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Abstract

In the northern Gulf of St. Lawrence (nGSL), redfish (Sebastes mentella and Sebastes fascia-

tus combined) are at record levels of abundance following the strong recruitment of three

consecutive cohorts in 2011–2013 and have become by far the most abundant demersal

fish in the region. Understanding redfish trophic relationships is essential for the effective

management and conservation of species in the nGSL ecosystem. To date, description

and quantification of redfish diet in the region have been restricted to conventional stom-

ach content analysis (SCA). Using analysis of fatty acid (FA) profiles as complementary

dietary tracers, the authors conducted multivariate analyses on 350 livers of redfish which

were collected in combination with stomach contents during a bottom-trawl scientific

survey in August 2017. The predator FA profiles were compared to those of eight differ-

ent redfish prey types identified as dietary important with SCA. Results suggested simili-

tude between SCA and FA results, with zooplankton prey being more related to small

(<20 cm) and medium (20–30 cm) redfish (16:1n7, 20:1n?, 22:1n9 and 20:5n3) than large

(≥30 cm) ones, whereas shrimp prey seemed more related to large redfish size classes

(18:2n6 and 22:6n3) relative to the small and medium ones. Although the SCA offers a

glimpse in the diet only based on the most recently consumed prey, analysis of FA pro-

files provides a mid-term view indicating pelagic zooplankton consumption on calanoid

copepod and confirming high predation pressure on shrimp. This study constitutes the

first attempt of combining FA with SCA to assess the diet of redfish, highlights the bene-

fits of FA as a qualitative tool and suggests improvements for future studies.
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1 | INTRODUCTION

Insights into predator–prey dynamics are a key element in the knowl-

edge of ecosystem structure and function to ensure effective

management and protection of commercial species (e.g., Arditi &

Ginzburg, 2012; Braga et al., 2012; Nielsen et al., 2018). This is of par-

ticular interest in the current context of ecosystem conservation with

environmental changes, including warming waters and changes in
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species composition, which leads to the following question: what are

the main prey of key consumers in relation to their respective abun-

dance and availability? To address this issue, several approaches, such

as visual- and DNA-based diet analyses, as well as biomarkers based

on stable isotopes and fatty acids (FAs), have been developed to mea-

sure the ingested or egested prey and estimate the assimilated frac-

tion of prey (e.g., Amundsen & Sánchez-Hernández, 2019; Baker

et al., 2014; Braga et al., 2012; Hyslop, 1980; Iverson, 2009; Nielsen

et al., 2018).

Stomach content analysis (SCA) is an approach that is particularly

relevant to assess fish diet composition because fish generally swal-

low their prey whole (Amundsen & Sánchez-Hernández, 2019).

Although SCA allows the visual identification of ingested prey and

their relative importance in the diet, providing inferences on ecologi-

cal traits, such as feeding mode and prey preferences of a predator, it

is subject to several biases (e.g., Baker et al., 2014; Bowen &

Iverson, 2013; Braga et al., 2012; Hyslop, 1980; Iverson, 2009;

Iverson et al., 2004). First, it only provides a snapshot of the last few

most recent meals, so that large sample sizes are required to poten-

tially inform on various prey contributions. Even with sufficient sam-

ple sizes, the portrait of diet produced from SCA is restricted to the

spatial scale and time period of sampling unless stomachs are col-

lected over different areas and seasons. Further, different prey may

be digested at different rates, and the relative contribution of quickly

digested prey, such as larvae or soft-bodied organisms, may be

underestimated (Amundsen & Sánchez-Hernández, 2019; Baker

et al., 2014; Hyslop, 1980). The frequency of partial or complete

regurgitation can also be high, which, in addition to stomachs that

were truly empty, can reduce the sample size considerably compared

to the number of stomachs collected. Furthermore, partial regurgita-

tion results in incomplete prey samples. For instance, physoclist fish

species have a closed swim bladder and therefore cannot adapt to

rapid changes in pressure. As a result, they are extremely sensitive to

barotrauma when brought to the surface rapidly (Jarvis &

Lowe, 2008), and partial or total regurgitation is frequent. Although

fish showing signs of regurgitation, with food in their mouth or evagi-

nated stomach, are often discarded during sea sampling, it is impossi-

ble to determine if the collected stomachs classified as empty are

from individuals that had not fed recently or if the contents were

regurgitated. Partial regurgitation increases uncertainty in observed

contribution of different prey types to the diet.

Under the paradigm “you are what you eat” (e.g., Bradshaw

et al., 2003; Bundy et al., 2011), it is recommended to use trophic bio-

markers to complement the direct examination of stomach contents

to infer trophic relationships (e.g., Bowen & Iverson, 2013; Dalsgaard

et al., 2003; Peterson & Fry, 1987; Pethybridge et al., 2018). Different

biochemical tracers contribute different types of information about

diets. Isotopic compositions are commonly used to delineate trophic

structure and examine the ecological dynamics of communities,

whereas FA analyses, on the contrary, are used primarily to assess the

most important food sources (e.g., Dalsgaard et al., 2003; Peterson &

Fry, 1987; Pethybridge et al., 2018). Thus, the analysis of FA profiles

has emerged as a tool to provide additional clues about feeding habits

and diet assimilation in predators like fish (Dalsgaard et al., 2003;

Iverson et al., 2004). FAs are the main molecular building blocks of

most of lipids, and some such as the longer, unsaturated chains are

transferred in a conservative manner when passing from producer to

consumer organisms in the form of neutral lipids (energetic reserve of

lipid stores) before integration in polar lipids (structural lipids having

physiological functions) (Budge et al., 2006; Dalsgaard et al., 2003;

Iverson, 2009; Tocher, 2003). Furthermore, most marine consumers

cannot synthetize certain essential fatty acids (EFAs) in sufficient

amount to meet their physiological needs (Parrish, 2013), implying

that they must be acquired through diet. As these are stored unal-

tered and accumulate over time, feeding habits of a predator might be

inferred by the FA composition, providing information on prey items

ingested over a period that can reach several weeks, depending on

the tissue sampled and metabolism of the species (e.g., Budge

et al., 2006; Dalsgaard et al., 2003; Fraser et al., 1989; Iverson, 2009;

Iverson et al., 2004; Kirsch et al., 1998; Parrish et al., 2000; Pethy-

bridge et al., 2018). Thus, the FA integration period, i.e., the turnover

rate of FAs, depends on the ability of different tissues to accumulate

lipids and varies based on temperature and predator physiological

traits, such as the energy requirements or their reproductive status

(Budge et al., 2011; Dalsgaard et al., 2003; Kirsch et al., 1998). The

appropriate samples useful in diet determination are tissues that serve

as a fat energy depot (neutral lipids), such as blubber or liver (Budge

et al., 2006; Iverson, 2009; Budge et al., 2011). Tissues, such as skin,

that contain more structural FAs (polar lipids) should be avoided for

diet studies. Moreover, understanding the metabolic role of FAs

stored in predators is an important consideration for the use of FAs in

studying food webs (Iverson, 2009). For example, species with a high

metabolic rate and limited space to store energy reserves will have

faster energy lipid replacement, as demonstrated for example in cope-

pod or krill species (Budge et al., 2006; Norrbin et al., 1990). Large

organisms have lower metabolic requirements relative to their mass

than small ones (Garvey & Whiles, 2016). Therefore, the analysis of

FA profiles has now been applied to several marine predatory species,

such as fish and marine mammals (e.g., Bradshaw et al., 2003; Budge

et al., 2006; Drazen & Sutton, 2017; Iverson, 2009; Parrish

et al., 2015; Parzanini et al., 2018; Pethybridge et al., 2018; Couturier

et al., 2020; Jackson et al., 2021).

In the Gulf of St. Lawrence (GSL), an inland sea of the north-west

Atlantic Ocean, two sympatric redfish species coexist in the

deep waters: the Acadian redfish, Sebastes fasciatus (Storer 1854) and

the deep-water redfish, Sebastes mentella (Travin 1951) (Senay

et al., 2022). These two species are morphologically similar, and indi-

viduals cannot be assigned to species based on morphological traits.

Often not distinguished in both scientific surveys and commercial

fisheries (Senay et al., 2021), the two principal species are referred to

as redfish (Sebastes sp.) hereafter. After a 20-year period of low abun-

dance, redfish have rebounded to record levels with the strong

recruitment of three consecutive annual cohorts in 2011–2013 to

become the most abundant demersal fish species in the region,

accounting for more than 80% of the total biomass sampled in the

northern Gulf of St. Lawrence (nGSL) bottom-trawl scientific survey
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(Bourdages et al., 2022). Genetic analysis performed on the most abun-

dant 2011 cohort indicated that 91% of these fish were S. mentella

(Senay et al., 2021). This sudden resurgence of redfish is expected to

have important implications for the nGSL ecosystem, including massive

predation on its main prey species, increased food supply for its preda-

tors and increased competition with several other groundfish species (e.

g., Brown-Vuillemin et al., 2022; Senay et al., 2021).

To date, the description and quantification of prey in redfish diet

of the nGSL, as well as most studies in the North Atlantic, have been

performed with SCA (e.g., Brown-Vuillemin et al., 2022; González

et al., 2000; Ouellette-Plante et al., 2020; Steele, 1957). Stomach sam-

ples of nearly 7000 individuals made it possible to perform a detailed

comparison of diet composition between a period of low redfish

abundance (1993–1999) and the recent period of redfish resurgence

(2015–2019), despite the large proportion of empty stomachs typical

from a deep-water physoclist species (Brown-Vuillemin et al., 2022).

Identification of stomach contents for the period of record abundance

(2015–2019) showed that zooplankton, principally copepods of the

genus Calanus, represented the main prey category for small (<20 cm)

redfish. With increasing size, redfish shifted to larger prey items.

Notably, shrimp consumption increased when redfish reached 25 cm

and became dominant for fish ≥30 cm. Large redfish (≥30 cm) preyed

on two shrimp species in particular: pink glass shrimp (Pasiphaea multi-

dentata) and northern shrimp (Pandalus borealis) (Brown-Vuillemin

et al., 2022; Ouellette-Plante et al., 2020; Senay et al., 2021). These

studies suggest that the large 2011–2013 recruitment will have an

increasing impact on shrimp populations and also compete with other

resident groundfish stocks of the nGSL, such as Greenland halibut

(Reinhardtius hippoglossoides) and Atlantic cod (Gadus morhua).

The objective of this study was to describe the feeding ecology of

redfish in the nGSL ecosystem with the use of short-term information

from SCA and mid-term diet composition estimated from the analysis

of FA profiles in redfish liver tissue collected in August. By examining

redfish stomach and FA composition for different size classes and

subareas of the nGSL, this study is the first to document redfish diet

with the combination of both methods.

2 | MATERIALS AND METHODS

2.1 | Study area and sample collection

Redfish were sampled on the 2017 August randomly depth-stratified

trawl survey conducted by Fisheries and Oceans Canada (DFO) and

covering the estuary and nGSL. Three distinct subareas were distin-

guished in this study: (a) the deepest part of the Laurentian Channel

(LC) which extends from Cabot Strait to the centre of the nGSL,

(b) the north-east Gulf (NEG) including the Esquiman and Anticosti

Channels and (c) the north-west Gulf (NWG) comprising the estuary

and the western part of the LC (Figure 1). The survey vessel, CCGS

Teleost, was equipped with a Campelen 1800 trawl with a 13 mm net

liner. Details of bottom-trawl surveys, sampling and protocol can be

found in Bourdages et al. (2018). For each haul, individuals were

selected from a sample of the redfish catch and were stratified by

length classes, and only those with no signs of regurgitation or feeding

within the trawl were retained. Fish manipulations were carried out

based on the recommendation of the Canadian Council of Animal Pro-

tection (Batt et al., 2005). Each redfish was measured (fork length, FL

in millimetre, converted into centimetre for this paper) and weighed

(g) upon capture.

For this study, a total of 350 redfish were targeted for stomach

content and FA profile analyses (Table 1). Because FAs are trans-

ported to the liver (Brindley, 1991), it is the primary organ of lipid

deposition and storage. Thus, to investigate redfish FA profiles, at

least 500 mg (estimated visually) of liver tissue was collected and

immediately preserved in a dichloromethane:methanol solution (2:1,

v:v) (Folch et al., 1957; Meyer et al., 2017). Both samples (stomach

and liver) were immediately frozen (�20 and �80�C for stomachs and

livers, respectively) with a unique identification label until analysis in

the laboratory. In parallel, eight different main prey species, already

identified as important prey of redfish (Brown-Vuillemin et al., 2022),

were randomly collected in catches during the same trawl survey and

frozen whole (�80�C) for determination of their FA profiles. Targeted

prey species were two fish species, capelin (Mallotus villosus) and red-

fish (Sebastes sp.), two shrimp species, northern shrimp (P. borealis)

and pink glass shrimp (P. multidentata), three amphipod species of

genus Themisto (Themisto compressa, Themisto libellula and Themisto

abyssorum) and one copepod genus (Calanus sp.).

2.2 | Redfish stomach content analyses

In the laboratory, each stomach was thawed, dissected and examined.

Empty stomachs (n = 137, Table 1) were excluded from further ana-

lyses. All prey in non-empty stomachs (n = 213, Table 1) were sorted,

weighed and identified to the most precise taxonomic level possible

using a binocular microscope and keys and identification guides (e.g.,

Campana, 2004; ICES, 2014; Squires, 1990; Vassilenko &

Petryashov, 2009) by personnel at the Maurice Lamontagne Institute,

led by Claude Nozères (DFO).

2.3 | Analysis of fatty acid profiles from redfish
liver and prey samples

Lipids were extracted from redfish liver samples based on the modi-

fied Folch procedure (Folch et al., 1957), as described in Parrish

(1999) and designed as a classic and robust method for the recovery

of lipids from marine tissues (Couturier et al., 2020). Lipids were

extracted by grinding with a dichloromethane/methanol (CH2Cl2:

MeOH) solution (2:1, v:v). Lipid phases (neutral and polar) were sepa-

rated by centrifugation of dichloromethane/methanol solutions for

2 min at 2000 rpm. For the 350 redfish livers (Table 1), only neutral

lipids were retained, which in marine fishes constitute predominantly

an energetic lipid reserve and are preferred for resolving dietary con-

tributions of different prey items because they reflect trophic
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influences (Dalsgaard et al., 2003; Fraser et al., 1989; Parrish

et al., 1995). The neutral fraction was retrieved on silica gel columns

hydrated with 6% deionized water. Columns were preconditioned

using 10 ml of methanol and 10 ml of dichloromethane before the elu-

tion of neutral lipids using 10 ml of a dichloromethane/methanol solu-

tion (98:2, v:v) (Marty et al., 1992). For prey, FAs were extracted from

the whole animal, as eaten by redfish, after homogenization in a

blender. As the objective was to characterize the FA composition of

prey organisms, analyses of total (i.e., including both neutral and polar

fractions) lipids were performed (Iverson et al., 1997; Kirsch

et al., 1998). Each prey species was treated in four or five replicates.

For larger species (capelin, redfish and northern and pink glass shrimp)

one individual was used per replicate and c. 1 g of homogenate was

taken to determine FA profiles. For prey with an individual mass of

less than 1 g (Themisto sp. and Calanus sp.), several individuals were

taken together per replicate to obtain sufficient sample mass. Fatty

acid methyl esters (FAME) were prepared based on the method

described by Lepage and Roy (Lepage & Roy, 1984) using sulphuric

acid and methanol (2:98, v/v) at 100�C for 10 min. Finally, lipid

extracts were purified on silica gel columns using 3 ml of hexane and

diethyl ether (1:1, v:v) to remove free sterols (Mejri et al., 2014).

FAME solutions were analysed using gas chromatography–mass

spectrometry (Thermo Fisher Scientific Inc., GC model Trace GC Ultra

and MS model ITQ900, Mississauga, ON, Canada) equipped with a

Supelco Omegawax 250 capillary column (30 m � 250 μm � 0.25 μm

film thickness, Bellefonte, PA, USA) at Institut des Sciences de la Mer

(ISMER) of the Université du Québec à Rimouski (UQAR). Initial oven

temperature was 100�C for 2 min. Temperature was then increased to

140�C for 1 min, after which it increased at a rate of 10�C min�1 until it

reached 270�C for 15 min. Injector temperature was 90�C, and a con-

stant helium flow of 1.0 ml min�1 was used. A volume of 1 μl was

injected. FAs were then identified by comparing retention times and

mass spectrum with known standards calibration curve with concentra-

tion ranging from 0.5 to 20 μg ml�1 (Supelco 37 Component FAME Mix

Supelco Inc., Bellefonte, PA, USA). FA peaks were then quantified using

the Xcalibur v.2.1 software (Thermo Scientific, Mississauga, ON,

Canada) and described using the standard shorthand nomenclature of

C:DnX, where C is the number of carbon atoms, D is the number of

double bonds and nX indicates the position of the double bond closest

to the terminal methyl group (n? was used when the position was

unknown). A total of 19 FAs were reported in prey and redfish samples

and were expressed as the mean percentage (%FA) of total

F IGURE 1 Map of the study area
showing sampling hauls (n = 50) with
the number of redfish (Sebastes sp.)
stomachs and livers sampled (n = 350)
during the 2017 August trawl survey
in the Gulf of St. Lawrence. The grey
line indicates the 250 m depth isobath.
The three subareas considered for the
analysis are delimited by the dotted

lines with north-west Gulf (NWG),
Laurentian Channel (LC) and north-
east Gulf (NEG)

TABLE 1 Number of redfish liver tissues and stomachs with the percentage of empty stomachs and the number of stomachs containing prey
collected during the 2017 August trawl survey in the northern Gulf of St. Lawrence based on three redfish size classes and subareas

Size class
Liver tissue and stomach
collected and analysed

Liver for FA analysis

% empty stomach

Stomach containing prey

NWG LC NEG Total NWG LC NEG

<20 159 47 67 45 36 102 24 48 30

20–30 96 28 36 32 33 64 21 26 17

≥30 95 7 61 27 51 47 4 27 16

Total 350 82 164 104 39 213 49 101 63

Abbreviations: FA, fatty acid; LC, Laurentian Channel; NEG, north-east Gulf; NWG, north-west Gulf.
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FA. Reporting results per gram of liver tissue was not possible because

liver sample could not be weighed with sufficient precision while at sea.

2.4 | Data analysis

2.4.1 | Redfish size and spatial analysis

Redfish stomach data and FA composition were analysed as a func-

tion of redfish size using three major classes: small (<20 cm), medium

(20–30 cm) and large redfish (≥30 cm), and based on three subareas:

LC, NEG and NWG (Figure 1 and Table 1).

2.4.2 | Diet composition

SCA is described in detail in Brown-Vuillemin et al. (2022). Briefly, to

assess the contribution of a prey to the diet of redfish, the mean par-

tial stomach fullness index of prey i (PFIi) (Lilly & Fleming, 1981; Orr &

Bowering, 1997) transformed into a percentage (%FIi, percentage

F IGURE 2 Cumulative prey category–stomach curves and C.I. of 95% upper and lower with b values through the last five sub-samples for
(a) three size classes and (b–d) based on each size class and subarea for stomach content data. (a) , <20 cm (b = 0.005); , <20–30 cm
(b = 0.000); , ≥30 cm (b = 0.041); (b) , NWG (b = 0.114); , LC (b = 0.026); , NEG (b = 0.170); (c) , NWG (b = 0.242); , LC
(b = 0.098); , NEG (b = 0.238); (d) , NWG (b = 0.987); , LC (b = 0.108); , NEG (b = 0.373). LC, Laurentian Channel; NEG, north-
east Gulf; NWG, north-west Gulf

BROWN-VUILLEMIN ET AL. 1053FISH
 10958649, 2023, 5, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1111/jfb.15348 by C
repuq - U

niversité D
u Q

uébec, W
iley O

nline L
ibrary on [26/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



fullness index, Bernier & Chabot, 2012) was calculated for each prey

taxa in the redfish stomach. Equations used are available in Support-

ing Information Table S1.

To visualize and interpret the relationship between the

relative composition (% of total) of individual FA in redfish among

size classes and subareas, non-parametric multidimensional scaling

(nMDS) ordinations were performed (Clarke & Warwick, 2001). The

Bray–Curtis dissimilarity measure (Legendre & Legendre, 2012) was

used to assess groupings within the data set. The same procedure

was conducted to analyse %FA data of potential prey item sources.

To test for differences among factors, non-parametric distanced-

based permutation multivariate analysis of variance (PERMANOVA)

was conducted (Anderson, 2014). After significant PERMANOVA

results (P < 0.05), multiple pair-wise comparisons were used to

identify differences (P < 0.05). Similarity percentage analysis

(SIMPER, Clarke, 1993) was used to identify which FA contri-

buted most to dissimilarities among factors. The authors desig-

nated a cut-off of FA that characterized up to 80% of

dissimilarities. All analyses were conducted using the R soft-

ware version 4.0.1 (R Core Team, 2020) and packages “vegan”
(Oksanen et al., 2019), “ggplot2” (Wickham, 2016) and “ggpubr”
(Kassambara, 2020).

F IGURE 3 Cumulative curves of liver fatty acid and C.I. of 95% upper and lower with b values through the last five sub-samples for (a) three
size classes and (b–d) based on each size class and subarea for fatty acid data. (a) , 20 cm (b = 0.000); , 20–30 cm (b = 0.000); ,
≥30 cm (b = 0.000). (b-c) , NWG (b = 0.000); , LC (b = 0.000); , NEG (b = 0.000). (d) , NWG (b = 0.114); , LC (b = 0.000);

, NEG (b = 0.000). LC, Laurentian Channel; NEG, north-east Gulf; NWG, north-west Gulf
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2.4.3 | Sample size sufficiency

Cumulative curves (Ferry & Cailliet, 1996) were calculated to assess

whether the number of redfish samples was sufficient to describe the

diet identified with SCA and analysis of FA profiles. Cumulative prey

curves plot the total number of prey categories or FA found vs. the

total number of stomachs or livers analysed. Sample size was consid-

ered sufficient once the curve reached an asymptote, and the slope of

the linear regression (b) through the last five sub-samples was ≤0.05,

which signified acceptable levelling off of the prey curve for diet ana-

lyses (Brown et al., 2012; Ferry & Cailliet, 1996). Curves were com-

puted after 100 randomizations of the original data (%FI or %FA) to

generated means and associated 95% C.I.

3 | RESULTS

3.1 | Sample size sufficiency

The sufficient sample size was much greater for stomachs (SCA) than

for livers (FA). Prey category–stomach curves reached a stable asymp-

tote for small (<20 cm, b = 0.005) and medium (20–30 cm, b = 0.000)

redfish but was not yet completely stable (b = 0.041) for the large

redfish that had the fewest redfish number of samples (n = 47;

Figure 2a). When examined by size class and subarea, only small red-

fish (<20 cm) in LC, which were twice as many samples as any other

group, produced a curve nearing the asymptote (b = 0.026), thus indi-

cating they were sufficient for a robust description of regional diet for

(a)

(c) (d)

(b)

F IGURE 4 Contribution of the 14 prey categories to redfish diet in visual examination of stomach contents, expressed as percentage of
fullness index (%FI) for (a) three redfish size classes in all subareas combined and (b–d) based on each size class and subarea. Stomach sample size
is indicated on each panel. Prey categories: , Sebastes sp.; , Other Fish; , P. multidentata; , Other Shrimp; , Themisto libellula; , Other
Amphipods; , Calanus sp.; , Mysids; , Thysanoessa sp.; , Pandalus borealis; , Other Copepods; , Other Euphausiids; , Other Invertebrates; ,
Unidentified Material
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a given size class (Figure 2b–d). In contrast to the stomach content

data, curves of liver FA performed adequately and reached more rap-

idly a stable asymptote (b = 0.000) for most of the size class – sub-

area combinations (Figure 3), with the exception of large redfish

(≥30 cm) in NWG (b = 0.114), because of the scarcity of this size

class in this subarea (n = 7; Figure 3d). Overall, the prey category–

stomach curves suggested that at least 50 redfish stomachs by group

were needed to approach asymptote, whereas the curves of liver FA

suggested that only about 10 samples are sufficient for a representa-

tive sample.

3.2 | Stomach content composition of redfish

A total of 32 different prey types were identified in redfish stomachs

(Supporting Information Table S2). Only six main prey specific taxa

identified at the genus or species level had important dietary contribu-

tions (taxon identified by an asterisk, Supporting Information

Table S2) and were retained in the following analyses: Sebastes sp.,

P. borealis, P. multidentata, T. libellula, Calanus sp. (Calanus hyperboreus

was grouped into the genus) and Thysanoessa sp. Prey taxa less impor-

tant in the diet were assigned to one of eight broad categories: other

fish, other shrimp, other amphipods, other copepods, mysids, other

euphausiids, other invertebrates and digested/unidentified material.

3.2.1 | Effect of redfish size and spatial variability
on stomach composition

The relative importance of the six main specific taxa and eight broad

prey categories, used for the following redfish diet description

inferred from SCA, changed with redfish size (Figure 4). The main

size-related shift observed was from zooplankton species in small

(<20 cm) redfish to shrimp and fish in large (≥30 cm) redfish. There

were also spatial differences in the relative contribution of the domi-

nant prey categories across size classes, specifically for Calanus cope-

pods, Themisto amphipods, Thysanoessa krill, Sebastes fish, P. borealis

and P. multidentata shrimp (Figure 4).

The diet of small (<20 cm) redfish was dominated by copepods (%

FI = 30), principally with Calanus sp. (%FI = 22). Other major prey cat-

egories were P. multidentata shrimp, amphipods and Thysanoessa krill

(%FI = 13; 12 and 10, respectively). Taking subareas into account,

there were high contributions of Thysanoessa krill (%FI = 25) and

other invertebrates (%FI = 45) in NWG, Calanus sp. in LC (%FI = 46)

and a mix of amphipods (%FI = 21), shrimp (%FI = 23) and copepods

(%FI = 23) in NEG.

A transition to shrimp was observed in the diet of medium (20–

30 cm) redfish, with P. borealis as the main prey (%FI = 27). This was

followed by the amphipod Themisto libellula (%FI = 19) and other

euphausiids (digested euphausiidae and Meganyctiphanes norvegica, %

FI = 17). P. borealis was mainly found in stomachs collected in NWG

and LC (%FI = 41 and 30, respectively), whereas T. libellula was exclu-

sively found in NEG and in very high amounts (%FI = 52).

The diet of large (≥ 30 cm) redfish was strongly dominated by

shrimp and fish categories (%FI = 88). The shrimp P. multidentata was

the major prey type consumed overall (%FI = 58) and was the pre-

dominant prey in NEG (%FI = 79). Cannibalism was observed in large

redfish (%FI = 14), but this was only observed in LC (%FI = 43). Sto-

machs from NWG were dominated by other fish (mainly A. risso) (%

FI = 46) and the shrimp P. borealis (%FI = 45), but these results are

based on only four redfish.

3.3 | Fatty acid profiles of prey

Multivariate analyses were performed on the 19 FAs recorded in prey

samples (Supporting Information Table S3). Significant variations in FA

composition were found among the different prey (F7,30 = 17.13;

P = 0.001). Overall, the following 13 FAs were responsible for 80% of

the dissimilarity among prey (SIMPER analyses): 14:0, 16:0, 18:0,

20:0, 16:1n7, 17:1 n?, 18:1n9, 20:1 n?, 22:1n9, 24:1n9, 18:2n6,

20:5n3 and 22:6n3 (Figure 5). All prey species differed significantly

from each other in their FA composition, except that Sebastes

sp. could not be distinguished from M. villosus, T. compressa and

T. abyssorum (P >0.05; Supporting Information Table S4). Pair-wise

analyses and nMDS showed that Calanus sp. was largely differentiated

from other prey taxa and was associated mainly with the monosatu-

rated FA (MUFA) 16:1n7 and the polyunsaturated FA (PUFA) 20:5n3

(26% and 12%, respectively; Supporting Information Table S3). Simi-

larly, the two shrimp species P. borealis and P. multidentata were dif-

ferentiated from other prey species mainly due to the influence of the

MUFA 24:1n9 (2.8% and 3.7%, respectively) and the PUFA 18:2n6

(2.5% and 3.6%, respectively) and 22:6n3 (6.1% and 6.8%, respec-

tively; Supporting Information Table S3). The amphipod T. libellula was

also distinct from other prey taxa (pair-wise P <0.05) and seemed to

be associated with SFA 14:0 (7.8%) and MUFA 20:1n? (12.3%; Sup-

porting Information Table S3).

3.4 | Fatty acid profiles of redfish livers and
relation with prey

The FA profiles of all livers (350 redfish, Table 1) were dominated by

MUFA, which comprised 75% of FA contents. The 18:1n9 (28.4% of

the total FA) was the main FA, followed by 22:1n9 (17.8%), 20:1n?

(16.4%), 16:1n7 (11.2%) and the saturated FA (SFA) 16:0 (8.9%)

(Supporting Information Table S5).

3.4.1 | Effect of redfish size on fatty acid signatures

Multivariate analysis showed variations in FA composition among the

three redfish size classes (F2,347 = 68.11; P = 0.001) (Figure 6a). Pair-

wise comparisons indicated differences (P = 0.001) among all size

classes (Supporting Information Table S5). SIMPER analyses identified

six FAs that explained at least 80% of the dissimilarities among size
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classes including 16:0, 16:1n7, 18:1n9, 20:1n?, 22:1n9 and 20:5n3.

According to nMDS, the FA signatures of small (<20 cm) redfish were

associated with the MUFA 22:1n9 and 20:1n? (21.7% and 18.4%,

respectively, Supporting Information Table S5) where 20:1n? could

be linked with the profile of T. libellula (Figures 5 and 6a). The FA sig-

natures of medium (20–30 cm) redfish were influenced by the MUFA

16:1n7 (12.1%) and the PUFA 20:5n3 (5.9%), which were related to

FA signatures of Calanus sp. (Figures 5 and 6a). The FA signatures of

large (≥ 30 cm) redfish were influenced by the MUFA 18:1n9

(36.7%), followed by the SFA 16:0 (11.2%) which could be

linked with FA profiles of fish prey more than those of amphipods

(Figure 5 and 6a), based on the knowledge acquired through the SCA

(Figure 4 and Brown-Vuillemin et al., 2022). To a lesser extent, the

FA signatures of large redfish also seemed influenced by the FAs

that were instrumental in discriminating the shrimp species

P. borealis and P. multidentata from other prey species (18:2n6 and

22:6n3, Figures 5 and 6a).

3.4.2 | Spatial variability on redfish fatty acid
signatures

Multivariate analysis performed on redfish livers from different sub-

areas revealed spatial differences in the relationship between FA

composition and fish size (P < 0.05; Figure 6b–d). For small (<20 cm)

redfish, pair-wise comparisons showed that all subareas were differ-

ent (P < 0.05; Supporting Information Table S6). nMDS revealed that

the MUFA 20:1n? and 22:1n9 were associated with small redfish

from the LC subarea (12.5 and 19.3, respectively) (Figure 6b and

Supporting Information Table S5). For medium-sized (20–30 cm) red-

fish, pair-wise comparisons did not reveal differences between NWG

and NEG, but both these subareas were different from LC

(Supporting Information Table S6). According to nMDS, medium red-

fish from LC were associated with the MUFA 16:1n7 and the PUFA

20:5n3 (13.1% and 6.0%, respectively) (Figure 6c). For large (≥30 cm)

redfish, pair-wise comparisons indicated that only NWG was signifi-

cantly different from the two other subareas, due to high a MUFA

18:1n9 contribution (44.5%) (Figure 6d). For each size class, the

MUFA 22:1n9 (24%, 20% and 12% for <20, 20–30 and ≥30 cm,

respectively) and 20:1n? (19%, 18% and 14% for <20, 20–30 and

≥30 cm, respectively) was always associated to the subarea LC,

whereas the MUFA 18:1n9 was always associated with the subarea

NWG (27%, 32% and 45% for <20, 20–30 and ≥30 cm, respectively)

(Supporting Information Table S5).

4 | DISCUSSION

To the authors’ knowledge, this study constitutes the first attempt of

combining FA with SCA to assess the diet of redfish. As a boreal

pF IGURE 5 Non-parametric
multidimensional scaling (nMDS)
ordinations and -parametric distanced-
based permutation multivariate
analysis of variance (PERMANOVA)
results (pseudo-F with degrees of
freedom and residuals) of the fatty
acid composition in the prey species.
FA in bold represent up to 80% of

dissimilarities (SIMPER analyses). Prey:
, Mallotus villosus; , Sebastes sp.; ,
Pandalus borealis; , Pasiphaea
multidentata; , T. compressa; ,
Themisto libellula; , T. abyssorum; ,
Calanus sp.
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species characterized by relatively low metabolism compared to tem-

perate species exposed to higher temperature, and with a life history

involving the accumulation of significant energy reserves, the FA com-

position of energy reserve lipids in the liver could represent a longer-

than-average integration period for redfish (Budge et al., 2011; Dals-

gaard et al., 2003; Kirsch et al., 1998). By combining both methods of

redfish diet determination and the database of FA composition for the

most important redfish prey in nGSL, the authors were able to take

advantage of FA as a biochemical tracer and infer diet over a longer

time period, probably in the order of several weeks, compared to a

few days for SCA.

SCA indicated that redfish captured in 2017 shifted from a

zooplankton-based diet to a shrimp- and fish-dominated diet as the

size increased, a result consistent with trends described by Brown-

Vuillemin et al. (2022) for the periods 1993–1999 and 2015–2019.

Small zooplankton with copepods (Calanus sp.) and macrozooplankton

like amphipods (Themisto sp.) and euphausiids (especially Thysanoessa

sp.) dominated the diet of small redfish (<20 cm) and showed decreas-

ing importance with increasing predator size (20–30 cm) as redfish

shifted to shrimp (P. borealis and P. multidentata) and small redfish

(cannibalism) in the diet of large (≥30 cm) redfish. FA analyses con-

firmed size-related changes in diet of redfish in this study.

(a)

(c) (d)

(b)
pp

p p

F IGURE 6 Non-parametric multidimensional scaling (nMDS) ordinations and -parametric distanced-based permutation multivariate analysis
of variance (PERMANOVA) results (pseudo-F with degrees of freedom and residuals) of the fatty acid composition in redfish livers for (a) three
redfish size classes in all subareas combined and (b–d) based on each size class and subarea. FA in bold represent up to 80% of dissimilarities
(SIMPER analyses). The centroid for each size class and subarea is represented by the largest symbol. (a) Size class: , <20; , 20–30; , ≥30. (b)
Subarea: , NWG; , LC; , NEG (c) subarea: , NWG; , LC; , NEG (d) subarea: , NWG; , LC; , NEG. LC, Laurentian Channel; NEG, north-east
Gulf; NWG, north-west Gulf
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Multivariate analysis of redfish FA composition showed that a sub-set

of FA accounts for a large part of the variation in redfish FA signa-

tures, suggesting dietary changes that can be reported to prey FA sig-

natures. Based on comparisons of prey-redfish FA results, small- and

medium-sized redfish (<20 and 20–30 cm) showed FA signatures simi-

lar to small and macrozooplankton trophic markers (16:1n7, 20:1n?,

22:1n9 and 20:5n3), whereas large redfish (≥ 30 cm) seemed to be

influenced by 18:1n9 and 16:0 (probably fish prey) and showed

shrimp-related FA signatures (18:2n6 and 22:6n3).

Similar size-related shifts in redfish diet composition observed in

the nGSL (Ouellette-Plante et al., 2020; Senay et al., 2021; Brown-

Vuillemin et al., 2022; this study) have also been shown through SCA

for other redfish populations (Albikovskaya & Gerasimova, 1993;

Dolgov & Drevetnyak, 2011; González et al., 2000). Size-related die-

tary transition from small to large prey items is commonly observed in

fishes and is generally attributable to a combination of factors, such as

the increase in gape opening and swimming ability (Cook &

Bundy, 2010; Sánchez-Hernández et al., 2019), changes in energy

requirements (Dwyer et al., 2010) and changes in habitat use because

larger redfish generally occupy deeper waters than smaller ones (e.g.,

Planque et al., 2013; Senay et al., 2021).

In addition to size, there were local effects, with differences in

diet among subareas observed with the two methods. Usually, diet

differences shown by SCA between subareas were for species of a

type, e.g., copepods vs. euphausiids or amphipods or shrimp vs. fish.

This study showed that the FA composition of redfish changed with

increasing size and also based on subarea. Feeding Atlantic cod (Gadus

morhua) first with squid and then with Atlantic mackerel (Scomber

scombrus), Kirsch et al. (1998) observed that cod FA composition

became more similar to that of Atlantic mackerel. Nonetheless, they

also noted that cod maintained a specific FA signature different from

that of their sole prey. Iverson et al. (1997) showed that predatory fish

species can be easily differentiated from each other even when preda-

tors of similar size and located in the same area are characterized by

similar diets. Thus, species-specific differences in the FA signatures of

prey and predators support the use of FA signatures to study the diet

of redfish, including for the description of size-related and spatial vari-

ability. Nevertheless, inferences may be complex to draw because of

absolute differences among predator and prey FA signatures attribut-

able to differences in predator metabolism (Iverson, 2009). In future

redfish diet studies, stronger conclusion could be made based on

long-term feeding trials in controlled conditions.

4.1 | Pelagic zooplankton consumption suggested
by Calanus-type markers

There is a large body of information on the lipids of calanoid copepods

that dominate the zooplankton biomass in several parts of the world's

oceans, and which are particularly important in northern temperate

and polar latitude pelagic food webs (e.g., Dalsgaard et al., 2003). Sev-

eral authors showed that FA composition of calanoid copepods

diverge from that of other copepods and other zooplankton species

through a lower proportion of 16:0 and 18:0 SFA, which is supported

by the results of this study (Supporting Information Table S3). They

are also differentiated by their high content of 20:1 and 22:1 MUFA

biosynthesized de novo, which only strictly herbivorous copepods

such as calanoid species of the genus Calanus can do in considerable

amounts (Brewster et al., 2018; Dahl et al., 2000; Dalsgaard

et al., 2003; Falk-Petersen et al., 1987; Falk-Petersen et al., 1990; Fra-

ser et al., 1989; Lee, 1974; Sargent, 1976). Consequently, high levels

of
P

20 :1þ22 :1 MUFA (Calanus-type and pelagic marine feeding

markers) have been used to trace and resolve food web relationships

in, e.g., hyperiid amphipods, euphausiids and fish, which consume typi-

cally large quantities of calanoid copepods (Brewster et al., 2018;

Dalsgaard et al., 2003; Falk-Petersen et al., 1987; Falk-Petersen

et al., 2002; Meyer et al., 2019; Sargent, 1976). In this study, the sum

of these FAs in the liver tissue of large redfish (24%) is almost half of

that found in small redfish (40%), suggesting that the importance of

copepods in redfish diet decreases with increasing fish size, possibly

reflecting the decreasing payoff of hunting small prey for a larger fish,

and/or a reduction in spatial overlap as larger redfish generally occupy

deeper waters than smaller redfish. The finding of Voronin et al.

(2021) offers evidence for the reduction in spatial overlap hypothesis,

as MUFA in muscles, including dietary markers of zooplankton (cope-

pods) 20:1 and 22:1, were lower in redfish S. mentella sampled at

greater depths in the Irminger Sea. In the present study, multivariate

analyses indicated that 16:1n7 and 20:5n3 were most useful in dis-

criminating Calanus sp. from other potential redfish prey. As, 16:1n7

and 20:5n3 are FA trophic markers of diatoms (Budge &

Parrish, 1998; Dalsgaard et al., 2003; Viso & Marty, 1993), these

results could suggest high diatoms feeding by Calanus sp. in nGSL. In

this study, 20:1n? was mostly associated to T. libellula according to

multivariate analysis and could indicate that this species occupying

the same food web consumes calanoid copepods in significant quanti-

ties in the nGSL, assuming that amphipods cannot biosynthesize 20:1

de novo. This probability of calanoid ingestion highlights the fact that

no single FA can be assigned uniquely to any one particular species.

This needs to be considered when using the FA approach to study

specific trophic relationships in an uncontrolled environment and

within a complex network (Brett et al., 2016).

Feeding on copepods by small (<20 cm) redfish was demon-

strated through SCA and was particularly important in the LC subarea

(%FI = 55%). Combining SCA and FA signatures, it seems likely that

the large contribution of 20:1 and 22:1 MUFA to the FA profile of

small redfish is the result of direct consumption of copepods in the LC

subarea, rather than secondary ingestion of copepods through amphi-

pods. The FA profiles of medium redfish showed contributions of

16:1n7 and 20:5n3, associated with Calanus FA signatures, particu-

larly important in LC subarea. Because FA signatures integrate diet

contributions over a longer time period, this could mean small and

medium redfish have greater access to this calanoid resource earlier in

the summer, whereas copepods were less available in August, when

stomachs were sampled, due to the fact that Calanus sp. sink in the

deep channels in the nGSL, diapausing from August to early spring

(Dufour & Ouellet, 2007; Harvey et al., 2004).
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Accumulation of eicosapentaenoic acid (EPA, 20:5n-3) could be

particularly relevant for redfish because this essential FA, which can-

not be synthesized de novo or in sufficient amounts by marine animals,

was found to be retained in the muscles of fast-swimming fish in cold

water (Meyer et al., 2019; Sargent et al., 1987, 2002). Furthermore,

EPA is the precursor of several eicosanoids, which are signal mole-

cules playing a role in modulating many biological and biochemical

processes (Sargent et al., 2002; Tocher et al., 1996). Work by Dall

et al. (1993) suggests that EPA plays an important role in tissue bio-

synthesis, and Rawn (1989) demonstrated that EPA is required for the

synthesis of eicosanoid hormones, which have a wide range of func-

tions, including regulation of steroid biosynthesis, inhibition of gastric

secretions and stimulation of smooth muscle contraction. EPA was

reported to be important to larval survival and development (Dickey-

Collas & Geffen, 1992; Watanabe, 1982). Furthermore, EPA, like

DHA, is incorporated in membrane phospholipids to maintain the

structural and functional integrity of biological membranes, particu-

larly in cold conditions (Hulbert & Else, 1999). The consumption of

calanoids by small redfish may be a feeding trait originating from the

larval stage (Burns et al., 2020; Burns et al., 2021) and a good source

of EPA, with mean values observed here of 12% of their total FAs.

Work by Burns et al. (2020) showed positive selection by redfish lar-

vae on C. finmarchicus eggs, supporting the hypothesis of a strong link

between larvae and a key calanoid copepod in the GSL ecosystem.

FA analysis thus generated some complementary hypotheses rel-

ative to the importance of pelagic zooplankton in the diet composition

of small (<20 cm) and medium-sized (20–30 cm) redfish with the

Calanus-type markers, but also highlighted the complexity to establish

strong and direct trophic links with this method. Like in the example

given above with cod diet (Kirsch et al., 1998), it would be relevant to

understand the influence of FA on redfish by studying in a controlled

environment how different diets are reflected in the FA profile of red-

fish and evaluate which dietary FA may be used for inferring diet.

4.2 | Validation of the predation pressure on
shrimp with fatty acid signatures

In SCA, two specific shrimp species stood out in the diet of medium

(20–30 cm) and especially of large (≥30 cm) redfish, northern shrimp

(P. borealis) and pink glass shrimp (P. multidentata). These shrimp were

the main prey of redfish ≥30 cm, making up to 68% (FI) of the diet.

These results were supported by inferences from FA profiles, as con-

tributions of 18:2n6 and 22:6n3 (docosahexaenoic acid, DHA) suggest

an integration of shrimp to the diet of large (≥30 cm) redfish, espe-

cially in the deep LC and NEG subareas, where redfish catch rates are

the highest and where the overlap with the distribution of northern

shrimp suggests a strong predation impact (Bourdages et al., 2022;

Senay et al., 2021). As an important food source for several demersal

fish species (Parsons, 2005), shrimp form a link between the benthic

infauna and higher trophic levels and represent a source of DHA for

redfish, as their levels were observed around 7% of their total FAs.

The long-chain n-3 PUFA DHA (22:6n3), which is linked with deep-

and cold-water habitats (Meyer et al., 2019), could serve as a trophic

marker for an important trophic link between shrimp and redfish in

the nGSL. This FA is critical for neural and visual development in

higher trophic-level marine organisms (Bell et al., 1999; Navarro

et al., 1997; Sargent et al., 2002), by its involvement in neurotransmis-

sion, cell survival and neuro-inflammation prevention (Bazinet &

Layé, 2014). DHA tends to increase with trophic level in the marine

biome, by its transfer and selective retention when it is consumed

(Colombo et al., 2017; Kainz et al., 2004; Twining et al., 2016). Con-

trary to EPA, which is highly retained in zooplankton species, DHA is

highly retained in fish, suggesting that it is the primary synthesis of

polyunsaturated FAs in most of marine fish species (Colombo

et al., 2017). This is particularly important in cold environments, as

DHA integration in phospholipid membranes counteracts the rigidity

effect linked to low temperature, as already observed in fish (Dey

et al., 1993; Logue et al., 2000; Mejri et al., 2021).

Redfish predation on shrimp and implications for the demersal

community in the nGSL were raised in Brown-Vuillemin et al. (2022),

and this new analysis based on FA suggests that shrimp consumption

by large redfish is important all summer long and not just in August,

when stomachs were collected. Nonetheless, unlike SCA, FA signa-

tures do not allow the quantification of the relative predation mortal-

ity of P. borealis and P. multidentata due to large redfish. More specific

studies on the interactions between redfish and shrimp need to be

carried out.

4.3 | Complexity of marine food webs for fatty
acid analysis

4.3.1 | Importance of a representative sampling

In the marine system, the FA biomarker approach is based on observa-

tions that phytoplankton, at the base of the food web, produces

essential FA not biosynthesized by consumers, like the DHA and EPA,

which are then deposited in species tissue (Budge et al., 2006; Dals-

gaard et al., 2003) via trophic accumulation up the food chain (Sargent

et al., 2002). The current paradigm in ecological FA-related studies is

that EPA and DHA are synthesized only by particular phytoplankton

taxa (Gladyshev et al., 2013; Taipale et al., 2013, 2016) and trans-

ferred to fish via zooplankton, allowing the growth and functions of

delicate and complex organs of fishes, e.g., muscle, eye, brain and

gonads (e.g., Arts et al., 2001; Tocher, 2003). Phytoplankton composi-

tion fluctuates seasonally, and the FA composition varies among clas-

ses of phytoplankton (Viso & Marty, 1993; Volkman et al., 1989). FA

of dietary interest may sometimes reflect the characteristics of the

environment, inclusive of water temperature, salinity, incident light

and available nutrients, all of which may differ geographically (Budge

et al., 2002). This can result in spatiotemporal variability in the FA sig-

natures of phytoplankton in a given area and thus the FA composition

of food available to redfish may differ among the three subareas of

the nGSL. Thus, the use of FA signature to compare the diet of a pred-

ator in different areas or subareas requires a prey data set as complete
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as possible and ideally with complete spatial coverage (Nozères, 2006)

and knowledge of the predator's movements. In this study, the differ-

ent redfish prey were randomly sampled throughout the nGSL.

Nozères (2006) demonstrated that prey FA could vary by size, sub-

area, season and year in the nGSL. It would be useful to obtain a spe-

cific sample of prey earlier in the summer to obtain FA profiles that

drive redfish FA profiles in August, for future redfish diet studies

regarding summer feeding habits. Moreover, it will be valuable to

complement prey FA data by acquiring the FA signatures of other

zooplankton species playing a pivotal role in nGSL food webs and

which have been identified in the SCA. For example, krill species were

important prey for redfish based on SCA in this study. This is sup-

ported by another study in the same area based on a much larger sam-

ple size (Brown-Vuillemin et al., 2022). It would be thus useful to

obtain FA profiles for the three main krill species in the study area,

Thysanoessa raschii, T. inermis and M. norvegica.

4.3.2 | Ubiquity of fatty acid

Making inferences on links between prey and predators based on FA

composition is no simple task. For example, large (≥30 cm) redfish were

shown to be associated with 16:0, 18:1n9 and with DHA (22:6n3)

which could be attributed to shrimp in the present study. These FAs

have important roles in fish physiology, ranging from energy source,

hormone mobilization, buoyancy regulation and acting as structural ele-

ments (Dalsgaard et al., 2003; Ortega & Mourente, 2010).

The lipid signature of large redfish liver was characterized by high

content of oleic acid 18:1n9 (37%). According to the results of this

study, this FA could constitute the main lipid energy reserve of large

redfish in summer. It has been hypothesized that 18:1 FAs have active

role in the compensatory response to changes in temperature and

depth (Arts & Kohler, 2009; Velansky & Kostetsky, 2008). Marine fish

have the ability to synthesize 18:1n9 by desaturation of dietary 18:0

via the enzyme Δ9 desaturase (Dalsgaard et al., 2003; Sargent, 1976).

In the case of redfish, this conversion can be considered negligible

given the low amount of 18:0 (0%–6%) and the high availability of

18:1n9 (7%–22%) available among potential prey. The high concentra-

tion of 18:1n9 in the liver would then likely result from its incorpora-

tion from dietary lipids. Nevertheless, FA 18:1n9 is very abundant in

marine environments and a major FA of most marine animals and

demonstrated as dominant in carnivorous and omnivorous crusta-

ceans (Falk-Petersen et al., 1990). It must be considered that such an

FA may influence the lipid imprint of many other species, including

the potential prey of redfish. Therefore, FAs such as 18:1n9, 16:0 and

18:0, which are ubiquitous in marine systems and can be biosynthe-

sized by zooplankton and fish or freely absorbed (Dalsgaard

et al., 2003), are sometimes excluded when assessing diet from FA

composition in predator tissues. Nonetheless, the results of this study

showed value in considering these FA. For instance, according to the

results and the premise that these FAs are incorporated from prey,

the contribution of 18:1n9, 16:0 and 18:0 to the FA signatures of

large redfish makes it possible to exclude copepods, which are

characterized by a low proportion in these FA, as important prey of

large redfish because copepods do not seem to be the precursors of

this intake.

4.4 | Complementarity of fatty acid profiling and
implication for the study of redfish diet

4.4.1 | Sample size considerations

Independent of the method of dietary analysis used, an adequate sam-

ple size is required to obtain a representative portrait of the diet com-

position of predators (e.g., Baker et al., 2014; Brown et al., 2012;

Cortés, 1997; Ferry & Cailliet, 1996). Moreover, accurate diet compo-

sition analysis requires representative sampling across a predator's

geographical range, time and life-history stages, as diet can change

spatially, temporally and with specimen size (Hovde et al., 2002;

Link & Garrison, 2002) as already demonstrated for redfish (Brown-

Vuillemin et al., 2022). In this study, cumulative prey category–

stomach curves showed that results for the large majority of size class

and subarea combinations relied on an insufficient number of sto-

machs containing prey to provide a robust description of the redfish

diet composition. This is not surprising because the data used in

this study represent a sub-sample and thus a reduced number of

stomach contents, of a larger study about redfish diet with SCA

(Brown-Vuillemin et al., 2022). Characterizing diet and quantifying

contribution of different prey items through SCA is a challenging task

due to individual variability in stomach contents, the fact that sto-

machs represent a snapshot of diet based on one or a few last meals

before capture and differential digestion of potentially important prey

taxa. Successful SCA requires large sample sizes, which is difficult for

deep-water predatory fish and in particular physoclist species like red-

fish and hake, which often regurgitate their stomach contents upon

capture, which is more generally common for deep-water predators

(Drazen & Sutton, 2017; Pethybridge et al., 2011). The FA method

offers new perspectives on redfish diet beyond information that can

be extracted from SCA alone, by overcoming the effect of barotrauma

and the associated regurgitation, which does not prevent a liver tissue

to be taken for FA analysis.

The results of the cumulative curves of liver FA showed that only

about 10 samples of liver tissue are required to assess redfish diet in a

given sector and size class, which highlights the advantage of utilizing

FA profiles as diet tracers to overcome the logistical difficulties in the

collection of large sample sizes required for SCA. As such, FA analysis

represents a cost-effective option to assess diet for redfish or more

largely for species that are difficult to obtain due to conservation

needs or remote locations as suggested and demonstrated for shark

and chimaera species in Pethybridge et al. (2011). Nonetheless, SCA

will remain an essential step to identify which prey need to be col-

lected for FA analysis and to help interpret the results obtained with

this method. To complement SCA and help to refine taxonomical prey

resolution, the DNA metabarcoding of stomach contents may assist in

avoiding important potential pitfalls of SCA. This method enables the
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identification of prey by using “universal” PCR primers that amplify

sequence standardized DNA barcode regions from organisms in the

stomach contents at high sequence read counts. This method has

proven efficient, even for predators characterized by a diverse diet (e.

g., Pompanon et al., 2012; Symondson, 2002).

4.5 | Conclusion

Marine environments are complex, and obtaining accurate information

on trophic linkages constitutes a difficult task. No single method

allows a comprehensive assessment of a predator's diet composition

and its inherent variability on various time scales. This study relied on

the use of multitrophic markers coupling SCA and FA analysis as a first

step for documenting the spatial variability across size classes of the

redfish (Supporting Information Figure S1). The authors conclude that

FA analysis is promising for assessing seasonal or monthly variation in

redfish diet composition integrating all feeding regime. It requires

smaller samples of fish, and these could be collected during the fish-

ery, as there is no need for specialized personnel to excise liver. These

advantages would come at the cost of a coarser taxonomic resolution

than that of SCA, and a possibly reduced spatial coverage relative to

redfish distribution, compared with research surveys. These disadvan-

tages could be mitigated with the addition of stomach samples from

one or a few additional months, e.g., during the winter scientific sur-

veys initiated by DFO in 2022 for 3 years.

Results of this study support the concept that the combination of

several techniques provides the maximum level of information on a

predator's feeding ecology. SCA is the only method that can detect

cannibalism on small redfish, a behaviour expected to intensify as indi-

viduals from the 2011–2013 cohorts become larger and will need to

be monitored (Brown-Vuillemin et al., 2022). Nonetheless, FAs pro-

vide important information on the nutritional quality of prey, which

could be particularly important in the context of climate change within

the St. Lawrence system. As noted by Colombo et al. (2017), high-

latitude marine organisms provide a disproportionately large global

share of DHA and EPA to consumers, and an increase in water tem-

perature is predicted to result in decreased proportion of DHA and

EPA by the primary producers. Redfish currently reach a modal size

about 24 cm (DFO, 2022), corresponding to a shift between a

zooplankton-dominated diet and one primarily based on fish and

shrimp. Predation on shrimp by large redfish, validated by FA analysis,

is thus expected to increase in the short term and accelerate the

decline of northern shrimp, which is already impacted by rapidly

increasing temperature in the system (Bourdages et al., 2020).

Because the biomass and specific composition of prey assemblages

are greatly influenced by changes in the structure of water masses,

particularly in terms of temperature, it is important to keep acquiring

data on redfish diet composition and on the abundance of its main

prey to detect future changes in trophic linkages among the main

components of the food web. The variability in phenology, abundance

and distribution of calanoid copepods and shrimp in relation to the

environmental variability will be important to consider for future

redfish trophodynamic studies and for the development of marine

resource management strategies for the GSL.
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