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Abstract16

Understanding biological parameters such as growth patterns, condition, and energy 17

reserves is important for a better understanding of the environmental constraints exerted 18

on fish populations. This is especially true for exploited fish stocks in the current context19

of climate change. Using biological data collected from 2006 to 2009 during bottom trawl 20

research surveys by Fisheries and Oceans Canada in the Estuary and Gulf of St. 21

Lawrence (EGSL) as well as data from 2000 to 2018 in the Northwest Atlantic, our aim 22

was to improve our knowledge on the seasonal condition of Greenland Halibut23

(Reinhardtius hippoglossoides) juveniles and get a better understanding of the divergence24

in some life-history traits between juveniles captured in these two regions. We validated 25

the use of the Le Cren condition index and evaluated its relationship with energetic status 26

in juvenile (2032 cm) Greenland Halibut. In the EGSL, juvenile condition was higher in 27
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winter and spring compared to summer and fall. Such variations may result from this 28

species’ pelagic predation activity and prey availability. Juveniles captured in the EGSL 29

in 20162017 were larger but had a lower condition index than those captured in the 30

Northwest Atlantic, but we found no indication of earlier sexual maturation in the EGSL31

that could explain the sex ratio differences we observed in catches from these two areas.32

INTRODUCTION33

Overharvesting and environmental changes are major issues in fisheries science, as34

illustrated by the collapse of Atlantic Cod in the Northwest Atlantic (Harris 1998). To35

answer these challenges, stock assessments need to be supported—among other things—36

by biological information on exploited species (Lloret et al. 2014). Developing simple 37

tools to evaluate wild fish condition is a recurrent goal in fisheries management (Ricker 38

1975; Cone 1989). Stock abundance, biomass, growth, mortality, maturity, and39

recruitment provide information that is needed to characterize the status of an exploited 40

fish population (reviewed by Young et al. 2006). The Fulton condition index (K; Ricker41

1975), Le Cren index (Kn; Le Cren 1951), hepato-somatic index (HSI), and relative mass42

(Wr; Wege and Anderson 1978) are useful indicators of the physiological status of fish 43

and may also indirectly provide information on environmental quality (Lloret and Planes 44

2003; Levi et al. 2005; Lloret et al. 2005, 2007; Shulman et al. 2005; Amara et al. 2007, 45

2009). Indeed, it may be possible to use these indices to better understand the ecological 46

constraints of an environment, such as prey availability (Ogutu-Ohwayo 1999; Yaragina 47

and Marshall 2000; Casini et al. 2006), the presence of parasites (Khan et al. 1997), or 48

alterations in abiotic parameters such as dissolved oxygen, salinity, temperature, or 49

pollution (Adams et al. 1989; Rätz and Lloret 2003; Casini et al. 2006; Edwards et al.50

2006; Amara et al. 2007; 2009; Gilliers et al. 2012). Even though fish condition data can 51

provide additional information that may help fisheries biologists with population 52

assessments and resource exploitation decisions, it is seldom used in stock assessment 53

and management (Lloret et al. 2014).54
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Energy reserves are essential for sustaining growth, migration, reproduction, and other 55

biological processes that ensure survival (Shulman and Love 1999; Sogard and Olla 56

2000; Lambert et al. 2003). The general condition of a fish is an important descriptor of 57

its health and is usually related to the level of energy reserves; this assumes that a healthy 58

fish in good condition will have more energy reserves than individuals in poor condition59

(Lloret et al. 2014). In many marine fish species, energy content is mostly stored as 60

lipids, which represent the most efficient form of energy storage, i.e., 38 kJ per g of lipids 61

compared to 24 kJ and 17 kJ per g for proteins and carbohydrates, respectively (Jobling 62

1993). Depending on the fish species, lipids may be stored in the liver (Atlantic Cod, 63

Gadus morhua: Jobling et al. 1991; dos Santos et al. 1993; Lambert and Dutil 1997a; Red 64

Drum, Sciaenops ocellatus: Craig et al. 2000; macrourid fishes Coryphaenoides armatus, 65

C. yaquinae, and C. acrolepis: Drazen 2002; Haddock, Melanogrammus aeglefinus:66

Nanton et al. 2001; European Hake, Merluccius merluccius: Lloret et al. 2008), in67

adipose tissue (Atlantic Salmon, Salmo salar: Zhou et al. 1996), or in the liver and red 68

muscle (tropical tunas, Thunnus obesus, T. albacares, and Kastuwonus pelamis: Sardenne 69

et al. 2017). In flatfishes, the liver is relatively small and does not serve as a primary 70

energy storage site. In European Plaice, Pleuronectes platessa, energy is stored in the 71

carcass (Dawson and Grimm 1980), while in Winter Flounder, Pseudopleuronectes 72

americanus, the main storage site is the hypodermal lipid layer under the lateral line 73

(Maddock and Burton 1994). In Greenland Halibut, Reinhardtius hippoglossoides, energy 74

is stored mainly as lipids and proteins in white muscle (Ait Youcef 2013; Karl et al.75

2018).76
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When food energy is no longer sufficient to supply basal metabolic needs, energy is 77

drawn from body tissue reserves. When this occurs, lipids and proteins are replaced by 78

water. In certain extreme cases, this can lead to high water content in tissues—a79

phenomenon called jellied condition—which has been observed in several flatfish species 80

(Broad Flounder, Paralichthys squamilentus: Clark 1958; American Plaice, 81

Hippoglossoides platessoides: Templeman and Andrews 1956; Haard 1987; Winter 82

Flounder, Pleuronectes americanus: Maddock and Burton 1994).83

In fishery science, numerous authors have used condition indices, water content, or organ84

weight : somatic weight ratios to test spatial and temporal variations in the condition, 85

energy balance, and physiological status of exploited populations in different contexts,86

i.e., global comparisons between different stocks (Rätz and Lloret 2003; Román et al. 87

2007), more localized population comparisons (Hidalgo et al. 2008; Tomiyama and 88

Kurita 2011), temporal variations including seasonal changes (or changes during the 89

annual cycle; Lloret et al. 2014) (Dawson and Grimm 1980; Lambert and Dutil 1997a, 90

1997b; Mello and Rose 2005; Tomiyama and Kurita 2011), and interannual and long-91

term studies (Lambert and Dutil 1997b; Román et al. 2007; Pardoe et al. 2008). Such92

investigations could be useful to detect possible alterations in the biological parameters of 93

a population and help with decision making for fisheries management and conservation 94

(Murphy et al. 1991; Lambert and Dutil 1997a, 1997b; Rätz and Lloret 2003; Mello and 95

Rose 2005). Despite the economic importance of the Greenland Halibut fisheries96

(Victorero et al. 2018), such tools have not yet been validated for this species.97

Greenland Halibut is a circumpolar species inhabiting cold (−0.5 to 6°C; Bowering and 98

Nedreaas 2000) and deep waters (generally 130–1,600 m and sometimes up to 2,200 m; 99
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Scott and Scott 1988; Boje and Hareide 1993; Bowering and Power 1995; Bowering and 100

Nedreaas 2000). At the southern edge of its distribution in the Atlantic, it is found in the 101

Estuary and Gulf of St. Lawrence (EGSL), especially in the deep Laurentian, Anticosti,102

and Esquiman channels (from 130 to 500 m). Considered as a separate management unit 103

(Arthur and Albert 1993), the EGSL population has been actively fished for more than 30 104

years (DFO 2019).105

Despite hypoxic conditions in nursery habitats (Gilbert et al. 2007; Ait Youcef et 106

al. 2013) and the negative impacts of hypoxia on Greenland Halibut metabolism 107

(Dupont-Prinet et al. 2013; Pillet et al. 2016), the EGSL population is characterized by a 108

constant juvenile growth rate throughout the year that is the highest recorded for this 109

species (Ait Youcef et al. 2015). Permanent access to abundant food and temperatures110

close to the optimal growth temperature may explain this high growth rate (Ait Youcef et 111

al. 2015; Ghinter et al. 2021). However, over the last few decades, bottom water 112

temperatures in the EGSL have been rising due to increased warm-water pulses entering 113

through Cabot Strait (Galbraith et al. 2019, 2020). These changes have been striking,114

with average temperatures of 4.8C and 5.9C at 200 and 300 m respectively in 2019,115

while the 1981–2010 averages were 3.87 ± 0.36°C and 4.97 ± 0.23°C, respectively116

(Galbraith et al. 2020). In the EGSL, dissolved oxygen, which is already close to the 117

tolerance limit of juveniles, could become critical (Dupont-Prinet et al. 2013; Pillet et al. 118

2016). In the Northwest Atlantic, the most recent DFO (Fisheries and Oceans Canada)119

report on oceanographic conditions for the two zones that we are considering indicate120

that climate indices are evenly spread between positive and negative anomalies, so there121

is no real trend at this time (Cyr et al. 2021).122
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The isolated character of the EGSL population relative to the rest of the Northwest 123

Atlantic population is still debated. While many studies based on genetic, meristic, and 124

parasitic criteria support the presence of two distinct populations (Templeman 1970; 125

Fairbairn 1981; Khan et al. 1982; Misra and Bowering 1984; Arthur and Albert 1993; Vis 126

et al. 1997), other studies have revealed strong interrelationships between the different 127

geographic areas (Pomilla et al. 2008; Roy et al. 2014). A recent study showed genetic 128

differences between the EGSL and the Northwest Atlantic population but also the 129

presence of high gene flow that could vary from year to year and contribute to the strong130

link between the two stocks (Carrier et al. 2020).131

The EGSL and Northwest Atlantic stocks are currently managed separately, and the 132

populations diverge in their life history traits and biological parameters. Juvenile growth 133

rate in the EGSL (length increase of 812 cm between ages 1and 2) is higher than in the 134

Northwest Atlantic (68 cm; see Ait Youcef et al. 2015). In addition, the size at maturity135

in the EGSL is smaller than that estimated in the Northwest Atlantic, thus the slowdown 136

that occurs when reaching sexual maturity occurs earlier in EGSL individuals. The 137

individuals of these two regions therefore differ according to their size at age, and despite138

issues with current maturity staging (Nielsen and Boje 1995; Albert et al. 2001; 139

Gundersen 2003; Morgan et al. 2003; Kennedy et al. 2011), the two populations appear to 140

have very different size/age at 50% maturity (L50/A50). In the last decades, the L50 of 141

Greenland Halibut in the EGSL was around 36 cm for males and 46 cm for females (DFO 142

2019). In addition, according to growth models, males and females reach the commercial 143

size of 44 cm at 6 and 7 years old, respectively (DFO 2019). In the Northwest Atlantic, 144

the L50 of females was found to vary from 6088 cm (depending on the region and year),145
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which approximately corresponds to 8- to 12-year-old individuals (Morgan and Bowering 146

1997). Thus, life history traits diverge between these two management units, causing 147

differences in their biological parameters and catch characteristics. In the last two 148

decades, the average size of fish from EGSL catches was 47.2 cm (DFO 2019). Most 149

catches are composed of adult females, a few immature females, and mature males (about 150

80% of catches has consisted of females since 1996 [DFO 2019]). In the Northwest 151

Atlantic, catches are mainly composed of individuals between 5- and 9-years-old152

(Regular et al. 2017), which corresponds to fish from 3537 cm to 5759 cm, 153

respectively (Healey 2013). Northwest Atlantic catches are therefore mainly made up of 154

juveniles. Such differences in population structure combined with different fishing 155

pressures are likely to affect the condition of individuals as well as the recruitment156

potential and productivity of stocks.157

In this context, our objectives were 1) to validate the use of the Le Cren index to estimate158

juvenile condition, 2) to test the hypothesis of an absence of seasonal effects on juvenile 159

condition; and 3) to compare the condition of juveniles captured in the Estuary and Gulf 160

of St. Lawrence and the east coast of Labrador using proxies such as energy reserves to161

better understand the divergence in the life history traits documented between these two162

managements units.163

MATERIAL and METHODS164

Capture and Sampling Design165

1) Biological data from the EGSL, 20062009.— Biological data on Greenland Halibut166

juveniles (2032 cm) were obtained from the annual multidisciplinary bottom trawl 167
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research survey conducted in the EGSL (NAFO Division 4RST; summer) by Fisheries 168

and Oceans Canada (DFO) and from annual smaller-scale bottom-trawl surveys 169

conducted in the spring (April–May) and fall (October) in the St. Lawrence estuary (Fig.170

1). Within the EGSL, fish belonging to this length range correspond to two-year-old fish 171

(Ait Youcef et al. 2015; Bourdages et al. 2016). For our study, data from 2006 through172

2009 were used because complete seasonal sets were available. Detailed information 173

about these surveys is provided in Ait Youcef et al. (2013). Individual fish fork length (± 174

0.1 cm) and mass (± 0.1 g) were recorded for every fish captured. 175

In 2009, muscle and liver tissues were sampled on juveniles captured during spring (n = 176

65, 19.9–31.9 cm) and summer (n = 39, 24.5–30.0 cm). Whole liver was weighed 177

(± 0.1 g, wet mass) and tissue samples were frozen on board at 20ºC for later 178

determination of water and energy contents. All muscle samples were excised on the179

pigmented side above lateral line.180

2) Biological data from the Northwest Atlantic, 20002018.— Biological data on 181

Greenland Halibut juveniles (2032 cm) were obtained from the annual multidisciplinary 182

bottom trawl research survey conducted in the Northwest Atlantic (NAFO Division 2H, 183

2J; fall) by DFO. Detailed information about the design of these surveys is provided in 184

Doubleday (1981). Individual fish fork length (± 1.0 cm) and mass (± 10.0 g) were 185

recorded for every fish captured.186

3) Biological data from the EGSL and Northwest Atlantic, 20162017.— Greenland 187

Halibut juveniles were caught at five locations in the EGSL and off the coast of Labrador 188

in NAFO divisions 2J and 2H (Table 1, Fig. 1). Sampling locations in the EGSL were 189

relatively deep (> 270 m) compared to depths at the northwest 2J sampling location190
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(< 200 m), and the range of depths at the 2H sampling site was quite broad (190374 m). 191

Salinity was similar among the EGSL sampling sites, but dissolved oxygen in the St.192

Lawrence Estuary (SLE) was almost 50% lower than in Northeast Anticosti (NEA)193

(Table 1). All captures were made on board the CCGS Teleost with a Campelan-type194

trawl (12.7 mm mesh size) except for the SLE 2017 sampling site, which was made from195

the CCGS Leim with a Comando-type trawl (3-inch trawl bucket, extension and pocket 2-196

inch mesh size). Tows lasted 1530 minutes at speeds of 23 knots and depths varying 197

between 174 and 374 m. For captures made on the CCGS Teleost, depth, temperature, 198

salinity, and oxygen at the sampling sites were directly measured with sensors fixed at 199

the trawl mouth. On the CCGS Leim, only depth was directly measured onboard; data 200

from an oceanographic station located close to the trawling sites were used to obtain the 201

other environmental variables (P. Galbraith, Institut Maurice-Lamontagne, Fisheries and 202

Oceans Canada, pers. comm.). Oceanographic data are presented in Table 1. Salinity and 203

oxygen conditions were not available for the CCGS Teleost mission in the Northwest 204

Atlantic.205

When fish were sorted, a maximum of 10 live juveniles measuring between 20.6 and 33.1 206

cm were placed in a tank (800 L) filled with pumped seawater. Temperature conditions 207

were kept stable using an insulated tank and heat pump. Prior to tissue sampling, juvenile208

fish were maintained in the holding tank no longer than 3 h, but most fish were sampled209

within the first hour following capture.210

For tissue sampling, fish were anaesthetized in a solution of MS 222 (tricaine methane 211

sulfonate 0.18 g L-1; Sigma-Aldrich Co., Missouri, USA) for 5 min between 1200 and 212

1700 to avoid possible biases associated with endocrine circadian rhythms. Individuals213
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were weighed and measured, and blood was sampled from the caudal artery using a 23-214

gauge needle and a 1-mL TB syringe (Becton Dickinson & Co, New Jersey, USA), both 215

previously treated with a heparin solution (ammonium heparin salt, Sigma-Aldrich Co., 216

Missouri, USA) at a concentration of 100 units mL-1 in 0.09% NaCl. Liver, muscle, and217

gonad samples were excised. For fish collection in the EGSL, liver tissue samples were 218

then frozen in liquid nitrogen and stored at −80°C until analysis. In the Northwest219

Atlantic, the ship could not carry liquid nitrogen due to logistical constraints; liver tissue220

was stored in RNAlater (Sigma-Aldrich Co., Missouri, USA) for further transcription221

analysis (not presented in this paper), but biochemical analysis could not be performed on222

these samples. Blood samples were centrifuged for three minutes at 4.6 G and plasma 223

was stored at −20°C. Gonads were fixed in Bouin's solution (Sigma Aldrich Co., 224

Missouri, USA).225

226

Morphological Calculations and Physiological Measurements227

The relationship between wet mass and standard length was calculated from the large 228

data sets obtained in the EGSL and Northwest Atlantic in spring, summer, and fall (Table 229

2). In the absence of an isometric relationship (slope coefficient b ≠ 3) between length 230

and mass, the Le Cren formulation for condition factor (Le Cren 1951) was selected for 231

the condition index. This index is calculated as 232

Kn = W / We233

where W is the observed mass and We is the estimated mass obtained from the length–234

mass relationship. To compare the condition of fish from different periods or regions, a 235
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single length–mass relationship including all fish from all periods and areas studied was 236

used to estimate We.237

When available, the hepato-somatic index (HSI) was calculated as 238

HSI = (LM/M)*100239

where LM is the liver wet mass and M is the fish somatic wet mass.240

Liver and muscle water contents were calculated after drying a tissue sample (2–10 g) at 241

65°C for 48 hours, at which time constant mass was obtained. Energy content was 242

measured with an oxygen bomb calorimeter (Model 1261, Parr Instrument Company,243

Illinois, USA) standardized with benzoic acid pellets (Parr Instrument Company; 26.44 244

kJ g-1); results are reported per gram of dry tissue mass. 245

For fish captured in 2016–2017 in the EGSL and Northwest Atlantic, fish sex was 246

identified and sexual maturity status determined with histology and sex steroid 247

measurements. Gonads were dehydrated in increasing concentrations of ethanol (50, 70,248

80, 90, and 95%) and embedded in methacrylate JB-4 solution according to the protocol 249

suggested by the manufacturer (Sigma-Aldrich Co., Missouri, USA). The embedded 250

gonad tissue was sectioned into 3 μm slices that were stained with Lee's methylene 251

bluebasic fuchsin solution (Aparicio and Marsden 1969). Gonad development stage was 252

determined for each individual according to Morrison (1990) for testes and Rideout et al.253

(2012) and García-López et al. (2007) for ovaries. Sex steroid concentrations were 254

determined using RIA kits for testosterone and 17β-estradiol (125I RIA kits # 07-189102 255

and # 07-138102, respectively; MP Biomedicals, LLC, California, USA) and ELISA for 256
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11-keto testosterone (ELISA Kit # 582751, Cayman Chemical, Inc., Michigan, USA). 257

The half-value of the smallest standard was assigned to undetectable values.258

In 2016 and 2017, analysis of energetic components was only conducted on EGSL259

individuals. We could not analyze the energetic components of liver tissue from the260

Northwest Atlantic because of the preservation method used. Hepatic glycogen was 261

measured using the amyloglucosidase digestion method (Carr and Neff 1984). Glucose 262

was measured by colorimetry (Glucose Colorimetric Assay Kit, Cayman Chemical, Inc., 263

Michigan, USA). Total liver lipid concentration was determined using the phospho-264

vanillin method (Frings et al. 1972). Liver protein concentrations were measured using a 265

protein dye binding method (Protein Assay kit, Biorad, California, USA) according to 266

Bradford (1976). Total liver energy content was calculated using conversion factors of 267

24, 38, and 17 kJ g-1 for proteins, total lipids, and glycogen, respectively (Jobling 1993). 268

269

Statistical Analysis270

Data normality and homoscedasticity were verified using Kolmogorov-Smirnov and 271

Levene tests, respectively (Quinn and Keough, 2002). For linear regressions, normality272

was tested on residuals, and residual variations were tested using analysis of variance273

(ANOVA). Linear lengthmass regressions according to season and to population were 274

performed on log-transformed data. No transformation was necessary for the linear 275

regressions of the tissue water and energy content or for the regressions of condition 276

indices and energy content. Year and seasonal effects on condition factor were analyzed 277

using a two-way ANOVA. Because homoscedasticity was not obtained for Kn data, 278

Games & Howell post-hoc tests were applied to each year to identify differences between 279
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periods (Sokal and Rohlf, 1995). The inter-seasonal variation of ΔKn was verified using 280

one-way ANOVA. When significant effects were found, a posteriori Tukey mean 281

comparison tests were used (α = 0.05). No transformation was needed for fish captured in 282

20162017 except for steroid data, which were log-transformed prior to statistical 283

analysis. Morphometric and physiological data were analyzed using paired two-tailed284

Student's t-tests. Statistical analyses were performed with Statistica software (Statsoft 285

v.6.1, Oklahoma, USA).286

RESULTS287

LengthMass Relationship and Condition Factor288

We calculated a single length–mass relationship based on all individuals (2006–2009 in289

the EGSL; 2000–2018 in the Northwest Atlantic) in this study (linear regression; R2 = 290

0.96, LN(mass) = 3.2094 * LN(length) - 5.5669, F1, 10780 = 229343.80, P < 0.001): We = 291

0.0038 L 3.2094 (Fig. 2).292

In the EGSL, there were significant differences in Kn according to year and season (year 293

× season interaction, F6, 4146 = 9.3, P < 0.001). Kn decreased from spring to summer for 294

the four years studied (Fig. 3). In 2008 and 2009, Kn remained relatively low and stable295

from summer to fall, but it decreased in 2006 and increased in 2007 during this same 296

period (Fig. 3). Greenland Halibut juveniles had a higher condition factor in spring, with 297

an average Kn above 1.05. ΔKn varied significantly by season (F2, 8 = 18.23, P ≤ 0.001):298

ΔKn was negative from spring to summer and positive from fall to spring (Fig. 4). From 299

summer to fall, ΔKn remained close to 0 (Fig. 4).300
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Comparisons between regions indicated that Greenland Halibut juveniles from the EGSL 301

were significantly larger than those from the Northwest Atlantic (Table 3). However, the 302

Le Cren condition index of juveniles was significantly lower in the EGSL than in the 303

Northwest Atlantic (Table 3).304

305

Tissue Energy Content306

In EGSL juveniles captured in 2016–2017, energy compartment analyses showed that 307

liver was mostly composed of lipids (217.43 ± 68.24 mg g-1 wet liver) followed by 308

proteins (53.87 ± 10.69 mg g-1 wet liver) and glycogen (4.17 ± 4.30 mg g-1 wet liver).309

After conversion into energy values, lipids accounted for most of the energy reserves in 310

the liver (> 80%; 8.26 ± 2.59 g-1 wet liver), followed by proteins (10–15%; 1.29 ± 0.26311

g-1 wet liver) and glycogen, which accounted for the lowest fraction (≤ 1%, 0.07 ± 0.07312

g-1 wet liver).313

314

Relationships Between Tissue Energy, Water Contents, Kn, and HSI Index315

Using juveniles captured in spring and summer 2009, muscle and liver energy contents316

evaluated with a bomb calorimeter showed significant negative correlation with tissue 317

water content (Fig. 5A and 5B). No relationship between muscle energy content and Kn 318

was found (Fig. 6A), but a significant correlation existed between liver energy content 319

and the hepatosomatic index (Fig. 6B).320

Liver water content was converted into total liver energy content (kJ g-1 wet tissue) using 321

the relationship between liver energy and water content (see Fig. 5B). A strong 322
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correlation was found between estimations of liver energy content (kJ g-1 wet tissue) 323

based on liver water content (Y) and total measured protein, lipid, and glycogen contents324

(Y = 1.1231*X – 3.0245, R2 = 0.9660, P < 0.001).325

Muscle energy content was obtained from the relationship between muscle energy and 326

water content (see Fig. 5A). Using these calculations, we observed no difference in 327

muscle energy content between juveniles from the EGSL and those from the Northwest 328

Atlantic (Table 3), with an overall average of 4.05 ± 0.57 kJ g-1 wet tissue.329

330

Sex and Maturity of Fish Captured in the EGSL and Northwest Atlantic331

The EGSL and Northwest Atlantic samples (2016–2017) were each represented by 332

approximately equivalent numbers of male and female juveniles overall, with small333

variations depending on sample site (Table 1). All sampled fish were juveniles, as 334

confirmed by gonad histology, with none of those examined showing signs of sexual 335

maturation. In male juveniles, only immature developmental stages were observed (Fig. 336

7). Plasma testosterone was not detectable in EGSL fish while low but detectable values337

were found in Northwest Atlantic individuals (Fig. 8). Plasma 11-ketotestosterone 338

concentrations were lower in male juveniles from the EGSL compared to those from the 339

Northwest Atlantic (Table 3), where they nonetheless remained very low (≤ 160 pg 340

mL-1).341

For females, all gonads were immature; we only observed undifferentiated germ cells, 342

i.e., oogonia and primary stage oocytes at the perinucleolus stage. As was the case for343

males, plasma testosterone was not detectable in EGSL juveniles and was low but 344
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detectable in most Northwest Atlantic female juveniles (Fig. 8). No significant variation 345

of 17β-estradiol plasma concentration was noted between the two regions (Table 3). 346

Female plasma 17β-estradiol was very low at all sampling sites (≤ 330 pg mL-1).347

DISCUSSION348

According to the allometric growth of juvenile Greenland Halibut, the Kn condition 349

index was the best estimator of their general condition. However, the absence of a 350

relationship between Kn and tissue energy content in juveniles from these two areas 351

indicates that muscle water content must be measured along with Kn to fully appreciate 352

the quantity of energy reserves available to juveniles.353

Overall, our results indicate that the body condition of Greenland Halibut juveniles varies 354

over the year, with a general decrease in the condition index from spring to fall and a355

recovery of condition at some point between the fall and spring sampling periods. Kn was 356

different between juveniles from the Northwest Atlantic and those from the EGSL, but357

tissue energy contents were similar.358

Condition Index359

Juvenile Greenland Halibut growth in the EGSL is allometric. The slope coefficient of 360

the length–mass relationship was greater than three throughout the year. The Le Cren 361

index (Kn), which is also easy to determine on live fish, avoids the influence of size by 362

comparing the mass of an individual to a standard predicted by the length–mass363

regression calculated on the population from which the fish was sampled (Le Cren 1951). 364

However, length–mass relationships can vary because of several factors (e.g., 365

populations, geographic sites, year, month, sex), and Kn comparisons can only be made 366
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on groups with homogeneous length–mass parameters (Bolger and Connolly 1989). 367

Annual cyclical variations in growth, condition, and energy reserve accumulation have 368

been described for many exploited marine fishes (Atlantic Cod: Eliassen and Vahl 1982a369

1982b; Lambert and Dutil 1997a; Schwalme and Chouinard 1999; Mello and Rose 2005; 370

Atlantic Herring: Oskarsson 2005, 2008; Mediterranean Horse Mackerel, Trachurus 371

mediterraneus: Tzikas et al. 2007; European Hake: Hidalgo et al. 2008) including 372

flatfishes (European Plaice: Dawson and Grimm 1980; Winter Flounder: McLeese and 373

Moon 1989; Japanese Flounder: Paralichthys olivaceus, Tomiyama and Kurita 2011;374

Greenland Halibut in the North Atlantic: Román et al. 2007). These fluctuations result 375

from ecological and physiological processes, such as feeding, sexual maturation, 376

reproduction, migration, or wintering, which are strongly controlled by abiotic factors, 377

mainly climatic (Lloret et al. 2014). Annual cycle changes are therefore dependent on the 378

life history traits of a species. Here, we only studied fish between 20 and 32 cmknown379

from prior work (Ait Youcef et al. 2015; Bourdages et al. 2016) to be two-year-old 380

juvenilessettling in nurseries, meaning that no sexual maturation, reproduction, or 381

reproductive migration affected their condition. Indeed, no evidence of gonad maturation382

was observed: sexual steroid levels were very low, similar to those of juveniles surveyed383

in captivity from July to December at three different temperatures (Ghinter et al. 2021).384

Overwintering is generally a critical period for fish, principally because low temperatures385

negatively affect fish metabolic processes, such as ingestion, digestion, assimilation, and 386

ultimately fish growth rate (reviewed by Hurst 2007). In many cases, winter is a period of 387

starvation during which fish are forced to use their energy reserves to compensate for the 388

lack of food. Thus, variations in energy reserves as well as in body indices are common 389
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during winter (European Plaice: Dawson and Grimm 1980; Winter Flounder: McLeese 390

and Moon 1989; Atlantic Cod: Schwalme and Chouinard 1999; Red Drum: Craig et al.391

2000). In the EGSL, Greenland Halibut juveniles settle in deep water, where bottom 392

temperature conditions are relatively constant over the year (Ait Youcef et al. 2015; 393

Galbraith et al. 2019). Ait Youcef et al. (2015) suggested that these characteristics could 394

explain why juvenile growth is constant throughout the year in the EGSL. While Ait 395

Youcef et al. (2015) observed a constant length increment over the year, we found that396

biotic and abiotic environmental parameters in winter in the EGSL allowed juvenile 397

Greenland Halibut to recover a high condition index prior to the next spring despite inter-398

annual variability in the condition index during summer and fall. The decrease in Kn after 399

spring suggests a decrease in mass gain relative to the length increment. Such a decrease 400

was observed for Greenland Halibut in the Northwest Atlantic in NAFO divisions 3LNO401

in a study combining data on adults and juveniles (Román et al. 2007). Greenland Halibut402

is a voracious top predator that commonly leaves the seabed to feed in the water column403

on epibenthic and bathypelagic prey (Bowering and Brodie 1991; Bowering and Lilly 404

1992; Jørgensen 1997; Dawe et al. 1998; Woll and Gundersen 2004; Solmundsson 2007; 405

Vollen and Albert 2008; Dennard et al. 2009; Albert et al. 2011). Thus, its hunting 406

environment is subject to variations during the annual cycle, which could make 407

Greenland Halibut more sensitive to variations of environmental factors than what is 408

observed in other benthic species that feed on benthic sources (Stasko et al. 2016; Giraldo 409

et al. 2018). Accordingly, the pelagic activity of Greenland Halibut has been found to 410

vary over the year; this was hypothesized to be linked with feeding intensity, including 411

prey selection, prey availability, and prey distribution in the water column (Vollen and 412
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Albert 2008; Albert et al. 2011; Boje et al. 2014). Here, only two-year-old juveniles413

located in the EGSL were studied. Among fish within this size range, prey consumed by 414

juveniles are mainly Northern Shrimp Pandalus borealis and fish, mostly Capelin 415

Mallotus villosus (Savenkoff 2012; DFO 2019). It is therefore possible that variation in416

the availability of these prey during the year could contribute to variations in Kn during417

the year. Indeed, in the Canadian Beaufort Sea, the lower lipid content in Greenland 418

Halibut muscle has been hypothesized to be related to lower abundances of prey (Artic 419

Cod, Boreogadus saida), which may explain a drop in feeding rates as well as an increase 420

in energy expenditure in seeking prey (Giraldo et al. 2018). Other top predator fishes421

living in the deep-sea environment, the macrourids Coryphaenoides yaquinae and C. 422

armatus, show increased foraging behaviour during periods of prey scarcity (Armstrong 423

et al. 1991; Priede et al. 1994). Despite this, these fishes maintained a constant nutritional 424

condition throughout the year with little or no growth variation (Drazen 2002). 425

The Kn indices of juveniles from the Northwest Atlantic were higher than for those from 426

the EGSL. Despite the higher Kn, relative muscle energy content (kJ g-1 wet tissue) was 427

not different between the two regions. However, the greater Kn indicated that the 428

individuals from the Northwest Atlantic were relatively heavier than those from the 429

EGSL, with potentially a higher muscle mass and therefore higher total energy reserves.430

Two stations in the EGSL were sampled in summer, when juvenile condition was 431

relatively lower than the condition of spring samples (0.96 ± 0.09 and 0.93 ± 0.06 vs. 432

1.02 ± 0.04), which confirmed the seasonal comparisons, i.e., a decrease in Kn after 433

spring. The two Northwest Atlantic stations were sampled in fall and showed relatively 434

higher Kn (1.03 ± 0.06 and 1.06 ± 0.05). We do not know whether variations in the435
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condition index occur throughout the year in this region (NAFO Div. 2H, 2J), but this is a 436

factor that cannot be excluded.437

The differences in size and mass observed between the two regions were due to a single 438

station of the EGSLthe northeast Anticosti sitewhere larger individuals were 439

captured. Despite the small number sampled at the northeast Anticosti site, our results440

agree with the results obtained by Ait Youcef et al. (2015), who reported a larger length441

increment between ages 1 and 2 at this site but were not able to pinpoint a specific442

environmental factor that could explain it. If we do not consider the northeast Anticosti443

site, the size and mass between the two regions (EGSL and Northwest Atlantic) were 444

similar. We cannot discount the possibility of regional differences that could be related to445

differences in mean ages. Indeed, otoliths were not collected because of known446

difficulties in age reading using otoliths in Greenland Halibut (Treble et al. 2008), even 447

though new approaches are promising (Albert 2016; Moen et al. 2018). Moreover, no 448

analysis of age classes using length frequencies, such as the one performed for the EGSL 449

(Ait Youcef et al. 2015), has been made in the Northwest Atlantic. Further work to 450

establish the age structure in the Northwest Atlantic remains to be done.451

Estimation of Energy Reserves452

Water and energy contents were negatively correlated in both muscle and liver. The 453

percentage of water turned out to be a good proxy for energy content; it is relatively easy 454

to measure and therefore to estimate energy reserves in both muscle and liver. Condition 455

indices and HSI usually provide good estimates of fish health status because they are 456

related to tissue energy content as previously shown in other species (Atlantic Cod: 457

Lambert and Dutil 1997a; Winter Flounder: Plante et al. 2005).458
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In the present study, no correlation was found between Kn and muscle energy content. In 459

a study on fecundity in Greenland Halibut, Kennedy et al. (2009) used the Fulton 460

condition index (K) and HSI and concluded that they may be poor indicators of energy 461

reserves. In the present study, we found a significant correlation between HSI and liver 462

energy content. However, this relationship was weak, and we observed high variability in 463

the liver energy content for the same HSI value. Thereforestrictly in terms of energy 464

contentKn and HSI do not seem to be reliable indicators of the precise energetic status465

of juvenile Greenland Halibut. Tissue water content remains one the best indicators to use 466

along with Kn.467

By mass, the energy content of the liver is higher than that of muscle tissue, but liver only 468

represents a small percentage of body mass, i.e., from 0.3 to 4.6% (Gundersen et al. 1999, 469

2001, 2004). In our study, juvenile liver mass was estimated to be 1.3 ± 0.3% of body470

mass. On the contrary, muscle tissue represents a much larger proportion, from 36.5 ±471

3.9% in juveniles (< 40 cm, Y. Lambert, Institut Maurice-Lamontagne, Fisheries and472

Oceans Canada, pers. comm.) to 47.2 ± 3.9% in adults (Karl et al. 2018). Therefore,473

muscle represents the main source of energy storage in this species. For example, the474

expected mass for a 25 cm juvenile would be 120.8 g (We) and estimates of energy 475

content based on an average of 36.5% and 1.3% of body mass for muscle and liver,476

respectively, would be 229 kJ and 14 kJ. The liver’s contribution to total energy reserves 477

in Greenland Halibut is very low, as is the case in other flatfishes such as European478

Plaice (Dawson and Grimm 1980) and Winter Flounder (Maddock and Burton 1994).479

In a study based on a small number of adult Greenland Halibut, Karl et al. (2018) showed 480

that lipid content varies inversely with muscle water content, and that muscle has a481
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relatively high level of lipids compared to other fish species, thus identifying Greenland 482

Halibut as a fatty fish (> 10% fat). During periods of fasting, European plaice (Dawson 483

and Grimm 1980) and Winter Flounder (McLeese and Moon 1989; Maddock and Burton 484

1994) use their muscle lipids, which results in Winter Flounder in a proportional increase 485

in muscle water content, sometimes up to 94.6%. When muscle lipids are exhausted, 486

muscle proteins are catabolized, with a further increase in water content. In the present487

study, muscle water and energy contents varied from 69 to 85% and 3.5 to 9.5 kJ g-1 of 488

wet mass, respectively. This suggests that juveniles had not exhausted their lipid reserves 489

and that they were not starved prior to sampling. 490

Histological and hormonal analyses clearly showed that only juveniles were used in our 491

comparisons. Despite differences between the two regional populations, hormonal 492

concentrations remained low throughout the sampling periods. In the present study, sex 493

steroid levels remained 100 times lower for estradiol in females, 10 to 100 times lower 494

for 11-ketotestosterone in males, and testosterone remained at concentrations 10 times 495

lower than concentrations observed in Atlantic Halibut during reproduction (Methven et 496

al. 1992). We found no evidence of earlier sexual maturation in the EGSL nor differences497

in growth that could explain why more females and smaller fish are now captured in the498

EGSL.499

Conclusion500

We validated the use of the Le Cren index, Kn, to evaluate the general condition of 501

juvenile Greenland Halibut. In the EGSL, Kn varied depending on time of year, with 502

results indicating a decline throughout the summer and the potential that recovery might 503

occur during winter or early spring, in advance of the earliest sampling period analyzed 504
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herein. Factors that influence these variations throughout the year remain unclear, but 505

prey availability should be an important factor for such a voracious bathypelagic 506

predator. The absence of a significant relationship between Kn and muscle energy507

content indicates that the evaluation of muscle water content is important in assessing the 508

precise energy status of juvenile Greenland Halibut. When more energy is available in509

juvenile tissues, more is available to sustain the energetic costs of growth. Using the tools 510

highlighted in this study, we found that juveniles from the EGSL and the Northwest 511

Atlantic appear to have divergent lengthmass relationships. This needs to be confirmed512

by further studies where fish age could be assessed. Adding the use of Kn and muscle513

energy content to monitoring processes would help document the general status and514

growth potential in juveniles of this important commercial species.515
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Location Coordinates Date CCGS 
vessel

Duration 
(min)

Depth
(m)

Temperature 
(°C) Salinity       Oxygen    

(µmol L-1) Ntot N♀ N♂

Estuary and Gulf of St. Lawrence

SLE N48° 53' 44" 
W67° 56' 07"

August
21-23 2016 Teleost 20 - 30 271 ± 29 5.5 ± 0.2

34.46
± 

0.08

58.92
± 

8.19
10 6 4

NEA N49° 38' 15"
W61° 29' 24"

August 29
2016 Teleost 20 - 30 278 ± 1 6.3 ± 0.1

34.59
±

0,09

95.09
± 

7.88
9 5 4

SLE N48° 39' 27"
W68° 36' 11"

May 22-25
2017 Leim 30 323 ± 6 5.5 34.40 52.25 10 3 7

Northwest Atlantic

2H N55° 26' 20"
W56° 41' 40"

October 28
2017 Teleost 15 269 ± 92 2.2 ± 1.0 - - 10 5 5

2J N53° 52' 50"
W55° 09' 30"

November
03-05 2017 Teleost 15 177 ± 14 -0.1 ± 0.0 - - 10 4 6



Season Equation R² df df (error) F P value
Spring 3.3151x - 5.8504 0.97 1 2117 76737.74  0.001

Summer 3.2424x - 5.6688 0.96 1 1511 32378.82  0.001
Fall 3.1707x - 5.4233 0.97 1 524 16566.32  0.001

Slope homogeneity 2 4152 14.70  0.001
Region

EGSL 3.2372x - 5.6237 0.97 1 4156 117011.4  0.001
NW Atl 3.1948x - 5.5406 0.96 1 6222 141195.2  0.001

Slope homogeneity 1 10778 9.5 0.0021



EGSL NW Atl ttest
df t P value

♀-17β-estradiol (pg mL-1) 43.90 ± 85.37 17.16 ± 15.91 21 0.87 0.3943

♂-11-ketotestosterone (pg mL-1) 22.52 ± 9.46 68.21 ± 49.77 23 -3.57 0.0016

Length (cm) 28.3 ± 2.7 25.6 ± 3.1 47 3.18 0.0026

Mass (g) 177.3 ± 48.9 143.9 ± 54.8 47 2.24 0.0298

Kn 1.00 ± 0.08 1.08 ± 0.06 47 -4.01 0.0002

Muscle energy (kJ g-1 wet) 4.05 ± 0.66 4.05 ± 0.44 47 -0.01 0.9928
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