue) carbon sequestration rate remains to be quantified. 

Notwithstanding, recent advances in Earth Observation satellites can be an asset in 

quantifying seagrass stocks in coastal zones. 

Keywords: eelgrass meadows, remote sensing, Landsat, subarctic, nearshore 

environment, intertidal areas, Google Earth Engine  



 

125 

3.2 RÉSUMÉ 

Les services écosystémiques et les fonctions des herbiers marins sont incontestables. 

Dans cette étude, la dynamique de la couverture de la superficie des herbiers de zostère 

(Zostera marina L.) à de larges échelles spatiales (mètres à kilomètres) et à des échelles 

temporelles annuelles à décennales a été étudiée dans quatre sous-régions relativement 

contrastées de l'estuaire et du golfe de Saint-Laurent. Lawrence (EGSL), Est du Canada, 

englobant les environnements tempérés froids et subarctiques. Pour ce faire, les produits de 

réflectance des images Landsat des capteurs Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM+) et Operational Land Imager (OLI) ont été consultés et traités via une 

plate-forme d’infonuagique gratuite (Google Earth Engine). Les herbiers de toutes les sous-

régions se trouvent principalement dans les zones intertidales, et le traitement des images a 

pris en compte les restrictions imposées par les variabilités des propriétés optiques de la 

marée et de l'eau, ainsi que les limitations de la conception des capteurs. Les polygones 

classés englobent au moins 25 % de couverture de zostère dans une parcelle déterminée, 

tandis que la précision de la classification a montré un très bon accord (précision globale de 

91 % et coefficient kappa de 0,81) par rapport aux cartes d'habitats des écosystèmes côtiers 

générées par photo-interprétation (et avec vérification sur le terrain). Sur la période de 39 ans 

analysée (1984 – 2022), la superficie couverte par les herbiers a présenté une augmentation 

spectaculaire atteignant 10 à 20 fois. Pour certaines sous-régions, l’expansion des herbiers 

s’est déroulée vers la terre – c’est-à-dire en commençant plus près des zones infralittorales. 

Toutefois, les pertes relatives à court terme (échelle interannuelle) peuvent survenir 

différemment selon les sous-régions. Tout en restant une question ouverte, la relation entre 

la couverture dynamique de zostère aux échelles interannuelles et décennales et les variables 

environnementales devrait être ciblée pour une meilleure compréhension de ces systèmes 

complexes près du littoral. Dans l’ensemble, les résultats ont révélé que ces zones littoraux 

du EGSL sont importantes pour la biodiversité, tandis que le taux de séquestration du carbone 

(bleu) reste à quantifier. Néanmoins, les progrès récents des satellites d’observation de la 
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Terre peuvent constituer un atout pour quantifier les stocks d’herbiers marins dans les zones 

côtières. 

Mots-clés : herbiers de zostères, télédétection, Landsat, subarctique, environnement 

littoral, zones intertidales, Google Earth Engine 
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3.3 INTRODUCTION 

Seagrasses are recognized as foundation species, i.e., they modify their environments 

to create singular habitats, and constitute highly productive areas in coastal and nearshore 

environments, providing valuable ecosystem services and functions, such as habitat for 

various species (including exploited ones), coastline protection, improvement of water 

quality and (blue) carbon storage (Beck et al., 2001; Duarte, 2017; Henderson et al., 2019; 

Holmer, 2019; Ondiviela et al., 2014; Röhr et al., 2018; Unsworth et al., 2019b; Whitfield, 

2017). Historically, seagrass has been negatively affected by human activities, while the 

effect of multiple stressors is commonly a matter of consideration (Dunic and Côté, 2023; 

Lefcheck et al., 2017; Lotze et al., 2006; Orth et al., 2006). Notwithstanding, conservational 

and monitoring efforts targeting best management practices of seagrass meadows are 

delineated worldwide (Grech et al., 2012; Unsworth et al., 2019a, 2015). 

From a global perspective, seagrass meadows present a general declining trend in 

extent, although high variability is observed at regional and temporal scales (Dunic et al., 

2021; Waycott et al., 2009). As highlighted by Gallagher et al. (2022), global estimates of 

seagrass coverage can vary 10-fold, either considering a compiled and verified dataset 

(McKenzie et al., 2020) or a predictive habitat model (Jayathilake and Costello, 2018), which 

suggests possible gaps of knowledge. However, knowledge about the distribution and extent 

of seagrass meadows is a minimum requirement for management practices, yet not publicly 

available in many coastal regions. 

The heterogeneity of meadows at broad (meters to kilometers) spatial scales are 

complexly related to ecological processes (seagrass landscapes; sensu Boström et al., 2006; 

Turner, 1989). At these spatial scales, the yearly and decadal variations in the areal cover of 

seagrass meadows have also broad ecological relevance. In combination with traditional 

knowledge, including fieldwork, Earth Observation technologies are the most reliable 

method to assess information at broad temporal and spatial scales (see reviews of Hossain 

and Hashim, 2019; Veettil et al., 2020). 
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Canada has the longest coastline of the world and eelgrass (Zostera marina L.) 

meadows is a major habitat in nine of its twelve bioregions (Murphy et al., 2021). In the 

estuary and Gulf of the St. Lawrence (EGSL), which connects the Great Lakes with the North 

Atlantic ocean and encompasses one of the largest estuaries in the world (El-Sabh and 

Silverberg, 1990b), eelgrass meadows were abundant and commercially exploited (Michaud, 

1985) before the so-called “wasting disease” (see Den Hartog 1987; Short et al. 1988). The 

latter is a pathogen attributed to a marine slime mold-like protist, Labyrinthula zosterae 

Porter and Muehlstein (Muehlstein et al., 1991), attributed as the cause of devastation of most 

eelgrass along the North Atlantic Coast by the end of the 1920’s. Punctual inventories and 

local knowledge reveal the reappearance of eelgrass in nearshore waters of EGSL at the end 

of the 20th century and relatively extensive meadows in recent years (e.g.; Lemieux and 

Lalumière 1995; Provencher and Deslandes 2012; Jobin et al. 2021). Notwithstanding, the 

distribution of eelgrass meadows in EGSL at broad spatial scales and considering a yearly to 

decadal time frame has not been reported. This is particularly true for the St. Lawrence 

Estuary and northern part of the gulf. 

In this context, the following questions arise: Is eelgrass ubiquitous along EGSL coast? 

Is the rate of recovery similar in contrasting coastal setups? Do we observe linear trends or 

there are significant interannual variability? To answer these questions, the primary objective 

of this study was to build a long-term dataset of eelgrass distribution in ecologically 

significant areas (subregions) of EGSL, assessing its spatial and areal changes. A 39-year 

long time series of eelgrass coverage was built using the freely-available Landsat imagery 

archive (Wulder et al., 2022) and a free cloud computing platform (Google Earth Engine; 

Gorelick et al., 2017). 
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3.4 MATERIAL AND METHODS 

3.4.1 Study areas 

The four study sites (subregions; Fig. 25) are between temperate and subarctic zones 

with a climate classified as cold, without dry season, and with either warm or cold summer, 

but with trends indicating future warmer conditions (Köppen-Geiger classification; Beck et 

al., 2018). The subregions were chosen because eelgrass meadows are the dominant 

vegetated habitat present in relatively extensive tidal flats (Fig. 25B-E). In addition, each 

subregion is subject to dissimilarities in terms of environmental conditions, such as the 

degree of wave exposure, hydrodynamic regime, and optical properties of water. 

From downstream to upstream (or from Northeast to Southwest) of EGSL, the 

subregions are the Bay of Sept-Îles (BSI), the Manicouagan Peninsula (MAN), the Rimouski 

bay (RIB), and the L’Isle-Verte bay (IVE, including a National Wildlife Area of Canada). 

The presence of large tidal flats in these regions (Fig. 25) is associated with a lowstand sea 

level followed by the Laurentian transgression in the mid-Holocene (Dionne, 2001), and to 

relatively sheltered positions in relation to central parts of the EGSL. Salt marshes (Spartina 

alterniflora Loisel) often occupy the upper limit of the tidal flats in BSI, RIB and IVE 

subregions, while sandy beaches are found along MAN subregion. Other depositional facies 

within the intertidal zones include deltas and tidal channels, and they can also be colonized 

by eelgrass, especially in MAN subregion. Scattered boulders and cobbles, in both intertidal 

and subtidal (infralittoral) zones, support the presence of diverse and abundant macroalgal 

assemblages, and the heterogenous seabed of the subtidal zones is more likely occupied by 

macroalgae than other vegetated substrate (Ferrario et al., 2022; Jobin et al., 2021). 
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Figure 25. (A) Study areas (subregions) locations in the Estuary and Gulf of St. Lawrence 

(EGSL). The inset shows EGSL in North America context. Primary delimitation of areas of 

interest (red dashed lines) for the (B) Bay of Sept-Îles (BSI), (C) L’Isle-Verte bay (IVE), 

(D) Manicouagan Peninsula (MAN), and Rimouski bay (RIB). The main local riverine 

outlets are indicated for each subregion and the background images are a true-color 

composition of a recent (2020s) Landsat 8 (or 9) OLI scenes (USGS L2SP) 
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Besides different oceanographic characteristics of the Lower St. Lawrence Estuary 

(approximately from the mouth of the Saguenay Fjord to Pointe-des-Monts, Fig. 25), 

surrounding MAN, RIB and IVE, and the Gulf of St. Lawrence, surrounding BSI, all four 

subregions are under the influence of major and local riverine discharges. Firstly, the waters 

in nearshore zones of BSI are influenced by four rivers that outflow inside the bay (Fig. 25B, 

Araújo and Bélanger, 2022; Shaw et al., 2022). Secondly, the adjacency of MAN is under 

the influence of the river plumes of the Betsiamites, Aux-Outardes and Manicouagan (Fig. 

25D, Therriault et al., 1990). Lastly, RIB and IVE, besides receiving waters from local 

riverine discharges, are also influenced by flushed waters along the south shore 

corresponding to the outflow of the Saguenay Fjord and the Upper St. Lawrence Estuary 

(Figs. 25E and 25C; El-Sabh et al., 1982; Therriault et al., 1990). The contrasting sea surface 

temperature and water optical conditions of the surrounding coastal environment of each 

subregion will be further examined in the results section. 

The primary delimitation of the studied areas (highlighted portion of images in Fig. 

25B-E) was performed using coastline extraction through satellite imagery, and bathymetry 

from the Canadian Hydrographic Service (CHS) Non-Navigational (NONNA) Bathymetric 

Data. For each subregion, a cloud-free Landsat 8-9 OLI scene (Collection 2, Level 2, 

available from the United States Geological Survey - USGS) acquired at high tide were used 

to delineate the upper boundary of the intertidal zone. The Modified Normalized Difference 

Water Index was calculated using the green and the shortwave infrared 1 (SWIR 1) surface 

reflectance (𝑆𝑅) values as (MNDWI; Xu, 2006): 

𝑀𝑁𝐷𝑊𝐼 =
𝑆𝑅Green − 𝑆𝑅SWIR 1

𝑆𝑅Green + 𝑆𝑅SWIR 1
 ,                                                (9) 

MNDWI values of approximately “0” were selected as a threshold to separate the 

nearshore zones (intertidal and adjacent subtidal) from land. Subsequently, the outer (lower) 

limit of BSI and MAN subregions were determined using the isobath of 15 meters, while the 

northeast and southwest limits of islands were used for RIB (Île Saint-Barnabé and Îlet 

Canuel) and IVE (Isle Verte and Île aux Pommes) subregions. An exploratory analysis of 
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Landsat time-series imagery at low-tide conditions assured that the areas of interest included 

continuous eelgrass meadows and that they were suitable for classification using sensors with 

a spatial resolution of 30 m. However, it should be noticed that this primary delimitation goes 

far below the intertidal zone. Next, we present the reasons to limit our study areas to intertidal 

zones. 

 

3.4.1.1 Regional characteristics and rationale for image selection 

The knowledge about variability of water optical properties, tides and reflectance of 

nearshore vegetation are primary requirements for mapping seagrass using optical 

approaches, including multispectral satellite imagery. In EGSL, eelgrass meadows occupy 

mainly intertidal and, to a lesser extent, shallow subtidal zones (Fig. 26). Fig. 26A shows a 

typical meadow found in L’Isle-Verte bay subregion. 

The optical properties of nearshore waters of the northern part of EGSL are influenced 

by high Coloured Dissolved Organic Matter (CDOM) content and moderate Suspended 

Particulate Matter concentration (SPM) conditions (average of ~10 mg L-1) (Araújo and 

Bélanger, 2022). To illustrate the effect of optically significant constituents of the water in 

EGSL, the spectral diffuse attenuation coefficient of downwelling irradiance (𝐾d(𝜆)) and the 

light penetration depth (𝑍90(𝜆); as defined by Gordon and McCluney, 1975) are shown in 

Fig. 26C (mean ± standard deviation). First, 𝐾d(𝜆) was calculated from in situ profiles of 

the downwelling diffuse irradiance (𝐸d(𝜆)), using a Compact Optical Profiling System (C-

OPS, Biospherical Instruments Inc., San Diego) and taken in several field campaigns in BSI 

and MAN subregions (for details, see Araújo et al., 2022; Araújo and Bélanger, 2022). The 

𝐾d(𝜆) was then used to determine 𝑍90(𝜆) as: 

𝑍90(𝜆) =
1

𝐾d(𝜆)
 ,                                              (10) 
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Figure 26. General characteristics of eelgrass meadows in the Estuary and Gulf of St. 

Lawrence and physical processes affecting their distribution. (A) Oblique aerial photograph 

taken in the L’Isle-Verte bay subregion at low-tide conditions (image courtesy from the 

Laboratoire de dynamique et de gestion intégrée des zones côtières, UQAR). (B) Tidal 

variability for a 20-day period in 2022 (tidal gauge in Baie-Sainte-Catherine, mouth of 

Saguenay Fjord - data available from the Canadian Hydrographic Service). (C) Some 

optical characteristics of the water column surrounding meadows: the spectral diffuse 

attenuation coefficient of downwelling irradiance (𝐾d(𝜆)) and the light penetration depth 

(𝑍90(𝜆)). The solid and dashed lines indicate the mean values of 𝐾d and 𝑍90, respectively, 

and the shaded areas indicate the (±) standard deviation. 

 

Briefly, 𝐾d will determine the amount of light that reaches the benthic substrate (Beer-

Lambert law), with higher values meaning less light being transmitted to deeper layers, and 
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it can be related to the maximum depth of occurrence of meadows (Duarte, 1991). The 𝑍90 

can be defined as the depth above which 90% of light (i.e., the diffuse irradiance) is reflected 

(Gordon and McCluney, 1975). The 𝑍90 values can roughly be associated to the depth in 

which a sensor can obtain information (in optically deep waters) from remote sensing. Lower 

values of 𝑍90 (reaching less than 1 m) was observed at shorter wavelengths in the blue 

(<460 nm) and in the near-infrared regions (>700 nm). The maximum value of 𝑍90 was 

observed around 570 nm (~2.3 m). It is important to note, however, the high variability of 

these parameters in the visible domain (400 to 700 nm), which reflects the importance of the 

seasonality in governing the optical properties. 

Tidal variability will also affect the amount of light reaching the canopy of seagrass 

meadows. In EGSL, the tides are predominantly semidiurnal, with daily inequalities, and 

fortnightly cycles (spring and neap tides) are a marked feature (Fig. 26B). Typical range of 

neap and spring tides values are given for BSI subregion as 0.54 and 3.50 m, respectively 

(Shaw et al., 2022), but tidal amplitudes are higher upstream EGSL (see El-Sabh and Murty, 

1990). Thus, at MAN and RIB subregions the amplitudes will be higher than in BSI, and 

even higher in IVE (reaching 5 m, in the example of Fig. 26C). 

Besides the dynamic character of tides and water optical properties acting over the 

meadows and restricting their ease to map, another physical constraint to consider is the 

characteristics and limitations of Landsat sensors. Although the 30-m spatial resolution and 

similar spectral resolutions (similar center wavelengths, but varying bandwidths) across the 

different Landsat collections, there were significant improvements in radiometric quality 

from Landsat 4 TM to Landsat 9 OLI. TM and ETM+ sensors have 8-bit quantization, while 

OLI has 12 and 14-bits, for Landsat 8 and 9, respectively. This increment in radiometric 

precision improves overall signal-to-noise ratios (SNRs) and increases the performance of 

algorithms for earth science applications (Schott et al., 2016). Specifically, the lower 

radiometric quality of TM and ETM+ sensors implies in poor atmospheric correction 

performances to retrieve 𝑆𝑅 (or remote sensing reflectance) for applications to water color 

(Xu et al., 2020). Consequently, the information of eelgrass meadows that are flooded by 
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tides are also compromised. Moreover, low reflectance values of nearshore waters of EGSL 

due to the their strongly light-absorbing and weakly light-scattering character (Araújo and 

Bélanger, 2022) makes the application of atmospheric correction methods challenging, even 

for Landsat 8 OLI or Sentinel 2 MSI sensors (see Mabit et al., 2022). 

Nevertheless, the seasonal aspect of growth of the nearshore vegetation should also be 

considered for mapping the intertidal meadows. During boreal winter, ice and snow cover 

limits the growth of eelgrass in EGSL, but also the ability to map them using optical remote 

sensing approaches. Moreover, along the beginning of the growing season (approximately 

early May), the variability of reflectance values between different types of vegetation present 

in the intertidal zone are not significant, limiting their separability using multispectral 

imagery (Légaré et al., 2022). 

 

3.4.2 Image repository and selection criteria 

The mapping of eelgrass meadows was made using the Landsat Collection 2 (C2) Tier 

1 (T1) Level 2 Science Product (L2SP). This collection embraces the satellites (sensors) 

Landsat 4, 5 (Thematic Mapper, TM), 7 (Enhanced Thematic Mapper Plus, ETM+), 8 and 9 

(Operational Land Imager, OLI), and the surface reflectance (SR) products are generated by 

the Land Surface Reflectance Code (LaSRC, for Landsat 8-9; USGS, 2023) and by the 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS, for Landsat 4-5,7; 

Masek et al., 2006; USGS, 2021). The products are generated at 30-meter spatial resolution 

and cover a time-span of more than 40 years, while being fully-available in the catalog of 

Google Earth Engine (GEE) cloud computing platform. 

The polygons of the primary delimitation areas of the four subregions were uploaded 

in GEE and used to crop each Landsat scene (a methodological flowchart is shown in Fig. 

27). The collection of images was constrained between June to October (because of the ice, 

snow and vegetation reflectance phenology) and the scaling factors were applied to each 𝑆𝑅 
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band (blue, green, red, near infrared, shortwave infrared 1 and shortwave infrared 2). Pixel 

quality attributes (namely the “Dilated Cloud” and “Cloud” attributes) generated from the 

CFMASK algorithm (Foga et al., 2017; Zhu and Woodcock, 2012) were selected and used 

to flag the 𝑆𝑅 bands. The cropped images with more than 50% of pixels masked by this 

procedure were discarded and not used in the following analysis. 

Because of the limitations to access subtidal eelgrass meadows and to establish a 

concise analysis across all Landsat collections, only emerged (or non-flooded) pixels were 

considered for the classification procedure. A series of image processing techniques were 

implemented in GEE to extract emerged pixels. The near infrared band (𝑆𝑅NIR) are sensitive 

to flooded areas because of the high absorption of water in this spectral region (e.g., Smith 

and Baker, 1981), and it was found to be empirically-related to tidal variability in nearshore 

EGSL (data not shown). Therefore, 𝑆𝑅NIR was used as input to separate flooded and non-

flooded areas. Firstly, for noise removal, a filter (convolve function in GEE) was first applied 

considering a Gaussian kernel of radius equal to 3 pixels. The resulting images were then 

subject to a segmentation procedure, which consisted of a superpixel clustering based on 

SNIC (Simple Non-Iterative Clustering; Achanta and Susstrunk, 2017), available in GEE. 

Zonal statistics, namely the mean 𝑆𝑅NIR value of each segment was computed, and a 

threshold (~0.05) was used to separate the emerged areas of each image of the collections. 

This procedure presented good consistency with field observations and shallow bathymetric 

knowledge. 
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Figure 27. Methodological flowchart of the processing and analysis chain to assess the 

yearly and decadal variability of intertidal eelgrass meadows coverage in four subregions of 

the Estuary and Gulf of St. Lawrence 

 

Considering only the emerged areas from the resulting images, a minimum number of 

pixels was established as thresholds for selecting images with a reasonable emerged area. For 

example, an image with lower number of pixels than the threshold value means that more 

pixels were considered as flooded, and therefore it was not selected for the following 

classification. The thresholds varied by subregion and were empirically determined so that a 

minimum of images was representative of the yearly variability of intertidal (and emerged) 

eelgrass meadows coverage for the period between 1984 to 2022. Finally, a manual selection 

based on visual inspection of individual images was made to avoid problems related to clouds 
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not detected by the masking procedure (e.g., cirrus), but also to not exceed more than four 

images in a single year. 

 

3.4.3 Eelgrass cover classification 

The final selected images were then classified to obtain eelgrass coverage. From the 

previous procedures, each image is only a fraction of the original primary delimitation areas, 

corresponding to emerged areas at the time of acquisition. 

As for the emerged areas delimitation, the polygons of eelgrass meadows were obtained 

by segmentation and classification by object-based image analysis. Firstly, the blue, green 

and red bands were filtered (Gaussian kernel) and segmented using SNIC algorithm. The 

zonal statistics (mean values in each segment) were computed for each 𝑆𝑅 and selected 

vegetation and water indices. After testing several indices, we found that the Normalized 

Difference Vegetation Index (NDVI; Tucker, 1979) and the Normalized Difference Moisture 

Index (NDMI; Wilson and Sader, 2002) were the most useful on discriminating the eelgrass 

polygons in intertidal EGSL zones. The spectral indices are calculated as: 

𝑁𝐷𝑉𝐼 =
𝑆𝑅NIR − 𝑆𝑅Red

𝑆𝑅NIR + 𝑆𝑅Red
 ,                                              (11) 

𝑁𝐷𝑀𝐼 =
𝑆𝑅NIR − 𝑆𝑅SWIR 1

𝑆𝑅NIR + 𝑆𝑅SWIR 1
 ,                                              (12) 

In short, the NDVI is used to assess vegetation greenness, while the NDMI is used to 

access the moisture level of either soil or vegetation. The mean values of NDVI, 𝑆𝑅Red and 

NDMI were used as thresholds in the rule-based classification scheme of the segmented 

images. The polygons were classified as eelgrass when (approximately) mean values of 

NDVI ≥ 0.3, “AND” 𝑆𝑅Red ≤ 0.05, “AND” NDMI ≥ 0.3. The rationale to use these indices 

(or bands) and respective thresholds are further discussed in subsection 3.5.1. 
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The polygons classified as eelgrass and the (total) emerged areas of each image were 

exported from GEE, and a few of them required manual edition (because of reasons that will 

be further discussed). 

 

3.4.4 Eelgrass cover analysis and accuracy assessment 

For each subregion, the resulting polygons of eelgrass patches and emerged areas were 

grouped and merged by year. The merging process considered the maximum area occupied 

by all polygons (of the two classes) by each year. The number of images per year varied from 

1 to 4, and years without images were not considered in the analysis. A final emerged area 

was calculated considering that a same pixel location was classified as “emerged” at least 

70% of the total number of years that were analyzed. Finally, if the emerged area of a specific 

year did not cover the final (single) emerged area of the subregion, the missing areas were 

considered as being equal to the closest classified year (either eelgrass or no eelgrass 

classes). 

The verification of the classification procedure was performed by direct comparison 

with maps of nearshore habitats based on orthophotos with a spatial resolution of 30 cm 

(Jobin et al., 2021; SIGEC, 2023). The orthophotos, acquired by Fisheries and Oceans 

Canada (DFO), were taken at low tide conditions in September or October in the years 2015 

(RIB and IVE) and 2016 (BSI and MAN), and were composed by four bands (RGB + NIR). 

In short, the orthophoto images were first submitted to a segmentation algorithm in PCI 

Geomatica software, and the segments were classified based on visual interpretation by 

experts, using oblique aerial photos and fieldwork recognition as auxiliary data. For the 

comparison, only the segments classified as predominantly eelgrass and with at least 25% 

coverage were considered. 

The spatial accuracy statistics were calculated through the computation of the 

confusion matrix (Congalton and Green, 2019), built considering the two classes and only in 
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the final emerged area polygon for each subregion. The metrics include the Producer's 

accuracy (% of each reference class mapped correctly), the User's accuracy (% of each map 

class that were correct in the reference), the overall accuracy (% of reference sites mapped 

correctly), and the Cohen's kappa coefficient (which shows the strength of agreement 

between two variables [reference and mapped data], with 0 indicating no agreement, and 1 

complete agreement). 

The final area of eelgrass meadows (per subregion and per year) was calculated by 

multiplying the number of classified pixels by the area of unitary pixel (equal to 900 m2). 

Similarly, the percentage of the area covered by the meadows in relation to the total emerged 

area was also calculated. Decadal changes of eelgrass meadows coverage were accessed by 

grouping the yearly patches by each decade, in a similar procedure of the yearly composition 

of the original classified images. Long term trend analysis of the meadows was investigated 

by dividing the area of meadows (of each subregion and year) by their initial area (from 

1984). Nevertheless, the decadal (80s, 90s, 00s, 10s, 20s) compositions were compared to a 

reference year, which was the last year an image was classified for each subregion. Meadows 

that were present anytime of the analyzed period and that were not present in the reference 

year were also obtained. 

All algebra of images described in this subsection were made using MATLAB software 

(MathWorks®), while final maps (presented as figures in this study) and the manual selection 

of polygons were made using ArcGIS Pro software (ESRI™). 

 

3.4.5 Environmental variables 

For comparing the different environmental background of the four subregions of 

EGSL, climatological means (and standard deviation) of sea surface temperature (SST, ºC) 

and optical properties, namely the attenuation coefficient of downwelling irradiance, 

integrated over the photosynthetically available radiation (400 to 700 nm, PAR; 𝐾d(PAR); 
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in m-1) were accessed. These environmental variables are known to affect the spatial 

distribution of seagrass meadows. 

The climatology of SST was retrieved from the Ocean Color SMI - Standard Mapped 

Image MODIS Aqua and Terra Data - processed by NASA’s Ocean Biology Processing 

Group and available in GEE platform, available from 2000 to 2022. Each dataset (Aqua and 

Terra) is available on a daily-basis, and they were constrained only for the month of August, 

where the highest SST values are expected and the peak of growing of meadows are 

observed. 

The 𝐾d(PAR) were downloaded from the GlobColour project (http://globcolour.info), 

corresponding to a merged product of different satellite sensors (MERIS, MODIS Aqua, 

SeaWIFS, and VIIRS; see Maritorena et al. 2010), and encompassed the period from 1997 

to 2022. Briefly, the normalized remote sensing reflectance obtained from the merged 

product is first used to compute the 𝐾d at 490 nm, through the semi-analytical method of Lee 

et al. (2005), followed by an extrapolation for the estimation of 𝐾d(PAR) using the method 

described in Saulquin et al. (2013). We assessed the monthly averages and only for the month 

of August. For both SST and 𝐾d(PAR) the original spatial resolution of the datasets is 4 km, 

and the values for each subregion were obtained by taking a pixel outside the influence of 

land. 

 

3.5 RESULTS 

3.5.1 Image selection and classification accuracy 

The first selection of images (cropped and monthly-constrained images; see Fig. 27) 

varied by subregion and was mainly related to the position of the areas of interest related to 

the orbit (path and row) of the Landsat satellites. As a result, L’Isle-Verte (IVE) subregion 

presented the highest number of images, while the other subregions presented similar 

http://globcolour.info/
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numbers (Table 8). The application of the cloud mask and the area threshold criteria (for 

image selection) reduced the previous selection by an average of 50%. From this selection, 

the minimal area threshold applied to the classification of the emerged areas reduced the 

number of images to only 10% (MAN subregion) to 31% (IVE). This reduction evidences 

the negative effect of high tidal levels on selecting the images suitable for classification (only 

emerged pixels criteria). Nonetheless, the manual selection removed between 30 (MAN) and 

70% (IVE) of the remaining images. 

A total of 215 Landsat images were used to classify the eelgrass meadows coverage in 

the four subregions. Table 8 presents the number of images separated by subregion and by 

Landsat sensors. The lowest number of images was for MAN (31), while the one with highest 

was IVE (65). The MAN subregion was found to have the lowest width (perpendicular to the 

coast) of emerged pixels. The yearly-coverage of the selected images was representative for 

the analyzed period (average of 67% of the years). The maximum number of consecutive 

years without images was five (from 2012 to 2016, in RIB subregion), while all other gaps 

oscillated between 1 to 3 years. 

 

Table 8 

Percentage of years mapped in relation to the 39-year period (1984 to 2022) and number of 

images per subregion and per Landsat sensor 

Subregion 

Percentage of 

years mapped 

(coverage period) 

Number of TM 

images 

(Landsat 4 or 5) 

Number of 

ETM+ images 

(Landsat 7) 

Number of OLI 

images 

(Landsat 8 or 9) 

BSI 69 (1984-2021) 29 9 4 

MAN 59 (1984-2021) 24 5 2 

RIB 64 (1984-2022) 29 5 6 

IVE 77 (1984-2022) 24 23 18 
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As previously mentioned, the classification of the eelgrass meadows was made through 

an object-based image analysis, using mean NDVI, 𝑆𝑅Red, and NDMI values of individual 

polygons (segments). The contrasting higher NDVI and lower 𝑆𝑅Red values of the meadows 

in comparison to surrounding bare sediment was effective in separating these two coverage 

types. In addition, mean NDMI values were effective in separating some salt marshes from 

eelgrass meadows. A possible explanation is the lower content of water present in salt 

marshes at low tide compared to eelgrass meadows. The threshold values were determined 

on a single-image basis, mainly because of oscillations of reflectance values that could be 

related to natural causes (vegetation phenology) or atmospheric correction issues and 

differences in solar viewing geometry. The manual edition of the classified polygons of 

eelgrass coverage was only necessary in specific situations. For example, isolated patches of 

known macroalgae beds were removed manually in RIB and IVE subregions on a few 

images. 

When more than one image was available for a given year, a yearly merging was 

performed for the eelgrass coverage and respective emerged areas (incorporating both 

eelgrass and no eelgrass classes). However, obtaining a single emerged area for each 

subregion, considering the whole time series, was a critical step to establish a common 

baseline of comparison. Therefore, the determination of the threshold of 70% of each 

emerged pixel present in the whole time series was adequate so that only a maximum of 30% 

of an eelgrass coverage map of a determined year could be interpolated, thus decreasing 

classification uncertainties. The surface area of the emerged polygons of BSI, MAN, RIB, 

and IVE subregions was 21, 43, 12, and 31 km2, respectively. It is important to note that the 

emerged polygons encompass only the upper part of the intertidal area of each subregion, 

with relatively smaller intertidal and adjacent subtidal areas being omitted in the following 

analysis. Moreover, it is important to note that the 𝑆𝑅NIR threshold used to separate the 

emerged pixels may also include very shallow (< 1m) submerged areas (see Fig. 26C). 

The confusion matrix and accuracy assessment results, as analyzed by comparing the 

corresponding classified year (eelgrass coverage) with the high resolution habitat maps, is 
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presented in Table 9 (considering the sum of the four subregions). An overall accuracy of 

91% and a kappa coefficient (𝜅) of 0.81 reveal a very good agreement of the classification 

procedure applied in the Landsat images of the years used for direct comparison. More 

importantly, the accuracy assessment exercise assured that the classification procedure 

developed in this study classifies meadows with at least 25% areal coverage. Furthermore, 

since the general image processing procedures were systematic for the whole Landsat time 

series, we assume that the classification procedure was valid for the whole analyzed period. 

 

Table 9 

Confusion matrix and accuracy assessment of eelgrass coverage. The values shown 

correspond to the sum of areas (in km2) of all four subregions considered in this study 

Classified cover map 
Reference cover map User’s accuracy 

(%) Eelgrass No eelgrass Total 

Eelgrass 32.47 5.12 37.59 86 

No eelgrass 3.78 62.28 66.06 94 

Total 36.25 67.40 103.65  

Producer’s accuracy (%) 90 92   

Overall accuracy (%) 91  𝜿 = 0.81  

The kappa coefficient (𝜅) is presented separately and is out of context in the table. 

 

The degree of misclassification areas varied by subregion (see Table 14, Annex 3) and 

was mainly related to regions where eelgrass meadows were mixed with other vegetation 

types and where its coverage was close to the threshold of 25%. For example, in BSI 

subregion (overall accuracy = 81% and 𝜅 = 0.54) there was a sector in the reference map with 

a coverage classified as a mixed type with eelgrass and brown algae (Fucus sp.) and therefore 

not included in the accuracy assessment. However, the same sector was considered as 

eelgrass in the classification procedure of the Landsat imagery. Still in BSI, a sector known 
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to be with a sparse eelgrass coverage (~25% in the reference map) was not classified in the 

Landsat workflow. These types of misclassifications were common, to a lesser degree, in the 

other subregions (overall accuracy > 90% and 𝜅 > 0.8). Nonetheless, misclassifications at the 

edge of the polygons were also observed and attributed to the discrepancy of two orders of 

magnitude between the spatial resolution of Landsat (30 m) and the aerial photographs (30 

cm) used in the reference maps. 

 

3.5.2 Eelgrass coverage, area, trends, and decennial changes 

The analysis of the eelgrass coverage in the intertidal zone of the studied areas 

(subregions) revealed a highly dynamic character at yearly and decennial time scales. Figure 

28 shows selected Landsat images of the approximately initial year of analysis, and the 

approximately year of maximum coverage for each subregion. A first remark is the abrupt 

gain, in all subregions, of the area occupied by the meadows relative to bare sediment (or 

meadows with less coverage), when comparing recent years to 1980’s images. 

The shape and area of the emerged zones retrieved from the processing chain reflected 

the major geomorphological aspects of each subregion. The emerged area of BSI followed 

the shape of the bay and varied about 1 to 2.5 km in width (perpendicular to the coast). Two 

major types of emerged areas were observed in MAN subregion. The first, associated with 

the peninsula feature coastline and corresponding to half of the total emerged area, presented 

a typical width of about 1 km and was the main area of eelgrass occurrence. The areas 

corresponding to the other half were associated with the mouth of Aux-Outardes and 

Manicouagan rivers, while being less occupied by eelgrass meadows. Nevertheless, the 

emerged areas of RIB and IVE occupied the zones between land and the barrier islands, while 

sometimes forming a contiguous area reaching up to 3 km wide (as for RIB subregion). 
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Figure 28. Examples of Landsat images used in the classification process of eelgrass 

meadows (green patches) inside the polygons of the emerged areas (solid lines with varying 

colors for subregions: blue for BSI, yellow for MAN, red for RIB, and green for IVE). 

Images on the left (right) correspond to the approximately years of minimum (maximum) 

area of meadows 
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The temporal evolution of areal cover of the meadows and their respective relative 

occupation of the emerged zone (in percentage) is presented in Figure 29. In all subregions, 

the initial area of the meadows (in 1984) where the lowest of the whole period and did not 

reach 1 km2 (except for IVE, with an initial area of ~1.5 km2). All subregions experienced a 

significant areal increase of meadows coverage along the years, reaching the highest areas in 

BSI and IVE subregions (~16.5 km2) at the end of the analyzed period. The highest area of 

RIB was also observed by the end of the time series, reaching ~2.4 km2. In contrast, MAN 

subregion reached its maximum in 2014 (~7.4 km2), followed by an almost linear decline 

since then (~2 km2 loss from 2014 to 2021). It is important to note the different orders of 

magnitude of the absolute area values (y-axis in Fig. 29) for each subregion, which, for 

example, varied eight-fold from RIB to BSI. Small fluctuations in the areal increase trends 

were observed in the whole time series, and for all subregions. A noticeable decrease is also 

observed from 2002 to 2006 in RIB (~1 km2 loss). 

The percentage of meadows coverage relative to total emerged areas (values in 

parenthesis in Fig. 29) also varied by subregion. Firstly, BSI presented the highest value of 

relative coverage, reaching 80% of the total emerged area. In contrast, the meadows coverage 

in MAN and RIB subregions have reached only ~20% of the intertidal emerged area. 

Nonetheless, IVE presented an intermediate relative coverage, with a value of ~55%. The 

initial relative cover of all subregions was below 5%. These results evidence a relative 

saturation of space of emerged areas in BSI subregion for eelgrass expansion, considering 

that some areas are also occupied by saltmarshes. The lower occupation rate of meadows in 

MAN subregion can be associated with the high proportion of the emerged areas being 

present in more dynamical areas such as the mouths of the rivers. 
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Figure 29. Temporal evolution of areal cover of eelgrass meadows in the four subregions. 

The values in parenthesis in y-axis are the percentage of the eelgrass areal cover in relation 

to the total emerged area. The color codes for the subregions are the same as in Fig. 28 

 

The seagrass areal trends for EGSL are plotted in Figure 30. Here, the yearly areal 

eelgrass coverage was normalized by the initial area (1984) for comparison between 

subregions. The solid line curves were obtained by fitting a 4th degree polynomial equation 

in the log10-transformed to illustrate the relative areal trends in the four subregions. A 

comparison was also made on including the curves of North Atlantic Ocean, from both East 
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and West coasts, and using the (world bioregions; see Short et al., 2007) data compiled by 

Dunic et al. (2021). The data was also normalized by the area of 1984. 

 

 

Figure 30. Eelgrass meadows areal trends in the Estuary and Gulf of St. Lawrence in the 

last four decades, and comparison with other seagrass areal trends in the North Atlantic 

West (East Europe) and East (West North America) coasts. 

 

The general trends were very similar for all subregions, reaching as much as 20-fold 

increase for BSI and 10-fold increases for the other subregions. When compared to global 

bioregional trends, EGSL experienced about one order of magnitude of higher increases than 

in North Atlantic East. Nevertheless, EGSL also showed to have an opposite trend when 
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compared to other southern North Atlantic West meadows (see Figure 1 of Dunic et al., 

2021). 

The spatial dynamics of eelgrass meadows expansion over the last decades are shown 

in Figure 31. The comparison of a reference year with the coverage over the decades allowed 

the identification of when and where the meadows first appeared (or disappeared). In general, 

the expansion started in small patches and were located mostly closer to the outer limit (i.e., 

offshore direction) of the emerged areas. This indicates that the expansion generally started 

from areas farthest from the coast and expanded towards land. This spatial pattern is more 

evident in BSI and MAN subregions, in the north coast of EGSL. Moreover, areas where the 

meadows were present at any time in the analyzed period, but for some reason disappeared 

(relative to the reference year), is also shown in Figure 31 (light red patches). Specifically, 

these “loss” patches in MAN and RIB subregions correspond to the period of area declining 

previously mentioned and shown in the areal evolution (Fig. 29). 

 

3.5.3 Environmental variables 

The climatological mean and standard deviation values comparing the environmental 

variables of the four subregions of EGSL is shown in Table 10. The SST values were the 

highest for BSI and the lowest for MAN subregions, with a difference of 4.2 ºC in the mean 

values, indicating warmer conditions in the gulf domain in August. BSI also presented the 

lowest 𝐾d(PAR) for the same period (August), while the highest values were for RIB 

subregion. It is important to note that the coarse spatial resolution (4 km) of the products for 

both SST and 𝐾d(PAR) were retrieved from pixels far enough of the coast to avoid its 

contamination by land and may not reflect the nearshore water conditions that are over the 

meadows. However, we found these products adequate for comparing the general 

background of these parameters for the different subregions, attempting to the fact that the 

values presented reflect their surrounding offshore conditions. 
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Figure 31. Decadal spatial changes of eelgrass patches in the four subregions of the Estuary 

and Gulf of St. Lawrence 
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Table 10 

Climatological comparisons of environmental variables (mean ± standard deviation) 

surrounding eelgrass meadows of the different subregions of the estuary and Gulf of St 

Lawrence 

Subregion 
SST [ºC] 

(August) 

𝑲𝐝(𝐏𝐀𝐑) [m-1] 

(August) 

BSI 14.2 ±2.6 0.26 ±0.04 

MAN 10.0 ±1.8 0.40 ±0.07 

RIB 12.7 ±2.2 0.42 ±0.10 

IVE 10.6 ±2.0 0.36 ±0.08 

 

3.6 DISCUSSION AND CONCLUSIONS 

The spatial variability of eelgrass meadows at an annual to decadal time frame was 

investigated in one of the largest estuarine systems of the world: the Estuary and Gulf of St. 

Lawrence (EGSL). A massive increase in the areal coverage of meadows in intertidal areas 

was demonstrated in four contrasting subregions of EGSL using Landsat historical images 

and the freely cloud-computing platform Google Earth Engine (GEE). 

The advent of GEE together with the availability of optical imagery products (archives) 

allowed the development of several seagrass mapping efforts worldwide, either considering 

time series analysis (e.g., Lizcano-Sandoval et al. 2022; Sebastian et al. 2023) or actual 

inventories (e.g.; Kovacs et al. 2022; Traganos et al. 2022a; b; Li et al. 2022). The advantages 

of combining these two facilities include increased capabilities for mapping very large areas 

with relatively low computational costs, bringing agility in accessing meadows coverage. 

Moreover, the analysis-ready data available through the repositories permits the access of a 

large number of images and favors its utilization by end-users, while minimizing the 

requirements of applications of more complicated image processing techniques such as 
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atmospheric correction procedures. However, it is important to note that high spatial 

resolution (<30 m) products specifically designed for water color applications would favor 

not only the retrieval of water quality parameters but also optically-shallow benthic coverage 

information, including seagrass mapping. 

Limiting the classification to exposed macrophytes in low tide conditions present 

advantages and is a common procedure applied to optical imagery (e.g.; Zoffoli et al. 2020; 

Carlson et al. 2023). The restriction of the analysis to intertidal areas was a necessary step to 

avoid map uncertainties due to variability in water optical properties, sun and sky glint,  and 

allowed the classification of the eelgrass meadows by the application of vegetation indices. 

Nevertheless, the knowledge of spectral signatures of the different types of coverage 

occurring in the tidal flats is a primary requirement for developing classification tools. It is 

important to note, however, the limitations of multispectral imagery on discriminating 

different types of vegetation (e.g., seagrass and macroalgae), as could be observed in a few 

intertidal areas of EGSL (e.g., Légaré et al., 2022). 

The legacy of the Landsat program provide a unique opportunity to establish a baseline 

of seagrass distribution at yearly to decadal temporal scales, as demonstrated by several 

studies worldwide (Calleja et al., 2017; Dekker et al., 2005; Fernandes et al., 2022; Gullström 

et al., 2006; Lyons et al., 2013). Although inherent limitations to access subtidal seagrass in 

highly-absorbing and turbid waters with TM and ETM+ sensors, advances in the capabilities 

of satellite and airborne sensors proved to be adequate to overcome or minimize this issue 

(Dierssen et al., 2019; Krause et al., 2021; Kuhwald et al., 2022). Therefore, recent and 

planned satellite missions are promising to extrapolate the mapping of eelgrass meadows in 

subtidal areas of EGSL. 

Furthermore, the so-called depth of colonization of seagrass, i.e., the light-limited 

maximum depth to which seagrass grows (M. W. Beck et al., 2018) are strictly related to 

(absolute or relative) irradiance levels reaching the underwater benthic substrate (Dennison 

et al., 1993; Ralph et al., 2007). From experimental results made with eelgrass shoots 

harvested in RIB subregion, light limitation was found to occur below 200 mol m-2 s-1 (in 
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PAR units) and the Minimum Quantum Requirements (i.e., the light intensity where leaf 

productivity equals the respiratory demands of the whole plant) was found to be 13.7 

mol m-2 s-1 (Léger-Daigle et al., 2022). Thus, combining the retrieval of water quality 

parameters such as diffuse attenuation coefficient (e.g., 𝐾d(PAR)) with photoacclimation and 

light thresholds can be used to access the depth limits of the meadows. Moreover, since the 

depth of colonization is subject of anthropogenic pressures affecting water clarity, the 

development of inverse modeling tools applied to remote sensing imagery to retrieve 

𝐾d(PAR) (e.g., Xu et al., 2023) and (water) subsurface PAR can be an asset for monitoring 

purposes. 

The eelgrass meadows coverage in EGSL showed a dramatic increasing trajectory over 

the last four decades, contrary to global declining trends and particularly comparing to 

previous inventories in temperate North Atlantic West regions (Dunic et al., 2021; Waycott 

et al., 2009). These results revealed the recolonization of the tidal flats after the catastrophic 

decline in the 1930’s caused by the wasting disease, placing these nearshore zones of EGSL 

as ecologically significant habitats (Z. marina was recognized as an Ecologically Significant 

Species in Canada; DFO, 2009, 2007). This trend reversal (recovery of seagrass meadows 

coverage) has been reported by few recent studies in temperate North Atlantic East regions 

(western Europe), southwest Florida, and south Australia (de los Santos et al., 2019; 

Fernandes et al., 2022; Lizcano-Sandoval et al., 2022; Tomasko et al., 2018). Overall, these 

studies associate the increase followed by an overall improvement of water quality (less 

nutrient input in coastal areas leading to less eutrophication and turbid conditions) and to 

relative success of transplantation programs. However, overall meadows increase of the 

dwarf eelgrass (Zostera noltei Hornemann) was also observed in intertidal areas of North 

Atlantic East (Bourgneuf Bay, at ~46º60’N; Zoffoli et al., 2021). In this case, and for 

intertidal eelgrass meadows of EGSL, light limitation caused by overlaying waters in high 

tide conditions are unlikely, since subaerial conditions may satisfy the light requirements for 

growth of segrass (for example, see Cussioli et al. 2019). 
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The trajectories of eelgrass meadows coverage in cold temperate and subarctic 

environments vary highly within regional context. In James Bay (a water body extend from 

the Arctic Ocean) a major decline is reported between 1995 and 1999, followed by a limited 

recovery (Leblanc et al., 2023). In contrast, a region in the south Gulf of St. Lawrence 

(Tabusintac Estuary) presented a relatively stable condition of meadows coverage over more 

than three decades (Leblanc et al., 2021). It should be noted that both meadows contemplated 

in these studies are subtidal. Even though, the nearshore areas contemplated in our study, 

located between these two regions and reaching over 300 km of distance from each other 

(BSI and IVE), presented a consistent and significant areal increase. Despite relatively 

contrasting conditions of sea surface temperature and water clarity, the four subregions of 

EGSL presented similar increasing trajectories, considering their initial area (Fig. 30). 

However, despite the overall increase from the point of view of the whole period, a 

marked interannual variability was noticeable. Particularly, this was more evident in the 

meadows losses from MAN and RIB subregions. In general, the increase (or recovery) 

pattern is slower than the loss, which was more abrupt. Again, a similar pattern was noticed 

in Bourgneuf Bay for the intertidal dwarf eelgrass (Zoffoli et al., 2021). These observations 

highlight the need for the understanding of the mechanisms driving the short term losses and 

recovery, and their possible link with environmental variables. The level of exposure of the 

meadows to the action of waves, intensity and frequency of storms, high sedimentation rates, 

and the phenology and dynamics of landfast ice are examples of local processes affecting the 

interannual variability of the meadows and are worth investigating. 

The similar areal trends over the almost four decades suggest major regional control 

and, like the short interannual variability, need to be further investigated in terms of 

environmental variables and their combinations (multiple stressors). Notwithstanding, some 

hypotheses to explain the increase of the meadows can be drawn up and could be further 

tested, such as the causal responses to the reduction in ice cover (e.g., Krause-Jensen and 

Duarte, 2014) and to adaptation to changes in the mean relative sea level (e.g., Kairis and 

Rybczyk, 2010). Understanding the underlying mechanisms of seagrass meadows spatial and 
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temporal patterns are of major importance in the context of global climate change and other 

anthropogenic stressors. 

 

 

 



 

 

GENERAL CONCLUSION 

The main findings of this study were achieved because of a combined use of ship-based 

(in situ) and remote sensing approaches to address some important spatial and temporal 

variability phenomena of primary producers in nearshore environments of the estuary and 

Gulf of St Lawrence (EGSL). 

The bio-optical properties of nearshore waters of the north part of EGSL are under the 

influence of discharges of major (or local) CDOM-rich rivers that drained boreal forests 

watersheds. Consequently, these nearshore waters are more strongly affected by the 

seasonality of watershed and oceanographic processes, compared to offshore EGSL waters. 

This also has implications in the succession of major phytoplankton assemblages. The 

possibility to retrieve information about the distribution of phytoplankton assemblages from 

Earth Observation satellites (EOS) was demonstrated. Using EOS and background 

knowledge about optical properties and tidal variability, the interannual and decennial 

variability of seagrass meadows coverage in intertidal and ecologically relevant habitats 

(subregions) of EGSL were assessed. A massive increase in areal coverage of eelgrass 

meadows were observed in all subregions along the last decades. In summary, a baseline of 

knowledge about the variability of optical properties and remote sensing tools were 

developed to investigate primary producers in nearshore waters of subarctic and cold 

temperate environments, achieving the primary objectives of this thesis. 

The general premise that a baseline knowledge of bio-optical properties in nearshore 

environments is necessary to take advantage of EOS on retrieving information about the 

distribution of primary producers was confirmed. This premise might be valid for nearshore 

zones in coastal areas worldwide and, therefore, the in situ (ship-based) sampling framework 

developed in this study could be applied elsewhere. Specifically, the variability of inherent 
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optical properties (IOPs) is central on understanding the reflectance signals obtained by EOS 

for water quality and optically shallow waters applications. 

The bio-optical database built in the scope of this thesis is available at an online 

repository (the Saint Lawrence Global Observatory - https://ogsl.ca/en/home-slgo/) and 

served as support for the development of EOS algorithms for the retrieval of water quality 

parameters (see Mabit et al., 2022). The application of these algorithms was tested on 

Sentinel-2 MSI and Landsat 8 OLI sensors. Notwithstanding, exploring time-series images 

and applications in other current (e.g., PRISMA and EnMAP) or planned sensors (e.g., 

Landsat NEXT) can also advantage of this dataset. Although Articles 2 and 3 explored the 

usage of the high spatial resolution of Landsat, the application of such algorithms in sensors 

with similar spatial resolutions and improved temporal coverage and spectral resolutions are 

promising for coastal and nearshore applications. Furthermore, the bio-optical dataset can 

also be used as baseline knowledge for more detailed studies of optical characterizations in 

nearshore zones of EGSL. Nevertheless, the EOS applications can include studies of 

dissolved organic matter (DOM) pool stocks, fluxes and transformations (see review of 

Fichot et al., 2023); composition and size distribution of suspended particles; phytoplankton 

composition, biomass, and phenology; and monitoring and quantifying stocks of nearshore 

vegetated habitats. 

 

In Article 1, through the in-situ approach only, we showed that CDOM absorption 

(𝑎cdom(𝜆)) strongly dominates the absorption budget in nearshore waters of north EGSL. 

These waters also present extremely low values of suspended particulate matter 

concentration-specific backscattering coefficient (𝑏bp
∗ (𝜆)). These factors characterize a 

strongly light-absorbing and weakly light-scattering medium, resulting in low reflectance 

values and with major implications to optical remote sensing approaches. In particular, the 

molar and dry-mass concentrations and IOPs relationships revealed interesting and complex 

patterns, which could be further explored. 

https://ogsl.ca/en/home-slgo/
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The dissolved organic matter (DOM) pool in the studied areas is mainly of terrigenous 

sources and showed a dominant conservative mixing behaviour. The 𝑎cdom(𝜆) was highly 

correlated with the concentration of dissolved organic carbon (DOC). A potential application 

for 𝑎cdom(𝜆) retrievals are the development of DOM mixing models (e.g.; Fichot and 

Benner, 2012; Stedmon et al., 2010) and its possibility to link with hydrodynamical 

modeling. Also important is the characterization of 𝑎cdom(𝜆) and DOC relationships within 

different watersheds that outflow in nearshore EGSL areas (e.g., riverine endmembers). 

However, transformation process such as photobleaching, flocculation, and sorption, besides 

autochthonous production (e.g., by phytoplankton), are likely to co-occur in the river-to-sea 

aquatic continuum. 

A more in-depth investigation of the chemical composition and structure of the 

molecules of organic matter (e.g., lignin, tannin, humic and fulvic acids) and their 

relationships with 𝑎cdom(𝜆) and DOC (and derived proxies, like 𝑆275−195) in nearshore 

EGSL would enlighten the understanding of DOM sources and lability, either mediated by 

microbial or photochemical processes (see Del Vecchio and Blough, 2004; Fichot et al., 

2023; Hansell, 2013; Holmes et al., 2008; Tzortziou et al., 2007). In this context, 

measurements of fluorescence excitation-emission matrices (EEMs) can be an asset to 

characterize the DOM pool (Coble, 1996; Stedmon et al., 2003). Moreover, inelastic 

scattering processes such as the fluorescence of chlorophyll-a and DOM are also a matter of 

consideration on shaping water reflectance, including 𝑅rs (for example, see differences in the 

shapes of curves from the two graphics of Figure 21). Notwithstanding, DOM fluorescence 

was found to be significant in a optical closure exercise for the Manicoaugan Peninsula 

subregion (Mukherjee et al., 2023). 

The optical characterization of suspended particulate matter (SPM) was made in terms 

of both non-algal particles absorption coefficient (𝑎nap) and the particulate backscattering 

coefficient (𝑏bp), and its relationships with dry-mass concentration of SPM. Its separation 

(in terms of composition) in either inorganic or organic fractions revealed to be a markedly 

characteristic affecting the IOPs. Therefore, a more complete characterization of the 
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composition of SPM (e.g., types of minerals, phytoplankton, bacteria, organic detritus, 

particulate organic carbon concentration) and its relationships with optical properties can 

provide more insights about this relationship (Babin and Stramski, 2004; Koestner et al., 

2020; Stramski et al., 2007, 2004). 

Besides the composition of SPM, a more complete description of SPM can be in terms 

of the particle size distribution (PSD), which describes the average concentration of particles 

within discrete size intervals for a given volume of suspension (Reynolds and Stramski, 2021; 

Stramski and Kiefer, 1991). Since the particle concentration can be described by multiple 

ways (e.g., particle number, cross-sectional area), the relationships of PSD metrics and IOPs 

(particularly the volume scattering function, 𝛽(𝜆, 𝜓)) is worth of more investigation in EGSL 

and nearshore zones worldwide. 

Nevertheless, it is also important to account to processes affecting SPM and with 

consequences to optical properties. For example, given the massive contribution of organic 

matter (dissolved and particulate) by riverine inputs, it would be interesting to investigate 

what proportion (quality and quantity) of them are incorporated in the trophic chain. 

Flocculation and sorption are other examples of processes that, besides affecting the DOM 

pool, could also affect the PSD and 𝛽(𝜆, 𝜓). However, to tackle these problems may require 

state-of-art optical equipment that are in constant development, either considering the range 

of in situ (e.g., radiometry profilers and gliders, hyperspectral 𝑏b) or laboratory-based ones 

(e.g., VSF, 𝛽(𝜆, 𝜓) as many angles and wavelengths as possible). 

Although this study documented, for the first time, the characterization of bio-optical 

properties in the northern part of EGSL, other nearshore areas still lack information (e.g., 

southern part of the Lower St. Lawrence Estuary). A major recommendation built upon 

Article 1 is that inverse models applied to (EGSL) nearshore areas, including remote sensing 

approaches, should focus in IOPs then directly to a biogeochemical quantity (e.g., dry-mass 

concentrations) of an optically active constituent. 
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The article 2 documented the seasonal succession of phytoplankton assemblages in a 

subarctic bay, and showed that their temperature, nutritive, and optical niches can be 

significantly different. The possibility to retrieve information about their distribution from 

EOS was demonstrated, although atmospheric corrections issues are of major concern. 

Phytoplankton are among the organisms most sensible to environmental variability, thus 

developing tools to better assess information about them, such as the distribution of the major 

assemblages, can be an asset. 

A first remark in the approach used to assess the different phytoplankton assemblages 

is the inherent limitations of the HPLC and flow cytometry techniques to assign them to 

lower taxonomic levels. Notwithstanding, our analysis revealed a relative importance of 

some picophytoplankton classes, which is impossible to assess by optical microscopy 

techniques. In this case, single cells sorting by flow cytometry (e.g.; Marie et al., 2017) and 

the possibility to further characterization by metabarcoding and metagenomics approaches 

(e.g. for the global oceans; de Vargas et al., 2015; Sunagawa et al., 2015) are worth of 

investigating. 

The in situ sampling strategy used to characterize the phytoplankton assemblages and 

their associated environmental variables was adequate to observe a seasonal succession. 

However, a more frequent (order of weeks) sampling would reveal more details about these 

relationships, besides more insights about phenology metrics of individual assemblages, such 

as duration and biomass peak. For example, a sampling design covering late winter and early 

spring would be necessary to fully capture the phytoplankton spring bloom dominated by 

diatoms. Another potential field to study is the characterization of selected communities to 

the lower taxonomic level and further relating their ecological metrics (e.g., abundance, 

species richness, and diversity) with the major phytoplankton assemblages. A practical 

example could be the identification (by an expert) of diatoms and dinoflagellates, only in the 

microphytoplankton size class, using optical microscopy. 

Since the diversity of the phytoplankton assemblages co-varied with environmental 

variables, one may expect that ecological processes may also differ among them. For 
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example, the different assemblages may have different photophysiological parameters and 

require different parametrization of photosynthesis-irradiance (𝑃-𝐸) curves (see Bouman et 

al., 2018). The retrieval of proxies for phytoplankton biomass, like chlorophyll-a 

concentration (Chla), are also a key parameter to be further explored from EOS applications 

(see reviews of Blondeau-Patissier et al., 2014; Odermatt et al., 2012) in optically deep 

nearshore waters of EGSL. Notwithstanding, cholorophyll-a (and other pigments) 

fluorescence is also a proxy for Chla and, like DOM, affects 𝑅rs(𝜆) shapes and magnitudes. 

Although not explored in this thesis, the coupled retrieval of phytoplankton 

assemblages and biomass estimations from EOS would represent, together with the 

photophysiological parameters and estimations of solar radiation at the surface of water, a 

first step towards modeling phytoplankton primary production in nearshore EGSL at 

unprecedent temporal and spatial scales. 

Nevertheless, trait-based approaches capture the form (morphological) and function 

(functional traits) of an organism and can be used to reveal the mechanisms underpinning 

phytoplankton community composition and dynamics, and that are straightly related to 

environmental drivers (Edwards et al., 2016, 2013; Litchman et al., 2010, 2007; Litchman 

and Klausmeier, 2008; Wentzky et al., 2020). Therefore, a more in-depth investigation of 

functional traits and trade-offs might reveal details about the ecological function of each 

phytoplankton assemblage in nearshore EGSL, with the possibility to extend this knowledge 

to take advantage of sampling by EOS. 

 

Article 3 applied a remote sensing approach to address the yearly and decadal 

variability of seagrass coverage (specifically eelgrass, Zostera marina L.) in intertidal areas 

of EGSL. The area of the meadows presented a significantly increase trend in all subregions. 

These results are relevant at global scales and reveal these nearshore EGSL zones as 

important areas for biodiversity. Multiple stressors, such as light and temperature constraints, 

may act together over the dynamics of population growth rate of eelgrass meadows (Dunic 
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and Côté, 2023; Lefcheck et al., 2017). The littoral zone where the nearshore intertidal areas 

were analyzed may be also constrained by sea surface temperature (SST) and, to a lesser 

extent, water clarity. However, air temperature and ice cover may also be important factors. 

In this context, using the results from Article 3 and extending its objectives beyond, 

quantitative relationships relating the increase of meadows coverage with environmental 

variables could be used to build an ecological model, with possible applications to monitoring 

purposes. 

Background information about optical properties and tidal variabilities helped to 

constrain the final delimitation areas of the studied subregions of EGSL. From the remote 

sensing perspective, a more detailed information about seagrass distribution were mainly 

limited by the characteristics of the sensors used in the study, which made it difficult to 

address the status of the submerged aquatic vegetation. For example, Landsat TM and ETM+ 

have very low radiometric quality for water quality applications. In turn, the radiometric 

requirements of the strongly light-absorbing and weakly light-scattering medium found in 

nearshore waters of EGSL are particularly critical. Furthermore, as showed in Article 2 (but 

see also Mabit et al., 2022), atmospheric correction is still challenging even for sensors with 

relatively higher radiometry quality. However, the application of inverse models (for both 

optically deep and shallow waters) relies in accurate reflectance retrievals, which reinforces 

the idea of obtaining a successful atmospheric correction. In such scenario, further studies 

could focus in atmospheric corrections algorithms verifications with in situ radiometric 

measurements, but also consider the implementation of more robust aerosol retrievals (e.g., 

see Ahmad et al., 2011) and accounting for adjacency effects (e.g.; see Pan et al., 2022; Santer 

and Schmechtig, 2000). 

As previously discussed, sensors with characteristics intersecting H4 imaging (Muller-

Karger et al., 2018) are a reality in recent advances of EOS. Notwithstanding, overpassing 

the atmospheric correction problem, the possibility to assess ecological information about 

submerged aquatic vegetation in EGSL can be further explored. This can include (but may 

not be limited to) the determination of the major habitat (e.g., seagrass, macroalgae) and 
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(blue) carbon budget studies. Moreover, integrating information about IOPs, bathymetry, and 

benthic reflectance, could enlighten the knowledge about the light budget (quantity and 

quality) reaching the canopy of nearshore benthic primary producers. These information 

could be used to understand the optical niche affecting the distribution of patches of 

submerged vegetation communities (Thoral et al., 2023), but also help to build primary 

production models for these nearshore vegetated habitats (e.g., Daggers et al., 2018; Dierssen 

et al., 2010; Hill et al., 2014). 

 

Bringing the concept of spatial and temporal patterns present in nearshore zones 

developed in the Introduction to this Conclusion, one may note that this idea is central in the 

development of the three research articles. Taking only the Bay of Sept-Îles subregion as 

example (which is present in the three articles), the Article 1 used an in situ-based approach 

addressing spatial variability in the order of 100 to 101 km, and temporal variability in the 

order of 101 to 102 days (seasonal). Article 2 used the same ship-based approach and linked 

it with EOS, showing the possibility to extend the approach to a spatial order of 10-2 to 102 km 

and temporal coverage of (100) days to (101) years (for example, using Landsat OLI and 

Sentinel-2 MSI sensors). Finally, Article 3 used a satellite-based approach to address a spatial 

variability in the order of 10-2 to 102 km, and a temporal variability ranging from 100 to 

101 years. 

The spatial and temporal scales addressed in the Articles 1 and 2 corresponds to the 

intersection of the ship and satellite-based approaches, shown in the Stommel diagram of 

Figure 2. Once a link between the two approaches is well stablished, the observer may have 

the benefit of taking the advantages that both approaches can offer. Nevertheless, although 

not used in this thesis, the same principle can apply to mooring approaches, which can offer 

unprecedent data at high frequency acquisition (temporal resolution, see Fig. 2). It is evident 

that modeling exercises could take advantage of the three approaches and their 

intersectionality to better achieve prediction (and verification) of ecological processes acting 

in nearshore zones. 
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This thesis focused on the retrieval of ecosystem state variables (for example the 

distribution of phytoplankton assemblages and seagrass meadows) that are fundamental 

“stocks” of nearshore environments. It is important to note, however, that there is still a long 

path to incorporate these variables in regional ecosystem models and integrate them in 

ecosystem-based management. Howsoever, this thesis represents a first step towards a more 

representative sampling of these stocks on considering nearshore variability. 

The dimension of multiple stressors acting in nearshore social ecological systems 

(SES) is of major concern for either the pelagic and benthic habitat, and are key to understand 

potential tipping points, i.e., shifts in ecosystem state (Carrier-Belleau et al., 2022; Folt et al., 

1999; Gunderson et al., 2016; Regier and Kay, 1996). Global climate change is a major 

challenge in the Anthropocene era and developing new tools that help better understand the 

relationship between human and nature is mandatory. Nearshore zones host important 

ecosystems worldwide and it is important to consider both watershed and oceanographic 

processes affecting them. Notwithstanding, the incorporation of satellite-based approaches 

in models of SES applied to nearshore zones enables addressing fundamental but complex 

processes. This, in turn, may facilitate dealing with multiple stressors and predicting potential 

tipping points scenarios. 
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Table 11 

Summary of fitted regressions and associated errors for the optical properties of dissolved 

organic matter. The reported metrics are the mean absolute error, 𝑀𝐴𝐸 (and the mean 

absolute percentage error, 𝑀𝐴𝑃𝐸); 𝑏𝑖𝑎𝑠 (and the percentage bias, 𝑃 − 𝑏𝑖𝑎𝑠); coefficient of 

determination, 𝑅2; and the root mean square error, 𝑅𝑀𝑆𝐸. The considered subset of the 

data and the corresponding scatterplot figure are also indicated 

 

  

Ref. Equation 
Dependent 

variable (𝒚) 

Independent 

variable (𝒙) 

Locale or 

subset type 

Ref. 

Fig. 

1 𝑦 = 𝐴 + 𝐵𝑥 𝑎cdom(350) DOC all data 7a 

2 𝑦 = 𝑒(𝐴−𝐵𝑥) + 𝑒(𝐶−𝐷𝑥) 𝑎cdom
∗ (350) 𝑆275−295 

BSI 

(marine) 
7b 

3 𝑦 = 𝑒(𝐴−𝐵𝑥) + 𝑒(𝐶−𝐷𝑥) 𝑎cdom
∗ (350) 𝑆275−295 

MAN 

(marine) 
7b 

4 
ln 𝑦 = 𝐴 + 𝐵 ln 𝑥1 

+ 𝐶 ln 𝑥2 
DOC 

𝑥1, 𝑎cdom(275) 
𝑥2, 𝑎cdom(295) 

𝑥1 < 15 7c 

5 
ln 𝑦 = 𝐴 + 𝐵 log 𝑥1 

+ 𝐶 ln 𝑥2 
DOC 

𝑥1, 𝑎cdom(275) 
𝑥2, 𝑎cdom(295) 

𝑥1 ≥ 15 7c 

6 𝑦 = 𝐴 + 𝐵𝑥 𝑎cdom(350) Salinity BSI 8a 

7 𝑦 = 𝐴 + 𝐵𝑥 𝑎cdom(350) Salinity MAN 8a 

8 𝑦 = 𝐴𝑥𝐵 + 𝐶 𝑆275−295 Salinity BSI 8b 

9 𝑦 = 𝐴𝑥𝐵 + 𝐶 𝑆275−295 Salinity MAN 8b 
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Table 11 (cont.) 

Please refer to Table 1 of the main text for acronyms and units of variables. 

The column “Ref.” contains the reference for the same line presented in different pages. 

 

  

Ref. 
Coefficients 𝑴𝑨𝑬 

(𝑴𝑨𝑷𝑬) 

𝒃𝒊𝒂𝒔 
𝑷-𝒃𝒊𝒂𝒔 

𝑹𝟐 𝑹𝑴𝑺𝑬 
𝑨 𝑩 𝑪 𝑫 

1 -4.2·100 4.4·10-2 - - 
1.2·100 

(20%) 

4.7·10-16 

(5%) 
0.98 2.2·100 

2 -1.9·101 1.2·101 -1.3·100 2.0·102 
3.3·10-3 

(13%) 

-2.0·10-3 

(6%) 
0.80 4.2·10-3 

3 -1.9·101 -6.7·102 -6.6·10-1 2.0·102 
3.7·10-3 

(18%) 

3.0·10-3 

(15%) 
0.71 5.1·10-3 

4 4.1·100 2.9·10-1 1.3·10-1 - 
1.2·101 

(8%) 

-2.7·100 

(< 1%) 
0.69 1.6·101 

5 2.9·100 9.8·10-1 -1.4·10-1 - 
3.0·101 

(5%) 

-1.2·101 

(2%) 
0.98 5.8·101 

6 2.8·101 -9.1·10-1 - - 
1.3·100 

(25%) 

-7.1·10-15 

(1%) 
0.85 2.1·100 

7 1.7·101 -5.5·10-1 - - 
3.5·10-1 

(12%) 

7.1·10-16 

(4%) 
0.96 5.7·10-1 

8 1.2·10-16 9.3·100 1.3·10-2 - 
7.4·10-4 

(5%) 

6.6·10-5 

(< 1%) 
0.84 9.5·10-4 

9 1.3·10-13 7.2·100 1.4·10-2 - 
5.1·10-4 

(3%) 

-1.1·10-4 

(< 1%) 
0.78 8.1·10-4 
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Table 12 

Mean and (plus or minus) standard deviation of phytoplankton pigments concentrations (normalized by Chla) and pico- and 

nano-cells (eukaryotic and cyanobacteria) abundances, for each of the seven clusters obtained by the Hierarchical Cluster 

Analysis (PraD, PryD, Cy, Dia, Cry, CryP, and Chlo) 

Phytoplankton counts 

(cell mL-1) and pigments 

to Chla ratios (×102 g g-1) 

PraD PryD Cy Dia Cry CryP Chlo 

Picoeukaryotes 
26917 

±9541 

24646 

±4389 

19094 

±9800) 

6418 

±7490 

1417 

±804 

2234 

±1569 

944 

±449 

Nanoeukaryotes 
4238 

±1233 

4833 

±1825 

3703 

±982 

2980 

±1615 

844 

±392 * 

1618 

±454 * 

1457 

±542 * 

Pico phycoerythrin-

containing cyanobacteria 

478 

±367 

744 

±166 

46894 

±33257 

4400 

±585 

101 

±22 

120 

±70 

53 

±42 

Nano phycoerythrin-

containing cyanobacteria 

132 

±81 

226 

±98 

920 

±145 

75 

±82 

36 

±24 

131 

±94 

53 

±42 

Chlorophyll c3 
0.76 

±0.63* 
2.76 ±1.27 3.39 ±1.04 2.13 ±1.25 0.34 ±0.72* 1.81 ±0.96 0.5 ±0.94* 

Mg 2,4 divinyl 

pheoporphyrin a5 

monomethyl ester 

(MgDVP) 

0.11 ±0.33 0 ±0 1.19 ±0.74 0.59 ±0.65 0 ±0 1.40 ±1.05 0.49 ±1.40 

Chlorophyll c2 9.54 ±2.24 12.23 ±2.31 9.62 ±1.58 12.80 ±3.37 8.10 ±0.99 7.67 ±1.58 2.64 ±4.39* 
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Table 12 (cont.) 

Phytoplankton counts 

(cell mL-1) and pigments 

to Chla ratios (×102 g g-1) 

PraD PryD Cy Dia Cry CryP Chlo 

Chlorophyll c1 2.23 ±1.40 2.39 ±0.94 1.08 ±0.57 3.01 ±0.86 0.34 ±0.96 0.38 ±0.59 0.33 ±0.16 

Peridinin 12.11 ±6.58 16.02 ±8.58 3.83 ±1.42 3.76 ±4.78 1.26 ±2.33 5.18 ±2.31 1.99 ±3.92 

19'-

Butanoyloxyfucoxanthin 
0.02 ±0.11 0.46 ±0.53 0.54 ±1.45 0.38 ±0.47 0 ±0 0.10 ±0.29 0 ±0 

Fucoxanthin 10.17 ±4.97 13.04 ±4.29 21.00 ±8.04 30.12 ±9.72 4.84 ±3.47* 11.52 ±3.53 23.14 ±7.10 

Neoxanthin 2.09 ±0.63 1.00 ±0.33 1.36 ±0.55 0.66 ±0.38 0 ±0* 0.20 ±0.41* 0 ±0* 

Prasinoxanthin 4.20 ±1.50 2.96 ±1.24 3.22 ±0.81 0.79 ±0.87 0.26 ±0.49 1.54 ±1.15 0 ±0* 

Violaxanthin 4.51 ±1.80 0.67 ±0.90 2.40 ±0.59 1.00 ±0.50 0.36 ±0.55 1.50 ±1.03 1.81 ±2.50 

19'-

Hexanoyloxyfucoxanthin 
0.45 ±1.04 10.16 ±6.92 3.04 ±2.28 0.71 ±0.56 0.37 ±0.70 3.70 ±2.46 1.49 ±2.78 

Diadinoxanthin 8.50 ±2.96 14.41 ±2.97 5.43 ±1.21 7.12 ±1.96 3.29 ±1.74* 5.34 ±1.37 7.32 ±2.01 

Alloxanthin† 10.61 ±3.57 8.25 ±3.32 8.20 ±2.30 4.21 ±4.11* 22.94 ±3.82 15.34 ±2.59 5.69 ±4.31 

Diatoxanthin 1.33 ±0.68 1.51 ±0.67 0.48 ±0.30 1.02 ±0.38 0.38 ±0.34 0.56 ±0.59 1.83 ±2.27 

Zeaxanthin 1.20 ±0.61 1.32 ±0.58 4.57 ±2.50 0.65 ±0.50 1.08 ±0.44 1.39 ±0.91 4.46 ±3.09 

Lutein 0.47 ±0.57 0.32 ±0.47 0 ±0 0.17 ±0.22 0.16 ±0.24 0.69 ±0.47 1.90 ±1.77 

Crocoxanthin 0.76 ±0.26 0.64 ±0.38 0.62 ±0.34 0.36 ±0.38 1.83 ±0.29 1.31 ±0.30 0.17 ±0.48 
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Table 12 (cont.) 

Phytoplankton counts 

(cell mL-1) and pigments 

to Chla ratios (×102 g g-1) 

PraD PryD Cy Dia Cry CryP Chlo 

Chlorophyll b 15.66 ±5.16 8.70 ±2.01 14.39 ±3.47 5.53 ±1.78 2.63 ±1.49* 7.53 ±2.39 4.56 ±2.76 

α-Carotene 1.59 ±2.75 2.56 ±3.10 1.93 ±2.17 1.00 ±1.85 15.15 ±10.67 0.99 ±1.99 0 ±0 

ß-Carotene 4.06 ±0.62 4.30 ±0.89 4.37 ±0.76 2.74 ±0.68 1.08 ±0.75* 2.21 ±0.47 2.27 ±1.23 

All variables presented significantly difference (one-way ANOVA, p < 0.05). Bold values indicate groups that were significantly 

higher (Tukey’s HSD criterion) than at least four or more other groups. Conversely, the asterisk (*) indicate when a group of 

samples were significantly lower than at least four or more other groups. 

† Smirnov-Kolmogorov test rejects the null hypothesis at the 5% significance level, but Lilliefors test does not. 
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Table 13 

Pigment and nutrient concentrations from samples collected in the phytoplankton spring bloom (April-May), including 

surface and deep waters in selected stations of the Bay of Sept-Îles 

Station 

(Lat. / Long.) 

Depth 

(m) 

Date of sampling 

(2017) 

Chla 

(mg m-3) 

Fuco:Chla 

(w w-1) 

[NO3
−] 

(µM) 

[Si(OH)4
4−] 

(µM) 

[PO4
3−] 

(µM) 

PT-02 

(50.14º / -66.40º) 
0 19 April 12.92 0.32 - - - 

PT-01 

(50.19º / -66.43º) 
0 19 April 5.45 0.41 - - - 

PT-5.1 

(50.07º / -66.38º) 
0 4 May 3.21 0.39 0.03 0.96 0.14 

PT-5.1 27 4 May 5.51 0.45 0.15 0.67 0.22 

PT-02 0 4 May 1.67 0.34 0.05 1.09 0.12 

PT-02 41 4 May 8.76 0.46 0.66 1.09 0.28 
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Figure 32. Bar plots showing the percentage distribution of phytoplankton classes as assigned by 

the light microscopy technique. The names in the x-axis refer to the phytoplankton groups and 

respective field campaigns (refer to Table 5). The number above each bar is the total phytoplankton 

cell count (in cells L-1). Other flagellates include chlorophytes, chrysophytes, dictyophytes, 

euglenophytes, prasinophytes, prymnesiophytes and raphidophytes 
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Figure 33. (A) Cells concentration comparison of nanophytoplankton counts from flow cytometry 

(FC) versus light microscopy (LM) methods. Unidentified cells with sizes lower than 20 µm were 

included in the LM nanophytoplankton abundances. (B) Ternary plot showing the relative 

contribution (or fraction) of phytoplankton size classes to total cell concentration and for each 

phytoplankton cluster. Concentration of cells was derived from flow cytometry measurements for 

the pico- and nano-size classes, while micro-size classes concentration was obtained by counts 

using LM technique (n = 16). The phytoplankton clusters are denoted by PraD (purple), PryD (red), 

Cy (blue), Dia (yellow), Cry (orange), CryP (teal), and Chlo (green) 
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Figure 34. Vertical profiles of density of sea water (𝜌 = 𝜌(𝑆, 𝑇, 𝑝)) and chlorophyll-a fluorescence 

(𝑓Chla, in Relative Fluorescence Units, RFU, as measured by the HS6 instrument). Captions (A) and 

(B) refer to two stations from 4 May 2017 (BSI-1 campaign), where the presence of a subsurface 

chlorophyll maximum (SCM) can be noticed. From these two stations, the concentrations of Chla, 

major nutrients, and the Fucoxanthin to Chla ratio are found in Table 12, for water samples 

collected at two different depths 
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Table 14 

Confusion matrix and accuracy assessment of eelgrass coverage for the four subregions of 

the Estuary and Gulf of St. Lawrence. The values shown correspond to the sum of areas (in 

km2) 

Classified cover map 
Reference cover map User’s 

accuracy (%) Eelgrass No eelgrass Total 

Bay of Sept-Îles (BSI)     

Eelgrass 12.67 2.02 14.69 86 

No eelgrass 1.82 3.97 5.79 69 

Total 14.49 5.99 20.48  

Producer’s accuracy (%) 87 66   

Overall accuracy (%) 81  𝜿 = 0.54  

     

Manicouagan Peninsula (MAN)     

Eelgrass 5.88 0.80 6.68 88 

No eelgrass 1.25 35.27 36.52 97 

Total 7.13 36.07 43.20  

Producer’s accuracy (%) 82 98   

Overall accuracy (%) 95  𝜿 = 0.82  

     

Rimouski bay (RIB)     

Eelgrass 1.84 0.40 2.24 82 

No eelgrass 0.16 9.56 9.72 98 

Total 2.0 9.96 11.96  

Producer’s accuracy (%) 92 96   

Overall accuracy (%) 95  𝜿 = 0.84  
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Table 14 (cont.) 

Classified cover map 
Reference cover map User’s 

accuracy (%) Eelgrass No eelgrass Total 

L’Isle-Verte bay (IVE)     

Eelgrass 12.08 1.90 13.98 86 

No eelgrass 0.55 16.48 17.03 97 

Total 12.63 18.38 31.01  

Producer’s accuracy (%) 96 90   

Overall accuracy (%) 92  𝜿 = 0.84  

The kappa coefficient (κ) is presented separately for each subregion and is out of context in 

the table. 

 

 

  



 

182 

 

 

 

 

 



 

 

REFERENCES 

Achanta, R., Susstrunk, S., 2017. Superpixels and Polygons Using Simple Non-iterative 

Clustering, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR). IEEE, Honolulu, HI, pp. 4895–4904. https://doi.org/10.1109/CVPR.2017.520 

Ahmad, Z., Franz, B.A., McClain, C.R., Kwiatkowska, E.J., Werdell, J., Shettle, E.P., 

Holben, B.N., 2011. New aerosol models for the retrieval of aerosol optical thickness 

and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over 

coastal regions and open oceans: publisher’s note. Appl. Opt. 50, 626. 

https://doi.org/10.1364/AO.50.000626 

Albert, A., Mobley, C., 2003. An analytical model for subsurface irradiance and remote 

sensing reflectance in deep and shallow case-2 waters. Opt. Express 11, 2873. 

https://doi.org/10.1364/OE.11.002873 

Ansotegui, A., Sarobe, A., Trigueros, J.M., Urrutxurtu, I., Orive, E., 2003. Size distribution 

of algal pigments and phytoplankton assemblages in a coastal--estuarine environment: 

contribution of small eukaryotic algae. J. Plankton Res. 25, 341–355. 

https://doi.org/10.1093/plankt/25.4.341 

Antoine, D., André, J.-M., Morel, A., 1996. Oceanic primary production: 2. Estimation at 

global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Global 

Biogeochem. Cycles 10, 57–69. https://doi.org/10.1029/95GB02832 

Antoine, D., Siegel, D.A., Kostadinov, T., Maritorena, S., Nelson, N.B., Gentili, B., Vellucci, 

V., Guillocheau, N., 2011. Variability in optical particle backscattering in contrasting 

bio-optical oceanic regimes. Limnol. Oceanogr. 56, 955–973. 

https://doi.org/10.4319/lo.2011.56.3.0955 

Araújo, C.A.S., Bélanger, S., 2022. Variability of bio-optical properties in nearshore waters 

of the estuary and Gulf of St. Lawrence: Absorption and backscattering coefficients. 

Estuar. Coast. Shelf Sci. 264, 107688. https://doi.org/10.1016/j.ecss.2021.107688 

Araújo, C.A.S., Belzile, C., Tremblay, J.-É., Bélanger, S., 2022. Environmental niches and 

seasonal succession of phytoplankton assemblages in a subarctic coastal bay: 

Applications to remote sensing estimates. Front. Mar. Sci. 9, 1–23. 

https://doi.org/10.3389/fmars.2022.1001098 

Asmala, E., Autio, R., Kaartokallio, H., Pitkänen, L., Stedmon, C.A., Thomas, D.N., 2013. 



 

184 

Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the 

effect of catchment land use. Biogeosciences 10, 6969–6986. 

https://doi.org/10.5194/bg-10-6969-2013 

Asmala, E., Bowers, D.G., Autio, R., Kaartokallio, H., Thomas, D.N., 2014. Qualitative 

changes of riverine dissolved organic matter at low salinities due to flocculation. J. 

Geophys. Res. Biogeosciences 119, 1919–1933. https://doi.org/10.1002/2014JG002722 

Audet, R., 2012. L’écologie humaine de Pierre Dansereau et la métaphore du paysage 

intérieur. Natures Sci. Sociétés 20, 30–38. https://doi.org/10.1051/nss/2012009 

Babin, M., Stramski, D., 2004. Variations in the mass-specific absorption coefficient of 

mineral particles suspended in water. Limnol. Oceanogr. 49, 756–767. 

https://doi.org/10.4319/lo.2004.49.3.0756 

Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner, 

N., 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal 

particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. 

Res. 108, 3211. https://doi.org/10.1029/2001JC000882 

Babin, M., Therriault, J.-C., Legendre, L., 1991. Potential utilization of temperature in 

estimating primary production from remote sensing data in coastal and estuarine waters. 

Estuar. Coast. Shelf Sci. 33, 559–579. https://doi.org/10.1016/0272-7714(91)90041-9 

Babin, M., Therriault, J.-C., Legendre, L., Condal, A., 1993. Variations in the specific 

absorption coefficient for natural phytoplankton assemblages: Impact on estimates of 

primary production. Limnol. Oceanogr. 38, 154–177. 

https://doi.org/10.4319/lo.1993.38.1.0154 

Babin, M., Therriault, J.-C., Legendre, L., Nieke, B., Reuter, R., Condal, A., 1995. 

Relationship between the maximum quantum yield of carbon fixation and the minimum 

quantum yield of chlorophyll a in vivo fluorescence in the Gulf of St. Lawrence. Limnol. 

Oceanogr. 40, 956–968. https://doi.org/10.4319/lo.1995.40.5.0956 

Barber, A., Sirois, M., Chaillou, G., Gélinas, Y., 2017. Stable isotope analysis of dissolved 

organic carbon in Canada’s eastern coastal waters. Limnol. Oceanogr. 62, S71–S84. 

https://doi.org/10.1002/lno.10666 

Barnes, M., Tilstone, G., Smyth, T., Suggett, D., Astoreca, R., Lancelot, C., Kromkamp, J., 

2014. Absorption-based algorithm of primary production for total and size-fractionated 

phytoplankton in coastal waters. Mar. Ecol. Prog. Ser. 504, 73–89. 

https://doi.org/10.3354/meps10751 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 2018. 

Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. 



 

185 

Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 

Beck, M.W., Hagy, J.D., Le, C., 2018. Quantifying Seagrass Light Requirements Using an 

Algorithm to Spatially Resolve Depth of Colonization. Estuaries and Coasts 41, 592–

610. https://doi.org/10.1007/s12237-017-0287-1 

Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., 

Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F., 

Weinstein, M.P., 2001. The identification, conservation, and management of estuarine 

and marine nurseries for fish and invertebrates. Bioscience 51, 633–641. 

Behrenfeld, M.J., Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based 

chlorophyll concentration. Limnol. Oceanogr. 42, 1–20. 

https://doi.org/10.4319/lo.1997.42.1.0001 

Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, 

G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M., Boss, E.S., 2006. Climate-driven 

trends in contemporary ocean productivity. Nature 444, 752–755. 

https://doi.org/10.1038/nature05317 

Bélanger, S., Carrascal-Leal, C., Jaegler, T., Larouche, P., Galbraith, P., 2017. Assessment 

of radiometric data from a buoy in the St. Lawrence Estuary. J. Atmos. Ocean. Technol. 

34, 877–896. https://doi.org/10.1175/JTECH-D-16-0176.1 

Benedetti, F., Vogt, M., Elizondo, U.H., Righetti, D., Zimmermann, N.E., Gruber, N., 2021. 

Major restructuring of marine plankton assemblages under global warming. Nat. 

Commun. 12, 5226. https://doi.org/10.1038/s41467-021-25385-x 

Bidigare, R.R., Van Heukelem, L., Trees, C.C., 2005. Analysis of algal pigments by high-

performance liquid chromatography, in: Andersen, R.A. (Ed.), Algal Culturing 

Techniques. Elsevier Academic Press, Burlington, MA, pp. 327–345. 

https://doi.org/10.1016/b978-012088426-1/50021-4 

Bissett, P., Arnone, R., Davis, C., Dickey, T., Dye, D., Kohler, D., Gould, R., 2004. From 

Meters to Kilometers: A Look at Ocean-Color Scales of Variability, Spatial Coherence, 

and the Need for Fine-Scale Remote Sensing in Coastal Ocean Optics. Oceanography 

17, 32–43. https://doi.org/10.5670/oceanog.2004.45 

Blais, M.-A., Matveev, A., Lovejoy, C., Vincent, W.F., 2022. Size-fractionated microbiome 

structure in subarctic rivers and a coastal plume across DOC and salinity gradients. 

Front. Microbiol. 12. https://doi.org/10.3389/fmicb.2021.760282 

Blais, M., Galbraith, P.S., Plourde, S., Scarratt, M., Devine, L., Lehoux, C., 2019. Chemical 

and biological oceanographic conditions in the Estuary and Gulf of St. Lawrence during 

2018. DFO Can. Sci. Advis. Sec. Res. Doc. 



 

186 

Blondeau-Patissier, D., Gower, J.F.R., Dekker, A.G., Phinn, S.R., Brando, V.E., 2014. A 

review of ocean color remote sensing methods and statistical techniques for the 

detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. 

Prog. Oceanogr. 123, 123–144. https://doi.org/10.1016/j.pocean.2013.12.008 

Blondeau-Patissier, D., Schroeder, T., Clementson, L.A., Brando, V.E., Purcell, D., Ford, P., 

Williams, D.K., Doxaran, D., Anstee, J., Thapar, N., Tovar-Valencia, M., 2017. Bio-

Optical properties of two neigboring coastal regions of tropical northern australia: The 

Van Diemen Gulf and Darwin Harbour. Front. Mar. Sci. 4, 1–27. 

https://doi.org/10.3389/fmars.2017.00114 

Blondeau‐Patissier, D., Brando, V.E., Oubelkheir, K., Dekker, A.G., Clementson, L.A., 

Daniel, P., 2009. Bio‐optical variability of the absorption and scattering properties of 

the Queensland inshore and reef waters, Australia. J. Geophys. Res. 114, C05003. 

https://doi.org/10.1029/2008JC005039 

Bluteau, C.E., Galbraith, P.S., Bourgault, D., Villeneuve, V., Tremblay, J.-É., 2021. Winter 

observations alter the seasonal perspectives of the nutrient transport pathways into the 

lower St. Lawrence Estuary. Ocean Sci. 17, 1509–1525. https://doi.org/10.5194/os-17-

1509-2021 

Boivin-Rioux, A., Starr, M., Chassé, J., Scarratt, M., Perrie, W., Long, Z., 2021. Predicting 

the Effects of Climate Change on the Occurrence of the Toxic Dinoflagellate 

Alexandrium catenella Along Canada’s East Coast. Front. Mar. Sci. 7, 1–20. 

https://doi.org/10.3389/fmars.2020.608021 

Boström, C., Jackson, E.L., Simenstad, C.A., 2006. Seagrass landscapes and their effects on 

associated fauna: A review. Estuar. Coast. Shelf Sci. 68, 383–403. 

https://doi.org/10.1016/j.ecss.2006.01.026 

Bouman, H.A., Platt, T., Doblin, M., Figueiras, F.G., Gudmundsson, K., Gudfinnsson, H.G., 

Huang, B., Hickman, A., Hiscock, M., Jackson, T., Lutz, V.A., Mélin, F., Rey, F., Pepin, 

P., Segura, V., Tilstone, G.H., van Dongen-Vogels, V., Sathyendranath, S., 2018. 

Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global 

data set. Earth Syst. Sci. Data 10, 251–266. https://doi.org/10.5194/essd-10-251-2018 

Bourgoin, L.-H., Tremblay, L., 2010. Bacterial reworking of terrigenous and marine organic 

matter in estuarine water columns and sediments. Geochim. Cosmochim. Acta 74, 

5593–5609. https://doi.org/10.1016/j.gca.2010.06.037 

Bowers, D.G., Binding, C.E., 2006. The optical properties of mineral suspended particles: A 

review and synthesis. Estuar. Coast. Shelf Sci. 67, 219–230. 

https://doi.org/10.1016/j.ecss.2005.11.010 

Boyer-Villemaire, U., St-Onge, G., Bernatchez, P., Lajeunesse, P., Labrie, J., 2013. High-



 

187 

resolution multiproxy records of sedimentological changes induced by dams in the Sept-

Îles area (Gulf of St. Lawrence, Canada). Mar. Geol. 338, 17–29. 

https://doi.org/10.1016/j.margeo.2012.11.012 

Brando, V.E., Dekker, A.G., Park, Y.J., Schroeder, T., 2012. Adaptive semianalytical 

inversion of ocean color radiometry in optically complex waters. Appl. Opt. 51, 2808. 

https://doi.org/10.1364/AO.51.002808 

Brewin, R.J.W., Morán, X.A.G., Raitsos, D.E., Gittings, J.A., Calleja, M.L., Viegas, M., 

Ansari, M.I., Al-Otaibi, N., Huete-Stauffer, T.M., Hoteit, I., 2019. Factors regulating 

the relationship between total and size-fractionated chlorophyll-a in coastal waters of 

the Red Sea. Front. Microbiol. 10, 1–16. https://doi.org/10.3389/fmicb.2019.01964 

Bricaud, A., Babin, M., Morel, A., Claustre, H., 1995. Variability in the chlorophyll-specific 

absorption coefficients of natural phytoplankton: Analysis and parameterization. J. 

Geophys. Res. 100, 13321. https://doi.org/10.1029/95JC00463 

Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light 

absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) 

waters: Analysis and implications for bio-optical models. J. Geophys. Res. Ocean. 103, 

31033–31044. https://doi.org/10.1029/98JC02712 

Bricaud, A., Morel, A., Prieur, L., 1981. Absorption by dissolved organic matter of the sea 

(yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26, 43–53. 

https://doi.org/10.4319/lo.1981.26.1.0043 

Browman, H.I., Stergiou, K.I., 2004. Perspectives on ecosystem-based approaches to the 

management of marine resources. Mar. Ecol. Prog. Ser. 274, 269–303. 

https://doi.org/10.3354/meps274269 

Brown, A.G., Tooth, S., Bullard, J.E., Thomas, D.S.G., Chiverrell, R.C., Plater, A.J., Murton, 

J., Thorndycraft, V.R., Tarolli, P., Rose, J., Wainwright, J., Downs, P., Aalto, R., 2017. 

The geomorphology of the Anthropocene: emergence, status and implications. Earth 

Surf. Process. Landforms 42, 71–90. https://doi.org/10.1002/esp.3943 

Calleja, F., Galván, C., Silió-Calzada, A., Juanes, J.A., Ondiviela, B., 2017. Long-term 

analysis of Zostera noltei: A retrospective approach for understanding seagrasses’ 

dynamics. Mar. Environ. Res. 130, 93–105. 

https://doi.org/10.1016/j.marenvres.2017.07.017 

Cannizzaro, J.P., Carlson, P.R., Yarbro, L.A., Hu, C., 2013. Optical variability along a river 

plume gradient: Implications for management and remote sensing. Estuar. Coast. Shelf 

Sci. 131, 149–161. https://doi.org/10.1016/j.ecss.2013.07.012 

Carder, K.L., Steward, R.G., Harvey, G.R., Ortner, P.B., 1989. Marine humic and fulvic 



 

188 

acids: Their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 34, 68–

81. https://doi.org/10.4319/lo.1989.34.1.0068 

Carlson, D.F., Vivó-Pons, A., Treier, U.A., Mätzler, E., Meire, L., Sejr, M., Krause-Jensen, 

D., 2023. Mapping intertidal macrophytes in fjords in Southwest Greenland using 

Sentinel-2 imagery. Sci. Total Environ. 865, 161213. 

https://doi.org/10.1016/j.scitotenv.2022.161213 

Carrier-Belleau, C., Pascal, L., Nozais, C., Archambault, P., 2022. Tipping points and 

multiple drivers in changing aquatic ecosystems: A review of experimental studies. 

Limnol. Oceanogr. 67, S312–S330. https://doi.org/10.1002/lno.11978 

Carstensen, J., Klais, R., Cloern, J.E., 2015. Phytoplankton blooms in estuarine and coastal 

waters: Seasonal patterns and key species. Estuar. Coast. Shelf Sci. 162, 98–109. 

https://doi.org/10.1016/j.ecss.2015.05.005 

Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D’Antonio, C., Francis, R., 

Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G., 

Woodmansee, R.G., 1996. The Report of the Ecological Society of America Committee 

on the Scientific Basis for Ecosystem Management. Ecol. Appl. 6, 665–691. 

https://doi.org/10.2307/2269460 

Ciotti, A.M., Bricaud, A., 2006. Retrievals of a size parameter for phytoplankton and spectral 

light absorption by colored detrital matter from water-leaving radiances at SeaWiFS 

channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 4, 237–

253. https://doi.org/10.4319/lom.2006.4.237 

Ciotti, Á.M., Lewis, M.R., Cullen, J.J., 2002. Assessment of the relationships between 

dominant cell size in natural phytoplankton communities and the spectral shape of the 

absorption coefficient. Limnol. Oceanogr. 47, 404–417. 

https://doi.org/10.4319/lo.2002.47.2.0404 

Çizmeli, S.A., 2008. Parameterization, regionalization and radiative transfer coherence of 

optical measurements acquired in the St-Lawrence ecosystem. Ph.D. Diss. Université 

de Sherbrooke, Québec, Canada. 

Cloern, J.E., 2018. Why large cells dominate estuarine phytoplankton. Limnol. Oceanogr. 

63, S392–S409. https://doi.org/10.1002/lno.10749 

Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. 

Mar. Ecol. Prog. Ser. 210, 223–253. https://doi.org/10.3354/meps210223 

Cloern, J.E., Foster, S.Q., Kleckner, A.E., 2014. Phytoplankton primary production in the 

world’s estuarine-coastal ecosystems. Biogeosciences 11, 2477–2501. 

https://doi.org/10.5194/bg-11-2477-2014 



 

189 

Cloern, J.E., Jassby, A.D., 2008. Complex seasonal patterns of primary producers at the land-

sea interface. Ecol. Lett. 11, 1294–1303. https://doi.org/10.1111/j.1461-

0248.2008.01244.x 

Coble, P.G., 1996. Characterization of marine and terrestrial DOM in seawater using 

excitation-emission matrix spectroscopy. Mar. Chem. 51, 325–346. 

https://doi.org/10.1016/0304-4203(95)00062-3 

Congalton, R.G., Green, K., 2019. Assessing the accuracy of remotely sensed data: Principles 

and practices, 3rd editio. ed. CRC Press, Boca Raton, Florida, USA. 

Corbisier, T.N., Petti, M.A. V., Skowronski, R.S.P., Brito, T.A.S., 2004. Trophic 

relationships in the nearshore zone of Martel Inlet (King George Island, 

Antarctica): ?13C stable-isotope analysis. Polar Biol. 27, 75–82. 

https://doi.org/10.1007/s00300-003-0567-z 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., 

Farber, S., Turner, R.K., 2014. Changes in the global value of ecosystem services. Glob. 

Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 

Cussioli, M.C., Bryan, K.R., Pilditch, C.A., de Lange, W.P., Bischof, K., 2019. Light 

penetration in a temperate meso-tidal lagoon: Implications for seagrass growth and 

dredging in Tauranga Harbour, New Zealand. Ocean Coast. Manag. 174, 25–37. 

https://doi.org/10.1016/j.ocecoaman.2019.01.014 

D’Sa, E.J., Miller, R.L., Del Castillo, C., 2006. Bio-optical properties and ocean color 

algorithms for coastal waters influenced by the Mississippi River during a cold front. 

Appl. Opt. 45, 7410. https://doi.org/10.1364/AO.45.007410 

Daggers, T.D., Kromkamp, J.C., Herman, P.M.J., van der Wal, D., 2018. A model to assess 

microphytobenthic primary production in tidal systems using satellite remote sensing. 

Remote Sens. Environ. 211, 129–145. https://doi.org/10.1016/j.rse.2018.03.037 

Danhiez, F.P., Vantrepotte, V., Cauvin, A., Lebourg, E., Loisel, H., 2017. Optical properties 

of chromophoric dissolved organic matter during a phytoplankton bloom. Implication 

for DOC estimates from CDOM absorption. Limnol. Oceanogr. 62, 1409–1425. 

https://doi.org/10.1002/lno.10507 

Dansereau, P., 1957. Biogeography: An ecological perpective. Ronald Press Company, New 

York, NY, USA. 

de Jonge, V.N., 2000. Importance of temporal and spatial scales in applying biological and 

physical process knowledge in coastal management, an example for the Ems estuary. 

Cont. Shelf Res. 20, 1655–1686. https://doi.org/10.1016/S0278-4343(00)00042-X 



 

190 

de los Santos, C.B., Krause-Jensen, D., Alcoverro, T., Marbà, N., Duarte, C.M., van Katwijk, 

M.M., Pérez, M., Romero, J., Sánchez-Lizaso, J.L., Roca, G., Jankowska, E., Pérez-

Lloréns, J.L., Fournier, J., Montefalcone, M., Pergent, G., Ruiz, J.M., Cabaço, S., Cook, 

K., Wilkes, R.J., Moy, F.E., Trayter, G.M.-R., Arañó, X.S., de Jong, D.J., Fernández-

Torquemada, Y., Auby, I., Vergara, J.J., Santos, R., 2019. Recent trend reversal for 

declining European seagrass meadows. Nat. Commun. 10, 3356. 

https://doi.org/10.1038/s41467-019-11340-4 

de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., 

Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.-

M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., 

Horák, A., Jaillon, O., Lima-Mendez, G., Lukeš, J., Malviya, S., Morard, R., Mulot, M., 

Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., 

Kandels-Lewis, S., Acinas, S.G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., 

Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M.E., 

Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., Karsenti, E., 

Boss, E., Follows, M., Karp-Boss, L., Krzic, U., Reynaud, E.G., Sardet, C., Sullivan, 

M.B., Velayoudon, D., 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 

(80-. ). 348, 1261605–1/11. https://doi.org/10.1126/science.1261605 

Defoin-Platel, M., Chami, M., 2007. How ambiguous is the inverse problem of ocean color 

in coastal waters? J. Geophys. Res. 112, C03004. 

https://doi.org/10.1029/2006JC003847 

Dekker, A.G., Brando, V.E., Anstee, J.M., 2005. Retrospective seagrass change detection in 

a shallow coastal tidal Australian lake. Remote Sens. Environ. 97, 415–433. 

https://doi.org/10.1016/j.rse.2005.02.017 

Dekker, A.G., Pinnel, N., Gege, P., Broittet, X., Court, A., Peters, S., Turpie, K.R., Sterckx, 

S., Costa, M., Giardino, C., Brando, V.E., Braga, F., Bergeron, M., Heege, T., Pflug, B., 

2018. Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2. 

Committe on Earth Observation Satellites (CEOS). 

Del Vecchio, R., Blough, N. V., 2004. On the Origin of the Optical Properties of Humic 

Substances. Environ. Sci. Technol. 38, 3885–3891. https://doi.org/10.1021/es049912h 

Den Hartog, C., 1987. “Wasting disease” and other dynamic phenomena in Zostera beds. 

Aquat. Bot. 27, 3–14. https://doi.org/10.1016/0304-3770(87)90082-9 

Dennison, W.C., Orth, R.J., Moore, K.A., Stevenson, J.C., Carter, V., Kollar, S., Bergstrom, 

P.W., Batiuk, R.A., 1993. Assessing Water Quality with Submersed Aquatic 

Vegetation. Bioscience 43, 86–94. https://doi.org/10.2307/1311969 

Devred, E., Sathyendranath, S., Stuart, V., Maass, H., Ulloa, O., Platt, T., 2006. A two-

component model of phytoplankton absorption in the open ocean: Theory and 



 

191 

applications. J. Geophys. Res. 111, C03011. https://doi.org/10.1029/2005JC002880 

Dierssen, H., Zimmerman, R., Drake, L., Burdige, D., 2010. Benthic ecology from space: 

optics and net primary production in seagrass and benthic algae across the Great Bahama 

Bank. Mar. Ecol. Prog. Ser. 411, 1–15. https://doi.org/10.3354/meps08665 

Dierssen, H.M., Bostrom, K.J., Chlus, A., Hammerstrom, K., Thompson, D.R., Lee, Z., 2019. 

Pushing the limits of seagrass remote sensing in the turbid waters of Elkhorn Slough, 

California. Remote Sens. 11, 13–15. https://doi.org/10.3390/rs11141664 

Dionne, J.-C., 2001. Relative sea-level changes in the St. Lawrence estuary from deglaciation 

to present day, in: Weddle, T.K., Retelle, M.J. (Eds.), Deglacial History and Relative 

Sea-Level Changes, Northern New England and Adjacent Canada. Geological Society 

of America, Denver, CO, USA, pp. 271–284. https://doi.org/10.1130/0-8137-2351-

5.271 

Domingues, R.B., Barbosa, A., Galvão, H., 2005. Nutrients, light and phytoplankton 

succession in a temperate estuary (the Guadiana, south-western Iberia). Estuar. Coast. 

Shelf Sci. 64, 249–260. https://doi.org/10.1016/j.ecss.2005.02.017 

Doney, S.C., 2010. The growing human footprint on coastal and open-ocean 

biogeochemistry. Science (80-. ). 328, 1512–1516. 

https://doi.org/10.1126/science.1185198 

Donlon, C.J., Minnett, P.J., Gentemann, C., Nightingale, T.J., Barton, I.J., Ward, B., Murray, 

M.J., 2002. Toward improved validation of satellite sea surface skin temperature 

measurements for climate research. J. Clim. 15, 353–369. https://doi.org/10.1175/1520-

0442(2002)015<0353:TIVOSS>2.0.CO;2 

Doxaran, D., Leymarie, E., Nechad, B., Dogliotti, A., Gernez, P., Knaeps, E., 2016. Improved 

correction methods for field measurements of particulate light backscattering in turbid 

waters. Opt. Express 24, 5415–5436. https://doi.org/10.1364/OE.24.003615 

Dreujou, E., Desroy, N., Carrière, J., Tréau de Coeli, L., McKindsey, C.W., Archambault, P., 

2021. Determining the ecological status of benthic coastal communities: A case in an 

anthropized sub-arctic area. Front. Mar. Sci. 8, 1–16. 

https://doi.org/10.3389/fmars.2021.637546 

Duarte, C.M., 2017. Reviews and syntheses: Hidden forests, the role of vegetated coastal 

habitats in the ocean carbon budget. Biogeosciences 14, 301–310. 

https://doi.org/10.5194/bg-14-301-2017 

Duarte, C.M., 1991. Seagrass depth limits. Aquat. Bot. 40, 363–377. 

https://doi.org/10.1016/0304-3770(91)90081-F 



 

192 

Dunic, J.C., Brown, C.J., Connolly, R.M., Turschwell, M.P., Côté, I.M., 2021. Long‐term 

declines and recovery of meadow area across the world’s seagrass bioregions. Glob. 

Chang. Biol. 27, 4096–4109. https://doi.org/10.1111/gcb.15684 

Dunic, J.C., Côté, I.M., 2023. Management thresholds shift under the influence of multiple 

stressors: Eelgrass meadows as a case study. Conserv. Lett. 1–9. 

https://doi.org/10.1111/conl.12938 

Edwards, K.F., Litchman, E., Klausmeier, C.A., 2013. Functional traits explain 

phytoplankton community structure and seasonal dynamics in a marine ecosystem. 

Ecol. Lett. 16, 56–63. https://doi.org/10.1111/ele.12012 

Edwards, K.F., Thomas, M.K., Klausmeier, C.A., Litchman, E., 2016. Phytoplankton growth 

and the interaction of light and temperature: A synthesis at the species and community 

level. Limnol. Oceanogr. 61, 1232–1244. https://doi.org/10.1002/lno.10282 

El-Sabh, M.I., Lie, H.-J., Koutitonsky, V.G., 1982. Variability of the near-surface residual 

current in the lower St. Lawrence estuary. J. Geophys. Res. 87, 9589. 

https://doi.org/10.1029/JC087iC12p09589 

El-Sabh, M.I., Murty, T.S., 1990. Mathematical modelling of tides in the St. Lawrence 

Estuary, in: El-Sabh, M., Silverberg, N. (Eds.), Oceanography of a Large-Scale 

Estuarine System. pp. 10–50. https://doi.org/10.1029/ce039p0010 

El-Sabh, M.I., Silverberg, N., 1990a. The St. Lawrence Estuary: Introduction, in: El-Sabh, 

M., Silverberg, N. (Eds.), Oceanography of a Large-Scale Estuarine System. Springer 

New York, New York, NY, pp. 1–9. https://doi.org/10.1007/978-1-4615-7534-4_1 

El-Sabh, M.I., Silverberg, N., 1990b. Oceanography of a Large-Scale Estuarine System. 

Springer New York, New York, NY. https://doi.org/10.1007/978-1-4615-7534-4 

Ellis, E.C., Klein Goldewijk, K., Siebert, S., Lightman, D., Ramankutty, N., 2010. 

Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 

no-no. https://doi.org/10.1111/j.1466-8238.2010.00540.x 

Environment and natural resources Canada [WWW Document], n.d. URL 

https://climat.meteo.gc.ca/ (accessed 2.19.21). 

Fauchot, J., Saucier, F.J., Levasseur, M., Roy, S., Zakardjian, B., 2008. Wind-driven river 

plume dynamics and toxic Alexandrium tamarense blooms in the St. Lawrence estuary 

(Canada): A modeling study. Harmful Algae 7, 214–227. 

https://doi.org/10.1016/j.hal.2007.08.002 

Fernandes, M.B., Hennessy, A., Law, W.B., Daly, R., Gaylard, S., Lewis, M., Clarke, K., 

2022. Landsat historical records reveal large-scale dynamics and enduring recovery of 



 

193 

seagrasses in an impacted seascape. Sci. Total Environ. 813, 152646. 

https://doi.org/10.1016/j.scitotenv.2021.152646 

Ferrario, F., Araújo, C.A.S., Bélanger, S., Bourgault, D., Carrière, J., Carrier-Belleau, C., 

Dreujou, E., Johnson, L.E., Juniper, S.K., Mabit, R., McKindsey, C.W., Ogston, L., 

Picard, M.M.M., Saint-Louis, R., Saulnier-Talbot, É., Shaw, J.-L., Templeman, N., 

Therriault, T.W., Tremblay, J.-E., Archambault, P., 2022. Holistic environmental 

monitoring in ports as an opportunity to advance sustainable development, marine 

science, and social inclusiveness. Elem. Sci. Anthr. 10, 1–21. 

https://doi.org/10.1525/elementa.2021.00061 

Ferreira, A., Ciotti, Á.M., Mendes, C.R.B., Uitz, J., Bricaud, A., 2017. Phytoplankton light 

absorption and the package effect in relation to photosynthetic and photoprotective 

pigments in the northern tip of Antarctic Peninsula. J. Geophys. Res. Ocean. 122, 7344–

7363. https://doi.org/10.1002/2017JC012964 

Fichot, C.G., Benner, R., 2012. The spectral slope coefficient of chromophoric dissolved 

organic matter ( S275-295 ) as a tracer of terrigenous dissolved organic carbon in river-

influenced ocean margins. Limnol. Oceanogr. 57, 1453–1466. 

https://doi.org/10.4319/lo.2012.57.5.1453 

Fichot, C.G., Benner, R., 2011. A novel method to estimate DOC concentrations from 

CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 38, L03610. 

https://doi.org/10.1029/2010GL046152 

Fichot, C.G., Tzortziou, M., Mannino, A., 2023. Remote sensing of dissolved organic carbon 

(DOC) stocks, fluxes and transformations along the land-ocean aquatic continuum: 

advances, challenges, and opportunities. Earth-Science Rev. 242, 104446. 

https://doi.org/10.1016/j.earscirev.2023.104446 

Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., 1998. Primary Production of 

the Biosphere: Integrating Terrestrial and Oceanic Components. Science (80-. ). 281, 

237–240. https://doi.org/10.1126/science.281.5374.237 

Fisheries and Oceans Canada, (DFO), 2009. Does eelgrass (Zostera marina) meet the criteria 

as an ecologically significant species? Can. Sci. Advis. Secr. Sci. Advis. Rep. 2009/018 

11 p. 

Fisheries and Oceans Canada, (DFO), 2007. Guidance document on identifying conservation 

priorities and phrasing conservation objectives for large ocean management areas. DFO 

Can. Sci. Advis. Secr. Sci. Advis. Rep. 2007/010 13 p. 

Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., 

Dwyer, J.L., Joseph Hughes, M., Laue, B., 2017. Cloud detection algorithm comparison 

and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–



 

194 

390. https://doi.org/10.1016/j.rse.2017.03.026 

Folke, C., Hahn, T., Olsson, P., Norberg, J., 2005. Adaptive governance of social-ecologicl 

systems. Annu. Rev. Environ. Resour. 30, 441–473. 

https://doi.org/10.1146/annurev.energy.30.050504.144511 

Folke, C., Polasky, S., Rockström, J., Galaz, V., Westley, F., Lamont, M., Scheffer, M., 

Österblom, H., Carpenter, S.R., Chapin, F.S., Seto, K.C., Weber, E.U., Crona, B.I., 

Daily, G.C., Dasgupta, P., Gaffney, O., Gordon, L.J., Hoff, H., Levin, S.A., Lubchenco, 

J., Steffen, W., Walker, B.H., 2021. Our future in the Anthropocene biosphere. Ambio 

50, 834–869. https://doi.org/10.1007/s13280-021-01544-8 

Folt, C.L., Chen, C.Y., Moore, M. V., Burnaford, J., 1999. Synergism and antagonism among 

multiple stressors. Limnol. Oceanogr. 44, 864–877. 

https://doi.org/10.4319/lo.1999.44.3_part_2.0864 

Fuentes-Yaco, C., Vézina, A.F., Larouche, P., Gratton, Y., Gosselin, M., 1997a. 

Phytoplankton pigment in the Gulf of St. Lawrence, Canada, as determined by the 

Coastal Zone Color Scanner—Part II: multivariate analysis. Cont. Shelf Res. 17, 1441–

1459. https://doi.org/10.1016/S0278-4343(97)00022-8 

Fuentes-Yaco, C., Vézina, A.F., Larouche, P., Vigneau, C., Gosselin, M., Levasseur, M., 

1997b. Phytoplankton pigment in the Gulf of St. Lawrence, Canada, as determined by 

the Coastal Zone Color Scanner—Part I: spatio-temporal variability. Cont. Shelf Res. 

17, 1421–1439. https://doi.org/10.1016/S0278-4343(97)00021-6 

Gallagher, A.J., Brownscombe, J.W., Alsudairy, N.A., Casagrande, A.B., Fu, C., Harding, 

L., Harris, S.D., Hammerschlag, N., Howe, W., Huertas, A.D., Kattan, S., Kough, A.S., 

Musgrove, A., Payne, N.L., Phillips, A., Shea, B.D., Shipley, O.N., Sumaila, U.R., 

Hossain, M.S., Duarte, C.M., 2022. Tiger sharks support the characterization of the 

world’s largest seagrass ecosystem. Nat. Commun. 13, 6328. 

https://doi.org/10.1038/s41467-022-33926-1 

Gallegos, C.L., Davies-Colley, R.J., Gall, M., 2008. Optical closure in lakes with contrasting 

extremes of reflectance. Limnol. Oceanogr. 53, 2021–2034. 

https://doi.org/10.4319/lo.2008.53.5.2021 

Garneau, M.-È., Vincent, W.F., Terrado, R., Lovejoy, C., 2009. Importance of particle-

associated bacterial heterotrophy in a coastal Arctic ecosystem. J. Mar. Syst. 75, 185–

197. https://doi.org/10.1016/j.jmarsys.2008.09.002 

Gibb, S.., Barlow, R.., Cummings, D.., Rees, N.., Trees, C.., Holligan, P., Suggett, D., 2000. 

Surface phytoplankton pigment distributions in the Atlantic Ocean: an assessment of 

basin scale variability between 50°N and 50°S. Prog. Oceanogr. 45, 339–368. 

https://doi.org/10.1016/S0079-6611(00)00007-0 



 

195 

Glibert, P., Anderson, D., Gentien, P., Granéli, E., Sellner, K., 2005. The global, complex 

phenomena of harmful algal blooms. Oceanography 18, 136–147. 

https://doi.org/10.5670/oceanog.2005.49 

Gonçalves-Araujo, R., Rabe, B., Peeken, I., Bracher, A., 2018. High colored dissolved 

organic matter (CDOM) absorption in surface waters of the central-eastern Arctic 

Ocean: Implications for biogeochemistry and ocean color algorithms. PLoS One 13, 

e0190838. https://doi.org/10.1371/journal.pone.0190838 

Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., Clark, 

D.K., 1988. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 93, 

10909–10924. https://doi.org/10.1029/JD093iD09p10909 

Gordon, H.R., Brown, O.B., Jacobs, M.M., 1975. Computed Relationships Between the 

Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Appl. Opt. 14, 

417. https://doi.org/10.1364/AO.14.000417 

Gordon, H.R., McCluney, W.R., 1975. Estimation of the depth of sunlight penetration in the 

sea for remote sensing. Appl. Opt. 14, 413. https://doi.org/10.1364/AO.14.000413 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 

202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 

Graff, J.R., Westberry, T.K., Milligan, A.J., Brown, M.B., Dall’Olmo, G., Reifel, K.M., 

Behrenfeld, M.J., 2016. Photoacclimation of natural phytoplankton communities. Mar. 

Ecol. Prog. Ser. 542, 51–62. https://doi.org/10.3354/meps11539 

Grech, A., Chartrand-Miller, K., Erftemeijer, P., Fonseca, M., McKenzie, L., Rasheed, M., 

Taylor, H., Coles, R., 2012. A comparison of threats, vulnerabilities and management 

approaches in global seagrass bioregions. Environ. Res. Lett. 7, 024006. 

https://doi.org/10.1088/1748-9326/7/2/024006 

Gullström, M., Lundén, B., Bodin, M., Kangwe, J., Öhman, M.C., Mtolera, M.S.P., Björk, 

M., 2006. Assessment of changes in the seagrass-dominated submerged vegetation of 

tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuar. Coast. Shelf Sci. 

67, 399–408. https://doi.org/10.1016/j.ecss.2005.11.020 

Gunderson, A.R., Armstrong, E.J., Stillman, J.H., 2016. Multiple Stressors in a Changing 

World: The Need for an Improved Perspective on Physiological Responses to the 

Dynamic Marine Environment. Ann. Rev. Mar. Sci. 8, 357–378. 

https://doi.org/10.1146/annurev-marine-122414-033953 

Hansell, D.A., 2013. Recalcitrant Dissolved Organic Carbon Fractions. Ann. Rev. Mar. Sci. 

5, 421–445. https://doi.org/10.1146/annurev-marine-120710-100757 



 

196 

Harley, C.D.G., Randall Hughes, A., Hultgren, K.M., Miner, B.G., Sorte, C.J.B., Thornber, 

C.S., Rodriguez, L.F., Tomanek, L., Williams, S.L., 2006. The impacts of climate 

change in coastal marine systems. Ecol. Lett. 9, 228–241. 

https://doi.org/10.1111/j.1461-0248.2005.00871.x 

Hedges, J.I., Keil, R.G., 1999. Organic geochemical perspectives on estuarine processes: 

sorption reactions and consequences. Mar. Chem. 65, 55–65. 

https://doi.org/10.1016/S0304-4203(99)00010-9 

Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K., 2008. 

Absorption spectral slopes and slope ratios as indicators of molecular weight, source, 

and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53, 

955–969. https://doi.org/10.4319/lo.2008.53.3.0955 

Henderson, C.J., Stevens, T., Lee, S.Y., Gilby, B.L., Schlacher, T.A., Connolly, R.M., 

Warnken, J., Maxwell, P.S., Olds, A.D., 2019. Optimising seagrass conservation for 

ecological functions. Ecosystems 22, 1368–1380. https://doi.org/10.1007/s10021-019-

00343-3 

Hill, V., Cota, G., Stockwell, D., 2005. Spring and summer phytoplankton communities in 

the Chukchi and Eastern Beaufort Seas. Deep. Res. Part II Top. Stud. Oceanogr. 52, 

3369–3385. https://doi.org/10.1016/j.dsr2.2005.10.010 

Hill, V.J., Zimmerman, R.C., Bissett, W.P., Dierssen, H., Kohler, D.D.R., 2014. Evaluating 

Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne 

Remote Sensing in Saint Joseph’s Bay, Florida. Estuaries and Coasts 37, 1467–1489. 

https://doi.org/10.1007/s12237-013-9764-3 

Hintz, N.H., Zeising, M., Striebel, M., 2021. Changes in spectral quality of underwater light 

alter phytoplankton community composition. Limnol. Oceanogr. 66, 3327–3337. 

https://doi.org/10.1002/lno.11882 

Hoepffner, N., Sathyendranath, S., 1993. Determination of the major groups of 

phytoplankton pigments from the absorption spectra of total particulate matter. J. 

Geophys. Res. 98, 22789. https://doi.org/10.1029/93JC01273 

Hoepffner, N., Sathyendranath, S., 1991. Effect of pigment composition on absorption 

properties of phytoplankton. Mar. Ecol. Prog. Ser. 73, 11–23. 

https://doi.org/10.3354/meps073011 

Holmer, M., 2019. Productivity and biogeochemical cycling in seagrass ecosystems, in: 

Perillo, G.M.E., Wolanski, E., Cahoon, D.R., Hopkinson, C.S. (Eds.), Coastal Wetlands: 

An Integrated Approach. Elsevier, pp. 443–477. https://doi.org/10.1016/B978-0-444-

63893-9.00013-7 



 

197 

Holmes, R.M., McClelland, J.W., Raymond, P.A., Frazer, B.B., Peterson, B.J., Stieglitz, M., 

2008. Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys. Res. 

Lett. 35, L03402. https://doi.org/10.1029/2007GL032837 

Hossain, M.S., Hashim, M., 2019. Potential of Earth Observation (EO) technologies for 

seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 77, 15–29. 

https://doi.org/10.1016/j.jag.2018.12.009 

Howarth, R.W., Chan, F., Swaney, D.P., Marino, R.M., Hayn, M., 2021. Role of external 

inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. 

phosphorus limitation of net primary productivity. Biogeochemistry 154, 293–306. 

https://doi.org/10.1007/s10533-021-00765-z 

IOCCG, 2023a. Current Ocean-Colour Sensors [WWW Document]. Int. Ocean Colour 

Coord. Gr. URL https://ioccg.org/resources/missions-instruments/current-ocean-

colour-sensors/ (accessed 4.25.23). 

IOCCG, 2023b. Scheduled Ocean-Colour Sensors [WWW Document]. Int. Ocean Colour 

Coord. Gr. https://doi.org/25 April 2023 

IOCCG, 2020. Synergy between ocean colour and biogeochemical/ecosystem models. 

International Ocean Colour Coordinating Group, Dartmouth, NS, Canada. 

https://doi.org/10.25607/OBP-711 

IOCCG, 2018. Ocean optics and biogeochemistry protocols for satellite ocean colour sensor 

validation. Volume 1: Inherent optical property measurements and protocols: absorption 

coefficient. IOCCG, Dartmouth, Canada. https://doi.org/10.25607/OBP-119 

IOCCG, 2014. Phytoplankton functional types from space, Phytoplankton functional types 

from space. Reports of the International Ocean Colour Coordinating Group. IOCCG, 

Dartmouth, Canada. 

IOCCG, 2008. Why ocean colour? The societal benefits of ocean-colour technology, Reports 

of the International Ocean-Colour Coordinating Group, No. 7. IOCCG, Dartmouth, NS, 

Canada. 

IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contrib. Work. 

Gr. II Contrib. to Sixth Assess. Rep. Intergovernamental Panel Clim. Chang. 

https://doi.org/10.1017/9781009325844 

Jaegler, T., 2014. Variabilité Spatiale et Temporelle des Propriétés Optiques et Chimiques 

de la Matière Organique Dissoute dans les Rivières de la Côte-Nord, Québec, Canada. 

M.Sc. Thesis. Université du Québec à Rimouski, Canada. 

Jayathilake, D.R.M., Costello, M.J., 2018. A modelled global distribution of the seagrass 



 

198 

biome. Biol. Conserv. 226, 120–126. https://doi.org/10.1016/j.biocon.2018.07.009 

Jerlov, N.G., 1968. Optical oceanography. Elsevier, New York. 

Jobin, A., Marquis, G., Provencher-Nolet, L., Gabaj Castrillo, M.J., Trubiano, C., Drouet, 

M., Eustache-Létourneau, D., Drejza, S., Fraser, C., Marie, G., Bernatchez, P., 2021. 

Cartographie des écosystèmes côtiers du Québec maritime - Rapport méthodologique. 

Chaire de recherche en géoscience côtière, Laboratoire de dynamique et de gestion 

intégrée des zones côtières, Université du Québec à Rimouski. Rapport remis au 

ministère de l’Environnement et de la Lutte contre les changements climatiques, 

Rimouski, QC, Canada. 

John, U., Litaker, R.W., Montresor, M., Murray, S., Brosnahan, M.L., Anderson, D.M., 2014. 

Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) 

Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based 

(rDNA) Classification. Protist 165, 779–804. 

https://doi.org/10.1016/j.protis.2014.10.001 

Kairis, P.A., Rybczyk, J.M., 2010. Sea level rise and eelgrass (Zostera marina) production: 

A spatially explicit relative elevation model for Padilla Bay, WA. Ecol. Modell. 221, 

1005–1016. https://doi.org/10.1016/j.ecolmodel.2009.01.025 

Kaiser, M.J., Attrill, M.J., Jennings, S., Thomas, D.N., Barnes, D.K.A., Brierley, A.S., 

Graham, N.A.J., Hiddink, J.G., Howell, K., Kaartokallio, H., 2020. Marine ecology: 

Processes, Systems, and Impacts, Third edit. ed. Oxford University Press, New York, 

NY, USA. 

Kauko, H.M., Pavlov, A.K., Johnsen, G., Granskog, M.A., Peeken, I., Assmy, P., 2019. 

Photoacclimation State of an Arctic Underice Phytoplankton Bloom. J. Geophys. Res. 

Ocean. 124, 1750–1762. https://doi.org/10.1029/2018JC014777 

Kay, J.J., Regier, H.A., Boyle, M., Francis, G., 1999. An ecosystem approach for 

sustainability: addressing the challenge of complexity. Futures 31, 721–742. 

https://doi.org/10.1016/S0016-3287(99)00029-4 

Kirk, J.T.O., 2011. Light and Photosynthesis in Aquatic Ecosystems, Third. ed. Cambridge 

University Press, New York. 

Kishino, M., Takahashi, M., Okami, N., Ichimura, S., 1985. Estimation of the spectral 

absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci. 37, 634–642. 

Klemas, V., 2010. Remote sensing techniques for studying coastal ecosystems: An overview. 

J. Coast. Res. 27, 2–17. https://doi.org/10.2112/JCOASTRES-D-10-00103.1 

Koestner, D., Stramski, D., Reynolds, R.A., 2020. Assessing the effects of particle size and 



 

199 

composition on light scattering through measurements of size‐fractionated seawater 

samples. Limnol. Oceanogr. 65, 173–190. https://doi.org/10.1002/lno.11259 

Konovalov, B. V., Kravchishina, M.D., Belyaev, N.A., Novigatsky, A.N., 2014. 

Determination of the concentration of mineral particles and suspended organic 

substance based on their spectral absorption. Oceanology 54, 660–667. 

https://doi.org/10.1134/S0001437014040067 

Koutitonsky, V.G., Bugden, G.L., 1991. The physical oceanography of the Gulf of St. 

Lawrence: A review wilh emphasis on the synoptic variability of the motion. Can. Spec. 

Publ. Fish. Aquat. Sci. 113, 57–90. 

Kovacs, E.M., Roelfsema, C., Udy, J., Baltais, S., Lyons, M., Phinn, S., 2022. Cloud 

Processing for Simultaneous Mapping of Seagrass Meadows in Optically Complex and 

Varied Water. Remote Sens. 14, 1–9. https://doi.org/10.3390/rs14030609 

Kramer, S.J., Siegel, D.A., 2019. How can phytoplankton pigments be best used to 

characterize surface ocean phytoplankton groups for ocean color remote sensing 

algorithms? J. Geophys. Res. Ocean. 124, 7557–7574. 

https://doi.org/10.1029/2019JC015604 

Krause-Jensen, D., Duarte, C.M., 2014. Expansion of vegetated coastal ecosystems in the 

future Arctic. Front. Mar. Sci. 1. https://doi.org/10.3389/fmars.2014.00077 

Krause, J.R., Hinojosa-Corona, A., Gray, A.B., Watson, E.B., 2021. Emerging sensor 

platforms allow for seagrass extent mapping in a turbid estuary and from the meadow 

to ecosystem scale. Remote Sens. 13, 1–15. https://doi.org/10.3390/rs13183681 

Krause, J.W., Schulz, I.K., Rowe, K.A., Dobbins, W., Winding, M.H.S., Sejr, M.K., Duarte, 

C.M., Agustí, S., 2019. Silicic acid limitation drives bloom termination and potential 

carbon sequestration in an Arctic bloom. Sci. Rep. 9, 1–11. 

https://doi.org/10.1038/s41598-019-44587-4 

Kuhwald, K., Schneider von Deimling, J., Schubert, P., Oppelt, N., 2022. How can Sentinel‐

2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? Remote Sens. 

Ecol. Conserv. 8, 328–346. https://doi.org/10.1002/rse2.246 

Laliberté, J., Larouche, P., Devred, E., Craig, S., 2018. Chlorophyll-a Concentration 

Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using 

Principal Component Analysis. Remote Sens. 10, 265. 

https://doi.org/10.3390/rs10020265 

Larouche, P., Boyer-Villemaire, U., 2010. Suspended particulate matter in the St. Lawrence 

estuary and Gulf surface layer and development of a remote sensing algorithm. Estuar. 

Coast. Shelf Sci. 90, 241–249. https://doi.org/10.1016/j.ecss.2010.09.005 



 

200 

Le, C., Lehrter, J.C., Hu, C., Schaeffer, B., MacIntyre, H., Hagy, J.D., Beddick, D.L., 2015. 

Relation between inherent optical properties and land use and land cover across Gulf 

Coast estuaries. Limnol. Oceanogr. 60, 920–933. https://doi.org/10.1002/lno.10065 

Le Fouest, V., Matsuoka, A., Manizza, M., Shernetsky, M., Tremblay, B., Babin, M., 2018. 

Towards an assessment of riverine dissolved organic carbon in surface waters of the 

western Arctic Ocean based on remote sensing and biogeochemical modeling. 

Biogeosciences 15, 1335–1346. https://doi.org/10.5194/bg-15-1335-2018 

Le Fouest, V., Zakardjian, B., Saucier, F.J., 2005. Seasonal versus synoptic variability in 

planktonic production in a high-latitude marginal sea: The Gulf of St. Lawrence 

(Canada). J. Geophys. Res. 110, C09012. https://doi.org/10.1029/2004JC002423 

Le Quéré, C., Harrison, S.P., Colin Prentice, I., Buitenhuis, E.T., Aumont, O., Bopp, L., 

Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K.E., 

Legendre, L., Manizza, M., Platt, T., Rivkin, R.B., Sathyendranath, S., Uitz, J., Watson, 

A.J., Wolf-Gladrow, D., 2005. Ecosystem dynamics based on plankton functional types 

for global ocean biogeochemistry models. Glob. Chang. Biol. 11, 2016–2040. 

https://doi.org/10.1111/j.1365-2486.2005.1004.x 

Leblanc, M.-L., LaRocque, A., Leblon, B., Hanson, A., Humphries, M.M., 2021. Using 

Landsat time-Series to monitor and inform seagrass dynamics: A case study in the 

Tabusintac estuary, New Brunswick, Canada. Can. J. Remote Sens. 47, 65–82. 

https://doi.org/10.1080/07038992.2021.1893672 

Leblanc, M., O’Connor, M.I., Kuzyk, Z.Z.A., Noisette, F., Davis, K.E., Rabbitskin, E., Sam, 

L., Neumeier, U., Costanzo, R., Ehn, J.K., Babb, D., Idrobo, C.J., Gilbert, J., Leblon, 

B., Humphries, M.M., 2023. Limited recovery following a massive seagrass decline in 

subarctic eastern Canada. Glob. Chang. Biol. 29, 432–450. 

https://doi.org/10.1111/gcb.16499 

Lee, Z.-P., Du, K.-P., Arnone, R., 2005. A model for the diffuse attenuation coefficient of 

downwelling irradiance. J. Geophys. Res. 110, C02016. 

https://doi.org/10.1029/2004JC002275 

Lefcheck, J.S., Wilcox, D.J., Murphy, R.R., Marion, S.R., Orth, R.J., 2017. Multiple stressors 

threaten the imperiled coastal foundation species eelgrass ( Zostera marina ) in 

Chesapeake Bay, USA. Glob. Chang. Biol. 23, 3474–3483. 

https://doi.org/10.1111/gcb.13623 

Légaré, B., Bélanger, S., Singh, R.K., Bernatchez, P., Cusson, M., 2022. Remote sensing of 

coastal vegetation phenology in a cold temperate intertidal system: Implications for 

classification of coastal habitats. Remote Sens. 14, 3000. 

https://doi.org/10.3390/rs14133000 



 

201 

Léger-Daigle, R., Noisette, F., Bélanger, S., Cusson, M., Nozais, C., 2022. Photoacclimation 

and Light Thresholds for Cold Temperate Seagrasses. Front. Plant Sci. 13, 1–14. 

https://doi.org/10.3389/fpls.2022.805065 

Lemieux, C., Lalumière, R., 1995. Répartition de la zostère marine (Zostera marina) dans 

l’estuaire du fleuve Saint-Laurent et dans la Baie des Chaleurs (1994). Rapp. présenté 

au Serv. Can. la faune, Environ. Canada, pépapré par le Groupe-conseil Génivar inc. 58. 

Leslie, H.M., McLeod, K.L., 2007. Confronting the challenges of implementing marine 

ecosystem-based management. Front. Ecol. Environ. 5, 540–548. 

https://doi.org/10.1890/060093 

Levasseur, M., Fortier, L., Therriault, J.-C., Harrison, P., 1992. Phytoplankton dynamics in 

a coastal jet frontal region. Mar. Ecol. Prog. Ser. 86, 283–295. 

https://doi.org/10.3354/meps086283 

Levin, S.A., 1992. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur 

Award Lecture. Ecology 73, 1943–1967. https://doi.org/10.2307/1941447 

Lewis, S.L., Maslin, M.A., 2015. Defining the Anthropocene. Nature 519, 171–180. 

https://doi.org/10.1038/nature14258 

Li, Q., Jin, R., Ye, Z., Gu, J., Dan, L., He, J., Christakos, G., Agusti, S., Duarte, C.M., Wu, 

J., 2022. Mapping seagrass meadows in coastal China using GEE. Geocarto Int. 37, 

12602–12617. https://doi.org/10.1080/10106049.2022.2070672 

Lindeman, R.L., 1942. The trophic-dynamic aspect of ecology. Ecology 23, 399–417. 

https://doi.org/10.2307/1930126 

Lisitsyn, A.P., 1995. The marginal filter of the ocean. Oceanology 34, 671–682. 

Litchman, E., de Tezanos Pinto, P., Klausmeier, C.A., Thomas, M.K., Yoshiyama, K., 2010. 

Linking traits to species diversity and community structure in phytoplankton. 

Hydrobiologia 653, 15–28. https://doi.org/10.1007/s10750-010-0341-5 

Litchman, E., Klausmeier, C.A., 2008. Trait-Based Community Ecology of Phytoplankton. 

Annu. Rev. Ecol. Evol. Syst. 39, 615–639. 

https://doi.org/10.1146/annurev.ecolsys.39.110707.173549 

Litchman, E., Klausmeier, C.A., Schofield, O.M., Falkowski, P.G., 2007. The role of 

functional traits and trade-offs in structuring phytoplankton communities: Scaling from 

cellular to ecosystem level. Ecol. Lett. 10, 1170–1181. https://doi.org/10.1111/j.1461-

0248.2007.01117.x 

Lizcano-Sandoval, L., Anastasiou, C., Montes, E., Raulerson, G., Sherwood, E., Muller-



 

202 

Karger, F.E., 2022. Seagrass distribution, areal cover, and changes (1990–2021) in 

coastal waters off West-Central Florida, USA. Estuar. Coast. Shelf Sci. 279, 108134. 

https://doi.org/10.1016/j.ecss.2022.108134 

Lo Prejato, M., McKee, D., Mitchell, C., 2020. Inherent Optical Properties-Reflectance 

Relationships Revisited. J. Geophys. Res. C Ocean. 125, 1–20. 

https://doi.org/10.1029/2020JC016661 

Lohrenz, S.E., Weidemann, A.D., Tuel, M., 2003. Phytoplankton spectral absorption as 

influenced by community size structure and pigment composition. J. Plankton Res. 25, 

35–61. https://doi.org/10.1093/plankt/25.1.35 

Longhurst, A., Sathyendranath, S., Platt, T., Caverhill, C., 1995. An estimate of global 

primary production in the ocean from satellite radiometer data. J. Plankton Res. 17, 

1245–1271. https://doi.org/10.1093/plankt/17.6.1245 

Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., 

Kidwell, S.M., Kirby, M.X., Peterson, C.H., Jackson, J.B.C., 2006. Depletion, 

Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science (80-. ). 312, 

1806–1809. https://doi.org/10.1126/science.1128035 

Lucotte, M., D’Anglejan, B., 1986. Seasonal control of the Saint-Lawrence maximum 

turbidity zone by tidal-flat sedimentation. Estuaries 9, 84. 

https://doi.org/10.2307/1351940 

Lund, J.W.G., Kipling, C., Le Cren, E.D., 1958. The inverted microscope method of 

estimating algal numbers and the statistical basis of estimations by counting. 

Hydrobiologia 11, 143–170. https://doi.org/10.1007/BF00007865 

Lyons, M.B., Roelfsema, C.M., Phinn, S.R., 2013. Towards understanding temporal and 

spatial dynamics of seagrass landscapes using time-series remote sensing. Estuar. Coast. 

Shelf Sci. 120, 42–53. https://doi.org/10.1016/j.ecss.2013.01.015 

Mabit, R., Araújo, C.A.S., Singh, R.K., Bélanger, S., 2022. Empirical remote sensing 

algorithms to retrieve SPM and CDOM in québec coastal waters. Front. Remote Sens. 

3, 834908. https://doi.org/10.3389/frsen.2022.834908 

Maffione, R.A., Dana, D.R., 1997. Instruments and methods for measuring the backward-

scattering coefficient of ocean waters. Appl. Opt. 36, 6057. 

https://doi.org/10.1364/AO.36.006057 

Malone, T.C., Crocker, L.H., Pike, S.E., Wendler, B.W., 1988. Influences of river flow on 

the dynamics of phytoplankton production in a partially stratified estuary. Mar. Ecol. 

Prog. Ser. 48, 235–249. 



 

203 

Marie, D., Le Gall, F., Edern, R., Gourvil, P., Vaulot, D., 2017. Improvement of 

phytoplankton culture isolation using single cell sorting by flow cytometry. J. Phycol. 

53, 271–282. https://doi.org/10.1111/jpy.12495 

Maritorena, S., D’Andon, O.H.F., Mangin, A., Siegel, D.A., 2010. Merged satellite ocean 

color data products using a bio-optical model: Characteristics, benefits and issues. 

Remote Sens. Environ. 114, 1791–1804. https://doi.org/10.1016/j.rse.2010.04.002 

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., 

Kutler, J., Lim, T.-K., 2006. A Landsat Surface Reflectance Dataset for North America, 

1990–2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72. 

https://doi.org/10.1109/LGRS.2005.857030 

Massicotte, P., Asmala, E., Stedmon, C., Markager, S., 2017. Global distribution of dissolved 

organic matter along the aquatic continuum: Across rivers, lakes and oceans. Sci. Total 

Environ. 609, 180–191. https://doi.org/10.1016/j.scitotenv.2017.07.076 

Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempéré, R., Prieur, L., Bélanger, S., Babin, 

M., 2012. Tracing the transport of colored dissolved organic matter in water masses of 

the Southern Beaufort Sea : relationship with hydrographic characteristics. 

Biogeosciences 925–940. https://doi.org/10.5194/bg-9-925-2012 

Mattsson, T., Kortelainen, P., Räike, A., 2005. Export of DOM from Boreal Catchments: 

Impacts of Land Use Cover and Climate. Biogeochemistry 76, 373–394. 

https://doi.org/10.1007/s10533-005-6897-x 

McClain, C.R., 2009. A Decade of Satellite Ocean Color Observations. Ann. Rev. Mar. Sci. 

1, 19–42. https://doi.org/10.1146/annurev.marine.010908.163650 

McKenzie, L.J., Nordlund, L.M., Jones, B.L., Cullen-Unsworth, L.C., Roelfsema, C., 

Unsworth, R.K.F., 2020. The global distribution of seagrass meadows. Environ. Res. 

Lett. 15, 074041. https://doi.org/10.1088/1748-9326/ab7d06 

McMahon, K.W., Ambrose, W.G., Reynolds, M.J., Johnson, B.J., Whiting, A., Clough, L.M., 

2021. Arctic lagoon and nearshore food webs: Relative contributions of terrestrial 

organic matter, phytoplankton, and phytobenthos vary with consumer foraging 

dynamics. Estuar. Coast. Shelf Sci. 257, 107388. 

https://doi.org/10.1016/j.ecss.2021.107388 

Meadows, D.H., 2008. Thinking in systems: A primer. Chelsea Green Publishing Company, 

White River Junction, VT, USA. 

Michaud, R., 1985. La mousse de mer : de L’Isle-Verte à la Baie des Chaleurs. Leméac, 

Montréal, QC, Canada. 



 

204 

Minnett, P.J., Alvera-Azcárate, A., Chin, T.M., Corlett, G.K., Gentemann, C.L., Karagali, I., 

Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Saux Picart, S., Steele, M., 

Vazquez-Cuervo, J., 2019. Half a century of satellite remote sensing of sea-surface 

temperature. Remote Sens. Environ. 233, 111366. 

https://doi.org/10.1016/j.rse.2019.111366 

Minnett, P.J., Smith, M., Ward, B., 2011. Measurements of the oceanic thermal skin effect. 

Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 861–868. 

https://doi.org/10.1016/j.dsr2.2010.10.024 

Mobley, C.D., 1994. Light and Water: Radiative Transfer in Natural Waters. Academic 

Press, San Diego, CA, USA. 

Mohammadpour, G., Gagné, J.-P., Larouche, P., Montes-Hugo, M.A., 2017. Optical 

properties of size fractions of suspended particulate matter in littoral waters of Québec. 

Biogeosciences 14, 5297–5312. https://doi.org/10.5194/bg-14-5297-2017 

Mohammadpour, G., Montes-Hugo, M.A., Stavn, R., Gagné, J.-P., Larouche, P., 2015. 

Particle composition effects on MERIS-derived SPM: A case study in the Saint 

Lawrence Estuary. Can. J. Remote Sens. 41, 515–524. 

https://doi.org/10.1080/07038992.2015.1110012 

Montagnes, D.J.S., Berges, J.A., Harrison, P.J., Taylor, F.J.R., 1994. Estimating carbon, 

nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. 

Oceanogr. 39, 1044–1060. https://doi.org/10.4319/lo.1994.39.5.1044 

Montes-Hugo, M.A., Mohammadpour, G., 2012. Biogeo-optical modeling of SPM in the St. 

Lawrence Estuary. Can. J. Remote Sens. 38, 197–209. https://doi.org/10.5589/m12-033 

Montes‐Hugo, M., Xie, H., 2015. An inversion model based on salinity and remote sensing 

reflectance for estimating the phytoplankton absorption coefficient in the Saint 

Lawrence stuary. J. Geophys. Res. Ocean. 120, 6958–6970. 

https://doi.org/10.1002/2015JC011079 

Morel, A., 1974. Optical properties of pure water and pure seawater, in: Jerlov, N.G., 

Steeman-Nielsen, E. (Eds.), Optical Aspects of Oceanography. Academic Press, New 

York, NY, pp. 1–24. 

Morel, A., Ahn, Y.-H., Partensky, F., Vaulot, D., Claustre, H., 1993. 

<I>Prochlorococcus</I> and <I>Synechococcus</I>: A comparative study of their 

optical properties in relation to their size and pigmentation. J. Mar. Res. 51, 617–649. 

https://doi.org/10.1357/0022240933223963 

Morel, A., Prieur, L., 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22, 

709–722. https://doi.org/10.4319/lo.1977.22.4.0709 



 

205 

Moses, W.J., Ackleson, S.G., Hair, J.W., Hostetler, C.A., Miller, W.D., 2016. Spatial scales 

of optical variability in the coastal ocean: Implications for remote sensing and in situ 

sampling. J. Geophys. Res. Ocean. 121, 4194–4208. 

https://doi.org/10.1002/2016JC011767 

Muehlstein, L.K., Porter, D., Short, F.T., 1991. Labyrinthula Zosterae Sp. Nov. , The 

Causative Agent of Wasting Disease of Eelgrass, Zostera Marina. Mycologia 83, 180–

191. https://doi.org/10.1080/00275514.1991.12025994 

Mukherjee, S., Hedley, J.D., Fichot, C.G., Laliberté, J., Bélanger, S., 2023. Optical closure 

in highly absorptive coastal waters: significance of inelastic scattering processes. Opt. 

Express 31, 35178. https://doi.org/10.1364/OE.501732 

Muller-Karger, F.E., Hestir, E., Ade, C., Turpie, K., Roberts, D.A., Siegel, D., Miller, R.J., 

Humm, D., Izenberg, N., Keller, M., Morgan, F., Frouin, R., Dekker, A.G., Gardner, R., 

Goodman, J., Schaeffer, B., Franz, B.A., Pahlevan, N., Mannino, A.G., Concha, J.A., 

Ackleson, S.G., Cavanaugh, K.C., Romanou, A., Tzortziou, M., Boss, E.S., Pavlick, R., 

Freeman, A., Rousseaux, C.S., Dunne, J., Long, M.C., Klein, E., McKinley, G.A., Goes, 

J., Letelier, R., Kavanaugh, M., Roffer, M., Bracher, A., Arrigo, K.R., Dierssen, H., 

Zhang, X., Davis, F.W., Best, B., Guralnick, R., Moisan, J., Sosik, H.M., Kudela, R., 

Mouw, C.B., Barnard, A.H., Palacios, S., Roesler, C., Drakou, E.G., Appeltans, W., 

Jetz, W., 2018. Satellite sensor requirements for monitoring essential biodiversity 

variables of coastal ecosystems. Ecol. Appl. 28, 749–760. 

https://doi.org/10.1002/eap.1682 

Murphy, G.E.P., Dunic, J.C., Adamczyk, E.M., Bittick, S.J., Côté, I.M., Cristiani, J., 

Geissinger, E.A., Gregory, R.S., Lotze, H.K., O’Connor, M.I., Araújo, C.A.S., Rubidge, 

E.M., Templeman, N.D., Wong, M.C., 2021. From coast to coast to coast: ecology and 

management of seagrass ecosystems across Canada. FACETS 6, 139–179. 

https://doi.org/10.1139/facets-2020-0020 

Murphy, G.E.P., Wong, M.C., Lotze, H.K., 2019. A human impact metric for coastal 

ecosystems with application to seagrass beds in Atlantic Canada. FACETS 4, 210–237. 

https://doi.org/10.1139/facets-2018-0044 

Neukermans, G., Loisel, H., Mériaux, X., Astoreca, R., McKee, D., 2012. In situ variability 

of mass-specific beam attenuation and backscattering of marine particles with respect 

to particle size, density, and composition. Limnol. Oceanogr. 57, 124–144. 

https://doi.org/10.4319/lo.2012.57.1.0124 

Neukermans, G., Reynolds, R.A., Stramski, D., 2016. Optical classification and 

characterization of marine particle assemblages within the western Arctic Ocean. 

Limnol. Oceanogr. 61, 1472–1494. https://doi.org/10.1002/lno.10316 

Nieke, B., Reuter, R., Heuermann, R., Wang, H., Babin, M., Therriault, J.C., 1997. Light 



 

206 

absorption and fluorescence properties of chromophoric dissolved organic matter 

(CDOM), in the St. Lawrence Estuary (Case 2 waters). Cont. Shelf Res. 17, 235–252. 

https://doi.org/10.1016/S0278-4343(96)00034-9 

Noernberg, M.A., Mizerkowski, B.D., Mafra, L.L., Freitas, F.H., 2020. Seasonal evolution 

of particulate and dissolved absorption coefficients in a subtropical estuary. Estuar. 

Coast. Shelf Sci. 244, 106907. https://doi.org/10.1016/j.ecss.2020.106907 

Nordstrom, D.K., 2012. Models, validation, and applied geochemistry: Issues in science, 

communication, and philosophy. Appl. Geochemistry 27, 1899–1919. 

https://doi.org/10.1016/j.apgeochem.2012.07.007 

Normandeau, A., Lajeunesse, P., St-Onge, G., 2013. Shallow-water longshore drift-fed 

submarine fan deposition (Moisie River Delta, Eastern Canada). Geo-Marine Lett. 33, 

391–403. https://doi.org/10.1007/s00367-013-0336-0 

Odermatt, D., Gitelson, A., Brando, V.E., Schaepman, M., 2012. Review of constituent 

retrieval in optically deep and complex waters from satellite imagery. Remote Sens. 

Environ. 118, 116–126. https://doi.org/10.1016/j.rse.2011.11.013 

Oliveira, A.L., Rudorff, N., Kampel, M., Sathyendranath, S., Pompeu, M., Detoni, A.M.S., 

Cesar, G.M., 2021. Phytoplankton assemblages and optical properties in a coastal region 

of the South Brazil Bight. Cont. Shelf Res. 227, 104509. 

https://doi.org/10.1016/j.csr.2021.104509 

Ondiviela, B., Losada, I.J., Lara, J.L., Maza, M., Galván, C., Bouma, T.J., van Belzen, J., 

2014. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 

158–168. https://doi.org/10.1016/j.coastaleng.2013.11.005 

Orth, R.J., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L., Hughes, A.R., 

Kendrick, G.A., Kenworthy, W.J., Short, F.T., Waycott, M., Williams, S.L., 2006. A 

global crisis for seagrass ecosystems. Bioscience 56, 987–996. 

Ostrom, E., 2009. A General Framework for Analyzing Sustainability of Social-Ecological 

Systems. Science (80-. ). 325, 419–422. https://doi.org/10.1126/science.1172133 

Pan, Y., Bélanger, S., Huot, Y., 2022. Evaluation of Atmospheric Correction Algorithms 

over Lakes for High-Resolution Multispectral Imagery: Implications of Adjacency 

Effect. Remote Sens. 14, 2979. https://doi.org/10.3390/rs14132979 

Para, J., Coble, P.G., Charrière, B., Tedetti, M., Fontana, C., Sempéré, R., 2010. Fluorescence 

and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal 

surface waters of the northwestern Mediterranean Sea, influence of the Rhône River. 

Biogeosciences 7, 4083–4103. https://doi.org/10.5194/bg-7-4083-2010 



 

207 

Parsons, T.R., Maita, Y., Lalli, C.M., 1984. A manual of chemical and biological methods 

for seawater analysis. Pergamon Press, Toronto, Canada. 

https://doi.org/10.1016/C2009-0-07774-5 

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., 

Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, 

E., Faith, D.P., Freyhof, J., Gregory, R.D., Heip, C., Hoft, R., Hurtt, G., Jetz, W., Karp, 

D.S., McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., 

Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M., Wegmann, M., 2013. 

Essential Biodiversity Variables. Science (80-. ). 339, 277–278. 

https://doi.org/10.1126/science.1229931 

Preisendorfer, R.W., 1976. Hydrologic Optics. Volume I. National Oceanic and Atmospheric 

Administration, Environmental Research Laboratories, Pacific Marine Environmental 

Laboratory, Honolulu, HI, USA. 

Pritchard, D.W., 1967. What is an estuary: Physical viewpoint, in: Lauff, G.H. (Ed.), 

Estuaries. American Association for the Advancement of Science, Washington, DC, pp. 

3–5. 

Provencher, L., Deslandes, S., 2012. Utilisation d’images satellitaires pour évaluer la 

superficie, l’étendue et la densité de l’herbier de la zostère marine (Zostera marina) de 

la péninsule de Manicouagan (Québec). Rapp. Tech. Can. des Sci. halieutiques Aquat. 

2988 16. 

Ralph, P.J., Durako, M.J., Enríquez, S., Collier, C.J., Doblin, M.A., 2007. Impact of light 

limitation on seagrasses. J. Exp. Mar. Bio. Ecol. 350, 176–193. 

https://doi.org/10.1016/j.jembe.2007.06.017 

Redman, C.L., Grove, J.M., Kuby, L.H., 2004. Integrating Social Science into the Long-

Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change 

and Ecological Dimensions of Social Change. Ecosystems 7, 161–171. 

https://doi.org/10.1007/s10021-003-0215-z 

Regier, H.A., Kay, J.J., 1996. An heuristic model of transformations of the aquatic 

ecosystems of the Great Lakes-St. Lawrence River Basin. J. Aquat. Ecosyst. Heal. 5, 3–

21. https://doi.org/10.1007/BF00691726 

Reynolds, R.A., Stramski, D., 2021. Variability in Oceanic Particle Size Distributions and 

Estimation of Size Class Contributions Using a Non‐parametric Approach. J. Geophys. 

Res. Ocean. 126. https://doi.org/10.1029/2021JC017946 

Reynolds, R.A., Stramski, D., 2019. Optical characterization of marine phytoplankton 

assemblages within surface waters of the western Arctic Ocean. Limnol. Oceanogr. 64, 

2478–2496. https://doi.org/10.1002/lno.11199 



 

208 

Reynolds, R.A., Stramski, D., Neukermans, G., 2016. Optical backscattering by particles in 

Arctic seawater and relationships to particle mass concentration, size distribution, and 

bulk composition. Limnol. Oceanogr. 61, 1869–1890. 

https://doi.org/10.1002/lno.10341 

Röhr, M.E., Holmer, M., Baum, J.K., Björk, M., Boyer, K., Chin, D., Chalifour, L., Cimon, 

S., Cusson, M., Dahl, M., Deyanova, D., Duffy, J.E., Eklöf, J.S., Geyer, J.K., Griffin, 

J.N., Gullström, M., Hereu, C.M., Hori, M., Hovel, K.A., Hughes, A.R., Jorgensen, P., 

Kiriakopolos, S., Moksnes, P.-O., Nakaoka, M., O’Connor, M.I., Peterson, B., Reiss, 

K., Reynolds, P.L., Rossi, F., Ruesink, J., Santos, R., Stachowicz, J.J., Tomas, F., Lee, 

K.-S., Unsworth, R.K.F., Boström, C., 2018. Blue Carbon Storage Capacity of 

Temperate Eelgrass ( Zostera marina ) Meadows. Global Biogeochem. Cycles 32, 1457–

1475. https://doi.org/10.1029/2018GB005941 

Roselli, L., Litchman, E., 2017. Phytoplankton traits, functional groups and community 

organization. J. Plankton Res. 39, 491–493. https://doi.org/10.1093/plankt/fbx019 

Röttgers, R., Dupouy, C., Taylor, B.B., Bracher, A., Woźniak, S.B., 2014. Mass-specific light 

absorption coefficients of natural aquatic particles in the near-infrared spectral region. 

Limnol. Oceanogr. 59, 1449–1460. https://doi.org/10.4319/lo.2014.59.5.1449 

Röttgers, R., Gehnke, S., 2012. Measurement of light absorption by aquatic particles: 

improvement of the quantitative filter technique by use of an integrating sphere 

approach. Appl. Opt. 51, 1336. https://doi.org/10.1364/AO.51.001336 

Roy, S., Blouin, F., Jacques, A., Therriault, J.C., 2008. Absorption properties of 

phytoplankton in the Lower Estuary and Gulf of St. Lawrence (Canada). Can. J. Fish. 

Aquat. Sci. 65, 1721–1737. https://doi.org/10.1139/F08-089 

Roy, S., Chanut, J., Gosselin, M., Sime-Ngando, T., 1996. Characterization of phytoplankton 

communities in the lower St. Lawrence Estuary using HPLC-detected pigments and cell 

microscopy. Mar. Ecol. Prog. Ser. 142, 55–73. https://doi.org/10.3354/meps142055 

Roy, S., Pitcher, Grant C., Kudela, R.M., Smith, M.E., Bernard, S., Mazeran, C., 2021. Ocean 

colour remote sensing of dinoflagellate blooms associated with paralytic shellfish 

poisoning, in: Bernard, S., Kudela, R.M., Robertson Lain, L., Pitcher, G.C. (Eds.), 

Observation of Harmful Algal Blooms with Ocean Colour Radiometry. International 

Ocean Colour Coordinating Group, Dartmouth, Canada, pp. 39–50. 

https://doi.org/10.25607/OBP-1042 

Salvador, S., Chan, P., 2004. Determining the number of clusters/segments in hierarchical 

clustering/segmentation algorithms, in: 16th IEEE International Conference on Tools 

with Artificial Intelligence. IEEE Comput. Soc, pp. 576–584. 

https://doi.org/10.1109/ICTAI.2004.50 



 

209 

Santer, R., Schmechtig, C., 2000. Adjacency effects on water surfaces: primary scattering 

approximation and sensitivity study. Appl. Opt. 39, 361. 

https://doi.org/10.1364/AO.39.000361 

Sathyendranath, S., Prieur, L., Morel, A., 1989. A three-component model of ocean colour 

and its application to remote sensing of phytoplankton pigments in coastal waters. Int. 

J. Remote Sens. 10, 1373–1394. https://doi.org/10.1080/01431168908903974 

Saulquin, B., Hamdi, A., Gohin, F., Populus, J., Mangin, A., D’Andon, O.F., 2013. 

Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application 

to seabed habitat mapping. Remote Sens. Environ. 128, 224–233. 

https://doi.org/10.1016/j.rse.2012.10.002 

Schott, J.R., Gerace, A., Woodcock, C.E., Wang, S., Zhu, Z., Wynne, R.H., Blinn, C.E., 

2016. The impact of improved signal-to-noise ratios on algorithm performance: Case 

studies for Landsat class instruments. Remote Sens. Environ. 185, 37–45. 

https://doi.org/10.1016/j.rse.2016.04.015 

Sebastian, T., Sreenath, K.R., Sreeram, M.P., Ranith, R., 2023. Dwindling seagrasses: A 

multi-temporal analysis on Google Earth Engine. Ecol. Inform. 74, 101964. 

https://doi.org/10.1016/j.ecoinf.2022.101964 

Seegers, B.N., Stumpf, R.P., Schaeffer, B.A., Loftin, K.A., Werdell, P.J., 2018. Performance 

metrics for the assessment of satellite data products: an ocean color case study. Opt. 

Express 26, 7404. https://doi.org/10.1364/OE.26.007404 

Shaw, J.-L., 2019. Hydrodynamique de la baie de Sept-Îles. M.Sc. Thesis. Université du 

Québec à Rimouski. 

Shaw, J.-L., Bourgault, D., Dumont, D., Lefaivre, D., 2022. Hydrodynamics of the Bay of 

Sept-Îles. Atmosphere-Ocean 0, 1–17. https://doi.org/10.1080/07055900.2022.2141605 

Short, F., Carruthers, T., Dennison, W., Waycott, M., 2007. Global seagrass distribution and 

diversity: A bioregional model. J. Exp. Mar. Bio. Ecol. 350, 3–20. 

https://doi.org/10.1016/j.jembe.2007.06.012 

Short, F.T., Ibelings, B.W., Den Hartog, C., 1988. Comparison of a current eelgrass disease 

to the wasting disease in the 1930s. Aquat. Bot. 30, 295–304. 

https://doi.org/10.1016/0304-3770(88)90062-9 

Sieracki, M.E., Verity, P.G., Stoecker, D.K., 1993. Plankton community response to 

sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom. 

Deep. Res. Part II 40, 213–225. https://doi.org/10.1016/0967-0645(93)90014-E 

SIGEC, 2023. Système Intégré de Gestion de l’Environnement Côtier (SIGEC Web) [WWW 



 

210 

Document]. Lab. Dyn. Gest. intégrée des Zo. côtières. URL 

https://ldgizc.uqar.ca/Web/sigecweb (accessed 4.25.23). 

SLGO [WWW Document], n.d. URL https://ogsl.ca/en/home-slgo/ (accessed 2.19.21). 

Small, C., Nicholls, R.J., 2003. A Global Analysis of Human Settlement in Coastal Zones. J. 

Coast. Res. 19, 584–589. 

Smith, R.C., Baker, K.S., 1981. Optical properties of the clearest natural waters (200–800 

nm). Appl. Opt. 20, 177. https://doi.org/10.1364/AO.20.000177 

Smith, S. V., Mackenzie, F.T., 1987. The ocean as a net heterotrophic system: Implications 

from the carbon biogeochemical cycle. Global Biogeochem. Cycles 1, 187–198. 

https://doi.org/10.1029/GB001i003p00187 

Sokal, R.R., Rohlf, F.J., 1962. The comparison of dendrograms by objective methods. Taxon 

11, 33–40. https://doi.org/10.2307/1217208 

St. Pierre, K.A., Oliver, A.A., Tank, S.E., Hunt, B.P. V., Giesbrecht, I., Kellogg, C.T.E., 

Jackson, J.M., Lertzman, K.P., Floyd, W.C., Korver, M.C., 2020. Terrestrial exports of 

dissolved and particulate organic carbon affect nearshore ecosystems of the Pacific 

coastal temperate rainforest. Limnol. Oceanogr. 65, 2657–2675. 

https://doi.org/10.1002/lno.11538 

Stedmon, C.A., Markager, S., Bro, R., 2003. Tracing dissolved organic matter in aquatic 

environments using a new approach to fluorescence spectroscopy. Mar. Chem. 82, 239–

254. https://doi.org/10.1016/S0304-4203(03)00072-0 

Stedmon, C.A., Osburn, C.L., Kragh, T., 2010. Tracing water mass mixing in the Baltic–

North Sea transition zone using the optical properties of coloured dissolved organic 

matter. Estuar. Coast. Shelf Sci. 87, 156–162. 

https://doi.org/10.1016/j.ecss.2009.12.022 

Stommel, H., 1963. Varieties of oceanographic experience: The ocean can be investigated as 

a hydrodynamical phenomenon as well as explored geographically. Science (80-. ). 139, 

572–576. https://doi.org/10.1126/science.139.3555.572 

Stomp, M., Huisman, J., Stal, L.J., Matthijs, H.C.P., 2007. Colorful niches of phototrophic 

microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282. 

https://doi.org/10.1038/ismej.2007.59 

Stramski, D., Babin, M., Woźniak, S.B., 2007. Variations in the optical properties of 

terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Oceanogr. 

52, 2418–2433. https://doi.org/10.4319/lo.2007.52.6.2418 



 

211 

Stramski, D., Boss, E., Bogucki, D., Voss, K.J., 2004. The role of seawater constituents in 

light backscattering in the ocean. Prog. Oceanogr. 61, 27–56. 

https://doi.org/10.1016/j.pocean.2004.07.001 

Stramski, D., Kiefer, D.A., 1991. Light scattering by microorganisms in the open ocean. 

Prog. Oceanogr. 28, 343–383. https://doi.org/10.1016/0079-6611(91)90032-H 

Stramski, D., Reynolds, R.A., Kaczmarek, S., Uitz, J., Zheng, G., 2015. Correction of 

pathlength amplification in the filter-pad technique for measurements of particulate 

absorption coefficient in the visible spectral region. Appl. Opt. 54, 6763. 

https://doi.org/10.1364/AO.54.006763 

Sun, X., Shen, F., Brewin, R.J.W., Li, M., Zhu, Q., 2022. Light absorption spectra of naturally 

mixed phytoplankton assemblages for retrieval of phytoplankton group composition in 

coastal oceans. Limnol. Oceanogr. 67, 946–961. https://doi.org/10.1002/lno.12047 

Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., 

Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., Cornejo-Castillo, F.M., Costea, 

P.I., Cruaud, C., D’Ovidio, F., Engelen, S., Ferrera, I., Gasol, J.M., Guidi, L., 

Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B.T., 

Royo-Llonch, M., Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., 

Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., 

Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., 

Sullivan, M.B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S.G., Bork, 

P., Boss, E., Bowler, C., Follows, M., Karp-Boss, L., Krzic, U., Reynaud, E.G., Sardet, 

C., Sieracki, M., Velayoudon, D., 2015. Structure and function of the global ocean 

microbiome. Science (80-. ). 348, 1–10. https://doi.org/10.1126/science.1261359 

Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., Bopp, L., 2021. Around one third of 

current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. 

Commun. 12, 169. https://doi.org/10.1038/s41467-020-20470-z 

Tett, P., Carreira, C., Mills, D.K., van Leeuwen, S., Foden, J., Bresnan, E., Gowen, R.J., 

2008. Use of a Phytoplankton Community Index to assess the health of coastal waters. 

ICES J. Mar. Sci. 65, 1475–1482. https://doi.org/10.1093/icesjms/fsn161 

Therriault, J.-C., Legendre, L., Demers, S., 1990. Oceanography and ecology of 

phytoplankton in the St.Lawrence Estuary, in: El-Sabh, M., Silverberg, N. (Eds.), 

Oceanography of a Large-Scale Estuarine System. pp. 269–295. 

https://doi.org/10.1007/978-1-4615-7534-4_12 

Therriault, J.-C., Levasseur, M., 1986. Freshwater Runoff Control of the Spatio-Temporal 

Distribution of Phytoplankton in the Lower St.Lawrence Estuary (Canada), in: The Role 

of Freshwater Outflow in Coastal Marine Ecosystems. Springer Berlin, pp. 251–260. 

https://doi.org/10.1007/978-3-642-70886-2_17 



 

212 

Therriault, J.C., Levasseur, M., 1985. Control of phytoplankton production in the Lower 

St.Lawrence Estuary: Light and Freshwater runoff. Nat. Can. 112, 77–96. 

Thoral, F., Pinkerton, M.H., Tait, L.W., Schiel, D.R., 2023. Spectral light quality on the 

seabed matters for macroalgal community composition at the extremities of light 

limitation. Limnol. Oceanogr. 68, 902–916. https://doi.org/10.1002/lno.12318 

Tomasko, D., Alderson, M., Burnes, R., Hecker, J., Leverone, J., Raulerson, G., Sherwood, 

E., 2018. Widespread recovery of seagrass coverage in Southwest Florida (USA): 

Temporal and spatial trends and management actions responsible for success. Mar. 

Pollut. Bull. 135, 1128–1137. https://doi.org/10.1016/j.marpolbul.2018.08.049 

Traganos, D., Lee, C.B., Blume, A., Poursanidis, D., Čižmek, H., Deter, J., Mačić, V., 

Montefalcone, M., Pergent, G., Pergent-Martini, C., Ricart, A.M., Reinartz, P., 2022a. 

Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Front. 

Mar. Sci. 9, 1–13. https://doi.org/10.3389/fmars.2022.871799 

Traganos, D., Pertiwi, A.P., Lee, C.B., Blume, A., Poursanidis, D., Shapiro, A., 2022b. Earth 

observation for ecosystem accounting: spatially explicit national seagrass extent and 

carbon stock in Kenya, Tanzania, Mozambique and Madagascar. Remote Sens. Ecol. 

Conserv. 8, 778–792. https://doi.org/10.1002/rse2.287 

Trefault, N., De la Iglesia, R., Moreno-Pino, M., Lopes dos Santos, A., Gérikas Ribeiro, C., 

Parada-Pozo, G., Cristi, A., Marie, D., Vaulot, D., 2021. Annual phytoplankton 

dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula. Sci. Rep. 11, 

1368. https://doi.org/10.1038/s41598-020-80568-8 

Tremblay, G., Belzile, C., Gosselin, M., Poulin, M., Roy, S., Tremblay, J., 2009. Late 

summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: 

strong numerical dominance by picoeukaryotes. Aquat. Microb. Ecol. 54, 55–70. 

https://doi.org/10.3354/ame01257 

Tremblay, J.-É., Legendre, L., Therriault, J.-C., 1997. Size-differential Effects of Vertical 

Stability on the Biomass and Production of Phytoplankton in a Large Estuarine System. 

Estuar. Coast. Shelf Sci. 45, 415–431. https://doi.org/10.1006/ecss.1996.0223 

Tremblay, J.É., Legendre, L., Klein, B., Therriault, J.-C., 2000. Size-differential uptake of 

nitrogen and carbon in a marginal sea (Gulf of St. Lawrence, Canada): significance of 

diel periodicity and urea uptake. Deep. Res. Part II Top. Stud. Oceanogr. 47, 489–518. 

https://doi.org/10.1016/S0967-0645(99)00116-2 

Tremblay, J.É., Michel, C., Hobson, K.A., Gosselin, M., Price, N.M., 2006. Bloom dynamics 

in early opening waters of the Arctic Ocean. Limnol. Oceanogr. 51, 900–912. 

https://doi.org/10.4319/lo.2006.51.2.0900 



 

213 

Tremblay, L., Gagné, J.-P., 2009. Organic matter distribution and reactivity in the waters of 

a large estuarine system. Mar. Chem. 116, 1–12. 

https://doi.org/10.1016/j.marchem.2009.09.006 

Trombetta, T., Vidussi, F., Mas, S., Parin, D., Simier, M., Mostajir, B., 2019. Water 

temperature drives phytoplankton blooms in coastal waters. PLoS One 14, 1–28. 

https://doi.org/10.1371/journal.pone.0214933 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sens. Environ. 8, 127–150. https://doi.org/10.1016/0034-

4257(79)90013-0 

Turner, M.G., 1989. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. 

Syst. 20, 171–197. https://doi.org/10.1146/annurev.es.20.110189.001131 

Turner, R.K., Subak, S., Adger, W.N., 1996. Pressures, trends, and impacts in coastal zones: 

Interactions between socioeconomic and natural systems. Environ. Manage. 20, 159–

173. https://doi.org/10.1007/BF01204001 

Tzortziou, M., Herman, J.R., Gallegos, C.L., Neale, P.J., Subramaniam, A., Harding, L.W., 

Ahmad, Z., 2006. Bio-optics of the Chesapeake Bay from measurements and radiative 

transfer closure. Estuar. Coast. Shelf Sci. 68, 348–362. 

https://doi.org/10.1016/j.ecss.2006.02.016 

Tzortziou, M., Osburn, C.L., Neale, P.J., 2007. Photobleaching of Dissolved Organic 

Material from a Tidal Marsh-Estuarine System of the Chesapeake Bay†. Photochem. 

Photobiol. 83, 782–792. https://doi.org/10.1111/j.1751-1097.2007.00142.x 

Uitz, J., Claustre, H., Morel, A., Hooker, S.B., 2006. Vertical distribution of phytoplankton 

communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. 

Res. 111, C08005. https://doi.org/10.1029/2005JC003207 

Unsworth, R.K.F., Collier, C.J., Waycott, M., Mckenzie, L.J., Cullen-Unsworth, L.C., 2015. 

A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46. 

https://doi.org/10.1016/j.marpolbul.2015.08.016 

Unsworth, R.K.F., McKenzie, L.J., Collier, C.J., Cullen-Unsworth, L.C., Duarte, C.M., 

Eklöf, J.S., Jarvis, J.C., Jones, B.L., Nordlund, L.M., 2019a. Global challenges for 

seagrass conservation. Ambio 48, 801–815. https://doi.org/10.1007/s13280-018-1115-

y 

Unsworth, R.K.F., Nordlund, L.M., Cullen-Unsworth, L.C., 2019b. Seagrass meadows 

support global fisheries production. Conserv. Lett. 12, e12566. 

https://doi.org/10.1111/conl.12566 



 

214 

USGS, 2023. Landsat 8-9 Level 2 Science Product (L2SP) Guide. 

USGS, 2021. Landsat 4-7 Level 2 Science Product (L2SP) Guide. 

Vallières, C., Retamal, L., Ramlal, P., Osburn, C.L., Vincent, W.F., 2008. Bacterial 

production and microbial food web structure in a large arctic river and the coastal Arctic 

Ocean. J. Mar. Syst. 74, 756–773. https://doi.org/10.1016/j.jmarsys.2007.12.002 

Van Assche, K., Verschraegen, G., Valentinov, V., Gruezmacher, M., 2019. The social, the 

ecological, and the adaptive. Von Bertalanffy’s general systems theory and the adaptive 

governance of social-ecological systems. Syst. Res. Behav. Sci. 36, 308–321. 

https://doi.org/10.1002/sres.2587 

Van der Linde, D.W., 1998. Protocol for determination of total suspended matter in oceans 

and coastal zones. JRC Technical note I.98.182. 

Vance, T.C., Doel, R.E., 2010. Graphical Methods and Cold War Scientific Practice: The 

Stommel Diagram’s Intriguing Journey from the Physical to the Biological 

Environmental Sciences. Hist. Stud. Nat. Sci. 40, 1–47. 

https://doi.org/10.1525/hsns.2010.40.1.1 

Vandevelde, T., Legendre, L., Demers, S., Therriault, J.C., 1989. Circadian variations in 

photosynthetic assimilation and estimation of daily phytoplankton production. Mar. 

Biol. 100, 525–531. https://doi.org/10.1007/BF00394829 

Vandevelde, T., Legendre, L., Therriault, J.-C., Demers, S., Bah, A., 1987. Subsurface 

chlorophyll maximum and hydrodynamics of the water column. J. Mar. Res. 45, 377–

396. https://doi.org/10.1357/002224087788401151 

Vanhellemont, Q., 2020a. Sensitivity analysis of the dark spectrum fitting atmospheric 

correction for metre- and decametre-scale satellite imagery using autonomous 

hyperspectral radiometry. Opt. Express 28, 29948. https://doi.org/10.1364/OE.397456 

Vanhellemont, Q., 2020b. Automated water surface temperature retrieval from Landsat 

8/TIRS. Remote Sens. Environ. 237, 111518. https://doi.org/10.1016/j.rse.2019.111518 

Vanhellemont, Q., 2020c. Combined land surface emissivity and temperature estimation 

from Landsat 8 OLI and TIRS. ISPRS J. Photogramm. Remote Sens. 166, 390–402. 

https://doi.org/10.1016/j.isprsjprs.2020.06.007 

Vanhellemont, Q., 2019. Adaptation of the dark spectrum fitting atmospheric correction for 

aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 225, 

175–192. https://doi.org/10.1016/j.rse.2019.03.010 

Vaulot, D., Eikrem, W., Viprey, M., Moreau, H., 2008. The diversity of small eukaryotic 



 

215 

phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820. 

https://doi.org/10.1111/j.1574-6976.2008.00121.x 

Veettil, B.K., Ward, R.D., Lima, M.D.A.C., Stankovic, M., Hoai, P.N., Quang, N.X., 2020. 

Opportunities for seagrass research derived from remote sensing: A review of current 

methods. Ecol. Indic. 117, 106560. https://doi.org/10.1016/j.ecolind.2020.106560 

Vézina, A.F., Gratton, Y., Vinet, P., 1995. Mesoscale physical—biological variability during 

a summer phytoplankton bloom in the lower St. Lawrence Estuary. Estuar. Coast. Shelf 

Sci. 41, 393–411. https://doi.org/10.1016/0272-7714(95)90001-2 

von Bertalanffy, L., 1950. An outline of general system theory. Br. J. Philos. Sci. 1, 134–

165. https://doi.org/10.1093/bjps/I.2.134 

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. 

Assoc. 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845 

Wassmann, P., Duarte, C.M., Agustí, S., Sejr, M.K., 2011. Footprints of climate change in 

the Arctic marine ecosystem. Glob. Chang. Biol. 17, 1235–1249. 

https://doi.org/10.1111/j.1365-2486.2010.02311.x 

Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., 

Calladine, A., Fourqurean, J.W., Heck, K.L., Hughes, A.R., Kendrick, G.A., 

Kenworthy, W.J., Short, F.T., Williams, S.L., 2009. Accelerating loss of seagrasses 

across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381. 

https://doi.org/10.1073/pnas.0905620106 

Weise, A.M., Levasseur, M., Saucier, F.J., Senneville, S., Bonneau, E., Roy, S., Sauvé, G., 

Michaud, S., Fauchot, J., 2002. The link between precipitation, river runoff, and blooms 

of the toxic dinoflagellate Alexandrium tamarense in the St. Lawrence. Can. J. Fish. 

Aquat. Sci. 59, 464–473. https://doi.org/10.1139/f02-024 

Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., Mopper, K., 2003. 

Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical 

Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 37, 

4702–4708. https://doi.org/10.1021/es030360x 

Wentzky, V.C., Tittel, J., Jäger, C.G., Bruggeman, J., Rinke, K., 2020. Seasonal succession 

of functional traits in phytoplankton communities and their interaction with trophic 

state. J. Ecol. 108, 1649–1663. https://doi.org/10.1111/1365-2745.13395 

Werdell, P.J., McKinna, L.I.W., Boss, E., Ackleson, S.G., Craig, S.E., Gregg, W.W., Lee, 

Z., Maritorena, S., Roesler, C.S., Rousseaux, C.S., Stramski, D., Sullivan, J.M., 

Twardowski, M.S., Tzortziou, M., Zhang, X., 2018. An overview of approaches and 

challenges for retrieving marine inherent optical properties from ocean color remote 



 

216 

sensing. Prog. Oceanogr. 160, 186–212. https://doi.org/10.1016/j.pocean.2018.01.001 

Whitfield, A.K., 2017. The role of seagrass meadows, mangrove forests, salt marshes and 

reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish Biol. Fish. 

27, 75–110. https://doi.org/10.1007/s11160-016-9454-x 

Wilson, E.H., Sader, S.A., 2002. Detection of forest harvest type using multiple dates of 

Landsat TM imagery. Remote Sens. Environ. 80, 385–396. 

https://doi.org/10.1016/S0034-4257(01)00318-2 

Winder, M., Carstensen, J., Galloway, A.W.E., Jakobsen, H.H., Cloern, J.E., 2017. The land-

sea interface: A source of high-quality phytoplankton to support secondary production. 

Limnol. Oceanogr. 62, S258–S271. https://doi.org/10.1002/lno.10650 

Wulder, M.A., Roy, D.P., Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M., 

Healey, S., Zhu, Z., Scambos, T.A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, 

C.J., Masek, J.G., Hermosilla, T., White, J.C., Belward, A.S., Schaaf, C., Woodcock, 

C.E., Huntington, J.L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A., Pekel, J.-F., 

Strobl, P., Cook, B.D., 2022. Fifty years of Landsat science and impacts. Remote Sens. 

Environ. 280, 113195. https://doi.org/10.1016/j.rse.2022.113195 

Xie, H., Aubry, C., Bélanger, S., Song, G., 2012. The dynamics of absorption coefficients of 

CDOM and particles in the St. Lawrence estuarine system: Biogeochemical and 

physical implications. Mar. Chem. 128–129, 44–56. 

https://doi.org/10.1016/j.marchem.2011.10.001 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open 

water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 

https://doi.org/10.1080/01431160600589179 

Xu, M., Barnes, B.B., Hu, C., Carlson, P.R., Yarbro, L.A., 2023. Water clarity monitoring in 

complex coastal environments: Leveraging seagrass light requirement toward more 

functional satellite ocean color algorithms. Remote Sens. Environ. 286, 113418. 

https://doi.org/10.1016/j.rse.2022.113418 

Xu, Y., Feng, L., Zhao, D., Lu, J., 2020. Assessment of Landsat atmospheric correction 

methods for water color applications using global AERONET-OC data. Int. J. Appl. 

Earth Obs. Geoinf. 93, 102192. https://doi.org/10.1016/j.jag.2020.102192 

Yayla, K.M., 2009. Approche empirique de la télédétection de la chlorophylle d’eaux à 

complexité optique dans l’estuaire et le golfe du Saint-Laurent. PhD Diss. Université de 

Sherbrooke, Québec, Canada. 

Zapata, M., Rodríguez, F., Garrido, J., 2000. Separation of chlorophylls and carotenoids from 

marine phytoplankton:a new HPLC method using a reversed phase C8 column and 



 

217 

pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45. 

https://doi.org/10.3354/meps195029 

Zhang, X., Hu, L., He, M.-X., 2009. Scattering by pure seawater at high salinity. Opt. Express 

17, 5698–5710. https://doi.org/10.1364/OE.17.012685 

Zhang, Y., Xie, H., 2015. Photomineralization and photomethanification of dissolved organic 

matter in Saguenay River surface water. Biogeosciences 12, 6823–6836. 

https://doi.org/10.5194/bg-12-6823-2015 

Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat 

imagery. Remote Sens. Environ. 118, 83–94. https://doi.org/10.1016/j.rse.2011.10.028 

Zoffoli, M.L., Gernez, P., Godet, L., Peters, S., Oiry, S., Barillé, L., 2021. Decadal increase 

in the ecological status of a North-Atlantic intertidal seagrass meadow observed with 

multi-mission satellite time-series. Ecol. Indic. 130, 108033. 

https://doi.org/10.1016/j.ecolind.2021.108033 

Zoffoli, M.L., Gernez, P., Rosa, P., Le Bris, A., Brando, V.E., Barillé, A.-L., Harin, N., 

Peters, S., Poser, K., Spaias, L., Peralta, G., Barillé, L., 2020. Sentinel-2 remote sensing 

of Zostera noltei-dominated intertidal seagrass meadows. Remote Sens. Environ. 251, 

112020. https://doi.org/10.1016/j.rse.2020.112020 

 

 

 



 

 

 


