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Abstract  26 

Genome size, known also as the C-value, has been proposed as an important determinant of life-27 

history variation in numerous animal taxa. We assessed the relationships between genome size and 28 

fitness related life-history traits in six species of interstitial marine annelids of the genus 29 
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Ophryotrocha. Life-history traits and genome-size data obtained from 18 additional annelid 30 

species was included in our analyses to have a broader phylogenetic scope. Unexpectedly, genome 31 

sizes assessed here by flow cytometry in four Ophryotrocha species were three times larger than 32 

previously reported values obtained using Feulgen densitometry. This has implications for the 33 

hypothesis that harsh interstitial habitats select for small genomes in meiofaunal annelids. Within 34 

the genus Ophryotrocha, significant and positive relationships were found between genome size 35 

and nucleus size, and between genome size, age at first egg mass deposition, body size, and 36 

lifespan.  These relationships held up in the broader phylogenetic comparison. Our study provides 37 

evidence to the important role played by genome size in the evolution of life-history traits in 38 

annelids. 39 

 40 
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Introduction 42 

One longstanding and unresolved puzzle in evolutionary biology is the tremendous variation in 43 

genome size among eukaryotes. Genome size, here defined as the haploid nuclear content (or the 44 

C-value in pg DNA cell -1), varies some 7000-fold among animals (0.02 – 132.83) (Gregory, 45 

2020) with no apparent relationship with neither organismal complexity nor number of genes 46 

(Cavalier–Smith, 1985). Instead, genome size is known to correlate to non-coding DNA, more 47 

specifically transposable elements (Lynch & Conery, 2003). The C-value enigma (Gregory, 48 

2005) refers to unresolved questions regarding the origin of the non-coding DNA, the phenotypic 49 

effects of non-coding DNA, and how it varies so greatly among taxa. The sheer amount of DNA 50 

in a genome can affect organismal phenotype through its nucleotypic effects. Several life-history 51 

traits, such as body size in species with determinate growth, have been found to correlate with 52 

genome size through the associated effects of nuclear DNA content on cell size (Hessen & 53 

Persson, 2009; Dufresne & Jeffery, 2011). Similarly, significant associations between genome 54 

size and life-history traits and developmental rate (Wyngaard et al., 2005) suggest that genome 55 

size could co-evolve with life history. These genome size – life-history traits relationships 56 

suggest that certain environments and lifestyles may be associated with larger genomes (Leiva et 57 

al., 2019). However, opposing evidence exists regarding the impact of deep-sea environment on 58 

genome size selection in amphipods (Ritchie et al., 2017). Non-adaptive theories suggest that 59 

mutations and genetic drift are the major drivers of genome size variation (Lynch & Conery, 60 

2003). The Mutational Hazard hypothesis stipulates that larger genomes evolve in lineages with 61 

smaller long-term effective population size because this allows mildly deleterious insertions of 62 

non-coding DNA to accumulate by drift, rather than being eliminated by purifying selection 63 

(Lynch & Conery 2003). This has recently been shown in subterranean isopods (Lefébure et al., 64 

2017).  Hence under this hypothesis, the evolution of genome size is controlled by the opposing 65 

forces of mutations generating large scale insertions and their removal by selection or their 66 

fixation by drift. 67 

Annelids are significantly underrepresented in the existing genome size database, and show a 68 

remarkable range of genome size (0.06 - 7.64 pg) (Gregory, 2020). Interstitial species, those that 69 

live among grains of sediment, are reported to have particularly small genomes relative to 70 

macrobenthic epifaunal species (Gambi et al., 1997). This is potentially a result of the evolution 71 

of their ecological strategies, notably their small body size and r reproductive strategy (Gambi et 72 
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al., 1997). Among interstitial annelid species, those belonging to the Ophryotrocha genus 73 

(Dorvilleidae, Annelida) are particularly known in the literature, thanks to the easy with which 74 

some of them have been cultured in the laboratory for a wide array of biological, eco-75 

toxicological, and eco-evolutionary investigations (e.g. Thornhill et al., 2009; Prevedelli et al., 76 

2006). The genus Ophryotrocha is a widely distributed group of benthic annelids occupying 77 

diverse habitats and including more than 70 known species (Thornhill et al., 2009), ten of which 78 

have recorded genome size showing a threefold variation (Sella et al. 1993). Moreover, 79 

information on life history traits of many Ophryotrocha species is available, making them ideal 80 

models to explore genome size – life-history traits relationships. 81 

 82 

We used flow cytometry to measure the genome size (C-value) and nucleus size (forward light 83 

scatter) to explore their relationships to key life-history traits in six Ophryotrocha species 84 

Ophryotrocha robusta Paxton & Åkesson, 2010, Ophryotrocha labronica La Greca & Bacci, 85 

1962, Ophrotrocha diadema Åkesson, 1976, Ophryotrocha puerilis Claparède & Mecznikow, 86 

1869, Ophryotrocha adherens Paavo, Bailey-Brock & Åkesson, 2000, Ophryotrocha japonica 87 

Paxton & Åkesson, 2010.  We report that the de-novo genome size measured in the six 88 

Ophryotrocha species has been greatly underestimated in the past, and that these interstitial 89 

species in fact have large genomes. We show that body size, lifespan, and age at first deposition 90 

(a proxy for developmental rate) increase with genome size in the interstitial annelid assemblage 91 

investigated. The relationships of genome size to life-history traits were then tested on a broader 92 

phylogenetic scale, with regressions run using an additional 18 annelid species for which body 93 

size, age at first deposition, lifespan and/or fecundity could be found in the literature. We show 94 

that genome size – life-history relationships remain significantly positive for body size, age at 95 

first deposition and lifespan at this broader phylogenetic scale.  96 

Material and Methods 97 

Ophryotrocha species rearing and genome size determination 98 

Specimens of the six Ophryotrocha species investigated in our study came from laboratory 99 

strains established from individuals collected in Italy (La Spezia, 44°06’N; 09°49’E, and Porto 100 

Empedocle 37°18’N; 13°32’E) and kept under control laboratory conditions (salinity: 32-35; 101 

temperature: 22-24 °C; pHNBS = 8.1; photoperiod L:D of 12:12 h) for approx. 20 to 60 102 

generations prior to genome size estimation. Thirty mature individuals were ground in 1 mL of 103 
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Galbraith buffer (Galbraith et al., 1983) in each flow cytometry run. Three to seven runs were 104 

performed for each species. Daphnia pulex Leydig 1869 was used as standard for analyses 105 

(Vergilino et al., 2009). The mixture of nuclei (Ophryotrocha - Daphnia) was co-stained using 106 

20 µL of propidium iodide (1.0 mg mL-1) for 45 min. and analyzed on a CytoFLEX flow 107 

cytometer (see Supplementary Figure 1). Nuclear DNA content of all annelid species was 108 

calculated using the following equation: nuclear DNA = Ophryotrocha fluorescence / (Daphnia 109 

fluorescence x 0.45 pg), where the nuclear DNA content is pg DNA and 0.45 pg corresponds to 110 

the nuclear DNA content of D. pulex (Vergilino et al., 2009). 111 

Flow cytometry data also yields information on particle size through forward light scatter. In 112 

general, forward light scatter correlates closely with particle size (e.g., Figure 3 in Belzile and 113 

Gosselin 2015). Forward light scatter has been used previously as an index of nucleus size in 114 

Daphnia (Jalal et al., 2013) and will be henceforth referred to as such. Mean forward scatter of 115 

the nuclei was thus recorded in order to assess the relationship between this measure and genome 116 

size, and data was analyzed using CytExpert Software v.2.3 (Beckman Coulter).  117 

Life-history traits and species selection 118 

Life-history traits for the six laboratory Ophryotrocha species were obtained from studies that 119 

used comparable rearing conditions (Simonini and Prevedelli 2003; Grandi 2009; Martino, 2012; 120 

Paxton and Åkesson 2010) : body size (mm), growth rate (chaetigers . day -1), age at first 121 

deposition (d), egg size (µm), fecundity (eggs . clutch -1), lifetime fecundity (eggs . individual -1), 122 

and lifespan (d). Age at first deposition is considered here as a developmental proxy. Body size 123 

and fecundity were measured as the maximum body length (mm) recorded in the species and the 124 

average number of eggs laid per clutch, respectively. Growth rates were measured as number of 125 

chaetigers (segments bearing bristles, Massamba-N’Siala et al., 2011) added daily until reaching 126 

the maximum body size (measured as number of chaetigers). Lifetime fecundity referred to the 127 

total amount of eggs produced by an individual during its lifetime. Finally, egg size was 128 

measured as the arithmetic mean between the longer and the shorter axes (Simonini and 129 

Prevedelli, 2003). Life-history data of the additional annelid species was obtained from the 130 

literature (see Supplementary Tables I & II). Four life-history traits were considered for all 131 

species: body size (mm), fecundity (eggs . clutch -1), lifespan (d), and age at first deposition (d). 132 

Growth rates, lifetime fecundity, and egg size were traits available only for the six Ophryotrocha 133 

species. 134 



   6 

 

Species for which genome size was available in the literature were selected for the final analysis 135 

based on the availability of COI and 16S sequences and the reliability of genome size measures 136 

(species reported by Sella et al. 1993 were omitted due to considerable discrepancies between 137 

their study and ours). In addition, deep-sea and vent species were removed due to signs of 138 

gigantism (> 1000 mm body lengths seen in Tevnia jerichonana and Riftia pachyptila, for 139 

example). Finally, the catworm Nephtys incisa was not included in fecundity analysis because of 140 

its disproportionate higher reproductive output (250 000 eggs size . clutch -1) compared to the 141 

other annelid species (1 – 2000 eggs . clutch -1). 142 

Maximum likelihood phylogenies 143 

Two maximum likelihood (ML) phylogenies were constructed with COI and 16S sequences. The 144 

first phylogenetic tree was comprised exclusively of sequences obtained from laboratory 145 

specimens of the six Ophryotrocha species (Tempestini et al., in press.). The second 146 

phylogenetic tree was constructed by adding the sequences of 18 annelid species collected from 147 

GenBank to the original six Opryotrocha species. The marine nemertean worm Cerebratulus 148 

lacteus served as outgroup for both phylogenies (Struck et al., 2011). Accession numbers are 149 

provided below (section Data availability).  Multiple sequence alignments were performed with 150 

MUSCLE (Edgar 2004) using the software MEGAX (Kumar et al., 2018) with default 151 

parameters and concatenated in MEGAX. The alignments were run through RAxML-HPC2 152 

(Stamatakis, 2014) using default parameters as well. In R (R v3.4.2 and RStudio v1.1.383), 153 

packages ape and phytools were used to import and transform the resulting tree as well as the 154 

phenotypic data. Final phylogenetic trees were produced using FigTree v1.4.4 (Figures 1 and 2). 155 

Statistical analyses 156 

A one-way analysis of variance (ANOVA) test with species as fixed factor and flow cytometry 157 

runs as replication units was first performed to determine if the six Ophryotrocha species 158 

differed in genome size. Pairwise comparisons were subsequently performed using Tukey’s HSD 159 

test. Linear regressions models were conducted to test for significant relationships between 160 

genome size and single life-history traits in six species of Ophrytrocha. Furthermore, the 161 

relationships between genome size and four life-history traits was tested in the expanded data set 162 

containing 18 additional annelid species. Life-history traits and genome size values were 163 

corrected for phylogenetic relatedness using phylogenetically independent contrasts (pic function 164 

in ape) for both phylogenies, and these analyses were run through the origin. Significant and 165 
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marginally significant relationships were plotted in R for both phylogenetically-corrected and 166 

non corrected data.  Body size was tested as a covariate alongside other life history traits in all 167 

linear models, before being removed from the model once deemed non-significant.  Normality of 168 

residuals, tested with a Shapiro-Wilks test, was rejected for the ANOVA test, which was 169 

corrected with a log 10 transformation of genome size data. Normality of residuals was also 170 

rejected in four instances for the regression models: the relationship between phylogenetically 171 

corrected genome size and nucleus size in the six Ophryotrocha species, the relationship between 172 

raw and phylogenetically corrected genome size and fecundity in the enlarged dataset, and the 173 

relationship between raw genome size and lifespan in the enlarged dataset. In all cases except the 174 

first one, a logarithmic transformation of the raw values was sufficient to meet the assumption of 175 

normality.  176 

Statistical analyses were conducted using R (R v3.4.2). 177 

Results 178 

The mean genome size was 1.47, 1.23, 1.04, 1.45, 0.80 and 1.40 pg for O. robusta, O. labronica, 179 

O. diadema, O. puerilis , O. adherens and O. japonica respectively. Significant differences in  180 

log 10 transformed mean genome size were found among species (F (5, 20) = 76.2; P = 2.51 . 10-12). 181 

Ophryotrocha japonica and O. puerilis had the largest genome sizes that differed significantly 182 

from the ones of O. adherens and O. diadema. The genome size of O. labronica was 183 

significantly smaller than that of O. puerilis and significantly larger one than that of O. adherens 184 

(Supplemental Table 1).  All life-history trait regression results for Ophryotrocha are 185 

summarized in Table I. Body size (mm), age at first deposition (d), fecundity (eggs . clutch -1) 186 

and lifespan (d) regression results for the expanded annelid dataset are summarized in Table 2. 187 

Our analysis indicates that Ophryotrocha species possessing larger genome size displayed larger 188 

nucleus sizes estimated through forward scatter; a significant positive relationship was found 189 

between these two traits after phylogenetic correction (R2 = 0.764 ; F (1,4) = 12.97; P = 0.023; 190 

Figure 3). Species with larger genome sizes were found to have larger body sizes and nucleus 191 

sizes. These traits show a significant positive relationship in Ophryotrocha after phylogenetic 192 

correction (Figures 4A). Similarly, there was a significant increase in age at first deposition (d) 193 

in Ophryotrocha species with larger genome sizes after phylogenetic correction (Figures 4B). 194 

Fecundity did not differ significantly in Ophryotrocha species with small and large genomes 195 
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(Figures 4C). The relationship between lifespan and genome size was significant in 196 

Ophryotrocha after phylogenetic correction (Figure 4D). No significant relationships were 197 

detected between genome size and growth rate, genome size and egg size, and genome size and 198 

lifetime fecundity in the Ophryotrocha group (Table 1). 199 

Further analysis of genome size and life-history on a broader phylogenetic scale revealed similar 200 

patterns for three of the four significant traits mentioned above. Annelid species with larger 201 

genome sizes displayed a significantly larger body size (Figure 4E), a later age at first deposition 202 

(Figure 4F) and an increased lifespan (Figure 4H) after phylogenetic correction. There was no 203 

significant relationship between fecundity and genome size in extant annelid species (Figure 204 

4G).  205 

Discussion 206 

Our study reveals that a number of important life history traits positively correlate to genome 207 

size in a set of species from the marine annelid Ophryotrocha. Age at first deposition, body size, 208 

and lifespan were positively associated to genome size whereas no significant associations were 209 

found for egg size, fecundity, and growth rate. Those patterns held up on a broader phylogenetic 210 

scale using additional annelid species for which genome size and life-history data were available. 211 

We also report that genome size estimates measured here in flow cytometry contradict previous 212 

estimates using Feulgen densitometry, with implications for downstream genomic applications.  213 

The six Ophryotrocha species investigated here exhibit a three-fold difference in body size, 214 

which significantly increases with genome size. The relationship remained significant among the 215 

additional annelid species tested here with body sizes varying ten-fold. It was initially suggested 216 

by Gambi et al. (1997) that harsh interstitial habitats select for small genomes in meiofaunal 217 

annelids via the genome size - body size relationship. This was apparent when considering the 218 

reported genome size range of 0.07 to 1.16 pg in interstitial species and 0.4 to 7.2 pg in 219 

macrobenthic species. However, this hypothesis does not appear to hold for Ophryptrocha 220 

species, as the genome sizes in this group are considerably large (0.80 - 1.47), while they possess 221 

fairly small body sizes (2 to 7 mm). Positive relationships between body size and genome size 222 

have been reported in numerous invertebrates (Hessen & Persson, 2009; Jeffery et al., 2017; 223 

Lefébure et al., 2017) but are not ubiquitous. These relationships are most often found in species 224 
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where growth occurs largely as a result of increase in cell volumes, rather than by increasing cell 225 

numbers. The strong relationship between genome size and nucleus size found in Ophryotrocha 226 

potentially contributes to the positive relationship between genome size and body size, which 227 

suggests that cell volume influences whole-organism body size in this genus. 228 

Genome size was strongly correlated with age at first deposition in Ophryotrocha as well as in 229 

the larger annelid dataset. This relationship has been described in different groups, with genome 230 

size impacting different proxies for developmental rate/time, such as voltinism in Lepidoptera 231 

(Miller, 2014), maturation rates in copepods (Wyngaard et al., 2005), embryonic development in 232 

salamanders (Jockusch, 1997), and age at sexual maturity and hatching time in birds (Yu et al., 233 

2020). The relationship is overall apparent in pancrustaceans (i.e. insects and crustaceans), where 234 

species possessing smaller genomes show a faster development (Alfsnes et al., 2017).  Since 235 

Ophryotrocha species have a direct development, we hypothesize that genome size could be less 236 

constraining in this group than in taxa possessing complex life-history strategies with multiple 237 

larval stages.  In contrast to age at first deposition that is a proxy of growth, growth rate did not 238 

show an association with genome size. We expected that Ophryotrocha species with smaller 239 

genomes would have a higher growth rate due to their potentially faster cell divisions.  It could 240 

be that our proxy for growth rate ‘number of chaetigers deposited per day’ is not precise enough 241 

in this small dataset. Surprisingly, lifespan was positively associated with genome size both in 242 

Ophryotrocha and in the annelid dataset. Genome size is not known to be correlated to lifespan 243 

(or longevity) in reptiles (Olmo, 2003), birds (Gregory, 2002; Yu et al., 2020) nor in fish species 244 

(Gregory 2004; Hickey & Clements, 2005). This positive relationship between genome size and 245 

longevity in annelids may be mediated by age at first deposition and warrants further studies. 246 

Genome size increase in Ophryotrocha was not significantly associated with fecundity nor with 247 

egg size. The relationship between egg size and genome size depends on the group investigated. 248 

For example, egg size is positively associated with genome size in fish (Hardie & Hebert, 2011) 249 

and in rotifer (Stelzer et al., 2011) but not in in salamanders (Jockusch, 1997).  250 

In addition, we show here that the genome size of O. robusta (0.47 instead of 0.37 pg), O. 251 

puerilis (1.45 instead of 0.46 pg) O. labronica (1.23 instead of 0,44 pg), and O. diadema (1.04 252 

instead of 0.44 pg), are 2.4 to 4 times larger than previously reported (Sella et al. 1993; Soldi et 253 

al. 1994).  These previous estimates were assessed through Feulgen densitometry and are 254 
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compared to those measured in flow cytometry (Supplementary Figure 1). Artefacts associated 255 

with Feulgen technique such as sample size limitation, staining issues (comparison of different 256 

cell types with different levels of DNA compaction and stain uptake), conditions of slide fixation 257 

may have biased these past estimates (Hardie et al., 2002). Ophryotrocha labronica has 258 

historically been used for the investigation of life-history traits ecology and evolution (Simonini 259 

& Prevedelli, 2003; Prevedelli et al., 2006; Rodríguez-Romero et al., 2016) and is emerging as a 260 

model organism for the investigation of transgenerational responses of marine invertebrates to 261 

global change drivers (Chakravarti et al., 2016; Rodríguez-Romero et al., 2016; Gibbin et al., 262 

2017a, 2017b; Jarrold et al., 2019). As it will be part of a foreseeable sequencing endeavour for 263 

the development of –omics approaches, it would have been misleading to assume that its genome 264 

size was 2.5-fold smaller than expected (1.04 vs. 0.40 pg). Considering that nearly 20 % of 265 

annelid genome size in the database reference these two studies, it is likely that inferences based 266 

on this data should be reconsidered.  267 

In conclusion, our study provides strong evidence of the determinant role played by genome size 268 

in the evolution of life-history traits, validated at both the genus and phylum level. Annelids 269 

being characterised by an overwhelming biodiversity in marine environments represent a very 270 

promising group to delve deeper into the c-value paradox. 271 
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 476 

 477 

Figure Captions 478 

 479 

Figure 1: Maximum likelihood phylogenies of cytochrome oxidase I and 16S sequences in six 480 

Ophryotrocha species with outgroup Cerebratulus lacteus, produced using RAxML-HPC2 and 481 

plotted in FigTree v1.4.4.  482 

Figure 2: Maximum likelihood phylogenies of cytochrome oxidase I and 16S sequences in 23 483 

annelid species (B) with outgroup Cerebratulus lacteus, produced using RAxML-HPC2 and 484 

plotted in FigTree v1.4.4.  485 
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Figure 3: Relationship between genome size (C-value expressed in pg) and nucleus size 486 

estimated from forward light scatter in flow cytometry. Forward light scatter correlates closely to 487 

particle size and has previously been used as an index of nucleus size in Daphnia. The data 488 

points were corrected by phylogenetically independent contrasts applied using a cytochrome 489 

oxidase I and 16S maximum likelihood (RAxML-HPC2) phylogeny detailed in the present 490 

paper. 491 

Figure 4: Relationships between genome size (C-value expressed in pg) and (A) body size 492 

(mm), (B) age at first deposition (d), (C) fecundity (eggs . clutch -1) and (D) lifespan (d) for the 493 

six laboratory Ophryotrocha species. The same relationships were plotted for (E) body size (mm) 494 

in 16 total species, for (F) age at first deposition (d) in 12 total species, for (G) log 10 495 

transformed fecundity (eggs . clutch -1) in 13 total species and for (H) lifespan (d) in 13 total 496 

species. The data points were corrected by phylogenetically independent contrasts applied using 497 

two cytochrome oxidase I and 16S maximum likelihood (RAxML-HPC2) phylogenies detailed 498 

in the present paper. 499 

Figure S1: Frequency histograms of isolated nuclei propidium iodide fluorescence; (A) O. 500 

diadema and (B) O. labronica. Daphnia pulex nuclei peaks are blue and Ophryotrocha nuclei 501 

peaks in red. The black arrow indicates where the supposed Ophryotrocha peaks would be found 502 

according to the genome size values reported by Sella et al., (1993). 503 
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