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RÉSUMÉ 

La surpêche et des décennies de faible recrutement ont provoqué l'effondrement du 

stock de sébaste du golfe du Saint-Laurent (GSL), Sebastes mentella, et sa biomasse est restée 

faible jusqu'au milieu des années 2010. Le recrutement sans précédent de la cohorte de 2011, 

ainsi que le fort recrutement de la cohorte de 2013, ont permis aux populations de sébaste de 

rebondir à une biomasse record estimée à 2,8 millions de tonnes en 2021, et des discussions 

sur la réouverture de la pêche sont actuellement en cours. On sait peu de choses sur le cycle 

biologique du sébaste dans la région. De plus, le sébaste est catégorisé comme une espèce à 

recrutement spasmodique, qui produit de fortes cohortes en moyenne une fois tous les 10 ans. 

Cette caractéristique de reproduction rend difficile la collecte d'un échantillon suffisant 

d'années de fort recrutement pour permettre d'identifier des relations empiriques entre les 

conditions environnementales et le recrutement. Chez les poissons marins, le succès du 

recrutement est souvent régulé par l'ampleur de la mortalité par différents agents qui affectent 

la survie des individus au stade larvaire. Une meilleure compréhension des facteurs qui 

régulent la survie des larves de sébaste et le recrutement subséquent des sébastes dans la 

région permettrait aux équipes d'évaluation des stocks de mieux prévoir la dynamique future 

du stock. 

L'objectif principal de ce projet était d'identifier les conditions environnementales 

susceptibles d'influencer la survie des larves de sébaste. Pour ce faire, j’ai d'abord dû 

identifier les sources d'énergie et de nutriments en détaillant la composition du régime 

alimentaire des larves de sébaste, ainsi que l'étendue et les moyens par lesquels le régime 

alimentaire influence la croissance larvaire. Ensuite, j’ai pu commencer à reconstituer 

mécaniquement les processus dans lesquels le recrutement des larves de sébaste pourrait 

potentiellement être influencé par l'océanographie physique et biologique. Dans le 

Chapitre 1, j’ai identifié, catégorisé et quantifié les proies dans le régime alimentaire des 

larves de sébaste afin de déterminer les préférences alimentaires. À l'aide de ces données, j’ai 

identifié d'importants taxons de proies et des stades de développement dont les larves de 

sébaste se nourrissent préférentiellement afin d'éviter la famine. Au Chapitre 2, j'ai déterminé 

l'âge et les patrons de croissance des larves de sébaste en mesurant les accroissements 

quotidiens formés sur l’otolithe. À l'aide des données sur la microstructure des otolithes et 

de l'analyse du régime alimentaire, j’ai décrit la relation entre le succès alimentaire récent, la 

composition du régime alimentaire, et la condition et la croissance des larves. Au Chapitre 3, 

j'ai utilisé une approche fondée sur le poids de la preuve pour identifier les variables 

océanographiques physiques et biologiques qui expliquent le mieux la variabilité du 

recrutement du sébaste. J’ai utilisé des ensembles de données environnementales à long terme 

compilés par Pêches et Océans Canada pour décrire les relations entre plusieurs variables 

environnementales et la force du recrutement annuel. 
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J’ai constaté que les larves de sébaste se nourrissent de façon généraliste et que le 

régime alimentaire est dominé par les stades d'œufs et de nauplii du copépode calanoïde, 

Calanus finmarchicus, avec certaines années présentant l’évidence d’une préférence 

alimentaire pour les œufs de C. finmarchicus. Lorsque j’ai étudié le rôle de la composition 

du régime alimentaire sur la croissance des larves de sébaste, j’ai constaté qu'il existe une 

période critique autour de 8 jours après l'extrusion au cours de laquelle les patrons de 

croissance diffèrent de ceux immédiatement après l'extrusion. Cela correspond 

vraisemblablement au début de l'alimentation exogène. J’ai constaté que le type de proie, 

plutôt que la quantité totale de carbone consommée, est important pour favoriser une 

croissance rapide des larves de sébaste se nourrissant de manière exogène. Les larves qui 

consommaient du carbone de proies mobiles, en particulier les stades nauplii de C. 

finmarchicus, étaient en meilleure condition et avaient récemment grandi plus rapidement 

que les larves qui consommaient du carbone de proies immobiles, tel que les œufs de C. 

finmarchicus. Ces résultats suggèrent une grande importance de la variabilité interannuelle 

entre le moment de l'extrusion larvaire et le moment de la saison de reproduction de C. 

finmarchicus afin d'assurer un chevauchement spatio-temporel entre l’émergence des larves 

de sébaste et les nauplii de C. finmarchicus. Au final, j’ai identifié 4 caractéristiques 

environnementales pouvant être responsables de la variabilité dans le recrutement du 

sébaste : la phénologie tardive de C. finmarchicus, l'abondance élevée de C. finmarchicus, le 

faible volume de la couche intermédiaire froide et la faible biomasse du stock reproducteur. 

Mes résultats suggèrent que des conditions environnementales appropriées pour chaque 

facteur doivent être réunies afin de favoriser un fort recrutement du sébaste, et chacune de 

ces conditions était présente lors des récents événements de fort recrutement en 2011 et 2013. 

Ces résultats fournissent aux gestionnaires des pêches une base de conditions 

environnementales qui peut être suivie annuellement afin de mieux prédire les fluctuations 

naturelles des populations de sébaste du GSL. 

Mots clés : recrutement, larves de poissons, processus ascendants, océanographie, 

copépodes, trophodynamique, croissance 
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ABSTRACT 

Overfishing and decades of poor recruitment caused Gulf of St. Lawrence (GSL) 

redfish, Sebastes mentella, populations to crash in the early 1990s and stock biomass 

remained low until the mid-2010s. Unprecedentedly high recruitment of the 2011 cohort, 

along with strong recruitment of the 2013 cohort, have allowed redfish populations to 

rebound to a record high estimated biomass of 2.8 million tons in 2021, and talks of reopening 

the fishery are currently underway. Little is known about the life history of redfish in the 

region. In addition, redfish are categorized as a spasmodically-recruiting species, which 

produce strong recruitment cohorts on average once every 10 years. This reproductive 

characteristic makes it difficult to gather a large sample size of strong recruitment years in 

order to identify empirical relationships linking recruitment to environmental conditions. In 

marine fishes, recruitment success is often regulated by the magnitude of mortality by 

different agents that affect the survivorship of individuals during the larval stage. A better 

understanding of the factors that affect larval redfish survival, and ultimately drive redfish 

recruitment in the region, would allow stock assessment teams to better predict and monitor 

survival of early life stages of redfish in the future. 

The overarching objective for this project was to identify likely environmental 

conditions that drive recruitment success of larval redfish. In order to accomplish this, I had 

to first understand the sources of energy and nutrients in the larval redfish diet, and the extent 

to, and means by which diet influences larval redfish growth. Then, I was able to begin to 

mechanistically piece together the processes in which larval redfish recruitment could 

potentially be influenced by physical and biological oceanography. In Chapter 1, I identified, 

categorized, and quantified prey in the larval redfish diet in order to determine feeding 

preferences. Using these data, I identified important prey taxa and developmental stages that 

larval redfish preferentially prey upon in the environment in order to avoid starvation. In 

Chapter 2, I determined age and growth patterns of redfish larvae by measuring daily otolith 

increments. Using otolith microstructure data and diet analysis, I described the relationship 

between recent feeding success, diet composition, and larval condition and growth. In 

Chapter 3, I used a weight-of-evidence approach to identify physical and biological 

oceanographic variables that best explain redfish recruitment variability. I used long-term 

environmental data sets compiled by Fisheries and Oceans Canada to describe the 

relationships between multiple environmental variables and annual recruitment strength.   

I found that larval redfish are generalist feeders, and frequently multiple prey taxa 

commonly found within the GSL. The majority of carbon in the diet is contributed egg and 

naupliar stages of the calanoid copepod, Calanus finmarchicus, with larvae in some years 

demonstrating a feeding preference for C. finmarchicus eggs. When I investigated the role of 
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diet composition on larval redfish growth, I found that there is a critical period around 8 days 

post-extrusion at which growth patterns differ from those immediately post-extrusion. This 

likely corresponds with the onset of exogenous feeding. I found that prey type, rather than 

the total amount of carbon consumed, is important to drive fast growth in exogenously 

feeding larval redfish. Larvae that consumed carbon from mobile prey, such as C. 

finmarchicus nauplii, were in better condition and had recently grown faster than larvae that 

consumed carbon from immobile prey, such as C. finmarchicus eggs. These results inferred 

the importance between the timing of larval extrusion and the timing of the C. finmarchicus 

reproduction season in order to ensure that larval redfish overlapped in space and time with 

C. finmarchicus nauplii. I identified 4 likely environmental drivers of redfish recruitment: 

late C. finmarchicus phenology, high C. finmarchicus abundance, low volume of the cold 

intermediate layer, and low spawning stock biomass. These results suggest that suitable 

environmental conditions for each driver must be met in order to promote a strong redfish 

recruitment event, and each of these conditions were present during the recent strong 

recruitment events of 2011 and 2013. These findings provide fishery managers with a 

conceptual framework of environmental effects on recruitment, and a suite of conditions that 

can be monitored annually in order to better predict natural population fluctuations in GSL 

redfish.  

 

Keywords: recruitment, larval fish, bottom-up processes, oceanography, copepods, 

trophodynamics, growth 
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INTRODUCTION GÉNÉRALE 

After the collapse of the Atlantic cod (Gadus morhua) fishery in 1994, fishermen in 

the Northwest Atlantic began to target redfish in order to maintain an income (Duplisea et al. 

2016, Duplisea 2018). This resulted in overfishing, which caused Gulf of St. Lawrence (GSL) 

deepwater redfish, Sebastes mentella, populations to crash and a moratorium was placed on 

the fishery in 1995 (Duplisea et al. 2016). Poor annual recruitment since 1981 prevented the 

population from recovering even in the absence of fishing pressure throughout the late 1990s 

and early 2000s. Unprecedentedly high recruitment of the 2011 cohort, along with strong 

recruitment of the 2013 cohort, have allowed redfish populations to rebound to a record high 

estimated biomass of 2.8 million tons in 2021, and talks of reopening the fishery are presently 

underway. Little is known about the life history of redfish in the region, and the ecological 

impacts of the resurgence of redfish populations in the GSL are unknown. In marine fishes, 

recruitment success is often regulated by the magnitude of mortality by different agents that 

affect the survivorship of individuals during the larval stage (Hjort 1914, Cushing 1975, 

1990, Houde 1987). Understanding the factors that drive redfish recruitment in the region 

will allow stock assessment teams to better predict and monitor recruitment success of redfish 

in the future.   

 

1.1 RECRUITMENT 

Understanding drivers of recruitment variability of commercially-important species 

has been one of the most important goals in fisheries science for more than 100 years (Houde 

2008). Fish experience extremely high mortality during early life stages that is strongly 

linked with the success of recruitment for cohorts of individuals (Houde 1987, Legget and 

Deblois 1994). Mortality rate is the greatest during the larval stage for most marine fishes 
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(Houde 1987). Recruitment is defined as the entry of a cohort into the exploited component 

of the population. For species like the redfish, annual recruitment can usually be predicted 

by the year-class strength of the cohort, the number of individuals that survive the larval stage 

and through the first year of life. There are three primary agents of mortality that shape 

recruitment success during the larval stage: starvation, predation, and advection. Multiple 

hypotheses were proposed over the past century in order to explain the drivers behind 

recruitment variability for marine fish species based on these three primary mortality agents. 

Risk of advection for redfish outside of the GSL is low due to the relatively closed nature of 

the system, therefore we believe redfish recruitment in this region is primarily driven by 

factors relating to starvation and predation.  

 

Johan Hjort’s (1914) Critical Period Hypothesis was the catalyst for scientists to 

begin investigating recruitment variability. Hjort (1914) hypothesized that year-class success 

was determined by mortality due to starvation during a short “critical period” at the onset of 

exogenous feeding. Cushing (1975, 1990) expanded on Hjort’s work by proposing the 

Match-Mismatch Hypothesis, where recruitment success of a cohort is dependent on the 

temporal overlap between exogenously-feeding larvae and the peak of prey abundance in the 

environment throughout the larval stage. In years when there is little to no overlap between 

feeding larvae and prey items, larvae would starve, leading to recruitment failure. Contrarily, 

in years when larvae and peak prey abundance overlap temporally in the environment, 

recruitment would be high. A species’ dependence on environmental cues for reproductive 

events can determine annual match or mismatch. Species should evolve to reproduce at a 

time when newly-hatched larval offspring encounter abundant prey in order to maximize 

fitness. Larval fishes prey upon zooplankton, which quickly increase in biomass following 

seasonal phytoplankton blooms. The timing of primary productivity, and ultimately 

zooplankton (secondary production), are determined by changes in abiotic environmental 

factors such as temperature, photoperiod, and freshwater inflow (nutrient flux). Therefore, 

both natural annual weather variability as well as long-term climatic shifts change the 
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phenology of regional plankton blooms. A fish species’ evolutionary dependence on a 

zeitgeber for reproductive events plays a role in determining the degree of “match” or 

“mismatch” between larvae and prey to avoid starvation, and ultimately annual recruitment 

success.  

 

Predation has been argued as being the greatest cause of mortality to larval fishes and 

strongly shapes recruitment success (Bailey and Houde 1989, Houde 2008). Mortality within 

larval populations has been shown to be size dependent, with smaller larvae at a greater risk 

of being preyed upon relative to larger larvae (Bigger is Better hypothesis, Bailey and Houde 

1989). Larval size is often strongly coupled with developmental stage. Large larvae are 

usually more developed than smaller conspecifics of the same age, and will reach the juvenile 

stage in a shorter time span, decreasing the time spent in the larval stage where mortality risk 

is highest (Stage Duration hypothesis, Chambers and Leggett 1987).  

 

Starvation and predation mortality are strongly linked by larval growth rate. Larval 

growth is positively related to the amount of organic material consumed by larval fish, also 

referred to as feeding success (Ware 1975). Increased larval feeding success results in faster 

growth, but the strength of this relationship is species dependent (Pepin et al. 2015). If 

predation is the main source of mortality during the larval stage, and predation risk is related 

to larval size, then larval survival is strongly determined by the effect of feeding success on 

growth rate (Growth-Mortality hypothesis, Anderson 1988). Temperature also influences 

larval growth to a secondary degree by altering metabolic processes, but feeding success is 

the primary limiting factor of growth in larval fishes. Growth-rate driven selection by 

predation has been documented among larvae of similar size characterized by variable 

growth rates. Larval Japanese anchovy (Engraulis japonicus) with slower growth rates were 

preyed upon more often by some predator species (including conspecifics via cannibalism) 

than faster-growing individuals of a similar size (Growth-Selective Predation hypothesis, 
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Takasuka et al. 2003, 2004). Overall, larval feeding success is related to survival through two 

of the three agents of larval mortality: directly against starvation, and indirectly against 

predation by strongly influencing larval growth and size.  

 

Fishes undergo intense cell differentiation, organogenesis, and somatic growth during 

embryonic and larval life stages. It is assumed that the nutrient composition of the yolk is 

optimal, or near-optimal, for proper embryonic and endogenously-feeding larval 

development, but the transition from endogenous to exogenous feeding separates larvae from 

this beneficial maternal investment (Watanabe and Kiron 1994). At the onset of exogenous 

feeding, larvae must successfully detect and capture suitable prey in the environment in order 

to survive. Prey must be smaller than larval mouth gape width for successful capture and 

consumption and prey should also provide larvae with the necessary suite of nutrients to 

continue with proper development. Various potential prey taxa occur within a zooplankton 

community, but in order to optimize growth and survival, larvae should preferentially prey 

upon taxa that are abundant, easy to capture, and provide the highest net gain of energy and 

essential nutrients (Schoener 1971, Werner and Hall 1974). Prey size is often used as a proxy 

for energetic content, therefore it is advantageous for larvae to prey upon the largest 

consumable taxa, although nutritional content of copepods can fluctuate dramatically across 

space and time (Bergvik et al. 2012). Finally, this process must be repeated throughout the 

entire larval stage in a timely fashion in order to avoid starvation, while evading predation 

(Blaxter 1986). Sensory and swimming capabilities, as well as mouth gape width, of larval 

fishes increase throughout ontogeny, therefore larval feeding abilities change quickly and 

dramatically from the early to late larval stage.  

 

The occurrence of larval fishes and potential prey taxa of a consumable size within 

an environment has historically resulted in a weak, or an absence of a relationship between 

prey abundance and larval survival in the literature (ie. Brander 1992, Pershing et al. 2005, 
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Agostini et al. 2007). Until recently, species-specific prey identification was not performed 

in larval diet analyses. Studies where larval stomach content was identified to the species-

level concluded that larval fishes prefer to feed on certain planktonic species relative to others 

(Anderson 1994, Robert et al. 2008, Voss et al. 2009, Murphy et al. 2012, Llopiz and Cowen 

2014). Consumption of the preferred prey species results in higher larval growth rates, and 

ultimately survival (Robert et al. 2009, Sponaugle et al. 2010, Murphy et al. 2013). The 

concept of preferential feeding by larval fishes, and differences in growth and survival 

potentials as a result of successful preferred prey consumption, opens the door to investigate 

the importance of prey quality during the larval stage, in addition to potential prey abundance.  

 

Larval fish feeding success can be measured in two ways representing relatively 

short- and long-time scales: directly using stomach content analyses and indirectly using 

daily otolith increment measurements that represent larval growth, respectively. Larval fishes 

have high metabolism and fast gut evacuation time, therefore stomach content is 

representative of food consumption within hours of capture. Zooplankton blooms are not 

homogenously distributed throughout the ocean, and occur in small area patches, so it is 

important to consider the patchiness of the environment when analyzing stomach content. 

Plankton samples taken concurrently with larval fish collections aim to provide a measure of 

the density and composition of potential prey available to larvae at that moment in time. 

Measurements of daily otolith increments depict lifelong larval growth history, which is 

related to the individual’s daily feeding success (Dower et al. 2009, Robert et al. 2014, Pepin 

et al. 2015). Relationships between otolith increment width and stomach content demonstrate 

the degree to which growth is determined by feeding success in each species. High feeding 

success during species-specific “critical periods” of larval development has been shown to 

permanently increase larval growth rates in an individual for the remainder of its larval stage 

in some species (Pepin et al. 2015). Successful feeding over a moderate timespan can also be 

measured using larval condition, which can be estimated by the ratio of larval body depth to 

standard length. Larval condition has been shown to be a better indicator of long-term feeding 
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success than larval growth in some species (Robert et al. 2014b). When used together, these 

methods provide data to connect feeding success to larval condition and growth during the 

larval stage, in addition to uncovering the amount of variability between individual larvae 

over time and space.  

 

1.2 DEEPWATER REDFISH, Sebastes mentella, LIFE HISTORY 

Long-lived fish species, such as redfish, characteristically have spasmodic 

recruitment events with strong cohorts occurring on average once per decade. Extreme 

longevity of individuals allows these species to have multiple reproductive events where 

eventually one cohort may encounter a suitable environment, produce a strong year-class, 

and go forth to compose the majority of the stock’s biomass until the next strong year-class 

(Longhurst 2002). It is because of this spasmodic nature that researchers have hypothesized 

that a “perfect storm” of conditions is necessary in order to produce a strong year-class 

(Sysoeva 2000; Gascon 2003). Redfish, as for all species in the genus Sebastes, are 

ovoviviparous. Female redfish in the Gulf of St. Lawrence extrude offspring in the early 

summer months (May-June), which are capable of feeding exogenously at the time of 

expulsion (St-Pierre and de Lafontaine 1995). Little is known about the larval ecology of 

redfish, but it is hypothesized that recruitment success is determined through the larval stage. 

Even less is known about larval redfish feeding preferences in the region. By understanding 

the trophodynamics of larval redfish, fisheries scientists, managers, and stock assessment 

biologists may begin to understand what environmental parameters drove the strong 

recruitment classes of 2011 and 2013, and identify important environmental variables that 

can be annually monitored to predict strong recruitment events in the future. 

 

Previous work identifying the diet of larval redfish species (S. mentella and Sebastes 

fasciatus) in the northwest Atlantic region concluded that larval redfish feed primarily on 

copepod eggs and Spiratella larvae (Einarsson 1960, Bainbridge 1965). Ichthyoplankton and 
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zooplankton samples collected in 1963 around the Flemish Cap in the northern Atlantic were 

used to provide a more extensive look at larval redfish diet throughout the summer months. 

The majority of the biomass of the larval redfish (6 – 11 mm) diet from April to May 

consisted of copepod eggs, specifically Calanus finmarchicus eggs, with a dietary shift to C. 

finmarchicus nauplii in June and July across all larval sizes. Oithona spp. nauplii and 

copepodites were the second most prevalent copepod species, contributing more weight to 

the diet in larger larvae and later in the summer months. Bainbridge and McKay (1968) 

identified differences in feeding success and growth rates between 3 adjacent oceanographic 

regions around the Flemish Cap, highlighting the importance of investigating 

trophodynamics and growth of Sebastes spp. within specific, local regions for management 

purposes. Anderson (1994) identified preferred prey species of Sebastes spp. over the 

Flemish Cap by comparing larval stomach content with the proportions of copepods 

occurring in the surrounding zooplankton community at the time of collection (Chesson’s -

selectivity index; Chesson 1978). Larval redfish stomach content and prey preference are 

seasonally and annually variable. Prey selectivity changes during the larval stage as larvae 

grow and zooplankton community composition changes. Newly extruded larvae (April-May 

1980, 1981) showed no feeding preference for any prey item in the environment, but avoided 

large prey such as C. finmarchicus copepodites, whether by choice or due to physical inability 

to ingest large prey. Older larvae (June 1981) preferentially preyed on calanoid eggs and 

cyclopoid nauplii, and still avoided copepodites. Zooplankton collections in 1981 were 

characterized by relatively high proportions of cyclopoid copepods, dominated by Oithona 

spp. The diet of larval redfish in 1981 was composed of a larger proportion of cyclopoid prey 

than the 3 other collection years, and larvae were in significantly poorer condition, with 

slower development relative to larvae from 1980. These data support Cushing’s (1990) 

Match-Mismatch hypothesis and may indicate that among prey species consumed, the quality 

of the diet is important for larval Sebastes spp. condition, growth, and recruitment success.  
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One study has been performed in the Gulf of St. Lawrence on the diet of larval 

Sebastes spp. Runge and de Lafontaine (1996) measured the temporal and spatial overlap of 

Calanus copepod species and larval redfish species. They concluded that larval redfish fed 

predominantly on Calanus eggs from the point of first-feeding throughout the larval period 

(> 13 mm larval length), and > 80% of stomach content biomass was from the consumption 

of Calanus eggs (assumed to be C. finmarchicus based on the reported dominance of this 

species in the environment at the time of collection) until larvae reached 12 mm in length, 

when the proportion of biomass in the diet from copepodite consumption began to increase. 

This paper did not report on other copepod species other than Calanus sp. present in the 

redfish diet. Whether this is because no other species were found in the stomachs, or these 

data were not reported because of the study scope’s focus primarily on Calanus, is unknown. 

This paper also did not calculate feeding selectivity indices to identify whether larval 

Sebastes spp. passively or selectively preyed upon Calanus eggs in the environment.  

 Some hypotheses describing drivers of S. mentella recruitment were formed 

following research in the Barents Sea. Sysoeva (2000) proposed that there is a positive 

relationship between sea surface temperatures throughout the mid- to late larval stage and 

larval growth and recruitment success. Redfish recruitment was also negatively related to the 

number of storms that occurred during the larval stage; an increase in the occurrence of 

storms resulted in water mixing and a decrease in sea surface temperatures which 

demonstrates the complex relationships between environmental variables. Lastly, in 

agreeance with Anderson (1994) and Runge and de Lafontaine (1996), Sysoeva (2000) 

proposed that there was a strong relationship between the timing and abundance of C. 

finmarchicus and larval redfish survival and recruitment.   

Work on recruitment variability in other species within the genus Sebastes comes 

from the northeast Pacific Ocean along upwelling regions in the California current. Wheeler 

(2015) found that growth and survival of larval Sebastes spp. were dependent on the temporal 

overlap of larvae with secondary production blooms as a result of upwelling events. While 

Anderson (1994) found that growth and survival of Sebastes spp. in the Flemish Cap region 



 

9 

was positively correlated with sea surface temperatures, Wheeler (2015) found a negative 

correlation between growth and sea surface temperature in Pacific Sebastes spp. This is likely 

a result of colder temperatures from upwelling events driving productivity in the region, and 

higher growth rates of larvae resulting from increased feeding success despite slower 

metabolism. Other studies have attempted to relate physical oceanographic conditions to 

recruitment success of Sebastes in the Pacific. Upwelling indices and sea surface temperature 

appear to influence recruitment success of Sebastes in the California current (Field and 

Ralston 2005, Wilson et al. 2008, Markel et al. 2017). Inconclusive results and weak 

relationships may be a result of late season data collection while larvae are in the latter portion 

of the larval stage. At this stage, larvae may be more resistant to variability in environmental 

conditions, suggesting that larval mortality of Sebastes species due to physical oceanography 

may occur early in the larval stage (Wilson et al. 2008).  

 

1.3 PROJECT OBJECTIVE 

The overarching objective for this project was to identify environmental variables 

that drive recruitment success of larval redfish in the GSL. The Match-Mismatch hypothesis 

proposes that year-classes of redfish that overlap temporally with preferred prey items will 

feed successfully and have higher recruitment than year-classes where a mismatch occurs. In 

Chapter 1, I identified, categorized, and quantified prey in the larval redfish diet in order to 

determine feeding preferences. Morphometric measurements such as standard length, anal 

body depth, and mouth gape width were used to compare the condition and developmental 

stages of larvae across multiple locations within the GSL and across multiple years. Using 

these data, I identified important prey taxa and developmental stages that larval redfish 

preferentially preyed upon in the environment. In Chapter 2, I determined age and growth 

history of larvae by measuring daily otolith increments. The Growth-Mortality (Anderson 

1988) hypothesis states that it is advantageous for recruitment success to be large and grow 

quickly. Using otolith microstructure data and larval diet analyses, I found a relationship 

between recent larval feeding success and recent larval growth. In Chapter 3, I utilized a 
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weight-of-evidence approach and identified 4 physical and biological oceanographic 

variables that best explained redfish recruitment variability. The Match-Mismatch hypothesis 

is rooted in abiotic environmental variables that strongly influence the phenology of potential 

planktonic prey species and fish reproductive events. Therefore, physical variables, such as 

temperature, salinity, and water stratification, can positively or negatively affect larval 

physiology and growth. In addition, as previously stated, the quantity and quality of the 

available potential prey likely also drive recruitment success during the larval stage, and 

physical environmental conditions can mediate the abundance and community composition 

of larval prey fields. Using data on key prey taxa collected in Chapter 1, in addition to 

condition and growth results collected in Chapter 2, I tested individual hypotheses that 

potentially influenced recruitment success to determine the effect of specific physical and 

biological parameters on the annual year-class success of redfish in the GSL.  

 

 

 



 

 

 

VARIABILITE INTERANNUELLE DE LA COMPOSITION DU REGIME 

ALIMENTAIRE ET PREFERENCE ALIMENTAIRE DES PROIES DES 

LARVES DE SEBASTE DANS LE GOLFE DU SAINT-LAURENT 

1.1 RESUME EN FRANÇAIS 

Le chevauchement spatio-temporel entre les larves de poissons et leurs proies 

planctoniques est une source importante de variabilité du recrutement. Au cours de la dernière 

décennie, une espèce de sébaste, Sebastes mentella, du golfe du Saint-Laurent (GSL) a 

produit plusieurs cohortes fortes après des décennies de faible recrutement, ce qui a suscité 

un vif intérêt pour l'identification des facteurs potentiels de survie des larves. La présente 

étude fournit la première évaluation pluriannuelle détaillée de la trophodynamique larvaire 

du sébaste (Sebastes spp.). La variabilité interannuelle de la composition du régime larvaire 

du sébaste et de la sélectivité des proies a été évaluée à l'aide de l'identification à haute 

résolution des proies du contenu stomacal des larves et des champs de proies in situ. Les œufs 

du copépode calanoïde Calanus finmarchicus représentaient la proie la plus fréquemment 

consommée au cours de 3 des 4 années de collecte et ont constitué la plus grande proportion 

de carbone ingéré par les larves de sébaste au cours de toutes les années. La forte 

consommation d'œufs de C. finmarchicus par les larves, combinée à des preuves de sélection 

positive pour ce taxon pendant certaines années, confirme l'hypothèse d'un lien trophique fort 

entre les larves de sébaste et un copépode calanoïde clé dans l'écosystème du GSL. Nos 

résultats indiquent que les futures étude des processus de recrutement du sébaste du GSL 

devraient tenir compte de la variabilité environnementale de la phénologie de la reproduction 

et de l'abondance de C. finmarchicus.  
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Cet article a été accepté pour publication dans sa version finale en août 2020 par les 

éditeurs du Journal of Plankton Research. Cet article a reçu le « 2021 David Cushing Prize » 

du Journal of Plankton Research pour la meilleure publication dans la revue par un 

scientifique en début de carrière lors de l'année précédente. En tant que première autrice, j'ai 

effectué la majorité de la collecte des données, des analyses statistiques, de l'interprétation 

des résultats et de la rédaction du manuscrit. Le deuxième auteur, Félix Lauzon, a participé 

à la collecte des données et aux analyses préliminaires des données. Les auteurs Stéphane 

Plourde, Pascal Sirois et Dominique Robert ont tous contribué aux interprétations 

biologiques et écologiques de ces résultats. Tous les auteurs ont participé à la révision de 

l'article. Cet article a été présenté en personne à la 43rd Annual Larval Fish Conference à 

Palma, Majorque, Espagne (mai 2019), à Ressources Aquatiques Québec à Rimouski, 

Québec, Canada (novembre 2019) et à la Canadian Conference for Fisheries Research à 

Halifax, Nova Scotia, Canada (janvier 2020). 

 

1.1.1 Summary in English 

Spatiotemporal overlap between fish larvae and their planktonic prey is an important 

source of recruitment variability. Over the past decade, one species of redfish, Sebastes 

mentella, from the Gulf of St. Lawrence (GSL) produced multiple strong cohorts following 

decades of low recruitment which has generated strong interest in identifying potential 

drivers of larval survival. The present study provides the first detailed, multi-year assessment 

of larval redfish (Sebastes spp.) trophodynamics. Interannual variability in larval redfish diet 

composition and prey selectivity was assessed using high-resolution prey identification of 

larval gut contents and in situ prey fields. Eggs from the calanoid copepod Calanus 

finmarchicus represented the most frequently consumed prey in 3 of the 4 collection years, 

and contributed the largest proportion of carbon ingested by redfish larvae in all years. The 

high consumption of C. finmarchicus eggs by larvae, combined with evidence of positive 

selection for this taxon in some years, supports the hypothesis of a strong trophic link between 
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larval redfish and a key calanoid copepod in the GSL ecosystem. Our results indicate that 

future efforts investigating GSL redfish recruitment processes should consider environment-

driven variability in the reproductive phenology and abundance of C. finmarchicus. 

This article titled “Interannual variability of diet composition and prey preference of 

larval redfish (Sebastes spp.) in the Gulf of St. Lawrence”  was accepted for publication in 

its final version in August 2020 by the editors of the Journal of Plankton Research. This 

article was awarded the 2021 David Cushing Prize by the Journal of Plankton Research for 

the best publication in the journal by an early-career stage scientist in the previous year. As 

first author, I performed a majority of the data collection, statistical analyses, interpretation 

of results, and writing of the manuscript. Second author, Félix Lauzon, assisted in data 

collection and preliminary data analyses. Authors Stéphane Plourde, Pascal Sirois, and 

Dominique Robert all contributed to the biological and ecological interpretations of these 

results. All authors participated in the revision of the article. This article was presented in-

person at the 43rd Annual Larval Fish Conference in Palma, Mallorca, Spain (May 2019), 

Ressources Aquatiques Québec in Rimouski, Québec, Canada (November 2019), and the 

Canadian Conference for Fisheries Research in Halifax, Nova Scotia, Canada (January 

2020).  
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1.2 INTRODUCTION 

Understanding recruitment variability of commercially-important fish species has 

been one of the most important goals in fisheries science for more than 100 years (Houde, 

2008). Johan Hjort’s (1914) seminal hypotheses on recruitment variability were the catalysts 

for scientists to further investigate drivers of larval fish survival and mortality. Hjort’s (1914) 

primary hypothesis, known as the Critical Period, stated that variability in year-class success 

is determined by mortality due to starvation during a short period at the onset of exogenous 

feeding. Cushing (1975, 1990) expanded on Hjort’s concept by proposing the Match-

Mismatch hypothesis, where recruitment success of a cohort is dependent on the temporal 

overlap between exogenously-feeding larvae and sufficient planktonic prey abundance in the 

environment throughout the entire larval stage. Years characterized by little to no overlap 

between larvae and their prey would result in recruitment failure driven by slow growth and 

starvation mortality. On the contrary, years with matching peaks in larval emergence and 

prey abundance would result in strong year classes through optimal larval feeding and 

growth. These trophic hypotheses on the control of recruitment variability have shaped the 

current Growth-Survival paradigm (e.g. Chambers and Leggett, 1987; Miller et al., 1988), 

which links variability in year-class strength to variability in larval feeding, growth and 

survival. 

A majority of studies that attempted to demonstrate the dependence of larval survival 

on the temporal overlap with peak plankton abundance have either failed to detect any link 

or only found weak relationships (e.g. Brander, 1992; Pershing et al., 2005; Agostini et al., 

2007). Until recently, detailed identification of planktonic prey items was not commonly 

performed in the analysis of larval fish diet composition. However, studies in which prey 

have been identified to the species level revealed that larval fishes exhibit strong species-

specific preferences within their potential prey field (e.g. Anderson, 1994; Robert et al., 2008; 

Voss et al., 2009; Demontigny et al., 2012; Murphy et al., 2012; Llopiz and Cowen, 2008). 

Successful feeding on preferred prey species generally results in high larval growth and 

survival (Robert et al., 2009; Sponaugle et al., 2010; Murphy et al., 2013). Given the 



 

15 

importance of preferred prey taxa in driving variability in growth and survival potential, it is 

essential to investigate prey selectivity during the larval stage as a first step towards the robust 

assessment of recruitment-relevant bottom-up processes in a given population (Robert et al., 

2014).  

Deepwater redfish, Sebastes mentella and S. fasciatus, are long-lived, ovoviviparous 

species found in the Gulf of St. Lawrence (GSL). Following a 30-year period of consecutive 

weak year classes and a collapse of the fishery, strong recruitment events in 2011-2013 

resulted in rapid stock recovery of S. mentella. Little is known about the drivers of 

recruitment dynamics in the species, and knowledge of larval ecology is particularly scarce. 

Furthermore, there is no known morphological criterion to discriminate between these two 

redfish species during the larval stage, and literature investigating early life history of these 

two species often groups them together as “redfish”. Females are known to extrude offspring 

in spring and early summer (May-July) that are capable of feeding exogenously at the time 

of expulsion (St-Pierre and de Lafontaine, 1995). Length-at-extrusion is highly variable but 

averages 6 mm (Taning, 1961; Penney and Evans, 1985). Little is known about larval redfish 

feeding requirements in the GSL. A previous study that described larval diet of the 1989 

year-class concluded that eggs of the calanoid copepod Calanus finmarchicus strongly 

dominated dietary prey composition (Runge and de Lafontaine, 1996). On the Flemish Cap, 

redfish larvae have also been reported to mainly feed on C. finmarchicus eggs, but the 

proportion of eggs in the diet relative to another frequently consumed prey taxon, the nauplii 

of the cyclopoid copepod Oithona spp., varied among years during the period 1979-81 

(Anderson, 1994). While interannual variability in plankton community composition resulted 

in significant differences in the larval redfish diet on the Flemish Cap, the links between 

variability in prey field composition and larval redfish diet remain to be assessed in the GSL. 

The objective of the present study was to identify key planktonic prey taxa and 

feeding preferences of larval redfish in the GSL using a 4-year dataset. In particular, we 

aimed to describe changes in diet composition through early ontogeny and among year-

classes. We measured prey selectivity by comparing high-resolution taxonomical 
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composition of prey within individual larval stomachs to that of the potential prey field at 

time of capture. These results expand on the findings of Runge and de Lafontaine (1996) by 

describing the diet of larval redfish in the GSL with a higher taxonomic resolution and a 

multi-year dataset. Detailed knowledge of larval trophodynamics constitutes a necessary first 

step in identifying and understanding the environmental drivers responsible for shifting 

recruitment dynamics of GSL redfish.  

 

1.3 METHODS 

1.3.1 Sampling of redfish larvae and their prey 

 The Gulf of St. Lawrence (GSL) is an enclosed sea connected to the Northwest 

Atlantic Ocean through the Belle-Isle and Cabot straits. Ichthyoplankton and zooplankton 

were sampled over a grid of 27 fixed stations located throughout redfish spawning areas at 

the junction of the Laurentian and Esquiman channels in the Northeast sector of the GSL 

between June 12-17 in each of the years 1997-2000 (Figure 1). Ichthyoplankton were 

collected using a 61 cm diameter bongo sampler equipped with 333 µm mesh nets deployed 

obliquely in the upper 50 m of the water column. To assess the prey field of larval fish, 

concurrent zooplankton tows (filtered water volume: 34 to 131 m3) were carried out at each 

station using a second bongo frame equipped with 63 µm mesh nets. All ichthyoplankton and 

zooplankton samples were immediately preserved in a 4% buffered formaldehyde solution 

onboard the vessel. Following each annual survey, larval Sebastes spp. were identified, 

sorted, and stored in scintillation vials using 4% buffered formaldehyde solution. 

 Extrusion events for both S. mentella and S. fasciatus occur within the GSL during 

late spring and early summer. Due to the impossibility of relying on genetic identification as 

a result of formalin preservation, and a lack of morphological criterion for species 

identification, we could not directly confirm species identity of our samples. However, our 

survey directly targeted S. mentella based on known spatial and temporal larval occurrence 
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of both species in the GSL derived from a genetic assessment (Sévigny et al., 2000). Relying 

on extensive larval sampling achieved during two consecutive years (1991-1992) over the 

Laurentian, Esquiman and Anticosti channels, Sévigny et al. (2000) concluded that S. 

mentella larvae are extruded over the deep Laurentian and southern Esquiman channels in 

mid-June, while S. fasciatus larvae are extruded over the shallower Anticosti and northern 

Esquiman channels from late June to early July. Given that our sampling was carried out over 

the Laurentian and southern Esquiman channels in mid-June, we contend that our larval 

collections are strongly dominated by S. mentella.  

 

1.3.2 Laboratory analyses  

 A subsample of 10 larvae from each station (when available) were photographed and 

measured for standard length (SL) to the nearest 0.01 mm at 16× magnification under a 

stereoscopic microscope connected to the Olympus cellSens® software. Larvae were 

grouped into 3 size classes (< 7 mm, 7 to < 8 mm, and  8 mm). 

The hindgut and foregut of each larva were dissected at 120× magnification and 

individual prey were photographed, identified to the lowest taxonomic level, 

developmentally staged, and measured for total length or prosome length to the nearest 0.1 

µm. Prey measurements were used to convert stomach contents to carbon weight using 

previously determined equations from the literature (Table I in Robert et al., 2008). Prey that 

were too damaged to be accurately measured were assigned measurements based on the 

average length of the taxon and corresponding developmental stage, when identifiable, in the 

collection year. Copepod eggs were categorized by size classes: < 135 µm, 135 – 165 µm, 

165-195 µm, and > 195 µm. Eggs < 135 µm correspond to a multitude of species such as 

Oithona similis, Pseudocalanus spp. and Temora longicornis (McLaren et al., 1988; 

Castellani et al., 2005; Demontigny et al., 2012). Copepod eggs of size ranging between 

135 – 165 µm correspond with average C. finmarchicus egg size, 165 – 196 µm to C. 

glacialis and Metridia longa (Plourde and Joly, 2008), and > 195 µm to C. hyperboreus. Free 
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egg yolks lacking a membrane were assumed to be partially-digested eggs and the original 

egg diameter was estimated. Digested eggs were randomly assigned an original egg diameter 

in proportions that corresponded to the frequency of each egg size class at each collection 

station. Unidentifiable digested material was not measured or converted to carbon content. 

 Aliquots of each potential prey sample for prey field identification correspond to a 

known fraction of the total sample that contained at least 300 copepods, not including 

copepod eggs. All individual organisms were identified to the lowest taxonomic level, 

developmentally staged, and counted using a stereomicroscope at 120× magnification. 

 

1.3.3 Prey selectivity analysis 

 To measure variability in consumed prey sizes, diet niche breadth was calculated for 

each larva by calculating the standard deviation of the log-transformed mean prey length 

(Pearre, 1986). Diet niche breadth values were averaged between larvae in the same size-

class for each year. 

Prey preference for each larva was calculated using Chesson’s -selectivity index 

(Chesson, 1978), which is recognized as one of the most stable and robust indices to measure 

prey selectivity (Pearre, 1982; Govoni et al., 1986): 

 

where  is the proportion of prey taxon j by occurrence in the larval diet and  is the 

proportion of prey taxon j in the prey field. Prey taxa that represented more than 2% of the 

larval diet by number in each size class were used in this equation. Neutral selectivity is 

calculated as an  value of 1/n, where n is the number of prey taxa used in the Chesson’s 

equation. An  value higher than 1/n indicates positive selection for a given prey taxon as it 

was ingested in higher proportion than its relative frequency in the surrounding environment, 
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while an  value lower than 1/n indicates selection against that prey. In the present study, we 

defined positive selection as ‘strong’ when Chesson’s ɑ was > 2/n, meaning that the 

proportion of the taxon in the larval diet was at least double that of its proportion in the 

potential prey field. Alternatively, negative selection was defined as strong when Chesson’s 

ɑ was < 1/2n, meaning that the proportion of the taxon in larval diet was less than half of its 

proportion within the potential prey field. Chesson’s  was averaged among larvae within 

the same size class in the same year to determine differences in preference throughout larval 

development, as well as among years.  

 

1.4 RESULTS 

1.4.1 Larval redfish 

Redfish larvae were found at 15 stations in 1997, 9 stations in 1998, 23 stations in 

1999, and 9 stations in 2000. The highest mean densities of larvae were observed in 1999 

(1.32 ind. m‑3 ± 1.59), followed by stations in 1998 (0.68 ind. m‑3 ± 0.83), 2000 (0.30 ind. 

m‑3 ± 0.24), and 1997 (0.19 ind. m‑3 ± 0.13).  

Larvae dissected in this study averaged 7.18 mm ± 1.01 (range: 4.61 – 10.21 mm), 

with the largest larvae on average collected in 1999 and the smallest larvae on average in 

1997 (Table 1). Over half of the larvae sampled in 1997 and 1998 were yolk-sac larvae, and 

none of the larvae sampled in these years were undergoing flexion. In contrast, over half of 

larvae collected in 1999 and 2000 were undergoing flexion, identified here as the presence 

of one or more hypural plates at the end of the notochord. Larvae collected in 1998 were on 

average larger than larvae at the same developmental stage in other years.  
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1.4.2 Potential prey field 

 Potential copepod prey (egg, naupliar, and copepodite stages) densities were the 

lowest in 2000, with an average combined density of 5,700 individuals m‑3. Combined 

potential prey densities were higher than in 2000 by coefficients of 2.7, 2.6 and 1.9 in 1997, 

1998, and 1999. A similar trend was observed in the densities of Pseudocalanus spp. and 

Oithona spp. nauplii densities, while the density of copepodite and egg stages did not follow 

this pattern (Figure 2A). Among copepod egg size classes, the density of eggs comprised 

within the 135 – 165 µm size class, attributable to Calanus finmarchicus, was characterized 

by particularly low densities in 1999 compared to the three other years, during which 

densities were about 7 times higher.  

Naupliar and copepodite stages of Oithona spp. were the most prevalent taxa in 1997 

(34.7 % of total potential prey field), 1998 (37.3%), and 1999 (50.4%) (Figure 2B). In 2000, 

copepod eggs composed the highest proportion of potential prey taxa (50.3%); C. 

finmarchicus eggs (135 – 165 µm size class) represented 36.7% of all prey by numbers. The 

proportion of copepod eggs within the potential prey field dropped to < 20% in 1997 and 

1998, and to < 10% in 1999, the only year where the majority of eggs belonged to the < 135 

µm size class. Pseudocalanus spp. nauplii and copepodites made up similar proportions 

(11.5-16.7%) of the prey field in all years. C. finmarchicus nauplii occurred in the highest 

proportions in 1997 (7.7%), and 2000 (5.4%), and similar low proportions in 1998 and 1999 

(2.3% and 2.5%, respectively). Calanus spp. copepodites composed less than 2.0% of the 

total prey field in 1997 and 1998, but its proportion increased to 3.4% of the prey field in 

1999, and to 6.4% in 2000.  

Other prey taxa that occurred frequently (> 2.0% of all organisms) in one or more of 

the sampling years, but not all 4 years, were nauplii of Centropages spp. (1998 – 7.0%) and 

Temora longicornis (1997 – 2.9%, 1998 – 5.9%, 1999 – 6.8%), copepodites of C. 

hyperboreus (2000 – 2.3%), Triconia borealis (1997 – 2.2%, 1998 – 2.8%) and Temora 

longicornis (1998 – 2.4%), and bivalve larvae (1999 – 2.3%, 2000 – 3.7%). 
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1.4.3 Larval diet  

The mean number of prey ingested increased with larval length: 11.7 prey by larvae 

< 7 mm, 25.8 prey by larvae 7 to < 8 mm, and 38.8 prey by larvae  8 mm (Table 2). Larvae 

captured in 1999 consumed the most prey on average throughout all size classes, while the 

greatest proportion of larvae with an empty gut was observed in 1997. In all years, the 

proportion of larvae with empty guts decreased as larval size increased. Copepod eggs were 

the most frequently consumed prey taxa by numbers in 1997, 1998, and 2000 across all larval 

size classes, comprising at least 25.0% of the total diet (Figure 3). The contribution of 

copepod eggs was highest in 2000, when they made up more than 50% of items consumed 

by numbers. Among copepod egg size classes, eggs within the 135-165 µm size range were 

the most frequently ingested in all size classes each year. Larvae collected in 1999 fed most 

frequently on Oithona spp. nauplii, which composed between 37.6% and 45.1% of the larval 

diet by prey number (Table 2). The second most consumed nauplii of a species was 

Pseudocalanus spp. (7.0-21.4%), with a contribution to proportion of prey by numbers that 

remained relatively constant across all larval size classes and years. The contribution of 

Calanus spp. nauplii (predominantly C. finmarchicus) to diet composition by numbers was 

relatively small, except in 1997 when they represented up to 17.5% of the prey consumed by 

larvae in the 7 to < 8 mm size class. Copepodites were rarely consumed overall, with the 

exception of Oithona similis, which showed an increasing contribution to the larval diet with 

increasing larval size (Table 2). 

 Mean amount of carbon ingested increased with larval length from 2.6 µg C in larvae 

< 7 mm to 6.8 µg C in larvae ≥ 8 mm, and was highest in larvae collected in 1999 (Table 3). 

In general, the contribution in carbon of the different taxa to diet composition was relatively 

similar to that by prey numbers (Table 3, Figure 4). Copepod eggs (all size classes) 

contributed the greatest amount of carbon of any prey taxa across all larval size classes and 

all years, except for the 7 to < 8 mm size class in 1997, where nauplii of C. finmarchicus was 
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the dominant taxon (Figure 4). Among copepod eggs, the size class ranging between 

135 – 165 µm, corresponding to C. finmarchicus, contributed the greatest proportion of 

carbon by far to redfish diet across larval size classes and years.  

 

1.4.4 Prey preference and selectivity  

Diet niche breadth of redfish larvae did not change with increasing larval standard 

length, with the exception of 1997, when a modest increase was noted between the two 

smallest size classes (Figure 5). Variability in prey size was lower in 2000 compared to the 

three other years. In all years, larvae ingested small prey dominated by copepod eggs across 

all larval size classes (Figure 6). There was no change in mean prey size or carbon content 

consumed across larval size classes (Table 4).  

Seven prey taxa contributed at least 2% to the larval diet by prey numbers across all 

larval size classes and were used for the Chesson’s ɑ selectivity analysis: copepod eggs < 135 

µm, 135 – 165 µm, and 165 – 195 µm, nauplii of C. finmarchicus, Pseudocalanus spp. and 

Oithona spp., as well as copepodites of O. similis. The threshold for neutral selectivity was 

calculated to 0.142, while those for strong positive and negative selection were determined 

as 0.284 and 0.071, respectively. Larvae collected in 1997 and 1998 did not exhibit strong 

positive preference for any of the commonly consumed prey taxa (Figure 7). Moderate 

positive selection for copepod eggs smaller than 135 µm was observed in all larval size 

classes in 1998. Strong positive selection for copepod eggs in the 135-165 µm size class was 

observed in 1999, which increased with larval size. Larvae collected in 2000 positively 

selected for copepod eggs in the 135 – 165 µm and 165 – 195 µm size classes, but there were 

no clear trends through ontogeny. Larvae across all size classes and years demonstrated a 

strong negative selection against O. similis copepodites. Prey taxa that did not contribute at 

least 2% to the larval diet by prey number but represented > 2% of the potential prey field in 

one or more collection years can also be considered strongly selected against by larval 

redfish. Those potential prey taxa avoided by larval redfish were the nauplii of Temora 
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longicornis (1997, 1998, 1999) and Centropages spp. (1998), copepodites of Microsetella 

spp. (all years), Triconia borealis (1997, 1998) and Temora longicornis (1998), as well as 

bivalve larvae (1998, 1999). 

 

1.5 DISCUSSION 

Knowledge of larval redfish trophodynamics in the GSL prior to this study comes 

from previous work by Runge and de Lafontaine (1996), who concluded that larval redfish 

strongly select for eggs of the copepod C. finmarchicus throughout early ontogeny, based on 

the high relative frequency of copepod eggs observed in the diet of the 1989 cohort. However, 

this conclusion was formulated in the absence of quantitative analyses of potential prey field 

and prey selectivity. Even though particularly high proportions of C. finmarchicus eggs were 

consumed during that year, an assessment of diet composition of larval redfish from the 

Flemish Cap revealed the existence of significant interannual variability in the proportion of 

main prey taxa ingested (Anderson, 1994). In order to characterize potential food web effects 

on larval survival and recruitment of redfish in the Gulf of St. Lawrence, it is important to 

test Runge and de Lafontaine’s hypothesis using a multi-year dataset. In the present study, 

we relied on a 4-year dataset of larval gut contents and potential prey assemblages, both 

characterized at high taxonomic resolution to assess interannual variability in larval redfish 

diet composition and prey selectivity. Results from our comprehensive assessment of larval 

redfish trophodynamics can aid us in identifying potential bottom-up drivers of early-life 

survival, which will provide key information for future investigations into recruitment 

dynamics of the stock.   

The diet composition of larval fish from boreal marine environments is generally 

dominated by the naupliar and copepodite stages of calanoid copepods (e.g. Hunter, 1981; 

Pepin and Penney, 1997; Llopiz, 2013). Copepod species that are reported as main prey in 

North Atlantic ecosystems commonly include Pseudocalanus spp. and C. finmarchicus. In 

Atlantic cod (Gadus morhua), a widely-distributed species across the Northeast and 
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Northwest Atlantic Ocean, a large body of literature has shown that larvae from the numerous 

stocks demonstrate feeding preferences for these two copepod species (Kane, 1984; Heath 

and Lough, 2007; Robert et al., 2011). Naupliar and/or copepodite stages of C. finmarchicus 

and Pseudocalanus spp. have also been identified as key prey for larval Atlantic mackerel 

(Scomber scombrus) (Ringuette et al., 2002, Robert et al., 2008), haddock (Melanogrammus 

aeglefinus) (Kane, 1984; Economou, 1991), whiting (Merlangius merlangus) (Fortier and 

Harris, 1991), pollock (Pollachius virens) (Economou, 1991), and silver hake (Merluccius 

bilinearis) (Reiss et al., 2005).  

As they grow and develop, most larval fish species display rapid dietary shifts from 

small copepod nauplii during the first-feeding stage, to larger copepodites during the late-

larval stage (Hunter, 1981; Robert et al., 2008; Reiss et al., 2005). Contrary to the majority 

of species which exhibit dietary shifts in the 5-10 mm size range, our results provide evidence 

that there was no apparent ontogenetic change in larval redfish diet within the early larval 

stage. Redfish larvae continued to ingest large numbers of C. finmarchicus eggs throughout 

early ontogeny, and in general, they foraged on a suite of relatively small prey taxa 

throughout early development. This is reflected by a particularly narrow niche breadth that 

remained constant with increasing larval size. Even though our results support previous 

conclusions from Runge and de Lafontaine (1996) that C. finmarchicus eggs constitute the 

most frequent prey taxon within the larval redfish diet, the proportion of the diet composed 

of eggs across the 4-year period, both by number and carbon content, was significantly 

smaller than that reported in the 1989 year class. Within the 5-10 mm larval size range, Runge 

and de Lafontaine (1996) estimated that copepod eggs contributed >85% of gut content by 

biomass, while in our study, total egg carbon contribution was estimated to range between 

31.4% and 68.7% across size classes and years, pointing to a more flexible diet composition 

in which naupliar stages of the calanoid copepods C. finmarchicus and Pseudocalanus spp., 

as well as early stages of the cyclopoid copepod Oithona similis, accounted for significant 

but variable proportions among years. 
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1.5.1 Larval redfish feeding preferences 

There is increasing evidence that many fish species exhibit strong prey preference 

and selectivity during the larval stage (Robert et al., 2008). In selective species, larvae that 

feed successfully on preferred prey are characterized by faster growth, which increases their 

probability of survival (Robert et al., 2009; Sponaugle et al., 2010; Murphy et al., 2013). 

Various potential consumable prey taxa occur within a given zooplankton assemblage, but in 

order to optimize growth and survival, larvae should preferentially feed on taxa that are 

abundant, easily captured, and provide the highest net gain of energy and essential nutrients 

(Schoener, 1971; Werner and Hall, 1974). Carbon content of zooplankton prey typically 

increases with prey size following an allometric relationship, making it advantageous for 

larvae to prey upon the largest consumable prey taxa. As larvae grow, sensory system 

capabilities (visual, mechanical, chemoreception, etc.) develop and/or improve, swimming 

abilities strengthen, and mouth gape width increases; these developmental changes increase 

prey detection capabilities, prey encounter rate, and potential consumable prey size range, 

respectively (Hunter, 1981). Well-developed, late-stage larvae are, in theory, better suited for 

effectively foraging on large, motile prey taxa within the environment relative to their less-

developed, first-feeding conspecifics.  

Within the GSL region, larvae of several fish species exhibit a quick shift in preferred 

prey size from small to large taxa during early larval development. Within the size range of 

redfish larvae in the present study, larval striped bass inhabiting Eastern Canadian estuaries 

transition in feeding preference at the size of 10 mm from rotifers to the adult stage of the 

calanoid copepod Eurytemora spp. (Chesson’s ɑ = 0.9) in coastal habitats (Robichaud-

Leblanc et al., 1997); larval Atlantic cod shift feeding preferences at the size of 6 mm from 

Pseudocalanus spp. and Calanus spp. nauplii to adult stages of the same species (Chesson’s 

ɑ  = 0.53) (Robert et al., 2011); and larval Atlantic mackerel switch selectivity at the size of 

7 mm from Pseudocalanus spp., Oithona spp. and Temora spp. nauplii to fish larvae 

(Chesson’s ɑ = 0.65) and cladocerans (Chesson’s ɑ = 0.5) (Robert et al., 2008; Paradis et al., 

2012). Using mean lengths of zooplankton taxa reported by Robert et al. (2008) for Atlantic 
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mackerel, mean preferred prey size increased from 0.19 mm (Pseudocalanus spp. nauplii) to 

0.46 mm (cladocerans) and 3.30 mm (fish larvae), a 242% and 1,736% increase in preferred 

prey size by 7.0 mm Atlantic mackerel larvae relative to smaller size classes. Contrary to 

these species, larval redfish in the present study did not demonstrate an increase in mean prey 

size over a similar larval size range, nor did they exhibit increased preference or selectivity 

for larger taxa. The only occurrences of strong prey selectivity across the four annual cohorts 

concerned C. finmarchicus eggs, one of the smallest frequently consumed prey taxa, and the 

maximum Chesson’s ɑ value of 0.45 in redfish larvae  8 mm in 1999 remains modest 

relative to selectivity of other species described so far in the GSL. Even though the strong 

annual variability in selectivity observed in this study may be partly attributable to the short 

sampling window within each year, our results for GSL redfish are in line with those reported 

by Anderson (1994) for recently-extruded Flemish Cap redfish, which showed high 

interannual variability in selection for copepod eggs, ranging from moderately positive to 

neutral. 

The lack of strong trends in prey selectivity during early ontogeny of larval redfish is 

counter-intuitive given the similar developmental morphologies, and therefore apparent 

foraging capacities, among larval redfish, Atlantic mackerel and Atlantic cod. All three 

species are characterized by an anteriorly deep bodied shape with large mouth gape width 

relative to body length, and segmented guts. However, instead of showing increasing 

preference for larger prey along development as predicted by the optimal foraging theory, 

and as observed in mackerel and cod, the feeding strategy displayed by larval redfish appears 

closer to that of larval sandlance, Ammodytes spp., based on the prevalence of small egg prey 

(Demontigny et al., 2012). Sandlance are characterized by small mouth gape width relative 

to total body length, and a linear gut morphology. It is possible that, regardless of similar 

morphologies to larval fish species with strong foraging skills, young redfish larvae are 

ineffective predators of mobile prey. However, this is unlikely considering that diet 

composition of larvae < 7 mm in 1997 was dominated by C. finmarchicus and Pseudocalanus 

spp. naupliar stages N3-6. Instead, based on the combination of a constant diet composition 

through early ontogeny and relatively weak positive prey selectivity, we argue that eggs were 
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frequently consumed because redfish larvae exhibit a more generalist feeding strategy 

relative to several other GSL species, and thus consume frequently occurring prey taxa in 

similar proportions relative to that in the surrounding environment.  

 

1.5.2 Revisiting the redfish—Calanus reliance 

Based on the massive contribution of C. finmarchicus egg biomass to diet of the 1989 

larval redfish cohort, Runge and de Lafontaine (1996) hypothesized that a strong, 

“provocative” link existed between larval redfish survival and the abundance and 

reproductive timing of C. finmarchicus in the GSL. Our results support this hypothesis to a 

certain extent. We have shown that larval redfish did not systematically exhibit strong 

preference for C. finmarchicus eggs across size classes and years, and that diet composition 

was characterized by relatively high interannual variability. However, our results also 

indicate that copepod eggs dominated the ingested prey biomass in all collection years, albeit 

not in the large proportions reported by Runge and de Lafontaine (1996). Even though we 

observed important differences in the diet composition between the 1997-2000 and the 1989 

year classes, we consider, based their general dominance in the proportion by prey numbers 

and by carbon ingested, that C. finmarchicus eggs should be considered as a key prey taxon 

for larval redfish feeding success, growth and survival. 

There are several potential advantages for redfish larvae to consume copepod eggs 

instead of other potential prey in the environment. A large proportion (69.1%) of the eggs 

identified in larval guts in the present study were partially digested. Unlike many marine fish 

species, Sebastes spp. demonstrate the ability to digest copepod eggs during the larval stage 

(Bainbridge and McKay, 1986; Runge and de Lafontaine, 1996; Mitsuzawa et al., 2017, this 

study). It is possible that there is less competition within the GSL for copepod eggs relative 

to other frequently consumed prey taxa, such as calanoid copepod nauplii, which presents an 

open feeding niche for larval redfish to occupy. In addition, eggs are highly concentrated 

with energy and essential nutrients and require less foraging and capture effort than mobile 
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prey. C. finmarchicus eggs contain, on average, greater amounts of carbon per unit of volume 

than abundant naupliar stages of other species that are characterized by similar sizes (e.g. 

Oithona spp. and Pseudocalanus spp. nauplii), and even taxa of larger sizes (e.g. O. similis 

copepodites). Most importantly, copepod eggs contain up to 2 orders of magnitude more 

essential fatty acids than later copepod life stages of similar sizes (Fuiman et al., 2015). 

Essential fatty acids, such as docosapentaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic 

acid (EPA; 20:5 n-3), must be consumed since they cannot be biosynthesized in the body in 

physiologically relevant quantities. These essential fatty acids are crucial for proper larval 

fish growth and survival, especially in cold water species (Sargent, 1997). Runge and de 

Lafontaine (1996) discussed the role of primary producers in the development and 

reproductive season of C. finmarchicus. Primary producers such as diatoms, some 

dinoflagellate species, and some heterotrophic flagellates synthesize essential fatty acids, so 

that the composition and abundance of primary producer communities can alter the 

concentrations of fatty acids available within an ecosystem, as well as reproductive viability 

of adult C. finmarchicus (Starr et al., 1999). Variability in phytoplankton community 

composition can influence the timing and rate of egg production, as well as egg fatty acid 

composition and concentration, all of which directly affect egg consumers (Hirche and 

Kattner, 1993). Additionally, we cannot overlook the potential direct energy and essential 

fatty acid contributions from primary producers to the larval diet via consumption. There is 

a possibility that we were unable to identify some primary producers, as well as small, soft-

bodied protozoa, through visual identification of prey items found in the guts due to rapid 

digestion of these prey, and long-term formalin preservation (Montagnes et al., 2010). This 

multi-trophic level connection places emphasis on the importance of primary productivity 

and bottom-up processes within the pelagic ecosystem for the survival of many 

commercially-important fisheries species that rely on early Calanus spp. stages, such as GSL 

Atlantic redfish.  

Environmental conditions in the GSL that control primary productivity and secondary 

productivity differed between the Runge and de Lafontaine (1996) study performed in 1989 

and the 1997-2000 collection years examined in the present study, and these conditions 



 

29 

continue to shift as of 2020. The GSL underwent an environmental regime shift during 1997, 

where surface and deep-water temperatures increased, and winter sea ice area and duration 

decreased relative to pre-1997 (Plourde et al. 2014). While an earlier sea ice retreat often 

leads to an earlier onset of peak primary productivity un sub-arctic regions (i.e. Brosset et al., 

2019), these physical oceanographic changes in the GSL also corresponded with an earlier 

timing of the spring cohort abundance peak and decreased mean prosome length of C. 

finmarchicus (Plourde et al., 2014). Warmer surface waters are associated with increased 

abundance of small calanoid copepods such as Pseudocalanus spp., whereas the abundance 

of large calanoid copepods such as C. finmarchicus is negatively associated with surface and 

deep-water temperatures (Blais et al. 2019). Even though total copepod abundance has 

remained relatively stable following the regime shift, the increasing dominance of small 

copepod species in the GSL has resulted in a marked decrease in total available copepod 

biomass. Since the early 2010s, the trend of increasing surface and deep-water temperature 

has accelerated, accentuating the ecological shift affecting C. finmarchicus reproductive 

phenology (earlier reproductive seasons) and abundance (decreasing) (Blais et al., 2019, 

Galbraith et al., 2019, Sorochan et al., 2019). Given that the period 2011-2013 generated 

strong redfish, specifically S. mentella, recruitment events, while C. finmarchicus abundance 

was low relative to previous decades, we hypothesize that the reproductive phenology of C. 

finmarchicus could be more important than its absolute abundance for the feeding success of 

larval redfish. The early reproduction of C. finmarchicus may increase the duration of 

temporal overlap with larval redfish extrusion in the GSL, optimizing redfish growth and 

survival, as predicted by the Match-Mismatch Hypothesis (Cushing, 1975). Moreover, the 

larval diet composition of redfish is primarily composed of small zooplankton taxa, therefore 

the shift in copepod communities from large to small species observed in recent years may 

constitute a foraging advantage for larval redfish.  
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1.6 CONCLUSIONS 

 Results from the present study providing the first multi-year assessment of larval 

redfish diet composition lay the initial groundwork for the further identification of potential 

bottom-up recruitment drivers for this species in the Gulf of St. Lawrence redfish. We showed 

strong evidence that eggs of the calanoid copepod Calanus finmarchicus constitute the main 

component of larval redfish diet composition in the GSL. Variability in abundance and 

reproductive phenology in this key copepod, linked to the ongoing warming of surface and 

deep water temperatures within the system, should be considered in future investigations of 

larval redfish growth and survival potential.   
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1.9 TABLES 

 

Tableau 1. Size (SL) and number of larvae per developmental stage used for each year in 

the present study. The measure of error represents the standard deviation on SL. 
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Tableau 2. Diet composition by length classes and year of redfish larvae expressed as the 

percent contribution in numbers of the different prey taxa. 

  



 

33 

 

Tableau 3. Diet composition by length classes and year of redfish larvae expressed as the 

percent contribution in carbon of the different prey taxa. 
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Tableau 4. Mean size and carbon content for each prey taxa, and overall mean prey size and 

carbon content, of prey consumed within each larval size class averaged across all 

collection years. 
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1.10 FIGURES 

 

Figure 1. Map of 27 fixed sampling stations where ichthyoplankton and zooplankton 

samples were collected in 1997-2000. 
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Figure 2. A. Densities ( SD) of frequently consumed prey taxa at collection stations for 

each year. B. Mean proportions of common prey field taxa in the environment by prey 

number across collection years. 
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Figure 3. Mean percent contribution of prey taxa in larval diet by number across collection 

years. 
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Figure 4. Mean percent of carbon contribution by prey taxa to larval diet across collection 

years. 
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Figure 5. Diet niche breadth, measured as the SD of log-transformed prey size averaged 

across all larvae within the same size class (x-axis) in a collection year. There is no change 

in diet niche breadth throughout early development. 
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Figure 6. Size and developmental stage of prey consumed by individual larvae by year. 

Light grey circles represent copepod eggs, medium grey triangles represent copepod 

nauplii, and dark grey crosses represent copepodites. Copepod eggs are consumed 

throughout each of the early development sizes collected for this study. 
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Figure 7. Chesson’s alpha-selectivity indices ( SE) for the 7 most frequently consumed 

prey taxa in the larval redfish diet across the 3 larval size classes (< 7.00 mm, 7.00 – 7.99 

mm, and  8.00 mm) : A – Copepod eggs < 135 µm, B – Copepod eggs 135 – 165 µm, C – 

Copepod eggs 165 – 195 µm, D – C. finmarchicus nauplii, E – Oithona spp. nauplii, F – O. 

similis copepodites, G – Pseudocalanus spp. nauplii. The neutral alpha value, 0.1428 (1/7), 

has been subtracted from the mean alpha values so a Chesson’s alpha value of 0 is complete 

neutral selection, positive values represent positive selection, and negative values represent 

negative selection. In 1997, only 1 larva was  8.00 mm, therefore Chesson’s alpha for this 

size class was not calculated. 

 



 

 

 

REVELER LA RELATION ENTRE L’ALIMENTATION ET LA CROISSANCE 

DES LARVES DE SEBASTE (SEBASTES SP.) DANS LE GOLFE DU SAINT-

LAURENT 

2.1 RESUME EN FRANÇAIS  

La force des classes d'âge des stocks de poissons est souvent établie lors du stade 

larvaire, une croissance rapide étant un facteur favorable menant à un fort recrutement. Après 

30 ans de faible recrutement, le sébaste (Sebastes sp.) du golfe du Saint-Laurent (GSL) a 

produit des classes d'âge sans précédent en 2011-2013. La relation entre le régime alimentaire 

des larves et la croissance qui a potentiellement conduit à ces forts événements de 

recrutement est inconnue. Le contenu stomacal et la microstructure des otolithes de larves de 

sébaste capturées dans le GSL en 1999 et 2000 ont été analysés afin de comprendre la relation 

entre le succès alimentaire et la croissance récente des larves de sébaste et d'identifier les 

comportements alimentaires associés à une croissance rapide. La croissance était 

positivement corrélée avec la profondeur du corps des larves, qui a été utilisée comme proxy 

morphologique pour la croissance. Le type et la taille des proies étaient les meilleures 

variables explicatives de la profondeur corporelle des larves après la première alimentation 

obligatoire. Les larves qui consommaient de grands stades nauplii de taxons de copépodes 

fréquemment consommés avaient un corps plus profond et se développaient plus rapidement 

que les larves qui consommaient la proie préférée du sébaste, les œufs de Calanus 

finmarchicus. Le réchauffement des eaux du GSL a modifié la phénologie des taxons de 

proies couramment consommés plus tôt dans la saison, ce qui peut augmenter le 

chevauchement entre les sébastes et les proies nauplii qui favorisent une croissance rapide, 

la survie, et potentiellement le succès du recrutement. 
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Cet article a été accepté pour publication dans sa version finale en octobre 2021 par 

les éditeurs du ICES Journal of Marine Science. En tant que première autrice, j'ai effectué la 

majorité de la collecte des données, des analyses statistiques, de l'interprétation des résultats 

et de la rédaction du manuscrit. Le deuxième auteur, Pierre Pepin, a aidé à l'exécution des 

analyses statistiques et l’interprétation des résultats. Le quatrième auteur, Guillaume Veillet, 

a participé aux dissections en laboratoire et à la collecte et aux analyses préliminaires des 

données. Les auteurs Pierre Pepin, Stéphane Plourde, Pascal Sirois et Dominique Robert ont 

tous contribué aux interprétations biologiques et écologiques de ces résultats. Tous les 

auteurs ont participé à la révision de l'article. Cet article a été présenté virtuellement au 1st 

Virtual Larval Fish Town Hall (juin 2020), à l'American Fisheries Society Virtual Meeting 

(septembre 2020), à la Réunion Annuelle de Ressources Aquatiques Québec (novembre 2020) 

et à Avenir Maritime (juin 2021). 

 

 

2.1.1 Summary in English 

Year-class strength of fish stocks is often set during the larval stage, with fast growth 

being a favorable factor leading to strong recruitment. Following 30 years of poor 

recruitment, redfish (Sebastes sp. in the Gulf of St. Lawrence (GSL) produced 

unprecedentedly strong year classes in 2011-2013. The relationship between larval diet and 

growth that potentially drove these successful recruitment events is unknown. Gut content 

and otolith microstructure of redfish larvae collected from the GSL in 1999 and 2000 were 

analyzed in order to understand the relationship between recent feeding success and growth 

in larval redfish and identify feeding behaviors that are associated with fast growth. Growth 

was positively correlated with larval body depth, which was used as a morphological proxy 

for growth. Prey type and size were the best explanatory variables of larval body depth after 

obligatory first-feeding. Larvae that consumed large naupliar stages of frequently consumed 

copepod taxa were deeper-bodied and grew more quickly than larvae that consumed redfish’s 
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preferred prey, Calanus finmarchicus eggs. Warming GSL waters have shifted the phenology 

of commonly consumed prey taxa earlier in the season, which may increase the overlap 

between redfish and naupliar prey that drive fast growth, survival, and potentially recruitment 

success. 

This article titled “Revealing the relationship between feeding and growth of larval 

redfish (Sebastes sp.) in the Gulf of St. Lawrence”  was accepted for publication in its final 

version in October 2021 by the editors of ICES Journal of Marine Science. As first author, I 

performed a majority of the data collection, statistical analyses, interpretation of results, and 

writing of the manuscript. Second author, Pierre Pepin, assisted in the execution of statistical 

analyses and interpretation of results. Fourth author, Guillaume Veillet, assisted in laboratory 

dissections and preliminary data collection and analyses. Authors Pierre Pepin, Stéphane 

Plourde, Pascal Sirois, and Dominique Robert all contributed to the biological and ecological 

interpretations of these results. All authors participated in the revision of the article. This 

article was presented virtually at the 1st Virtual Larval Fish Town Hall (June 2020), the 

American Fisheries Society Virtual Meeting (September 2020), the Réunion Annuelle of 

Ressources Aquatiques Québec (November 2020), and Avenir Maritime (June 2021).   
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2.2 INTRODUCTION 

The fine-scale understanding of recruitment variability in commercially-exploited 

fish stocks has continued to evade fisheries scientists since Hjort’s (1914) early hypotheses 

on potential sources of variability in North Sea fish populations. It is generally accepted that 

year-class strength of a stock is set during the first year of life, a period which encompasses 

the larval and early juvenile stages (Leggett and DeBlois 1994). Variability in year-class 

strength is attributable to small interannual variations in mortality rates during these early 

life stages, which frequently result in 10 to 100-fold differences in the number of individuals 

recruited into the fishery (Pepin 2016). The Growth-Mortality hypothesis (Anderson 1988) 

states that the probability of a larva’s survival to recruitment is positively correlated with its 

growth rate through the larval stage, which is explained by three complementary 

mechanisms: the ‘bigger-is-better’ mechanism predicts that at a given age, larger individuals 

are vulnerable to a lower number of gape-limited ichthyoplankton predators relative to their 

smaller counterparts (e.g. Bailey and Houde 1989); the ‘stage duration’ mechanism proposes 

that, by metamorphosing at a younger age, fast-growing larvae take advantage of a shorter 

period of high pre-metamorphosis predation mortality (e.g. Chambers and Leggett 1987); 

and the ‘growth-selective predation’ mechanism stipulates that at a given size, younger, fast-

growing individuals present a better physiological condition linked to an enhanced capacity 

to escape a predator (e.g. Takasuka et al. 2003, 2004). Based on this conceptual framework, 

interannual variability in individual larval growth rates constitutes an important determinant 

of year-class strength. 

A larva’s ability to feed successfully is a primary pillar of its growth performance 

(Werner and Gilliam 1984, Fortier and Harris 1989, Leggett and Deblois 1994, Sysoeva 

2000). Feeding success, often defined as the amount of prey carbon consumed, is generally 

considered a key determinant of somatic growth. Beyond total carbon ingested, a proxy for 

energy intake, feeding success is also modulated by the capacity of ingested prey taxa to 

provide the suite of essential nutrients, such as amino acids and fatty acids, that are necessary 

for proper larval development (Rønnestad et al. 1999; Sargent et al. 1999). The larval prey 
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field is composed of various taxa characterized by differences in potential to fulfill 

requirements relative to energy and essential nutrient intake, which likely explains why 

several larval fish species have been shown to selectively consume prey taxa that result in 

their optimal growth (Robert et al. 2009, Sponaugle et al. 2010, Murphy et al. 2013). These 

considerations make it important to identify larval fish prey to the lowest taxonomic 

resolution possible. 

A common measure of short-term larval feeding success is derived through gut 

content analysis, which represents the last few hours of feeding prior to capture (Llopiz and 

Cowen 2008). Longer-term feeding success indices can also be derived through larval 

morphometrics. For example, the ratio of larval body depth to standard length or age, 

constitutes a mid-term feeding success index often used as a proxy for condition (Ferron and 

Leggett 1994). Given the positive relationship between feeding success and growth, 

measuring the width of daily otolith increments can also provide an estimate of the history 

of feeding success achieved over the entire life of individuals (Pepin et al. 2001; Dower et 

al. 2009). Because these various indices rely on different measurements and represent 

different time scales, few previous studies have looked into the relationships linking them in 

the same individual larvae (but see Pepin et al. 2015). However, detailed knowledge of the 

links among short- to longer-term feeding indices and growth is needed to refine our 

understanding of processes driving recruitment variability in commercially-exploited 

species.  

Redfish (Sebastes sp.) are long-lived, ovoviviparous species distributed throughout 

the North Atlantic. In the Gulf of St. Lawrence (GSL), strong recruitment events in 2011-

2013 after 30 years of low productivity have led to the recovery of the deepwater redfish 

Sebastes mentella. The specific mechanisms driving variability in larval growth, survival, 

and year-class strength for this species remain unknown. In addition, the uncommon 

ovoviviparous reproductive strategy of redfish likely results in different patterns of early life 

growth and potential critical periods relative to what is previously described in the literature 

about more commonly researched, oviparous fishes (e.g. Pepin et al. 2015). Previous studies 
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on GSL larval redfish diet composition and prey selectivity have clearly highlighted the 

prevalence, preference, and hypothesized importance, of the eggs of the calanoid copepod 

Calanus finmarchicus as a primary food source during the early and mid-larval stage (Runge 

and de Lafontaine 1996; Burns et al. 2020). However, the level of benefit of C. finmarchicus 

egg consumption for larval redfish growth remains to be tested.  

The objective of the present study is to describe the roles of diet composition and 

feeding success on growth of recently extruded redfish larvae. The daily growth trajectory of 

larval redfish was estimated based on the otolith microstructure, and a recent otolith growth 

index was compared to indices of feeding success based on gut content and body depth at 

age. We hypothesize that the measures of recent daily larval growth and body depth at age 

were positively related to the amount of carbon contributed to gut content by the redfish’s 

preferred prey, C. finmarchicus eggs. An understanding of the linkage between the larval 

redfish diet and growth performance will facilitate the robust investigation of the role of 

environmental drivers on redfish recruitment dynamics. 

 

2.3 METHODS 

2.3.1 Sampling area 

Redfish larvae were collected in an area of the Gulf of St. Lawrence spanning the 

junction of the Laurentian and Esquiman channels, known for being the primary larval 

extrusion area (Figure 8). Details on collection methods were provided in Burns et al. (2020). 

Briefly, ichthyoplankton were collected over a grid of 27 stations using a bongo net sampler 

between June 12 and June 17 during the years 1997 to 2000. At 11 stations sampled in 1999 

and 2000, larval fish were preserved in a 95% ethanol solution to preserve otoliths, making 

them available for the present study. Zooplankton samples were collected concurrently at 

each sampling station and preserved in a 4% formalin-seawater solution to identify and 
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quantify prey field at the time of larval capture. Depth, water volume filtered, and GPS 

coordinates were measured for each tow at each location.  

 

2.3.2 Laboratory analyses 

In the laboratory, larval fish collections were sorted and identified to the lowest 

taxonomical level possible. In redfish, there are no morphological differences between S. 

mentella and S. fasciatus larvae, so larvae were identified as Sebastes sp. However, the 

narrow temporal window of larval collection specifically targeted S. mentella (Sévigny et al. 

2000), which we assume make up the bulk of Sebastes sp. larvae captured in the present 

study. Individual larvae were photographed under a stereoscopic microscope at 16× 

magnification and measured for standard length (SL) and body depth at anus (BD) to the 

nearest 0.1 mm using Olympus cellSens software. SL was measured from the tip of the snout 

to the end of the notochord; BD was measured as a perpendicular line from the dorsal edge 

of the notochord down to the anus.   

The hindgut and foregut from each larva were dissected at 120× magnification and 

individual consumed prey were photographed, prey length was measured to the nearest 

0.1 µm and identified to the lowest taxonomic level using methods previously described in 

Burns et al. (2020) following GSL copepod identification guides assembled for internal use 

by the Department of Fisheries and Oceans Canada. Carbon content of each prey item was 

calculated using carbon-length relationship equations from the literature for each prey taxa 

(Table I in Robert et al. 2008) and allowed for comparison of redfish feeding success relative 

to other diet studies (ie. Robert et al. 2008, Pepin et al. 2015). Larvae with empty guts were 

excluded from statistical analyses. Feeding success (total carbon consumed) was calculated 

for each individual larva.  

Both left and right sagittal otoliths were extracted under a stereoscopic microscope 

and fixed to a slide using Crystalbond 509 thermoplastic cement. When necessary, otoliths 
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were polished using 3 µm metallurgical lapping film for adequate reading. Photographs of 

otoliths were taken under an Olympus BX50 oil immersion microscope at 1000× 

magnification. Previous work has confirmed the absence of differences in microstructure 

between left and right sagittal otoliths in S. mentella (Penney and Evans 1985), therefore the 

best otolith photo from each individual larva, regardless of side, was used for otolith readings 

(Penney and Evans 1985). Otolith microstructure was measured using the ObjectJ plugin in 

ImageJ software. Daily increment banding is often not clear around the entirety of the otolith, 

therefore a measurement axis was placed by the reader from the center of the otolith to the 

outer edge of the otolith in a section where banding was the most clear from the center to the 

edge of the otolith (Penney and Evans 1985). Four types of measurements were recorded for 

each otolith along the measurement axis: focal radius (radius of otolith at extrusion), total 

otolith radius, number of daily post-extrusion increments, and widths of each daily post-

extrusion increment.   

 

2.3.3 Statistical analyses 

Autocorrelation among daily increment widths was calculated in order to determine 

growth patterns of newly-extruded redfish larvae. Pearson’s r-correlation coefficients were 

calculated between the first 5 daily increments and the next 5 daily increments using all 

otoliths analyzed. 

Standardized growth was calculated for each increment for each larva along a z-score 

distribution. To do so, mean increment width for each increment number (proxy for age) was 

calculated and divided by the standard deviation of the increment widths. A z-score was 

assigned to each larva for the width of each increment. Positive z-scores represent wider-

than-average increment widths, and therefore faster growth than the average, and vice versa. 

Recent standardized growth was calculated for larvae ≥ 4 days post-extrusion by averaging 

the standardized growth z-scores for the last 3 days of life before capture. Early life 
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standardized growth was calculated for all larvae by averaging the standardized growth z-

scores for the first 3 days post-extrusion.  

We relied on non-parametric local density estimation to calculate individual age-

dependent scores for SL, BD and carbon consumed (Davison and Hinkley 1997) (Figure. 

9A-C). Application of this approach to the description of larval state with age has been 

detailed by Pepin et al. (1999) and successfully implemented in various studies (Dower et al. 

2009; Robert et al. 2014b; Pepin et al. 2015). Briefly, observed measurements for a given 

variable (e.g. SL, BD or carbon consumed) were used to create a distribution kernel at each 

larval age (i.e. daily increment). Based on these kernels, we created a cumulative frequency 

distribution for each variable at each age, ranging from 0 to 1, on which each individual’s 

measured variable was assigned a “score” that reflects the relative rank of that individuals 

for the appropriate age group. Each analysis was optimized for bandwidth and kernel size. 

These scores allow for comparison of larval performance amongst individuals of different 

larval ages. Non-parametric analysis allows for results that are not forced or overfitting the 

data, as in parametric linear modelling. Local density estimation was calculated in R (V. 

3.6.2) using program ogmap (Hammill and Evans 2015). All data used for this project can be 

requested from the corresponding author.  

 

2.4 RESULTS 

2.4.1 Larval redfish characteristics 

A total of 242 redfish larvae were collected over the two years: 83 larvae from 4 

stations in 1999 and 159 larvae from 8 stations in 2000. Only 3 larvae had empty digestive 

tracts. Larvae averaged 8.21 mm  0.74 (SD) in length, 1.07 mm   0.19 in body depth, and 

were aged 6.4 days  3.8 post-extrusion (Figure 10A, B). The youngest larva was 1 day post-

extrusion, and the oldest larvae were 19 days post-extrusion. Over half (59.7%) of the larvae 
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were 5 days post-extrusion or younger, with the largest percentage of all larvae being 3 post-

days post-extrusion (16.9%) (Figure 10B).  

 Over the two years, redfish larvae consumed an average of 23.5 prey  18.0, which 

corresponded to 5.8 g  4.4 of carbon. Average prey size consumed was 178.2 m  53.1. 

By prey number, the largest proportion of the larval diet was comprised of eggs from the 

calanoid copepod, C. finmarchicus, which represented 37.6% of the larval diet in both of the 

years combined (Figure 11). The second largest contributor to the larval diet by prey number 

was nauplii of the cyclopoid copepod Oithona spp. (26.8%), followed by nauplii of C. 

finmarchicus (11.9%) and nauplii of the calanoid copepod Pseudocalanus spp. (10.2%). The 

largest contributor of carbon to the larval diet was C. finmarchicus eggs (39.1%), followed 

by C. finmarchicus nauplii (28.1%), Oithona spp. nauplii, and Pseudocalanus spp. nauplii 

(7.3%). When combined, C. finmarchicus eggs and nauplii contributed the majority of the 

total carbon (67.2%) to the larval redfish diet. Approximately half of the carbon in the larval 

redfish diet was contributed by copepod eggs of all sizes (47.8%), and the other half (52.2%) 

was contributed by mobile prey, defined as the naupliar and copepodite stages of several 

copepod species.  

 

2.4.2 Otolith microstructure and growth autocorrelation 

 Average otolith radius at extrusion was 19.05  1.95 m, but varied widely from 

12.92 to 24.38 m. Amongst all larvae, average daily increment width was 0.66  0.14 m. 

There was strong age-dependent autocorrelation between daily increment widths in young 

larval redfish (Figure 12). Day-to-day growth of recently-extruded (ages 1 to 10 days post-

extrusion) was variably influenced by the larva’s growth history. Daily growth 

autocorrelation was strongest (r = 0.5-0.6) during the first 3-4 days post-extrusion, and 

gradually decreased as larval age and forward lag increased.  
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2.4.3 Recent growth in relation to standard length and body depth 

Standardized recent growth was calculated for all larvae 4 days post-extrusion and 

older (n = 181). Positive significant relationships were found between standardized recent 

growth and larval body depth-at-age [P(BD|age)] (r = 0.304, p < 0.001) (Figure 13A) and 

standard length-at-age [P(SL|age)] (r = 0.207, p = 0.005) (Figure 13B). Correlations 

strengthened with increasing larval age for P(BD|age) (young larvae: n = 108, r = 0.170, p = 

0.079; old larvae: n = 73, r = 0.516, p < 0.001) and P(SL|age) (young larvae: r = 0.195, p = 

0.043; old larvae: r = 0.227, p = 0.053 NS). Given that relationships were stronger with 

P(BD|age) amongst larvae of all ages, we retained P(BD|age) as a proxy for recent growth of 

newly-extruded redfish larvae. 

 

2.4.4 Recent growth, carbon ingested and prey size in relation to body depth-at-age 

All larvae (n = 242) were used to calculate relationships between larval 

morphometrics and diet. There was a significant, positive relationship between P(BD|age) 

and total carbon consumed [P(C|age)] at age (r = 0.331, p  < 0.001) (Figure 14). When 

splitting larvae by age groups, a significant, stronger positive relationship was observed 

between P(BD|age) and P(C|age) in young larvae < 8 d post extrusion (n = 169, r = 0.391, p 

< 0.00001), but no significant relationship persisted in older ≥ 8 d post extrusion larvae 

(n = 73, r = 0.175, p = 0.139). A positive, significant relationship was also observed between 

average prey size ingested-at-age [P(prey size|age)] and P(BD|age) (r = 0.281, p < 0.00001) 

(Figure 15). This relationship was positive and significant for each of the two larval age 

groups, but stronger in older ≥ 8 d post extrusion larvae (r = 0.504, p < 0.00001) than in 

young < 8 d post extrusion larvae (r = 0.184, p = 0.017).  

 The total carbon consumed for each larva was sorted into carbon source based on 

prey taxa and developmental stage. Copepod eggs of all sizes were grouped together in an 

‘eggs’ group, and naupliar and copepodite stages of copepods were grouped together as a 
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‘mobile prey’ group. A positive, significant relationship was found between the percentile 

score of mobile prey carbon consumed-at-age [P(mobile carbon|age)] and that of body depth-

at-age P(BD|age) (r = 0.365, p < 0.00001) (Figure 16A). This relationship was positive and 

significant for both larval age groups (larvae < 8 d post extrusion: r = 0.437, p < 0.00001; 

larvae ≥ 8 d post extrusion: r = 0.393, p = 0.0005). There was no significant relationship 

between the percentile score of egg prey carbon consumed-at-age [(P(egg carbon|age)] and 

P(BD|age) when considering all larvae or larvae < 8 d post extrusion. However, there was a 

significant, negative relationship between P(egg carbon|age) and P(BD|age) in ≥ 8 d post 

extrusion larvae (r = -0.238, p = 0.042) (Figure 16B).  

 Early and recent standardized growth z-scores were ranked from 1-73 for all larvae 

≥ 8 days post-extrusion to investigate whether diet composition or feeding success of older 

larvae was the reason for the weakening daily growth autocorrelation around 8 days post-

extrusion. There was no relationship between the change in growth ranking and P(C|age) 

(r = 0.041, p = 0.731), P(eggs|age) (r = -0.031, p = 0.795), or P(mobile|age) (r = 0.120, 

p = 0.312).  

 

2.5 DISCUSSION 

According to the Growth-Mortality hypothesis, if larval fish grow quickly under 

favorable conditions, then more individuals survive through the critical larval stage and are 

recruited into the fishery (Anderson 1988). Feeding provides larvae with energy and nutrients 

that fuel their growth. While it is known that feeding is a limiting factor of larval fish growth 

(Werner and Gilliam 1984, Fortier and Harris 1989, Leggett and Deblois 1994), the nature 

of the effects of both the quantity and the quality of food consumed on larval growth has 

remained elusive given that proxies for feeding success (gut content) and growth (otolith 

daily increments) correspond to different time scales (Pepin et al., 2015). After 30 years of 

poor recruitment, deepwater redfish are currently rebounding in the GSL following three 

successful year classes in 2011-2013. These strong year classes likely correspond to high 
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larval survival fueled by fast growth, but the drivers of growth remain unknown. Previous 

work by Burns et al. (2020) revealed that larval redfish are relatively generalist feeders, with 

a diet composed of multiple prey taxa. The most frequently consumed prey taxon by numbers 

and carbon contribution to the diet was C. finmarchicus eggs, a small, immobile, lipid-rich 

food. In some years, larval redfish demonstrated a feeding preference for C. finmarchicus 

eggs. Based on these results, and those of Runge and de Lafontaine (1996), we hypothesized 

that larvae that consumed more carbon from C. finmarchicus eggs would grow more quickly 

than larvae that consumed other, non-preferred prey taxa. However, results from the present 

study showed that individual larvae, especially older individuals that consumed higher 

amounts of carbon from C. finmarchicus eggs, were generally characterized by slower 

growth during their last 3 days of life relative to those that consumed copepod nauplii. This 

constitutes a rare observation where the preferred prey taxon, as determined by an electivity 

index, was not linked with the fastest larval growth rates.  

 

2.5.1 Identification of a critical period using autocorrelation 

High autocorrelation in otolith microstructure indicates that larvae that grow quickly 

continue to grow quickly over time, and larvae that grow slowly continue to grow slowly, 

whereas low autocorrelation signifies that daily growth rates that are less predictable from 

past growth history. Growth autocorrelation serves to identify critical periods of growth 

where individuals become set in a growth trajectory during early larval development (Pepin 

et al. 2015). In general, fast-growing species such as Atlantic mackerel, bluehead wrasse 

(Thalassoma bifasciatum), and radiated shanny (Ulvaria subbifurcata), are characterized by 

a highly autocorrelated growth trajectory and a strong growth-feeding success relationship. 

An early, post-hatching critical period was identified for these species, in which larvae must 

begin to feed successfully or otherwise become entrained in a slow growth trajectory and 

likely perish (Pepin et al. 2015). Conversely, slower-growing species like Atlantic cod 

(Gadus morhua), Arctic cod (Arctogadus glacialis), and yellow perch (Perca flavescens) 
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demonstrate low growth autocorrelation, as well as a weak relationship between feeding 

success and growth (Pepin et al. 2015). Slow-growing species are less likely to have critical 

feeding periods during the early larval stage as hypothesized by Hjort (1914), because early 

growth is likely driven primarily by the abiotic environment. Shortbelly rockfish (Sebastes 

jordani), a species from the Pacific Ocean closely related to S. mentella, demonstrates 

different phases in the similarity of daily larval growth rates depending on developmental 

stage (i.e. fast growth after first-feeding, slow growth during flexion, metamorphosis) (Laidig 

et al. 1991; Moser and Boehlert 1991). Our autocorrelation analyses revealed that newly-

extruded larval redfish demonstrated autocorrelation strengths and patterns most similar to 

those of Atlantic cod and yellow perch: moderately-strong autocorrelation values (r ~ 0.6) 

that gradually weakened with increasing larval age and forward lag among daily increments. 

However, daily autocorrelation values decreased more quickly in redfish larvae than Atlantic 

cod or yellow perch, indicative of a change in the drivers of growth rates.  

The strong autocorrelation values during the first few days post-extrusion are likely 

driven by residual maternal effects via metabolism of the remaining yolk and/or oil globule. 

Although larval redfish are extruded well-developed relative to newly-hatched larvae from 

other marine fish species, many individuals are extruded with remaining endogenous nutrient 

supplies (Burns et al. 2020). Starved redfish larvae have been shown to survive for 10-14 

days after extrusion, suggesting that obligatory exogenous feeding occurs between 1.5 and 2 

weeks post-extrusion. (Laurel et al. 2001). Our results suggest that in the field, early larval 

redfish growth is driven by absorption of the yolk and oil globule until approximately 8 days 

post-extrusion, when the endogenous supply of nutrients has been depleted and daily growth 

is no longer strongly influenced by growth immediately following extrusion. Failure to 

successfully feed exogenously after yolk absorption would result in an increase in mortality 

due to starvation and predation. A large mortality event following the onset of obligate 

exogenous feeding after larvae reach 8 days post-extrusion is within the time frame proposed 

by Anderson (1984) in Flemish Cap redfish, for which an early post-extrusion bottlenecking 

event explained the massive decrease in larval abundance observed during the first 2 months 

post-extrusion. These results support our hypothesis of a critical period during the transition 
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from endogenous to exogenous feeding, as suggested by the rapid shift in growth 

autocorrelation patterns. Future studies should investigate the effects of warming water 

temperatures on the timing of obligate exogenous feeding, and thus the timing of the critical 

period, as warmer waters would increase larval metabolic rate and decrease the amount of 

time larvae are able to survive only on maternally-invested nutrients. While our findings 

suggest the likelihood of differences in growth drivers before and after the transition to 

obligatory exogenous feeding, our results show that differences in feeding success and diet 

composition were not the cause of decreasing growth autocorrelation strength in larval 

redfish. This suggests that prey capture success at the onset of exogenous feeding was not 

the main factor driving the decrease in daily growth autocorrelation, or at least that prey 

capture success has not had sufficient time to impact an individual’s rank in terms of growth 

performance relative to conspecifics.  

Otolith increment width autocorrelation was weakest in larvae older than 8 days post-

extrusion. Weak autocorrelation values found in the slower-growing species has been 

interpreted as an element supporting that feeding success is not a strong driver of growth 

(Pepin et al. 2015). Due to the young ages of larvae in the present study, we were unable to 

expand the growth autocorrelation analysis to older ages characterized by increased values 

of forward lag. We can conclude from our analysis that growth in larvae older than 8 days 

post-extrusion is not related to growth in the first few days following the extrusion event. We 

cannot conclude, because of limited numbers of older larvae, whether or not individuals 

become entrained in a growth trajectory following the onset of obligatory exogenous feeding 

around 8 days post-extrusion. It is possible that autocorrelation values may remain low as 

larvae age, implying that feeding success does not strongly influence redfish growth at older 

ages, or, that autocorrelation values may strengthen with increasing age, signifying an 

importance of successful feeding after yolk absorption. Our results demonstrated a significant 

relationship between P(mobile prey|age) and P(body depth|age) which suggest that the 

feeding success of larval redfish on copepod naupliiar stages may play a larger role than the 

literature would indicate in the growth of older redfish larvae.  
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2.5.2 The feeding success-growth relationship 

In a multi-species meta-analysis, larvae that consumed more carbon were longer in 

length than conspecifics of the same age (Pepin et al. 2015). While the strength of this 

relationship was variable among species, these results demonstrated the expected positive 

link between recent feeding success and growth in fish larvae. According to the Optimal 

Foraging Theory, is it advantageous for larvae to consume the largest available prey, as prey 

size is a proxy for carbon content, (Werner and Hall 1974). Our results show that larvae that 

consumed greater-on-average sizes of prey were deeper bodied, and therefore grew more 

quickly, than larvae of the same age that consumed smaller prey. This relationship 

strengthened with larval age, meaning that consuming prey of larger sizes became 

increasingly more beneficial for faster growth as larvae developed. We also found a positive, 

significant relationship between the percentile scores of larval body depth-at-age and carbon 

consumed-at-age when all larvae were pooled, regardless of age. However, this relationship 

was variable between younger and older age classes, suggesting (1) that young larvae (< 8 

days post-extrusion) that consume exogenous carbon, but may not have fully depleted their 

endogenous nutrient reserves (Burns et al. 2020), show faster growth in terms of body depth 

relative to larvae of the same age that have not yet initiated exogenous feeding and (2) that 

the total amount of carbon consumed via the short-term estimates of larval diet may not be a 

good indicator of larval redfish growth after larvae have exhausted maternally invested 

nutrients. These results support the conclusions made by Pepin et al. (2015) that growth of 

relatively slow-growing species is not strongly linked to short-term estimates of feeding 

success, and that overall, feeding success may not be the best variable to explain differences 

in larval body depth throughout early development of redfish.  
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2.5.3 The role of preferred prey in driving growth rate 

While relatively few studies have empirically demonstrated a relationship between 

feeding success and growth in larval fishes (Dower et al. 2009; Robert et al. 2014b; and Pepin 

et al. 2015), even fewer studies have investigated the relationship between growth and the 

contribution of preferred prey to feeding success (Robert et al. 2009; Sponaugle et al. 2010; 

Murphy et al. 2013). The paucity of knowledge of larval prey preferences from highly-

resolved taxonomical information, and how this absence of data may be affecting our 

capacity to predict recruitment, has been increasingly acknowledged in recent years (St. John 

et al 2001; Robert et al. 2014a). A positive relationship between consumption of a larva’s 

preferred prey and recent growth has been documented for fish species inhabiting various 

environments (Atlantic mackerel, Robert et al. 2009; Atlantic blue marlin [Makaira 

nigricans], Sponaugle et al. 2010; snapper [Chrysophrys auratus], Murphy et al. 2012). In 

both Atlantic mackerel and blue marlin, consumption of the preferred prey during early larval 

development, before the onset of piscivory, determined whether an individual would be 

characterized by fast or slow growth trajectory during the next stages of development (Robert 

et al. 2009, Sponaugle et al. 2010). In these previous studies, preferred prey taxa have 

systematically been mobile developmental stages of specific copepods. Based on the few 

studies that have identified these connections, it can be hypothesized that larvae preferentially 

consume certain prey taxa, not only based on size, that have the capacity to optimize growth 

potential and survival probabilities.  

Burns et al. (2020) revisited the hypothesis made by Runge and de Lafontaine (1996) 

that there exists a strong link between the abundance and consumption of C. finmarchicus 

eggs, and the survival of redfish larvae in the GSL. During both 1999 and 2000, the same 

collection years sampled for this study, C. finmarchicus eggs were determined to be selected 

for by recently-extruded redfish larvae across early larval development (Burns et al. 2020), 

and we assumed that consumption of C. finmarchicus eggs would be linked to faster recent 

growth in redfish larvae. Redfish larvae examined for this study demonstrated similar diet 

composition to those larvae analyzed by Burns et al. (2020), with copepod eggs, specifically 
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those from C. finmarchicus, contributing the bulk (~ 40-50%) of the carbon in the larval diet. 

However, the percentile score of carbon contributed from the diet by C. finmarchicus eggs 

was negatively correlated with the score of larval body depth-at-age in larvae older than 8 

days post-extrusion, suggesting a growth disadvantage of a diet based on that prey item after 

the onset of obligatory exogenous feeding. Even though the absence of older individuals in 

our collections made it impossible to test whether this trend persisted through early ontogeny, 

our results suggest that the reliance of larval redfish feeding, growth and survival on C. 

finmarchicus eggs may be weaker than initially anticipated. To our knowledge, this is the 

first study which shows that larval diet based on a prey taxon that is selected for may result 

in slower growth than the average, and therefore in a lower probability of survival to 

recruitment. Conversely, there was a positive relationship between the score of carbon 

contributed to the diet by mobile prey taxa, including the nauplius stages of C. finmarchicus, 

Pseudocalanus spp., and Oithona spp., and larval body depth-at-age for larvae of all ages. 

Redfish larvae that consumed mobile prey were deeper bodied, and therefore achieved faster 

growth than larvae that consumed immobile prey, such as copepod eggs. Mobile prey 

represented about half of the diet composition (Figure 11), and among those, the naupliar 

stages of C. finmarchicus contributed >50% of the carbon contribution to diet (28.1% of the 

total carbon ingested). Combined to the positive link found between the percentile score of 

prey size-at-age and that of body depth-at-age, our results highlight the high importance of 

C. finmarchicus nauplii to condition, growth and potentially survival.  

Overall, our results imply that individuals that showed generalist feeding including 

the consumption of copepod nauplii exhibited faster growth rates than those specialized on 

C. finmarchicus eggs. This finding forces us to ask the question: why would larval redfish 

demonstrate a preference for eggs if their consumption leads to suboptimal growth? Some 

potential benefits of consuming eggs were discussed by Burns et al. (2020): eggs are highly 

concentrated in nutrients such as lipids, redfish have the ability to digest them (e.g. 

Karamushko and Karamushko 1995), and they are immobile and thus less energetically 

costly to ingest. In addition, even though the diameter of the eggs is smaller than the average 

length of a Oithona spp. or Pseudocalanus spp. nauplius, one C. finmarchicus eggs 
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contained, on average, 3× and 1.5× the amount of carbon than Oithona spp. nauplii and 

Pseudocalanus spp. nauplii, respectively. However, the efficiency of nutrient assimilation 

from copepod eggs into the larval redfish body is not known and our results suggest that it 

may be lower than anticipated. During the season of larval extrusion, copepod eggs are 

relatively abundant in the environment, comprising approximately 10-40% of the potential 

larval prey field (Burns et al. 2020). It is possible that larval redfish are both encountering 

these prey frequently, and capturing them with greater success relative to other prey because 

of their immobility. Our results support conclusions from Burns et al. (2020) and Runge and 

de Lafontaine (1996) that C. finmarchicus eggs are an important source of carbon, which 

likely protects larval redfish from starvation mortality. However, our results also demonstrate 

that consumption of eggs is associated with suboptimal growth, which in turn would lead to 

suboptimal survival according to the Growth-Survival Paradigm (Anderson 1988). 

Environmental conditions facilitating the spatiotemporal overlap between larval redfish 

extrusion and hatching of C. finmarchicus, rather than the spawning of C. finmarchicus, may 

be an important driver favoring high larval survival and subsequent recruitment. 

 

2.5.4 Linking redfish recruitment to environmental conditions in the GSL 

Redfish produce an average of less than one successful year class per decade, and the 

sporadic nature of these events makes identifying the drivers of recruitment difficult. It is 

likely that there are multiple environmental factors, both physical and biological, that must 

be met in order to generate successful redfish recruitment. The goal of this study was to gain 

knowledge on larval redfish biology that could be used to better target environmental 

recruitment drivers of larval redfish in the GSL. Our results suggest that nauplii of C. 

finmarchicus are an important dietary component for recently extruded redfish larvae, 

pointing to a potential key role of the spatio-temporal overlap between C. finmarchicus 

nauplii peak abundance and the first-feeding stage of redfish. When looking at the time series 

of C. finmarchicus abundance in the GSL, we note that the strong redfish year classes of 
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2011-2013 occurred during a period of average abundance and after a period of high positive 

anomaly in 2006-2008 (Blais et al. 2021). Therefore, interannual changes in the phenology 

of C. finmarchicus during early summer months may be more important than variability in 

abundance for determining the probability of larval redfish survival and subsequent 

recruitment in the GSL. In the GSL region, the phenology of C. finmarchicus is primarily 

correlated with the timing of spring warming, and to a lesser extent with the timing of the 

spring bloom (Lehoux et al. 2022).  

The two year classes considered in our study (1999 and 2000) were characterized by 

low recruitment, which prevent us making direct inferences on factors determining the fate 

of a successful year class. The strong recruitment classes of the early 2010s, as well as the 

previous strong recruitment event in 1980-1981, were characterized by strong positive 

anomalies in temperature of the cold intermediate layer (CIL) and the deep layer of the GSL 

(Galbraith et al. 2021). With its seasonal ice cover and strong Arctic influence through the 

Labrador current, the GSL likely represents an environment nearing the cold thermal 

threshold of redfish. While little is known about how interannual variability in temperature 

affects the timing of redfish extrusion and the schedule of larval development, it is assumed 

that extrusion occurs within the deep layer of the GSL and larvae must travel through both 

the deep layer and CIL in order to reach surface waters where they feed and develop during 

the planktonic larval stage. Warming of these water masses may increase survival of redfish 

larvae immediately following extrusion. In addition, warming of the deep waters may 

influence the dynamics and phenology of key zooplankton prey taxa that are later consumed 

in surface waters. The GSL is rapidly warming due to global climate change and increased 

intrusion of the Gulf Stream in the deep layer, and this warming trend has accelerated over 

the past decade (Galbraith et al. 2021). The correspondence of previous strong year classes 

with particularly warm years suggests that the current warming trend in the surface, 

intermediate and deep layers of the GSL could lead to increasing recruitment success rate 

over the next decades. A further analysis of environmental data time series covering multiple 

climate regimes in the GSL region and spanning the previous strong recruitment events could 
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help us identify the combination of abiotic and biotic variables promoting strong year classes 

of deepwater redfish in the GSL.  
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2.9 FIGURES 

 

Figure 8. Map of ichthyoplankton and potential prey collection stations in the Gulf of St. 

Lawrence. Open circles designate collection stations in 1999; solid circles designate 

collection stations in 2000. 
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Figure 9. A) Standard length, B) Body depth, and C) Total carbon consumed in recent 

larval diet by larval age. Lines indicate the 10th, 30th, 50th, 70th, and 90th percentile 

measurements for each variable at each age as determined by nonparametric local density. 
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Figure 10. Frequency distribution of larvae used in this study by A.) age in days post-

extrusion and B.) standard length. 
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Figure 11. Proportions of commonly consumed prey taxa, by prey number and carbon 

content, comprising larval redfish diet in each year. Eggs (135-165 μm) represent eggs 

from the calanoid copepod, Calanus finmarchicus. 
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Figure 12. Autocorrelation of otolith increment widths. Increment number, homologous to 

larval age in days post-extrusion, on the x-axis, and forward lag, the number of increment 

widths in the future that the original increment number was correlated with, on the y-axis. 
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Figure 13.The relationship between standardized recent larval growth and A.) the percentile 

score of larval body depth-at-age B) the percentile score of larval standard length-at-age. 

Larval body depth was chosen as our morphological proxy for growth based on the stronger 

relationship with recent growth. Trendlines represent a significant correlation (p < 0.05) 

between variables. 
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Figure 14. Relationship between total carbon consumed-at-age and larval body depth-at-

age. Trendlines represent a significant correlation (p < 0.05) between the two variables. 

  



 

70 

 

Figure 15. Relationship between average prey size recently consumed-at-age and larval 

body depth-at-age. Trendlines represent a significant correlation (p < 0.05) between the two 

variables. 
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Figure 16. Relationship between larval body depth-at-age and sources of carbon from the 

larval diet: A.) mobile prey (naupliar and copepodite stages) B.) copepod eggs. Symbols 

represent the same groups of larvae as in Figure 13. Trendlines represent a significant 

correlation (p < 0.05) between the variables. 

 

 



 

 

 

PREDIRE LA FORCE D’UNE CLASSE D’ÂGE CHEZ UN POISSON MARIN 

CARACTERISE PAR UN RECRUTEMENT SPASMODIQUE 

3.1 RESUME EN FRANÇAIS 

Depuis les travaux fondateurs de Hjort (1914) sur les processus de recrutement, les 

halieutes se sont appuyés sur ses hypothèses pour comprendre les moteurs du recrutement 

chez les espèces pêchées commercialement. L'utilisation de séries chronologiques riches, en 

données en conjonction avec des données détaillées sur les pêches, a permis aux chercheurs 

de mieux prédire les événements de recrutement par une meilleure compréhension des 

mécanismes qui interviennent dans la survie des larves de poissons pour de nombreuses 

espèces, et en identifiant les paramètres environnementaux importants. Cependant, les 

facteurs de variabilité du recrutement chez les stocks à recrutement spasmodique (SRS) 

restent un mystère en raison de la petite taille de l'échantillon d'événements de fort 

recrutement enregistrés et des conditions environnementales correspondantes, ce qui limite 

la capacité d'analyse statistique. L'objectif de cet article est d'identifier les moteurs 

environnementaux potentiels du recrutement dans un SRS, le sébaste (Sebastes mentella) du 

golfe du Saint-Laurent, Canada, en utilisant une approche fondée sur le poids de la preuve. 

Cette analyse a permis d'identifier 4 moteurs probables du recrutement du sébaste : le volume 

de la couche intermédiaire froide, l'abondance et la phénologie des proies préférées, et la 

biomasse du stock reproducteur. L'approche du poids de la preuve peut être utilisée comme 

méthode initiale pour identifier les moteurs environnementaux potentiels du recrutement 

dans le SRS. Ces moteurs peuvent être monitorés afin de mieux informer les évaluations des 

stocks sur les conditions environnementales favorables au recrutement et orienter les efforts 

de recherche pour mieux prédire les événements de recrutement dans le SRS.  
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Cet article intitulé « Prédiction de la force des classes d'âge chez un poisson marin 

caractérisé par un recrutement spasmodique » est en cours de préparation pour soumission 

au ICES Journal of Marine Science. En tant que première autrice, j'ai effectué la majorité de 

l'organisation des données, des analyses de données, de l'interprétation des résultats et de la 

rédaction du manuscrit. La troisième autrice, Caroline Lehoux, a été un atout essentiel dans 

l'extraction et l'organisation des données. Stéphane Plourde et Caroline Lehoux ont été 

d'importants contributeurs à la compréhension des tendances océanographiques et 

planctoniques à long terme. Les auteurs Stéphane Plourde, Pascal Sirois et Dominique Robert 

ont tous contribué aux interprétations biologiques et écologiques de ces résultats. Tous les 

auteurs participent à la révision de l'article. Cet article a été présenté en personne lors de la 

l'American Fisheries Society Annual Meeting à Spokane, Washington, États-Unis (août 

2022) et de la 44th Annual Larval Fish Conference à San Diego, Californie, États-Unis (août 

2022). 

 

3.1.1 Summary in English 

Since Hjort’s (1914) seminal work on recruitment processes, fisheries scientists have 

built upon his hypotheses in order to understand drivers of recruitment in commercially-

fished species. Using data-rich time series in conjunction with detailed fisheries data has 

allowed researchers to better predict recruitment events by understanding mechanisms that 

mediate larval fish survival for many species and identifying important environmental 

parameters. However, recruitment drivers in spasmodically-recruiting stocks (SRS) remain 

a mystery due to the small sample size of recorded strong recruitment events and their 

corresponding environmental conditions that limit statistical analysis capabilities. The 

objective of this paper is to identify potential environmental drivers of recruitment in an SRS, 

the redfish (Sebastes mentella) in the Gulf of St. Lawrence, Canada, using a weight-of-

evidence approach. This analysis resulted in identification of 4 likely drivers of redfish 

recruitment: cold intermediate layer volume, preferred prey abundance and phenology, and 
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spawning stock biomass. The weight-of-evidence approach can be used as an initial method 

to identify potential environmental drivers of recruitment in SRS. These drivers can be 

monitored to better inform stock assessments about environmental conditions favorable to 

recruitment and direct research efforts in order to better predict recruitment events in SRS. 

This article titled « Prediction of year-class strength in a marine fish characterized by 

spasmodic recruitment »  is being prepared for submission as a « Food for Thought » 

contribution to the ICES Journal of Marine Science. As first author, I performed a majority 

of the data organization, data analyses, interpretation of results, and writing of the 

manuscript. Third author, Caroline Lehoux, was a critical asset in data extraction and 

organization. Stéphane Plourde and Caroline Lehoux were important contributors in 

understanding of long-term oceanographic and planktonic trends. Authors Stéphane Plourde, 

Pascal Sirois, and Dominique Robert all contributed to the biological and ecological 

interpretations of these results. All authors are participating in revision of the article. This 

article was presented in person at the American Fisheries Society Annual Meeting in 

Spokane, Washington, USA (August 2022) and the 44rd Annual Larval Fish Conference in 

San Diego, California, USA (August 2022).  
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3.2 INTRODUCTION 

3.2.1 The ‘recruitment problem’ 

The scientific conundrum of understanding natural fluctuations in fish populations 

has plagued fishery scientists since the seminal work of Johan Hjort (1914, 1926), who 

proposed that year-to-year changes in herring populations were a result of differences in 

cohort-level mortality during the larval stage. Hjort’s Critical Period hypothesis stated that 

survival of larval fish and their recruitment to the fisheries was determined during the earliest 

period of the larval stage, at the onset of exogenous feeding, at which time larvae must find 

a sufficient amount of suitable prey to avoid starvation (Hjort 1914). The second of Hjort’s 

hypotheses, the Aberrant Drift hypothesis, stated that larvae must remain in a suitable habitat 

in order to survive and recruit within a given stock. Years during which environmental 

conditions are not suitable would result in poor recruitment (Hjort 1914).  

 

Since this early work, many fishery scientists have relied on Hjort’s hypotheses as a 

framework for their own studies in an attempt to understand the underlying factors 

determining recruitment strength, and potentially predict its fluctuations in commercially-

important fish species. Several of those studies based on Hjort’s original hypotheses have 

found strong ties among environmental variables, larval fish feeding and growth, and 

recruitment strength. These findings have evolved into the current Growth-Survival 

paradigm, which emphasizes the importance of high feeding success and fast growth as sine 

qua non conditions for high larval survival and recruitment (Anderson 1988, Cushing 1990). 

Fast-growing larvae are larger-at-age and show better condition-at-size than slower-growing 

conspecifics, and are thus less likely to be preyed upon by predators (Houde 1987, 2008, 

Takasuka et al. 2003, 2007). Fast-growers also reach a competent size for metamorphosis at 

an earlier age, which decreases the amount of time spent during the highly vulnerable pelagic 

larval stage (Chambers and Leggett 1987). The synthesis of results acquired to date 
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demonstrates how both physical (e.g. temperature mediating metabolism [Portner et al. 2001; 

Sponaugle et al. 2006], water stratification [Jenkins et al. 2010]) and biological (e.g. prey 

abundance [Burrow et al. 2011; Brochier et al. 2013], prey quality [Robert et al. 2009, 

Sponaugle et al. 2010, Murphy et al. 2013]) environmental conditions can influence growth 

of larval fish and ultimately regulate year-class strength. 

 

In addition to the influence of environmental effects, a relationship often exists 

between recruitment and spawning stock biomass (SSB) for the vast majority of stocks (Pepin 

2016). In a recent meta-analysis based on data from the Ransom Myers Legacy Fishery 

Assessment Database (Ricard et al. 2012) comprising > 200 stocks, Pepin (2016) has 

demonstrated that mean recruitment is positively correlated to SSB, and that stocks 

characterized by higher variability in SSB tend to display higher variability in annual 

recruitment. In many cases, there is very limited data regarding recruitment success of stocks 

with very low SSB, which makes predicting future recruitment success using models very 

inaccurate and unreliable (Pepin 2016). In addition to SSB, the utilization of environmental 

variables in stock assessment models has the potential to improve the accuracy of these 

models.  

 

Overall, even though predicting recruitment remains a formidable challenge (Houde 

2008), our forecasting capacity has improved in recent decades with a better understanding 

of mechanisms regulating year-class strength. Detailed species-specific information on early 

life stage requirements has allowed assessing the role of environmental variability on 

recruitment. One of the key factors is the availability of preferred prey during the larval stage, 

which depends on the combination of prey production and its spatio-temporal overlap with 

the larvae (Anderson 1994, Robert et al. 2008, Voss et al. 2009, Murphy et al. 2012, Llopiz 

and Cowen 2014). The production and phenology of the different copepod prey are in turn 

strongly driven by temperature regimes, which also affect larval fish directly through changes 
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in energy demand. The species-specific consideration of environmental variability, combined 

with state-of-the-art statistical models (e.g. Generalized Additive Models), explain a large 

portion of recruitment variability for an increasing number of stocks, including groundfish 

(e.g. Beaugrand et al. 2003; Brodziak and O’Brien 2005; Huebert et al. 2018) and forage fish 

(Plourde et al. 2015, Brosset et al. 2019, Brosset et al. 2020, Yu et al. 2020; Quattrocchi and 

Garofalo 2022).  

 

3.2.2 The case of species characterized by spasmodic recruitment 

Despite the progress made in understanding recruitment dynamics for various fish 

stocks, the identification of recruitment drivers in spasmodically-recruiting stocks (SRS) 

remains elusive. These species are characterized by exceptionally strong year classes, often 

preceded and followed by long periods (on the scale of decades) of weak recruitment 

(Caddy and Gulland 1983; Spencer and Collie 1997; Caddy and Agnew 2004; Licandeo et 

al. 2021). Recruitment indices resulting in these strong year classes can be three orders of 

magnitude higher than those associated with more frequent weak year classes. In these 

species, a stock-recruit relationship is typically non-existent. In addition, the low number of 

high recruitment events over multidecadal time series of stock dynamics and environmental 

variables generally prevents statistical models from identifying the environmental drivers 

of year-class strength. 

3.2.3 Redfish in the Gulf of St. Lawrence 

Redfish (Sebastes spp.), like all species within the genus Sebastes, is a classic 

example of a spasmodically-recruiting species in the Gulf of St. Lawrence (GSL), Canada. 

Multiple Sebastes species occur in the GSL (e.g. S. mentella, S. fasciatus, S. marinus), 

however the term “redfish” will be used to refer only to S. mentella throughout this chapter. 

An increase in fishing pressure on redfish following the collapse of the cod fishery in the 

early 1990s quickly depleted redfish biomass within the region, resulting in a moratorium in 
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1995. Even with the release of fishing pressure, the lack of a strong recruitment event since 

the early 1980s prevented stock biomass from replenishing through the early 2000s. After 30 

years of weak recruitment, three times the average length of time between strong year classes, 

an unprecedentedly strong recruitment event was observed in 2011, quickly followed by a 

relatively strong recruitment event in 2013 (Licandeo et al. 2020). Individuals from these 

strong year classes are currently reaching the minimum size of exploitation, being recruited 

into the fishery, and the fishery is poised to reopen soon. Redfish presently comprise > 90% 

of the demersal biomass in the GSL (Senay et al. 2021). However, fishery managers now 

must deal with the challenge of implementing management plans to sustainably harvest a 

resource for which supply dynamics remains unknown.  

 

For decades, fishery managers and scientists have cited knowledge gaps on 

recruitment dynamics as one of the most critical sources of uncertainty hampering our 

capacity to implement a sustainable redfish fishery in the long term (Lilly 1987, DFO 2010, 

DFO 2020, Licandeo et al. 2020, Senay et al. 2021, Cadigan et al. 2022). The occurrence of 

the historically-strong recruitment events of 2011 and 2013 provides an opportunity to delve 

into the environmental conditions in the GSL that potentially promoted high survival in the 

early life stages of these year classes. Prior to the 2010s, strong recruitment events occurred 

in the early 1970s and 1980s, with the latter supporting the fishery until its collapse in the 

early 1990s. While some environmental data were collected from the GSL during these 

periods, the capacity for environmental monitoring was low and gaps in the data are 

numerous. The rareness of strong year classes combined with a lack of reliable environment 

variables make it impossible to develop robust modeling approaches (e.g. Generalized 

Additive Model) for a quantitative statistical analysis with the goal of identifying drivers of 

recruitment for this species. 

In the summer, the GSL is characterized by 3 water layers of distinct origins: the 

warm surface waters formed locally, the cold intermediate layer (CIL) partly originating from 

the Labrador current, and the relatively warm deep waters from the Atlantic Ocean. The 
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temperature of each of these water layers is driven by separate processes: the surface layer is 

directly influenced by atmospheric temperature, the CIL by winter surface water temperature 

and the degree of water mixing in the spring, and the deep layer by the temperature of waters 

originating from the Gulf Stream entering the Laurentian Channel through Cabot Strait 

(Galbraith et al. 2021). Adult redfish are demersal and live in the deep-water layer. In the 

GSL, redfish are believed to copulate in the deep-water layer during the autumn-winter 

months (September-December) (Gascon 2003). All Sebastes species are ovoviviparous, and 

newly-hatched larvae continue to develop within the females. Larvae are extruded into the 

deep-water layer during late-spring/early summer (May- mid-June) (Sévigny et al. 2000), 

and migrate vertically through the water column, passing through the CIL to reach warm 

surface waters where they begin to feed on planktonic prey. They remain in surface waters 

until they become juveniles (15-20 cm) and begin to descend the water column towards the 

deep-water layer (Gascon 2003). Therefore, young redfish encounter multiple environments 

and environmental conditions during the first few months of life and it is likely that one or 

more of these environmental conditions is driving the strength of annual cohorts.  

The objective of this paper is to identify key environmental characteristics associated 

to strong year classes of the spasmodically-recruiting GSL redfish using a weight-of-

evidence approach. In order to accomplish this, we compiled potential drivers of recruitment 

that may occur throughout early life development (e.g. adult condition, development inside 

females, extrusion event, early larval stage). Existing environmental data time-series specific 

to each hypothesis were compared against recruitment indices in order to identify the most 

likely drivers of the rare and exceptional recruitment events in our SRS species. The 

overarching goal of this project is to present a means of identifying key environmental 

parameters that are important drivers of SRS recruitment that can be monitored to better 

predict natural population fluctuations and sustainably manage commercial SRS species.  
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3.3 METHODS 

3.3.1 Recruitment and spawning stock biomass indices 

Currently, there is no annual survey in the region that aims specifically to collect 

larval or early juvenile redfish in order to estimate year-class strength. We therefore relied 

on redfish recruitment indices estimated by the Department of Fisheries and Oceans Canada 

(DFO) for the Redfish Management Strategy Evaluation using an empirical Bayes approach 

to model deviation of recruitment strength and SSB (McAllister et al. 2021). The recruitment 

index is a unitless estimation of year-class strength, relative to other years of redfish cohorts. 

Likewise, SSB values were estimated using the same Redfish Management Strategy 

Evaluation using data from annual research surveys (McAllister et al. 2021). Estimated 

recruitment indices during the period 1967 – 2016 averaged 13.9 with a standard deviation 

of 83.4 (Figure 17). The highest recruitment value was obtained for the 2011 year class 

(589.9), and the lowest for both the 1991 and 1992 year classes (0.2). If the recruitment value 

for 2011 is not included in the dataset, the average recruitment index of the time series is 2.1. 

We considered the year classes of 1972 (6.3), 1980 (4.8), 1981 (12.1), 2011 (589.9), and 

2013 (46.5) as strong recruitment years as these were years in which recruitment indices were 

greater than the historical mean excluding the 2011 year-class. Recruitment data were log-

transformed when creating the figures for optimal visualization. During the same time period, 

mean estimated SSB was 272.4 ± 244.7 kt. The highest estimated SSB occurred at the 

beginning of the time series in 1967 (994.5 kt) and the lowest estimated SSB occurred in 

2016 (47.8 kt). 

 

3.3.2 Environmental indices 

Physical and biological environmental indices that corresponded to variables within 

the recruitment hypotheses were respectively extracted from Galbraith et al. (2021) and Blais 

et al. (2021) (Table 5). These data are generated annually by the DFO to monitor and describe 
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trends in oceanic and ecosystem conditions. Physical oceanographic indices were recorded 

from 1967 until present, however some years of data for some indices are missing due to 

various circumstances. Biological indices, such as zooplankton abundance and phenology, 

were recorded since 1999 with the creation of the Atlantic Zone Monitoring Program 

(AZMP) (Blais et al. 2021). To test for covariance among recruitment predictors, Pearson 

correlation coefficients were calculated among all environmental indices considered in our 

analyses.  

 

3.3.3 Spatial scale  

Larval redfish extrusion is known to occur in the central GSL and southern NE Gulf 

regions within a narrow temporal window (Sévigny et al. 2000). There is no information in 

the literature regarding the extent and timing of larval drift within the GSL throughout early 

larval development in the summer months. The physical and biological indices used for this 

project were weighted and averaged based on regional area data collections in the central and 

NE Gulf regions following the methods of Lehoux et al. (2021) using regions outlined in 

Figure 18.  

 

3.3.4 Determining relationships and effect strength 

Long-term trends in environmental conditions were plotted for each environmental 

index throughout the entirety of the time series data available (Figure 19). Z-scores for each 

annual environmental index were calculated using historical means and standard deviations 

in order to determine how conditions compared to the historical mean for each year (Table 

2). Scatterplots of each environmental index z-score versus the recruitment index were 

plotted in order to determine if there were trends between environmental conditions and 

recruitment strength (Figure 20). Each variable was classified as “likely” or “unlikely” 

having an effect on recruitment. Variables in which strong recruitment occurred only when 
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z-scores were grouped on one side of the historical mean (all positive or all negative) were 

categorized as “likely” having an effect on redfish recruitment. Variables in which strong 

recruitment occurred when z-scores were on either side of the historical mean were 

categorized as “unlikely” having an effect on redfish recruitment. For SRS fishes, it is likely 

that a combination of environmental conditions must be met in order to produce a strong year 

class (Sysoeva 2000; Gascon 2003). 

 

3.4 HYPOTHESES 

Drivers of recruitment were categorized into two groups: physical variables and 

biological variables. We list a series of hypotheses on how each variable might act as 

recruitment driver based on published literature (Table 5). Then, we present results 

supporting or not supporting each hypothesis. Hypotheses are listed following the sequential 

order of events experienced through ontogeny, from development within the female 

throughout the early juvenile stage.  

 

3.4.1 Spawning stock biomass (SSB) 

A larger spawning stock biomass would increase the number of larvae released into 

the environment during the extrusion season (Beverton and Holt 1957). If the proportion of 

larvae that survive to recruitment is relatively constant across years, then the production of 

more larvae by a larger adult biomass will result in more individuals surviving the larval 

stage and increased recruitment success. Pepin (2016) found that, in most marine fish stocks, 

there is a positive relationship between SSB and recruitment strength.  

However, the spasmodic recruitment success of redfish does not follow classic stock-

recruitment dynamics (DFO 2020) and redfish stock-recruitment models have systematically 

failed in predicting recruitment success of redfish in the GSL (Licandeo 2020). This was the 
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only variable included in this chapter that has not been supported by redfish-specific 

literature. Furthermore, the unprecedentedly strong recruitment event in 2011 arose from an 

estimated historically low SSB in the region, and based on scientific surveys, there were no 

estimated changes in SSB prior to 2011 that would have allowed predicting multiple strong 

recruitment events in the early 2010s (McAllister et al. 2021). 

We proposed two contrasting hypotheses to explain the influence of SSB on redfish 

recruitment in the GSL: (1) there is a positive relationship between recruitment strength and 

redfish SSB and (2) there is a negative relationship between recruitment strength and redfish 

SSB, due to density-dependent effects. Strong recruitment events in the early 1980s, as well 

as the early 2010s, were produced during periods of low SSB (Figure 19A; Figure 20A). It 

is possible that young juvenile of potentially strong year classes are heavily cannibalized 

during periods of high SSB (Cadigan et al. 2022). Young redfish make up a substantial 

proportion of the diet of redfish > 20 cm (Senay et al. 2021, Brown-Vuillemin et al. 2022). 

Therefore, since it is likely that there is some density-dependent effect of SSB on redfish 

recruitment, we hypothesize that this effect is likely mild and negative.  

 

3.4.2 Deep layer water temperature 

Temperature is the primary driver of metabolism in fishes (Wells 1935). Metabolic 

rate mediates how much energy is available to be allocated to physiological processes after 

being used to maintain basal life functions. One of these processes is reproduction. Little is 

known about redfish reproduction, but it is considered that copulation occurs in the GSL in 

autumn, embryos develop and hatch inside the females during the early spring, and larvae 

are extruded during early summer into deep waters where adults reside (Sévigny et al. 2000). 

Changes in bottom water temperature may modify the amount of energy that is allocated by 

females to egg production, yolk volume, and/or the developmental rate of hatched larvae 

inside the female. Fecundity of multiple important commercial groundfish species such as 

haddock (Melanogrammus aeglefinus), winter flounder (Pseudopleuronectes americanus), 
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and yellowtail flounder (Limanda ferruginea) have been shown to be negatively affected by 

increasing bottom water temperatures (Klein et al. 2017). Latitudinal differences in cod 

(Gadus morhua) fecundity have been shown to be driven by differences in metabolism due 

to temperature (Pörtner et al. 2001). In addition to energy devoted to fecundity, Sebastes sp. 

have been shown to transfer nutrients to the larvae while larvae still reside inside the female 

due to their ovoviviparous reproduction strategy (Boehlert and Yoklavich 1984). Changes in 

water temperature may mediate how much energy from the maternal diet is available to be 

allocated to offspring during their development after hatching while inside the female. 

Bottom water temperatures (recorded at 300 m) in the GSL are rising, and are predicted to 

continue to rise, as a result of climate change, with each of the years 2015-2020 exceeding 

6.0 oC relative to the 10-year historical mean of 5.72 oC (Galbraith et al. 2021).  

 Preliminary work investigating the effect of temperature on the metabolism of adult 

S. fasciatus, a closely related Sebastes species in the GSL, shows that metabolic scope of S. 

fasciatus increases with increasing water temperatures until at least 10oC (Guitard et al. in 

prep). Metabolic scope is the difference between standard metabolic rate and active 

metabolic rate and is used to identify environmental conditions that lead to changes in energy 

budgeting (Lefrançois and Claireaux 2003). A small metabolic scope means there is limited 

excess energy that can be allocated to other physiological processes. Therefore, it is possible 

that Sebastes sp. in the GSL are not yet occupying their optimal thermal environment, and 

may continue to thrive physiologically in warming GSL waters, given there is sufficient food 

available for adults.  

 We hypothesized that warm bottom temperature waters may provide a more ideal 

environment for adult redfish, which would result in high offspring quality and therefore 

strong recruitment events. We used bottom water temperatures (depth of 300 m) during 

August and September to test this hypothesis.  

 We did not find a trend between temperature of deep water at 300 m and recruitment 

strength (Figure 20B). The strong recruitment event of 1972, and the strongest recruitment 

event of 2011, occurred when bottom water temperatures were 4.85 oC and 5.42 oC, 
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respectively, which fall at or below the historical average (1971-2016) of 5.43 oC. Strong 

recruitment events were recorded at 1.90 SD below the historical mean (1972) as well as 1.73 

SD above the historical mean (1980). Therefore, bottom water temperature is an unlikely 

driver of strong redfish recruitment in the GSL. 

 

3.4.3 Cold intermediate layer (CIL) volume 

Boundaries of the CIL are defined by water that is colder than 1 oC, much colder than 

the neighboring surface and bottom water masses. Larval redfish are extruded from females 

in the deep-water layer and must pass vertically through the CIL in order to reach surface 

waters (defined as the upper 50m) where they reside until metamorphosis. Mortality of 

redfish (S. fasciatus) larvae has been shown to increase as temperatures decrease below 6 oC, 

with approximately 30% of newly-extruding larvae exposed to temperatures of 0 oC dying 

within 96 hours (Gascon 2003). Therefore, it is likely that encountering waters colder than 

1 oC could represent a physiological challenge for newly-extruded larvae that may result in 

poor condition, slow growth, and high mortality rate. In years when the CIL volume is high, 

its temperature is generally lower so larvae must pass through a colder, thicker water mass 

in order to reach warmer surface waters, which may result in higher mortality from a longer 

exposure to stressful conditions, relative to years when the CIL is thinner.  

We hypothesized that there is a negative relationship between CIL volume in the year 

of extrusion and redfish recruitment strength because of a decreased physiological stress on 

newly-extruded larvae that must vertically pass through very cold temperatures as they 

migrate towards the surface (Gascon 2003). Time series data represent the CIL volume 

during August and September of each year.  

There was a negative trend between the log-transformed recruitment index and 

summer CIL volume (August-September) in the GSL. Strong recruitment only occurred 

when CIL volume was less than 3000 × 103 km3 (range: 1803.5 – 2904.8) (Table 7). The 
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largest CIL volume associated with a strong recruitment event was in 1972 when the CIL 

was 2904.8 × 103 km3. Recent strong recruitment events (2011, 2013) occurred when the CIL 

volume was 2036.6 and 1803.5 respectively. These recent CIL volumes are 1.4 and 1.7 SD 

below the long-term average, respectively (Figure 20C). Although recorded data for CIL 

volume in this time series is absent for the early 1980s recruitment events, the CIL was 

described as being anomalously warm and thin during the beginning of that decade (Plourde 

et al. 2014, Galbraith et al. 2021). Based on this relationship, CIL volume is categorized as a 

“likely” driver of recruitment as recent successful recruitment events appear to only occur 

beyond a CIL volume at or below 2000 × 103 km3 and below the long-term average.  

 

3.4.4 Sea surface temperature (SST) 

Like adult fish, larval fish growth is often tightly correlated with SST (Houde and 

Zastrow 1993). Fast larval fish growth is a favored trait to increase chances of survival, and 

therefore recruitment into the fishery (Houde 1987; Anderson 1988; Takasuka et al. 2003, 

2004). Due to differences in morphology and physiology, thermal preferences and range of 

tolerance often differ between adult and larval life stages. Therefore, suitable environmental 

conditions must also consider suitable temperatures across all life stages. Recruitment in 

many fish species has been shown to be related to sea surface temperatures during early life 

stages (Atlantic cod [Pörtner et al. 2000]; Caribbean reef fish [Sponaugle et al. 2006]; 

multiple North Atlantic species and stocks [Øttersen et al. 2013]).  

Gascon (2003) found that mortality of newly-extruded S. fasciatus larvae was lowest 

when water temperatures were between 6-9 oC, with mortality increasing at temperatures 

> 9 oC. Sysoeva (2000) found that SST was positively correlated with post-flexion larval 

redfish (9-16 mm) condition, which was often reached during the 2nd month post-extrusion. 

Larval condition is often a proxy for likelihood of survival in larval fish. In GSL redfish, this 

developmental stage of 9-16 mm would be reached during late June and early July for the 

majority of larvae.  
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Relying on a limited redfish larval growth dataset from a published study that 

investigated drivers of growth in larval redfish (Burns et al. 2021), we found a positive trend, 

although not statistically significant, between larval redfish growth and SST (upper 5 m of 

water column) in individuals older than 8 days post-extrusion (r = 0.33; p = 0.12), a 

developmental stage during which larvae have exhausted endogenous yolk and oil globule 

reserves for nutrition and must thus feed exogenously (Figure 21A). The fact that the 

relationship is not statistically significant is likely due to the low number of observations.  

Based on the large literature outlining the relationship between SST and recruitment 

of multiple fish species, and previously collected, unpublished data on the effect of SST on 

larval redfish growth, we hypothesize that there is a positive relationship between redfish 

recruitment and SST in the first 3 months post-extrusion (June, July, August). 

We found no clear trend between recruitment strength and the SST in the GSL during 

June (month of extrusion), July, or August. To date, mean SST exceeded 9 oC in June during 

only 1 year (2005), a temperature at which increased mortality of larval redfish has been 

documented (Gascon 2003). Successful recruitment events in 2011 and 2013 occurred when 

SST in the first 3 months of life were similar to the long-term historical mean for each month 

(7.1 oC, 12.6 oC, and 15.0 oC, respectively). Data from the successful recruitment event in 

1981 were available for August only, and recruitment occurred when August SST was 

relatively cool at 13.1 oC, or -1.8 SD below the historical mean (Figure 20D-F). We conclude 

that SST in the first three months post-extrusion is unlikely to drive recruitment success of 

larval redfish.  

 

3.4.5 Water column stratification 

 Strong water column stratification has been shown to increase larval fish feeding 

success by concentrating prey at boundary layers and therefore increasing the encounter rate 

between larval fish and prey (Lasker 1981; MacKenzie 2000). Stratification is thus likely 
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increasing the amount of prey consumed by larvae, increasing growth, and strengthening 

recruitment success for many species (Northern anchovy [Lasker 1975]; haddock [Buckley 

and Lough 1987]; walleye pollock [Bailey et al. 1995]; anchovy [Clemmesen et al. 1997]).  

Growth of redfish has been shown to be significantly influenced by a larva’s ability 

to feed successfully, but the physical environmental factors that facilitate successful feeding 

for larval redfish are unknown (Burns et al. 2021). Sebastes sp. recruitment success has been 

linked to storm frequency in Barents Sea populations: increased storm activity during the 

larval stage resulted in decreased recruitment success (Sysoeva 2000). These authors 

hypothesized that wind and rain from the storms disrupted water stratification resulting in 

increased water mixing, decreased SST, decreased localized prey densities, and decreased 

feeding success that resulted in smaller, slower-growing larvae that were more vulnerable to 

mortality by starvation and predation.  

 Using larval redfish growth data generated in Chapter 2 (Burns et al. 2021), we found 

a significant positive trend between growth of exogenously-feeding redfish (> 8 days post-

extrusion) and the strength of water stratification (Figure 21B). Growth of redfish larvae was 

measured using methods described in Burns et al. (2021). In the aforementioned study, water 

stratification was measured as the difference between SST and the temperature of the water 

at the top of the thermocline, both of which were measured at the time of larval collection. 

Therefore, larvae that had recently grown more quickly were found in areas where water 

column stratification was strong.  

 We hypothesized that there is a positive relationship between redfish recruitment and 

the strength of water column stratification, which may lead to increased feeding success, 

growth, and survival of larval redfish.  

 In the present study, the strength of water column stratification was measured as the 

difference in water density in the upper 5m of the water column and the water density at 50m. 

This index was calculated by DFO for only the months of June and August. These months 

coincide with the timing of larval extrusion and the onset of first-feeding, and approximately 



 

89 

2 months post-extrusion when all larvae are obligate exogenous feeders, respectively. Strong 

recruitment events of 2011 and 2013 occurred at stratification strengths that were similar to 

the historical mean in both June and August (1.6 and 3.5, respectively) (Figure 20G,H). There 

does not appear to be a trend or a threshold of stratification strength that is driving larval 

redfish recruitment during the early (June) or late (August) larval stage, and we classified 

stratification as an unlikely driver of recruitment success of larval redfish in the GSL.  

 

3.4.6 Preferred prey abundance 

 Hjort’s (1914) Critical Period hypothesis was rooted in both larvae’s ability to feed 

successfully, but also in the interannual variability of potential prey available for larvae to 

feed on. Potential prey taxa usually refer to species and developmental stages of prey that 

fall within a suitable size range and behavioral patterns that are able to be consumed by larvae 

based on their mouth gape width and foraging ability. Recent studies have shown that the 

vast majority of larval fish species demonstrate a preference for highly specific prey taxa, 

and that larval growth and survival is directly linked to successful feeding on preferred prey 

taxa (Robert et al. 2009, Sponaugle et al. 2010, Murphy et al. 2013). Failure to acknowledge 

species-specific prey preference has potential to result in a negative or lack of a relationship 

between prey abundance and larval fish survival, because abundance of other suitable prey 

species creates noise around the important relationship (Robert et al. 2014). 

Throughout early larval development, redfish in the GSL commonly consume various 

life stages (egg, nauplius, copepodite) of the large calanoid copepod Calanus finmarchicus 

(Anderson 1994, Runge and de Lafontaine 1996, Burns et al. 2020), which was determined 

to be the preferred prey taxon of larval redfish (Burns et al. 2020). Anderson (1994) found 

that redfish larvae on the Flemish Cap were in better condition during years in which C. 

finmarchicus comprised a majority of the larval diet, versus another common prey taxa, the 

small cyclopoid copepod, Oithona similis. However, Burns et al. (2021) did not observe the 

expected positive relationship between local densities of C. finmarchicus eggs or nauplii and 
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larval redfish condition or growth in the GSL. This may be a result of a lag between prey in 

the environment that is available to be consumed by larvae and the incorporation of nutrients 

from the larval diet into the body for growth and development as growth and condition 

indices can represent past days or weeks of an individual’s feeding success (Robert et al. 

2014).   

We hypothesized that there is a positive relationship between redfish recruitment 

strength and the abundance of early C. finmarchicus life stages (egg and nauplius) during the 

early summer months when larval redfish begin to feed exogenously. Higher preferred prey 

densities would increase encounter rates between larval redfish and their prey and likely 

increase feeding success, growth, and the likelihood of survival to recruitment. Time series 

data available represent the abundance of C. finmarchicus during early summer months  

We found no relationship between redfish recruitment index and C. finmarchicus 

abundance in the early summer in the GSL. Recent strong redfish year classes (2011, 2013) 

emerged when C. finmarchicus abundances were in the middle of the historical range and 

0.19 (2013) and 0.72 (2011) SD above the historical mean (Figure 20I). It is however 

important to note that no strong recruitment events occurred when C. finmarchicus densities 

were below 15 × 103 • m-2  individuals, which was the historical mean density. These patterns 

are similar to the relationship described between recruitment and CIL volume, in that 

successful recruitment events only occurred when environmental z-scores were all negative, 

or in the case of prey abundance, all z-scores were positive relative to the historical mean. C. 

finmarchicus abundance is considered a “likely” driver of recruitment of redfish in the GSL 

because there is potentially an environmental abundance threshold above the current 

historical mean that must be met in order to produce a strong recruitment event.  
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3.4.7 Preferred prey phenology 

 David Cushing (1975, 1990) built upon Hjort’s (1914) Critical Period hypothesis by 

proposing his Match-Mismatch hypothesis, in which fish recruitment depends both on the 

spatial and temporal overlap between larval fish and their suitable prey. A large overlap in 

the timing and local abundance of larval fish and their suitable prey is considered an 

environmental “match” and will result in strong recruitment, whereas environments in which 

larval fish do not occur at the same time or space as suitable prey will result in poor 

recruitment due to poor nutrition and starvation. Cushing (1975) also hypothesized that this 

“match” or “mismatch” between larval fish and their prey is ultimately driven by climatic 

physical oceanographic variables that determine the developmental rates of both larval fish 

and their planktonic prey. Brosset et al. (2020) found that the best predictor of annual 

recruitment strength in Northwest Atlantic mackerel (Scomber scombrus) was the timing of 

its preferred prey species, and not solely its abundance. Likewise, the phenology of C. 

finmarchicus and C. hyperboreus, and not overall abundance, was an important driver of 

juvenile and adult capelin (Mallotus villosus) condition, a proxy for survival throughout its 

first two years of life (Lehoux et al. 2022).  

While larval redfish diets in the GSL are largely comprised of C. finmarchicus, Burns 

et al. (2021) found that there was a positive correlation between recent growth and 

consumption of C. finmarchicus nauplii by larval redfish, whereas there was a negative 

correlation between recent growth and consumption of C. finmarchicus eggs. This result 

suggests that the developmental stage of the preferred C. finmarchicus that is available in the 

environment is potentially an important driver of recruitment, rather than the overall 

abundance of species. The relationship between larval redfish condition, survival, and 

recruitment and the phenology of C. finmarchicus was hypothesized by Runge and de 

Lafontaine (1996) in conclusion of their 1-year study on the C. finmarchicus-redfish 

connection in the GSL. Multi-year datasets examining larval diet and condition of redfish 

also proposed an important relationship between the timing of C. finmarchicus reproductive 

events and redfish recruitment in Flemish Cap (Anderson 1994) and Barents Sea (Sysoeva 
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2000) populations. Sysoseva (2000) hypothesized that late-season C. finmarchicus 

reproductive events resulted in higher larval condition, survival, and ultimately stronger 

recruitment events.  

We described C. finmarchicus phenology by calculating the ratio of early C. 

finmarchicus copepodite stages (CI-IV) to the total abundance of C. finmarchicus 

copepodites within the samples. Ratios closer to 1 signify a younger, less developed C. 

finmarchicus spring (G1) generation at the time of sampling compared to lower ratios in 

which later-stage C. finmarchicus individuals are more abundant. A less developed G1 

implies a greater abundance of late naupliar stages. We hypothesize that there is a positive 

relationship between redfish recruitment and C. finmarchicus development during the early 

summer months. However, we also hypothesize that the range of developmental rates over 

which strong recruitment events can occur will be narrow, signifying a specific seasonal 

timing of C. finmarchicus which maximizes the environmental “match” between larval 

redfish and their preferred prey taxa and developmental stage. Time series data represent the 

phenology of C. finmarchicus during early summer months.  

Strong recruitment events of 2011 and 2013 occurred during years when C. 

finmarchicus phenology was late during the early summer months (0.89, 0.67 respectively). 

C. finmarchicus development in 2011 was the second latest since the AZMP began 

monitoring biological variables in 2001. These phenologies were 1.33 and 0.22 SD above the 

historical mean of C. finmarchicus development in the same season (Figure 20J). There was 

no strong redfish recruitment during years in which C. finmarchicus development was faster 

or earlier than the historical mean. Recruitment indices did not exceed 1.0 in any year in 

which C. finmarchicus phenology was earlier than the historical mean. We considered C. 

finmarchicus phenology is categorized as a “likely” driver of redfish recruitment in the GSL 

based on the apparent necessity of late C. finmarchicus development during strong 

recruitment years.  
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3.4.8 Correlation among variables 

The joy and frustration of working with ecological phenomena is that each measurable 

variable within the environment is potentially intertwined with many others, therefore it is 

important to test the level of co-variance in potential recruitment drivers that have been 

identified. Ideally, we aimed to identify multiple potential drivers of redfish recruitment that 

were weakly correlated with one another in order to explain the greatest amount of variability 

in recruitment success. At minimum, there were 16 data points for each variable, therefore a 

Pearson correlation coefficient > |0.50| between any of the variables was statistically 

significant (p < 0.05) and we considered the variables to be strongly correlated. We did not 

include SSB in these calculations because it is a density-dependent variable (Figure. 22).   

CIL volume was not strongly correlated with any of the other potential drivers of 

redfish recruitment, nor was it strongly correlated with any of the non-likely drivers of 

recruitment considered in this study. Therefore it is likely explaining a unique proportion of 

redfish recruitment variability.  

C. finmarchicus abundance and phenology in the early summer were strongly, 

positively correlated (r = 0.57), meaning that they are likely explaining the same portion of 

variability in redfish recruitment. C. finmarchicus abundance was not strongly correlated 

with any other potential variable. C. finmarchicus phenology was strongly, negatively 

correlated with SST in June (r = -0.53). It is likely that when SST in June is cooler, there will 

be a later occurrence of C. finmarchicus, which would be conducive for strong redfish 

recruitment.  

 

3.5 DISCUSSION 

 Understanding the mechanisms driving recruitment of fish stocks is difficult, and has 

plagued scientists for the last century. With the advancement of data-collection technology 

and statistical analyses, there has been significant progress in our understanding of the 
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environment-recruitment relationships, and increased accuracy in predicting year-class 

strength in many commercially-important species (Plourde et al. 2015; Huebert et al. 2018; 

Brosset et al. 2019; Brosset et al. 2020; Lehoux et al. 2022). However, SRS often lack a 

sufficient number of strong recruitment class replicates, and the corresponding 

environmental data, that are necessary for the quantitative assessment of recruitment drivers. 

Therefore, alternative methods of identifying drivers of recruitment should be explored in 

order to gain an understanding of the mechanisms behind the spasmodic recruitment events.  

We applied a weight-of-evidence approach to identify physical and biological drivers 

of GSL redfish, with the objective of revealing the combination of environmental conditions 

that facilitated the largest recruitment event for this stock in 2011, and advancing our capacity 

to predict successful year classes before they are recruited in to the fishery around age 7-9 

years (Gascon 2003). Based on this approach, we have identified CIL volume, C. 

finmarchicus phenology and abundance during the early summer months, and SSB as likely 

drivers of redfish recruitment (Table 7). Based on our findings, we hypothesize that a suite 

of environmental conditions must simultaneously occur to result in the emergence of strong 

recruitment events in redfish (Figure 23).  

 

3.5.1 Identifying the drivers of redfish recruitment towards an ecosystem approach

  

Our results suggest that there are multiple critical periods mediating interannual 

variability in mortality, which in turn drive recruitment success (Figure 23). Once larvae are 

extruded from females in the bottom water mass, they must vertically pass through the CIL 

in order to reach surface waters where they will grow and develop. Passage through the CIL 

likely induces high mortality, with the magnitude of mortality likely directly linked to CIL 

volume. Years in which the CIL volume is low are likely conducive to higher survival of 

newly-extruded redfish larvae. Once larvae reach the surface waters, they must begin to feed 

successfully around the age of 8 days-post extrusion (Burns et al. 2021). At this time, both 
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the high abundance and late cohort development of the preferred prey C. finmarchicus would 

play a critical role in determining larval survival. Burns et al. (2021) determined that 

consumption of the naupliar stage of C. finmarchicus was conducive for fast larval growth, 

whereas consumption of C. finmarchicus eggs was suboptimal to redfish growth. Results 

from the present analysis support the importance of a correspondence between larval redfish 

and specific developmental stages of key prey species. These results also support the Match-

Mismatch hypothesis proposed by Cushing (1975, 1990). Finally, as larvae grow into 

juveniles, they move downward to occupy habitats located nearby that of pre-adult and adult 

redfish. Large redfish pre-adult and adult biomass may result in a high mortality event as a 

result of cannibalism on early juvenile redfish as they move through the water column.  

The concept of a « perfect storm » of conditions implies that multiple independent 

recruitment drivers need to aling for the production of a strong year class. SSB is a density-

dependent variable, and fluctuations have historically been driven by spasmodic strong 

recruitment events and fishing pressure. CIL volume is driven by winter air temperatures and 

mixing strength, and althought C. finmarchicus abundance and phenology are strongly 

correlated, they appear to be driven partially by sea surface temperatures in the early summer. 

Therefore, this strongly suggest that a suite of environmental conditions that are not 

connected must be met in space and time for the production of a strong redfish recruitment 

event.    

 Because of the complexity of ecosystem processes, there is a high probability that 

some important recruitment drivers were not included in the present analysis. For example, 

any assumptions of larval redfish growing and recruiting outside of the central and NW GSL 

were not considered, but should not be discounted in future works if larval transport studies 

conclude in wider dispersion than currently conceptualized. Additionally, environmental 

conditions considered in the present study are those that are encountered within the first few 

weeks/months post-extrusion. Strong mortality events may occur later in redfish 

development, which would be outside the scope of our study. This gap in ontogenetic 

research may explain average recruitment strength for the 2012 cohort even though all key 
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environmental conditions were met for the production of a strong year class. Alternatively, 

it is possible that the modeled recruitment index used in the present study has underestimated 

the strength of the 2012 year class by assigning a part of the 2012 recruits to one of the two 

adjacent year classes. Large mortality events during the juvenile stage have also been 

proposed by Gascon (2003) to explain sudden decreases in estimated biomass of year classes 

initially considered strong. 

 Results from this study lay the groundwork for future studies to test our hypotheses 

on drivers of redfish recruitment, as well as outline a potential new way of identifying drivers 

of recruitment in SRS. We have identified CIL volume, SSB, and C. finmarchicus abundance 

and phenology as a suite of important drivers to monitor for  predicting potential strong year-

classes of redfish 6-7 years before they are recruited into the fishery. Our results have the 

potential to support the development of an ecosystem-based or ecosystem-approach to 

fisheries management by providing key environmental conditions determining the fate of a 

critical life stage. Identification of recruitment drivers allows for fishery managers to 

proactively prepare for future population fluctuations, rather than react to these changes with 

dramatic shifts in fishing regulations, which is especially important in SRS fisheries that are 

generally sustained by individuals from one successful year class for up to 10 years. 

Additionally, in the face of global climate change, an understanding of physical and 

biological conditions that facilitate early-life survival is critical for predicting how 

populations will react to unprecedented environmental variability. During the last decade, 

CIL volumes have continued to decrease and C. finmarchicus phenology has trended towards 

later development (Figure 19C,J). While both of these conditions are trending in the right 

directions for continued successful recruitment events of redfish in the GSL, we must 

continue to monitor the ecosystem for any indication of additional key drivers of recruitment. 
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3.5.2 A revival of the recruitment problem 

 Rice and Browman (2014) described a decline in the number of recruitment-focused 

studies published in relevant journals since the 1990s. One of their proposed reasons for this 

decline was the “repackaging” of recruitment studies into more “trendy” research topics such 

as climate change and ecosystem-based fisheries management (EBFM). The study of 

recruitment may have been deemed “too difficult” because of the complex, interactive nature 

among environmental processes that drive survival of the early life stages of fish. Along with 

the increased modelling capabilities (e.g. Generalized Additive Models) that allow 

identifying key drivers of recruitment and forecast population dynamics in many 

commercially-important species (e.g. CITE REFERENCES), we demonstrate how a weight-

of-evidence approach can also be implemented to identify recruitment drivers in SRS with 

only 5 replicates of strong recruitment events and a few decades of environmental data. While 

Rice and Browman (2014) state that incorporating recruitment-focused research into other 

fields such as fisheries management may result in a politicization of the science or a loss of 

“old” recruitment science concepts, it can also be argued that not using results from 

recruitment studies for the progression of fisheries science is withholding application of 

information in an otherwise applied field of science as “research into the drivers of 

recruitment variability is directly relevant to ecosystem-based fisheries police and 

management”. A shift towards EBFM requires knowledge of complex ecosystem processes 

in order to monitor and predict present and future stock dynamics. The results from this study, 

and others that identify recruitment processes, are able to describe the mechanism of many 

ecosystem processes that contribute to variability of year-class strengths of commercially-

fished species, now including SRS. 
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3.8 TABLES 

 

Tableau 5. List of potential drivers of recruitment used in the weight-of-evidence approach. 

Data were compiled by DFO (Galbraith et al. 2021; Blais et al. 2021). 
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Tableau 6. Years of data available, long-term means, and standard deviations (SD) for all 

tested environmental indices. Means and SD were used to calculate z-scores. 
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Tableau 7. Identified likely drivers of redfish recruitment and historical range of 

environmental conditions that resulted in strong redfish recruitment in the GSL.  

  



 

101 

 

3.9 FIGURES 

 

Figure 17. Time series of log-transformed recruitment indices by year from 1967 – 2016 

estimated by a DFO MSE model from Duplisea et al. (2016). 
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Figure 18. Oceanographic regions of the GSL as defined by the DFO. Modified from 

Duplisea et al. 2020. 
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Figure 19. Time series of potential environmental indices that may drive redfish 

recruitment. Filled circles represent years of strong redfish recruitment. 
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Figure 20. Z-scores of each environmental index versus log-transformed recruitment 

indices: (A) SSB; (B) deep water temperature; (C) CIL volume; (D) SST – June; (E) SST – 

July; (F) SST – August; (G) Water stratification – June; (H) Water stratification – August; 

(I) C. finmarchicus abundance; (J) C. finmarchicus phenology. Filled circles represent 

years of strong redfish recruitment. 
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Figure 21. Relationship between (A) SST and (B) Water stratification at the time of larval 

collection, and standardized recent larval redfish growth in redfish larvae 8 days post-

extrusion and older. Data originates from Chapter 2 of this thesis investigating drivers of 

larval redfish growth. Each data point represents mean standardized growth from multiple 

larvae collected from the same sampling event. Solid trendline represents a significant 

relationship (p < 0.05). 
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Figure 22. Pearson correlation coefficients between potential environmental variables that 

may drive redfish recruitment. 
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Figure 23. Cumulative z-scores of all likely environmental drivers of redfish recruitment 

compared to log-transformed redfish recruitment index for each year. Z-scores for CIL 

volume and SSB were multiplied by [-1] to account for their negative effect on redfish 

recruitment. 

 

 



 

 



 

 

CONCLUSION GÉNÉRALE 

Recruitment success of marine fish is strongly dependent on the number of 

individuals that survive through the larval stage (Houde 1987). In order to understand 

variability in recruitment, it is critical to understand sources of larval fish mortality. There 

are 3 primary pillars of larval fish mortality: starvation, predation, and advection out of a 

suitable habitat. These 3 pillars are connected by the concept of growth, in which the rate at 

which a larva grows impacts its susceptibility to each of the pillars of mortality. A collection 

of hypotheses discussed throughout these studies comprise the framework of the Growth-

Survival paradigm, which emphasizes the importance of fast growth for increasing chances 

of survival through the larval stage and recruitment into the fishery (Anderson 1988). Larval 

growth is fueled by the amount of energy and nutrients consumed by a larva to carry out 

metabolic processes. Therefore, growth, and ultimately survival and recruitment, of a larva 

is strongly linked to its feeding success, the amount of carbon consumed. While quantifying 

a larva’s feeding success can help explain its growth performance, it is also important to 

identify how food quality, inferred by the types of prey being consumed, also affect growth 

of an individual. Cushing’s Match-Mismatch Hypothesis (1975, 1990) stated that recruitment 

events would be strong in years when larval emergence overlapped temporally and spatially 

with suitable, abundant prey. However, many experiments have failed to support this 

hypothesis. One of the major reasons why there has been a failure to find a relationship 

between prey abundance and larval growth lies in the term “suitable prey” (Robert et al. 

2014). While larval fish may have the morphology to consume various potential types of 

prey, many marine fish species demonstrate preference for one or few prey taxa during the 

larval stage, and consumption of these prey by larvae has resulted in faster growth and 

increased chances of survival (Robert et al. 2009; Sponaugle et al. 2010; Murphy et al. 2013). 

Therefore, if we build on Cushing’s work, it is likely that in years when the abundance of the 
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preferred prey taxon overlaps with larval fish in space and time, there will be fast larval 

growth, higher chances of survival, and stronger recruitment events. 

While larval growth is fueled by energy and nutrients obtained through the diet, the 

amount of energy necessary for growth is mediated by temperature. Likewise, the growth 

and development of planktonic prey taxa is also mediated by physical oceanographic 

conditions. Therefore, recruitment success and its dependence on the spatial and temporal 

overlap of larval fish and their prey, is ultimately rooted in physical oceanographic and 

climatic conditions through a series of bottom-up processes (Cushing 1975). In order to 

assess recruitment variability, it is necessary to understand direct relationships between 

physical oceanographic variables and the growth of the species of interest, as well as indirect 

relationships among oceanographic variables and the dynamics of preferred prey species that 

larvae rely on for growth and survival. It is important to address recruitment variability as a 

process that is highly dependent on a suite of ecosystem processes and conditions, and 

piecing together the puzzle of recruitment drivers requires an understanding of the entire 

ecosystem.  

As a result of the strong recruitment events of 2011 and 2013, redfish currently 

comprise more than 90% of the demersal biomass in the GSL. Redfish from these cohorts 

continue to grow, have mostly all reached minimum commercial size, and the reopening of 

the commercial fishery is on the horizon. The return of the redfish posed two primary 

ecological questions for researchers to address: 1) What were the conditions that facilitated 

the unprecedentedly large recruitment event of 2011 and the strong cohort of 2013?; and 2) 

What impacts will redfish impose on the rest of the GSL ecosystem as they re-establish 

themselves as a common fish species? Research presented in this thesis focused on the former 

of these questions. 

In order to identify drivers of recruitment of larval redfish in the GSL, I first identified 

important prey taxa in the diet that supply larvae with carbon and other nutrients. I used 

previously collected larval redfish from the years 1997-2000 to identify commonly consumed 

prey species, and developmental stages, and how diet composition varied with larval growth 
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on an annual basis. I also compared diet composition to environmental prey fields in order to 

calculate preferential feeding on certain prey taxa. Next I described the nature of the 

relationship between the quality and quantity of the diet and larval redfish growth. I extracted 

otoliths and identified diets from larvae collected in 1999 and 2000 in order to compare 

feeding success and diet composition to larval condition and daily growth increment widths, 

with a special emphasis on identifying whether consumption of the preferred prey taxa had 

an effect on recent larval redfish growth, as seen in other species. Lastly, using a weight-of-

evidence approach, I compiled a list of oceanographic variables, both biotic and abiotic, that 

play a role in larval redfish metabolism/growth or in prey abundance/development, and 

described the nature of the relationships between these variables and historic redfish 

recruitment indices. Long-term environmental series collected by DFO were used for this 

project. Examination of these relationships led to identification of likely drivers of redfish 

recruitment that must occur in order to produce strong year-class events by using a weight-

of-evidence approach.   

I found that redfish larval frequently consume 8 different types of prey throughout 

the early larval stage. Within the size ranges examined in our study (4.6 mm – 10.2 mm), 

there was no change in diet composition or mean prey size with increasing larval size. 

Calanus finmarchicus contributed the largest proportion of carbon to the larval redfish diet 

across all years, with eggs contributing at least 25% of all carbon to the diet and nauplii 

contributing at least 15% in each year. In some years and environments, larval redfish showed 

a preference for C. finmarchicus egg consumption. As a result of its large contribution of 

carbon to the larval diet, and a demonstrated preference for egg consumption, C. 

finmarchicus was identified as an important prey species for the survival of larval redfish in 

the GSL. Results from Burns et al. (2020) were the first to utilize taxon-specific identification 

to identify components of the larval redfish diet in the GSL, as well as identify a prey 

preference in GSL redfish larvae. My results supported and expanded upon the earlier work 

of Runge and de Lafontaine (1996) who had hypothesized a critical connection between 

Calanus sp. and redfish in the GSL, a hypothesis that I was able to investigate throughout the 

entirety of my dissertation work.   
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When I analyzed redfish otolith microstructure to describe redfish growth, I found a 

change in growth autocorrelation patterns around 8 days post-extrusion where daily otolith 

increment widths were strongly correlated during the first 8 days post-extrusion, and were 

weakly correlated thereafter. I identified this as a likely critical period in which larvae must 

obligately feed exogenously. Prior to 8 days post-extrusion, larval redfish are likely utilizing 

maternally-invested nutrients from remaining yolk, a consistent source of nutrition leading 

to strong daily growth autocorrelation. At the onset of exogenous feeding, nutrients 

consumption is less stable because larvae must forage for prey and daily growth was weakly 

correlated to growth patterns that immediately followed extrusion. Therefore, I grouped 

larvae for our project based on age: larvae less than 8 days post-extrusion that are likely still 

utilizing maternally-invested nutrients, and larvae 8 days post-extrusion and older that are 

likely obligate exogenous feeders. I also found that recent daily growth was most closely 

correlated with larval body depth, which we used as a proxy for growth throughout the 

project. I found a positive relationship between the amount of carbon consumed and larval 

body depth at age in larvae younger than 8 days post-extrusion, but no relationship between 

the two variables in larvae 8 days post-extrusion or older. Larval body depth at age was best 

explained in older larvae when sources of carbon were split between mobile (naupliar, 

copepodite stages of prey) and immobile (egg stage) carbon. There was a positive 

relationship between the amount of carbon consumed from mobile prey and larval body depth 

at age, suggesting that the developmental stage of prey was important in driving larval 

condition and fast growth in redfish larvae that were obligate exogenous feeders. Since C. 

finmarchicus is the most important contributor of carbon to the larval diet, I concluded that 

an overlap in space and time between redfish larvae and C. finmarchicus nauplii was 

important for facilitating fast growth of larval redfish and likely, strong recruitment events. 

Results from Burns et al. (2021) highlighted the importance of the type of prey, and not just 

the quantity of prey ingested, for larval redfish condition and growth. This project also 

utilized an uncommon statistical analysis, non-parametric local density estimation (Davison 

and Hinkley, 1997). This approach was necessary in order to accurately compare redfish 
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larvae across different developmental stages, in which morphology, swimming capabilities, 

and sensory capabilities vary considerably.   

I compiled a list of oceanographic variables that were hypothesized to drive 

recruitment of redfish populations around the world, from nearby regions such as the Flemish 

Cap to farther populations found in the Barents Sea. In addition, I included C. finmarchicus 

abundance and phenology as potential drivers of recruitment based on results from the first 

two thesis chapters. I identified 4 likely drivers of recruitment: CIL volume, C. finmarchicus 

phenology, C. finmarchicus abundance, and SSB. There was a positive relationship between 

C. finmarchicus phenology, abundance, and redfish recruitment strength. Strong redfish 

recruitment only occurred when C. finmarchicus phenology was later than the historical 

mean, and more abundant than the historical mean. This supports Cushing’s (1975) Match-

Mismatch Hypothesis, as larval redfish are more likely to survive and be recruited during 

years in which prey are abundant and occurring in the environment at the same time as larval 

redfish. There was a negative relationship between CIL volume and redfish recruitment 

strength. Strong redfish recruitment only occurred when CIL volume was lower than the 

historical mean. When CIL volume is low, the water mass is likely warmer and thinner, 

presenting a more permissive environment for newly-extruded redfish to pass through on 

their vertical migration towards surface waters. There was also a negative relationship 

between SSB and redfish recruitment strength, with the strongest recruitment events 

occurring when SSB was at its historical minimum. Adult redfish are cannibalistic, and SSB 

is likely a density-dependent driver of recruitment. Strong recruitment only occurred during 

years in which all of these conditions were met. While using a weight-of-evidence approach 

to execute our objective was not our initial plan, this pivot in experimental planning allowed 

us to really delve into our mechanistic understanding of bottom-up processes that could 

potentially drive redfish recruitment. Results from this study generated testable hypotheses 

for statistical modelling in the future when more environmental data corresponding to strong 

recruitment years are available. For the present, these results provide redfish stock 

assessment biologists with potential drivers of recruitment that can be monitored annually to 

help predict natural population fluctuations. Our list of potential drivers to be monitored for 
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redfish recruitment can be added to drivers of recruitment for other GSL species, such as 

Atlantic mackerel and capelin, that have been previously investigated using other statistical 

analyses (Plourde et al. 2015 ; Lehoux et al. 2022).  

One of the overarching goals of this project was to provide DFO with results that 

would aid in the creation of an ecosystem-based approach to fishery management (EBFM) 

for the future commercial redfish fishery. EBFM uses a holistic approach to manage fisheries 

by acknowledging that fish stocks and their dynamics do not act independently from other 

species within the ecosystem and are ultimately rooted in physical oceanographic processes. 

Identification of recruitment drivers of other commercially fished species in the GSL has 

already been performed and published for the same goal of moving towards an EBFM 

approach for many commercial fisheries in the region (Plourde et al. 2015; Brosset et al. 

2019; Brosset et al. 2020). All of the identified drivers of redfish recruitment are measured 

throughout the GSL by DFO and can be used as potential predictors of successful redfish 

recruitment events in the future. Redfish are a spasmodically-recruiting fish species, and 

successful recruitment events can occur on the timeframe of decades. One successful 

recruitment event can supply the fishery with enough fishable biomass until the next strong 

year-class occurs. In addition, redfish are a slow-growing species and are not recruited into 

the fishery until they are approximately 7-9 years of age. Therefore, identification of drivers 

of redfish recruitment that could alert fisheries managers of a strong recruitment event up to 

7 years before individuals are recruited into the fishery could allow management to prepare 

and adjust fishing strategies to maximize profit as well as maintain sustainability of the stock.  

While the conclusions I have made during my studies have advanced knowledge of 

the early life history of redfish in the GSL, there is still plenty of research that can be 

performed in the future to further our understanding of this species. Expanding on the 

conclusions from Chapter 1, future research should assess the diet of larval redfish during 

recent years in order to compare results to our redfish collection from poor recruitment years 

in the late 1990s, early 2000s. I hypothesize that larval redfish diet composition and feeding 

preferences will be similar to those presented in Chapter 1, but future research should 



 

116 

investigate whether changes in decadal temperature regimes (warmer waters in the 2010s) 

have changed larval diet composition or preference. In addition, analyses of larval redfish 

diet should be performed during the later larval stage/late summer months in order to better 

describe ontogenetic shifts in diet composition that occur within the first few months post-

extrusion. A shift in diet composition outside of the scope of larval sizes investigated in 

Chapter 1 may reflect a critical period during the larval stage in which specific prey taxon 

become more or less important for the larval diet. Larval redfish collection during the late 

summer months would also help us expand on research performed in Chapter 2 on larval 

redfish growth. Future research should investigate patterns of larval redfish growth using 

similar otolith microstructure analyses and autocorrelation in order to identify ages during 

which there is a shift in growth patterns and likely a critical period for larval survival. 

Additional laboratory research should also compare and contrast the nutritional composition 

of C. finmarchicus eggs and nauplii, as well as foraging behaviors of young larval redfish, in 

order to better understand why is it advantageous for larval redfish to consume nauplii instead 

of eggs, and whether this advantage is due to differences in nutritional composition of 

nutrients such as fatty acids or if this advantage has a behavioral and sensory basis. Finally, 

I presented likely potential drivers of redfish recruitment in Chapter 3. This chapter sets up 

multiple hypotheses for fisheries scientists to investigate and test in the future in order to see 

whether the likely drivers of recruitment described are present during future strong 

recruitment events, and/or whether these relationships between likely drivers and recruitment 

success breakdown over time with dramatic shifts in climatic regimes.  

Throughout my doctoral studies, I’ve had the bittersweet realization that recruitment 

studies are underappreciated and only quietly communicated within a small field. Rice and 

Browman (2014) described a dramatic decrease in the number of recruitment-based 

publications post-1990. One of their hypotheses for this decrease is that many researchers 

might believe that understanding recruitment variability is “too difficult” and choose to focus 

their studies elsewhere. However, an understanding of recruitment is critical in proper 

management of commercial fisheries, and will become increasingly important to monitor the 

status of fisheries in the face of global climate change. It has become my personal goal 
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throughout this academic journey to effectively communicate the methodologies used in 

these studies, and the applicability of the results of these publications in order to demonstrate 

to fisheries science community that understanding recruitment processes is possible and 

incredibly important for understanding stock dynamics of our world’s fisheries. I hope that 

my dissertation work is a step in the right direction towards rejuvenating recruitment science 

studies and communicating the importance of this critical process for the future.  
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