
UN NOUVEAU MODÈLE DE CONTRÔLE D’ACCÈS APPLIQUÉ AUX
ENVIRONNEMENTS INFORMATIQUES; ÉTUDE DE CAS ET APPLICATION EN

INDUSTRIE 4.0

Thèse présentée

dans le cadre du programme de doctorat en ingénierie de l’UQAC,

offert par extension à I’UQAR,

en vue de l’obtention du grade de Philosophiae Doctor

PAR

©NADINE KASHMAR

Juin 2022

ii

Jury members:

Pr. Adrian Ilinca, jury president, Université du Québec à Rimouski (UQAR)

Pr. Mehdi Adda, research director, Université du Québec à Rimouski (UQAR)

Dr. Hussein Ibrahim, research co-director, Centre de recherche et d’innovation en in-
telligence énergétique (CR2ie)

Pr. Hamid Mcheick, external examiner, Université du Québec à Chicoutimi (UQAC)

Dr. Sasan Sattarpanah Karganroudi, internal examiner, Université du Québec à Trois
Rivières (UQTR)

Initial deposit on 25-05-2022 Final deposit on 28-06-2022

UNIVERSITÉ DU QUÉBEC À RIMOUSKI
Service de la bibliothèque

Avertissement

La diffusion de ce mémoire ou de cette thèse se fait dans le respect des droits de son auteur,
qui a signé le formulaire “Autorisation de reproduire et de diffuser un rapport, un mémoire ou
une thèse”.En signant ce formulaire, l’auteur concède à l’Université du Québec à Rimouski
une licence non exclusive d’utilisation et de publication de la totalité ou d’une partie impor-
tante de son travail de recherche pour des fins pédagogiques et non commerciales.Plus pré-
cisément, l’auteur autorise l’Université du Québec à Rimouski à reproduire, diffuser, prêter,
distribuer ou vendre des copies de son travail de recherche à des fins non commerciales sur
quelque support que ce soit, y compris Internet.Cette licence et cette autorisation n’entraînent
pas une renonciation de la part de l’auteur à ses droits moraux ni à ses droits de propriété intel-
lectuelle.Sauf entente contraire, l’auteur conserve la liberté de diffuser et de commercialiser
ou non ce travail dont il possède un exemplaire.

To mom and dad, who taught me about the

dreams and how to catch them...

To all beloved ones who were behind this

work...

ACKNOWLEDGMENT

This thesis is the fruit of a constant effort made through many years, and also of many ben-
eficial exchanges and collaborations. This work would not have been accomplished without
the help and the support that I have received from valuable and helpful people who shared
the same passion for scientific research. It is with great pleasure that I thank today all those
who supported me during these years of hard work and enabled me to succeed in this thesis.

I would like to express my sincere gratitude to my supervisors Pr. Mehdi Adda and
Dr. Hussein Ibrahim for providing their invaluable guidance, comments, and suggestions
but mostly for their continuous presence and support throughout this journey, which helped
me grow and improve the quality of my work during these years. I thank them for their
availability, and patience and for motivating me and guiding me towards the exploration of
the interesting world of research.

Sincere thanks to Pr. Adrian Ilinca - Université du Québec à Rimouski, who honored
me by chairing the jury. Also, I would like to thank Pr. Hamid Mcheick from Université
du Québec à Chicoutimi, and Dr. Sasan Karganroudi from Université du Québec à Trois
Rivières, for accepting to be jury members of this thesis, for the time taken reviewing, and
for examining my thesis, and for their valuable comments that helped me to improve the
quality of this document.

My deepest gratitude and thanks to dear friends Mirna Mekdad, Farida Aliane, Ali
Raad, Ghassan Tarhini, and Hazem Abdel Ghaffar for all the support they made available
throughout this journey, even though some of them live abroad, I am happy that our life paths
crossed before and during this journey. I would also extend my thanks to my colleagues with
whom I have shared good times at the office, the library, the lab, coffee breaks, and many
others.

Finally, I would also express my very profound gratitude to my parents, sisters, and
brother for their encouragement throughout the years of my study, this accomplishment would
not have been possible without them.

RÉSUMÉ

L’émergence de la nouvelle génération d’environnements de mise en réseau avec la transfor-
mation numérique, tels que l’internet des objets (IdO) et l’industrie 4.0 avec leurs différentes
applications, fait ressortir de nouvelles tendances, concepts et défis pour intégrer des systèmes
plus intelligents et avancés dans des systèmes critiques et structures hétérogènes. Ce fait, en
plus de la pandémie de COVID-19, a suscité un besoin plus important que jamais de contrôle
d’accès (CA) en raison de la généralisation du télétravail et de la nécessité d’accéder aux
ressources et aux données liées à des domaines critiques tels que le gouvernement, les soins
de santé, l’industrie et les autres. Tout cela ouvre de nouvelles perspectives aux systèmes
d’information traditionnels et aux méthodes CA en fusionnant de nouvelles technologies et
services pour un accès transparent aux sources d’information à tout moment et n’importe où,
en particulier avec la présence de cybercriminels et de cyberattaques. Dans cette réalité, toute
cyberattaque ou attaque physique réussie peut perturber les opérations ou même réduire les
services essentiels à la société. Pour assurer la sécurité et la confidentialité, plusieurs mécan-
ismes de sécurité ont été utilisés et CA est l’une des exigences de sécurité essentielles dans
ce domaine. Ce qui rend cette réalité également difficile, c’est la diversité et l’hétérogénéité
des modèles CA qui sont mis en œuvre et intégrés à d’innombrables systèmes d’information.
L’importance des exigences de sécurité, de protection des données et de confidentialité aug-
mente avec la présence massive de nouveaux paradigmes et technologies, le déploiement
de solutions numériques et intelligentes basées sur le concept de l’industrie 4.0, ainsi que
la généralisation du télétravail. Pour empêcher l’accès non autorisé aux actifs logiques ou
physiques, plusieurs méthodes CA sont mises en œuvre pour contrôler à quoi les utilisateurs
peuvent accéder, quand et comment en appliquant les politiques organisationnelles définies.

Parallèlement à la progression technologique, divers travaux de recherche ont été menés
en se concentrant sur le développement et l’amélioration des méthodes CA en cinq étapes
principales (1) modèles CA communs, (2) modèles hybrides, (3) modèles étendus et (4) mod-
èles abstraits, atteignant le niveau actuel. étape de développement de (5) métamodèles CA.
Les modèles courants mis en œuvre dans différents environnements informatiques sont le
contrôle d’accès discrétionnaire (DAC), le contrôle d’accès obligatoire (MAC), le contrôle
d’accès basé sur les rôles (RBAC) et le contrôle d’accès basé sur les attributs (ABAC). Pour
trouver des fonctionnalités CA plus avancées et définir un ensemble plus large de règles CA,
divers modèles hybrides avec des fonctionnalités combinées de deux modèles ou plus sont
proposés (par exemple, le modèle hybride RBAC/ABAC). De plus, différents modèles sont
étendus en ajoutant de nouveaux composants en plus de ceux existants, plusieurs modèles
CA sont également abstraits et de nouveaux composants sont ajoutés pour améliorer leurs
fonctionnalités. La réalité actuelle des environnements informatiques impose la nécessité de
se concentrer sur le développement de méthodes CA plus robustes et avancées, d’autant plus
que les modèles CA communs, hybrides, étendus et abstraits ont atteint leurs limites et sont
actuellement insuffisants pour répondre aux exigences CA nécessaires. Ce qui rend ce fait

également difficile, c’est l’hétérogénéité de tout - réseaux, applications, appareils, etc. - en
plus de l’hétérogénéité des modèles CA. Par conséquent, les métamodèles CA sont proposés
dans la littérature pour servir de cadres unificateurs pour inclure la plupart des fonctionnalités
et des composants des modèles CA afin de permettre l’instanciation de divers modèles et la
définition et l’application d’un ensemble plus large de politiques statiques et dynamiques.

Malheureusement, les métamodèles proposés ont des limites communes puisqu’ils ne
sont (1) pas assez génériques et n’incluent pas toutes les fonctionnalités des modèles CA,
(2) pas assez dynamiques pour suivre les mises à jour technologiques et (3) pas extensi-
bles. En outre, ils (4) ne prennent pas en charge la fonctionnalité de hiérarchie pour tous
les composants, (5) n’expliquent pas comment la collaboration et l’interopérabilité entre les
modèles CA peuvent être atteints et (6) n’abordent pas la question de la migration d’un
modèle à un autre. . Pour aborder les limitations existantes des métamodèles CA, dans
ce projet de recherche, nous abordons les limitations génériques, extensibles, dynamiques et
hiérarchiques. Nous proposons un métamodèle CA hiérarchique, extensible, avancé et dy-
namique (HEAD) pour les structures dynamiques et hétérogènes qui est capable d’englober
l’hétérogénéité des modèles CA où divers modèles CA peuvent être dérivés (modèles exis-
tants et non existants). Pour l’implémentation, nous utilisons Eclipse (xtext) pour définir le
langage spécifique au domaine (DSL) du métamodèle HEAD. Nous illustrons notre approche
avec plusieurs instanciations réussies de divers modèles pour montrer comment elle prend en
charge des fonctionnalités avancées par rapport à d’autres métamodèles. Pour l’évaluation
et la validation, le métamodèle HEAD est utilisé pour spécifier les politiques CA néces-
saires pour deux études de cas inspirées de l’environnement informatique de l’Institut Tech-
nologique de Maintenance Industrielle (ITMI)-Sept-Îles, QC, Canada ; le premier est destiné
à l’environnement local (non IdO) d’ITMI et le second à l’environnement IdO d’ITMI. Pour
chaque étude de cas, le modèle CA nécessaire est dérivé à l’aide du métamodèle DSL du
HEAD, puis la notation xtend (un dialecte expressif de Java) est utilisée pour générer le code
Java nécessaire qui représente l’instance concrète du modèle dérivé. Au niveau du système,
pour obtenir les règles CA nécessaires, des requêtes Cypher sont générées puis injectées dans
la base de données Neo4j pour représenter la politique de contrôle d’accès de nouvelle généra-
tion (NGAC) sous forme de graphique. Le cadre NGAC est utilisé comme point d’application
pour les règles générées de chaque étude de cas. Les résultats montrent que le métamodèle
HEAD peut être adapté et intégré à divers environnements locaux et distribués, capable de
servir de cadre unificateur, de répondre aux exigences CA actuelles et de suivre les mises à
niveau de politique nécessaires. De plus, nous implémentons un panneau d’administration
pour le métamodèle HEAD, comme exemple supplémentaire, en utilisant VB.NET et SQL
pour montrer que le métamodèle peut être implémenté pour générer des règles CA à l’aide
d’autres plates-formes.

Mots clés: contrôle d’accès; maquette; métamodèle ; Industrie 4.0 ; IdO ; sécurité
et confidentialité ; hétérogène; dynamique; hiérarchie; politique; mise en vigueur;
transformation numérique ; COVID-19; DSL, Neo4j, NGAC;

xii

ABSTRACT

The emergence of the new generation of networking environments with the digital transfor-
mation, such as the internet of things (IoT) and industry 4.0 with their different applications,
brings out new trends, concepts, and challenges to integrate more intelligent and advanced
systems into critical and heterogeneous structures. This fact, in addition to COVID-19 pan-
demic has prompted a greater need than ever for access control (AC) due to the widespread
of telework and the need to access resources and data related to critical domains such as
government, healthcare, industry, and others. All this releases new prospects to traditional
information systems and AC methods by merging new technologies and services for seam-
less access to information sources at anytime and anywhere, especially with the presence of
cyber-criminals and cyber-attacks. With this reality, any successful cyber or physical attack
can disrupt operations or even decline critical services to society. To ensure security and
privacy, several security mechanisms have been employed and AC is one of the essential se-
curity requirements in this domain. What makes this reality also challenging is the diversity
and the heterogeneity of AC models that are implemented and integrated with countless in-
formation systems. The importance of security, data protection, and privacy requirements
increases with the massive presence of new paradigms and technologies, the deployment of
digital and intelligent solutions based on the industry 4.0 concept, also with the widespread
of telework. To prevent unauthorized access to logical or physical assets, several AC methods
are implemented to control what users can access, when, and how by enforcing the defined
organizational policies.

Along with technology progression, various research works were conducted focusing
on developing and enhancing AC methods in five main stages (1) common AC models, (2)
hybrid models, (3) extended models, and (4) abstracted models, reaching the current stage of
developing (5) AC metamodels. The common models that are implemented in different com-
puting environments are Discretionary Access Control (DAC), Mandatory Access Control
(MAC), Role-Based Access Control (RBAC), and Attribute-Based Access Control (ABAC).
To find more enhanced AC features and define a larger set of AC rules, various hybrid models
with combined features from two or more models are proposed (e.g., hybrid RBAC/ABAC
model). Furthermore, different models are extended by adding new components in addition
to the existing ones, also several AC models are abstracted and new components are added to
enhance their features. The current reality of computing environments imposes the need to
focus on developing more robust and advanced AC methods, especially since the common,
hybrid, extended, and abstracted AC models have reached their limits and are currently in-
sufficient to meet the needed AC requirements. What makes this fact also challenging is the
heterogeneity of everything—networks, applications, devices, etc.—in addition to the het-
erogeneity of AC models. Hence, AC metamodels are proposed in the literature to serve as
unifying frameworks to include most features and components of AC models to allow instan-
tiating various models and defining and enforcing a larger set of static and dynamic policies.

Unfortunately, the proposed metamodels have common limitations since they are (1)
not generic enough and do not include all features of AC models, (2) not dynamic enough
to follow technology upgrades, and (3) not extensible. Also, they (4) do not support the
feature of hierarchy for all components, (5) do not explain how collaboration and interoper-
ability between AC models can be achieved, and (6) do not address the issue of migration
from one model to another. To address the existing limitations of AC metamodels, in this
research project we address the generic, extensible, dynamic, and hierarchical limitations.
We propose a Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC metamodel
for dynamic and heterogeneous structures that is able to encompass the heterogeneity of AC
models where various AC models can be derived (existing and the non-existing models). For
the implementation, we use Eclipse (xtext) to define the domain-specific language (DSL) of
HEAD metamodel. We illustrate our approach with several successful instantiations of var-
ious models to show how it supports advanced features compared to other metamodels. For
the evaluation and validation, HEAD metamodel is employed to specify the needed AC poli-
cies for two case studies inspired by the computing environment of Institut Technologique
de Maintenance Industrielle (ITMI)-Sept-Îles, QC, Canada; the first is for ITMI’s local (non-
IoT) environment and the second for ITMI’s IoT environment. For each case study, the
needed AC model is derived using the DSL of HEAD metamodel, then xtend notation (an
expressive dialect of Java) is used to generate the needed java code which represents the con-
crete instance of the derived model. At the system level, to get the needed AC rules, Cypher
queries are generated and then injected into Neo4j database to represent the Next Generation
Access Control (NGAC) policy as a graph. NGAC framework is used as an enforcement
point for the generated rules of each case study. The results show that HEAD metamodel
can be adapted and integrated with various local and distributed environments, able to serve
as a unifying framework, answer the current AC requirements and follow the needed policy
upgrades. Moreover, we implement an administrative panel for HEAD metamodel, as an ad-
ditional example, using VB.NET and SQL to show that the metamodel can be implemented
to generate AC rules using other platforms.

Keywords: access control; model; metamodel; Industry 4.0; IoT; security and pri-
vacy; heterogeneous; dynamic; hierarchy; policy; enforcement; digital transfor-
mation; COVID-19; DSL, Neo4j, NGAC;

xiv

TABLE OF CONTENTS

ACKNOWLEDGMENT . ix
RÉSUMÉ . xi
ABSTRACT . xiii
TABLE OF CONTENTS . xv
LIST OF TABLES . xix
LIST OF FIGURES . xxi
LIST OF ABBREVIATIONS .xxvii
CHAPTER 1 GENERAL INTRODUCTION 1

1.1 Research Context and Motivation . 1
1.2 Access Control . 4
1.3 Access Control Challenges within Dynamic and Heterogeneous Structures . . 9
1.4 Problematic . 11
1.5 Objectives . 17
1.6 Research Methodology . 18
1.7 Thesis Originality and Contributions . 28
1.8 The Structure of the thesis . 30

CHAPTER 2 ACCESS CONTROL METAMODELS: REVIEW, CRITICAL ANAL-
YSIS, AND RESEARCH ISSUES . 31

2.1 Introduction . 32
2.2 Access Control Models . 33
2.3 Access Control Metamodels . 34
2.4 Discussion and Critical Analysis . 36
2.5 Research issues and open questions . 38
2.6 Conclusion and Future Perspectives . 40

CHAPTER 3 HEAD ACCESS CONTROL METAMODEL FOR DYNAMIC AND
HETEROGENEOUS STRUCTURES . 43

3.1 Introduction . 44
3.2 Related Works . 46
3.3 Formalization of Access Control Policies 49
3.4 Defining the Grammar of HEAD Metamodel 53
3.5 Deriving Access Control Models . 55
3.6 Generating Policies: Examples and Illustrations 66

3.7 Conclusions and Future Perspectives . 69
CHAPTER 4 INSTANTIATION AND IMPLEMENTATION OF HEAD META-
MODEL IN INDUSTRIAL ENVIRONMENT: NON-IOT AND IOT CASE STUDIES 73

4.1 Introduction . 74
4.2 Related Works . 76
4.3 HEAD Metamodel . 78
4.4 The Subject of Study: Technological Institute for Industrial Maintenance

(ITMI) . 80
4.5 Case Study 1—ITMI: non-IoT . 83
4.6 Case Study 2—ITMI: IoT . 96
4.7 HEAD administrative panel . 108
4.8 Evaluation and Validation of HEAD metamodel 112
4.9 Limitations of HEAD Metamodel . 114
4.10 Conclusions and Future Perspectives . 115

CHAPTER 5 HEAD ACCESS CONTROL METAMODEL: DISTINCT DESIGN,
ADVANCED FEATURES, AND NEW OPPORTUNITIES 117

5.1 Introduction . 118
5.2 Access Control Challenges within Dynamic and Heterogeneous Environments 120
5.3 Access Control Models: the development stages 121
5.4 Issues and Limitations of the Existing AC Metamodels 124
5.5 HEAD Metamodel: Development Approach to Access Control in Dynamic

and Heterogeneous Environments . 128
5.6 Open Issues and New Opportunities . 136
5.7 Conclusions . 137

CHAPTER 6 GENERAL CONCLUSION . 141
6.1 Achieved objectives . 142
6.2 Comparison between HEAD Metamodel and other AC metamodels 143
6.3 Future Perspectives . 143

APPENDIX I FROM ACCESS CONTROL MODELS TO ACCESS CONTROL
METAMODELS: A SURVEY . 145
APPENDIX II A REVIEW OF ACCESS CONTROL METAMODELS 167
APPENDIX III A NEW DYNAMIC SMART-AC MODEL METHODOLOGY TO
ENFORCE ACCESS CONTROL POLICY IN IOT LAYERS 177
APPENDIX IV SMART-AC: A NEW FRAMEWORK CONCEPT FOR MODEL-
ING ACCESS CONTROL POLICY . 183

xvi

APPENDIX V ACCESS CONTROL IN CYBERSECURITY AND SOCIAL ME-
DIA . 193
APPENDIX VI DERIVING ACCESS CONTROL MODELS BASED ON GENERIC
AND DYNAMIC METAMODEL ARCHITECTURE: INDUSTRIAL USE CASE . . . 227
APPENDIX VII ACCESS CONTROL METAMODEL FOR POLICY SPECIFICA-
TION AND ENFORCEMENT: FROM CONCEPTION TO FORMALIZATION 237
Bibliography . 245

xvii

LIST OF TABLES

Table 1 AC Metamodels: the state-of-the-art (Kashmar, Adda, Atieh, and Ibrahim,
2021c) (Kashmar, Adda, and Ibrahim, 2021a) 9

Table 2 The Research Methodology . 19

Table 3 The timeline . 30

Table 4 Some Limitations of the Common AC Models 34

Table 5 Summary of the Proposed Access Control Metamodels 37

Table 6 Objective(s) and Limitation(s) of The Proposed Access Control Meta-
models . 39

Table 7 Metamodeling layers and details . 50

Table 8 Comparison between HEAD Metamodel and other AC metamodels. . . 143

LIST OF FIGURES

Figure 1 The dynamic and heterogeneous structures (Kashmar, Adda, and
Ibrahim, 2021b) . 2

Figure 2 The Steps of Access Request . 4

Figure 3 The common AC models . 5

Figure 4 Hybrid AC models. 6

Figure 5 Illustration for AC model extension concept. 7

Figure 6 Illustration for model abstraction concept 7

Figure 7 Illustration for AC metamodel concept 8

Figure 8 The concept of generic AC metamodel. 12

Figure 9 AC features in the core structure for each of the proposed metamodels. 12

Figure 10 The concept of dynamic AC metamodel. 13

Figure 11 The concept of extensible AC metamodel. 14

Figure 12 Examples for hierarchy of (a) roles, (b) actions, (c) objects, and (d)
contexts Kashmar, Adda, and Ibrahim, 2021b. 15

Figure 13 The concept of collaboration and interoperability of AC models. . . 16

Figure 14 The concept of migration from one AC model to another. 17

Figure 15 The initial step towards HEAD metamodel (Kashmar, Adda, Atieh,
and Ibrahim, 2019a) . 21

Figure 16 The main layers of our AC framework concept (Kashmar, Adda,
Atieh, and Ibrahim, 2019b) . 21

Figure 17 The Logical Architecture (Kashmar et al., 2020) 23

Figure 18 Towards the Formal representation of metamodel: A general in-
stance (Kashmar, Adda, Atieh, and Ibrahim, 2021b) 25

Figure 19 The HEAD metamodel (Kashmar, Adda, and Ibrahim, 2021b) . . . 26

Figure 20 HEAD Metamodel: The DSL grammar (Kashmar, Adda, and Ibrahim,
2021b) . 27

Figure 21 The aim of AC metamodels . 33

Figure 22 Historical Evolution of common AC Models 34

Figure 23 Classification for the proposed AC Metamodels 35

Figure 24 The Era of Access Control Metamodels 36

Figure 25 Illustration for the concept generic metamodel 37

Figure 26 Illustration for the concept of metamodel extension 38

Figure 27 The common limitations in the existing AC metamodels 38

Figure 28 The dynamic and heterogeneous structures 46

Figure 29 Unifying heterogeneous concepts of AC models 50

Figure 30 HEAD metamodel: the kernel elements 51

Figure 31 Examples for hierarchy of (a) roles; (b) actions; (c) objects; and (d)
contexts . 52

Figure 32 HEAD Metamodel: The DSL Grammar 54

Figure 33 DAC model instance . 56

Figure 34 DAC Policy Definition . 56

Figure 35 MAC model instance . 57

Figure 36 MAC Policy Definition . 57

Figure 37 RBAC model instance . 58

Figure 38 RBAC Policy Definition . 58

Figure 39 ABAC model instance . 59

Figure 40 ABAC Policy Definition . 59

Figure 41 Hybrid MAC/RBAC model instance 60

Figure 42 Hybrid MAC/RBAC Policy Definition 60

Figure 43 Hybrid RBAC/ABAC model instance 61

Figure 44 Hybrid RBAC/ABAC Policy Definition 61

Figure 45 Dynamic AC metamodel: Scenario 1 62

xxii

Figure 46 Dynamic AC metamodel: Scenario 2 64

Figure 47 Extensibility: RBAC example . 65

Figure 48 RBAC: (a) definition of role/object hierarchy; (b) hierarchy of role/object
entities . 66

Figure 49 A model instance based on RBAC 67

Figure 50 Example 1: generating RBAC policy 67

Figure 51 A model instance based on hybrid MAC/RBAC 68

Figure 52 Example 2: Generating MAC/RBAC policy 69

Figure 53 Example: RBAC instance . 80

Figure 54 ITMI-Role hierarchy . 81

Figure 55 The Implementation Phases . 83

Figure 56 The system architecture of ITMI: non-IoT environment 83

Figure 57 A graph model representing the information flow of ITMI’s non-
IoT environment . 84

Figure 58 Case Study 1: HEAD metamodel instance: (a) A hybrid model
based on user-groups RBAC and ABAC entities/attributes; (b) rule
expressions . 87

Figure 59 Case Study 1: A sample of the Xtend notation to generate the java
code for the Explicit entities and their hierarchies 89

Figure 60 Case Study 1: A sample of the generated java code for the subject
and object entities of group-based; RBAC and ABAC model 90

Figure 61 Case Study 1: NGAC Policy Configuration 92

Figure 62 Case Study 1: A sample java code output 93

Figure 63 Case Study 1: NGAC graph . 94

Figure 64 Case Study 1: Users’ Permissions based on their roles (and role
hierarchy) . 95

Figure 65 Case Study 1: Examples of association relationship properties for
role permissions . 95

Figure 66 Case Study 1: Examples of NGAC authorization responses to Cypher
statements . 96

xxiii

Figure 67 The system architecture of ITMI: non-IoT environment 97

Figure 68 A graph model representing the information flow of ITMI’s IoT
environment . 97

Figure 69 Case Study 2: HEAD metamodel instance: (a) A hybrid model
with two PCs (hybrid RBAC/ABAC and ABAC); (b) rule expressions100

Figure 70 Case Study 2: A sample of the Xtend notation to generate the java
code for the (a) PC; (b) AU (and AU hierarchy) entities; (c) the
assignment of Ex -AUs entities . 102

Figure 71 Case Study 2: A sample of the generated java code for (a) AU root
entities and their child entities; and (b) a sample of the assignment
of user to root role nodes (Us to UAs) 103

Figure 72 Case Study 2: A sample of java output (a) to configure PC1 and
PC2; (b) user-role assignment . 104

Figure 73 Case study 2: A sample of Cypher code output (a) PCs Us and Os
nodes; (b) UAs of roles and Workers with U-UA assignment; and
(c) a sample U/O-UA/OA assignment of PC2 104

Figure 74 Case study 2: NGAC Policy Configuration 105

Figure 75 Case Study 2: NGAC graph . 106

Figure 76 Case Study 2: Examples of Users’ access rights 107

Figure 77 Case Study 2: Example of association relationship properties for
Workers permission . 107

Figure 78 Case Study 2: Examples of NGAC authorization responses to Cypher
statements . 108

Figure 79 HEAD metamodel: Administrative Panel example 109

Figure 80 HEAD Administrative Panel: Instantiation of AC model 109

Figure 81 HEAD Administrative Panel: AC policy configuration 110

Figure 82 HEAD Administrative Panel: AC policy configuration steps 110

Figure 83 HEAD Administrative Panel: Adding Attributes to Model Compo-
nents . 111

Figure 84 HEAD Administrative Panel: Formulation of AC Rules 111

xxiv

Figure 85 The components of the proposed AC metamodels 129

Figure 86 The development approach . 130

Figure 87 Heterogeneous models with different policy expressions 130

Figure 88 An example of hybrid policy . 131

Figure 89 A sample of DSL of HEAD metamodel 132

Figure 90 A flow chart: Instantiation of AC models using the DSL of HEAD
metamodel . 133

Figure 91 Exmples of policy expressions using the meta-policy of HEAD
metamodel . 134

Figure 92 A sample of Eclipse Xtend notation 135

xxv

LIST OF ABBREVIATIONS

AC Access Control

ABAC Attribute-based Access Control

AI Artificial Intelligence

AU Authorization Unit

BLP Bell–LaPadula model

CBAC Category-based Access Control

CRABC Context-Sensitive Role-based Access Control

CSPM Cloud Security and Privacy Metamodel

CW Chinese Wall model

DAC Discretionary Access Control

ECCAPAC Enhanced Context-aware Capability based Access Control

Ex Explicit

HEAD Hierarchical, Extensible, Advanced, and Dynamic

HGABAC Hierarchical Group and Attribute-based Access Control

HoBAC Higher-order Attribute-based Access Control

IACS Industrial Automation and Control Systems

IIoT Indistrial Internet of Things

Im Implicit

IoT Internet of Things

IT Information Technology

ITMI Institut technologique de maintenance industrielle

IS Information System

MAC Mandatory Access Control

NGAC Next Generation Access Control

O Object

OA Object Attribute

PC Policy Class

PU Procedural Unit

RBAC Role-based Access Control

St Setting

U User

UA User Attribute

WCMS Web Content Management System

xxviii

CHAPTER 1

GENERAL INTRODUCTION

1.1 RESEARCH CONTEXT AND MOTIVATION

The substantial advancements in information technologies, with the emergence of ubiq-
uitous computing and digital transformation such as the internet of things (IoT), cloud com-
puting, etc., have brought unprecedented concepts and challenges to provide solutions and
integrate advanced and self-ruling systems in critical and heterogeneous structures. This evo-
lution releases new prospects to traditional information systems by merging new technologies
and services for seamless access to information sources that are distributed everywhere and
need to be accessed from anywhere at anytime (Jaidi et al., 2018) (Kashmar, Adda, and
Ibrahim, 2021a). This fact, in addition to the COVID-19 pandemic has prompted a greater
need than ever for access control (AC) due to the widespread of telework and the need to ac-
cess resources and data related to critical domains such as government, healthcare, industry,
and others (Krehling et al., 2021) (Antunes et al., 2021) (Kashmar et al., 2022b). However,
security, data protection, and privacy have always been of utmost importance in any comput-
ing environment. The importance of these requirements increases with the massive presence
of new paradigms and technologies (e.g., IoT), also with the deployment of digital and intel-
ligent solutions based on the industry 4.0 or smart industry concept. Despite the significant
developments in this sector over the past ten years, security requirements constitute a major
challenge for developers, computer scientists, researchers, companies, and organizations that
collect, store and use data in their operations or for research and innovation purposes.

However, as technologies grow, the way how people interact with devices and appli-
cations changes. Correspondingly, the needed security methods must be upgraded since any
successful cyber or physical attack can disrupt operations or even decline critical services
to society. To ensure security and privacy, several techniques have been employed and AC
is one of the essential security requirements in this domain (Cruz-Piris et al., 2018) (Kash-
mar, Adda, and Ibrahim, 2021b) (Kashmar, Adda, and Ibrahim, 2021a). In the literature, AC
models are developed and implemented to define and enforce AC policies in order to specify
users’ access rights to resources and verify that they can only access resources they are al-

lowed to in a given context. AC policies are among the most significant security mechanisms
that are essential to increase the privacy and confidence of any information system (Jaidi et
al., 2018) (Kashmar, Adda, and Ibrahim, 2021b). Figure 1 illustrates the notion of heteroge-
neous structures which include heterogeneous systems, platforms, networks, and devices, in
addition to the heterogeneity of the implemented AC models to define and enforce different
AC policies of organizations and industry sectors (Kashmar, Adda, and Ibrahim, 2021b).

Systems/Platforms Networks & connectivity Things/Resources

RBAC

RBAC

ABAC

ABAC

Figure 1: The dynamic and heterogeneous structures (Kashmar, Adda, and Ibrahim, 2021b)

The dynamic and heterogeneous structures of the current computing environments—
networks, applications, devices, etc.—in addition to the heterogeneity of AC models that
are implemented in different centralized and distributed computing environments, make the
process of controlling access even more complicated. Up to the present time, AC research
and real-world AC implementations to define and enforce AC policies broadly fall under one
of the five stages:

1. Traditional AC models discretionary access control (DAC), mandatory access control
(MAC), role-based access control (RBAC), attribute-based access control (ABAC)
(Kashmar, Adda, Atieh, and Ibrahim, 2021a) (Kashmar, Adda, and Atieh, 2019);

2. Hybrid models, by means of combining features of two or more AC models, for exam-
ple, the hybrid RBAC/ABAC model (Rajpoot et al., 2015a);

2

3. Extended AC models, by means of adding new component(s) to a model to enhance its
features, for example, the extended model (Servos et al., 2014);

4. Abstract AC models, by means of abstracting a model and adding new components to
it, then deriving different instances of it, for example, a higher-order attribute-based AC
model (Aliane et al., 2019);

5. AC metamodels, by means of including all of the above, for example, the metamodel
(Kashmar, Adda, and Ibrahim, 2021b).

However, technology is an essential aspect of information security, especially in recent
years, it encompasses various trends and concerns. In the following we highlight the trends
that increase the evolution of security threats:

• The growth in usage of mobile devices such as tablets, e-readers, smartphones, etc.;

• The approbation of social networks in different domains, for example, media sharing,
online shopping, etc.;

• The widespread of the IoT concept, and the variety of IoT applications and devices (e.g.
wearable devices);

• The adoption of the internet into daily activities, e.g. online learning, and

• The widespread acceptance of dynamic computing environments such as IoT, cloud
computing, etc.

With the evolution of technology trends, it is realized that controlling users’ access and the
operations they perform on information cannot be overlooked when developing approaches
related to information security. Security solutions must be manageable and adaptable to track
the evolution of security threats that accompany technology upgrades. Unfortunately, the
existing AC models—common models, hybrid models, extended AC models, and abstract AC
models— no longer meet the increasing demand for privacy and security standards. In other
words, they have reached their limits and are currently insufficient to answer the increasing
demand for security and privacy standards (Kashmar, Adda, and Atieh, 2019) (Al Kukhun,
2012). Likewise, the existing AC metamodels have several shortcomings and are not able to
follow the continuous technology progression (Kashmar, Adda, Atieh, and Ibrahim, 2021b)
(Kashmar, Adda, Atieh, and Ibrahim, 2021c) (Kashmar, Adda, and Ibrahim, 2021a). To
address this issue, in this research we have developed a Hierarchical, Extensible, Advanced,

3

and Dynamic (HEAD) AC metamodel, with unconventional features, that are able to include
the heterogeneity of the existing AC models, derive non-existing AC models, and follow the
needed AC requirements with the current evolution of technology.

1.2 ACCESS CONTROL

Access control is the process of restricting access to logical or physical resources. An
AC policy is the definition of rules that must be regulated in an organization, they are usually
defined by managers and systems administrators based on a set of guidelines for a system,
to control and authorize access to resources. (Kashmar, Adda, Atieh, and Ibrahim, 2021c)
(Kashmar, Adda, Atieh, and Ibrahim, 2021a). Figure 2 summarizes the AC request steps:

1. User authentication, where an unknown user (or subject) after verifying his identity
becomes a known user;

2. The authenticated user now can make a request to access resources (or objects);

3. Authorize request is the most essential phase in this process, authorization is to allow
an authenticated subject to access a resource after checking the defined AC policy;

4. A subject is allowed or denied to perform some action on a resource.

MAC: Mandatory AC

DAC: Discretionary AC

RBAC: Role-based AC

Hybrid AC Models

ABAC: Attribute-based AC

Policy
database

Unknown Users

Authentication
Authorization
(AC model(s))

A
cc

es
s

C
o

n
tr

o
l

Logical resources

physical resources

Managers

System Administrators

Known Users
Verify identity

Make request to
access resource(s)

Define

Allow/Deny

Access control model: Framework for Making authorization decisions

Figure 2: The Steps of Access Request

Authentication is insufficient to protect resources, and authorization includes the following
phases (Jaidi et al., 2018) (Kashmar, Adda, and Ibrahim, 2021b):

4

1. defining a security policy (set of AC rules);

2. selecting an AC model that matches the defined policy;

3. implementing the model and enforcing the defined AC rules.

1.2.1 Access Control Models: the development stages

Over the decades, various information technologies (IT) have been developed, and this
impose the need to implement various AC methods to find secure communication environ-
ments. In the following sections, we summarize the proposed AC models in the literature and
their development stages in order to enhance AC features.

1.2.1.1 Common AC Models

The well know AC models, or common models, that are proposed in the literature
to define and enforce AC policy to prevent any illegal access to resources are DAC, MAC,
RBAC, and ABAC models. Figure 3 summarizes their features, and their major components
which are used to formulate and enforce organizational AC policies (Kashmar, Adda, and
Atieh, 2019) (Kashmar, Adda, Atieh, and Ibrahim, 2021a).

The Traditional AC models

DAC

MAC

RBAC

ABAC

•A user-centric model.
•object owner determines permissions to other subjects to access his object(s).
• the major components are objects, subjects, and permissions.

•AC policy is managed in a centralized manner.
•based on the concept of security levels associated with each subject and object.
• the major components are objects, subjects, security levels, and permissions.

• facilitates the AC policy administration.
•users can be assigned several roles and a role can be associated with several users.
• the major components are subjects, roles, permissions, actions, and objects.

•has the ability to support dynamic attributes.
• grant or deny user requests are based on attributes.
• a set of policies are specified in terms of attributes and conditions.
•The major components are attributes of subjects, objects, and environment, actions, and permissions.

Figure 3: The common AC models

5

1.2.1.2 Combining AC Models

The continuous technology upgrade, with the distributed computing environments, in-
creases the presence of security threats. This imposes the need to find hybrid AC models,
by combining features of two or more AC models, to allow defining larger sets of AC rules
in order to enhance the process of access management (Kashmar, Adda, Atieh, and Ibrahim,
2021c). Several hybrid AC models are proposed in the literature that combine features of
RBAC and ABAC, for example (Hasiba et al., 2017), (Rajpoot et al., 2015b), and (Kaiwen
et al., 2014); DAC, MAC and RBAC, for example (Oh, 2007); MAC and RBAC, for example
(Kim et al., 2014); and many other hybrid models. Figure 4 illustrates the idea of hybrid
models.

DAC Model

MAC Model

RBAC Model

ABAC Model

▪

▪

▪

Hybrid Model

Hybrid Model

Combine Features from MAC & RBAC

Combine Features from RBAC & ABAC

▪

▪

▪

ACn Model Hybrid Model Combine Features from RBAC, ABAC, and ACn

Figure 4: Hybrid AC models.

1.2.1.3 Extending AC Models

Other research works extend AC models by adding new components to them such as
new types of roles, permissions, and relationships. For example, the core or flat RBAC model
with major components such as subjects, objects, permissions, actions, and roles is extended
to hierarchical RBAC where a new component is added to support role hierarchy. Moreover,
it is extended to constrained RBAC where a new component is added to enforce the separa-
tion of duties. Then, symmetric RBAC which includes hierarchical RBAC and constrained
RBAC (Ennahbaoui et al., 2013). Aliane et al., 2019 propose a higher-order attribute-based
access control (HoBAC) model as an extension for the ABAC model, which extends the basic
concepts of ABAC with aggregation operations that yield hierarchies. Another ABAC model
extension is presented by Servos et al., 2014, called the hierarchical group and attribute-based
access control (HGABAC), where groups and hierarchies of subjects and objects are added.

6

Moreover, several other AC model extensions are proposed in this domain, for example an
extended model proposed by Layouni et al., 2009. Figure 5 illustrates the concept of AC
model extension.

AC model

new components

AC model extension

Figure 5: Illustration for AC model extension concept.

1.2.1.4 Abstracting AC Models

Some AC models are abstracted, then new components are added to enhance their fea-
tures and allow expressing a larger set of AC policies. Subsequently, the derived AC model
is an extended model with the old and new AC features. For example, Nguyen et al., 2013
add a delegation component to the abstracted RBAC model (RBAC metamodel) to have an
RBAC-based delegation model. In addition to defining RBAC permission rules, their ap-
proach would allow defining delegation rules to specify which actions are accessible to users
by delegation. Moreover, Klarl et al., 2009 propose a business and system role-based access
control (B&S-RBAC) metamodel where business and system roles are defined and mapped
to overcome the weakness of business role definitions and RBAC models. Hence, the RBAC
model is abstracted, a system and business role component is added, then it is extended for
business usage. Moreover, Adda et al., 2020 propose a generalization for the ABAC model
where the core concepts of HoBAC (Aliane et al., 2019) are first revisited and refined, then
present new concepts to complete and reinforce its theoretical foundations. Figure 6 illus-
trates the concept of AC model abstraction.

AC model

AC metamodel

AC ’ model

extension

components

Figure 6: Illustration for model abstraction concept

7

1.2.1.5 Access Control Metamodels

Access control metamodels are proposed to serve as frameworks that unify and include
most or all features of AC components to derive various instances of AC models (Kashmar,
Adda, and Atieh, 2019) (Kashmar, Adda, Atieh, and Ibrahim, 2021c). Figure 7 illustrates the
concept of the AC metamodel. However, AC metamodels should handle all of the above con-
cepts (combining AC models, extending AC models, and abstracting AC models). In other
words, having an abstract model (metamodel) that is able to include all AC models compo-
nents, or have the ability to define the needed ones, would allow combining and extending
different AC models.

AC metamodel AC1 model

AC1 model

AC2 model

AC3 model

Hybrid AC1 / AC2

Hybrid AC1 / AC3 / ACn

ACx model

….

…
.

ACn model

Figure 7: Illustration for AC metamodel concept

Controlling access to resources with the current generation of networking environments
is a challenging task and needs advanced AC frameworks. Within the decade, a limited num-
ber of AC metamodels are proposed in the literature, Table 1, to find more advanced AC
features and answer the increasing demand of security and privacy. They can be summa-
rized as follows (Kashmar, Adda, Atieh, and Ibrahim, 2021c) (Kashmar, Adda, and Ibrahim,
2021a):

• Some AC metamodels are proposed as generic metamodels such as (Barker, 2009),
(Bertolissi et al., 2014), (Khamadja et al., 2013), and (Trninić et al., 2013).

• Some others are proposed as hybrid metamodels to provide a generic base metamodel
concept such as (Slimani et al., 2011), and (Abd-Ali et al., 2015).

• Others are proposed as metamodel extensions for some of the existing metamodels and
some software development frameworks such as (Alves et al., 2014), and (Korman et
al., 2016).

8

Table 1
AC Metamodels: the state-of-the-art (Kashmar, Adda, Atieh, and Ibrahim, 2021c)

(Kashmar, Adda, and Ibrahim, 2021a)

ref. Year Proposed for Metamodel Based on Instances Modeling lang.
AC metamodels are proposed as generic metamodels

Barker,
2009

2009 Enterprise Barker’s Meta-
model

DAC, MAC,
RBAC

RBAC, MAC Rule/Logic Lan-
guage

Bertolissi
et al.,
2014

2014 Distributed sys-
tem of several
sites

Distributed
Metamodel

DAC, MAC,
RBAC

hybrid models
of DAC, MAC,
RBAC

rewrite-based op-
erational seman-
tics

Khamadja
et al.,
2013

2013 Cloud Computing CatBAC meta-
model

DAC, MAC,
RBAC

hybrid models
of DAC, MAC,
RBAC

First-order logic

Trninić et
al., 2013

2013 Set of systems PolicyDSL RBAC models RBAC and hybrid
models

Textual DSL

AC metamodels are proposed as hybrid AC metamodels
Slimani et
al., 2011

2011 Enterprise UACML Meta-
model

DAC, MAC,
RBAC

Group based,
MAC, RBAC,
hybrid model

Object constraint
language (OCL)

Abd-Ali
et al.,
2015

2015 Enterprise Integration
metamodel

CW, BLP,
BIBA, RBAC

Hybrid models First-order logic

AC metamodels are proposed as metamodel extension for some of the existing metamodels
Alves
et al.,
2014

2014 Enterprise Obligations in
CBAC Meta-
model

DAC, MAC,
RBAC

hybrid models
of DAC, MAC,
RBAC

rewrite-based op-
erational seman-
tics

Korman
et al.,
2016

2016 Enterprise Archi-
tecture framework

Unified Meta-
model

DAC, BLP,
Biba, CW,
RBAC, ABAC

DAC, BLP, CW,
RBAC, ABAC

ArchiMate

The continuous technology progression impose developing different stages of AC meth-
ods, AC metamodel is a recent development stage in this domain. Unfortunately, the proposed
metamodels lack some key features and are insufficient to answer the AC requirements of the
current networking generation (Kashmar, Adda, Atieh, and Ibrahim, 2021c) (Kashmar, Adda,
and Ibrahim, 2021a). The issues and limitations of the existing AC metamodels are explained
in Section 1.4.

1.3 ACCESS CONTROL CHALLENGES WITHIN DYNAMIC AND HETEROGENEOUS
STRUCTURES

The new generation of networking environments is dynamic and ever-evolving envi-
ronments where resources are distributed and accessed from everywhere. This evolution of
pervasive systems and ubiquitous computing, especially the concept of Industry 4.0 and IoT
applications, imposes the need to enhance AC methods due to the increasing demand for pri-

9

vacy and security standards. Controlling access in these environments is a challenging and
complicated task due to the presence of cyber-criminals and cyber-attacks. In the follow-
ing, we summarize the existing challenges in this domain (Kashmar et al., 2022b) (Kashmar,
Adda, and Ibrahim, 2021b) (Al Kukhun, 2012) (Kashmar et al., 2020):

• Access control is considered as a protective shield for the existing resources in organiza-
tions, industries, homes, etc. against cybersecurity risks that accompany transparency,
shareability, and interoperability while answering users’ needs in accessing resources,
especially with distributed systems and IoT environments where data is dynamic and
generated in a real-time basis.

• Access control is highly essential to ensure secure communications in open, dynamic,
and heterogeneous environments, especially with the existence of several contexts (net-
work type, time, location, machine characteristics . . .). For example, to provide an
access decision, several or multi-level, contexts must be considered. The context itself
is a challenge since it could be defined, expressed, and interpreted in different ways
according to the application domain, the needed objectives, and the existing techniques.

• Access control method should be flexible and controllable enough to deal with various
situations that confront users while requesting access to different types of resources,
for example, rapid progression, unexpected events, system failures, and highly dynamic
environments that need a very quick and controlled response, various hierarchical orga-
nizational structures, the different contexts, dynamism of IoT devices, etc.

• With the large adoption of telework, especially with the COVID-19 pandemic, em-
ployees can work anytime, anywhere, and sometimes using their own personal devices.
With this fact, security and AC issues have been raised, especially that AC mechanisms
should be adapted to users’ context, their profiles, their devices, the existing conditions,
and many other parameters to improve system usability. With this fact, AC needs to be
dynamically managed to minimize human intervention.

Besides, the following are the key AC enforcement challenges (Kashmar et al., 2022b) (Bertino
et al., 2018) (Soltani et al., 2017):

• The heterogeneity of the implemented AC models in heterogeneous environments.

• Deciding upon the most relevant AC model(s) to implement in an organization that
conforms to its AC rules based on the type and sensitivity of resources they have.

10

• The necessity to enforce persistent AC policies with the current generation of dynamic
and heterogeneous structures where information flows from the clouds and/or servers to
everywhere (companies, hotels, homes, cars, ...) without traditional borders.

• The possible need for several AC solutions within the same organization (or industry
sector) where various technologies (e.g., local network, IoT, and cloud) may need to
work in concert to fulfill the needed requirements of AC.

• The importance of upgrading AC policies and enforcing them in accordance with tech-
nology upgrades and due to dynamically changing conditions.

Due to the above challenges, and the limitations of traditional models, hybrid models,
extended AC models, and abstracted AC models in answering the needed AC requirements
of the current computing environments, and since they are unable to follow up the continuous
technology progression (Kashmar, Adda, Atieh, and Ibrahim, 2021c) (Kashmar et al., 2020),
(Kashmar, Adda, and Atieh, 2019), the research interest for developing AC metamodels have
gained the attention in the last decade (Kashmar, Adda, and Ibrahim, 2021a).

1.4 PROBLEMATIC

Although the proposed AC metamodels in the literature provide some advancement for
some scenarios and use cases, they have several limitations and shortcomings which can be
explained and illustrated as follows:

1.4.1 Generality

In the literature, the proposed metamodels as generic, are not generic enough and they
do not include all features of AC models. They are hybrid templates to derive some AC
models that are employed in their core structure rather than metamodels (Kashmar, Adda,
and Ibrahim, 2021a). A generic AC metamodel should include all features and components
of common AC models and other models. In Figure 8, we illustrate the concept of generic
metamodel where all AC components are included, with the relationships between them.
Figure 9 summarizes AC model features which are employed in the core structure for each of
the proposed metamodels. As shown in Table 1, the metamodels by Barker, 2009, Bertolissi
et al., 2014, Khamadja et al., 2013, and Trninić et al., 2013 are proposed as generic by
including DAC, MAC, and RBAC features and components, and by Slimani et al., 2011

11

Generic AC metamodel

Components of DAC

Components of MAC

Components of RBAC

Components of ACx

Components of ABAC

Other AC Components

Figure 8: The concept of generic AC metamodel.

and Abd-Ali et al., 2015 as hybrid by combining DAC, MAC, and RBAC AC features and
components. Korman et al., 2016 extend the ArchiMate development framework to support
features and components of DAC, MAC, RBAC, and ABAC models. Alves et al., 2014
extend the category-based AC (CBAC) metamodel which includes features of DAC, MAC,
and RBAC to support obligations. Hence, the proposed approaches are not generic enough
and do not include or combine all AC features and components. As illustrated in Figure 9,
the generic metamodel should include the features and components of common AC models
and other models.

DAC

RBAC

MAC

ABAC

Bertolissi et al. [29], Khamadja et al. [30],
Barker[28], Slimani et al. [32], Alves et al.
[33], Abd-Ali et al. [7]

Korman et al. [34]

Trnini´c et al. [31]

Other

Generic AC Metamodel

Figure 9: AC features in the core structure for each of the proposed metamodels.

12

1.4.2 Dynamism

Security solutions must be manageable and adaptable to track the evolution of security
threats that come along with technology upgrades. In this context, an AC metamodel must
be upgradable due to changing conditions or rules. The structure of a metamodel should
be dynamic and describe how its properties can be modified over time, for example, due to
changing conditions (e.g., system, environment, etc.). The metamodel is dynamic if it allows
defining new types of attributes, for example, contextual attributes, and components with
the relationships between them in order to update and formulate different models; hence, it
allows defining a larger set of policies for static and dynamic enforcement. In reference to
Table 1, the concept of a dynamic metamodel is not considered since none of them allows
defining new components/attributes. Consequently, dynamism is an additional feature that
can be implemented for a generic metamodel. Figure 10 illustrates the concept of a dynamic
metamodel.

AC metamodel with n defined
components (& attributes) and

their relationships

Component 1

Component 2

Component 3

Component x

…

…
Component n

AC metamodel with n+i (i>0)
components (& attributes) can be
defined with their relationships

Component 1

Component 2

Component 3

Component x

Component n Component x+1

Component n+1
…

…

Figure 10: The concept of dynamic AC metamodel.

1.4.3 Extensibility

Besides designing a generic and dynamic AC metamodel, it is important to consider the
feature of extensibility. Extensible metamodel means that new components could be defined
and integrated with already existing models and frameworks to support new AC features in
addition to the previous ones. However, the proposed metamodel extensions, in Table 1, by
Alves et al., 2014 and Korman et al., 2016 extend some of the existing AC metamodels and
software development frameworks to support some AC features of some AC models, but they

13

do not explain how their approaches could be extended beyond the proposed limit. In other
words, they are extended but not extensible. In Figure 11, we illustrate the concept of the
extensible AC metamodel.

instantiation Model AC

Model AC’

n policies are defined

(n + x) policies can be
defined/upgraded (x ≥1)

Generic &
dynamic AC
Metamodel

Model AC’’

(n + x + y) policies can be
defined/upgraded (y ≥1)

instantiation

instantiation

Access control components ……

Ne
w

co
m

po
ne

nt
s c

an
 be

 de
fin

ed

an
d a

dd
ed

Figure 11: The concept of extensible AC metamodel.

1.4.4 Hierarchy of Components

The concept of hierarchy is important to define multi-level components (e.g., roles, ac-
tions, objects, etc.). It reflects the structure of an organization and, for example, the respective
responsibilities/priorities of the hierarchical components. A component hierarchy, e.g., role,
defines roles that have unique attributes and may contain other roles; one role may implicitly
include the actions that are associated with another role. Within this structure, access rights
are determined by an entity’s place in the hierarchy, for example, in complex scenarios (e.g.,
IoT), administrators can start by creating a number of entities and then add their hierarchy.
This would help in controlling access to data with fewer maintenance costs compared to cre-
ating a large number of non-hierarchical entities. Hence, hierarchical authorization is the
authorization determined based on the hierarchy. Figure 12 represents examples of hierarchy
in an organization or industry sector (e.g., role hierarchy, Figure 12a; action hierarchy, Figure
12b; object hierarchy, Figure 12c; context hierarchy, Figure 12d). For example, in an aca-
demic and research situation, a role called Dean could contain the roles of Director and Team
Leader, Figure 12a. This means that subjects (users) of the role Dean are implicitly con-
nected with the actions associated with their roles as Director and Team Leader without the
administrator having to explicitly list the Director and Team Leader actions. In the literature,
several models and metamodels are extended to support the feature of hierarchy for some
components, but in complex scenarios and highly dynamic environments, it is important to
consider this feature for all components, for example, none of the proposed metamodels con-

14

sider context hierarchy. The metamodels proposed by Khamadja et al., 2013 and Bertolissi
et al., 2014 support hierarchy of category (e.g., role, groups, etc.); by Slimani et al., 2011
supports hierarchy of category, action, object; and by Abd-Ali et al., 2015, Korman et al.,
2016, and Trninić et al., 2013 support hierarchy of roles.

(a)

Actions

Private network access

Update Read Write

Public network access

Send Receive view

(b)

Roles

Consultant Dean

Director Team leader

Projects

Folders

Objects

Engineering

Project A Project B

Sales

Tax
declarations

(c)

Context

Context
User

User
profile

Context
Environment

Local

Time Location

Network

Type

Context
Service

Version

(d)

Figure 12: Examples for hierarchy of (a) roles, (b) actions, (c) objects, and (d) contexts
Kashmar, Adda, and Ibrahim, 2021b.

1.4.5 Collaboration and Interoperability

In pervasive computing environments, the software enables the connection between var-
ious heterogeneous devices and users within a dynamic and heterogeneous environment; it
carries out the needed mappings between each task and the required services that users need.
In the field of AC, and with the current technologies, AC policies are employed to administer
decisions in systems. They are increasingly used for implementing flexible and adaptive sys-
tems to control access to resources in today’s internet services, networks, security systems,
and others. An AC metamodel should deal with the dynamicity of devices and objects used,
events, situations encountered, users accessing systems and the environments from which
they are connected, and others. It should be highly adaptable and flexible, and it should
be able to integrate many devices and information systems to provide the needed services
for users (and organizations) and ensure homogeneity and collaboration between its compo-

15

nents. Moreover, it should provide the administrative required tasks and enable interoperable
interactions between several derived AC models. Figure 13 illustrates the collaboration and
interoperability concept an advanced AC metamodel should provide.

System A

DAC model

System B
MAC/RBAC

model System C
ABAC model

System D
RBAC/ABAC

model

System E
ACx model

System F
ACx/ACy/ACz

model

Collaboration Space
AC Metamodel

Figure 13: The concept of collaboration and interoperability of AC models.

1.4.6 Migration

Due to continuous technology upgrades, it is essential to consider the concept of migra-
tion where different software components are transferred from one computing environment
to another. This concept must also be considered for AC models where the AC migration
is a kind of modernization for AC policies (set of rules that are generated using different
components) from one model to another covered by a generic, dynamic, and extensible AC
metamodel. Though, none of the proposed approaches tackle the concept of migrating AC
policies. In Figure 14, we illustrate the concept of policy migration from one model to an-
other.

To sum up, the proposed metamodels are not enough to answer the current AC require-
ments, and they have the following limitations:

1- Each metamodel is itself a case and does not encompass a general base concept to derive
various instances for all AC models. In other words, they are planned for dedicated
scenarios or case studies based on some features of AC models;

16

ACx model

Migration
Policy (X):
Rule1

Rule 2

C11 C12 C1n…

C21 C22 C2n…

……

ACy model
Policy (Y):
Rule1

Rule 2

Rule 3

C11 C12 C1n…

C21 C22 C2n…

……

C2j

Cij: AC components to define rules, e.g., subject, objects, action, etc.

C31 C32 C33 …

Figure 14: The concept of migration from one AC model to another.

2- They do not support the ability to define various types of attributes. So, they are not
dynamic enough to follow the continuous technology upgrades.

3- Neither the generic nor extended proposed metamodels are enough to address the needed
target of enforcing AC policy, especially with the current technologies and continuous
upgrades;

4- They do not support the feature of hierarchy for all components which is essential to
conform hierarchical organizational structure;

5- No provided explanations about how the derived models could collaborate within the
same computing architecture e.g., IoT;

6- An essential aspect is not considered in all of the presented AC metamodels which is
the migration of AC policy from one AC model to another. Having a metamodel should
make it possible to translate an existing AC policy between the different AC models
covered by the metamodel.

1.5 OBJECTIVES

The main objective of this research is to develop a new AC metamodel adaptable to
different computing environments that overcomes the limitations of the existing metamodels.
To achieve this, we first review the proposed AC metamodels in the literature to study their
objectives, weaknesses, and their limitations in controlling access to various resources. As
well, we identify information security needs and AC requirements with the recent technolo-
gies. In this context, we find that although the proposed metamodels have some enhanced
features, they have common limitations (section 1.4) and are insufficient to meet the needed

17

AC requirements of the current generation of networking environments, especially with the
emergence of industry 4.0 and IoT applications. To achieve the main objective of this re-
search, we set the following specific objectives:

1- Design and develop generic, dynamic, extensible, and hierarchical AC metamodel.

2- Providing a simple and flexible DSL that overcomes the complication of existing lan-
guage expressions.

3- Apply the metamodel to industry 4.0 environment.

1.6 RESEARCH METHODOLOGY

In this research project we have proposed a hierarchical, extensible, advanced, and dy-
namic AC metamodel, named HEAD metamodel, with several advantages compared to the
existing metamodels in terms of flexibility and the ability to provide effective and dynamic
security models for dynamic systems. In this section, we explain the research methodology
which is conducted in four phases over a period of four years. The first phase, is the con-
textualization of research topic where we review and analyze the existing metamodels to find
out the effectiveness of their features in the presence of ubiquitous computing and pervasive
information systems, and if they are upgradable and able to follow continuous technology
progression. During this phase, the problem is framed then the possible solution is pro-
posed. The second phase is the design of the formal metamodel where the applied steps are
explained, starting from scratch and reaching the needed design. The third phase is the imple-
mentation phase where the tools for metamodel instantiation are designed, and the DSL for
policy instantiation is developed. The fourth phase, is the evaluation and validation of HEAD
metamodel where it is employed to define and enforce the needed AC policies for two case
studies inspired by the computing environment of Institut Technologique de Maintenance In-
dustrielle (ITMI)-Sept-Îles, QC, Canada; the first is for ITMI’s local (non-IoT) environment
and the second for ITMI’s IoT environment. In Table 2, we summarize the research plan to
achieve the needed objectives.

18

Table 2
The Research Methodology

P
ro

b
le

m An AC metamodel with advanced features that is able to include the heterogeneity of AC

models and answer the needed AC requirements and challenges of the current networking

generation is not yet achieved.

R
es

ea
rc

h
 o

b
je

ct
iv

es

1
Develop an AC metamodel that is able to instantiate different AC models (the
common AC models, hybrid models, and others.

2
Design dynamic AC metamodel, flexible, and upgradable due to continuously
changing requirements and policies.

3
Design extensible metamodel that considers any future extensions or transformations
and allow describing a larger set of possible rules for given AC model(s).

4
Develop the feature of finding hierarchical relationships between the defined policy
components/entities, for example, the hierarchy of roles.

5 Applying the metamodel to industrial IoT (industry 4.0) - case study.

R
es

ea
rc

h
 P

la
n

R
es

ea
rc

h

o
b

je
ct

iv
e

1

• Review the literature (AC models and AC metamodels).
• Analyze the existing metamodels and study their objectives and the limitations.
• Frame the problem, set the goals, and develop the possible scope of solution.

R
es

ea
rc

h

o
b

je
ct

iv
es

 2
 a

n
d

 3 • Build the concept of the new generic and dynamic metamodel with preliminary
examples.

• Explain the logical architecture of the new metamodel with examples
• Represent a General Metamodel Instance with examples
• Apply the metamodel to a case study case

R
es

ea
rc

h

o
b

je
ct

iv
e

4 • Formal representation for the AC metamodel
• Implementation of the metamodel

- Designing tools for metamodel instantiation
- Developing DSL for policy instantiation
- Illustrations and examples

R
es

ea
rc

h

o
b

je
ct

iv
e

5 • Case study (ITMI) – non-IoT and IoT scenario
• Instantiate the AC model(s) for the case studies based on the metamodel
• Generate AC policies using xtend notations and use NGAC as an enforcement

framework.
• Final Validation

1.6.1 Phase 1: Review and Critical Analysis of AC metamodels

1.6.1.1 Literature Review

In this step, the state-of-the-art for the proposed AC models and metamodel in various
computing environments is reviewed (Kashmar, Adda, and Atieh, 2019) (Kashmar, Adda,

19

Atieh, and Ibrahim, 2021a) (Kashmar, Adda, Atieh, and Ibrahim, 2021c). We focus on the
recent research issue in this domain which is the AC metamodels, we find that the proposed
metamodels have limited AC features in particular and lack essential features in general.
Hence, they are insufficient to follow up on technology progression and answer the increas-
ing demand of AC requirements. The common limitations, section 1.4, of the existing AC
metamodels are generality, dynamism, extensibility, hierarchy, collaboration and interoper-
ability, and migration of AC policies. In this research, we address the generality, dynamism,
extensibility, and hierarchy issues.

1.6.1.2 The Scope of Solution

To find the needed solution, our idea is designed by considering the aforementioned
limitations (section 1.3) that accompany the recent technologies and their continuous pro-
gression in general, and the enforcement challenges in organizations in particular. At the
initial stages of our work, we have realized that:

The only thing we can expect with confidence about the future of security
frameworks is that things we cannot expect will happen.

Hereafter, we set our idea based on this insight. Figure 15 illustrates the initial step to-
wards constructing our metamodel. Our idea is based on the concept of including everything
and anything essential for the AC decision and included in the AC policy, whether they are
subjects, objects, permissions, roles, categories, attributes, etc., this step is the definition of
components. Then, the defined components should be oriented to find one or many AC mod-
els (e.g., AC1=DAC, ..., ACx=hybrid RBAC/ABAC, ..., ACn=RBAC), this step is the is model
formulation (Kashmar, Adda, Atieh, and Ibrahim, 2019a).

1.6.1.3 The Framework Concept

In this step, a deeper look for our idea is proposed by providing a new framework
concept for modeling AC policy (Kashmar, Adda, Atieh, and Ibrahim, 2019b). Figure 16
illustrates the general AC framework layers where all components of common AC models,
in addition to new ones, can be defined and formulated which makes it flexible for any new
extensions or transformations. It is composed of three main levels:

20

Objects

Subjects

Roles

Permissions

X, Y, Z
Other defined
components/
attributes

Policy

Allow subject(s)

to access

object(s)…

knowing that …

if…. unless
X

X

X

Y

Z

Y
Y ZZ

DAC

MAC

Z

Z

X

XX

Y

Y

Y
X

Z

Definition of
Components

AC Model
Formulation

Po
lic

y
In

te
rp

re
ta

ti
o

n

Allow

Deny
AC1 AC2 AC3 ……. ACn

X
X

Figure 15: The initial step towards HEAD metamodel (Kashmar, Adda, Atieh, and Ibrahim,
2019a)

Basic terms & Parameters

Access Control
Model

Formulation

X

X

YY
Z

Z

Policy

DAC RBAC

AC1

AC2
AC3

X1 Y2

ACn………

X , Y , Z
Other defined
components/
attributes

Object

Subject

Role

Permission

Allow

Deny

Definition of Basic Terms

A
u

th
o

ri
za

ti
o

n
 E

n
gi

n
e

Policy Enforcement

Allow subject(s) to …

knowing that …

if…. unless

Policy Analysis & Assessment

MAC
X1

Figure 16: The main layers of our AC framework concept (Kashmar, Adda, Atieh, and
Ibrahim, 2019b)

• The definition of all components: where all AC components/attributes are defined
(e.g., subjects, objects, roles, permissions, security levels, attributes. . .) with the ability
to define new ones (e.g., Xi= actions, Yj=views . . .).

• The authorization engine: is mainly composed of two sublayers, the first sublayer is
where the formulation of AC method to model the policies of authorization takes place.
The second sublayer is the policy analysis and assessment to check the consistency,
relevance, minimality, completeness, etc. of AC rules and assess their correctness, en-
forceability, etc. before enforcing them, in other words, checking if there are any needs
to modify, update, or re-design the policy. Note that, the policy analysis and assessment

21

sublayer is not addressed in this research.

• The policy enforcement: where AC decisions are enforced after determining whether
a subject is allowed or denied accessing a certain object(s).

During the first phase, the following papers are published:

• Four conference papers: the first paper is a preliminary review for common AC models
and the existing AC metamodels with some research questions (see Appendix 1); the
second is a review with critical analysis for the proposed AC metamodels, and their
objectives and limitations (see Appendix 2); the third paper explains our proposed idea
to overcome the existing limitations and the scope of the solution to control access in
heterogeneous structures, e.g., IoT (section 1.6.1.2) (see Appendix 3); and the fourth
paper presents the framework concept (section 1.6.1.3) (see Appendix 4).

• Book chapter: during this phase, our aim was also to review more of the implemented
AC methods in various domains, for this purpose we have reviewed some of the used AC
methods in social media networks. The chapter title is "Access Control in Cybersecurity
and Social Media" (see Appendix 5).

• Journal paper: deeper and detailed review with critical analysis for metamodels, their
limitations, in addition to various research issues and open questions (Chapter 2).

1.6.2 Phase 2: The Design of HEAD Metamodel

1.6.2.1 The Logical Architecture

In this step, the classes and layers of dynamic and multi-layer metamodel are defined
(Kashmar et al., 2020), and illustrated in Figure 17. It is mainly composed of 6 levels to
formulate the needed AC model.

• Level 1: all attributes (a1, . . .an; where n ≥ 0) of subjects, objects, etc. are defined.

• Level 2: the defined attributes, in level 1, are aggregated to construct the needed classes
(key components for an AC model), for example, subjects, objects, etc.

• Level 3: class instances are created for explicit components, for example, subjects
(S1,. . . Sn; n ≥ 0) and objects (O1, . . .On; n ≥ 0). An explicit component refers to
something that is real and exist in an organization.

22

• Level 4: class instances are created for implicit components, for example, roles (R1,. . . Rn),
actions (A1,. . . An), permissions (P1,. . . Pn), security levels (L1,. . . Ln), Categories (C1,
. . .Cn), etc. An implicit component refers to something described or explained in the
guidelines or rules of a security policy.

• Level 5: aggregatation of class instances for explicit and implicit components, created
in in levels 3 and 4, for the needed assignments for example: subjects (S1, S2, S7) ∈ role
(R1), or object (On) ∈ security level (Ln), etc.

• Level 6: the needed aggregations are performed to set the permissions, actions, etc.
which can/not be performed by subjects over objects. This could be occurred by select-
ing and aggregating the needed instances and assignments of levels 3, 4 and 5 for the
AC decision (allow/deny access) and checking constraints.

Definition of attributes

Abstract Classes

Concrete Classes

…

●a1 ●a2

●a3

●a4

●a6

●a5 ●a7 ●an-2
●an-1

●an

…

……

Aggregations/assignments for explicit & implicit components

Subject S2

Class instances for implicit components

role, actions,
categories …

role R1 role Ri permission Pj

…

category Ck

…

security level
Lm …

…

<<instance of>> <<instance of>> << instance of >> << instance of >>

subjects &
objects

Subject S1
Subject S2

…
Subject Sn

Object O1

…

<< instance of >>

Object On

Class instances for explicit components

Aggregations/checking constraints for grant/deny access

category CkSubject S1 role RiSubject S1

……

action An

role R1 permission Pj Object O1

…

…

security level
Lm

Object On

category Ck
permission Pj+1 Object Onaction An

constraint

<< instance of >> << instance of >>

… …

(2)

(3)

(4)

(5)

(6)

(1)

D
ef

in
it

io
n

o
f

b
as

ic

co
m

p
o

n
en

ts

A
u

th
o

ri
za

ti
o

n
en

gi
n

e
P

o
li

cy

en
fo

rc
em

en
t

Allow

Deny

Policy Analysis & assessment

A
C

 M
o

d
el

 F
o

rm
u

la
ti

o
n

Figure 17: The Logical Architecture (Kashmar et al., 2020)

23

Moreover, an industrial use case is presented to provide a detailed description of how com-
ponents/attributes can be aggregated to express policies. As mentioned earlier, the policy
analysis and assessment phase is not addressed in this research. The main purpose of this
step is to plan for the formal AC metamodel and explain the relationships between its com-
ponents before designing and implementing it.

1.6.2.2 Visualization for a General Metamodel Instance

Based on the above logical architecture, a closer image for a general instance of the
metamodel is presented, also the main concepts that any AC policy might include in order
to identify the main components/classes of the metamodel are interpreted. In general, any
AC policy includes a set of concepts (and attributes): (1) to describe subjects and objects;
(2) describe the authorized subjects; (3) explain the different access rights; (4) set various
constraints and conditions; (5) describe the context (environment) to access objects. More-
over, the components of AC models that are implemented to generate AC policies are het-
erogeneous, to unify them and make them adaptable to all AC models we classify them into
explicit, implicit (authorization units and procedural units), and setting concepts as illustrated
in Figure 18. Explicit concepts refer to something that is real and exists (e.g., subjects and ob-
jects). Implicit concepts refer to something described or explained in the guidelines or rules.
Implicit concepts include Authorization Units (e.g., roles, security levels . . .) and Procedural

Units (actions, permissions . . .). Setting refers to concepts that are included to have more
accurate and regulated access to resources (e.g., context, constraints . . .) (Kashmar, Adda,
Atieh, and Ibrahim, 2021b). Unifying AC concepts of heterogeneous security policies was
an essential step towards our formal AC metamodel.

1.6.2.3 The Formal Metamodel

After unifying the heterogeneous concepts of AC policies, in this step, the formal meta-
model, its meta-components, and the relationships between them are illustrated (Figure 19).
The relationship between explicit (Ex) and Authorization Unit (AU) is to assign, for example,
zero or many (0..*) subjects to roles, groups, categories, or other AUs. The relationships be-
tween AU and Procedural Unit (PU), and PU and Ex are to represent which AUs are able to
perform zero or many PUs (e.g., actions, permissions . . .) and access some, for example, ob-
jects or services. Note that Implicit Im components (AUs and PUs) might have zero or many

24

subject

attlist[]

object

attlist[]

authorization unit

attlist[]

procedural unit

attlist[]

category role group

actionoperationpermission

0...*

0...*

1...*1...*

0...*1...* context

attlist[]

0...*0...*

constraints

attlist[]

0...*

0...*

Explicit Implicit Setting

contextual
constraints

non-contextual
constraints

1...*

Figure 18: Towards the Formal representation of metamodel: A general instance (Kashmar,
Adda, Atieh, and Ibrahim, 2021b)

Setting (St) (e.g., contextual and/or non-contextual constraints) before accessing/performing
tasks on Ex components. Moreover, the metamodel provides support for formulating AC
models and hybrid models for different policies by allowing AUs to be associated with other
AUs, PUs to be associated with other PUs, Ex components to be associated with other Ex

components, and St components to be associated with other St components. As shown in
Figure 19 a self-association edge exists in each of the classes. Note that in some models,
we might have an empty set of AU, or St , for example, in the DAC model, AU is an empty
set since explicit components are not assigned to AUs. The formal metamodel is Hierar-
chical, Extensible, Advanced, and Dynamic (HEAD) metamodel, in phase 2 we explain the
implementation details of HEAD metamodel.

During this phase, two conference papers are published, the first paper (see Appendix
6) explains the logical architecture of section 1.6.2.1; and the second paper (see Appendix 7)
represents a visualization for a general metamodel instance of section 1.6.2.2. The tasks of
section 1.6.2.3 are exlpained in detail in chapter 3.

25

Implicit

attributes

Explicit

attributes

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit

attributes 0..*

ExHierarchy0..*

StHierarchy0..*

auHierarchy0..* puHierarchy0..*

assign perform

settings has

0..*

0..* 0..*

0..*

0..*

0..*

0..*

Figure 19: The HEAD metamodel (Kashmar, Adda, and Ibrahim, 2021b)

1.6.3 Phase 3: Implementation of HEAD Metamodel

In this phase, we have developed the DSL language of the HEAD metamodel using
Eclipse-xtext to allow instantiating different AC models using this DSL. In Figure 20, we
show the DSL of HEAD metamodel. Lines 1 to 39, to instantiate the needed components
of AC models, the hierarchies, and the attributes. Lines 40 to 63, to express a set of AC
rules using the derived components/attributes of Ex, AU, PU, and St with the access request
decision. Using the DSL of HEAD metamodel we have derived various instances of common
models and hybrid models. Hereafter, the derived models are encoded using Eclipse Xtend
notation, an expressive dialect of Java, to represent the concrete instance of an AC policy and
generate the needed java code. Chapter 3 explains the implementation details of this section
(a manuscript is published in Sensors journal).

1.6.4 Phase 4: Evaluation and Validation for HEAD Metamodel

For the evaluation and validation, HEAD metamodel is employed to specify the needed
AC policies for two case studies inspired by the computing environment of Institut Tech-
nologique de Maintenance Industrielle (ITMI)-Sept-Îles, QC, Canada; the first is for ITMI’s

26

1- Metamodel:
2- {Metamodel}
3- 'policy' (policy+=Policy)+ 'end'
4- 'rule:'
5- decision=Decision
6- ;
7- Attribute:
8- name=ID (array ?='[' (length=INT)? ']')? ":" type=AttType
9- ;
10- Policy:
11- name=ID ('('attributes+=Attribute+')')?
12- 'explicit' (explicit+=Explicit)+ 'end'
13- (implicit+=Implicit)+
14- ('setting'(setting+=Setting)* 'end')?
15-;
16- AttType:
17- 'String'|'int'|'boolean'|'char'|'float'
18- ;
19- Explicit:
20- name=ID ('(' attributes+=Attribute+')')?
21- ('['heirarchy+=Explicit+']')?
22- ;
23- Implicit:
24- {Implicit}
25- ('authorization' authunit+=AuthorizationUnit* 'end')?
26- 'procedural' procunit+=ProceduralUnit* 'end'
27- ;
28- AuthorizationUnit:
29- name=ID ('(' attributes+=Attribute+')')?
30- ('['heirarchy+=AuthorizationUnit+']')?
31- ;
32- ProceduralUnit:
33- name=ID ('(' attributes+=Attribute+')')?
34- ('['heirarchy+=ProceduralUnit+']')?
35- ;
36- Setting:
37- name=ID ('(' attributes+=Attribute+')')?
38- ('['heirarchy+=Setting+']')?
39- ;
40- Decision:
41- (('(' attributes+=Attribute*')')?
42- '{' (explicit+=[Explicit|QualifiedName]
43- ('(' (wth+=[Attribute|QualifiedName])* ')')?)
44- ('[' (authunit+=[AuthorizationUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)* ']')?
45- ('{' procunit+=[ProceduralUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)?
46- => '{'
47- (explicit+=[Explicit|QualifiedName]
48- ('('(wth+=[Attribute|QualifiedName])* ')')?
49- ('['(authunit+=[AuthorizationUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)*']')?
50- '{'
51- (
52- procunit+=[ProceduralUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?
53- ('{' (setting+=[Setting|QualifiedName] ('(' wth+=[Attribute|QualifiedName]* ')')?)*'}')?
54-)+
55- '}'
56-)+
57- ('}')?
58- '}'
59- '}' '-->' id+=ID)+
60- ;
61- QualifiedName:
62- ID('.' ID)*
63- ;

Figure 20: HEAD Metamodel: The DSL grammar (Kashmar, Adda, and Ibrahim, 2021b)

local (non-IoT) environment and the second for ITMI’s IoT environment. For each case
study, the needed AC model is derived using the DSL of HEAD metamodel, then xtend nota-
tion (an expressive dialect of Java) is used to generate the needed java code which represents
the concrete instance of the derived model. At the system level and to get the needed AC
rules, Cypher statements are generated (after configuring the AC policies) and then injected
into Neo4j database to represent the Next Generation Access Control (NGAC) policy as a
graph. NGAC framework is used as an enforcement point for the generated rules of each case

27

study. The results show that HEAD metamodel can be adapted and integrated with various
local and distributed environments, able to serve as a unifying framework, answer the current
AC requirements and follow the needed policy upgrades. Moreover, we have implemented
an administrative panel for HEAD metamodel, as an additional example, using VB.NET and
SQL to show that the metamodel can be implemented to generate AC rules using other plat-
forms. Chapter 4 explains the instantiation and implementation details for two industrial case
studies (a manuscript is submitted to Sensors journal - Special Issue: Cybersecurity in the
Internet of Things).

In addition to all above, a manuscript is published in the Journal of Cybersecurity and
Privacy (JCP) with the title “HEAD Access Control Metamodel: Distinct Design, Advanced
Features, and New Opportunities”, explaining the distinct design of the HEAD metamodel,
starting from the metamodel development phase and reaching to the policy enforcement
phase. Moreover, we describe the remaining steps and how they can be employed to de-
velop more advanced features and open new opportunities and answer the various challenges
of technology progression in the domain.

1.7 THESIS ORIGINALITY AND CONTRIBUTIONS

The novelty of the thesis lies in the idea proposed to design and implement a hierarchi-
cal, extensible, advanced, and dynamic AC metamodel that serves as a unifying framework
to derive (existing and non-existing) AC models. Having a new and advanced AC metamodel
in the domain with advanced features that conforms to organizational AC security policies
and adapts the decision making according to technology progression to meet organizational
and users’ needs, represents a very innovative concept. HEAD metamodel features can be
summarized as follows:

• It unifies the heterogeneous components of AC models.

• It is generic enough to include the common AC models and other models.

• It is dynamic and includes the feature of defining components (and attributes for all
components).

• It is extensible since it allows extending the already derived AC models.

• It supports the hierarchy for any type of components.

28

• it allows instantiating non-existing AC models.

• it allows creating hybrid models with several policy classes to express combined and
uncombined AC rules.

This research project is of major importance for organizations and industry sectors
in general and for Quebec in particular, especially after the unveiling of the government’s
intention to create a ministry for digital and cybersecurity in October 2021. In other words,
after taking serious steps to ensure its digital transformation and quickly penetrate the 4.0
era through the deployment of solutions and technologies using the principle of the IoT. This
research project has several innovative aspects and they can be enumerated as follows:

• Development in the field: due to limited number of the proposed works in the do-
main (the last metamodel proposed as generic was in 2014 and as hybrid was in 2015
(Kashmar et al., 2022a))

• Novel Concept: since there is no similar concept proposed in the domain.

• Innovative Design: it provides a novel and distinct design for an AC metamodel in
the domain that address the current limitations of AC metamodels to improve the AC
methods.

• Contributes to cybersecurity: against cyber-attacks compared to the existing AC meta-
models due to its features.

• Necessary Materials and Tools: it provides the necessary examples and tools for the
researchers in the domain.

• Adaptability: can be implemented in centralized and distributed computing environ-
ments.

• Paradigm shift: Contributes to the development of knowledge in the field and can be
considered as a paradigm shift towards reshaping the existing models, especially in the
field of industry.

The limited number of the proposed works in this domain opens various research di-
rections to address different issues related to AC methods with the current generation of
networking environments. Accordingly, based on HEAD metamodel various new research
opportunities can be developed, for example, development of intelligent algorithms for data
collection, prediction, and decision-making; development and emergence of new dynamic,

29

interoperable, and intelligent AC models; and many other directions based on a new and dis-
tinct concept. Some of the new opportunities and research directions are explained in chapter
5. In summary, there are no similar project that tackle this level of originality in this domain,
and this project would be a first step in the industry’s shift towards IT security "4.0". As
well, our proposed metamodel is very influential and this is reflected in the dissemination
and transfer of knowledge via journal articles and participation in conferences and popular
science activities.

In Table 3, we summarize the time frames for each phase during our work, with the
various scientific papers that are published in international conferences and journals.

Table 3
The timeline

D
ev

el
o

p
m

en
t

P
u

b
lic

at
io

n
s

Phase 2: Metamodel DesignPhase 2: Metamodel Design

Phase 3: ImplementationPhase 3: Implementation

Phase 1: Contextualization of Research TopicPhase 1: Contextualization of Research Topic

Phase 4: Evaluation &
Validation

Phase 4: Evaluation &
Validation

Literature review & critical analysis

Frame the problem

Concept selection

Framework layers

The logical architecture

Industrial use case

Metamodel instance

HEAD Metamodel

HEAD - DSL

AC policies

Case study 1

Case study 2

C1: From Access Control Models to Access Control Metamodels: A
Survey

C2: A new dynamic smart-AC model methodology to enforce
access control policy in IoT layers

C3: Smart-ac: A new framework concept for modeling
access control policy

BC1: Access Control in Cybersecurity and Social Media

C: Conference paper
BC: Book Chapter
J: Journal Article

Published

Submitted

To be submitted

C4: Deriving access control models based on generic and
dynamic metamodel architecture: Industrial use case

C5: A review of access control metamodels

C6: Access control metamodel for policy specification and enforcement: From
conception to formalization

J1: Access Control Metamodels: Review, Critical Analysis, and Research Issues

J2: HEAD Metamodel: Hierarchical, Extensible, Advanced,
and Dynamic Access Control Metamodel for Dynamic and
Heterogeneous Structures

J3: HEAD Access Control Metamodel: Distinct
Design, Advanced Features, and New
Opportunities

J4: Instantiation and Implementation of HEAD
Metamodel in an Industrial Environment: non-IoT
and IoT Case Studies

1 2 3

2021
1 2 3

2020
1 2

2022
1 2 3

2019
2 3

2018
3

1.8 THE STRUCTURE OF THE THESIS

The remainder of this thesis is organized into five chapters. Each of them deals with
a key element and is presented in the form of a journal article. In the following, we briefly
present the content of each chapter.

30

In Chapter 2, we review the proposed AC metamodels and their implementation scenar-
ios, we analyze them, their objectives, their limitations, and present current research issues
and open questions that still need to be addressed.

In Chapter 3, we propose the HEAD metamodel and explain its characteristics. We
use Eclipse (xtext) to define the DSL of the metamodel, then show how it is possible to use
this DSL to derive various instances of AC models. We illustrate our approach with several
successful instantiations for various models and hybrid models. Additionally, we explain
how different static and dynamic AC policies can be expressed using its components, and
we provide some examples to show how some of the derived models can be implemented to
generate AC policies.

In Chapter 4, We present two case studies inspired by the computing environment of
Institut Technologique de Maintenance Industrielle (ITMI)-Sept-Îles, QC, Canada; the first
is for ITMI’s local (non-IoT) environment, and the second for ITMI’s IoT environment. The
main objective is to show how HEAD metamodel can be adapted to specify and enforce the
needed AC policies in different computing environments.

In Chapter 5, we explain the distinct design of the HEAD metamodel, then describe the
remaining steps and how they can be employed to develop more advanced features in order to
open new opportunities and answer the various challenges of technology progression and the
impact of the COVID-19 pandemic in the domain. Subsequently, we present a novel approach
in five main phases to help design secure systems that comply with the organizational security
policies that are related to AC based on HEAD metamodel.

Finally, in Chapter 6, we present the general conclusion with the different contributions
of this research work and the existing limitations of the HEAD metamodel. Moreover, we
present the future perspectives we intend to undertake to address these limitations, in addi-
tion to the new opportunities and the various research directions which would enhance our
HEAD AC metamodel to meet the expected AC requirements with the presence of various
technology trends.

31

CHAPTER 2

ACCESS CONTROL METAMODELS: REVIEW, CRITICAL ANALYSIS, AND
RESEARCH ISSUES

Published in Journal of Ubiquitous Systems & Pervasive Networks, 2021

Volume-16 , Issue 2, pp. 93 - 102; doi: 10.5383/JUSPN.16.02.006

Abstract: Several techniques have been employed to ensure security and privacy in various computing
environments, and access control (AC) is one of the essential security requirements in this domain,
especially for recent networking environments such as the internet of things (IoT), cloud comput-
ing, etc. The new networking environments are emerging and releasing new prospects to traditional
information systems by merging new technologies and services for seamless access to information
sources at anytime and anywhere. This emergence opens new threats to information security and new
challenges to controlling access to resources. Moreover, the continuous technology upgrades and the
diversity of AC models force the need to find AC metamodels with a higher level of abstraction to
serve as unifying frameworks for specifying and enforcing AC policies. AC metamodels are proposed
to encompass AC features and are used to derive various instances of AC models and methods. In this
chapter, we review the proposed AC metamodels and their implementation scenarios, their objectives,
and their limitations, then we analyze them to find their effectiveness in the light of new technologies.
Consequently, the limited works of the proposed AC metamodels in this domain and the urgent need to
develop advanced AC methods open various research issues and raise several questions in this domain
that have not been addressed yet.

Résumé: Plusieurs techniques ont été employées pour assurer la sécurité et la confidentialité dans
divers environnements informatiques, et le contrôle d’accès (CA) est l’une des exigences de sécu-
rité essentielles dans ce domaine, en particulier pour les environnements de réseau récents tels que
l’internet des objets (IdO), le cloud computing, etc. Les nouveaux environnements réseau émergent et
offrent de nouvelles perspectives aux systèmes d’information traditionnels en fusionnant de nouvelles
technologies et de nouveaux services pour un accès transparent aux sources d’information à tout mo-
ment et en tout lieu. Cette émergence ouvre de nouvelles menaces pour la sécurité de l’information et
de nouveaux défis pour contrôler l’accès aux ressources. De plus, les mises à niveau technologiques
continues et la diversité des modèles CA obligent à trouver des métamodèles CA avec un niveau
d’abstraction plus élevé pour servir de cadres unificateurs pour spécifier et appliquer les politiques
CA. Les métamodèles CA sont proposés pour englober les caractéristiques CA et sont utilisés pour
dériver diverses instances de modèles et de méthodes CA. Dans ce chapitre, nous passons en revue les
métamodèles CA proposés et leurs scénarios de mise en œuvre, leurs objectifs, leurs limites, puis nous
les analysons pour trouver leur efficacité à la lumière des nouvelles technologies. Par conséquent, les
travaux limités des métamodèles CA proposés dans ce domaine et le besoin urgent de développer des
méthodes CA avancées ouvrent divers problèmes de recherche et soulèvent plusieurs questions dans
ce domaine qui n’ont pas encore été abordées.

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 1 — #1 i
i

i
i

i
i

Journal of Ubiquitous Systems & Pervasive Networks
Volume 3, No. 1 (2021) pp. 00-00

Access Control Metamodels: Review, Critical Analysis, and Research
Issues

Nadine Kashmar a∗, Mehdi Adda a, Hussein Ibrahim b

aUniversité du Québec à Rimouski, Rimouski, Canada, QC G5L 3A1
bInstitut Technologique de Maintenance Industrielle, Sept-Îles, Canada, QC G4R 5B7

Abstract

The new generation of networking environments such as the internet of things (IoT), cloud computing, etc. is emerging and
releases new prospects to traditional information systems by merging new technologies and services for seamless access
to information sources at anytime and anywhere. Concurrently, this emergence opens new threats to information security
and new challenges to controlling access to resources. To ensure security, several techniques have been employed, and
access control (AC) is one of the essential security requirements especially for recent networking environments. Various
authentication and AC methods are proposed to enforce AC policy and to prevent any unauthorized access to logical/physical
assets. The continuous technology upgrades and the diversity of AC models force the need to find AC metamodels with a
higher level of abstraction that serves as a unifying framework for specifying any AC policy. AC metamodels are proposed
to encompass AC features and are used to derive various instances of AC models and methods. In this paper we review
the proposed AC metamodels and their implementation scenarios, we analyze them, their objectives, their limitations, and
present current research issues and open questions that still need to be addressed.

Keywords: Access control, metamodels, IoT, Industry 4.0, security and privacy, security policy

1. Introduction
The importance of security, data protection, and privacy requi-
rements increases with the massive presence and integration of
new paradigms and technologies, such as cloud computing and
the Internet of Things (IoT), also with the deployment of digital
and intelligent solutions based on the industry 4.0 concept [1, 2].
To contain and mitigate the impact of cyberattacks, several tech-
niques have been employed, and access control (AC) is one of the
essential solutions for privacy settings to measure and optimize
IT security [3] in IoT [4], cloud computing [5], social networks
[6] and other fields. Access control methods are implemented to
control what users can access, when, and how by enforcing AC
policy to prevent any unauthorized access for logical or physical
assets. In any organization (or industry sector) there might be dif-
ferent types of policies such as: password policy, network access
policy, remote access policy, etc., they are defined by managers

and system administrators based on the rules and the guidelines
of the organization.

To enforce organizational policies, various AC models are
developed such as are Discretionary Access Control (DAC),
Mandatory Access Control (MAC), Role-Based Access Con-
trol (RBAC), Organization Based Access Control (OrBAC), and
Attribute-Based Access Control (ABAC) [7–9]. To enhance AC
methods, various hybrid models are implemented by combining
features of two or more AC models. Despite the advantages of the
common AC models in controlling access in various computing
environments, they also have various limitations. Moreover, with
the emergence of highly dynamic environments, especially with
the concept of industry 4.0 and IoT applications, it is realized
that AC models (also hybrid models) have reached their limits.
They no longer meet the increasing demand for privacy and secu-
rity standards with the widespread of devices and resources [9].
This reality urges the need to find more advanced AC methods
and develop AC metamodels with advanced features for specif-
ying and enforcing different AC policies [10–12]. AC metamodels

∗Corresponding author. Tel.: +14188338800
Fax: +141883311; E-mail: nadine.kachmar@gmail.com
© 2021 International Association for Sharing Knowledge and Sustainability. 1
DOI: 10.5383/JUSPN.03.01.000

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 2 — #2 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

are used to derive various instances for the common AC models,
hybrid models, and other AC methods. Note that, in [8] we pre-
sent a preliminary survey for the commonly used AC models with
some proposed AC metamodels, then raise some questions in this
domain. Fig.1 summarizes the aim of AC metamodels.

Access Control Metamodels

Common AC Models Hybrid AC Models Other AC Models

Fig. 1. The aim of AC metamodels

The objective of this paper is to present a literature review and
investigate the state-of-the-art of AC metamodels, find out their
limitations in the presence of new technologies, and determine the
various research issues in this domain, then raise some essential
research questions. This review can be considered as a step tow-
ards developing a new generic and dynamic AC metamodel with
advanced features for IoT and non-IoT systems. In this paper, we
provide a detailed literature review for the existing AC metamo-
dels with discussion and critical analysis. The contribution of this
paper can be summarized as follows:

• Reviewing recent studies of AC metamodels by providing a
summary of the objectives of each study.

• Analyzing and criticizing the proposed AC metamodels.
• Explaining their limitations and why they are not effective in

the presence of new technologies and for future upgrades.
• Determining different research issues in this domain and raise

some essential research questions.

The remainder of this paper is organized as follows: Section 2
summarizes the existing AC models. Section 3 presents the state-
of-the-art of the proposed metamodels, their objectives, and their
limitations. Discussion and critical analysis and common limi-
tations for the proposed metamodels are presented in section 4.
Current research issues and open questions are proposed in section
5. Section 6 concludes this paper with future perspectives.

2. Access Control Models
In any computing environment subjects request permission (read,
write…) to access some objects (file, class…). For this purpose,
the defined AC policy that is formally represented by an AC model
is enforced to control what objects a subject (user) can access
when and how. A subject is allowed to perform some operation(s)
on an object or denied accessing this object based on the defined
access rights that are granted to him. An access right or a privilege
definition might have the form (u, ar, o), which means a subject
(u) has an access right (ar) to an object (o), another defined form
is (ar, o), a capability of u or referred to as permission of u [7, 13].
AC policies might have the following form:
Allow/Deny doctors, nurses, etc. to… and…
if… and/or… Except…when…

2.1. The Common Access Control Models

Access control is the process of restricting access to a place or
resource based on a defined set of security policies. Security

policies are the definition of rules that must be regulated in an
organization, and they are usually defined by managers and system
administrators. An AC model is a framework for making autho-
rization decisions based on the defined AC policies, and an AC
mechanism is the process of enforcing AC policy and translating
user’s access request [7, 8]. Despite the presence of several papers
reviewing the state-of-the-art of the common AC models [8, 14],
in this paper, we summarize them since their features are used in
building different AC metamodels.

2.1.1. Discretionary Access Control (DAC)

DAC model was first introduced in the 1960s. The system prote-
ction notion includes three major components: objects, subjects,
and permission. DAC is defined as a user-centric model where a
file owner controls permissions that are given to other users requi-
ring access to that file. The AC rights of subject(s) over object(s)
are specified by Access Control Matrix (ACM). Other ACM vari-
ations include Capability Lists (CLs) and Access Control Lists
(ACLs). Lampson and Harrison Ruzzo Ullman (HRU) are two
variants of DAC model. It is very flexible to assign access rights
between subjects and objects, and it is provided with operating
systems to authenticate system administrators and users using
some procedures, for example, passwords [7, 8].

2.1.2. Mandatory Access Control (MAC)

MAC model was presented in the 1970s. In MAC, users can-
not define AC rights by themselves, AC policy is managed in
a centralized manner. It is based on the concept of security
levels associated with each subject and object where permissi-
ons and actions are derived. These levels have hierarchical and
nonhierarchical components. Hierarchical components include
unclassified, confidential, secret, and top-secret types. Nonhie-
rarchical components represent a set of categories where labels
are used to indicate security levels for objects classification and
subjects clearance. Its key components are a set of objects, a set
of subjects, permissions, and security levels. Bell and LaPadula
(BLP) and BIBA (Kenneth J. Biba) are two MAC variants [7–9].

2.1.3. Role-Based Access Control (RBAC)

RBAC was proposed in 1992 as an alternative approach to MAC
and DAC. It is based on several entities: users, roles, permissions,
actions, operations, and objects. A role is a group of permissions
to use object(s) and perform some action(s), it can be associated
with several users. Also, users can be assigned to several roles
(e.g., doctor). The aim of RBAC is to facilitate the administration
of AC policy, it controls user’s access to information through roles
for which a user is authorized to perform [7–9]. RBAC example
can be represented in the hospital system where there exists a
variety of relations between doctors, nurses, etc. Only the system
administrator has the right to control system security and assign
roles to users [15]. Flat RBAC (RBAC0), Hierarchical RBAC
(RBAC1), Constrained RBAC (RBAC2), and Symmetric RBAC
(RBAC3) are RBAC variants [9].

2.1.4. Organization-Based Access Control (OrBAC)

OrBAC model was first presented in 2003 to solve some problems
in DAC, MAC, and RBAC, by finding a more abstract control

2

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 3 — #3 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

policy. Each organization is comprised of a structured group
of subjects having certain roles or entities. OrBAC exceeds the
concept of only granting permissions to subjects, it also addresses
the concept of prohibitions, obligations, and recommendations.
A role may have a permission, prohibition, or obligation to do
some activity on some view given an associated context. OrBAC
is composed of seven entities that are distributed in two levels: the
role, activity, and view are found in the abstract level, and the sub-
ject, action, and object entities in the concrete level; the context
lies between the two levels to express dynamic rules [8, 13].

2.1.5. Attribute-Based Access Control (ABAC)

This is the latest AC model development, its concepts have paral-
leled that of RBAC. It has the ability to support dynamic attributes
and its benefits in managing authorizations. It has three types of
attributes: object, subject, and environmental (e.g., the current
time, day of the week, etc.) attributes. It allows or denies user
requests based on some attributes for users, objects, and environ-
ment, and a set of policies that are specified in terms of those
attributes and conditions. It is dynamic since it uses attributes to
determine access decisions, and subjects are enabled to access a
wider range of objects without specifying individual relationships
between each subject and each object. AC permissions are evalu-
ated at the time of the actual user’s request which offers a larger
set of possible combinations of variables to reflect a larger set
of possible rules to express policies. Two standards that widely
address the ABAC framework are: The Extensible AC Markup
Language (XACML) and Next Generation AC (NGAC) with AC
facility for applications and other important features [7, 8].

Fig. 2 summarizes the historical evolution of common AC
models. Also, various models extensions are proposed in the
literature to enhance their features along with the technology
progressions, for example, Integrity-OrBAC (I-OrBAC) [16] and
Multi-Organization Environments called Trust-OrBAC [17] are
two OrBAC extensions, a Higher-order Attribute-Based Access
Control Model (HoBAC) [18] is an ABAC extension, and others.

1960s 1970s 1980s 1990s 2000s 2010s

DAC (Lampson, HRU)

ABAC

MAC (BLP, BIBA)

OrBAC

RBAC (RBAC0, RBAC1, RBAC2,

RBAC3)
RBAC

OrBAC

MAC

ABAC (XACML, NGAC)

DAC

Fig. 2. Historical Evolution of common AC Models

2.2. Enhancing Features of Access Control Methods

The need to use enhanced AC methods imposes the necessity
to find models with combined features from two or more models
called hybrid AC models. Various hybrid AC models are presented
in the literature, for example, hybrid RBAC and ABAC.

In RBAC it is difficult to set up an initial role structure in
rapidly changing environments also it does not support dynamic
attributes, Kuhn et al. in [19] address the idea of adding attributes

to RBAC. The aim is to find a model that supports dynamic attri-
butes, especially in organizations to handle relationships between
roles and attributes to provide better AC features in dynamic
environments. As well, Rajpoot et al. in [20] propose Attribute
Enhanced RBAC (AERBAC) model to enhance features from both
RBAC and ABAC because both have complementary features to
each other. Moreover, in [21] authors state that the integration of
RBAC and ABAC still have some shortcomings in terms of AC
flexibility and decision efficiency. For this purpose, they propose a
more fine-grained, flexible, and efficient RABAC (RBAC/ABAC)
model. To increase the flexibility of RBAC, an Emergency RBAC
(E-RBAC) approach is proposed in [22]. In [23], an ABAC sch-
eme integrated with controlled access delegation capabilities for
collaborative e-Health environments is proposed.

2.3. Some Limitations of the Common AC Models

Table 1 summarizes the limitations common AC models [7, 8].

Table 1. Limitations of the common AC models

Model Limitation(s)

DAC • in large systems granting permissions between subjects
and objects are time consuming and difficult to manage.

• granted user allow others to read a file without asking the
owner.

MAC • security levels assignment places limits on user actions
which prevents dynamic modification of original policies.

• is difficult to implement due to dependence on trusted
components.

RBAC • poor support for dynamic attributes (e.g., time of day)
• in large systems role inheritance and the need for custo-

mized privileges make administration potentially heavy.

OrBAC • poor support for dynamic attributes (e.g. time of day).
• inflexible in rapidly changing IT environments.
• it has some vulnerabilities to some kinds of attacks. e.g.

covert channels.

ABAC • its implementations require significant time to run.
• often not possible to compute the set of users that may

have access to a given resource.
• difficult to efficiently calculate the resulting set of permis-

sions for a given user.

3. Access Control Metamodels
Access control models must consider the continuous develo-
pments and changes to answer the needed security requirements.
The new technology trends (cloud computing, IoT, social netw-
orks…), the variety of platforms and applications, users’ types,
etc. reflect the difficulty of controlling secure and private access to
the needed resources in different areas. All this makes AC models
and even combining some of them (hybrid models) are insuffici-
ent to handle the needed target. This fact forces the need to find
models with a higher level of abstraction, called AC metamodels,
that serve as unifying frameworks for specifying and enforcing
any AC policy [8, 24]. However, metamodels are presented in the
literature to concurrently handle multiple AC models. Different
AC models can be derived as special instances from the same
metamodel.

3

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 4 — #4 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

Classification of the proposed AC metamodels

Software development frameworks

EA modeling language (ArchiMate): Korman et al. [36]
Java framework (Spring Security): Gorshkova et al. [37]

Distributed environments

WCMSs: Martínez et al. [33]
Several Sites/Systems: Bertolissi et al. [30], Trninić et al. [35]
Cloud Computing: Khamadja et al.[31], Xia et al. [32]
Network Firewalls: Martínez et al. [34]

Centralized environments

Enterprise/Organization:
Barker [26], Slimani et al. [27],
Alves et al. [28], Abd-Ali et al. [29]

Common for all: Kashmar et al. [12], Adda et al. [39]

Fig. 3. Classification for the proposed AC Metamodels

3.1. General Definition of Metamodel Concept

The metamodel is defined as textual, graphical/visual, or formal
representation of concepts in a certain domain and how they are
linked together, these concepts might be rules, guidelines, etc.
for an institution or organization. Moreover, metamodeling is
defined as the modeling of a model to describe the permitted stru-
cture to which models must adhere. Also, models and metamodels
need adaptable supporting tools due to changing requirements and
policies. There are different metamodeling tools and languages
such as Unified Modeling Language (UML), Eclipse Modeling
Framework (EMF), ArchiMate, MetaEdit, etc. [8].

3.2. State-of-the-Art

Several AC metamodels are proposed for centralized compu-
ting environments, distributed computing environments, and for
software development frameworks (Fig. 3). To the best of our
knowledge, there is a limited number of recent works proposed
in this domain. In this paper, we review them within a decade,
analyze them to find if they are effective to follow technology
upgrades. Ferraiolo et al. in [25], revise some concerns and raise
some questions related to AC policy enforcement and focuses on
the important role a metamodel might play when achieved.

3.2.1. Centralized Environments

To address the questions raised in [25], a paper published by
Barker [26] demonstrates that multiple models can be derived as
special cases from a defined AC metamodel called Category Based
Access Control (CBAC) metamodel. A category is interpreted
as a synonym for a role, a class, a group, security levels, etc.
where entities (e.g., subjects) may be assigned. CBAC metamodel
includes features of MAC, DAC, and RBAC where a wider range
of constraints may be expressed based on it. Barker demonstrates
that the presented AC models in the literature are based on a
limited and small number of primitive notions. These notions
are related to the concept of categories, relationships between
categories and between categories and principals, and modalities.
However, AC primitives are given a more general interpretation to
allow developing many AC models by combining the primitives of
AC models, hence a wider range of constraints may be expressed.

In [27], Slimani et al. extend Barker’s metamodel to support
resource and action hierarchies. They propose a Unified Access
Control Modeling Language (UACML) to provide support for
hybrid AC policies by allowing categories to be associated with
other categories and finding hierarchical relationships between
them. A CBAC metamodel extension is proposed by Alves et al.
in [28] to expand a general notion of obligation for the existing AC

models and study the interaction between obligations and permis-
sion. The aim of their approach is to allow security administrators
to check the consistency of a policy combining authorizations and
obligations.

Furthermore, Abd-Ali et al. in [29] propose an integration
metamodel for hybrid policies to concurrently handle multiple
models. Their idea is based on the concept of abstracting each
AC model (e.g., RBAC metamodel), then including a special ele-
ment named DecisionHandler to determine AC decision. The AC
decision depends on more than one AC metamodel (CW metamo-
del, BLP metamodel …). Their approach depends on the idea of
clustering the DecisionHandler instances of a hybrid policy, then
apply them to combining algorithms (ComAl) to find one AC
decision as output in response to multiple AC decisions as input.
The integration of several AC models is based on a tree structure
of AC decision systems named Ascending Decision Tree (ADT).
ADT nodes are DecisionHandler instances or ComAl nodes. ADT
has a unique root node and the decision it returns is the decision
of the whole tree carrying out the hybrid AC policy.

3.2.2. Distributed Environments

Another approach based on CBAC metamodel is proposed by
Bertolissi et al. in [30] for distributed environments that consist
of several sites. A system of several sites might be composed
of several policies at each site, and in the distributed metamodel
the request can be passed to other sites and evaluated in a distri-
buted manner. They demonstrate the expressive power of their
metamodel by showing how a distributed, dynamic, event-based
access control model (DEBAC) can be defined as an instance of
the metamodel. In the context of cloud computing, saving data
on cloud servers by cloud users raise security challenges to pro-
tect sensitive data. In [31] authors states that the classical AC
models (DAC, MAC …) are not adequately expressive for highly
flexible and dynamic environments. For this purpose, they pre-
sent a metamodel approach for cloud computing services called
Category Based Access Control (CatBAC) framework, it has two
stages at the different organization sites by considering the local
constraints of each site. The first is achieved by the cloud provi-
der (abstract stage), and the second is by network administrators
(concrete stage). In the abstract level categories are connected
to express authorizations and are named abstract authorizations.
The concrete level represents AC decisions in relation to concrete
level entities, which are subject, resources, action, and context,
and are called concrete authorizations. Hence, this AC metamodel
allows security administrators in the various company sites to find
a concrete model with the constraints and specificities of each site.
Xia et al. in [32] propose another metamodel approach to handle

4

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 5 — #5 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

security and privacy in cloud service development and operati-
ons, called the Cloud Security and Privacy Metamodel (CSPM).
CSPM is proposed to address security and privacy in cloud servi-
ces via integrating and extending the existing metamodels of cloud
security together with newly added concepts.

Moreover, an approach is presented for web services by
Martínez et al. in [33] to the representation of Web Content Mana-
gement System (WCMS) AC policies to ease the analysis and
manipulation of security requirements by abstracting them from
vendor-specific details. Although AC methods are integrated with
most WCMS systems (e.g., Wordpress, Drupal …), some limita-
tions still exist. For this purpose, the authors’ aim to raise the level
of abstraction of the AC implementation to be represented accor-
ding to a vendor-independent metamodel. They propose a WCMS
metamodel inspired from the RBAC concept, its abstract repre-
sentation is developed using Model-Driven Engineering (MDE).
The aim of their approach is to automatically extract the AC infor-
mation in the domain of WCMSs. Also, Martínez et al. in [34]
propose a model-driven approach to extract network AC policies
enforced by firewalls within a network system. Their concept
tackles the problem of filtering the traffic of a network with the
presence of several filtering rules due to several firewalls. They
suggest raising the level of abstraction of the information contai-
ned in the firewall configuration files, hence the AC policy would
be easier to understand, analyze and manipulate. A model-driven
approach is proposed to extract a model of the AC policy enfo-
rced by the firewalls within a network system, it consists of host
and connection entities. The former represents a network host,
e.g., IP address, and the latter represents connections between
hosts, where the port and the protocol are specified to establish
connections and specify if the connection is allowed or denied.

Trninić et al. in [35] present a generic AC management infra-
structure for a broad set of systems, to provide a general method
for specifying AC rules for different AC models. Their approach
is based on models at three different abstraction levels defined by
Meta-Object Facility (MOF) classification. The AC policy meta-
model is defined at level M2 and used to derive different AC
models at level M1 (e.g., RBAC). At level M0, PolicyDSL is
used to specify concrete AC policies in a system. Their proposed
metamodel is a Domain-Specific Language (DSL) with the syn-
tax that is dynamically adapted to system features that are being
modeled. Hence, a security expert would be able to express AC
policies for a given AC model using the generated DSL.

3.2.3. Software Development Frameworks

Due to the lack of security features in software development fra-
meworks, some metamodel extensions are proposed. In [36], a
unified metamodel as a prospective extension for ArchiMate is
proposed, the common Enterprise Architecture (EA) modeling
language. The aim is to support the development of enterprises
by extending their abilities to model authorization and AC in their
architectures. They propose an extension to an established EA
modeling language. The metamodel is developed based on the
conceptual model of ABAC because of its ability to include most
of the other AC models, then mapped to ArchiMate to enrich
its existing models. Also, Gorshkova et al. in [37] introduce a
fine-grained AC model and provide a metamodel extension for
the Spring Security framework to meet modern security require-
ments. Spring Security is one of the major market players of open
source security frameworks for Java. Gorshkova et al. focus on the

implementation of authorization frameworks with Java applica-
tions, their proposed framework defines a fine-grained extension
of RBAC.

3.2.4. Any Computing Environment

The proposed metamodels reflect the importance of constructing
more robust AC models in all computing environments, especially
with the presence of heterogeneous technologies and platforms
[38]. For this purpose, we propose a new generic AC metamodel
approach in [12], it includes all AC models features by unifying a
common set of AC concepts which can be used to instantiate the
needed components and derive various instances of different AC
models; also it can be used as a base to construct other essential
metamodel features (section 5). Our approach is proposed for all
computing environments and its components can be integrated
with frameworks to support AC features. In the same way, Adda
et Aliane proposed in [39] a generic ABAC AC model that is
suitable for all computing environments.

Table 2 summarizes the proposed AC metamodels and their
features.

4. Discussion and Critical Analysis
As shown in Table 2, AC metamodels are constructed based on
some features of AC models where various models instances can
be derived from them. They are defined as textual or visual, and
some of the used tools are UML, Eclipse, and Java. Some of
the used modeling languages are xtext, spring expression, etc.
However, based on the historical evolution of AC methods, Fig.4
illustrates the era of developing AC metamodels. Some meta-

1960s 1970s 1980s 1990s 2000s 2010s

DAC (Lampson, HRU)

ABAC

MAC (BLP, BIBA)

OrBAC

RBAC (RBAC0, RBAC1, RBAC2,

RBAC3)
RBAC

OrBAC

MAC

DAC

ABAC (XACML, NGAC)

T
h

e
 E

ra
 o

f
A

cc
e

ss
 C

o
n

tr
o

l
M

e
ta

m
o

d
e

ls
Fig. 4. The Era of Access Control Metamodels

models are proposed as generic, unifying, hybrid, and metamodel
extensions for different distributed, centralized environments, and
software development frameworks. Hence:

1- Some AC metamodels are constructed based on features of
some AC models, and the only AC model(s) (also hybrid) insta-
nce(s) that can be derived are the one(s) that are employed in the
core structure, for example, [27] and [29]. These metamodels
are proposed as Hybrid Metamodels.

2- Some frameworks (for example, Drupal, ArchiMate, Spring
Security, Network Firewalls ...) are extended to support AC
features of one or more AC models, and the extracted AC poli-
cies belong to the model(s) that are used to extend the main
framework, for example, [33, 34, 36, 37]. These metamodels
are proposed as Metamodel Extensions.

3- Some AC metamodels are constructed based on a general notion
that encompasses some (or all) AC features for some (or all)

5

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 6 — #6 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

Table 2. Summary of the Proposed Access Control Metamodels

ref. Author Year Proposed for Metamodel
Visual rep.

Type Based on instance(s) Modeling lang.
Y/N Tool

Proposed AC metamodels for Centralized Environments

[26] Barker 2009 Enterprise Barker’s Metamodel No n/a Unifying Metamodel CBAC RBAC,MAC Rule/Logic Language

[27] Slimani et al. 2011 Enterprise UACML Metamodel Yes UML Hybrid Metamodel CBAC and Hybrid
models

Group based,
MAC, RBAC,
hybrid model

Object constraint lan-
guage (OCL)

[28] Alves et al. 2014 Enterprise Obligations in CBAC
Metamodel

No n/a Metamodel Extension CBAC CBAC rewrite-based operati-
onal semantics

[29] Abd-Ali et al. 2015 Enterprise Integration metamo-
del

Yes UML Hybrid Metamodel CW,BLP,BIBA,
RBAC

Hybrid models First-order logic

Proposed AC metamodels for Distributed Environments

[30] Bertolissi et al. 2014 Distributed system of
several sites

Distributed Metamo-
del

No n/a Generic Metamodel CBAC CBAC rewrite-based operati-
onal semantics

[31] Khamadja et al. 2013 Cloud Computing CatBAC metamodel Yes UML Generic Metamodel CBAC Hybrid models First-order logic

[32] Xia et al. 2018 Cloud services cloud security & pri-
vacy (CSPM)

Yes UML Metamodel Extension n/a n/a UML

[33] Martinez et al. 2013 WCMSs WCMS Metamodel Yes MDE Metamodel Extension RBAC RBAC UML

[34] Martinez et al. 2012 Network Firewalls Network Connection Yes Eclipse Metamodel Extension Network Firewalls RBAC, OrBAC Xtext

[35] Trninić et al. 2013 Set of systems PolisyDSL Yes UML Generic Metamodel n/a RBAC Textual DSL

Proposed AC metamodels for Software Development Frameworks

[36] Korman et al. 2016 Enterprise Archite-
cture framework

Unified Metamodel Yes ArchiMate Metamodel Extension DAC,BLP,Biba,
CW,RBAC,
ABAC

DAC,BLP,CW,
RBAC,ABAC

ArchiMate

[37] Gorshkova et al. 2017 Enterprise application
framework

Spring security fra-
mework

Yes Java-ORM Metamodel Extension RBAC RBAC Spring expression
lang.(SpEL)

Proposed AC metamodels for any Computing Environment

[39] Adda et al. 2020 any computing envi-
ronment

Generalization of
ABAC

Yes UML ABAC Metamodel ABAC ABAC models UML

[12] Kashmar et al. 2021 any computing envi-
ronment

Generic with unified
set of AC concepts

Yes UML Generic Metamodel common AC
models

common models
& hybrid models

UML

models. Based on this metamodel, AC model instance(s) can
be derived, for example [12, 26, 30, 31, 35]. These metamodels
are proposed as Generic Metamodels.

4- Some of the existing AC metamodels are augmented with addi-
tional features to reflect a larger and more definitive set of
possible rules to express AC policies, for example, [28, 32, 39].
This type of metamodels is proposed as Metamodel Extensions.

Hence, the proposed works of AC metamodels in the literature
can be classified into two concepts:

• In (1) and (3) the aim is to find a generic metamodel that encom-
passes most AC features where various AC models (and hybrid
models) can be derived, Fig. 5 illustrates the idea of generic
metamodels. With regard to this definition of generality, the
existing AC metamodels are not generic1, they have a hybrid
structure with some AC features rather than a generic meta-
model. This hybrid structure is employed to derive some AC
models where their features are employed in the core structure.
As shown in Fig. 5, if the metamodel includes features of DAC,
MAC, and RBAC models, then the instances that can be derived
are DAC, MAC, RBAC, and their combinations (hybrid models
based on the existing features, e.g., hybrid MAC/ RBAC).

1 Except the proposed metamodel in [12] since it includes most of the
features of common models

• In (2) and (4) the aim is to enhance features of the existing
frameworks/metamodels by extending them to support AC fea-
tures and express more AC policies, Fig. 6 illustrates the idea of
metamodel extension where AC features are added to the core
metamodel/framework to allow defining (more) AC policies.
But the structure of the proposed AC metamodels is not exten-
ded, for example, no new components or attributes are defined,
but AC features are added to the core metamodel structure. As
shown in Fig. 6, AC features are implemented and added to an
existing AC metamodel or framework to enhance its features
and allow defining more AC policies. Then, the extended AC
metamodel (or framework) can be used to derive various insta-
nces of AC models based on the features which are added to
the core metamodel (or framework) structure.

Features of some AC
models, e.g., DAC,

MAC, RBAC

Access Control metamodel

DAC model

Instances that can be derived

Hybrid MAC/RBAC model

RBAC model

…

.

.

.

Fig. 5. Illustration for the concept generic metamodel

6

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 7 — #7 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

For example:
• CBAC metamodel
• Drupal
• ArchiMate
• …

Access Control metamodel or
Framework

Access control metamodel with enhanced
AC features

For example:
• CBAC metamodel with

enhanced AC features
• Drupal + AC features
• ArchiMate + AC features
• …

AC features are added

E
xt

e
n

d
e

d
Fig. 6. Illustration for the concept of metamodel extension

However, the presented AC metamodels come with some
advantages, and several combined features from AC models are
implemented to enhance AC methods. But they also have several
limitations especially in the light of new technologies, sections
4.1 and 4.2.

4.1. Limitations of the proposed AC metamodels

In this section, we highlight the limitations for each of the propo-
sed AC metamodels to check out their effectiveness in the presence
of new technologies. However, the proposed metamodel exten-
sion for Drupal framework in [33] is RBAC-inspired, it is for web
contents and it is well known that such environment is rich of vari-
ants (time, system updates …), in this metamodel extension the
notion of variable attributes is not considered. Although authors
in [30] provide a comprehensive theoretical description for their
approach which is considered generic with no real case studies
are explained or implemented. Hence, their proposed metamodel
is still within the theoretical frame. Also, Khamadja et al. in [31]
propose CatBAC metamodel to support various AC models in
Cloud with no case study or testing result. In [31] and [32] auth-
ors have not explained or mentioned how access can be controlled
in the context of several heterogeneous clouds (multi-clouds). In
[31], authors mention that their proposed solution does not com-
pletely consider dynamic constraints, and this important issue
should be considered to provide a general method for specifying
AC rules for different AC models. Korman et al. in [36] pre-
sent some of their metamodel limitations, such as the proposed
approach misses the concept of logging, and the difficulty for
potential implementation of automated analytical capabilities of
the unified metamodel. In [27] and [29] the proposed metamo-
dels are based on the concept of combining some models then
instantiate one or more AC model(s) based on a hybrid structure,
hence they are general templates to derive some AC models that
are employed in the core structure rather than a metamodel. Bar-
ker’s approach [26] lacks the support of resource hierarchies and
action hierarchies which are useful to specify high-level access
rules [27]. The extension of CBAC metamodel in [28] is pro-
posed to accommodate a general notion of obligation, authors
adjust the notion of events and describe a set of core axioms for
defining obligations with some examples to specify dynamic poli-
cies. Nevertheless, they have not explained how their approach
could be dynamic in distributed contexts that are rich in events
and variable attributes. The proposed metamodel extensions in
[33, 34, 36, 37] tackle specific projects or frameworks to support
some AC features without explaining how these extensions can
be upgraded due to unexpected updates or changes, especially in
distributed environments. The model proposed in [39] is limited
to generate ABAC AC models. Moreover, although our proposed

AC metamodel in [12] is promising, many other phases are still
missing and need to be handled and implemented, for example,
developing DSL, a detailed case study, etc. Table 3 summarizes
the objective(s) and limitation(s) for each of the proposed meta-
models. Despite the proposed AC metamodels have gained the
attention of researchers for a decade, they have common limitati-
ons. These limitations cannot be ignored, especially, with recent
computing environments which are open to all kinds of attacks
and threats.

4.2. The Common Limitations

Even with the advancements of implementing AC metamodels in
various scenarios, each particularly has its limitation(s) in addi-
tion to some common limitations. They all lack some essential
characteristics and can be enumerated as follows:

• Each metamodel is itself a case and does not encompass a gene-
ral base concept to derive various instances for all AC models.
In other words, they are planned for dedicated scenarios or case
studies based on some features of AC models;

• They do not support the ability to define various types of attribu-
tes. So, they are not dynamic enough to follow the continuous
technology upgrades.

• Neither the generic nor extended proposed metamodels is
enough to address the needed target of enforcing AC policy,
especially with the current technologies and continuous upgra-
des;

• No provided explanations about how the derived models could
collaborate within the same computing architecture e.g., IoT;

• An essential aspect is not considered in all of the presented AC
metamodels which is the migration of AC policy from one AC
model to another. Having a metamodel should make it possible
to translate an existing AC policy between the different AC
models covered by the metamodel.

Fig. 7 summarizes the common limitations that should be addres-
sed in the proposed AC metamodels. Accordingly, we are

Problems to be addressed in the existing AC metamodels

(1)

Generality

They are not
generic enough

to include all
components of
AC models, to

derive
instances for all

common AC
models

(2)

Dynamism

They are not
dynamic

enough to
follow the

continuous
technology
upgrades

(3)

Extensibility

They do not
support the
possibility of
defining new
components
for extending

AC models

(4)

Collaboration &
Interoperability

None of the proposed
works explain how the

derived AC models could
collaborate (nor the

interoperability between
components) within the
same architecture (e.g.

cloud computing)

(5)

Migration

None of the
proposed

metamodels
handle the
feature of

migration from
one AC model

to another

Fig. 7. The common limitations in the existing AC metamodels

constructing a unified and generic AC metamodel [12] that con-
siders the continuous technology progressions, the variety of
information systems, and the heterogeneity of AC models.

5. Research issues and open questions
The definition of security policies with the current compu-
ting environments, especially IoT, involves complexities and
difficulties due to the following facts:

7

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 8 — #8 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

Table 3. Objective(s) and Limitation(s) of The Proposed Access Control Metamodels

Author(s) Objective(s) Limitation(s)

Barker [26] Multiple models can be derived as special cases from CBAC metamodel. - lacks the support of resource and action hierarchies.

Slimani et al. [27] To provide support for hybrid AC policies by allowing categories to be associated
with other categories and finding hierarchical relationships between them.

- hybrid structure to derive some AC models rather than a metamodel.

Alves et al. [28] To allow security administrators to check the consistency of a policy combining
authorizations and obligations.

- no explanation of how the approach could be dynamic in distributed contexts
which are rich of events and variable attributes.

Bertolissi et al. [30] To provide semantics for distributed AC mechanisms within distributed envi-
ronments consisting of several sites.

- no real case studies are explained or implemented.

Khamadja et al.[31] To develop a new cloud computing service named “Access Control as a Service”. - no case study or testing result, also they do not explain how access can be controlled
in the context of multi-cloud.

Xia et al. [32] To handle security and privacy in cloud service development and operations. - have not explained how access can be controlled in the context of multi-cloud.

Martinez et al. [33] To ease the analysis and manipulation of security requirements in WCMSs. - the notion of variable attributes is not considered, also no explanations of how
Drupal framework can be upgraded.

Martinez et al. [34] To extract network AC policies enforced by firewalls within a network system,
then AC policy would be easier to understand, analyze and manipulate.

- no explanations of how the extended networks firewall systems can be upgraded.

Abd-Ali et al. [29] To concurrently handle multiple AC models (CW, BLP, BIBA, and RBAC) - hybrid structure to derive some AC models rather than a metamodel.

Trninić et al. [35] to allow a security expert to express AC policies for a given AC model. - does not consider dynamic constraints.

Korman et al. [36] To provide support for architectures of enterprises by extending their abilities to
model authorization and AC in their frameworks.

- difficulty for potential implementation of automated analytical capabilities, also
no explanations of how the extended ArchiMate framework can be upgraded.

Gorshkova et al. [37] To provide a metamodel extension for Spring Security framework to meet
modern security requirements.

- they extend Spring Security framework to support some AC features without
explaining how these extensions can be upgraded.

Adda et al. [39] To provide a generic ABAC metamodel to generate a wide variety of AC models
related to ABAC.

- limited to ABAC models.

Kashmar et al. [12] To provide a generic AC metamodel with a unified set of AC concepts - no case study or testing result, also no explaination of how access can be controlled
in distributed environment.

• the heterogeneity of security strategies for information systems
such as centralized, decentralized, or both

• the diversity of AC rights which might be raised from different
information systems such as allow, deny, mixed, or undeter-
mined, for different units such as subjects, roles, categories,
groups, etc.

• the heterogeneity of security policies for different AC models
and their extensions.

• the heterogeneity of security elements of various AC models
such as objects, subjects, types, relations, etc.

• the heterogeneity of networks, platforms, applications, devices,
etc. with multimillions of users

These facts and the complex structure of the recent technologies
(cloud computing, IoT, ...) reflect the importance of developing
an enhanced AC metamodel approach to adapt the continuous
technology progressions and the existing heterogeneities in dif-
ferent domains. Through this review, we can find that there is a
limited number of recent research proposals for AC metamodels.
Yet, various research is still conducting for the AC metamodeling
approach to find a more general metamodel that can be used to
dynamically define AC policies.

However, finding a new generic metamodel that includes all
AC models features, dynamic, and upgradable is a challenging
topic. What makes it a critical need are the following:

• the heterogeneity and complexity in the structures of recent
technologies and their environments;

• the continuous upgrades of the new technologies, especially
IoT;

• the dynamic requirement for enforcing security issues;
• the need to find the collaboration between various AC models

within the same architecture;

• the importance of migrating AC policies from one model to
another.

Despite the proposed AC metamodels have some enhanced featu-
res, they lack some important characteristics that are essential to
the current fact of technologies. Through this review we can find
that some issues need to be addressed which are:

5.1. Generality

Generality is the first essential feature that must be considered in
developing an AC metamodel. A generic AC metamodel should
have the following characteristics:

• includes most of the features of the common AC models;
• can be oriented to derive various AC models and methods,

and for specifying any AC policy in centralized and distributed
computing environments;

• works as a base to construct other essential characteristics (e.g.,
a collaboration between AC models).

Note that, we address this issue in [10, 11, 38] then propose our
metamodel approach in [12].

5.2. Dynamism

The term dynamism refers to the change within a system, model,
etc., and being upgradable due to changing conditions or rules. A
generic and dynamic AC metamodel should:

• describe how metamodel properties can be changed or modified
over time along with technology progressions, for example, due
to the changing environmental conditions.

8

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 9 — #9 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

• allow defining new types of attributes/entities, to describe a
larger set of rules to express policies. Hence, various models
can be formulated for static and dynamic policy enforcement.

• allow building relationships between its elements and describes
the structural changes to reflect its dynamic characteristics.

5.3. Extensibility

Extensibility is the feature of being designed to allow adding new
components, for an already defined model, with the relationships
between them. Some of the proposed AC methods are based on
(or extended from) the common AC models, while others are for-
mulated based on the needed context. This reflects the diversity of
the implemented AC models in different fields and the importa-
nce of upgrading them to follow technology progressions. The key
components for the different AC methods are subjects, objects,
actions, security levels, attributes, etc. The existing AC metamo-
dels do not include the possibility of defining new components
rather than the defined ones in the core structure. Hence, develo-
ping generic and dynamic metamodel is important to extend the
existing AC methods, and to formulate and implement new ones.

5.4. Collaboration and interoperability

Collaboration is underlined as a goal for distributed computing
environments, in collaborative computing environments, various
collections of information systems and technologies are perfor-
med to support cooperation between organizations, individuals,
etc. In these environments, organizations collaborate from remote
locations, and users are allowed/denied to share information,
upload content, communicate via applications such as video con-
ferencing. To establish interoperability, various concepts must
be studied such as autonomy, dynamism, and heterogeneity of
systems, models, etc.; hence computational entities can collabo-
rate to fulfill their mutual goals [40]. Collaborative environments
need to control access to their assets to increase working coo-
peration efficiently and effectively. Finding a general basis for
AC metamodel would allow handling multiple models to find
advanced security features and operations, which would in turn,
permit the collaboration between the obtained models and the
interoperability between components of AC models.

5.5. Migration

Another interesting feature, that is missing in current AC meta-
models, is the ease of migration from one model to another. In
fact, having a metamodel should make it possible to translate an
existing AC policy between different AC models covered by the
metamodel. However, a metamodel with a generic, dynamic, and
extendable structure can be implemented to allow migrating the
AC policies from one model to another.
However, in this context we can raise the following questions:

• how a new generic and dynamic AC metamodel that considers
the continuous technology progressions can be designed?

• what are the main features, componenets, etc. this AC meta-
model can include?

• how its structure can be developed to handle collabora-
tion/interoperability/extension/migration of AC models?

• how to construct a common set of AC concepts for the
heterogeneous AC models?

• how heterogeneous AC models can interact to ensure privacy?

6. Conclusion and Future Perspectives
In this paper, we review and analyze the proposed AC metamo-
dels, explain their objectives, their limitations especially with
current technology progressions and upgrades. In this review, we
provide a critical analysis, in addition to the potential research
issues in this domain. The common limitations, which can also
be considered as research issues in this domain, that have not been
addressed yet are important to be implemented with the current
heterogeneous computing environments.

Acknowledgment
We acknowledge the support of the Natural Sciences and Engine-
ering Research Council of Canada (NSERC) [funding reference
number 06351], Fonds Québécois de la Recherche sur la Nature
et les Technologies (FRQNT), and Centre d’Entrepreneuriat et de
Valorisation des Innovations (CEVI).

References
[1] EG Petrakis and Xenofon Koundourakis. ixen: Secure service orien-

ted architecture and context information management in the cloud.
Journalof Ubiquitous Systems and Pervasive Networks (JUSPN),
14(2):01–10, 2021.

[2] Kamalendu Pal and Ansar-Ul-Haque Yasar. Convergence of internet
of things and blockchain technology in managing supply chain.
Journalof Ubiquitous Systems and Pervasive Networks (JUSPN),
14(2):11–19, 2021.

[3] Jun Ho Huh, Rakesh B Bobba, Tom Markham, David M Nicol,
Julie Hull, Alex Chernoguzov, Himanshu Khurana, Kevin Staggs,
and Jingwei Huang. Next-generation access control for distributed
control systems. IEEE Internet Computing, 20(5):28–37, 2016.

[4] Sowmya Ravidas, Alexios Lekidis, Federica Paci, and Nicola Zan-
none. Access control in internet-of-things: A survey. Journal of
Network and Computer Applications, 144:79–101, 2019.

[5] Mehdi Sookhak, F Richard Yu, Muhammad Khurram Khan, Yang
Xiang, and Rajkumar Buyya. Attribute-based data access control
in mobile cloud computing: Taxonomy and open issues. Future
Generation Computer Systems, 72:273–287, 2017.

[6] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibra-
him. Access Control in Cybersecurity and Social Media, chapter 4.
Université Laval, 2021.

[7] V.C. Hu, D.F. Ferraiolo, R. Chandramouli, and D.R. Kuhn.
Attribute-Based Access Control. Artech House Publishers, 2017.
ISBN 9781630814960.

[8] Nadine Kashmar, Mehdi Adda, and Mirna Atieh. From access
control models to access control metamodels: A survey. In Future
of Information and Communication Conference, pages 892–911.
Springer, 2019.

[9] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibra-
him. A review of access control metamodels. Procedia Computer
Science, 184:445–452, 2021.

[10] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim.
A new dynamic smart-ac model methodology to enforce access
control policy in iot layers. In 2019 IEEE/ACM 1st International
Workshop on Software Engineering Research & Practices for the

9

i
i

“JUSPN” — 2021/8/25 — 9:58 — page 10 — #10 i
i

i
i

i
i

Nadine Kashmar et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2021) 00-00

Internet of Things (SERP4IoT), pages 21–24. IEEE, 2019.

[11] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim.
Smart-ac: A new framework concept for modeling access control
policy. Procedia Computer Science, 155:417–424, 2019.

[12] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim.
Access control metamodel for policy specification and enforcement:
From conception to formalization. Procedia Computer Science,
184:887–892, 2021.

[13] Mohammed Ennahbaoui and Said Elhajji. Study of access control
models. In Proceedings of the World Congress on Engineering,
volume 2, pages 3–5, 2013.

[14] RS Sandhu, EJ Coyne, HL Feinstein, and CE Youman Role-Based.
Access control models. IEEE computer, 29(2):38–47, 2013.

[15] Edwin Okoampa Boadu and Gabriel Kofi Armah. Role-based access
control (rbac) based in hospital management. Int. J. Softw. Eng.
Knowl. Eng, 3:53–67, 2014.

[16] Abdeljebar Ameziane El Hassani, Anas Abou El Kalam, Adel
Bouhoula, Ryma Abassi, and Abdellah Ait Ouahman. Integrity-
orbac: a new model to preserve critical infrastructures integrity.
International Journal of Information Security, 14(4):367–385,
2015.

[17] Khalifa Toumi, César Andrés, and Ana Cavalli. Trust-orbac: A
trust access control model in multi-organization environments. In
International Conference on Information Systems Security, pages
89–103. Springer, 2012.

[18] Linda Aliane and Mehdi Adda. Hobac: toward a higher-order
attribute-based access control model. Procedia Computer Science,
155:303–310, 2019.

[19] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding
attributes to role-based access control. Computer, 43(6):79–81,
2010.

[20] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram
Krishnan. Integrating attributes into role-based access control. In
IFIP Annual Conference on Data and Applications Security and
Privacy, pages 242–249. Springer, 2015.

[21] Hui Qi, Xiaoqiang Di, and Jinqing Li. Formal definition and analy-
sis of access control model based on role and attribute. Journal of
information security and applications, 43:53–60, 2018.

[22] Fatemeh Nazerian, Homayun Motameni, and Hossein Nematza-
deh. Emergency role-based access control (e-rbac) and analysis of
model specifications with alloy. Journal of information security and
applications, 45:131–142, 2019.

[23] Harsha S Gardiyawasam Pussewalage and Vladimir A Olesh-
chuk. Attribute based access control scheme with controlled access
delegation for collaborative e-health environments. Journal of
information security and applications, 37:50–64, 2017.

[24] Saïd Assar. Meta-modeling: concepts, tools and applications.
In IEEE RCIS’15: 9th International Conference on Research
Challenges in Information Science, 2015.

[25] David Ferraiolo and Vijay Atluri. A meta model for access control:
why is it needed and is it even possible to achieve? In Procee-
dings of the 13th ACM symposium on Access control models and
technologies, pages 153–154, 2008.

[26] Steve Barker. The next 700 access control models or a unifying
meta-model? In Proceedings of the 14th ACM symposium on Access
control models and technologies, pages 187–196, 2009.

[27] Nadera Slimani, Hemanth Khambhammettu, Kamel Adi, and Luigi
Logrippo. Uacml: Unified access control modeling language. In

2011 4th IFIP International Conference on New Technologies,
Mobility and Security, pages 1–8. IEEE, 2011.

[28] Sandra Alves, Anatoli Degtyarev, and Maribel Fernández. Access
control and obligations in the category-based metamodel: a rewrite-
based semantics. In International Symposium on Logic-Based
Program Synthesis and Transformation, pages 148–163. Springer,
2014.

[29] Jamal Abd-Ali, Karim El Guemhioui, and Luigi Logrippo. A meta-
model for hybrid access control policies. JSW, 10(7):784–797,
2015.

[30] Clara Bertolissi and Maribel Fernández. A metamodel of access
control for distributed environments: Applications and properties.
Information and Computation, 238:187–207, 2014.

[31] Salim Khamadja, Kamel Adi, and Luigi Logrippo. Designing fle-
xible access control models for the cloud. In Proceedings of the 6th
International Conference on Security of Information and Networks,
pages 225–232, 2013.

[32] Tian Xia, Hironori Washizaki, Takehisa Kato, Haruhiko Kaiya,
Shinpei Ogata, Eduardo B Fernandez, Hideyuki Kanuka, Masa-
yuki Yoshino, Dan Yamamoto, Takao Okubo, et al. Cloud security
and privacy metamodel. In Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Develo-
pment, pages 379–386. SCITEPRESS-Science and Technology
Publications, Lda, 2018.

[33] Salvador Martínez, Joaquin Garcia-Alfaro, Frédéric Cuppens, Nora
Cuppens-Boulahia, and Jordi Cabot. Towards an access-control
metamodel for web content management systems. In International
Conference on Web Engineering, pages 148–155. Springer, 2013.

[34] Salvador Martínez, Jordi Cabot, Joaquin Garcia-Alfaro, Frédéric
Cuppens, and Nora Cuppens-Boulahia. A model-driven approach
for the extraction of network access-control policies. In Proceedings
of the Workshop on Model-Driven Security, pages 1–6, 2012.

[35] Branislav Trninić, Goran Sladić, Gordana Milosavljević, Branko
Milosavljević, and Zora Konjović. Policydsl: Towards generic
access control management based on a policy metamodel. In
2013 IEEE 12th International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT). IEEE, 2013.

[36] Matus Korman, Robert Lagerström, and Mathias Ekstedt. Modeling
enterprise authorization: a unified metamodel and initial validation.
Complex Systems Informatics and Modeling Quarterly, (7):1–24,
2016.

[37] Ekaterina Gorshkova, Boris Novikov, and Manoj Kumar Shukla. A
fine-grained access control model and implementation. In Proce-
edings of the 18th International Conference on Computer Systems
and Technologies, pages 187–194, 2017.

[38] Nadine Kashmar, Mehdi Adda, Mirna Atieh, and Hussein Ibra-
him. Deriving access control models based on generic and dynamic
metamodel architecture: Industrial use case. Procedia Computer
Science, 177:162–169, 2020.

[39] Mehdi Adda and Linda Aliane. Hobac: fundamentals, principles,
and policies. Journal of Ambient Intelligence and Humanized Com-
puting, 11(12):5927–5941, 2020. . URL https://doi.org/10.1007/
s12652-020-02102-y.

[40] Toni Ruokolainen. Modelling framework for interoperability mana-
gement in collaborative computing environments. Licentiate thesis,
University of Helsinki, Department of Computer Science, 2009.

10

CHAPTER 3

HEAD ACCESS CONTROL METAMODEL FOR DYNAMIC AND
HETEROGENEOUS STRUCTURES

Published in Journal of Sensors (Special Issue: Security and Privacy in Software Based Critical
Contexts), 2021; Volume-21(19); https://doi.org/10.3390/s21196507

Abstract: The evolution of ubiquitous computing and pervasive information systems, such as IoT
and Industry 4.0 systems, has introduced significant challenges related to security and access control.
To confront the challenge of accessing resources, various research works were conducted focusing
on developing and enhancing AC modeling in five main directions, starting from (1) traditional mod-
els, (2) hybrid models, (3) extending models, (4) abstracting models, reaching to (5) AC metamodels
which is the recent research issue in this domain. In this chapter, we propose a Hierarchical, Exten-
sible, Advanced, and Dynamic (HEAD) AC metamodel, which takes into consideration the existing
limitations of the proposed AC metamodels. Its meta-components are constructed after unifying the
heterogeneous concepts of AC components. HEAD metamodel allows instantiating any needed com-
ponent/attribute for any model (existing model or non-existing model), this makes it adaptable for
dynamic and heterogeneous structures with the ability to encompass the heterogeneity of the existing
AC models. Moreover, we show that HEAD metamodel is able to derive various AC models, and
different static and dynamic policies can be generated using its components. We use Eclipse (xtext) to
define the DSL of HEAD metamodel, and illustrate our approach with several successful instantiations
for various models and hybrid models. Additionally, we provide some examples to show how some of
the derived models can be implemented to generate AC policies.

Résumé: L’évolution de l’informatique omniprésente et des systèmes d’information omniprésents,
tels que les systèmes IdO et Industrie 4.0, a introduit des défis importants liés à la sécurité et au
contrôle d’accès. Pour relever le défi de l’accès aux ressources, divers travaux de recherche ont été
menés en se concentrant sur le développement et l’amélioration de la modélisation CA dans cinq direc-
tions principales, à partir de (1) modèles traditionnels, (2) modèles hybrides, (3) modèles d’extension,
(4) modèles abstraits, atteignant (5) les métamodèles CA qui est l’enjeu de recherche récent dans
ce domaine. Dans ce chapitre, nous proposons un métamodèle CA hiérarchique, extensible, avancé
et dynamique (HEAD), qui prend en considération les limitations existantes des métamodèles CA
proposés. Ses méta-composants sont construits après unification des concepts hétérogènes de com-
posants CA. Le métamodèle HEAD permet d’instancier n’importe quel composant/attribut nécessaire
pour n’importe quel modèle (modèle existant ou modèle inexistant), ce qui le rend adaptable aux
structures dynamiques et hétérogènes avec la capacité d’englober l’hétérogénéité des modèles CA ex-
istants. De plus, nous montrons que le métamodèle HEAD est capable de dériver divers modèles CA,
et différentes politiques CA statiques et dynamiques peuvent être générées à l’aide de ses composants.
Nous utilisons Eclipse (xtext) pour définir le DSL de notre métamodèle CA, et illustrons notre ap-
proche avec plusieurs instanciations réussies pour divers modèles et modèles hybrides. De plus, nous
fournissons quelques exemples pour montrer comment certains des modèles dérivés peuvent être mis
en œuvre pour générer des politiques CA.

sensors

Article

HEAD Metamodel: Hierarchical, Extensible, Advanced, and
Dynamic Access Control Metamodel for Dynamic and
Heterogeneous Structures

Nadine Kashmar 1,*, Mehdi Adda 1 and Hussein Ibrahim 2

����������
�������

Citation: Kashmar, N.; Adda, M.;

Ibrahim, H. HEAD Metamodel:

Hierarchical, Extensible, Advanced,

and Dynamic Access Control

Metamodel for Dynamic and

Heterogeneous Structures. Sensors

2021, 21, 6507. https://doi.org/

10.3390/s21196507

Academic Editors: Xabier Larrucea

and Juan José Unzilla

Received: 2 September 2021

Accepted: 23 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski,
300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; mehdi_adda@uqar.ca

2 Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada;
hussein.ibrahim@itmi.ca

* Correspondence: nadine.kashmar@uqar.ca

Abstract: The substantial advancements in information technologies have brought unprecedented
concepts and challenges to provide solutions and integrate advanced and self-ruling systems in
critical and heterogeneous structures. The new generation of networking environments (e.g., the
Internet of Things (IoT), cloud computing, etc.) are dynamic and ever-evolving environments. They
are composed of various private and public networks, where all resources are distributed and accessed
from everywhere. Protecting resources by controlling access to them is a complicated task, especially
with the presence of cybercriminals and cyberattacks. What makes this reality also challenging is the
diversity and the heterogeneity of access control (AC) models, which are implemented and integrated
with a countless number of information systems. The evolution of ubiquitous computing, especially
the concept of Industry 4.0 and IoT applications, imposes the need to enhance AC methods since the
traditional methods are not able to answer the increasing demand for privacy and security standards.
To address this issue, we propose a Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC
metamodel for dynamic and heterogeneous structures that is able to encompass the heterogeneity of
the existing AC models. Various AC models can be derived, and different static and dynamic AC
policies can be generated using its components. We use Eclipse (xtext) to define the grammar of our
AC metamodel. We illustrate our approach with several successful instantiations for various models
and hybrid models. Additionally, we provide some examples to show how some of the derived
models can be implemented to generate AC policies.

Keywords: access control; metamodel; policy; hierarchy; security and privacy; IoT; Industry 4.0;
heterogeneous

1. Introduction

The current generation of networking environments, referring to dynamic and ever-
evolving environments, such as the Internet of Things (IoT), cloud computing, etc., with
several millions of users who need access to information stored in distributed data centers
and servers via various types of devices (wearable devices, mobile phones, tablets, . . .),
makes the process of controlling access challenging and very complicated. Moreover, the
emergence of ubiquitous computing with heterogeneous devices, platforms, etc., especially
the concept of Industry 4.0 and IoT applications, releases new prospects to traditional
information systems and access control (AC) methods by merging new technologies and
services for seamless access to information sources at anytime and anywhere [1–3]. This
reality, in addition to the heterogeneity of the AC models that are implemented in the
different centralized and distributed computing environments, makes the process of con-
trolling access even more complicated, as the method of AC should answer the needs

Sensors 2021, 21, 6507. https://doi.org/10.3390/s21196507 https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 6507 2 of 29

of any computing environment by including the heterogeneity of AC models, and being
upgradable and dynamic to follow possible technology progressions [4,5].

Moreover, AC policies are among the most significant security mechanisms that are
essential to increase the privacy and confidence of an information system. Up to the present
time, AC research and real-world AC implementations to define and enforce AC policies
broadly fall under one of the five stages:

1. Traditional AC models discretionary access control (DAC), mandatory access control
(MAC), role-based access control (RBAC), attribute-based access control (ABAC) [4,6];

2. Hybrid models, by means of combining features of two or more AC models, for
example, hybrid RBAC/ABAC model [7];

3. Extended AC models, by means of adding new component(s) to a model to enhance
its features, for example, [8];

4. Abstract AC models, by means of abstracting a model and adding new components
to it, then deriving different instances of it, for example, [9];

5. AC metamodels, by means of including all of the above, for example, [10].

In the literature, different AC models are implemented to define and enforce AC
policies in order to specify users’ access rights to resources and verify that they can only
access resources they are allowed to in a given context. In Figure 1, we illustrate the notion
of heterogeneous structures, which include heterogeneous systems, platforms, networks,
and devices, in addition to the heterogeneity of the implemented AC models to define
and enforce different AC policies, such as password policy, network access policy, remote
access policy, etc. With the evolution of technology trends, it is realized that traditional
models, hybrid models, extended AC models, and abstract AC models no longer meet the
increasing demand of privacy and security standards; in other words, they are currently
insufficient to handle all the AC requirements [5]. To enhance AC methods, the era of
developing AC metamodels began within the decade to serve as unifying frameworks
with advanced AC features that are able to include most features of AC models in order
to define a larger set of AC policies and upgrade the defined policies [5,10,11]. The AC
metamodel should allow security experts and system administrators to create the needed
components to define/upgrade any static and dynamic AC policy since controlling users’
access and the actions they perform on information cannot be ignored when developing
strategies related to information security [6,12]. An information system (IS) must follow
up the evolution of security threats by designing and including modern security concepts
and practices and incorporating them with the information system development life cycle
(SDL). With the evolution of SDL, various studies have focused on the importance of
collaboration and communication between software operators and developers. Recently,
the need for security prompted the collaboration between developers and operators by
involving security experts from the start of SDL [13,14].

However, implementing AC methods in complicated and distributed environments
with several millions of users who might be assigned to different levels of roles, categories,
groups, etc., and who request access to millions of objects, which might be distributed
also in levels in several sites, need a generic, dynamic, and extensible AC metamodel that
supports the hierarchy of components, for example, objects, roles, categories, actions, and
maybe conditions. Unfortunately, despite the existing metamodels tackling specific issues
related to certain computing environments, they lack some essential features and have
several limitations (summarized in Section 2) [5,6,11]. Our concern in this paper falls under
the fifth stage of developing AC methods. For this purpose, we propose a Hierarchical,
Extensible, Advanced, and Dynamic (HEAD) AC metamodel with unconventional features
to assist developers and security experts to include its components in designing secure ISs
that conform to organizational AC security policies. In this paper, we tackle the generic,
dynamic, extensible, and hierarchical limitations of the existing metamodels. We propose
the kernel elements of the HEAD metamodel (a preliminary and general instance of our
metamodel is presented in [10]); we unify the concepts of the heterogeneous AC compo-
nents and include them under a generic metamodel concept. We explain how different

Sensors 2021, 21, 6507 3 of 29

AC components can be defined, instantiated to derive various models from the HEAD
metamodel, and illustrate several scenarios to show its dynamism and extensibility. Addi-
tionally, we show how our metamodel supports the feature of hierarchy for all components,
which is essential to define policies in, for example, a hierarchical organizational structure
where, for example, several users might be assigned to several roles in a hierarchy and
have permission to access several objects also in a hierarchy. However, the contribution of
this paper can be summarized as follows:

• Proposing an advanced AC metamodel with generic, dynamic, and extensible char-
acteristics; it can also be considered a foundation stone to solve other limitations
in existing AC metamodels, including collaboration and interoperability between
various models.

• Providing a solution for the need of component hierarchy in AC models (e.g., objects,
actions, roles, categories, contexts, etc.).

• Developing a language to express AC requirements, and to serve as a basis for pro-
ducing AC decisions for access requests.

• Providing a grammar language that is simple and flexible to appropriately express
AC policy requirements.

• Assisting developers and security experts to include unified and generic components
in designing secure ISs that conform to the organizational AC security policies.

Systems/Platforms Networks & connectivity Things/Resources

RBAC

RBAC

ABAC

ABAC

Figure 1. The dynamic and heterogeneous structures.

The remainder of this paper is organized as follows. In Section 2, we review the related
works in this domain. In Section 3, we explain how we unify the common concepts of
heterogeneous AC models, then we present the HEAD metamodel with its kernel elements
based on the unified concepts. In Section 4, we design the tools for metamodel instantiation.
We use the Eclipse Xtext framework to define the domain-specific language (DSL) of our
metamodel, and then we explain the metamodel characteristics. In Section 5, we show
how the HEAD metamodel provides a generic base to include all components of AC
models and is able to derive various models (also hybrid models) instances. We also
represent several scenarios to show its dynamicity, extensibility, and how it supports the
hierarchy of different components. In Section 6, we illustrate some examples of how AC
policies can be generated, using the HEAD metamodel. Section 7 concludes this paper with
future perspectives.

2. Related Works

As mentioned earlier, different AC implementations to define and enforce AC policies
have been presented in the literature over the decades. In this section, we summarize

Sensors 2021, 21, 6507 4 of 29

the proposed AC models, starting from traditional AC models reaching to the motif of
AC metamodels.

The traditional AC models are DAC, MAC, RBAC, and ABAC [6]. In DAC, mapping
users to operations on an object often takes the form of an access control matrix, while
MAC is based on the concept of security levels assigned to subjects and objects to control
the direction of information flow and users’ operations. In these models, AC decisions
are based on the identity of the user, and they are inadequate in dynamic computing
environments where the sharing of information between systems and users from diverse
security domains is common [5,8]. Thereafter, the RBAC model is proposed to provide
a more generalized model than DAC and MAC. In RBAC, if users are assigned to a role,
then they are granted a set of permissions. This model is insufficiently flexible for several
scenarios and makes administration potentially heavy in very large systems [11,15], for
example, systems with several local branches and abroad (e.g., banks), where hundreds of
users need to be assigned to roles to determine their permissions. Additionally, it does not
support dynamic attributes (e.g., time of day), for example, to prevent users from accessing
any information after their working hours. Furthermore, due to continuous technology
developments, the demand for a more generic and dynamic AC model has grown, and
thus, the ABAC model is proposed. In ABAC, AC decisions are based on the attributes
of users (subjects), attributes of objects being accessed, and attributes of environment
(context). One of the ABAC model’s limitations is the difficulty to calculate the resulting
set of permissions for a given user [5,6,15,16].

Due to continuous technology growth and the appearance of distributed systems and
because of some shortfalls in each of the traditional models [10,17], different approaches
are proposed in the literature to enhance AC methods by combining features of two or
more AC models, called hybrid models. A hybrid model is proposed by Kaiwen and
Lihua in [18], based on attribute and role, to solve the shortage on the environment of
large-scale dynamic users by solving the aspect of permissions assignment and policy
management. Another hybrid RBAC/ABAC model approach is presented in [19] for
multi-domain information systems. To find a model that supports dynamic attributes and
handle relationship between roles and attributes to provide better AC features in dynamic
environments, Kuhn et al. in [20] address the idea of adding attributes to RBAC. Moreover,
Rajpoot et al. [7] integrate RBAC and ABAC models by associating attributes with subjects,
objects and the environment, allowing the request context to be considered in making AC
decisions. In [21], a hybrid model merging RBAC and ABAC is proposed to enhance the
dynamic features of RBAC and to provide ease of administration, tight security, dynamic
behavior, and efficient separation of duty implementation. Additionally, Kim et al. in [22]
propose the MAC/RBAC model by configuring RBAC and MAC features to be applied in
the domains where access has to be checked for both authorized roles and security levels
together, for example, in the hospital domain, government domain, and military domain.

Moreover, to enhance an AC model in order to define additional rules, some AC
models are extended by adding new component(s) to them. For example, in [23], a survey
of an extended RBAC model in cloud computing is presented. In addition, an ABAC model
extension is presented in [8], called hierarchical group and attribute-based access control
(HGABAC), where groups and hierarchies of subjects and objects are added. Another
ABAC extension is proposed in [9], named the higher-order attribute-based access control
model (HoBAC); it extends the basic concepts (subjects, objects, and contexts) of the model
with aggregation operations that provide hierarchies, and many other examples. As well,
in [24], the RBAC model is abstracted to the meta-level in order to support the delegation
of users’ rights, which allows a user without any specific administrative privileges to
delegate their access rights to another user; hence, a delegation metamodel is proposed for
specifying RBAC and RBAC-based delegation features. In [25], Adda and Aliane proposed
a generic ABAC metamodel to generate a wide variety of AC models related to the ABAC
model that is suitable for all computing environments.

Sensors 2021, 21, 6507 5 of 29

The current generation of networking environments impose the need to focus on
developing more advanced AC features, especially since the existing AC models—hybrid
models, extended AC models, and abstract AC models—have reached their limits and are
currently insufficient to meet the needed AC requirements [5,17]. What makes this fact
challenging is the heterogeneity of everything—networks, applications, devices, etc.—in
addition to the heterogeneity of AC models. Hence, the notion of AC metamodels has
existed for almost a decade [11]. They are proposed to work as frameworks to allow
instantiating various models, and allow defining and enforcing a larger set of AC policies.
These metamodels are proposed to include most of the features and components of AC
models, which are employed in the core metamodel structure [5,11]. Hence, the more
features they include, the more they allow defining a larger set of AC rules.

In the literature, several metamodel approaches are proposed for different computing
environments. A unified AC modeling language is proposed in [26] as an extension
for Barker’s metamodel [27] to support object and action hierarchies. The aim of their
language is to define hybrid AC policies by allowing categories to be associated with
other categories and finding hierarchical associations between them. A subject may be
assigned to a category, which could be a role, a class, a group, a security level, etc. Barker’s
approach includes features of MAC, DAC, and RBAC, and is named the category-based
access control metamodel (CBAC). Another approach is proposed by Bertolissi et al. in [28]
for distributed environments and is based on the CBAC metamodel, where the user’s
request can be passed to other sites and evaluated in a distributed manner. An integration
metamodel for hybrid policies to concurrently handle DAC, MAC, and RBAC models
is proposed by Abd-Ali et al. in [29]. Alves et al. in [30] propose a CBAC metamodel
extension to study the interaction between obligations and permissions and expand a
general notion of obligation for the existing AC models. A category-based access control
(CatBAC) metamodel for highly flexible and dynamic environments, specifically for cloud
computing services, is proposed by Khamadja et al. in [31], to allow security administrators
in various company sites to find a concrete model with the constraints and specificities of
each site. To handle security and privacy in cloud service development and operations, Xia
et al. in [32] propose the cloud security and privacy metamodel (CSPM). To facilitate the
analysis and manipulation of security requirements for web services for the representation
of web content management systems (WCMS) AC policies and to automatically extract the
AC information in the domain of WCMS, a metamodel approach is presented by Martínez
et al. [33].

Generally, the metamodels are proposed to address the notions of including various
hybrid AC models features in the core metamodel structure, to encompass AC models and
allow extending them by adding new components, and to find a generic structure that
could include the most possible features of AC models. Nevertheless, the proposed AC
metamodels have several limitations and lack some essential characteristics [5,11,34], and
can be summarized as follows:

• They do not include all features of the common AC models, so they are not generic
enough;

• They do not support the ability of defining new entities and building relationships
between them in order to describe larger set of AC rules, for example, due to changing
environmental conditions, so they are not dynamic enough to follow technology
upgrades;

• They do not include the possibility of defining new components and attributes in
addition to the defined ones, so they are not extensible and the defined policies cannot
be extended;

• They do not support the feature of hierarchy for components;
• They do not handle or support the feature of collaboration and interoperability be-

tween the various AC models;
• They do not tackle the issue of migrating AC policies from one model to another.

Sensors 2021, 21, 6507 6 of 29

In this paper, our concern is to provide solutions for the limitations of generality,
dynamism, extensibility, and hierarchy.

3. Formalization of Access Control Policies

A security policy is a definition of a set of rules and guidelines on which access is
granted or denied for a user in any organization or industry sector. The following are some
general examples of AC rules:

• Before check-in, each worker has to wear a face mask.
• The maximum number of visitors in each room is 15.
• Machine operators can only enter the labs during working hours.

To define a policy, a set of concepts are defined and formulated to form rules. For
example, in the above rules we have subjects (e.g., worker, operator), objects (e.g., face-
mask, machine, room), actions (e.g., wear, visit, enter), attributes (e.g., maximum number,
working hours), and many other concepts could be included in a defined policy, such as
permission, role, group, etc.

3.1. Unifying Access Control Concepts of Heterogeneous Security Policies

In the literature, several types of AC models are implemented; these models can be
defined as frameworks for making authorization decisions. Each model is formulated
based on AC concepts. The following are some examples:

• The DAC model includes subject, object, and action concepts.
• The MAC model includes subjects, object, security level, and operation concepts.
• The RBAC model includes subject, object, role, permission, and action concepts.
• The ABAC model includes subject attributes, object attributes, context attributes,

condition, and action concepts.

Consequently, we can find that security policies include common concepts and at-
tributes that are common to all AC models [10]. These concepts can be summarized as
follows:

1. A set of concepts (and attributes) to describe subjects and objects.
2. A set of concepts (and attributes) that describe the authorized subjects.
3. A set of concepts (and attributes) that explain the different access rights.
4. A set of concepts (and attributes) that set various constraints and conditions.
5. A set of concepts (and attributes) that describe the context (environmental context) to

access objects.

To unify them and make them adaptable to all AC models, we classify them into
explicit, implicit (authorization units and procedural units), and setting concepts as illus-
trated in Figure 2. Note that each of the classified groups may include additional concepts.
EXPLICIT concepts are those that refer to something that is real and exists (e.g., subjects
and objects). IMPLICIT concepts are those that refer to something described or explained
in the guidelines or rules. Implicit concepts include AUTHORIZATION UNITs (e.g., roles,
security levels . . .) and PROCEDURAL UNITs (actions, permissions . . .). SETTING refers
to concepts that are included to have more accurate and regulated access to resources (e.g.,
context, constraints . . .).

Sensors 2021, 21, 6507 7 of 29

action
subject

object

permission

role

operation

group

category

context condition

Setting

Explicit

implicit Authorization units
procedural units

Figure 2. Unifying heterogeneous concepts of AC models.

3.2. HEAD Metamodel

The key responsibility of an AC metamodel is to define a language for specifying
several AC models; usually, this level describes generic concepts. Examples of meta-
objects (or meta-concepts) at the meta-modeling layer are the following: class/entity,
attribute, component, and others. An AC model is an instance of the metamodel. The
key responsibility of the model is to define a language that describes a security policy.
Examples of objects (or concepts) at modeling layer are subjects, objects (or resources),
actions, and other concepts; this level explains how these objects work together. At the
system layer where users interact, the actual AC policies are expressed by a security expert
for a given AC model instance(s). Note that in this section, we use the term “component”
instead of “concept”. Table 1 gives a summary about the meta-modeling layers and details
of our approach.

Table 1. Metamodeling layers and details.

Metamodeling
Layers

Details

Description Elements

Metamodel Describes the models to be instantiated explicit, implicit, authorization unit, procedural unit, setting

Model Metamodel instance, e.g., RBAC model, ABAC model . . . subject, object, role, action, permission . . .

System Model instance, e.g., RBAC policy, hybrid policy . . . Alice, Bob, manager, nurse, prescription, device . . .

Our AC metamodel aims first to describe the AC policy at the abstract level that
is autonomous from the enforcement of this policy. Accordingly, instead of modeling
the AC policy by using the concrete components of subject, object, permission, action,
etc., we define the meta-policy by using the abstract components of explicit, implicit, and
setting, then instantiate the concrete components to model the needed policy. The main
characteristics of the HEAD metamodel are as follows (Figure 3):

• It unifies the heterogeneous components of AC models.
• It is generic enough to include the common AC models and other models.
• It is dynamic and includes the feature of defining components (and attributes for all

components).
• It is extensible since it allows extending the already derived AC models.
• It supports the hierarchy for any type of components.

Sensors 2021, 21, 6507 8 of 29

Implicit

attributes

Explicit

attributes

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit

attributes 0..*

ExHierarchy0..*

StHierarchy0..*

auHierarchy0..* puHierarchy0..*

assign perform

settings has

0..*

0..* 0..*

0..*

0..*

0..*

0..*

Figure 3. HEAD metamodel: the kernel elements.

Unifying the heterogeneous components of AC models and grouping them based
on their functionality would allow instantiating an unlimited number of components
related to the meta-component. Another essential characteristic is its generic structure,
where all components of common AC models can be defined and new ones can also be
defined. In other words, it is not restricted to the common models and it can also be
used as a base to derive new models. Additionally, unlimited levels of hierarchy could be
defined for all components whether they belong to explicit, implicit, or setting concepts.
An AC metamodel that supports the hierarchy of components is an essential characteristic
and cannot be ignored with the current distributed and complex structures of computing
environments and the existing resources.

3.2.1. Kernel Elements: HEAD Metamodel

In this section, we present the kernel elements (meta-components) of our metamodel
and the relationships between them.

• EXPLICIT (Ex): a set of explicit components that represent the real and the existing
entities, such as subjects and objects in any organization or industry sector. The class
EXPLICIT has a composition association with the sub-classes AUTHORIZATION
UNIT and PROCEDURAL UNIT, which are the inheritance of the abstract IMPLICIT
class.

• IMPLICIT (Im): a set of implicit components that represent the described components.
For example, subjects are classified or assigned to some other component(s) (e.g.,
roles), or the processes or functions that can be performed (e.g., actions). Two other
sub-classes that are inherited from the Implicit super-class are the AUTHORIZATION
UNIT (AU) components and the PROCEDURAL UNIT (PU) components.

– AUTHORIZATION UNIT (AU): a set of authorization units. It is a subclass
which should be specialized to create specific authorization units (aui, sub-index
i specifies the unit type), such as roles, categories, security levels, etc., to which
some Ex units (e.g., subjects) can be assigned, An AU example is as follows:
- aui: role (manager, doctor, . . .)
- auj: category (age > 18, temperature < 38◦, . . .)
Hence, AU includes role and category components

– PROCEDURAL UNIT (PU): a set of procedural units. It is a subclass which should
be specialized to create specific procedural units (pui, sub-index i specifies the
unit type) such as actions, permissions, operations, etc., to which some Ex units

Sensors 2021, 21, 6507 9 of 29

(e.g., objects) can be assigned. In other words, it represents operations that can be
performed by Ex units (e.g., subjects) on some other Ex units (e.g., objects), a PU
example is as follows:
- pui: action (read, write, . . .)
- puj: operation (turn on/off, open, close, . . .)
Hence, PU includes action and operation components.

• SETTING (St): a set of setting components. It represents the concepts that are in-
cluded to have more accurate and regulated access to resources, for example, context,
contextual conditions, constraints, etc. The setting components actually provide our
metamodel with high flexibility and expressiveness. They could include other compo-
nents (explicit, implicit, or/and other setting) to construct the needed expression(s).
For example, A context expression and contextual conditions can be expressed in
terms of AU, PU, Ex, and St components.

3.2.2. Hierarchies and Associations

The concept of hierarchy is important to define multiple levels of components, such as
roles, actions, objects, etc. It reflects the structure of an organization and, for example, the
respective responsibilities/priorities of the hierarchical components. Figure 4 represents
some examples of hierarchy in an organization or industry sector. In our metamodel,
there are four basic sets of components: Ex (set of explicit entities/classes), AU (set of
authorization unit entities/classes), PU (set of procedural unit entities/classes), and St
(set of setting entities/classes). Our metamodel provides support for creating hierarchy
for classes of AU (e.g., role hierarchy Figure 4a), PU (e.g., action hierarchy Figure 4b), Ex
(e.g., object or resource hierarchy, Figure 4c), and St (e.g., context hierarchy, Figure 4d) by
aggregating AU, PU, Ex, and St entities. These hierarchical relationships are depicted by an
aggregation association in Figure 3.

(a)

Actions

Private network access

Update Read Write

Public network access

Send Receive view

(b)

Roles

Consultant Dean

Director Team leader

Projects

Folders

Objects

Engineering

Project A Project B

Sales

Tax
declarations

(c)

Context

Context
User

User
profile

Context
Environment

Local

Time Location

Network

Type

Context
Service

Version

(d)

Figure 4. Examples for hierarchy of (a) roles; (b) actions; (c) objects; and (d) contexts.

The association between Ex and AU is to assign, for example, zero or many (0..*)
subjects to roles, groups, categories or other AUs. The association between AU and PU and
PU and Ex is to represent which AUs are able to perform zero or many PUs (e.g., actions,
permissions . . .) and access some, for example, objects or services. Note that Im components
(AUs and PUs) might have zero or many St (e.g., contextual and/or non-contextual con-
straints) before accessing/performing tasks on Ex components. Moreover, the metamodel
provides support for formulating AC models and hybrid models for different policies by
allowing AUs to be associated with other AUs, PUs to be associated with other PUs, Ex

Sensors 2021, 21, 6507 10 of 29

components to be associated with other Ex components, and St components to be associated
with other St components. As shown in Figure 3 a self-association edge exists on each of the
classes. Note that in some models, we might have an empty set of AU, or St, for example,
in the DAC model, AU is an empty set since explicit components are not assigned to AUs.

3.2.3. Meta-Policy and Policy

In this section, we explain the notions of meta-policy and policy of the HEAD meta-
model; note that the theoretical foundations of the HEAD metamodel are not included in
this paper. The meta-policy is expressed using the meta-components of Ex, Im, and St, in
the following way:

Metapolicy = 〈Ex, Im, St〉
Based on this meta-policy, different AC policy definitions can be expressed as follows:

• To define RBAC policy:

– Ex = {subject, object}
– Im = {AU = role, PU = permission}

Hence, Policy = 〈subject, object, role, permission, action〉
Meaning that a subject assigned to role has permission(s) to access object(s) and
perform action(s).

• To define a hybrid MAC/RBAC policy:

– Ex = {subject, object}
– Im = {AU = role, securitylevel, PU = permission, action}

Hence, Policy = 〈subject, object, role, securitylevel, permissions, actions〉
Meaning that, subjects who are assigned to specific roles and security levels
have permissions to access objects that are classified to some security levels and
perform some actions.

Thus, the policy is expressed using model components, which are derived from the
meta-components of meta-policy.

An AC policy is a set of rules that determine users’ access rights within a given
information system. These rules constitute a definition of the AC requirements for the
system. The process of implementing the AC mechanisms to make the system follow the
defined rules is called enforcement. In this paper, our concern is to constitute the definition
of AC requirements for a system.

4. Defining the Grammar of HEAD Metamodel

In the literature, several AC models, such as MAC, DAC, RBAC, ABAC, and many
other hybrid models are formulated based on the definition of security rules. Depending on
the model, the type of rules and the components (or entities) they employ are different. The
remarkable advantage of our metamodel is that it supports the definition of AC policies for
all these models and allows the implementation of generic tools to derive them. To handle
this idea, the metamodel must allow defining the different components and attributes, then
expressing models using them.

This section addresses the definition of the grammar of the DSL for our AC meta-
model; the grammar we have created is listed in Figure 5. Our grammar definition can be
interpreted as follows:

1. Lines 1 to 39: to instantiate the needed AC model(s) components, the hierarchies, and
the attributes.

– Lines 1 to 6: the block of defining all model components. ‘Metamodel’ is the root
class for the definition of parser rules. The used keywords ‘policy’ and ‘end’,
in line 3, are used to indicate the start and end of creating policy components.
Note that our metamodel is able to create one or more policy types (e.g., MAC
policy and RBAC policy). Each defined rule generates one decision (line 5).

Sensors 2021, 21, 6507 11 of 29

– Lines 7 to 9: the declaration of attribute(s) name(s) and datatype(s); also, arrays
can be declared.

– Lines 10 to 15: the definition of the policy name (e.g., RBAC) and the sub-blocks
(inside the main block of policy) of the Ex, Im, and St components. To create a
policy, at least one or more explicit/implicit element(s) must be declared; also,
we could have zero or more setting element(s). To define the sub-block of Ex
and St elements, the keywords ‘explicit’ and ‘setting’ are used, respectively, at
the beginning, and ‘end’ at the end. Note that the ‘Implicit’ parser rule (line 13)
has two elements, ‘AuthorizationUnit’ and ‘ProceduralUnit’ (lines 23 to 27).

– Lines 16 to 18: the alternatives of attribute data types.
– Lines 19 to 22: the creation of Ex components, their attributes, and their hierar-

chies.
– Lines 23 to 27: the creation of sub-blocks of Im elements (AUs and PUs). The

keywords ‘authorization’ and ‘procedural’ are used to indicate the beginning of
each sub-block, and ‘end’ at the ending.

– Lines 28 to 31: the creation of AU components, their attributes, and hierarchies.
– Lines 32 to 35: the creation of PU components, their attributes, and hierarchies.
– Lines 36 to 39: the creation of St components, their attributes, and hierarchies.
– Note that attributes could be defined for all components, and an unlimited

number of levels for components hierarchy can be created.

1- Metamodel:
2- {Metamodel}
3- 'policy' (policy+=Policy)+ 'end'
4- 'rule:'
5- decision=Decision
6- ;
7- Attribute:
8- name=ID (array ?='[' (length=INT)? ']')? ":" type=AttType
9- ;
10- Policy:
11- name=ID ('('attributes+=Attribute+')')?
12- 'explicit' (explicit+=Explicit)+ 'end'
13- (implicit+=Implicit)+
14- ('setting'(setting+=Setting)* 'end')?
15-;
16- AttType:
17- 'String'|'int'|'boolean'|'char'|'float'
18- ;
19- Explicit:
20- name=ID ('(' attributes+=Attribute+')')?
21- ('['heirarchy+=Explicit+']')?
22- ;
23- Implicit:
24- {Implicit}
25- ('authorization' authunit+=AuthorizationUnit* 'end')?
26- 'procedural' procunit+=ProceduralUnit* 'end'
27- ;
28- AuthorizationUnit:
29- name=ID ('(' attributes+=Attribute+')')?
30- ('['heirarchy+=AuthorizationUnit+']')?
31- ;
32- ProceduralUnit:
33- name=ID ('(' attributes+=Attribute+')')?
34- ('['heirarchy+=ProceduralUnit+']')?
35- ;
36- Setting:
37- name=ID ('(' attributes+=Attribute+')')?
38- ('['heirarchy+=Setting+']')?
39- ;
40- Decision:
41- (('(' attributes+=Attribute*')')?
42- '{' (explicit+=[Explicit|QualifiedName]
43- ('(' (wth+=[Attribute|QualifiedName])* ')')?)
44- ('[' (authunit+=[AuthorizationUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)* ']')?
45- ('{' procunit+=[ProceduralUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)?
46- => '{'
47- (explicit+=[Explicit|QualifiedName]
48- ('('(wth+=[Attribute|QualifiedName])* ')')?
49- ('['(authunit+=[AuthorizationUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?)*']')?
50- '{'
51- (
52- procunit+=[ProceduralUnit|QualifiedName] ('('wth+=[Attribute|QualifiedName]*')')?
53- ('{' (setting+=[Setting|QualifiedName] ('(' wth+=[Attribute|QualifiedName]* ')')?)*'}')?
54-)+
55- '}'
56-)+
57- ('}')?
58- '}'
59- '}' '-->' id+=ID)+
60- ;
61- QualifiedName:
62- ID('.' ID)*
63- ;

Figure 5. HEAD Metamodel: The Grammar.

Sensors 2021, 21, 6507 12 of 29

2. Lines 40 to 63: to define a policy (set of rules), based on the instantiated components
and attributes with the access request decision. Note that, using our grammar def-
inition, rules (and hybrid rules) can be expressed in different ways, for example, a
subject can access object(s) and perform an operation(s), or an object can be accessed
by a subject(s) and perform an action(s).

– Line 40: the parser rule ‘Decision’, is the beginning of specifying and expressing
a rule which ends with a decision (‘–>’ id+=ID, line 59).

– Line 41: after using the keyword ‘rule’ (line 4), some attributes can be created, for
example, ruletype, rulenumber, etc.

– Lines 42 and 44: the block of rule definition starts with an open curly braces ‘{’.
A rule is started by specifying an Ex component (e.g., subject or object) and its
attributes. In some models, explicit components are assigned to some AUs, for
example, in RBAC subjects are assigned to roles, and in MAC subjects/objects
are assigned to security levels. Note that Ex-AU assignment is optional ‘?’ in
expressing a rule, depending on the expressed model (line 44).

– Line 45: it is optional to define a nested block for a procedural unit, for example
permission in RBAC, to express a policy.

– Line 46: the beginning of expressing another nested block after specifying an Ex
component and assigning it to some AU(s), or defining some PU(s).

– Lines 47 to 49: same interpretation of lines 42 to 44. Hence, the beginning of a
rule could be expressed as follows, for example:

- A subject can access object(s) . . .
- An object can be accessed by a subject(s) . . .
- A subject assigned to a role has permission to access object(s) . . .
- A subject assigned to a security level can access object(s) assigned to some

security levels . . .

– Lines 47 to 56: the sign ‘+’ in ‘)+’, line 56, indicates that what is included between
lines 47 to 56 can be expressed more than once within a rule.

– Lines 50 to 55: the start and end of a sub-block of specifying what PUs (e.g.,
actions) an Ex unit can perform. Note that it is optional to include some St (e.g.,
conditions) while expressing a rule. The sign ‘+’ in ‘)+’, line 54, indicates that
what is included between lines 51 and 54 can be expressed more than once.

– Line 57 to 59: closing the main block with some of opened sub-blocks.
– Line 59: indicates the end of rule expression with the decision ID. Note that the

sign ‘+’ in ‘)+’indicates that a set of rules can be defined within a policy.

In Section 5, we explain with examples how our metamodel grammar could be
expressed to define different rules, and show how it is generic, dynamic, extensible, and
supports a hierarchy of components.

5. Deriving Access Control Models

In this section, we show how our metamodel structure is (1) generic and able to
derive instances of different models and hybrid models, (2) dynamic and allows defining
new components in addition to the existing ones, also the relationships between them,
(3) extensible to upgrade any defined policy, and (4) supportive of the feature of defining
hierarchies.

The key responsibility of the model is to define a language that describes a security
policy. Examples of entities at modeling layer are: subjects, objects (or resources), actions,
and other entities. This metamodeling layer explains the way of how these entities work
togather. Henceforth, we use the term “entity” instead of “component”. Note that in this
paper, we consider the environmental context.

Sensors 2021, 21, 6507 13 of 29

5.1. Generality

In this section, common models (DAC, MAC, RBAC, and ABAC), in addition to
some hybrid models, are instantiated, using the HEAD metamodel, and show how dif-
ferent AC rules can be expressed using the defined grammar (Figure 5). The models in
Figures 6, 8, 10, 12, 14 and 16 illustrate class instances with the same colors of EXPLICIT,
IMPLICIT, and SETTING classes of Figure 3.

5.1.1. Discretionary Access Control Model (DAC)

In DAC, subjects determine how some other subjects can access their objects [35]. It is
based on the identity of three key entities shown in Figure 6, the Ex entities are subject and
object, and the Im entity is operation (PU instance). Subjects can control access rights to
their objects by determining what operations can be performed by other subjects.

operation

0..1

0..*

0..1

0..*

subject

attributes

object

attributes

action

attributes

Figure 6. DAC model instance.

Based on our grammar definition, in Figure 7a (lines 1 to 4), we define DAC entities
(and the needed attributes), and their instances are shown in Figure 7b. The DAC policy
is expressed in lines 6 to 13 starting with the keyword ‘rule’, and since a policy is a set of
rules, we define the attribute ‘ruleid’ to indicate the rule number. Note that any rule could
have allow, deny, mixed, etc., decisions. Hence, the rule can be interpreted as follows:

A subject with name = name-value can access object with type = type-value and perform
some operation(s) op = op-value(s).

Figure 7. (a) DAC Policy Definition; (b) DAC entities.

5.1.2. Mandatory Access Control Model (MAC)

In MAC, access rights are based on the concept of security levels associated with each
subject and object, where actions are derived. A security level for a subject is called the
clearance level and for an object is called the classification level [6]. In Figure 8, the Ex
entities are subject and object, and the Im entities are security level (AU instance), and
operation (PU instance). Clearance levels are assigned to subjects and objects, and based
on these levels, AC rights are specified.

Sensors 2021, 21, 6507 14 of 29

0..*0..1

0..* 0..1

0..*

0..1

0..*

0..1 security level

attributes

operation

attributes

subject

attributes

object

attributes

Figure 8. MAC model instance.

In Figure 9a (lines 1 to 5), we define MAC entities (and the needed attributes), and
their instances are shown in Figure 9b. The MAC policy is expressed in lines 7 to 16,
starting with the keyword ‘rule’, and the attribute ‘ruleid’ to indicate the rule number. Note
that any rule could also have allow, deny, mixed, etc., decisions. Hence, the rule can be
interpreted as follows:

A subject with name = name-value which is assigned to a securitylevel = clearancelevel-
value can access object with securitylevel = classificationlevel-value and perform some
operation(s) op = op-value(s).

In MAC, for example, the BLP (Bell–LaPadula) model, a subject is allowed to read an
object if its clearance level is greater than or equal to the object’s classification level [6].

Figure 9. (a) MAC policy definition; (b) MAC entities.

5.1.3. Role-Based Access Control Model (RBAC)

In RBAC, subjects are given access based on their roles (e.g., engineer and doctor). In
Figure 10, the Ex entities are subject and object, and the Im entities are role (AU instance),
and permission and action (PU instances). Subjects can be assigned to different roles
(roles can be associated to several subjects), and each role is a group of permissions to
perform some actions. As mentioned earlier, our metamodel provides support for creating
hierarchies by aggregating some concepts. As shown in the figure, hierarchies for objects
(resources), roles, and actions can be created [35].

Sensors 2021, 21, 6507 15 of 29

1..* 1..*

0..*

0..*

0..*

0..1

0..1 0..*

role

attributes

action

attributes
permission

attributes

subject

attributes

object

attributes

Figure 10. RBAC model instance.

In Figure 11a (lines 1 to 6), RBAC entities (and the needed attributes) are defined,
using our defined metamodel language; their instances are shown in Figure 11b. RBAC
policy is expressed in lines 8 to 23. RBAC rule can be interpreted as follows:

A subject with name = subjectname-value assigned to a role roletype = role-value has
the permission to access object name = objectname-value and perform action act = act-
value1, and action act = act-value2 if condition expr = condition-expression is true.

Note that the ‘act’ attribute might have read value for the first action and write for the
second action.

Figure 11. (a) RBAC policy definition; (b) RBAC entities.

5.1.4. Attribute-Based Access Control Model (ABAC)

In the ABAC model, AC rights are evaluated at the time that the actual request is
made; it uses subject, object, and environmental (context) attributes to determine access
decisions. In Figure 12, the Ex entities are the subject attributes and object attributes (which
represent subjects and objects); the Im entities are permission and action (PU instances); the
St entities are context expressions and attributes. Subjects with some attributes are allowed
to perform some actions on objects with some other attributes based on some conditions
and constraints in the defined policy.

Sensors 2021, 21, 6507 16 of 29

0..*

0..*0..*

0..*

0..*

0..*

0..*

0..*

0..1

0..*

subject

attributes

0..1

0..*

object

attributes

context

attributes

action

attributes

constraint

 +expression

Figure 12. ABAC model instance.

In Figure 13a (lines 1 to 9), ABAC attributes, which represent subjects, objects, actions,
and context, are defined; the instances are shown in Figure 13b. ABAC policy is expressed
in lines 11 to 21. A rule can be interpreted as follows:

A subject with address = address value, and . . . attributes can access object with type = type
value, and . . . attributes and perform an action act = act-value1, and act = act-value2 when
expression if location = location-value is true.

Note that the ‘act’ attribute might have update for the first action and delete for the
second action.

Figure 13. (a) ABAC policy definition; (b) ABAC entities.

5.1.5. Hybrid Models

A hybrid AC model combines features of two or more AC models. Using the grammar
of the HEAD metamodel, various hybrid models can also be instantiated. Figure 14
represents a hybrid MAC/RBAC model instance.

Sensors 2021, 21, 6507 17 of 29

0..*

0..*

0..*

0..1

1..* 1..*

0..*

0..*

0..1 0..*

action

attributes

subject

attributes

object

attributes

permission

attributes

role

attributes

security level

attributes

0..1

0..1

Figure 14. Hybrid MAC/RBAC model.

In Figure 15a (lines 1 to 5), we define MAC/RBAC entities (and the needed attributes),
and their instances are shown in Figure 15b (subject, object, security level, role, action, and
permission). A hybrid MAC/RBAC policy is expressed in lines 7 to 19, with the attribute
‘ruleid’ to indicate rule number. A MAC/RBAC rule can be interpreted as follows:

A subject which is assigned to role = roletype-value and securitylevel = clearancelevel-
value has a permission to access object(s) with securitylevel = classificationlevel-value and
perform some action(s) act = act-value.

Figure 15. (a) MAC/RBAC policy definition; (b) MAC/RBAC entities.

Another hybrid model example is illustrated in Figure 16, which represents an in-
stance of the hybrid RBAC/ABCA model. In this hybrid model, to determine subject’s role,
a role is added as an attribute to the subject entity.

Sensors 2021, 21, 6507 18 of 29

0..*

0..*0..*

0..*

0..*

0..*0..1

0..*

0..*

0..1

0..*

subject

attributes

object

attributes

context

attributes

permission

attributes

role

0..*0..1action

attributes

constraint

+expression

Figure 16. Hybrid RBAC/ABAC model.

In Figure 17a (lines 1 to 9), we define the RBAC/ABAC entities and attributes, and
their instances are shown in Figure 17b (subject attributes, object attributes, action, permis-
sion, context, and contextual attributes). A hybrid RBAC/ABAC policy is expressed in
lines 10 to 24. A rule can be interpreted as follows:

A subject with attributes address = address-value and role = role-value has a permis-
sion to access an object(s) with attribute(s) type = type-value and perform an action where
act = act-value when context-expression if location = location-value and time = time-value
are true.

Figure 17. (a) RBAC/ABAC policy definition; (b) RBAC/ABAC entities.

As shown above, various AC models can be instantiated using the HEAD metamodel;
hence, it is generic and able to include any AC feature for any model, and is also flexible
enough to define the needed AC policies (also hybrid policies).

5.2. Dynamism

Along with technology upgrades, several security threats appear. To conquer them,
security solutions must be regularly updated and stay amenable to follow and track the

Sensors 2021, 21, 6507 19 of 29

evolution of these threats. Protecting resources against security threats has become a crucial
concern in the development of IS and requires setting up trusted AC policies. The HEAD
metamodel exceeds the features of the existing metamodels since it considers that AC
is becoming more and more important for open, ubiquitous, and critical systems. An
AC metamodel must be flexible and upgradable, due to changing conditions or updating
rules. In other words, its structure should be dynamic and describe how its properties
can be adjusted over time to define a larger set of static and dynamic AC policies. Hence,
a dynamic metamodel allows defining new types of attributes, for example, contextual
attributes, and new components, in addition to the relationships between them to upgrade
and formulate different AC models. In this section, we assume some scenarios as examples
to show the dynamism of the HEAD metamodel.

• Scenario 1: Assume that an RBAC model is already formulated to define a policy for
an organization. Hereinafter, due to some organizational changes and updates, the
following occurrs:

a. Some users who are already assigned to certain roles need to be assigned, based
on their roles, to security levels.

b. Some other users now should be directly assigned to levels.
c. Both users in (a) and (b) are only allowed to access some sensitive objects (e.g.,

documents), which are also classified into levels based on their sensitivity.

Hence, some of already defined rules must be updated, and new rules must be defined.
Figure 18 is an example of how the HEAD grammar is dynamic. Lines 2 to 5 indicate
the already defined RBAC entities (with the attributes), and lines 13 to 21 indicate the
already defined RBAC rules. Lines 22 to 31 indicate that some RBAC rules are updated
to express hybrid MAC/RBAC rules. As we can see, in line 24, some subjects who are
assigned to some roles are now assigned to some security levels, and in line 26, some
objects are assigned to some security levels. Lines 32 to 38 indicate the definition of
new MAC rules.

Figure 18. Dynamic AC metamodel: Scenario 1.

Sensors 2021, 21, 6507 20 of 29

• Scenario 2: Assume that an ABAC model is already formulated, and the policy is
already defined in an organization. Suppose that the organization has departments
dept1, dept2, and dept3. However, due to some changing conditions, a new static and
dynamic AC rules must be defined and others must be updated. The updated policy,
due to new changing conditions, states the following:

a. Dynamic rule: subjects (users) in dept2 and dept3 are not allowed to access
some objects after three failed password attempts (assuming that another level of
authentication is needed before accessing the objects).

b. Static rule: some subjects in dept1 can determine what operations, (i) other
subjects can perform, and (ii) some other subjects with the specific role can
perform, on their objects.

Clearly, some already defined rules must also be updated, and new rules must be
defined. As shown in Figure 19, the red and blue indicators refer to the modifications
and the new expressions for rules. To answer the needed updates, in line 3, two
additional attributes are defined as well as the attribute ‘countPW’ in line 8 to count
the number of failed attempts while entering the password ‘PW’. Another St entity is
instantiated named condition (line 9) to check the subject’s department and role based
on (a) and (b) of the above policy updates. Lines 12 to 22 indicate that some ABAC
rules are updated to answer the needed modifications in (a). As we can see, an action
can be performed on an object if the following are true:

– The answer of condition (line 17) is true (the condition is true if the value of the
dept attribute is equal to that of dept2 or dept3).

– Another authentication level is verified by entering the correct password ‘PW’ and
another condition (contextualCondition) must return true (contextualCondition
is true if the value of ‘countPW’ is less than or equal to three).

Note that the condition is verified at a certain point in time, specifically when some-
thing occurs. Hence, this rule deals with the dynamic behavior of the subjects. Note
that our grammar is able to express a rule in another way starting with the object.
As well, to answer the requirements in (b)-(i) and (b)-(ii), a new rule is expressed in
lines 24 to 37.

(i) An object with attribute type = type-value can be accessed by subjects with
attribute address = address-value and perform some action act = act-value1, and
some other action act = act-value2 if their dept = dept-value (dept1).

(ii) An object with attribute type = type-value can be accessed by subjects with
attribute address = address-value and perform some action act = act-value1, and
some other action act = act-value2 if their dept = dept-value and their role =
role-value.

As expressed in Scenarios 1 and 2, we can find that new types of attributes and entities
can be defined to describe a larger set of rules to express (then enforce) static and dynamic
policies. The above scenarios show the Dynamism of the HEAD metamodel, which comes
after its Generality feature.

Sensors 2021, 21, 6507 21 of 29

Figure 19. Dynamic AC metamodel: Scenario 2.

5.3. Extensibility

Developing a generic and dynamic AC metamodel enables developing other important
features, such as extensibility. An extensible AC metamodel means that new entities (or
attributes) could be defined and integrated with already derived models to support new
AC features in addition to the previous ones.

In this section, we assume that an RBAC model is already defined, and the needed
policy is expressed in an organization. Due to new procedures and upgrades in the
organization, the users who are already assigned to specific roles need to be classified into
groups. For example, subjects who are assigned to role1 are classified into two groups,
(group11 and group12), and subjects who are assigned to role2 are classified into three
groups, (group21, group22, and group23). Besides the already defined permissions for
role1 and role2, other permissions need to be specified based on user-group assignments.
Hence, users’ permissions are specified based on their roles, groups, and roles and groups.
Figure 20 illustrates an extension for RBAC policy to support the notion of groups. The
red indicators show the newly defined entities/attributes in addition to the existing ones
with rule expressions. Lines 9 to 18 express the permissions of subjects who are assigned
to roles regardless of their groups. Lines 17 to 25 express a new rule of permissions for
subjects who are assigned to groups regardless of their roles. Lines 26 to 36 express the
permissions of subjects based on their roles and groups; in line 31, conditions are used to
check the users’ (subjects’) role and group to allow/deny them performing action(s).

Sensors 2021, 21, 6507 22 of 29

Figure 20. Extensibility: RBAC example.

Hence, having an advanced AC metamodel that is able to extend the existing models
is a substantial requirement with technology progressions and upgrades.

5.4. Hierarchy of Entities

Hierarchical authorization is the authorization determined based on the hierarchy.
Within this structure, access rights are specified by an entity’s place in the hierarchy. The
hierarchy defines the relationships between specific types of entities (e.g., roles). This fea-
ture can be employed to extend the derived AC models. As we can see in Section 2, several
models and metamodels in the literature are extended to support the feature of hierarchy
since it provides additional, granular access to resources for an organization and helps
reduce maintenance costs. For example, in complex scenarios (e.g., IoT), administrators
can start with creating several entities and then add their hierarchy. This would help in
managing access to data with less maintenance costs compared to creating a large number
of nonhierarchical entities. In this section, we show how HEAD metamodel grammar is
able to define a hierarchy for any type of entities. For example, we have the following:

- Creating a hierarchy of roles and objects in RBAC: assume that, after expressing an
RBAC policy, an organization needs to update/define new rules that support the
hierarchy of roles (two levels of hierarchy) and objects (three levels of hierarchy). In
Figure 21a, in lines 2 to 4, we define three levels of object hierarchy: objectL1, objectL2,
and objectL3. Note that L1, L2, and L3 are concatenated with the entity name to
indicate the level number. In lines 6 to 7, two levels of role are defined (roleL1, and
roleL2). In lines 14 to 28, the rule states the following:

A subject with name = name-value assigned to roleL1 = role-value has permission to
access an objectL1 = name-value and perform action act = act-value if condition is true,
an objectL2 = name-value and perform action act = act-value, and an objectL3 = name-
value and perform action act = act-value.

In lines 30 to 39, a subject assigned to a role in second level of hierarchy can access
an object(s) in a second level of hierarchy, and another object(s) in a third level of

Sensors 2021, 21, 6507 23 of 29

hierarchy. The rule states the following:
A subject with name = name-value assigned to roleL2 = role-value has permission
to access an objectL2 = name-value and perform action act = act-value, and an ob-
jectL3 = name-value and perform action act = act-value.

Figure 21b, shows the defined entities/attributes, and the hierarchy of roles and
objects. Note that if a subject is assigned to one or more roles, the expression could be
written as follows:

RBAC.subject(RBAC.subject.name)[
RBAC.roleL1(RBAC.roleL1.role)
RBAC.roleL1.roleL2(RBAC.roleL1.roleL2.role)
RBAC.roleL1.roleL2.roleL3(RBAC.roleL1.roleL2.roleL3.role) . . .]{. . .

Figure 21. RBAC: (a) definition of role/object hierarchy; (b) hierarchy of role/object entities.

6. Generating Policies: Examples and Illustrations

In the previous sections, we defined the grammar of the HEAD metamodel for spec-
ifying several AC models, then we defined a model language to describe AC security
policies. In this section, the models expressed in the DSL are transformed to Java code in
order to generate the AC policies. We provide examples of how the actual AC policies are
generated for a given model(s) instances. AC policies are expressed at the system layer,
where users interact.

• Example 1—RBAC policy: The doctors Mark and Joe in a hospital can read and write
patients’ prescriptions. The nurse Joyce is allowed to read these prescriptions.

In this example we have three rules:

1. Doctor Mark can read and write patients’ prescriptions.
2. Doctor Joe can read and write patients’ prescriptions.
3. The nurse Joyce can read patients’ prescriptions.

In Figure 22, we illustrate a concrete model instance for the RBAC policy example,
which is instantiated from the derived RBAC model based on the HEAD metamodel.
For the above policy, we have the following entities/classes:

Sensors 2021, 21, 6507 24 of 29

– Ex entities: subject (worker: name, dept, . . .), and object (prescription: details,
. . .)

– AU entities: role (rType, . . .)
– PU entities: action (aType, . . .), permission (permId, . . .)

worker

ID: 1001
Name: Mark
Dept: clinics
...

worker

ID: 1001
Name: Joe
Dept: clinics
...

worker

ID: 1001
Name: Joyce
Dept: clinics
...

role

rType: Doctor

role

rType: Nurse

prescription

pId:
details: ...
...

permission

permId: ...
....

action

aType: read
....

action

aType: write
....

Figure 22. A model instance based on RBAC.

The generated RBAC policy in Figure 23 is modeled based on RBAC model, explained
in Section 5.1.3. As shown in the Figure, the model includes several elements, and the
three rules are generated based on them.

1. Three subjects (with attribute name): Mark, Joe, and Joyce.
2. One object (with attribute name): Prescription.
3. Two roles (with attribute rType): Doctor, and Nurse.
4. Two permission assignments (with attribute perm): DoctorPermission, and

NursePermission.
5. Two actions (with attribute aType): Read, and Write.

RBAC Policy - organization:Clinic
--subject(s)--

subject.name: Mark Joe Joyce
Any associations? (y/n) y
Mark -> role.rType: Doctor
Joe -> role.rType: Doctor
Joyce -> role.rType: Nurse

--object(s)--

object.name: Prescription
Any associations? (y/n) n

--permission(s)--

permission.permId: DoctorPermission NursePermission
--action(s)--

DoctorPermission - action.aType: Read Write
NursePermission - action.aType: Read

subject(s): [Mark [Doctor], Joe [Doctor], Joyce [Nurse]]
object(s): [Prescription]
permission(s): [DoctorPermission, NursePermission]
action(s): [Read Write, Read]

*****RULES*****
Rule#1
Mark [Doctor]{

DoctorPermission{
Prescription{Read Write}

}}->Allow
Rule#2
Joe [Doctor]{

DoctorPermission{
Prescription{Read Write}

}}->Allow
Rule#3
Joyce [Nurse]{

NursePermission{
Prescription{Read}

}}->Allow

Figure 23. Example 1: generating RBAC policy.

Sensors 2021, 21, 6507 25 of 29

• Example 2—MAC/RBAC policy: In the clinics department of a hospital, the doctors
Mark and Joe have a clearance level of “Top Secret” that is equal to the classification
level of the object patient prescription. Hence, the doctors are allowed to read/write
prescriptions. The nurse Joyce has the clearance level of “Secret” and can read patients’
prescriptions.

In this example we have the following rules:

1. Doctor Mark, whose clearance level is “Top Secret”, can read and write prescrip-
tions that have a classification level equal to “Top Secret”.

2. Doctor Joe, whose clearance level is “Top Secret”, can read and write prescriptions
that have a classification level equal to “Top Secret”.

3. Nurse Joyce, whose clearance level is “Secret”, can only read patients’
prescriptions.

In Figure 24, we illustrate a concrete model of hybrid MAC/RBAC policy example.
Note that, in this example we use BIBA (developed by Kenneth J. Biba) as MAC
variant. In the defined policy, some subjects are assigned to doctor and nurse roles.
Subjects are permitted to read an object if their clearance level is 6 than the object’s
classification level, and to write if it is greater than or equal (>). Note that if, for
example, the clearance level for Doctor Joe is “secret”, then he is only allowed to read
patients’ prescriptions. Hence, we have the following entities/classes:

– Ex class(es): subject (worker: name, dept, . . .), and object (prescription: details)
– AU class(es): role (rType, . . .), security level (level, . . .)
– PU class(es): action (aType, . . .), permission (permId, . . .)

worker

ID: 1001
Name: Mark
Dept: clinics
...

worker

ID: 1001
Name: Joe
Dept: clinics
...

worker

ID: 1001
Name: Joyce
Dept: clinics
...

role

rType: Doctor

role

rType: Nurse

security level

level: top secret

security level

level: secret

prescription

pId:
details: ...
...

permission

permId: ...
....

action

aType: read
....

action

aType: write
....

Figure 24. A model instance based on hybrid MAC/RBAC.

The generated MAC/RBAC policy in Figure 25 is modeled based on the hybrid
MAC/RBAC model, explained in Section 5.1.5. As shown in the figure, the model
includes several elements, and the three rules are defined based on them.

1. Three subjects (with attribute name): Mark, Joe, and Joyce.
2. One object (with attribute name): Prescription.
3. Two roles (with attribute rType): Doctor, and Nurse.
4. Two security levels (with attribute level): Top secret, and Secret.
5. Two permission assignments (with attribute perm): DoctorPermission, and

NursePermission.
6. Two actions (with attribute aType): Read, and Write.

Sensors 2021, 21, 6507 26 of 29

MAC_RBAC Policy org:Hospital

--subject(s)--

subject.name: Mark Joe Joyce

subject-role associations? (y/n) y

Mark -> role.rtype: Doctor

Joe -> role.rtype: Doctor

Joyce -> role.rtype: Nurse

subject-seclevel associations? (y/n) y

Mark [Doctor] -> seclevel.level: TopSecret

Joe [Doctor] -> seclevel.level: TopSecret

Joyce [Nurse] -> seclevel.level: Secret

--object(s)--

object.name: Prescription

object-role associations? (y/n) n

object-seclevel associations? (y/n) y

Prescription -> seclevel.level: TopSecret

--permission(s)--

permission.perm: DoctorPermission NursePermission

--action(s)--

DoctorPermission - action.atype: Read Write

NursePermission - action.atype: Read

subject(s): [Mark [Doctor] [TopSecret], Joe [Doctor] [TopSecret], Joyce [Nurse] [Secret]]

object(s): [Prescription [TopSecret]]

permission(s): [DoctorPermission, NursePermission]

action(s): [Read Write, Read]

RULES

Rule#1

Mark [Doctor] [TopSecret]{

DoctorPermission{

Prescription [TopSecret]{Read Write}

}}->Allow

Rule#2

Joe [Doctor] [TopSecret]{

DoctorPermission{

Prescription [TopSecret]{Read Write}

}}->Allow

Rule#3

Joyce [Nurse] [Secret]{

NursePermission{

Prescription [TopSecret]{Read}

}}->Allow

Figure 25. Example 2: Generating MAC/RBAC policy.

7. Conclusions and Future Perspectives

The evolution of ubiquitous information systems has introduced significant challenges
related to security and access control. Information systems should allow users to fulfill
transparent access to resources at anytime, anywhere, and in any way, while protecting
integrity and confidentiality within the creation of robust security policies. To confront
the challenge of accessing resources, various research works were conducted, focusing on
developing and enhancing AC modeling in five main directions, starting from (1) traditional
access control models, (2) hybrid models, (3) extending AC models, (4) abstracting AC
models, reaching to (5) AC metamodels.

On this basis, the objective of this paper is to provide an efficient AC metamodel
that conforms to organizational (e.g., companies, industries and hospitals) AC security
policies, and adapts the decision making, according to technology progressions to meet
organizational and users’ needs. Hence, we propose the HEAD AC metamodel, which takes
into consideration the continuous technology changes and upgrades. Its meta-components
are constructed after unifying the heterogeneous concepts of AC components. The DSL
language of HEAD metamodel is defined for specifying any AC model; it is generic and able
to create any component and attribute related to the traditional AC model or any new model.
Furthermore, its structure is dynamic and able to define any new component (or attribute)
and the relationships between all components; also, any derived model can be extended
to follow any technological or organizational updates. Additionally, another powerful
feature that exists in the HEAD metamodel is the hierarchy of components (any type of
component) to meet hierarchical authorizations. We provide several scenarios to show its
generality, dynamism, extensibility, and hierarchy; also, some examples are illustrated to
show the generated rules of a policy. Despite providing many advantages, the metamodel
may suffer from a drawback, which could be reflected in the vast amount of code that
is needed to generate the required AC policies in large and complex systems where all

Sensors 2021, 21, 6507 27 of 29

features must be implemented. Nevertheless, several approaches can be implemented to
solve this issue.

The emergence of pervasive information systems and intelligent manufacturing has
had an extensive impact on different directions, such as the future of the industry. Industry
4.0 is the modernization of traditional manufacturing using modern smart technology. It is
based on smart industries where several physical and cyber technologies are merged with
the aim of improving productivity, quality, performance, and management in the epoch
of IoT. As progressions in technology in general, and IoT in particular, are taking place,
the need for security has changed. Hence, organizations and industry sectors have now to
rethink how to control access to resources through modern and enhanced AC methods. In
Industry 4.0, smart sensors are used to collect huge amounts of environmental data, and a
huge number of devices are connected to the internet, from sensors to factory machines,
home appliances, hospital tools and equipment, and others. In the field of security and
privacy, smart sensors are employed, for example, to send warning alarms to nearby areas
in case of fire detection, use facial recognition technologies to send images of a thief to
authorities within seconds of theft, and others. As a future perspective, we aim to explain
how the HEAD metamodel can be implemented to specify and enforce AC policies, using
a detailed case study for an industrial environment (non-IoT and IoT environments), with
real applications and results.

Author Contributions: Conceptualization, N.K. and M.A.; formal analysis, N.K. and M.A.; visualiza-
tion, N.K., M.A. and H.I.; software, N.K.; investigation, N.K., M.A. and H.I.; writing—original draft,
N.K.; writing—review and editing, M.A. and H.I. supervision, M.A. and H.I. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant number 06351.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Acknowledgments: We acknowledge the support of Fonds Québécois de la Recherche sur la Nature
et les Technologies (FRQNT), and Centre d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AC Access Control
IoT Internet of Things
HEAD Hierarchical, Extensible, Advanced, and Dynamic
DAC Discretionary Access Control Model
MAC Mandatory Access Control Model
RBAC Role-based Access Control Model
ABAC Attribute-based Access Control Model
IS Information System
HGABAC Hierarchical Group and Attribute-based Access Control
HoBAC Higher-order Attribute-based Access Control
CBAC Category-based Access Control
CSPM Cloud Security and Privacy Metamodel
WCMS Web Content Management System
Ex Explicit
Im Implicit
AU Authorization Unit
PU Procedural Unit
St Setting

Sensors 2021, 21, 6507 28 of 29

References
1. Zhang, Y.; Nakanishi, R.; Sasabe, M.; Kasahara, S. Combining IOTA and Attribute-Based Encryption for Access Control in the

Internet of Things. Sensors 2021, 21, 5053.
2. Cruz-Piris, L.; Rivera, D.; Marsa-Maestre, I.; De La Hoz, E.; Velasco, J.R. Access control mechanism for IoT environments based

on modelling communication procedures as resources. Sensors 2018, 18, 917. [CrossRef] [PubMed]
3. Kalsoom, T.; Ramzan, N.; Ahmed, S.; Ur-Rehman, M. Advances in sensor technologies in the era of smart factory and industry

4.0. Sensors 2020, 20, 6783. [CrossRef] [PubMed]
4. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access Control in Cybersecurity and Social Media. Cybersécurité et Médias Sociaux

2021, 69–105, ISBN 978-2-7637-5328-7.
5. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A review of access control metamodels. Procedia Comput. Sci. 2021, 184, 445–452.

[CrossRef]
6. Kashmar, N.; Adda, M.; Atieh, M. From Access Control Models to Access Control Metamodels: A Survey. In Future of Information

and Communication Conference; Springer: Cham, Switzerland, 2019; pp. 892–911.
7. Rajpoot, Q.M.; Jensen, C.D.; Krishnan, R. Attributes enhanced role-based access control model. In International Conference on Trust

and Privacy in Digital Business; Springer: Cham, Switzerland, 2015; pp. 3–17.
8. Servos, D.; Osborn, S.L. HGABAC: Towards a formal model of hierarchical attribute-based access control. In International

Symposium on Foundations and Practice of Security; Springer: Cham, Switzerland, 2014; pp. 187–204.
9. Aliane, L.; Adda, M. HoBAC: Toward a higher-order attribute-based access control model. Procedia Comput. Sci. 2019, 155, 303–310.

[CrossRef]
10. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access control metamodel for policy specification and enforcement: From

conception to formalization. Procedia Comput. Sci. 2021, 184, 887–892. [CrossRef]
11. Kashmar, N.; Adda, M.; Ibrahim, H. Access Control Metamodels: Review, Critical Analysis, and Research Issues. J. Ubiquitous

Syst. Pervasive Netw. 2021, 3, in press.
12. Jaïdi, F.; Labbene Ayachi, F.; Bouhoula, A. A methodology and toolkit for deploying reliable security policies in critical

infrastructures. Secur. Commun. Netw. 2018, 2018, 7142170. [CrossRef]
13. Myrbakken, H.; Colomo-Palacios, R. DevSecOps: A multivocal literature review. In International Conference on Software Process

Improvement and Capability Determination; Springer: Cham, Switzerland, 2017; pp. 17–29.
14. Mao, R.; Zhang, H.; Dai, Q.; Huang, H.; Rong, G.; Shen, H.; Chen, L.; Lu, K. Preliminary findings about devsecops from grey

literature. In Proceedings of the 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS),
Macau, China, 11–14 December 2020; pp. 450–457.

15. Hu, V.C.; Kuhn, D.R.; Ferraiolo, D.F.; Voas, J. Attribute-based access control. Computer 2015, 48, 85–88. [CrossRef]
16. Sandhu, R.; Coyne, E.; Feinstein, H.; Role-Based, C.Y. Access control models. IEEE Comput. 2013, 29, 38–47. [CrossRef]
17. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A new dynamic smart-AC model methodology to enforce access control policy in

IoT layers. In Proceedings of the 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for
the Internet of Things (SERP4IoT), Montreal, QC, Canada, 25–31 May 2019; pp. 21–24.

18. Sun, K.; Yin, L. Attribute-role-based hybrid access control in the internet of things. In Asia-Pacific Web Conference; Springer: Cham,
Switzerland, 2014; pp. 333–343.

19. Hasiba, B.A.; Kahloul, L.; Benharzallah, S. A new hybrid access control model for multi-domain systems. In Proceedings of the
2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017;
pp. 0766–0771.

20. Kuhn, D.R.; Coyne, E.J.; Weil, T.R. Adding attributes to role-based access control. Computer 2010, 43, 79–81. [CrossRef]
21. Aftab, M.U.; Qin, Z.; Hundera, N.W.; Ariyo, O.; Son, N.T.; Dinh, T.V. Permission-based separation of duty in dynamic role-based

access control model. Symmetry 2019, 11, 669. [CrossRef]
22. Kim, S.; Kim, D.K.; Lu, L.; Song, E. Building hybrid access control by configuring RBAC and MAC features. Inf. Softw. Technol.

2014, 56, 763–792. [CrossRef]
23. Li, H.; Wang, S.; Tian, X.; Wei, W.; Sun, C. A survey of extended role-based access control in cloud computing. In Proceedings of

the 4th International Conference on Computer Engineering and Networks; Springer: Cham, Switzerland, 2015; pp. 821–831.
24. Nguyen, P.H.; Nain, G.; Klein, J.; Mouelhi, T.; Le Traon, Y. Model-driven adaptive delegation. In AOSD’13: Proceedings of the 12th

Annual International Conference on Aspect-Oriented Software Development; ACM: New York, NY, USA, 2013; pp. 61–72.
25. Adda, M.; Aliane, L. HoBAC: Fundamentals, principles, and policies. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5927–5941.

[CrossRef]
26. Slimani, N.; Khambhammettu, H.; Adi, K.; Logrippo, L. UACML: Unified access control modeling language. In Proceedings

of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 7–10 February 2011;
pp. 1–8.

27. Barker, S. The next 700 access control models or a unifying meta-model? In SACMAT’09: Proceedings of the 14th ACM symposium
on Access Control Models and Technologies; ACM: New York, NY, USA, 2009; pp. 187–196.

28. Bertolissi, C.; Fernández, M. A metamodel of access control for distributed environments: Applications and properties. Inf.
Comput. 2014, 238, 187–207. [CrossRef]

Sensors 2021, 21, 6507 29 of 29

29. Abd-Ali, J.; El Guemhioui, K.; Logrippo, L. A Metamodel for Hybrid Access Control Policies. J. Softw. 2015, 10, 784–797.
[CrossRef]

30. Alves, S.; Degtyarev, A.; Fernández, M. Access control and obligations in the category-based metamodel: A rewrite-based
semantics. In International Symposium on Logic-Based Program Synthesis and Transformation; Springer: Cham, Switzerland, 2014;
pp. 148–163.

31. Khamadja, S.; Adi, K.; Logrippo, L. Designing flexible access control models for the cloud. In Proceedings of the 6th International
Conference on Security of Information and Networks, Aksaray, Turkey, 26–28 November 2013; pp. 225–232.

32. Xia, T.; Washizaki, H.; Kato, T.; Kaiya, H.; Ogata, S.; Fernandez, E.B.; Kanuka, H.; Yoshino, M.; Yamamoto, D.; Okubo, T.; et al.
Cloud security and privacy metamodel. In Proceedings of the 6th International Conference on Model-Driven Engineering and
Software Development, Funchal, Portugal, 22–24 January 2018; pp. 379–386.

33. Martínez, S.; Garcia-Alfaro, J.; Cuppens, F.; Cuppens-Boulahia, N.; Cabot, J. Towards an access-control metamodel for web
content management systems. In International Conference on Web Engineering; Springer: Cham, Switzerland, 2013; pp. 148–155.

34. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Deriving access control models based on generic and dynamic metamodel
architecture: Industrial use case. Procedia Comput. Sci. 2020, 177, 162–169. [CrossRef]

35. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Smart-ac: A new framework concept for modeling access control policy. Procedia
Comput. Sci. 2019, 155, 417–424. [CrossRef]

CHAPTER 4

INSTANTIATION AND IMPLEMENTATION OF HEAD METAMODEL IN
INDUSTRIAL ENVIRONMENT: NON-IOT AND IOT CASE STUDIES

Submitted to Journal of Sensors (Special Issue: Cybersecurity in the Internet of Things), 2022

Abstract: The industry domain is one of the world’s hugest heterogeneous organizations, it gains
hugely from the increased adoption of ubiquitous computing and digital transformation which brings
out new challenges to provide solutions and integrate advanced and self-ruling systems in critical and
heterogeneous structures. Controlling access and ensuring security and cybersecurity in industry 4.0
environments is a challenging task due to the increasing distribution of resources. To preserve security
and privacy, organizations need advanced AC methods. In this chapter, we use HEAD metamodel to
specify the needed AC policies for two case studies inspired by the computing environment of Institut
Technologique de Maintenance Industrielle (ITMI)-Sept-Îles, QC, Canada. The first is for ITMI’s
local environment and the second for the IoT environment. Using the DSL of HEAD metamodel
the needed model is derived for each case study, then xtend notation is used to generate the concrete
instance for each model. At the system level, AC rules are generated as Cypher queries to represent the
Next Generation Access Control (NGAC) policy as a graph using Neo4j database. The results show
that HEAD metamodel can be adapted and integrated with various local and distributed environments,
able to serve as a unifying framework. Moreover, an administrative panel is implemented, as an
additional example, using VB.NET and SQL to show that HEAD metamodel can be implemented to
generate AC rules using other platforms.

Résumé: Le domaine de l’industrie est l’une des plus grandes organisations hétérogènes au monde,
il profite énormément de l’adoption accrue de l’informatique omniprésente et de la transformation
numérique qui fait apparaître de nouveaux défis pour fournir des solutions et intégrer des systèmes
avancés et autonomes dans des structures critiques et hétérogènes. Contrôler l’accès et assurer la
sécurité et la cybersécurité dans les environnements de l’industrie 4.0 est une tâche difficile en raison
de la répartition croissante des ressources. Pour préserver la sécurité et la confidentialité, les organi-
sations ont besoin de méthodes CA avancées. Dans ce chapitre, nous utilisons le métamodèle HEAD
pour spécifier les politiques CA nécessaires pour deux études de cas inspirées de l’environnement
informatique de l’Institut Technologique de Maintenance Industrielle (ITMI)-Sept-Îles, QC, Canada.
Le premier est pour l’environnement local d’ITMI et le second pour l’environnement IoT. À l’aide du
métamodèle DSL de HEAD, le modèle nécessaire est dérivé pour chaque étude de cas, puis la notation
xtend est utilisée pour générer l’instance concrète de chaque modèle. Au niveau du système, les règles
CA sont générées sous forme de requêtes Cypher pour représenter la politique de contrôle d’accès de
nouvelle génération (NGAC) sous forme de graphique à l’aide de la base de données Neo4j. Les ré-
sultats montrent que le métamodèle HEAD peut être adapté et intégré à divers environnements locaux
et distribués, capables de servir de cadre fédérateur. De plus, un panneau d’administration est implé-
menté, comme exemple supplémentaire, en utilisant VB.NET et SQL pour montrer que le métamodèle
HEAD peut être implémenté pour générer des règles CA en utilisant d’autres plateformes.

Article

Instantiation and Implementation of HEAD Metamodel in an
Industrial Environment: non-IoT and IoT Case Studies

Nadine Kashmar 1,* , Mehdi Adda 1 , Hussein Ibrahim 2 , Jean-François Morin 2 and Tony Ducheman 2

Citation: Kashmar, N.; Adda, M.;

Ibrahim, H.; Morin, J.; Ducheman, T.

Instantiation and Implementation of

HEAD Metamodel in an Industrial

Environment: non-IoT and IoT Case

Studies. Sensors 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional af-

filiations.

Copyright: © 2022 by the authors.

Submitted to Sensors for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des
Ursulines, QC G5L 3A1, Canada; mehdi_adda@uqar.ca

2 Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7,
Canada; {hussein.ibrahim; Jean-Francois.Morin; Tony.Ducheman}@itmi.ca

* Correspondence: nadine.kashmar@uqar.ca

Abstract: Access to resources can take many forms, digital access via an onsite network, remote1

from an external site, website, etc.; or physical access to labs, machines, information repositories,2

etc. Whether access to resources is digital or physical, it must be allowed, denied, revoked, or3

disabled using robust and coherent access control (AC) models. What makes the process of AC4

more complicated is the emergence of digital transformation technologies and pervasive systems5

such as the internet of things (IoT) and industry 4.0 systems, especially with the increasing demand6

for transparency in users’ interaction with various applications and services. Controlling access7

and ensuring security and cybersecurity in IoT and industry 4.0 environments is a challenging8

task due to the increasing distribution of resources and the massive presence of cyber-threats and9

cyber-attacks. To preserve the security and privacy of users and industry sectors, we need an10

advanced AC metamodel that is able to define all the needed components and attributes to derive11

various instances of AC models and follow the new and increasing demand AC requirements due12

to continuous technology upgrades. Due to several limitations in the existing metamodels and13

their inability to answer the recent AC requirements, we have developed a Hierarchical, Extensible,14

Advanced, Dynamic (HEAD) AC metamodel with notable features that address various recent AC15

requirements. In this paper, HEAD metamodel is employed to specify the needed AC policies for16

two case studies inspired by the computing environment of Institut Technologique de Maintenance17

Industrielle (ITMI)-Sept-Îles, QC, Canada; the first is for ITMI’s local (non-IoT) environment and18

the second for ITMI’s IoT environment. For each case study, the needed AC model is derived using19

the domain-specific language (DSL) of HEAD metamodel, then xtend notation (an expressive20

dialect of Java) is used to generate the needed java code which represents the concrete instance21

of the derived AC model. At the system level, to get the needed AC rules, Cypher queries are22

generated and then injected into Neo4j database to represent the Next Generation Access Control23

(NGAC) policy as a graph. NGAC framework is used as an enforcement point for the generated24

rules of each case study. The results show that HEAD metamodel can be adapted and integrated25

with various local and distributed environments, able to serve as a unifying framework, answer26

the current AC requirements and follow the needed policy upgrades. Moreover, we implement27

an administrator panel, as an additional example, using VB.NET and SQL to show that HEAD28

metamodel can be implemented to generate AC rules using other platforms.29

Keywords: access control; metamodel; security and privacy; policy; DSL; cybersecurity; digital30

transformation; IoT; industry 4.0; NGAC; Neo4j, graph database; Cypher query language31

1. Introduction32

The continuous advancement in technology in general and the internet of things33

(IoT) in particular has changed the need for security and privacy. Currently, organi-34

zations and industry sectors should rethink how to control access to their logical and35

physical resources through modern and enhanced access control (AC) methods. The36

Version June 17, 2022 submitted to Sensors https://www.mdpi.com/journal/sensors

Version June 17, 2022 submitted to Sensors 2 of 43

current pervasive and ubiquitous computing environments with the digital transforma-37

tion, such as IoT, industry 4.0, etc., need to provide effective protection for resources38

which are distributed everywhere and users can access anywhere, anytime, and anyhow.39

Consequently, the evolution of AC policy languages should follow the development of40

computing environments, highly ubiquitous technologies and information systems (IS),41

especially with the concept of IoT and industry 4.0 (or Industrial IoT (IIoT)) applications.42

With this reality, developing a new policy language is increasingly challenging due to43

the dynamic and heterogeneous structures of the current networking generation. [1,2].44

Moreover, an AC policy language should answer the increasing demand of authorizing45

and controlling access to resources, it should be able to express a set of rules which are46

derived from business requirements, plans, technical guidelines, and constraints. In47

any organization or industry sector, the administrative responsibility of an IS is setting48

policy rules for controlling access to objects which are accessed and administered by a49

domain. To mitigate security threats that are accompanied by information technologies,50

the definition of AC rules must consider the possible threats in a domain and should be51

concise and easy to understand so that everyone can follow the guidelines set forth in it.52

Hence, AC rules outline the way of working with information and resources, once they53

are created the domain’s AC policy is customized [3].54

However, AC is defined as the process of restricting access to resources based55

on a predefined set of AC rules known as AC policy, it consists of two main stages:56

authentication and authorization. Authentication is the process where an unknown57

subject (or user) after verifying his identity becomes a known user, and this process is58

insufficient to protect resources. Authorization is the process of allowing/denying an59

authenticated user to access a resource, a user is allowed or denied to perform some60

action(s) on a resource after checking the regulations and policies of an organization or61

industry sector [4,5], it includes the following phases [2,6]:62

• defining a security policy (set of AC rules);63

• selecting an AC model that matches the defined policy;64

• implementing the model and enforcing the defined AC rules.65

To control access to resources, the common AC models are implemented in dif-66

ferent centralized and distributed computing environments are discretionary access67

control (DAC), mandatory access control (MAC), role-based access control (RBAC), and68

attribute-based access control (ABAC) models [5,7,8]. Moreover, various hybrid models,69

extended models, and abstracted models are also implemented to enhance the features70

of common models and allow the definition of a larger set of AC policies. The topic of71

AC metamodels is a recent research issue in this domain, they are proposed to include72

the features of all models and work as a unifying framework, their components usually73

describe generic concepts. Accordingly, AC models are special instances of an AC meta-74

model, they are used to specify and define AC policy languages that explain the way in75

what, how, and when objects (resources) can be accessed by subjects (users) [1,8,9]. The76

ubiquitous nature of the current computing environments, especially industry 4.0, urges77

the need to develop advanced AC metamodels that are able to answer the increasing78

demand of AC requirements. Due to the limitations of the existing AC metamodels79

[6,8,10], we have proposed a Hierarchical, Extensible, Advanced, and Dynamic (HEAD)80

AC metamodel [1]. HEAD metamodel considers the challenging requirements that81

accompany the various technology progressions, for example, the need (1) to create82

hierarchical AC components that fit the various hierarchical organizational structures,83

(2) to define and upgrade a larger set of AC policies, (3) to have several AC solutions84

within the same organization (e.g., local network, IoT, and cloud), and many other85

challenges [9]. The domain-specific language (DSL) of HEAD metamodel is generic86

enough to include the heterogeneity of AC models which allows for defining larger sets87

of AC policies, it supports the hierarchy of all components to conform to the hierarchical88

organizational structure, and the derived models can be extended to follow the needed89

Version June 17, 2022 submitted to Sensors 3 of 43

policy updates, also it is dynamic since various components/attributes can be added to90

follow technology progressions and to include several AC solutions in an organization.91

In this paper, we use the DSL of HEAD metamodel (explained in [1]) to derive the92

needed AC models that fit the two case studies inspired by the computing environment93

of Institut technologique de maintenance industrielle (ITMI)-Sept-Îles, QC, Canada. The94

first case study is related to ITMI’s local computing environment (in this paper we95

consider it as a non-IoT environment), and the second case study is related to their96

IoT environment. Then, the derived models of each case are encoded using Eclipse97

Xtend notation (an expressive dialect of Java) to represent the concrete instance of AC98

policies and generate the needed java code which expresses the AC rules as Cypher99

queries. As an enforcement point and to verify the accuracy and the coherence of the100

concrete instances of AC policies, Cypher queries are injected into the Neo4j database to101

represent the generated rules in a form of Next Generation Access Control (NGAC) [11]102

policy graph—the objects, the relationships between them, and the subjects that interact103

with the system in a form that adheres the semantics of ITMI. NGAC policy graph is104

constructed with the basic policy elements and a fixed set of relationships [11–13]. The105

NGAC policy elements that are represented in the NGAC graph are:106

• the authenticated users (U), and their user attributes (UA).107

• the objects (O) that need to be accessed, and their attributes (OA).108

• the policy class(es) (PC).109

• the assignment relationships between U/O-UA/OA, UA/OA-UA/OA, and UA/OA,110

in addition to the appropriate PC(s).111

• the association relationships to define the access rights associated with some UAs112

to perform operations on some objects specified by OAs.113

Both cases studies are presented to show that HEAD AC metamodel can be adapted to an-114

swer the AC requirements of non-IoT and IoT environments. However, the contribution115

of this paper can be summarized as follows:116

• Presents two new industrial case studies with the implementation of a new ad-117

vanced metamodel, named HEAD metamodel; this metamodel (with its advanced118

features) is itself a contribution to the domain.119

• Provides modern AC tools and shows how they are applicable and can be adapted120

within different computing environments, especially industrial environments.121

• Helps researchers in the domain answer their questions of how AC metamodels122

work in real industrial contexts (or any computing environment) starting from the123

definition of informal policies reaching to the policy enforcement.124

The remainder of this paper is organized as follows: section 2 reviews some of the125

related work in this domain. A summary of HEAD metamodel and its characteristics126

are explained in section 3. To illustrate the relevance of our metamodel, the subject of127

study is described in detail in section 4, then the first case study—ITMI’s local (non-128

IoT) environment— is presented in section 5, and the second case study—ITMI’s IoT129

environment— is presented in section 6. In section 7, we show another example of how130

HEAD metamodel can be implemented using VB.NET and SQL database to generate131

the needed AC rules. In section 8 we explain the evaluation and validation of the HEAD132

metamodel. In section ?? we present the limitations of the HEAD metamodel. Section 9133

concludes this paper with the future perspectives.134

2. Related Works135

In the field of information security, the main concern for organizations and industry136

sectors is to keep the secrecy of their information and prevent any illegal access to137

their logical and physical resources, especially with the presence of cyber-criminals and138

cyber-attacks [14,15]. Currently, resources are no longer located within local areas, they139

are distributed on different sites and need to be accessed via various private and public140

networks. Moreover, the emergence of new technologies and digital transformation141

Version June 17, 2022 submitted to Sensors 4 of 43

urges the need for organizations to protect their private and public networks, especially142

with the evolution of industry 4.0 and the IoT concept. In this context, various AC143

models and metamodels are implemented in different computing environments to144

protect resources and information from any unauthorized access. Unfortunately, they145

have limited features and are insufficient to meet the current AC requirements and146

follow the needed technology upgrades [7,9,10]. In this section, we review some of the147

proposed AC methods in this domain, and also summarize the existing AC metamodels148

[7–9] that are proposed to instantiate different AC models.149

To prevent insider threats in organizations a function-based AC method inspired150

by functional encryption is proposed in [16]. It stores access authorizations as a three-151

dimensional tensor where users can invoke authorized commands at different levels152

such as data segments, they are authorized to use a command on an object, and are153

forbidden to use the same command on another object. In [17], Qi et al. propose a scalable154

industry data AC system for the RFID-enabled supply chain to provide an item-level155

data AC mechanism that defines and enforces AC policies based on both the participants’156

role attributes and the products’ RFID tag attributes. For industrial automation and157

control systems (IACS) and similar automation systems of the smart energy grid, an158

eXtended Access Control Markup Language (XACML)-based AC system is described by159

Ruland et al. [18] to protect connected devices and associated safety-relevant settings160

from unauthorized access. Their proposed AC method is composed of a two-stage AC161

schema. They first evaluate policies based on XACML, and the second uses information162

about the system’s behavior to prevent any malicious or accidental operations from163

having a negative impact on system stability. The system design and implementation164

consider safety requirements (e.g., timing requirements, the availability. . .) to enable165

integration in safety-critical environments.166

For secure information sharing in an IIoT, in [19], Ulltveit-Moe et al. investigate how167

to secure information sharing with external vendors, and they identify the necessary168

security requirements in this domain. Also, they propose a roadmap to improve security169

in IIoT which investigates short-term and long-term solutions to IIoT devices. The170

former is mainly based on integrating existing good practices such as firewalls, intrusion171

detection systems, etc. The latter outlines a long-term solution with fine-grained AC172

for sharing data between external entities that would support cloud-based data storage.173

Ray et al. [12] demonstrate how AC for a remote healthcare monitoring (RHM) that uses174

an IoT framework can be specified using ABAC model. They present the healthcare AC175

requirements using a motivating example, then they explain how NGAC can be used for176

specifying the AC policies. Moreover, a context-sensitive RBAC (CRABC) scheme is pro-177

posed by Alagar et al. [20] for securing the environment of the healthcare IoT industry178

which is composed of large-scale connectivity of medical devices, patients, physicians,179

etc. with the vastness of information collection and sharing. CRBAC combines roles, at-180

tributes, and context to formulate context constraints to enforce access and flow controls.181

Another AC model for the IoT in healthcare, named Enhanced Context-aware Capability182

based AC (ECCAPAC), is proposed by Ahamed et al. [21] to make the medical network183

resilient against crypto attacks by taking into account the trust value of the object based184

on relevance and node importance.185

Despite that the proposed AC models in various industrial computing environments186

come up with solutions for dedicated scenarios or case studies, they have limited features187

compared to the increasing demand for security and privacy in the current computing188

environments. The current fact of networking environments imposes the need to define189

new components/attributes for the existing AC models in order to upgrade the defined190

AC policies and allow defining and enforcing a larger set of static and dynamic AC191

policies. This feature is not addressed in the proposed models, also the feature of192

hierarchy to define multiple levels of components is not considered (e.g., role hierarchy).193

Moreover, the evolution of pervasive ISs and intelligent manufacturing has had a194

substantial influence on the future of the industry. Industry 4.0 (or IIoT) is the moderniza-195

Version June 17, 2022 submitted to Sensors 5 of 43

tion of conventional manufacturing using modern smart technology. In smart industries,196

several physical and cyber technologies are integrated to improve productivity, quality,197

performance, and management in the age of IIoT [22]. All of this raises the challenge to198

develop AC metamodels that serve as unifying frameworks for deriving advanced AC199

models able to follow the needed technology upgrades and allow defining and enforcing200

a larger set of static and dynamic AC policies. In [9], we summarize the development201

stages of AC methods starting from common AC models, hybrid models, extending AC202

models, abstracting AC models, and reaching AC metamodels which is the recent re-203

search issue in this domain. In [7,8], we find that some metamodels are developed based204

on a general notion that encompasses the AC features of some common AC models,205

and they are proposed as generic metamodels. Some other metamodels are developed206

based on the concept of combining some AC models, these metamodels are proposed as207

hybrid metamodels to provide a generic base metamodel concept. Other metamodels208

are proposed as metamodel extensions for some of the existing metamodels and soft-209

ware development frameworks. The proposed metamodels provide some development210

approaches in the field, but they have several limitations since (1) they are not generic211

enough to derive the needed AC models (common models, hybrid models, and other212

models); (2) they are not flexible and dynamic enough to follow technology upgrades;213

(3) they are not extensible, also the derived models and the defined policies cannot be214

extended; (4) they do not support the hierarchy feature for all model components (e.g.,215

role, action, context, etc.), this feature is essential for nowadays computing environments216

to fit the hierarchical organizational structures where, for example, a number of users are217

assigned to various roles in a hierarchy and have the right to access various objects also218

in a hierarchy; (5) the issues of collaboration and interoperability between AC models are219

not addressed; and (6) they do not consider the concept of migrating AC policies from220

one model to another. To address these limitations, we have designed and developed221

HEAD metamodel [1] where its advanced features allow deriving different models222

(existing and even non-existing models). In this paper, we use this HEAD metamodel to223

derive the needed AC models for two case studies inspired by ITMI’s environment in224

order to show how it can be adapted to various industrial and organizational computing225

environments. Also, as to show how various components and attributes for static and226

dynamic AC policies can be defined in addition to the common ones, and to illustrate227

how it supports the feature of the component hierarchy.228

3. HEAD Metamodel229

As mentioned earlier, one of the recent research directions in the field of security230

and privacy is developing advanced AC metamodels [6,8]. To answer the current AC231

requirements, especially with the emergence of digital transformation technologies and232

pervasive systems (e.g., industry 4.0), an AC metamodel must consider the dynamic233

and heterogeneous nature of computing environments, in addition to the continuous234

technology progressions. In [1], we propose a hierarchical, extensible, advanced, and235

dynamic AC metamodel, named HEAD metamodel, with advanced features compared236

to other proposed AC metamodels in the literature. Its distinct design and the new237

opportunities it opens in the domain are described in [9]. In this section, we briefly238

explain its meta-components (or meta-classes) and features to show, later in this paper,239

how it can be employed to derive the needed AC models for two case studies (explained240

in sections 5 and 6) inspired from ITMI’s non-IoT and IoT computing environments,241

then generate the needed AC rules in order to enforce them. The meta-components (or242

meta-classes) of HEAD metamodel are the EXPLICIT (Ex), IMPLICIT (Im), and SETTING243

(St), shown in Figure 1 [1]:244

• Ex represents the actual and the existing entities/classes, such as subjects and245

objects of any organization or industry sector.246

Version June 17, 2022 submitted to Sensors 6 of 43

• Im represents the described entities/classes. Im includes AUTHORIZATION UNIT247

(AU) entities/classes such as roles, security levels, etc., and PROCEDURAL UNIT248

(PU) entities/classes such as actions, permissions, etc;249

• St represents the concepts which are included to have more regulated access to250

resources, such as entities/classes of context, contextual conditions, etc.251

The relationships between HEAD metamodel components can be described as follows:252

1- between Ex and AU is to allow assigning zero or many, for example, subjects to253

roles, groups, etc.;254

2- between AU and PU, and PU and Ex is to describe which AUs (e.g., groups) can255

perform zero or many PUs (e.g., actions) on some other Ex (e.g., objects);256

3- Ex and Im could have zero or many St (e.g., condition) to fulfill access requests;257

4- the self-association edge on each of the meta-classes is to allow formulating hybrid258

models by associating, for example, AUs with other AUs, PUs with other PUs, etc;259

5- the aggregation association for each of the meta-classes is to allow the creation of260

hierarchies of the derived components.261

Implicit

attributes

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit

attributes 0..*

ExHierarchy0..*

StHierarchy0..*

auHierarchy0..* puHierarchy0..*

assign perform

settings has

0..*

0..* 0..*

0..*

0..*

0..*

0..*

Explicit

attributes

Figure 1. HEAD Metamodel [1]

The DSL of the HEAD metamodel is explained in detail in [1], it can be used to262

derive various AC models (common AC, hybrid AC, and other models). For example:263

• to derive MAC model, the subject and object classes must be instantiated from Ex,264

the security level must be instantiated from AU, and the operation class must be265

instantiated from PU.266

• in Figure 2 (a), we illustrate an RBAC example showing the derived classes of subject267

and object from Ex, the derived role class from AU, and the derived permission and268

action classes from PU. Note that, the derived instances (subjects, objects . . .) are269

indicated with the same colors of Ex, AU, and PU meta-classes of Figure 1. The270

definition of Ex (subject and object), AU (role), and PU (permission and action)271

classes, in addition to the rule expression, is shown in Figure 2 (b). The keywords272

explicit, authorization, and procedural are used to define the needed instances with273

their attributes; and the keyword rule is used to express the needed AC rule(s) of274

the RBAC policy.275

Using HEAD metamodel, the access to resources is determined by the attributes276

of the defined entities over the access request including subject, object, action, context,277

etc. It allows enforcing complex AC policies that involve an arbitrary combination of278

attributes with static, dynamic, and relationship values, thus extending beyond the279

proposed AC metamodels in the literature [1,9]. Also, it allows deriving models of high280

granularity for access policies, hence fitting the various needs of AC requirements.281

Version June 17, 2022 submitted to Sensors 7 of 43

(a)

(b)

Figure 2. Example: (a) RBAC model [1]; (b) RBAC policy definition

4. The Subject of Study: Technological Institute for Industrial Maintenance (ITMI)282

ITMI is a technology transfer center affiliated with the Cégep de Sept-Îles, QC,283

Canada specializing in industrial maintenance. In an industrial field where the relia-284

bility of machines/devices is of strategic importance, ITMI offers tailor-made support285

to North Shore and Quebec industries and provides technical services to reduce down-286

time, minimize maintenance costs, optimize productivity, lessen training costs, and287

increase the success rate. Since its creation in 2008, ITMI has continued to grow and288

expand its fields of expertise to adapt to the needs of industries on the one hand and289

to technological changes on the other. The research efforts are centered on industry290

4.0, IoT, embedded systems, artificial intelligence, energy intelligence, computer-aided291

design, and others. ITMI has laboratories with extensive research infrastructure and292

regularly updated machines/devices which include industrial machinery, hydraulic and293

pneumatic, prototyping and 3D printing, and drones.294

4.1. ITMI Departments295

• Design and Maintenance: forms the core of ITMI’s activities, it aims to provide296

predictive and proactive maintenance to optimize the efficiency of production assets297

and reduce operating costs. To achieve this, all the related software/hardware298

concepts and designs are handled.299

• Digital Audit: is accredited by the Government of Quebec, its expertise in industry300

4.0 is employed to diagnose an industry sector and provides it with a digital plan301

to become an industry 4.0. The main role of this department is to provide reports302

or dashboards with the level of digital maturity, strengths, and weaknesses, then303

produce the best digital solutions to implement for an enterprise.304

• IoT and Embedded Systems: helps enterprises evolve in the industrial world305

where systems cooperate and communicate with each other and with an enterprise.306

Embedded systems are defined as hardware/software packages integrated for the307

purpose of performing specific functional tasks. Department’s expertise in IoT and308

embedded systems translates concretely into products developed for companies in309

different sectors: mining industry, rail transport, metallurgy, fishing, etc. Digital310

Version June 17, 2022 submitted to Sensors 8 of 43

technologies give the chance to decentralize the decision chain, opt for remote311

monitoring, generate SMS and email alerts and ultimately reorganize the value312

chain for an enterprise or industry.313

• Information Technology (IT): is responsible for the implementation of new technolo-314

gies. Its role has been evolving over time as the digital transformation began to bear315

a greater significance within enterprises. As well, this department performs essen-316

tial tasks such as managing and assigning accounts and resources/machines/devices317

to users, technical support to all other departments, ensuring the privacy and secu-318

rity of ITMI’s systems, carrying out the tasks of machine maintenance and support,319

etc.320

4.2. ITMI Workers321

In general, ITMI has four types of workers (users) in each department, in addition322

to the main director, they are specified into four roles: manager, adviser, specialist,323

and technician. Note that, ITMI is a sub-division of the Department of Research and324

Innovation (DRI) at Sept-Îles and it is directed by the main director of DRI. Figure 3325

illustrates the hierarchy of roles at ITMI; the manager who is directed by the main director326

of DRI directs the advisers of design and maintenance, digital audit, IoT and embedded327

systems, and information technology departments. Advisers of each department direct328

their specialists and technicians. Note that, advisers, specialists, and technicians can329

share their expertise among the departments based on the running project(s). Their330

access rights are explained in the case studies of sections 5 and 6.

Manager

Adviser

SpecialistTechnician

Director

Figure 3. ITMI - Role heirarchy
331

4.3. ITMI Resources332

There are two types of resources at ITMI, logical and physical.333

4.3.1. Logical Resources334

• Local Database: two basic kinds of data are stored in the local database for each335

worker or machine. The first is static data entered into the system when a worker336

is newly hired, this includes some personal details such as name, address, dob,337

experience, and other information; or when a machine/device is newly installed338

such as specs, installation location, etc. The second kind of data is dynamic that is339

used and updated in the normal day-to-day running of ITMI, for example, user’s340

login/logout information, machine performance, project status, etc.341

• Public Database: at ITMI’s cloud server to store data collected from IoT sensors and342

devices.343

4.3.2. Physical Resources344

• Labs: each lab has some machine(s)/device(s) that can be operated/used based on345

some tasks related to some running projects.346

• Machines/device: include industrial machinery, hydraulic and pneumatic, proto-347

typing and 3D printing, and drones.348

Version June 17, 2022 submitted to Sensors 9 of 43

For the case studies in sections 5 and 6, our concern is local and public databases, labs,349

and machines/devices. Note that, in the proposed case studies we consider that all the350

identified users are able to log into the database(s) using their user names and passwords,351

and the operations they are able to perform on some entities/attributes are specified in352

the AC rules.353

4.4. Access Control Requirements at ITMI354

To better understand what kind of AC method(s) is needed for ITMI, in this section355

we summarize its specific AC requirements illustrated by two case studies. The first356

case study explains how resources are accessed via ITMI’s local network (non-IoT), and357

the second case study explains how resources are accessed via IoT. Also, we describe358

the existing challenges in both situations. An AC mechanism must satisfy all users’359

needs to fulfill specific access over logical/physical resources to avoid, for example, any360

malfunction while using some device/machine which could lead to hazardous results361

and financial loss. For example:362

• 3D printing: any misbehavior while using 3D printers could cause several mal-363

functions which lead to financial loss. Also, they must be controlled by specialists,364

since during the printing process they emit toxic particles that may be harmful to365

humans.366

• Hydraulic systems: in hydraulic systems, fluid is stored under high pressure,367

misadjusting any of its components without releasing the pressure could lead to368

several hazards such as burns from hot fluid, bruises or cuts, and others. To avoid369

such accidents, it is important to prevent non-specialist users from accessing these370

machines.371

The following are the privacy and security requirements that are identified as essential372

to the ITMI environment:373

1. The task of managing AC policies should not be complicated to preserve trust in374

the system and ensure the system’s performance.375

2. Each department should have the autonomy to design its own security policy. To376

enforce it, it must be revised by the manager and then confirmed and activated by377

the system administrator at the IT department.378

3. The manager should be able to hide specific fields of information contained in some379

projects from some users who are associated with a specific role(s).380

4. It is important that some authorized uses of data are not blocked after working381

hours, for example, they need access to some devices to monitor a machine’s382

performance, temperature, etc., and need-to-know data access requirements in383

accidents or emergencies.384

Ensuring the privacy of users and the security of resources is essential for ITMI385

since any exposure or intrusion to logical or physical resources could result in serious386

consequences such as financial loss, and loss of reputation. Considering that the main387

role of ITMI is to follow up, handle, and find solutions related to projects for some insti-388

tutions, any intervention creates the possibility of ITMI’s entire data being compromised389

by a single action. Accordingly, ITMI needs an AC method that is able to answer all390

the needed requirements based on different situations and conditions. Knowing that391

the needed AC method is assumed always to be updated due to the nature of the given392

projects which are related to recent and different technologies, this might impose new393

AC requirements and/or modify some of the already defined rules. Moreover, ITMI is394

enhancing the method of controlling access to resources to effectively manage building395

services such as managing projects, maintenance requests, and others. In the following396

sections, we present non-IoT and IoT case studies to show how HEAD metamodel397

can be implemented to derive the needed AC models that fit their AC requirements,398

generate the needed AC policies and enforce them. Figure 4 summarizes the needed399

implementation phases to handle each case study and achieve the needed results. The400

Version June 17, 2022 submitted to Sensors 10 of 43

first phase is investigating the case study and identifying the informal AC policy, the401

second phase is specifying and deriving the formal policy model and generating the AC402

policy using the DSL of the HEAD metamodel, and the third phase is using the NGAC403

framework as an enforcement point for the generated rules.404

Guidelines and regulations of ITMI’s case study

HEAD Metamodel
(Derive the Formal Policy model(s) then generate

the AC rules)

Policy Enforcement
(Inject the generated rules to NGAC framework)

The Informal Policy

The Formal Policy

The System level

Figure 4. The implementation phases

5. Case Study 1— ITMI: non-IoT405

ITMI shares a working environment of about 35 workers with different expertise406

related to mechanics, artificial intelligence (AI), informatics, machine learning, and other407

expertise co-working across various projects. Figure 5 illustrates the system architecture408

of ITMI’s (non-IoT) local computing environment. All users need to be authenticated409

by identifying their identities using passwords to access the database, fingerprints to410

access the labs, and a PIN code to operate the machines/devices. Authenticated users411

are authorized, after checking the defined AC rules in the policy database, to access412

resources and perform operations according to their roles, and groups.

Policy
database

Security administrator

Users

Authentication Authorization
(AC model(s))

manager

advisers

specialists

technicians

NG
AC

 en
fo

rc
em

en
t p

oin
t Digital resources

Physical resources
Labs

Lab 1
Machine 1,
Machine 2

Lab 2
Machine 3

Lab n
Device x
Machine M

director

Figure 5. The system architecture of ITMI: non-IoT environment
413

To easily understand the connections between users and resources, we use Neo4j to414

express the relatedness among them in the form of a graph. In Figure 6, we illustrate the415

flow of information for the case study scenario. A rail robot needs to be implemented for416

a North Quebec Rail (NQR) project which is administered by the director of ITMI who417

manages the priority of project tasks and directs the manager in setting up the needed418

methodologies to implement them. The manager, who supervises advisers, creates the419

project record in the database and set the project’s tasks based on the given guidelines420

from the director. Likewise, he updates the status of each project task (in progress,421

completed, on hold . . .) depending on the project’s performance. Advisers select the ap-422

propriate specialists and technicians based on their expertise and assign the needed tasks423

to them, also they select the project requirements of machines and devices. Likewise,424

they provide support with customized solutions to the existing obstacles and problems425

of the running project. Specialists are researchers with one or more specializations in426

Version June 17, 2022 submitted to Sensors 11 of 43

a domain, they work with technicians to fulfill the project tasks. Technicians perform427

technical tasks such as maintenance, installation of machines/devices, etc. However, for428

the NQR project, the specialists and the technicians who are selected by the adviser, have429

access to the ‘AI lab’ where the ‘Rail Robot’ machine is located, and the ‘3D lab’ where430

the ‘3D printing’ device exists. To handle some of the project tasks, the ‘Rail Robot’ is431

accessed by a group of specialists and technicians to fulfill testing and assessing tasks432

and then record the needed results into the database. Another group of specialists and433

technicians is responsible for analyzing the obtained results to check if any flaw exists434

which might affect the rail robot’s performance. If so, the third group of specialists and435

technicians has to redesign and implement another prototype for the flawed part of the436

robot, this prototype is produced using a ‘3D printer’.

Figure 6. A graph model representing the information flow of ITMI’s non-IoT environment
437

5.1. The challenge438

ITMI frequently has new projects with unexpected AC requirements. In this context,439

ITMI needs to ensure that the right access to data, device(s), and machine(s) is provided440

to the right user(s) with a focus on improving efficiency and collaboration, especially that441

users who are assigned to the same role might have different tasks since they might be442

also assigned to different groups. Thus, users’ permissions need to be specified based on443

user-role, and user-group assignments. The solution has to be scalable to accommodate444

ITMI’s future growth.445

5.2. The Informal Policy: the access rights446

AT ITMI’s local computing environment, AC is based on the role, group, and other447

attributes of the users. Note that, each department has its labs which can be accessed by448

workers (users) of the same department or workers from other departments. Workers449

are allowed to access some resources to fulfill project tasks within the start and end of450

project dates. Based on the projects’ requirements, some users assigned to a certain role451

may also be assigned to different groups and share some common tasks. Particularly,452

access rights grant access to users with a certain role/group to some resources and allow453

them to perform some actions on the database (read, write, update . . .), and on machines454

(switching on/off, monitoring, modifying settings . . .). An access decision could be455

allowed or denied based on the defined policy. In the following we summarize the access456

rights associated with the different roles and groups in this case study:457

• The director ‘Roy’ has full access to databases and labs. Note that, the project details458

and tasks which are specified by the manager and the advisers must be confirmed459

by him (through the column ‘confirm’ of table projects) before running it.460

Version June 17, 2022 submitted to Sensors 12 of 43

• The manager ‘Thomas’ has full access to tables Projects (except the column ‘con-461

firm’), and Tasks. Also, he has full access to the labs.462

• The advisers ‘John’ and ‘Sophia’ have full access to tables ‘GroupTasks’ and ‘Re-463

quirements’ to specify the tasks of each group of specialists and the technicians,464

and set the project requirements of machines/devices.465

• The specialists ‘Bob’, ‘Cathy’, and ‘Marc’ can access ‘AI Lab’ and operate the ‘Rail466

Robot’ machine to test its functionality, assess its performance, analyze the findings,467

then write the obtained findings in table ‘Results’. Likewise, they can access ‘3D468

Lab’ to design prototypes and print the needed objects using ‘3D printer’.469

• The technicians ‘Peter’ and ‘Eva’ can access labs and machines/devices to support470

specialists with their experimental tests, perform maintenance, install new prod-471

ucts/machines/devices and test them to ensure that they are working correctly,472

check the needed connections, and some other tasks.473

Note that, not all specialists/technicians are allowed to perform the same tasks, they are474

classified by an adviser into three groups to perform the needed tasks:475

• GroupA: the specialists ‘Bob’ and ‘Cathy’ perform the tasks of testing the robot,476

and assessing then writing the obtained results into table ‘Results’. The technician477

‘Peter’ supports them to troubleshoot the robot hardware/software issues.478

• GroupB: the specialists ‘Bob’ and ‘Marc’ read and analyze the results to check if any479

flaw(s) exists and might affect the rail robot’s performance. The technician ‘Eva’480

operates the robot to match the analyzed results with the robot’s performance.481

• GroupC: the specialists ‘Marc’ and ‘Cathy’ redesign and implement another pro-482

totype for the flawed part(s) of the robot. The needed part(s) is created using the483

3D printer. The technicians ’Peter’ and ‘Eva’ support them to replace the flawed or484

damaged part(s), then check the robot system to ensure its compatibility.485

Advisers, specialists, and technicians are allowed to access the specified resources during486

the working hours via ITMI’s private network, their access rights must be revoked once487

the project is over.488

5.3. The Solution: HEAD Metamodel489

The main question here is: what is the AC model that best fits the above (informal)490

AC requirements, to be formalized and generate the needed AC rules?491

The DSL of HEAD metamodel allows deriving various instances of Ex, Im (AUs and492

PUs), and St entities. By considering the above informal AC rules, we can figure out the493

following:494

• Ex = {subject (name, . . .); object (title, . . .)}.495

• Im are AUs = {role (type, . . .); group (number, . . .)}, and PUs = {permission (ptype,496

. . .); action (type, . . .)}497

• St = {contextual-constraint (date, time, loginlocation . . .); constraint (projectconfirm,498

task_status . . .)}.499

5.3.1. The Formal Policy Model500

In this section, we need to investigate the best AC model that fits our case study.501

Due to the above derived Ex, Im, and St entities, we have the following possibilities:502

• RBAC model: the main entities of RBAC are subject, object, role, permission, and503

action. However, although users are assigned to roles at ITMI, and this is an504

essential feature to consider in order to implement an RBAC model, in several505

situations the use of attributes and environmental conditions is mandatory. As506

well, users are assigned to groups, and the group entity does not belong to the507

RBAC model. Hence, the RBAC model is not enough to answer the needed security508

requirements.509

• ABAC model: ABAC entities are subject, object, action, and environmental (con-510

text) attributes. Users at ITMI are assigned to roles and groups, hence with the511

Version June 17, 2022 submitted to Sensors 13 of 43

ABAC model, the notion of some other models should be considered (e.g., hybrid512

RBAC/ABAC).513

• Hybrid model: the notion of role reflects the importance of considering the RBAC514

model; the notion of attributes and the need to express dynamic AC rules reflect515

the importance of considering the ABAC model; also the demand to define a group516

entity with its attributes imposes the need not to restrict the solution to RBAC or517

ABAC models only. Note that, the solution should consider that maybe some other518

entity(ies) in the future needs to be created/added due to some upgrades.519

Hence, our solution, in this case, is to derive a hybrid model based on user-groups,520

RBAC, and ABAC. Using the DSL of HEAD metamodel the formal user-groups, RBAC,521

and ABAC hybrid model can be derived by first instantiating the needed entities of Ex,522

AU, PU, and St components, then expressing the rules as shown in Figure 7. In Figure523

7(a) we define the following:524

• line 1: the specification of policy model/class.525

• lines 2 to 10: the block of creating Ex entities, starts and ends with the keywords526

explicit and end.527

– line 3: the creation of subject entity with the attribute(s).528

– lines 4 to 9: four levels of object hierarchy are created to represent the hierarchy529

of logical and physical resources. Note that, we actually have three levels of the530

object hierarchy, but since we are using NGAC as an enforcement framework531

we create an additional level to have four levels. ‘object1’ level is to express532

the main objects which will be assigned to different object containers, and the533

other three levels are defined to represent the hierarchy object containers.534

• lines 12 to 21: the block of creating AU entities, starts and ends with the keywords535

authorization and end.536

– line 13: the creation of group entity with the attribute(s).537

– line 14 to 20: four levels of role hierarchy are created. For example, role1 refers538

to the director, role2 refers to the manager, etc.539

• lines 23 to 26: the block of creating PU entities, starts and ends with the keywords540

procedural and end.541

– line 24: the creation of permission entity with the needed attribute(s).542

– line 25: the creation of action entity with the attribute(s).543

• lines 28 to 33: the block of creating St entities, starts and ends with the keywords544

setting and end.545

– line 29 and 30: the creation of context entity with the context attribute(s).546

– line 31 and 32: the creation of constraint entity with the attribute(s).547

Moreover, in Figure 7(b) we provide examples of three possible rule expressions:548

• lines 39 to 47: this rule expression is, for example, to express the access rights549

for users who are assigned to the first-level of role hierarchy (e.g., director) and550

implicitly connected with the actions associated with their role (e.g., manager)551

without the administrator having to explicitly list the manager actions on objects,552

and this is also applied on the lower levels of hierarchy.553

• lines 48 to 58: to express, for example, the rule for users who are assigned to the554

second-level of role hierarchy and implicitly connected with the actions associated555

with their role(s) and perform some actions on objects with some constraints.556

• lines 59 to 73: to express, for example, the rule for users who are assigned to a557

lower-level of role hierarchy, and also assigned to some group to perform some558

actions (with some constraints) on some objects of a certain level of hierarchy in559

some context with some contextual and non-contextual constraints.560

The substantial advantage of the DSL of the HEAD metamodel is that whenever a system561

administrator creates an attribute for any entity, this attribute can be flexibly included562

with the policy rules with some other entity. For example, context and constraint entities563

Version June 17, 2022 submitted to Sensors 14 of 43

Figure 7. Case Study 1: HEAD metamodel instance: (a) A hybrid model based on user-groups,
RBAC and ABAC entities/attributes; (b) rule expressions

Version June 17, 2022 submitted to Sensors 15 of 43

(with their attributes) are created in lines 29 and 32, and in lines 67 and 68 of rule564

expression, the attributes of the context entity are included with the constraint entity.565

5.3.2. The Formal Generated Policy566

The meta-policy is expressed in terms of the meta-components Ex, Im, and St [1,9]:

Metapolicy = 〈Ex, AU, PU, St〉
Before expressing the formal policy, we need to describe the policy elements:567

• Users: a set of entities who have accounts in the ITMI’s IS. Users = {Roy, Thomas,568

John, Sophia, Marc, Bob, Cathy, Peter, Eva}569

• User Attributes: each user is associated with a set of attributes (e.g., Id, name . . .).570

• Roles: specifies the user’s role. Role = {director, manager, adviser, specialist, techni-571

cian}.572

• Groups: specifies user’s group. Group = {groupA, groupB, groupC}.573

• Objects: a set of logical and physical objects that need protection. For example,574

database entities (projects, appliances . . .), labs, machines, devices, etc.575

• Object attributes: object attributes include the project name, machine#, etc.576

• Actions: a set of actions on logical objects in the database (e.g., read, write, update,577

delete, etc.), and on physical objects (e.g., operate machines, test, troubleshoot, etc.).578

• Permissions: users are given permission(s) to perform actions on objects based on579

their roles (or groups), and if constraints and contextual constraints are true.580

• Context: for a given context—for example, log in via private/public network,581

machine malfunction, system failure, etc.— context attributes include datetime,582

login location, failed password attempts, etc., contextual constraint expressions583

include context attributes which are important for authorization decisions.584

• Constraints: expressions include the other various types of attributes, for example,585

subject attributes, object attributes, etc.586

Based on the meta-policy expression, we express the policy of this case study as follows:

Policy = 〈subject(name, . . .); object(title, . . .); role(type, . . .); group(number, . . .);

permission(ptype, . . .); action(type, . . .); context(date, . . .);

constraints(roletype, title, . . .)〉

Since our aim is to use NGAC as an enforcement point, we need Cypher queries as587

java output which then will be injected into the Neo4j database to represent the graph588

of NGAC policy. To represent the concrete instance of user-groups, RBAC and ABAC589

model, xtend notation is used to generate the needed java code at the system level. In590

Figure 8, we show a sample of xtend code to generate the Ex entities.591

• Lines 3 to 16 of Figure 8 (a) generate the non-hierarchical entities (e.g., subject).592

• Lines 18 to 31 to generate the root entities of the hierarchical components (e.g., the593

root entities of objects).594

• To create users (U) and objects (O) nodes, the needed Cypher code is expressed and595

added to the array list ‘rules’ as shown in lines 13 and 28 of Figure 8 (a).596

• Since in our case study we have object hierarchy, of Ex, ‘explicitroot’ and ‘ex-597

plicithrchy’ (lines 1 and 2) of Figure 8 (b) represent objects at the root level and their598

hierarchies. Note that, for NGAC policy we define the code to generate hierarchical599

attribute containers. If object or object attributes/containers at the root level (lines 4600

to 8), or any lower level (lines 9 to 20), ‘include’ or ‘assigned_to’ other containers601

we create the needed attribute containers (lines 32 to 61) and express the Cypher602

code to represent Os and OAs of NGAC policy (lines 37 to 48).603

In addition to object hierarchy, we also have hierarchy of roles and the same is applied604

to create the Im entities/attributes. The sample code of xtend notation (in Figure 8)605

generates the sample java code in Figure 9 for the subject and object entities. However:606

Version June 17, 2022 submitted to Sensors 16 of 43

Figure 8. Case Study 1: A sample of the Xtend notation to generate the java code for the Explicit
entities and their hierarchies.

Version June 17, 2022 submitted to Sensors 17 of 43

Figure 9. Case Study 1: A sample of the generated java code for the subject and object entities
(with object hierarchy) of group-based, RBAC and ABAC model.

Version June 17, 2022 submitted to Sensors 18 of 43

• the xtend sample code of Figure 8 (a) generates the sample java code of Figure 9607

(a). Lines 3-10 define subject entities/attributes and lines 12-20 create the objects (at608

object1 level). Lines 9 and 18 express the Us and Os nodes of the Cypher code.609

• the xtend sample code of Figure 8 (b) generates the sample java code of Figure 9 (b).610

Lines 2 to 32 create the object containers (at object2 level) where objects (at object1611

level) are ‘assigned_to’/’include’ them. As well, lines 33 to 67 create the object con-612

tainers (at object3 level) where objects (at object2 level) are ‘assigned_to’/’include’613

them. Hence, we would have some object containers and some hierarchical object614

containers with U/O-UA/OA, and UA/OA-UA/OA assignments to represent the615

NGAC policy. Lines 16-20 and lines 53-57 express the needed Cypher expressions.616

Before presenting the NGAC graph we have to explain the NGAC policy configuration617

where users and objects may be included in one or more containers, and containers may618

be included by or include other containers. However:619

• in Figure 10 (a), we show user containers that represent the assignment of Us620

(Roy, Thomas . . .) to UAs (Director, Manager, GroupA . . .). An example of a user621

container named Adviser includes two users ‘John’ and ‘Sophia’.622

• In Figure 10 (b), we show object containers with the representation of relational623

database tables with some distinguished rows/columns where they are represented624

as containers of data objects corresponding to the row/column fields. For example,625

a container named ProjectDetails includes the fields prjName, startDate, endDate,626

and prjConfirmation.627

• In Figure 10 (c), users’ access rights to perform operations are formulated through628

associations. For example, in (1) and (2) the director is allowed to {r:read, w:write/629

insert, u:update, d:delete} the data in FinancialDetails container, also he is allowed630

to {d: delete, c: confirm} data of ProjectDetails container; in (3) the manager is631

allowed to {r, w, u} data of ProjectDetails; etc. (the operations ‘s’ and ‘o’ of 6 and632

9 stand for select and operate). However, Figure 10 (c) lists thirteen association633

relations in terms of the user and object attributes/containers illustrated in Figure634

10 (a) and Figure 10 (b).635

• In Figure 10 (d), we have two prohibition relations which express user attribute-636

deny (ua_deny) to deny the technicians ‘Peter’ and ‘Eva’ of performing {w, u, d} on637

GrpATskRslt/GrpCTskRslt and GrpBTskRslt/GrpCTskRslt respectively.638

• In Figure 10 (e), we represent six obligations that are defined as event-response639

relations to define constraints under which policy state data is obligated to change.640

For example, in (1) when the director confirms the ProjectDetails information,641

the manager wouldn’t be able to {u, d} this information; another example in (3)642

expresses an obligation due to some context where the adviser is not allowed to {u,643

d} information in Requirements container if he logged into the system via a public644

network or if the current date is greater than the end date of NQR project; also in (4,645

5, and 6) users of Groups A, B, and C are not allowed to {w, u, d} information of646

containers GrpATskRslt, GrpBTskRslt, and GrpCTskRslt during the non-business647

hours and before and after the start and end of project dates.648

In Figure 11 we show a sample output of the java code (in Figure 9) which expresses649

in part (a) a sample of subject and object entities/attributes which are configured by a650

system administrator with setting up the relationships between object containers. In651

(b), the Cypher code to create policy class (PC), U, and O nodes based on the system652

entities/attributes which are configured in part (a). In part (c), some of the generated653

Cypher code which represents O-OA and OA-OA assignments and hierarchies. In (d), a654

sample of Cypher code that expresses the association relationships to define the access655

rights associated with some UAs (e.g., Director, GroupB . . .) to perform operations on656

some objects specified by OAs (e.g., FinancialDetails, GrpBTskRslt . . .). For example, in657

the following Cypher expression:658

Version June 17, 2022 submitted to Sensors 19 of 43

Thomas

Director

Manager

Adviser

Specialist

Technician

Roy

John

Sophia

Bob

Cathy

Marc

Peter

Eva

(a) User containers:

Bob

Cathy

Peter

GrpA

Bob

Marc

Eva

GrpB

Marc Cathy

Peter

GrpC

Eva

(b) Object containers:

FinancialDetails estGM estCost estGPestValue

Requirements
prjName machine mNotes

RailRobot
3Dprinter

ProjectTasks prjName tskName tskDescr task_Status

1- Director -------- r, w, u, d -------FinancialDetails
2- Director -------- d, c ----------- ProjectDetails
3- Manager -------- r, w, u -------- ProjectDetails
4- Manager -------- w, u, d -------- ProjectTasks
5- Adviser ----------r, s, u, d -------Requirements

(c) Associations:

6- Adviser --------- s -------------ProjectTasks
7- Specialist -------- r -------------ProjectTasks
8- Technician ------- r ------------ProjectTasks

11- GroupA --------- r, w, u, d-------GrpATskRslt
12- GroupB ----------r, w, u, d-------GrpBTskRslt
13- GroupC ----------r, w, u, d------ GrpCTskRslt

Results GrpATskRslt
GrpBTskRslt
GrpCTskRslt

tskName tskName destails

(d) Prohibitions:
ua_deny(Peter, {w, u, d}, {GrpATskRslt, GrpCTskRslt})
ua_deny(Eva, {w, u, d}, {GrpBTskRslt, GrpCTskRslt})

9- Specialist -------- o -------------Machines
10- Technician -------o ------------ Machines

prjNme sDate eDate prjConfirmProjectDetails

(e) Obligations:
1-When: prjConfirm=true, do: create ua_deny(Manager, {u, d}, ProjectDetails)
2-When: task_status !=“onhold”, do: create ua_deny(Manager, {u, d}, ProjectTasks)
3-When: eDate < Date() OR loginLocation=‘public’,

do: create ua_deny(Adviser, {u, d}, Requirements)
4-When: (sDate > Date() AND eDate < Date()) AND time>17h00,

do: create ua_deny(GroupA, {w, u, d}, GrpATskRslt)
5-When: (sDate > Date() AND eDate < Date()) AND time>17h00,

do: create ua_deny(GroupB, {w, u, d}, GrpBTskRslt)
6-When: (sDate > Date() AND eDate < Date()) AND time>17h00,

do: create ua_deny(GroupC, {w, u, d}, GrpCTskRslt)

Figure 10. Case Study 1: NGAC Policy Configuration.

MATCH (auh00:UA{title:`Manager'}) MATCH (eh00:OA {oaname:`ProjectDetails'})659

MERGE(auh00)-[:Permission {perm:`ManPermission', act:`r,w,u', prjCon�rm:`false'}]-> (eh00);660

The manager with ManPermission is able to perform {r, w, u} operations on ProjectDetails661

as long as the information is not confirmed by the director, in other words, as long as the662

value of prjConfirm = False. Since the basic elements of NGAC are U/O, UA/OA, and663

assignment/association relationships, we configure the constraints and the contextual664

constraints as properties in the association relationship. Note that, to simplify and665

minimize the number of the association relationships between some UAs and OAs in666

the graph of Figure 12, we use a single association relationship instead of two or three.667

For example, in the first association relationship which represents ManPermission the668

operation {r} on ProjectDetails can unconditionally be performed by the manager, and669

for the second one, the manager cannot perform {u,d} if the PrjConfirm value is true. In670

our illustration, we use a single association relationship and apply the constraints on all671

operations.672

5.4. NGAC: the policy enforcement point673

This section presents the AC policy enforcement over Cypher queries issued from674

a system using Cypher statements as NGAC inputs and having NGAC authorization675

responses based on them. In this paper, the system represents the generated java code676

(Figure 9) where Cypher queries are issued after the administrative configuration of677

AC policy. However, the generated Cypher code is injected into the Neo4j database to678

represent the AC policy as NGAC graph policy. As shown in Figure 12, in the left section679

the nodes indicated in light and dark green color represent the assignment of users680

(Us) to their roles/groups (UAs), in addition to the role hierarchy which is indicated681

by the red arrows and ‘has_child_content’ relationship. The nodes indicated in light682

and dark blue color in the right section of the graph represent the assignment of objects683

(Os) to object containers (OAs) (and some OAs to other OAs), in addition to object684

hierarchy where the hierarchy of object containers is indicated by the red arrows and685

‘include’ relationship. The association relationships, the yellow arrows, represent users’686

permission based on their roles/groups.687

By assigning a user to a role (with the inheritance relation between roles), the user is688

indirectly associated with the access rights of that role’s lower roles. Figure 13 illustrates689

Version June 17, 2022 submitted to Sensors 20 of 43

Figure 11. Case Study 1: A sample java code output (a) to configure system values; (b) generated
Cypher code to create PC, U, and O nodes; (c) O-OA assignments and hierarchies to express AC
rules; and (d) a sample of access rights associated to some AUs to perform operations on some
objects specified by OAs.

Version June 17, 2022 submitted to Sensors 21 of 43

Figure 12. Case Study 1: NGAC graph.

permissions associated for some users on some objects such as: in (a) Roy is assigned to690

the role of director and also has the permission of the lower roles (manager . . .); in (b)691

Thomas is assigned to role manager also has the permission of the lower roles (adviser692

. . .); in (c) Sophia is assigned to role adviser also has the permission of the lower roles;693

in (d) Marc is assigned to role specialist and (e) Eva is assigned to role technician, in694

addition to the group permission for users who are also assigned to groups. For example,695

the user Roy has the permission DirPermission to confirm and delete {c, d} ProjectDetails696

data through the Roy-Director assignment, Roy also has the permission ManPermission697

to {r, w, u} ProjectDetails through the Director-Manager assignment which is expressed698

as ‘has_child_content’ relationship to represent role hierarchy. Moreover, he would have699

the permission of the lower roles to perform the needed operations on the needed objects.700

Consequently, a manager with ManPermission also has AdvPermission, SpePermission,701

TecPermission, and so on.702

Figure 14 illustrates two examples of the association relationship properties for703

the manager and adviser permissions, note that we express the contextual and non-704

contextual attributes with the permission relationship properties. Consequently, the705

manager has ManPermission to {r, w, u} ProjectDetails if the object attribute PrjConfirm706

value is false, and the adviser has AdvPermission to {r, s, u, d} project Requirements707

when the context attributes LoginLocation is local and if the current date is before the708

endDate of the project. In Figure 15 we run some Cypher queries with some constraints709

using context, user, and object attributes to show NGAC authorization responses to710

Cypher statements. In (a) we show that the manager is able to perform the needed711

operations on ProjectDetails, but when the value of prjConfirm is updated (by the712

director) to ‘true’ (b), he would not be able to perform any operation on the specified713

object container (c). In Figure 15 (d) and (e) we show that an adviser is able to {r, w, u,714

d} project Requirements if the current date is less than the end project date. In (f) and715

(g), we show what roles are allowed to perform some operations on ProjectDetails and716

ProjectTasks objects.717

Version June 17, 2022 submitted to Sensors 22 of 43

Figure 13. Case Study 1: Users’ Permissions based on their roles (and role hierarchy).

Figure 14. Case Study 1: Examples of association relationship properties for role permissions.

Version June 17, 2022 submitted to Sensors 23 of 43

Figure 15. Case Study 1: Examples of NGAC authorization responses to Cypher statements.

Controlling access to resources in industrial organizations is often managed at the718

application level, which is sufficient in static computing environments where changes in719

the data sources or system are not expected. On the other hand, industry 4.0 applications720

are generally dynamic, which means that new machines, devices, sensors, users, etc. are721

frequently added or changed, and the AC policies need to be frequently added and up-722

dated. Accordingly, industry 4.0 environment, and other highly dynamic environments,723

need flexible and frequently upgradable AC models to answer the frequent changes in724

AC requirements. In the following section, we propose a simplified case study for the725

industry 4.0 environment.726

6. Case Study 2— ITMI: IoT727

Due to the immense value that IoT brings to every organization, ITMI refers to the728

use of IoT in improving the existing systems and processes and enabling it to increase729

operational efficiency, create better experiences, and unlock additional value for the730

running projects. For ITMI, IoT and industry 4.0 reflect a growing focus on driving731

results using sensor-based data and creating analytically rich data sets.732

Figure 16 illustrates the system architecture of ITMI’s IoT environment. Note that,733

this case study is a subsequent project related to the previous case study. One of the734

important IoT projects that are maintained by ITMI, is the Inspection of the Railways735

of Quebec (IRQ) in Canada to detect any unrevealed crack in railway tracks in order736

Version June 17, 2022 submitted to Sensors 24 of 43

to avoid accidents. To achieve this, the rail robot (which is accomplished in case study737

1) and a drone are connected or paired together so that they are synchronized and738

well geolocated. Both are connected to the internet via cellular or satellite networks739

depending on where the inspection is taking place. The sensor nodes attached to the740

rail robot are used to inspect the railways and capture images for the crack detection on741

railway tracks as well as any technical problem. Synchronously, the drone also captures742

images for the geographical locations along with the robot where cracks in railway tracks743

exist, and all the data and captured images are sent to ITMI’s cloud server. To complete744

this process the specialists ‘Bob’ and ‘Cathy’ and the technician ‘Peter’ need to travel to745

the sites having the ‘Drone’ and the ‘Rail Robot’ where they are released on a specific746

point to start the inspection process. Once the process is done, ‘Bob’, ‘Cathy’, and ‘Peter’747

have to travel back and place the machines back in the labs. Thereafter, the Adviser748

would be able to access the public database after verifying his identity to analyze the749

obtained data and the captured images, then write the needed report(s) of the inspection750

results and save them in table Results in the database. The report(s) need to be confirmed751

by the manager before emailing them to the company which maintains these railways.752

Figure 17 illustrates the flow of information for the case study scenario using the Neo4j753

graph database.

Policy
database

Security
administrator

Application layer

Users

manager

specialists

director

advisers

technicians

user device

Middle layer Object layer

Storage device
Server

Network

AC model(s)

Authentication

Ga
tew

ay

IoT devices

AC model(s) AC model(s)

drone

Rail robot

Local Public

Figure 16. The system architecture of ITMI: non-IoT environment

Figure 17. A graph model representing the information flow of ITMI’s IoT environment
754

6.1. Challenge755

The rail robot and the drone machines could generate privacy-sensitive information,756

for example, for some logistic locations. It is important to provide an efficient AC model757

that is able to consider all the needed factors to avoid operating the devices for any758

illegal use by any illegal user. With a set of physical identities (ITMI workers, company759

employees, and maybe others) in some of the sites where the inspection process for760

Version June 17, 2022 submitted to Sensors 25 of 43

the railways is assumed to take place, operating the rail robot and the drone must be761

done by trusted users. Moreover, the machines are objects that need to be controlled by762

authorized users and are also considered users when they send and insert data into the763

public database at ITMI’s cloud server, in other words, they are objects and subjects at764

the same time.765

6.2. The Informal Policy: the access rights766

In this case study, AC is based on users’ roles, in addition to other attributes of767

subjects, objects, and environment. Since some users having the same role are not768

allowed to access the labs, we need to specify users who are allowed to take out the769

‘Rail Robot’ from ‘AI Lab’ and the ‘Drone’ from embedded systems (ES) ‘ES Lab’, and770

operate them onsite. Note that, the allowed users should be able to access the labs 24/7771

when the status of this task is ‘in progress’ and within the start and end date of the772

running project for the purpose of taking out and returning back the machines after the773

inspection process. Onsite, users must log into the machines using PIN codes, they have774

three possible attempts to use the correct PIN code in order to operate and control them;775

otherwise, the machines, and via the use of a GPS tracking system send alert messages776

to the manager, the specialists and the technician with the geographical coordinate of777

the location to take the needed actions. In the following we summarize users’ access778

rights specified for this case study:779

• The specialists ‘Bob’ and ‘Cathy’ with the technician ‘Peter’ are allowed to operate780

the ‘Rail Robot’ and the ‘Drone’ using the IoT device controller to control the781

machines and read the collected data and images.782

• The adviser ‘John’ have full access to database tables at the ITMI cloud server where783

the collected data and images from the site are received from the ‘Rail Robot’ and784

the ‘Drone’. He analyzes the obtained information, then writes/inserts the needed785

reports to table ‘Results’.786

• Before emailing the reports to the company which has to maintain the railways, the787

manager ‘Thomas’ must read (and modify if needed), and confirm the report(s).788

All users are allowed to perform the specified actions if the task status is ‘in progress’789

and within the start and end date of the project.790

6.3. The Solution: HEAD Metamodel791

In complex computing environments, variants of AC policies need to be defined and792

enforced at different levels of application logic. To prevent confidentiality and integrity793

breaches, system administrators and security experts must ensure that the various types794

of policies are defined and enforced. HEAD metamodel supports the feature of deriving795

various models using the same DSL language, it allows the creation of various types of796

policy elements with the relationships between them. As shown in Figure 16, to protect797

the resources there are various AC models need to be implemented. To control access798

and protect the resources in the local environment we provide case study 1. In this case799

study, our concern is to derive the needed model(s) to protect the resources of ITMI’s800

public environment. However, for this case scenario, we need also to know what is the801

AC model(s) that best fits the (informal) AC requirements to be formalized and generate802

the needed AC rules. For the needed solution, we have to consider that the physical803

objects are also subjects (users)—for example, the ’RailRobot’ and the ’Drone’ machines804

are objects that need to be protected from any illegal access, they are also subjects when805

they need to connect to ITMI’s public database in order to insert/write the collected data.806

For this purpose we have to derive a hybrid model with two PCs, PC1 considers the807

machines as objects and PC2 considers them as subjects. However, the DSL of HEAD808

metamodel allows instantiating different PCs of Ex, Im, and St entities. Hence:809

• PC1:810

– Ex = {subject (sname, . . .); object (oname, . . .)}.811

Version June 17, 2022 submitted to Sensors 26 of 43

– Im: AUs = {role (type . . .)} and PUs = {permission (perm . . .); action (type . . .)}812

– St = {context (loginLocation, time, pw-attempts . . .); constraint (inspectionState,813

confirmation . . .)}.814

• PC2:815

– Ex = {subject (sname, . . .); object (oname, . . .)}.816

– Im is PU = {action (type, . . .)}817

– St = {context (Location, pwAttmpts . . .)}.818

6.3.1. The Formal Policy Model819

To implement the needed solution, we have to find the best AC model that fits the820

AC requirements of this case study. Due to the above derived Ex, Im, and St entities, we821

have the following possibilities:822

• Hybrid RBAC/ABAC model: due to the above entities for PC1, the notion of role823

reflects the importance of considering the RBAC model, and the need to express824

static and dynamic AC rules based on subject, object, and context attributes reflect825

the importance of considering ABAC model.826

• ABAC model: the above entities for PC2 match the entities of ABAC.827

Hence, our solution, in this case, is to derive a hybrid model with two PCs (hybrid828

RBAC/ABAC and ABAC). Using the DSL of the HEAD metamodel, we derive the829

needed model as shown in Figure 18. In Figure 18(a) we define the following:830

• lines 1 to 38: the block of specifying two PCs.831

• lines 1 to 22: the specification of PC1.832

• lines 2 to 8: the block of creating Ex entities, subject and object entities, it starts833

and ends with the keywords explicit and end. Three levels of object hierarchy are834

created to represent the hierarchy of objects. Note that, we actually have two levels835

of the object hierarchy, but since we are using NGAC as an enforcement framework836

we create an additional level. object1 level is to express Os which will be assigned837

to different containers, and the other two levels represent the hierarchy of objects838

containers.839

• lines 9 to 12: the block of creating AU entities, starts and ends with the keywords840

authorization and end. Two levels of role hierarchy are created for the manager841

and the adviser.842

• lines 13 to 16: the block of creating PU entities, starts and ends with the keywords843

procedural and end.844

• lines 17 to 21: the block of creating St entities, context and constraint entities and845

attributes, starts and ends with the keywords setting and end.846

• lines 23 to 37: the specification of PC2.847

• lines 24 to 29: the block of creating Ex entities, subject, and object.848

• lines 30 to 32: the block of creating PU entity, action entity, and attributes.849

• lines 33 to 36: the block of creating St entities, context, and constraint.850

In Figure 18 (b) we express some AC rules based on the defined entities/attributes:851

• lines 40 to 51: the rule expression of the hybrid RBAC/ABAC model. It expresses852

the access rights for users using the defined components/attributes of PC1.853

• lines 52 to 61: the rule expression of ABAC model. It expresses the access rights for854

users using the defined components/attributes of PC2.855

• lines 62 to 71: the expression of a hybrid rule using the defined components/attributes856

of PC1 and PC2.857

Note that, for each PC the names of the components must be unique, for example, we858

create two different names for the subject (for PC1 we create ‘subject’ entity and for PC2859

we create ‘subjct’ entity). A considerable advantage of the DSL of the HEAD metamodel860

is that it allows specifying an unlimited number of PCs with the flexibility of defining861

entities/attributes for each PC and expressing hybrid rules.862

Version June 17, 2022 submitted to Sensors 27 of 43

Figure 18. Case Study 2: HEAD metamodel instance: (a) A hybrid model with two PCs (hybrid
RBAC/ABAC and ABAC); (b) rule expressions.

Version June 17, 2022 submitted to Sensors 28 of 43

6.3.2. The Formal Generated Policy863

In this section we describe the policy elements for each PC:864

• PC1: Hybrid RBAC/ABAC865

– Users = {Thomas, John, Bob, Cathy, Peter}866

– User Attributes: each user is associated with a set of attributes (e.g., name . . .).867

– Role = {manager, adviser}.868

– Objects: set of logical (e.g., tables rows/columns at the cloud server) and869

physical (e.g., rail robot and drone) objects need protection.870

– Object attributes: object attributes include inspection_status, confirmation, etc.871

– Actions: a set of actions on logical objects in the database include read, write,872

update, delete, etc.; and on physical objects include control, operate, etc.873

– Permissions: users are given permission(s) to perform actions on objects based874

on their roles.875

– Context attributes: for a given context—example, log in via private/public net-876

work, machine failure, etc.— context attributes include the date, time, location,877

password attempts, etc., contextual constraint expressions are important for878

authorization decisions.879

– Constraints: expressions include the other various types of attributes, for880

example, subject attributes, object attributes, etc.881

The policy expression for PC1 can be expressed as follows:

Policy = 〈subject(name . . .); object(title . . .); role(type . . .); permission(ptype . . .);

action(type . . .); context(date . . .); constraints(con f irm . . .)〉

• PC2: ABAC882

– Users = {RailRobot, Drone}, and users’ attributes (e.g., machineName).883

– Objects: the logical resources (e.g., tables rows/columns at the cloud server),884

with their attributes, e.g., coordinates, image, etc.885

– Actions: set of actions on logical objects in the database, e.g., write.886

– Contextual and non-contextual constraint expressions with the attributes of887

context, subject, and object.888

The policy expression for PC2 can be expressed as follows:

Policy = 〈subject(name . . .); object(title . . .); action(type . . .); context(time . . .)〉

To represent the concrete instance of the hybrid model, xtend notation is used to889

generate the needed java code at the system level. The output of the java code, the890

Cypher queries, is injected into the Neo4j database to represent the graph of NGAC891

policy. In Figure 19 we show a sample of xtend code:892

• (a) to specify the PCs (lines 1 to 9), in this case study we have two PCs as instantiated893

(as shown in Figure 18 RBAC/ABAC for PC1, and ABAC for PC2), then the Ex, AU,894

PU, and St entities are created for each PC;895

• (b) to define AUs and their hierarchies (e.g., role and role hierarchy), lines 1-11 to896

generate the java code for the root node(s) of AUs and express their Cypher code897

(they represent the user attributes of NGAC policy), lines 15-36 to generate the java898

code for defining the children of the root node(s), and lines 37-57 to express the899

Cypher code and the hierarchy relationship between them; and900

• (c) assign Ex entities to AUs (e.g, user-role assignment), and express the Cypher901

statement of their relationships.902

The sample code of xtend notation (in Figure 19 (b) and (c)) generates the sample java903

code in Figure 20:904

• part (a) is a sample for the AU root entities and their child entities (in this sample905

the generated code is for role entity) of the instantiated Hybrid model;906

Version June 17, 2022 submitted to Sensors 29 of 43

Figure 19. Case Study 2: A sample of the Xtend notation to generate the java code for the (a) PC,
(b) AU (and AU hierarchy) entities, (c) the assignment of Ex-AUs entities.

Version June 17, 2022 submitted to Sensors 30 of 43

• part (b) is a sample of the generated java code for user-role (root nodes) assignment,907

and the Cypher statement expressions.908

Figure 20. Case Study 2: A sample of the generated java code for (a) AU root entities and their
child entities; and (b) a sample of the assignment of user to root role nodes (Us to UAs).

In Figure 21 we show a sample output of the java code (of Figure 20):909

• in part (a) a sample of specified policy classes and the configuration of their enti-910

ties/attributes which are configured by a system administrator with setting up the911

relationships between object containers.912

• in part (b), the creation of instances of role entities and role hierarchy, in addition to913

the assignment of Ex-AUs which represents in this case user-role assignment.914

After configuring the policy, Cypher queries are generated as an output from the java915

code (of Figure 21) in a form the result of them matches the NGAC policy graph with916

two PCs. Different output samples of Cypher queries are shown in Figure 22:917

• in part (a) the Cypher code to create PCs, Us, and Os.918

• in part (b) a sample of the generated the Cypher code for PC1, to create UAs with919

the needed assignment and hierarchies. Note that, we consider Workers as a role in920

this case study for U-UA assignment.921

• in part (c) we show a sample of Cypher code to create UAs/OAs nodes of PC2922

(e.g., IoTM1/ RailwayData) and assign the appropriate Us/Os (e.g., MRailRobot/923

Machine1Data) to them.924

Before presenting the NGAC graph, we have to explain the NGAC policy configuration925

of this IoT case study. However in Figure 23:926

• in (a), we show the configuration of user containers. Red containers represent the927

assignment of Us to UAs of the first PC1, and blue ones represent the assignment928

of Us to UAs of the second PC2. U of PC1 stands for Thomas, John, etc., and UA929

of PC1 stands for the role (Manager, Adviser, etc.). U of PC2 stands for ‘RailRobot’930

and ‘Drone’, and UA of PC2 stands for first and second IoT machines.931

Version June 17, 2022 submitted to Sensors 31 of 43

Figure 21. Case Study 2: A sample of java output (a) to configure PC1 and PC2; (b) user-role
assignment.

Figure 22. Case Study 2: A sample of Cypher code (a) PC, U, and O nodes; (b) UAs of roles and
Workers with U-UA assignment; and (c) a sample U/O-UA/OA assignment of PC2.

Version June 17, 2022 submitted to Sensors 32 of 43

• in (b), we show object containers for physical (RailRobot and Drone) resources—932

where access to them is controlled via the IS—indicated in red for PC1, and logical933

resources (database tables at ITMI’s cloud server) with the representation of tables934

with some distinguished rows/columns indicated in red for PC1, and blue for PC2.935

• in (c), access rights of users to perform operations are formulated through asso-936

ciations. For example, in (1) and (2) the workers are allowed to {o: operate, ct:937

control} the RailRobot and Drone objects, in (5) the manager should confirm that938

the inspection process is done before allowing the adviser in (7) to {r:read, cp:copy}939

the collected data in order to analyze it, also in (10) and (11) the subjects of PC2, the940

‘Rail Robot’ and the ‘Drone’ which are assigned to IoTM1 and IoTM2 UAs, need941

the permission to connect the cloud server to {w:write/insert} data and images into942

RailwayData and GeolocationData containers.943

• in (d), three prohibition relations which express ua_deny to deny all users perform-944

ing {w, u} on ‘IoTData’.945

• in (e), four obligations that are defined as event-response relations to define con-946

straints under which policy state data is obligated to change. For example, the947

workers onsite are allowed to access the cloud server and delete the collected IoT-948

Data due to unexpected events, e.g., machine malfunction or system error, in order949

to repeat the inspection process. In (1), they are not allowed to {d} IoTData if they950

are logging into the system locally, if InspectionStatus=“inprogress”, and not within951

the start and end dates of the IRQ project.952

Thomas

Manager

Adviser

John

Bob

Cathy

Peter

(a) User containers: (b) Object containers:

8- Adviser --------- r, w, u, d ----- Results

1- Workers --------- o, ct -------- RailRobot
(c) Associations:

7- Adviser ---------- r, cp -------- IoTData

10- IoTM1 ----------- w ------ RailwayData

4- Workers --------- d ----------- IoTData

(d) Prohibitions:
1- ua_deny(Manager, {w, u}, IoTData)

11- IoTM2 ----------- w ----- GeolocationData

3- Workers --------- r ----------- IoTData
(e) Obligations:
1-When: loginlocation =“local” AND InspectionStatus!=“inprogress” AND

(sDate>currentDate() AND eDate< currentDate()),
do: create ua_deny(workers, d, IoTData)

Workers

RailRobot

Drone

IoTM1

IoTM2

5- Manager ---------cn ---------- IoTData

IoTData
timestamp coordinates

RailWayData
GeolocationData

M#

IoTMachines RailRobot
Drone

image inspection

3- ua_deny(Workers, {w, u}, IoTData)
2- ua_deny(Adviser, {w, u}, IoTData)2- Workers --------- o, ct -------- Drone

Results prjName tskName Descr Confirm

2-When: confirm=“true” OR (sDate>currentDate() AND eDate< currentDate()),
do: create ua_deny(Adviser, {w, u, d}, Results)

M# Descr Notes

6- Manager ---------cn ---------- Results

3-When: pwAttmpts>3, do: create ua_deny(Workers, {o, ct}, RailRobot)
4-When: pwAttmpts>3, do: create ua_deny(Workers, {o, ct}, Drone)

9- Adviser --------- r ------------ Results

Figure 23. Case Study 2: NGAC Policy Configuration.

6.4. NGAC: policy enforcement953

Similar to the steps we follow in case study 1, in this section we use Cypher954

statements as NGAC inputs and then have NGAC authorization responses based on955

them. However, the generated Cypher code is injected into the Neo4j database to956

represent the AC policy as NGAC graph policy. As shown in Figure 24 the dark brown,957

green, and blue colors refer to PC1, and the light brown, green, and blue colors refer958

to PC2. In the left section of the graph, the dark/light brown with dark/light green959

nodes represents the assignment of users (Us) to their UA containers, in addition to role960

hierarchy which is indicated by the red arrow and ‘has_child_content’ relationship. In the961

left section of the graph, the dark/light brown with dark/light blue nodes represents the962

assignment of objects (Os) to their OA containers, in addition to object hierarchy which963

is indicated by the red arrow and ‘include’ relationship. The association relationships,964

Version June 17, 2022 submitted to Sensors 33 of 43

the yellow arrows for PC1 and dark brown arrows for PC2, represent users’ access rights.965

Figure 24. Case Study 2: NGAC graph.
966

Due to the inheritance relationship between manager and adviser roles, In Figure967

25 we show some examples of the access rights associated with the manager Thomas968

and the users who are assigned to the Workers (UA) container. As shown in Figure 25:969

• in part (a), Thomas has ManPermission to {cn: confirm} data in Results and IoTData970

containers, also he has the permission AdvPermission to {w, u, d} Results and971

{r, cp} IoTData through the Manager-Adviser assignment which is expressed as972

‘has_child_content’ relationship to represent role hierarchy;973

• in part (b), we show the access rights associated to the workers Bob, Cathy, and974

Peter to {d} IoTData in a certain context (explained in Figure 26(a)) and {o:operate,975

ct:control} the ‘Rail Robot’ and the ‘Drone’;976

• in part (c), we show the set of permissions associated with users to perform opera-977

tions on the ‘IoTData’ object container.978

In Figure 26 (a) we show an example of the association relationship properties for Work-979

ers’ permission where they are allowed to {d} IoTData—for example, due to machine980

malfunction or system failure—if the value LoginLocation is ‘public’ and the Inspection-981

Status is ‘inprogress’ and before the end project date. In this case study, we also express982

the contextual and non-contextual attributes with the permission relationship properties983

to have more accurate and regulated AC rules, since NGAC does not graphically illus-984

trate the context/constraint entity/attributes. Similar to case study 1, to avoid multiple985

association relationships between UA and OA containers, in Figure 24 we create a single986

association relationship between Adviser and Results to define his access rights {w, u, d}987

with the needed contextual and non-contextual constraints. In this case, the operation988

{r} is not defined to avoid preventing the Adviser from reading the Results when the989

constraints are true. In Figure 26 (b) we represent double association relationships990

between Adviser and Results, the first association is to express the {w, u, d} operations991

and the second association is to express the {r} operation and express the constraints992

with each association.993

Moreover, in Figure 27 we run some Cypher queries with some contextual and994

non-contextual constraints using some context, subject, and object attributes to show995

NGAC authorization responses to Cypher statements.996

Version June 17, 2022 submitted to Sensors 34 of 43

Figure 25. Case Study 2: Examples of Users’ access rights.

Figure 26. Case Study 2: Example of association relationship properties for Workers permission.

Version June 17, 2022 submitted to Sensors 35 of 43

• In (a) we show that the Workers are able to {d} IoTData when the value of Inspec-997

tionStatus=’inprogress’, which means the inspection process is not completed and998

more data need to be collected, but when the value of InspectionStatus is updated999

(by the manager) to ’complete’ as shown in (b), the workers would not be able to1000

delete the IoTData even if they are logging into the system via public network as1001

shown in (c).1002

• In Figure 27 (d) we show that a Worker would be able to {o, ct} the Rail Robot or1003

the Drone if the pwAttpmts are less than or equal three attempts, otherwise (e) he1004

would not.1005

Figure 27. Case Study 2: Examples of NGAC authorization responses to Cypher statements.

7. HEAD administrative panel1006

In this section, we provide another example for the implementation of HEAD1007

metamodel using VB.net and SQL, for decision-making to access industrial resources1008

(or any other resources in any computing environment) according to components of1009

the derived AC model(s). For example, in case study 1 (section 5), the AC decision1010

occurs according to the user’s role/group, the contextual information (location, time,1011

etc.), and the attributes of subjects/objects, and some constraints. In Figure 28, we show1012

an administrative panel example where the AC model can be derived after creating1013

Ex, AU, PU, and St entities/attributes. In Figure 29 we show the steps to create model1014

components:1015

Version June 17, 2022 submitted to Sensors 36 of 43

Figure 28. HEAD metamodel: Administrative Panel example

Figure 29. HEAD Administrative Panel: Instantiation of AC model

• in (a), after defining the needed model (1) the administrator would be able to edit1016

the model in order to update, delete, or (2) create and (3) add model entities.1017

• in (b), the needed entity (e.g., object) is (4) selected to (5) define the number of1018

hierarchy levels.1019

• in (c), the administrator (6) sets and (7) confirms the hierarchical levels of an entity.1020

• in (d), we show that the root node object (8) has three levels of the object hierarchy.1021

• in (e) and (f), the nodes can be deleted and their names can be updated.1022

After specifying the model entities, in Figure 30 we show another form of the panel to1023

define the model entities/attributes. The left part shows the defined model entities (and1024

the hierarchies), the right part shows the created instances of policy elements based on1025

model entities, and in between, we create the entities and summarize the attributes for1026

each selected element of the right part (e.g., context). Note that, by default, each entity1027

Version June 17, 2022 submitted to Sensors 37 of 43

has a name attribute and later on we explain how additional attributes can be added for1028

each entity. In Figure 31 we explain the AC policy configuration steps:

Figure 30. HEAD Administrative Panel: AC policy configuration
1029

• in (a)(1) we configure a hybrid model for ITMI. To create model instances, for1030

example, (2) for object entities (at root level) we write the objects names (3) separated1031

by ‘;’ instead of defining each object individually, then (4) we confirm the creation.1032

All other elements of subjects, roles, etc. are created in the same way.1033

• In (b), we show how a child node is created for (5) the Director, (6) named Manager.1034

Figure 31. HEAD Administrative Panel: AC policy configuration steps

In Figure 32, we show how additional attributes can be created by selecting and right-1035

clicking on a specific element, then choosing ‘Add/Modify Attributes’ where a popup1036

window opens to define and create various types of attributes (with their values), in our1037

example, we define the context attributes to specify if the user needs to access resources1038

within the business hours, the user’s login location, and if the current date is within the1039

start/end date of the project. Moreover, the selected node can be updated, or deleted.1040

To configure the AC rules, in Figure 33 we show the configuration steps. Note that,1041

different models might be implemented for an organization, hence in Figure 33(a):1042

(1) the policy with model type is selected to configure the needed rules.1043

(2) the administrator assigns Ex to AUs, in our example, (2) subjects to roles/groups.1044

(3) the administrator associates AUs with PUs, in our example, the role permission.1045

Version June 17, 2022 submitted to Sensors 38 of 43

Figure 32. HEAD Administrative Panel: Adding Attributes to Model Components

After assigning subjects to roles/groups and specifying their permission(s), in1046

Figure 33(b):1047

(1) the administrator, based on the permission type, needs to select the objects,1048

(2) and associate the actions that can be performed on each of the selected objects1049

(FinancialDetails and ProjectDetails).1050

(3) to apply constraints, the administrator should select the row (permission, object,1051

and action), and selects the needed attributes to include them with the rule.1052

(4) Finally, the rules can be exported as Cypher, json, or any other format of code. In1053

this example, we also generate Cypher code as explained in section 5.1054

Figure 33. HEAD Administrative Panel: Formulation of AC Rules

Version June 17, 2022 submitted to Sensors 39 of 43

8. Evaluation and Validation of HEAD metamodel1055

After presenting the above two case studies and showing how it is possible to1056

use HEAD metamodel to derive AC models, and how it can be adapted in different1057

computing environments. In this section, we present the comparison and the evaluation1058

and validation of the HEAD metamodel with the proposed AC metamodels in the1059

literature.1060

8.1. Comparison1061

In Table 1 we summarize the features of the HEAD metamodel compared to the1062

other proposed metamodels in the literature [7–9].1063

Table 1. Comparison between HEAD Metamodel and the other AC metamodels.

Metamodel Access Control Metamodels

Features HEAD Metamodel Other Metamodels

Unify components Unify all the heterogeneous components of heterogeneous
AC models.

Some metamodels unify some of the heterogeneous compo-
nents under the notion of ‘category’ which includes roles,
groups, security levels, etc.

Generality Include all features and components of common AC models
and allow deriving various instances of various models.

Hybrid structures to derive some AC models rather than
generic metamodels

Dynamism
Allows defining and adding any type of components and
attributes for existing models and non-existing ones to ex-
press various static and dynamic rules

None of the existing metamodels support this feature, and
they are not dynamic enough to define static and dynamic
AC policies.

Extensibility
New components can be defined and integrated with al-
ready derived models to support new AC features in addi-
tion to the previous ones.

Some metamodels are extended but not extensible, and
none of the existing metamodels support this feature.

Hierarchical
It allows defining multi-levels of all components (e.g., role,
context) to conform to the hierarchical organizational struc-
tures.

Some metamodels support the feature of hierarchy for some
components, and none of them consider the context hierar-
chy which is an important feature in complex and highly
dynamic environments.

Upgradability Able to follow technology upgrades and update any policy. None of the existing metamodels support this feature, and
they have reached their limits.

Unified framework
Allows the creation of any model, in addition to any hybrid
model with different policy classes (e.g., case study 2), and
hybrid models with hybrid components (e.g., case study 1)

Allows the creation of some models based on features em-
ployed in their hybrid structures.

Adaptability Can be implemented in different centralized and distributed
environments, especially IoT. They provide solutions for specific cases and scenarios.

Novelty A new development in the domain with advanced features
(all of the above). The last AC metamodel was proposed in 2015 [23].

To sum up, the derived models of HEAD metamodel are flexible and upgradable;1064

they can be extended, updated, and easily define any new component/attribute to1065

follow the technology upgrades and define and enforce larger sets of static and dynamic1066

policies. Compared to the existing metamodels, system designers and security experts1067

need to redesign a model and rethink how it could be enhanced instead of being able to1068

extend/upgrade it, which means additional time and cost.1069

8.2. Evaluation and Validation1070

The main value of HEAD metamodel is that it contributes to several essential1071

advancements in the domain compared to the proposed metamodels in the literature.1072

The advancements can be identified as follows:1073

• It allows the specification, the formalization, the generation, and the verification of1074

AC policies. HEAD metamodel draws a complete strategy instead of tackling each1075

issue independently. In our experience so far, AC research and practice focus on1076

one phase and confuses issues that cut across multiple phases.1077

Version June 17, 2022 submitted to Sensors 40 of 43

– As for the specification, HEAD metamodel is flexible enough to allow iden-1078

tifying the Ex, Im, and St entities (with their attributes) based on the AC re-1079

quirements of a system. Using HEAD metamodel, system administrators and1080

security experts are not restricted to defining some entities for some models,1081

they are able to create any entity (and attribute) for any model whether it is an1082

existing AC model or a non-existing model.1083

– For the formalization, after specifying the needed AC entities, the DSL lan-1084

guage of HEAD metamodel allows formalizing the specified AC models (com-1085

mon AC models, hybrid models, and other models) with the ability to follow1086

the technology upgrades by allowing the definition of new entities and at-1087

tributes. The power of the DSL language of the HEAD metamodel is simple1088

and flexible to appropriately express any AC policy requirements, it overcomes1089

the complication of existing language expressions, also it is independent of1090

specific AC models.1091

– For the generation of AC policies, the nature of meta-components of HEAD1092

metamodel which allows deriving any model, can also be adapted to represent1093

the concrete instance of any AC model and generate the needed AC policies.1094

In this paper, we use Eclipse Xtend notation to represent the concrete instances1095

of the derived models, then the AC rules are expressed and generated as a1096

format of Cypher queries. Another generator could be used, for example, to1097

represent the needed models and then generate AC rules in as ‘json’ format.1098

– For the formal verification of the generated AC policies is to formally verify1099

the accuracy and the coherence of the concrete instance of the AC policy before1100

policy enforcement. For example, using Cypher queries as NGAC inputs to1101

represent the AC rules of a system in a graph, then verify the objects, the1102

relationships between them, and the subjects that interact with the system in a1103

way that adheres to the semantics of an organization.1104

• It serves as a unifying framework and it is the only metamodel that provides to the1105

literature all the design phases and steps starting from the conception [1,6,24–26] to1106

policy enforcement which is addressed in this paper, through the implementation1107

of two case studies, in addition to the new research opportunities this metamodel1108

opens in the domain [9].1109

• The effectiveness of HEAD metamodel is reflected in the proof of the concept1110

since we show that the metamodel idea with the theoretical foundations can be1111

implemented and applied using different tools.1112

• If the above case studies are implemented using one of the proposed metamodels in1113

the literature, the solution would be insufficient to answer ITMI’s AC requirements,1114

since the existing metamodels only include features of DAC, MAC, and RBAC1115

models, and neither attributes can be defined nor new components can be added.1116

As well, they are not flexible to allow defining different PCs.1117

• HEAD metamodel is an essential development in the field since the last proposed1118

metamodel was in 2015 [9], and it is a hybrid metamodel only includes the features1119

of DAC, MAC, and RBAC, not dynamic, does not support the hierarchy of all1120

components, and the derived models cannot be extended.1121

All of the above reflect the advancement of HEAD metamodel over the other proposed1122

metamodels in the literature, and ensure that it is can be considered as a centerpiece1123

towards enhancing other essential characteristics, and elaborating in different research1124

directions in the domain (explained in [9]).1125

9. Conclusion and Future Perspectives1126

Despite over the past decade security researchers have proposed a variety of policy1127

models and metamodels to address real-world security problems, the limited ability of1128

the existing AC methods to generically specify, upgrade, and enforce policy persists.1129

Moreover, the need for secure information sharing has dramatically increased with the1130

Version June 17, 2022 submitted to Sensors 41 of 43

explosion of the IoT and industry 4.0, with the digital transformation, where resources1131

are highly distributed and need to be accessed from everywhere, anyhow, and at any1132

time. As well, the evolution of pervasive ISs and intelligent manufacturing has had an1133

extensive impact on different directions, such as the future of the industry. In smart1134

industries, several physical and cyber technologies are combined to improve productivity,1135

performance, quality, management, etc. In this context, controlling access to protect1136

resources from unauthorized use is a complicated and challenging task, especially1137

with the presence of cybercriminals and cyberattacks. All this has motivated us to1138

design and implement a new and advanced AC metamodel, named HEAD metamodel,1139

that addresses the limitations of the existing metamodels—for example, generality, the1140

hierarchy of components, dynamism, and extensibility of AC models—and works as a1141

base to develop other essential features—for example policy migration, and collaboration1142

and interoperability between AC models.1143

The AC policy is concerned with what AC rules need to be enforced, while the AC1144

mechanism is concerned with how AC rules are being enforced. In this paper, we present1145

two case studies inspired by ITMI’s, local (non-IoT) and IoT, computing environments1146

to show that our metamodel can be adapted in different computing environments and1147

various AC models can be instantiated with the needed components/attributes to fit the1148

AC requirements of an organization (or industry sector). For the AC policy, we use the1149

DSL of HEAD metamodel to derive the needed model for each case study, then we use1150

xtend notation to represent the concert instance of the derived model. The AC rules are1151

generated as Cypher queries which are then injected into Neo4j to represent the NGAC1152

policy as a graph. NGAC framework is used as an enforcement point for the generated1153

rules of each case study. The results show that HEAD metamodel:1154

• overcomes the limitations of the existing AC metamodels and could be considered1155

as a base to develop other essential features.1156

• is able to serve as a unifying framework and encompass the heterogeneity of the1157

existing models.1158

• can be adapted and integrated with various local and distributed computing envi-1159

ronments.1160

• is able to answer the current AC requirements and follow the needed policy up-1161

grades.1162

• can be used to generate the needed format of AC rules (e.g., Cypher code, json. . .).1163

Besides, the HEAD metamodel reveals some limitations of the NGAC framework. NGAC1164

theoretically considers the obligations and prohibitions which express the context and1165

constraint elements, but practically it does not include them among the basic elements of1166

the NGAC graph. Hence, during implementation, this would prevent having accurate1167

access control decisions. As described in the case studies, we have to create multiple1168

association relationships between the UA node and OA node if some operations need to1169

be performed without constraints by UA, and some other operations can be performed1170

if some contextual (or non-contextual) constraints are true/false depends on the defined1171

rule.1172

Policies with minimum quality may lead to unacceptable situations and decisions,1173

for example preventing users from accessing resources they are allowed to, or allowing1174

some users to access resources they are not allowed to. As future perspectives, we1175

aim to develop the needed tools to analyze and assess the obtained policies at the run-1176

time before enforcing them in order to avoid uncertainties concerning the obtained AC1177

decision. Policy analysis and assessment are for assuring the quality of the generated1178

AC policies and making sure that they are consistent, relevant, minimal, complete,1179

and correct with respect to the required actions by subjects on some objects. This1180

process is of major importance while implementing AC policies in highly dynamic and1181

heterogeneous environments, especially IoT. Moreover, we also aim to extend HEAD1182

metamodel to support additional features and services, for example, developing the1183

needed algorithms and tools to migrate AC policies from one model to another, and for1184

Version June 17, 2022 submitted to Sensors 42 of 43

collaboration and interoperability between different AC models. Moreover, extending1185

the metamodel to support packages of predefined AC models (e.g., common models) to1186

minimize administrative efforts and technical implementation to specify models and1187

define policies. Additionally, one of our future perspectives is to extend the NGAC1188

framework to adapt context and constraint in addition to its policy elements.1189

Author Contributions: Conceptualization, N.K. and M.A.; methodology, N.K., M.A. and H.I.;1190

software, N.K.; validation, N.K., M.A., H.I., J.M. and T.D.; formal analysis, N.K. and M.A.;1191

investigation, N.K., M.A., H.I., J.M. and T.D.; resources, N.K., M.A., H.I., J.M. and T.D.; data1192

curation, N.K. and J.M.; writing—original draft preparation, N.K.; writing—review and editing,1193

N.K., M.A. and H.I.; visualization, N.K., M.A. and H.I.; supervision, M.A. and H.I.; project1194

administration, M.A. and H.I. All authors have read and agreed to the published version of the1195

manuscript.1196

Funding: This research was funded by the Natural Sciences and Engineering Research Council of1197

Canada (NSERC), grant number 06351.1198

Institutional Review Board Statement: Not applicable.1199

Informed Consent Statement: Not applicable.1200

Data Availability Statement: The study did not report any data.1201

Acknowledgments: We acknowledge the support of Fonds Québécois de la Recherche sur la1202

Nature et les Technologies (FRQNT), Réseau Québécois sur l’Énergie Intelligente (RQEI), and1203

Centre d’Entrepreneuriat et de Valorisation des Innovations (CEVI).1204

Conflicts of Interest: The authors declare no conflict of interest.1205

References1206

1. Kashmar, N.; Adda, M.; Ibrahim, H. HEAD Metamodel: Hierarchical, Extensible, Advanced,1207

and Dynamic Access Control Metamodel for Dynamic and Heterogeneous Structures. Sensors1208

2021, 21, 6507.1209

2. Jaïdi, F.; Labbene Ayachi, F.; Bouhoula, A. A methodology and toolkit for deploying reliable1210

security policies in critical infrastructures. Security and Communication Networks 2018, 2018.1211

3. Mishra, A.; Alzoubi, Y.I.; Gill, A.Q.; Anwar, M.J. Cybersecurity Enterprises Policies: A1212

Comparative Study. Sensors 2022, 22. doi:10.3390/s22020538.1213

4. Antunes, M.; Maximiano, M.; Gomes, R.; Pinto, D. Information Security and Cybersecurity1214

Management: A Case Study with SMEs in Portugal. Journal of Cybersecurity and Privacy 2021,1215

1, 219–238.1216

5. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access Control in Cybersecurity and Social1217

Media. Cybersécurité et médias sociaux 2021.1218

6. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access control metamodel for policy1219

specification and enforcement: From conception to formalization. Procedia Computer Science1220

2021, 184, 887–892.1221

7. Kashmar, N.; Adda, M.; Ibrahim, H. Access Control Metamodels: Review, Critical Analysis,1222

and Research Issues. J. Ubiquitous Syst. Pervasive Netw 2021, 3.1223

8. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A review of access control metamodels.1224

Procedia Computer Science 2021, 184, 445–452.1225

9. Kashmar, N.; Adda, M.; Ibrahim, H. HEAD Access Control Metamodel: Distinct Design,1226

Advanced Features, and New Opportunities. Journal of Cybersecurity and Privacy 2022,1227

2, 42–64. doi:10.3390/jcp2010004.1228

10. Kashmar, N.; Adda, M.; Atieh, M. From Access Control Models to Access Control Metamod-1229

els: A Survey. Future of Information and Communication Conference. Springer, 2019, pp.1230

892–911.1231

11. Ferraiolo, D.; Chandramouli, R.; Kuhn, R.; Hu, V. Extensible access control markup language1232

(XACML) and next generation access control (NGAC). Proceedings of the 2016 ACM1233

International Workshop on Attribute Based Access Control, 2016, pp. 13–24.1234

12. Ray, I.; Alangot, B.; Nair, S.; Achuthan, K. Using attribute-based access control for remote1235

healthcare monitoring. 2017 Fourth International Conference on Software Defined Systems1236

(SDS). IEEE, 2017, pp. 137–142.1237

Version June 17, 2022 submitted to Sensors 43 of 43

13. Ferraiolo, D.; Gavrila, S.; Katwala, G.; Roberts, J. Imposing Fine-Grain Next Generation1238

Access Control over Database Queries. Proceedings of the 2nd ACM Workshop on Attribute-1239

Based Access Control; Association for Computing Machinery: New York, NY, USA, 2017;1240

ABAC ’17, p. 9–15. doi:10.1145/3041048.3041050.1241

14. Antunes, M.; Maximiano, M.; Gomes, R. A Client-Centered Information Security and1242

Cybersecurity Auditing Framework. Applied Sciences 2022, 12. doi:10.3390/app12094102.1243

15. Quader, F.; Janeja, V.P. Insights into Organizational Security Readiness: Lessons Learned1244

from Cyber-Attack Case Studies. Journal of Cybersecurity and Privacy 2021, 1, 638–659. doi:1245

10.3390/jcp1040032.1246

16. Desmedt, Y.; Shaghaghi, A. Function-Based Access Control (FBAC): Towards Preventing1247

Insider Threats in Organizations. In From Database to Cyber Security; Springer, 2018; pp.1248

143–165.1249

17. Qi, S.; Zheng, Y.; Li, M.; Liu, Y.; Qiu, J. Scalable industry data access control in RFID-enabled1250

supply chain. IEEE/ACM Transactions on Networking 2016, 24, 3551–3564.1251

18. Ruland, C.; Sassmannshausen, J. Access control in safety critical environments. 2018 12th1252

International Conference on Reliability, Maintainability, and Safety (ICRMS). IEEE, 2018, pp.1253

223–229.1254

19. Erdödi, L.; Ulltveit-Moe, N.; Nergaard, H.; Gj, T.; Kolstad, E.; others. Secure information1255

sharing in an industrial internet of things. In arXiv; Cornall University, 2016; pp. 1–12.1256

20. Alagar, V.; Alsaig, A.; Ormandjiva, O.; Wan, K. Context-based security and privacy for1257

healthcare IoT. 2018 IEEE International Conference on Smart Internet of Things (SmartIoT).1258

IEEE, 2018, pp. 122–128.1259

21. Ahamed, J.; Khan, F. An enhanced context-aware capability-based access control model for1260

the internet of things in healthcare. 2019 Sixth HCT Information Technology Trends (ITT).1261

IEEE, 2019, pp. 126–131.1262

22. Mrabet, H.; Alhomoud, A.; Jemai, A.; Trentesaux, D. A Secured Industrial Internet-of-Things1263

Architecture Based on Blockchain Technology and Machine Learning for Sensor Access Con-1264

trol Systems in Smart Manufacturing. Applied Sciences 2022, 12. doi:10.3390/app12094641.1265

23. Abd-Ali, J.; El Guemhioui, K.; Logrippo, L. A Metamodel for Hybrid Access Control Policies.1266

JSW 2015, 10, 784–797. doi:10.17706/jsw.10.7.784-797.1267

24. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A new dynamic smart-AC model methodol-1268

ogy to enforce access control policy in IoT layers. 2019 IEEE/ACM 1st International Work-1269

shop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT).1270

IEEE, 2019, pp. 21–24.1271

25. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Smart-ac: A new framework concept for1272

modeling access control policy. Procedia Computer Science 2019, 155, 417–424.1273

26. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Deriving access control models based on1274

generic and dynamic metamodel architecture: Industrial use case. Procedia Computer Science1275

2020, 177, 162–169.1276

CHAPTER 5

HEAD ACCESS CONTROL METAMODEL: DISTINCT DESIGN, ADVANCED
FEATURES, AND NEW OPPORTUNITIES

Published in Journal of Cybersecurity and Privacy, 2022; Volume-2(1), pp. 42-64;
https://doi.org/10.3390/jcp2010004

Abstract: The revolution of industry 4.0, the adoption of telework due to COVID-19 pandemic, the
digital transformation, and many other facts bring out new trends, concepts, and challenges to integrate
more advanced and intelligent systems in critical and heterogeneous structures. All this have prompted
a greater need than ever for access control. To minimize security risks of any unauthorized access to
resources, several AC approaches are proposed to find a common specification for security policy.
Unfortunately, the proposed AC models and metamodels have limited features and are insufficient to
meet the current AC requirements. In this chapter, we present a novel approach in five main phases
based on HEAD metamodel: metamodel development, deriving models, generating policies, policy
analysis and assessment, and policy enforcement. We describe the achieved and the remaining steps
and how they can be employed to develop more advanced features in order to open new opportunities
and answer the various challenges of technology progression, and the impact of the pandemic in the
domain. The aim of this is to draw a complete strategy instead of tackling each issue separately,
and to explain and clarify the functionality of all phases to close the enormous gaps between them.
This approach can be employed to assist security experts and system administrators to design secure
systems that comply with the organizational security policies that are related to access control.

Résumé: La révolution de l’industrie 4.0, l’adoption du télétravail en raison de la pandémie de
COVID-19, la transformation numérique et bien d’autres faits font ressortir de nouvelles tendances,
concepts et défis pour intégrer des systèmes plus avancés et intelligents dans des structures critiques
et hétérogènes. Tout cela a suscité un besoin plus important que jamais de contrôle d’accès. Pour
minimiser les risques de sécurité de tout accès non autorisé aux ressources, plusieurs approches CA
sont proposées pour trouver une spécification commune pour la politique de sécurité. Malheureuse-
ment, les modèles et métamodèles CA proposés ont des fonctionnalités limitées et sont insuffisants
pour répondre aux exigences CA actuelles. Dans ce chapitre, nous présentons une nouvelle approche
en cinq phases principales basée sur le métamodèle HEAD : développement du métamodèle, déri-
vation de modèles, génération de politiques, analyse et évaluation des politiques, et application des
politiques. Nous décrivons les étapes réalisées et restantes et comment elles peuvent être utilisées
pour développer des fonctionnalités plus avancées afin d’ouvrir de nouvelles opportunités et de répon-
dre aux différents défis des progression technologiques et de l’impact de la pandémie dans le do-
maine. Le but est de dessiner une stratégie complète au lieu d’aborder chaque problème séparément,
et d’expliquer et de clarifier la fonctionnalité de toutes les phases pour combler les énormes écarts
entre elles. Cette approche peut être utilisée pour aider les experts en sécurité et les administrateurs
système à concevoir des systèmes sécurisés conformes aux politiques de sécurité organisationnelles
liées au contrôle d’accès.

����������
�������

Citation: Kashmar, N.; Adda, M.;

Ibrahim, H. HEAD Access Control

Metamodel: Distinct Design,

Advanced Features, and New

Opportunities. J. Cybersecur. Priv.

2022, 2, 42–64. https://doi.org/

10.3390/jcp2010004

Academic Editor: Danda B. Rawat

Received: 21 December 2021

Accepted: 8 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

HEAD Access Control Metamodel: Distinct Design, Advanced
Features, and New Opportunities
Nadine Kashmar 1,* , Mehdi Adda 1 and Hussein Ibrahim 2

1 Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski,
300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; mehdi_adda@uqar.ca

2 Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye,
Sept-Îles, QC G4R 5B7, Canada; hussein.ibrahim@itmi.ca

* Correspondence: nadine.kashmar@uqar.ca

Abstract: Access control (AC) policies are a set of rules administering decisions in systems and they
are increasingly used for implementing flexible and adaptive systems to control access in today’s
internet services, networks, security systems, and others. The emergence of the current generation
of networking environments, with digital transformation, such as the internet of things (IoT), fog
computing, cloud computing, etc., with their different applications, bring out new trends, concepts,
and challenges to integrate more advanced and intelligent systems in critical and heterogeneous
structures. This fact, in addition to the COVID-19 pandemic, has prompted a greater need than ever for
AC due to widespread telework and the need to access resources and data related to critical domains
such as government, healthcare, industry, and others, and any successful cyber or physical attack can
disrupt operations or even decline critical services to society. Moreover, various declarations have
announced that the world of AC is changing fast, and the pandemic made AC feel more essential than
in the past. To minimize security risks of any unauthorized access to physical and logical systems,
before and during the pandemic, several AC approaches are proposed to find a common specification
for security policy where AC is implemented in various dynamic and heterogeneous computing
environments. Unfortunately, the proposed AC models and metamodels have limited features and
are insufficient to meet the current access control requirements. In this context, we have developed a
Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC metamodel with substantial features
that is able to encompass the heterogeneity of AC models, overcome the existing limitations of the
proposed AC metamodels, and follow the various technology progressions. In this paper, we explain
the distinct design of the HEAD metamodel, starting from the metamodel development phase and
reaching to the policy enforcement phase. We describe the remaining steps and how they can be
employed to develop more advanced features in order to open new opportunities and answer the
various challenges of technology progressions and the impact of the pandemic in the domain. As a
result, we present a novel approach in five main phases: metamodel development, deriving models,
generating policies, policy analysis and assessment, and policy enforcement. This approach can be
employed to assist security experts and system administrators to design secure systems that comply
with the organizational security policies that are related to access control.

Keywords: access control; metamodel; heterogeneous systems; security and privacy; IoT; industry
4.0; COVID-19; digital transformation

1. Introduction

Security and privacy in general and the protection of logical and physical resources
from unauthorized access, in particular, are critical and essential issues for today’s orga-
nizations. Their resources are accessed via various types of private and public networks;
this depends on the type of service(s) their information systems (IS) provide. The new
generation of networking environments with digital transformation such as the internet

J. Cybersecur. Priv. 2022, 2, 42–64. https://doi.org/10.3390/jcp2010004 https://www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2022, 2 43

of things (IoT), fog computing, cloud computing, etc., is emerging and has various ap-
plications related to several, critical domains. This networking generation has several
interconnections by means of multiple layers of public and private networks constituting
critical cyber-physical infrastructures where an unlimited number of resources are dis-
tributed and accessed from everywhere, anytime, and anyhow. With this fact, controlling
access is a critical objective, especially with the presence of cyber-criminals and cyber-
attacks [1], and a big challenge for deploying secure information ISs. For this purpose,
several AC models have been implemented to control what resources can be accessed by
users, when, and how after checking a predefined set of AC rules. What makes this process
even more challenging is the orientation of the world toward the concept of telework due
to the COVID-19 pandemic and the urgent need to access sensitive and vital resources
related to various domains [2].

With the evolution of technology trends, it is realized that controlling users’ access
and the operations they perform on information cannot be overlooked when developing
approaches related to information security. Moreover, the existing AC models have reached
their limits and are insufficient to answer the increasing demand for security and privacy
standards [3,4]. Common AC models that are implemented to control users’ access to
resources are discretionary access control (DAC), mandatory access control (MAC), role-
based access control (RBAC), and attribute-based access control (ABAC) models [4–7].
Unfortunately, two main issues prevent an IS from following up the evolution of security
threats. First, the focus is on defining the functional IS requirements, while the non-
functional requirements such as authentication and authorization are almost barely handled
at the termination of the development process. Second, the exisiting AC metamodels, which
are proposed to serve as unifying frameworks to include the heterogeneous AC models,
only provide support of defining some AC components for some models which prevent
defining a larger set of organizational AC policies or upgrading the defined ones [4,6,8].
Hence, one of the main steps to solve the first issue is to tackle the second one, in other
words, while developing an IS it is important to set up trusted security policies and provide
the essential tools to define all the needed AC components. This, in turn, would allow
system administrators to set up and manage the defined AC policies in an organization.

Security solutions must be manageable and adaptable to track the evolution of security
threats which accompany technology upgrades. Along with technology progressions,
various research works have been conducted in this domain (in Section 2, we summarize
their development stages). Unfortunately, common AC models have various limitations;
the hybrid models (Section 3.2.1), the extended models (Section 3.2.2), and the abstracted
models (Section 3.2.3) cannot answer all the needed AC requirements; moreover, the
existing AC metamodels have several shortcomings (explained in Section 4) and are not
able to follow technology progressions [5,6,9]. To address this issue, we have developed a
Hierarchical, Extensible, Advanced, and Dynamic (HEAD) AC metamodel with substantial
and advanced features [3] compared to the existing AC metamodels [5,9]. It is generic and
able to include all features of common models (and any other model), dynamic and able
to create the needed components/attributes to express a larger set of static and dynamic
AC rules, extensible since the already defined models can be extended, and it supports the
feature of hierarchy for any component.

In addition to all the above, the emergence of COVID-19 as a global pandemic has had
a huge impact on business and work strategies; moreover, it put the spotlight on access
control. It forced a greater requirement than ever for access control, due to widespread
telework and the need to access resources and data related to critical domains such as
government, healthcare, industry, and others. As stated in Security Distributing and
Marketing (SDM) magazine [10], “The importance of controlling who has access to specific
areas of a facility and the knowledge of who actually accessed specific areas became much
more important” due to the pandemic.

All the aforementioned issues force the need to implement more robust, coherent, and
advanced AC models, which are flexible, dynamic, and able to meet the AC requirements

J. Cybersecur. Priv. 2022, 2 44

and follow technology upgrades. In this paper, we present the new opportunities and
the various research directions which would enhance our HEAD AC metamodel to meet
the expected AC requirements with the presence of various technology trends. The char-
acteristics of the HEAD metamodel open various research directions in the domain, for
example, its unifying structure would facilitate developing many other essential features
(e.g., collaboration and interoperability between various models and migration of AC
policies), developing the necessary tools for policy analysis and assessment, integrating ar-
tificial intelligence techniques to support the necessary intelligent services with the current
era of technologies, and many other directions. HEAD metamodel characteristics can be
summarized as follows [3]:

• Unify the heterogeneous concepts of policy models.
• A new generic metamodel that is able to include the heterogeneity of the existing

models and the proposed metamodels.
• Dynamic with the ability to create any needed component/attribute and the relation-

ships between them.
• Extensible metamodel where any derived AC model can be extended and upgraded.
• Unlimited levels of components hierarchy.
• Allow instantiating non-existing AC models.

However, the contribution of this paper can be summarized as follows:

• Provides a complete plan for a distinct AC framework starting from the metamodel
development phase and reaching to the policy enforcement phase.

• Opens new opportunities to develop and enhance the necessary services to answer the
challenging AC requirements of today’s computing environments based on distinct
design and advanced AC metamodel.

• Assists developers and security experts to include unified and generic components in
designing secure ISs that conform to the organizational AC security policies.

The remainder of this paper is organized as follows. In Section 2, we present the AC
challenges of today’s computing environments. The development stages of AC methods
starting from common models reaching to AC metamodels, which is a recent research topic
in the domain, are summarized in Section 3. In Section 4, we illustrate and explain the issues
and limitations of the existing AC metamodels. In Section 5, we describe our development
approach, the achieved steps, and the remaining ones, starting from the HEAD metamodel
development phase and reaching to the policy enforcement phase. In Section 6, we explain
the new opportunities this approach opens and what essential services can be developed
based on the HEAD metamodel. Section 7 concludes this paper.

2. Access Control Challenges within Dynamic and Heterogeneous Environments

Providing security and privacy, using AC mechanisms, is a very crucial metric within
current ubiquitous computing and pervasive systems. Herein is a set of existing challenges
in this domain [2,3,11–14]:

• Access control serves as a protective shield for the existing resources in organizations,
industries, homes, etc., against security risks that accompany transparency, shareabil-
ity, and interoperability while answering users’ access requests within distributed
and heterogeneous computing environments (e.g., IoT environments) where data is
generated dynamically and on a real-time basis.

• Access control is highly essential to ensure secure communications in open, dynamic,
and heterogeneous environments, especially with the existence of several contexts
(network type, time, location, machine characteristics, etc.). For example, to pro-
vide an access decision, several or multi-level contexts must be considered. The
context itself is a challenge since it could be defined, expressed, and interpreted in
different ways according to the application domain, the needed objectives, and the
existing techniques.

J. Cybersecur. Priv. 2022, 2 45

• Access control mechanism should be flexible and controllable enough to deal with
various situations that confront users while requesting access to different types of
resources, for example, rapid progressions, unexpected events, system failures, highly
dynamic environments that need very quick and controlled response, various hierar-
chical organizational structures, the different contexts, dynamism of IoT devices, huge
number of devices, etc.

• With the large adoption of telework, especially with the COVID-19 pandemic, employ-
ees can work anytime, anywhere, and sometimes using their own personal devices.
With this fact, security and AC issues have been raised, especially that AC mecha-
nisms should be adapted to users’ context, their profiles, their devices, the existing
conditions, and many other parameters to improve system usability. With this fact,
AC needs to be dynamically managed to minimize human intervention.

Besides, the following are the key AC enforcement challenges:

• The heterogeneity of implemented AC models in heterogeneous structures.
• Deciding upon the most relevant AC model(s) to implement in an organization that

conform to its AC rules based on the type and sensitivity of resources they have.
• The necessity to enforce persistent AC policies with the current generation of dynamic

and heterogeneous structures where information flows from the clouds and/or servers
to everywhere (companies, hotels, homes, cars, etc.) without traditional borders.

• The possible need for several AC solutions within the same organization (or industry
sector) where various technologies (e.g., local network, IoT, and cloud) may need to
work in concert to fulfill the needed requirements of AC.

• The importance of upgrading AC policies and enforcing them in accordance with
technology upgrades and due to dynamically changing conditions.

Due to the above challenges, and the limitations of common models, hybrid models,
extended AC models, and abstract AC models in answering the needed AC requirements of
the current computing environments, and since they are unable to follow up the continuous
technology progressions [5,6,12], the research interest for developing AC metamodels has
gained attention in the last decade [9].

3. Access Control Models

Over the decades, various information technologies (IT) have been developed, and
this imposed the need to implement various AC methods to find secure communication
environments. In the following sections, we summarize the background of the proposed
AC models in the literature and the development stages to enhance them.

3.1. The Background

To ensure security and privacy, different AC models are implemented in the literature
to enforce AC policy and prevent any illegal access to resources. Figure 1 summarizes
the features of common AC models, DAC, MAC, RBAC, and ABAC, and their major
components which are used to formulate and enforce organizational AC policies [6,15].

3.2. The Development Stages

With the evolution of technology trends, it is realized that the aforementioned models
are insufficient to answer the needed AC requirements, and computing environments need
more enhanced AC models. Hence, various works are proposed to (1) combine features of
two or more AC models called hybrid models, (2) extend AC models, (3) raise their level of
abstraction, and (4) develop more advanced and abstract models, called AC metamodels.

J. Cybersecur. Priv. 2022, 2 46

The Traditional AC models

DAC

MAC

RBAC

ABAC

•A user-centric model.
•object owner determines permissions to other subjects to access his object(s).
• the major components are objects, subjects, and permissions.

•AC policy is managed in a centralized manner.
•based on the concept of security levels associated with each subject and object.
• the major components are objects, subjects, security levels, and permissions.

• facilitates the AC policy administration.
•users can be assigned several roles and a role can be associated with several users.
• the major components are subjects, roles, permissions, actions, and objects.

•has the ability to support dynamic attributes.
•grant or deny user requests are based on attributes.
• a set of policies are specified in terms of attributes and conditions.
•The major components are attributes of subjects, objects, and environment, actions, and permissions.

Figure 1. The common AC models.

3.2.1. Combining AC Models

With the continuous technology upgrades and distributed computing environments,
the presence of security threats also increases. This imposes the need to find hybrid AC
models by combining features of two or more AC models to allow defining more AC
policies and enhance the process of access management [5]. Several hybrid AC models are
proposed in the literature that combine features of RBAC and ABAC, for example, [16–18];
DAC, MAC and RBAC, for example, [19]; MAC and RBAC, for example, [20]; and many
other hybrid models. Figure 2 illustrates the idea of hybrid models.

DAC Model

MAC Model

RBAC Model

ABAC Model
▪

▪

▪

Hybrid Model

Hybrid Model

Combine Features from MAC & RBAC

Combine Features from RBAC & ABAC

▪

▪

▪

ACn Model Hybrid Model Combine Features from RBAC, ABAC, and ACn

Figure 2. Hybrid AC models.

3.2.2. Extending AC Models

Other works extend AC models by adding new components to them such as new
types of roles, permissions, and relationships. For example, the core or flat RBAC model
with major components such as subjects, objects, permissions, actions, and roles is extended
to hierarchical RBAC where a new component is added to support role hierarchy. More-
over, it is extended to constrained RBAC where a new component is added to enforce
the separation of duties. Then, symmetric RBAC which includes hierarchical RBAC and
constrained RBAC [21]. In [22], a higher-order attribute-based access control (HoBAC)
model is proposed as an extension for the ABAC model, which extends the basic concepts
of ABAC with aggregation operations that yield hierarchies. Another ABAC model exten-
sion is presented in [23], called the hierarchical group and attribute-based access control
(HGABAC), where groups and hierarchies of subjects and objects are added. Moreover,
several other AC model extensions are proposed in this domain, for example, [24]. Figure 3
illustrates the concept of AC model extension.

J. Cybersecur. Priv. 2022, 2 47

AC model

new components

AC model extension

Figure 3. Illustration for AC model extension concept.

3.2.3. Abstracting AC Models

Some AC models are abstracted, then new components are added to enhance their
features and allow expressing a larger set of AC policies. Subsequently, the derived AC
model is an extended model with the old and new AC features. For example, Nguyen et al.,
in [25], add a delegation component to the abstracted RBAC model (RBAC metamodel) to
have an RBAC-based delegation model. In addition to defining RBAC permission rules,
their approach would allow defining delegation rules to specify which actions are accessible
to users by delegation. Moreover, in [26], a business and system role-based access control
(B&S-RBAC) metamodel is proposed where business and system roles are defined and
mapped to overcome the weakness of business role definitions and RBAC models. Hence,
the RBAC model is abstracted, a system and business role component is added, then it
is extended for business usage. Moreover, Adda et al. [27] propose a generalization for
the ABAC model where the core concepts of HoBAC [22] are first revisited and refined,
then present new concepts to complete and reinforce its theoretical foundations. Figure 4
illustrates the concept of AC model abstraction.

AC model

AC metamodel

AC ’ model

extension

components

Figure 4. Illustration for model abstraction concept.

3.2.4. Access Control Metamodels

Access control metamodels are proposed to serve as frameworks that unify and include
most or all features of AC components to derive various instances of AC models [5,6].
Figure 5 illustrates the concept of the AC metamodel. However, AC metamodels should
handle all of the above concepts (combining AC models, extending AC models, and
abstracting AC models). In other words, having an abstract model (metamodel) that is able
to include all AC models components, or have the ability to define the needed ones, would
allow combining and extending different AC models.

AC metamodel AC1 model
AC1 model
AC2 model
AC3 model

Hybrid AC1 / AC2

Hybrid AC1 / AC3 / ACn

ACx model
….

…
.

ACn model

Figure 5. Illustration for AC metamodel concept.

The continuous technology progressions impose developing different stages of AC
methods; the AC metamodels stage is the recent development stage in this domain.

The current generation of networking environments is composed of heterogeneous
networks, platforms, applications, devices, etc. Controlling access to resources in such

J. Cybersecur. Priv. 2022, 2 48

environments is a challenging task and needs advanced AC frameworks. Within the decade,
a limited number of AC metamodels are proposed in the literature (Table 1) and they can
be summarized as follows [5,9]:

• Some AC metamodels are proposed as generic metamodels [28–31].
• Some others are proposed as hybrid metamodels to provide a generic base metamodel

concept [7,32].
• Others are proposed as metamodel extensions for some of the existing metamodels

and some software development frameworks [33,34].

Unfortunately, the proposed metamodels lack some key features and are insuffi-
cient to answer the AC requirements of the current networking generation (explained in
Section 4) [5,9].

Table 1. Access control metamodels: the state-of-the-art [5,9].

ref. Year Proposed for Metamodel Based on Instances Modeling
Language

AC metamodels are proposed as generic metamodels

Barker [28] 2009 Enterprise Barker’s
metamodel

DAC, MAC,
RBAC RBAC, MAC Rule/logic

language

Bertolissi et al. [29] 2014
Distributed
system of

several sites

Distributed
metamodel

DAC, MAC,
RBAC

Hybrid models of
DAC, MAC, RBAC

Rewrite-based
operational
semantics

Khamadja et al. [30] 2013 Cloud
computing

CatBAC
metamodel

DAC, MAC,
RBAC

Hybrid models of
DAC, MAC, RBAC First-order logic

Trninić et al. [31] 2013 Set of systems PolicyDSL RBAC models RBAC and hybrid
models Textual DSL

AC metamodels are proposed as hybrid AC metamodels

Slimani et al. [32] 2011 Enterprise UACML
metamodel

DAC, MAC,
RBAC

Group based, MAC,
RBAC, hybrid

model

Object
constraint

language (OCL)

Abd-Ali et al. [7] 2015 Enterprise Integration
metamodel

CW, BLP, BIBA,
RBAC Hybrid models First-order logic

AC metamodels are proposed as metamodel extension for some of the existing metamodels

Alves et al. [33] 2014 Enterprise
Obligations in

CBAC
metamodel

DAC, MAC,
RBAC

Hybrid models of
DAC, MAC, RBAC

Rewrite-based
operational
semantics

Korman et al. [34] 2016
Enterprise

architecture
framework

Unified
metamodel

DAC, BLP, Biba,
CW, RBAC,

ABAC

DAC, BLP, CW,
RBAC, ABAC ArchiMate

4. Issues and Limitations of the Existing AC Metamodels

Although the proposed AC metamodels in the literature come with some advancement
for some scenarios and use cases, they have several limitations and shortcomings which
are explained and illustrated in the following:

4.1. Generality

In the literature, the metamodels proposed as generic are not generic enough and they
do not include all features of AC models. They are hybrid templates to derive some AC
models that are employed in their core structure rather than metamodels [9]. A generic
AC metamodel should include all features and components of common AC models and
other models. In Figure 6, we illustrate the concept of generic metamodel where all AC
components are included, with the relationships between them.

J. Cybersecur. Priv. 2022, 2 49

Generic AC metamodel

Components of DAC

Components of MAC

Components of RBAC

Components of ACx

Components of ABAC

Other AC Components

Figure 6. The concept of generic AC metamodel.

Figure 7 summarizes AC model features which are employed in the core structure
for each of the proposed metamodels. As we can see, in Table 1, the metamodels by
Barker et al. [28], Bertolissi et al. [29], Khamadja et al. [30], and Trninic et al. [31] are
proposed as generic by including DAC, MAC, and RBAC features and components, and by
Slimani et al. [32] and Abd-Ali et al. [7] as hybrid by combining DAC, MAC, and RBAC
AC features and components. In [34], Korman et al. extend the ArchiMate development
framework to support features and components of DAC, MAC, RBAC, and ABAC models.
Alves et al. [33] extend the category-based AC (CBAC) metamodel which includes features
of DAC, MAC, and RBAC to support obligations. Hence, the proposed approaches are
not generic enough and do not include or combine all AC features and components. As
illustrated in Figure 7, the generic metamodel should include the features and components
of common AC models and other models.

DAC

RBAC

MAC

ABAC

Bertolissi et al. [29], Khamadja et al. [30],
Barker[28], Slimani et al. [32], Alves et al.
[33], Abd-Ali et al. [7]

Korman et al. [34]

Trnini´c et al. [31]

Other

Generic AC Metamodel

Figure 7. AC features in the core structure for each of the proposed metamodels.

4.2. Dynamism

Security solutions must be manageable and adaptable to track the evolution of security
threats which come along with technology upgrades. In this context, an AC metamodel
must be upgradable due to changing conditions or rules. The structure of a metamodel
should be dynamic and describe how its properties can be modified over time, for example,
due to changing conditions (e.g., system, environment, etc.). The metamodel is dynamic if it
allows defining new types of attributes, for example, contextual attributes, and components
with the relationships between them in order to update and formulate different models;
hence, it allows defining a larger set of policies for static and dynamic enforcement. In
reference to Table 1, the concept of a dynamic metamodel is not considered since none of
them allow defining new components/attributes. Consequently, dynamism is an additional
feature that can be implemented for a generic metamodel. Figure 8 illustrates the concept
of a dynamic metamodel.

J. Cybersecur. Priv. 2022, 2 50

AC metamodel with n defined
components (& attributes) and

their relationships

Component 1

Component 2

Component 3

Component x

…

…
Component n

AC metamodel with n+i (i>0)
components (& attributes) can be
defined with their relationships

Component 1

Component 2

Component 3

Component x

Component n Component x+1

Component n+1
…

…

Figure 8. The concept of dynamic AC metamodel.

4.3. Extensibility

Beside designing a generic and dynamic AC metamodel, it is important to consider
the feature of extensibility. Extensible metamodel means that new components could be
defined and integrated with already existing models and frameworks to support new AC
features in addition to the previous ones. However, the proposed metamodel extensions,
Table 1, in [33,34], extend some of the existing AC metamodels and software development
frameworks to support some AC features of some AC models, but they do not explain
how their approaches could be extended beyond the proposed limit. In other words, they
are extended but not extensible. In Figure 9, we illustrate the concept of the extensible
AC metamodel.

instantiation Model AC

Model AC’

n policies are defined

(n + x) policies can be
defined/upgraded (x ≥1)

Generic &
dynamic AC
Metamodel

Model AC’’

(n + x + y) policies can be
defined/upgraded (y ≥1)

instantiation

instantiation

Access control components ……

Ne
w

co
m

po
ne

nt
s c

an
 be

 de
fin

ed

an
d a

dd
ed

Figure 9. The concept of extensible AC metamodel.

4.4. Hierarchy of Components

The concept of hierarchy is important to define multi-level components (e.g., roles,
actions, objects, etc.). It reflects the structure of an organization and, for example, the respec-
tive responsibilities/priorities of the hierarchical components. A component hierarchy, e.g.,
role, defines roles that have unique attributes and may contain other roles; one role may
implicitly include the actions that are associated with another role. Within this structure,
access rights are determined by an entity’s place in the hierarchy, for example, in complex
scenarios (e.g., IoT), administrators can start with creating a number of entities then add
their hierarchy. This would help in controlling access to data with less maintenance costs
compared to creating a large number of non-hierarchical entities. Hence, hierarchical
authorization is the authorization determined based on the hierarchy. Figure 10 represents
examples of hierarchy in an organization or industry sector (e.g., role hierarchy, Figure 10a;
action hierarchy, Figure 10b; object hierarchy, Figure 10c; context hierarchy, Figure 10d). For
example, in an academic and research situation, a role called Dean could contain the roles
of Director and Team Leader, Figure 10a. This means that subjects (users) of the role Dean
are implicitly connected with the actions associated with their roles as Director and Team
Leader without the administrator having to explicitly list the Director and Team Leader
actions. In the literature, several models and metamodels are extended to support the
feature of hierarchy for some components, but in complex scenarios and highly dynamic
environments, it is important to consider this feature for all components, for example,

J. Cybersecur. Priv. 2022, 2 51

none of the proposed metamodels consider context hierarchy. The metamodels proposed
in [29,30] support hierarchy of category (e.g., role, groups, etc.); [32] supports hierarchy of
category, action, object; and [7,31,34] support hierarchy of roles.

(a)

Actions

Private network access

Update Read Write

Public network access

Send Receive view

(b)

Roles

Consultant Dean

Director Team leader

Projects

Folders

Objects

Engineering

Project A Project B

Sales

Tax
declarations

(c)

Context

Context
User

User
profile

Context
Environment

Local

Time Location

Network

Type

Context
Service

Version

(d)

Figure 10. Examples for hierarchy of (a) roles, (b) actions, (c) objects, and (d) contexts [3].

4.5. Collaboration and Interoperability

In pervasive computing environments, the software enables the connection between
various heterogeneous devices and users within a dynamic and heterogeneous environ-
ment; it carries out the needed mappings between each task and the required services
that users need. In the field of AC, and with the current technologies, AC policies are
employed to administer decisions in systems. They are increasingly used for implementing
flexible and adaptive systems to control access to resources in today’s internet services,
networks, security systems, and others. An AC metamodel should deal with the dynamicity
of devices and objects used, events, situations encountered, users accessing systems and
the environments from which they are connected, and others. It should be highly adaptable
and flexible, and it should be able to integrate many devices and information systems to
provide the needed services for users (and organizations) and ensure homogeneity and
collaboration between its components. Moreover, it should provide the administrative
required tasks and enable interoperable interactions between several derived AC mod-
els. Figure 11 illustrates the collaboration and interoperability concept an advanced AC
metamodel should provide.

System A

DAC model

System B
MAC/RBAC

model System C
ABAC model

System D
RBAC/ABAC

model

System E
ACx model

System F
ACx/ACy/ACz

model

Collaboration Space
AC Metamodel

Figure 11. The concept of collaboration and interoperability of AC models.

J. Cybersecur. Priv. 2022, 2 52

4.6. Migration

Due to continuous technology upgrades, it is essential to consider the concept of
migration where different software components are transferred from one computing envi-
ronment to another. This concept must also be considered for AC models where the AC
migration is a kind of modernization for AC policies (set of rules that are generated using
different AC components) from one model to another covered by a generic, dynamic, and
extensible AC metamodel. Though, none of the proposed approaches tackle the concept of
migrating AC policies. In Figure 12, we illustrate the concept of policy migration from one
model to another.

ACx model

Migration
Policy (X):
Rule1

Rule 2

C11 C12 C1n…

C21 C22 C2n…

……

ACy model
Policy (Y):
Rule1

Rule 2

Rule 3

C11 C12 C1n…

C21 C22 C2n…

……

C2j

Cij: AC components to define rules, e.g., subject, objects, action, etc.

C31 C32 C33 …

Figure 12. The concept of migration from one AC model to another.

5. HEAD Metamodel: Development Approach to Access Control in Dynamic and
Heterogeneous Environments

Security issues are dynamic and ever-changing due to continuous technology pro-
gressions and unexpected conditions, so designing, implementing, and testing software
for security is a challenging task. Accordingly, a security policy should be updatable and
modifiable at any time, and it must be kept aligned with software extension or devel-
opment. In Section 3, we present the development stages of AC methods and how AC
models are combined, extended, abstracted, reaching to the concept of AC metamodels.
Developing an advanced AC metamodel is a recent research issue; in Section 4, we explain
why the proposed metamodels are not enough to answer the AC needs of the current
networking generation.

The world of AC is changing fast [10] and, as shown in Table 1, the last metamodel
was proposed in 2015 [7]. Moreover, the last extended framework to support AC features
was ArchiMate in 2016 [34]. This reflects the lack of having an advanced AC metamodel
in the domain and the importance of developing and having a new and advanced one
with essential features that is able to face the existing challenges which accompany the
various variants of technology and digital transformation. For this purpose, we have
developed the HEAD metamodel [3] and, in this paper, we explain the new opportunities
and research directions it opens in the domain. As we can see in Figure 13, the generic
and hybrid metamodels which are proposed by Barker et al. [28], Bertolissi et al. [29],
Khamadja et al. [30], Slimani et al. [32], Abd-Ali et al. [7], and Alves et al. [33] include
features of DAC, MAC, and RBAC so they are not generic enough and do not support
the feature of adding/defining new components/attributes. The metamodel proposed by
Trninic et al. [31] is not generic since it only includes RBAC and RBAC extensions; also,
the metamodel which is extended to support the features of common models is ArchiMate
framework [34], it does not allow defining new components to formulate new AC models,
and it is extended but not extensible.

J. Cybersecur. Priv. 2022, 2 53

DAC, MAC, and RBAC

Barker et al. [28]
Bertolissi et al. [29]
Khamadja et al. [30]
Slimani et al. [32]
Abd-Ali et al. [7]
Alves et al. [33]

RBAC and RBAC extended
models

Trninic et al [31]

DAC, MAC, RBAC, and
ABAC

Korman et al [34]

Figure 13. The components that the proposed metamodels include.

Until today, several approaches were proposed to develop and enhance AC models
in order to solve various AC problems and to also enhance model features by combining
or extending them. Nevertheless, these approaches are insufficient since they focus on
some AC models and upgrading them requires modifying the core model design then
following all the necessary steps of implementation and testing. This process increases
the complexity in controlling access within organizations due to loss of time and cost,
especially in the current age of digital transformation, and ubiquitous computing and
pervasive systems. Hence, it is very essential for organizations and industry sectors now to
rethink how to control access to resources through modern and advanced AC methods. In
this section, we present a complete development approach to AC in today’s dynamic and
heterogeneous computing environments, starting from the AC metamodel development
phase and reaching to the policy enforcement phase. Figure 14 summarizes the main phases
and the steps. Note that the gray squares indicate the achieved phases and steps, which are
explained in detail in [3], and we provide a summary, in this paper, in order to link them
with the remaining steps and explain the new opportunities and research directions that
could be achieved in this domain based on the HEAD metamodel.

5.1. Metamodel Development

In the literature, heterogeneous AC models with heterogeneous components (e.g.,
subject, object, role, category, permission, action, etc.) have been implemented. Figure 15
shows an example of heterogeneous models where AC policies are expressed differently. To
develop an advanced AC metamodel, the main step is to encompass the heterogeneity of AC
models (common models and others). In [3], we have developed a Hierarchical, Extensible,
Advanced, and Dynamic AC metamodel, named HEAD metamodel, that addresses the
limitations of the existing metamodels. After reviewing and investigating different AC
policies in different computing environments [5,6,15], we have realized that the first step to
develop a generic metamodel is to unify the heterogeneous components of AC models. In
the following, we explain the achieved steps of this phase.

5.1.1. Unify AC Components of Heterogeneous Models

To unify the heterogeneous components and make them adaptable to all AC models,
we categorize them into [3]:

• EXPLICIT (Ex) components, those that refer to something that is real and exists (e.g.,
subjects and objects).

• IMPLICIT (Im) components, those that refer to something described or explained in
the guidelines or rules, and they include:

– AUTHORIZATION UNITs (AU) (e.g., roles, security levels, categories, etc.).
– PROCEDURAL UNITs (PU) (e.g., actions, permissions, etc.).

• SETTING (St), which refers to components that are included to have more accurate
and regulated access to resources (e.g., context, constraints, etc.).

J. Cybersecur. Priv. 2022, 2 54

Metamodel Development

Deriving Models

Generating Policies

Policy Analysis & Assessment

Policy Enforcement

Unify AC
components of
heterogeneous

models

AC Metamodel
(Meta classes and

relationships)

Specification
of AC models
(classes and

relationships)

Formalization
of the specified

AC models
(instances)

Formal
Verification of
the generated

AC Policies

DSL definition
of the AC

Metamodel

Policy
expression

Meta-policy
expression

Generation of
AC policies

from models

Analysis of
quality

requirements
of a policy

Assessing
policy

enforceability

Policy
enforcement

Figure 14. The development approach.

DAC

MAC

RBAC

ABAC

policy = 〈Subject, Object, Action〉

policy = 〈Subject, Object, Security Level, Action〉

policy = 〈Subject, Object, Role, Permission, Action〉

policy = 〈SubjectAttr, ObjectAttr, ContextAttr, ActionAttr〉

Hybrid
MAC/RBAC policy = 〈Subject, Object, Role, SecurityLevel, Permission, Action〉

Extended
RBAC policy = 〈Subject, Object, Role, Group, Permission, Action〉

…

Figure 15. Heterogeneous models with different policy expressions.

J. Cybersecur. Priv. 2022, 2 55

Figure 16 shows a hybrid policy example where heterogeneous components need to be
expressed in an AC policy. Hence, a metamodel must allow deriving a model that includes
all these components.

Object

Object

Object Object

Action

Action

Subject

Subject

Subject

Constraint

Constraint

Constraint

attributes

Rule#1: Before check-in, each worker has to wear a face mask

Rule#2: The maximum number of visitors in each room is 15

Rule#3: Machine operators can only enter the labs during working hours

Hybrid Policy

attributes

Figure 16. An example of hybrid policy.

5.1.2. HEAD Metamodel: Meta-Components and Relationships

The unified AC components of the previous step have been used to develop the needed
metamodel. The meta-components Ex, Im (AU and PU), and St and the relationships
between them form the HEAD metamodel. As shown in Figure 17 [3]:

• The relationship between Ex and AU is to assign, for example, zero or many (0..*)
subjects to roles, groups, categories, or any other authorization unit.

• The relationship between AU and PU, and PU and Ex, is to represent which AUs are
able to perform zero or many PU (e.g., actions, permissions, etc.) and access some, for
example, objects or services.

• Ex and Im components might have zero or many St (e.g., contextual and/or non-
contextual constraints) before accessing/performing tasks on some other Ex components.

• The self-association edge exists on each of the classes to allow formulating AC models
and hybrid models for different policies by allowing AUs to be associated with other
AUs, PUs to be associated with other PUs, and so on.

• The hierarchical relationships are depicted by aggregation association for each of the
entities, Ex, AU, PU, and St, to create a hierarchy of classes.

The importance of the HEAD metamodel is that it even allows defining any new
component/attribute for non-existing model(s) to formulate new model(s), besides its
ability to derive the common models.

Implicit

attributes

accesstype

0..*

0..*

0..*

0..* 0..*
Setting

attributes

ProceduralUnit

attributes

AuthorizationUnit

attributes 0..*

ExHierarchy0..*

StHierarchy0..*

auHierarchy0..* puHierarchy0..*

assign perform

settings has

0..*

0..* 0..*

0..*

0..*

0..*

0..*

Explicit

attributes

Figure 17. HEAD metamodel [3].

J. Cybersecur. Priv. 2022, 2 56

5.1.3. The DSL Definition of HEAD Metamodel

The domain-specific language (DSL), using Eclipse Xtext, for the HEAD metamodel
is able to represent a variety of AC models in a generic way by defining any compo-
nent/attribute for any AC model (common models, hybrid models, new models, etc.).
Figure 18 shows part of the DSL which is used to define the explicit, implicit, and setting
components and their attributes (the detailed DSL definition is explained in [3]).

Figure 18. Sample of DSL of HEAD metamodel [3].

5.1.4. Meta-Policy Expression

The meta-policy is expressed in terms of the meta-components Ex, Im, and St:

Metapolicy = 〈Ex, Im, St〉

5.2. Deriving Models

HEAD metamodel is (1) generic and allows deriving instances of different models
and hybrid models, (2) dynamic and allows defining new components with the relation-
ships between them, (3) extensible to upgrade any defined policy, and (4) supportive of
defining hierarchies.

5.2.1. Specification of AC Models: Components and Relationships

This step consists of analyzing and expressing the AC requirements of a system and
identifying the Ex (e.g., subject, object, etc.), Im (e.g., AU = role, group, etc., and PU = action,
permission, etc.), and St (e.g., context, constraints, etc.) model components. The inputs of
this phase are the identified components for modeling a policy, and the outputs are the
specification diagrams (UML diagrams).

5.2.2. Formalization of the Specified AC Models

In this step, we encode the obtained AC models from the previous step, after specifying
the needed AC components, using the DSL of the HEAD metamodel as an AC modeling
language. The power of the DSL language of the HEAD metamodel is that it is simple and
flexible to appropriately express any AC policy requirements, overcomes the complication
of existing language expressions, and it is also independent of specific AC models. The
flowchart in Figure 19 explains how this DSL works to instantiate various policy models. It
can be interpreted as follows:

J. Cybersecur. Priv. 2022, 2 57

Start

Define policy and policy attributes

Create/Add explicit component(s) and their attributes

Create implicit components (AUs or PUs)

Create/Add procedural unit(s)
and their attributes

Auth. unit(s)
exists?

Create/Add Authorization unit(s) and their attributes

Setting comp-
onent(s) exist?

Create/Add setting component(s) and their attributes

more componet/
attribute?

No

Yes

Yes

No

Yes

No
Express policy (set of rules)

Associations?

Associate components
Yes

No

End

Rule expressed?

Yes

No

Figure 19. Instantiation of AC models using the DSL of HEAD metamodel.

• Before defining any component(s), policy model should be specified with the needed
attributes, for example, policy type (e.g., RBAC policy, ABAC policy, etc.), organiza-
tion, etc.

• At least one (or more) Ex component must be created (with the needed attributes)
since any AC model must include Ex entities (e.g., subject, object).

• Im components (AUs and/or PUs) should be identified and created. Note that an AC
model might not include an AU component(s) if, for example, the needed AC model
is DAC. If the model to be instantiated is MAC or RBAC, then there exists an AU
component (security level or role). Moreover, an AC model must include at least one
PU component, for example, action, and it should be created.

• An AC model might not include St component(s), for example, in the DAC model
context, and constraint components do not exist.

• If there exists additional components/attributes, they should be created, for example,
to upgrade a policy. The HEAD metamodel allows for adding them.

• Finally, if all the needed components/attributes are created, then associations of
components are handled while expressing the needed rule(s).

Figure 20 shows an example of MAC instance as a result of this step. MAC com-
ponents/attributes are defined and then the needed rule is expressed in terms of MAC
elements (subject, object, security level, and operation).

J. Cybersecur. Priv. 2022, 2 58

Figure 20. Example: MAC instance [3].

5.2.3. Policy Expression

Based on the meta-policy expression (Section 5.1.4), different AC policy definitions
can be expressed as shown in Figure 21.

Meta-policy = 〈Ex, Im , St〉⇒

Meta-policy = 〈Ex, AU, PU , St〉

DAC policy = 〈subject, object, action〉

MAC policy = 〈subject, object, securitylevel, operation〉

ABAC policy = 〈subjectAttr, objectAttr, actionAttr, contextAttr〉

Figure 21. Examples of policy expressions using the meta-policy of HEAD metamodel.

5.3. Generating Policies

After specifying and defining the needed policy (or policies), this phase aims to
generate then verify the defined policies before analyzing and assessing them.

5.3.1. Generation of AC Policies from the Specified Models

The input of this step is the outputs of the previous one where the derived models are
encoded using Eclipse Xtend notation (Figure 22 shows a sample), an expressive dialect
of Java, to represent the concrete instance of an AC policy and generate the needed java
code. This step is a preliminary step that allows formally verifying the policy concepts
and properties.

5.3.2. Formal Verification of the Generated AC Policies

The input of this step is the generated java code from the previous step. This step
consists of formally verifying the accuracy and the coherence of the concrete instance of the
AC policy, which is formalized in the previous step, before proceeding to its implementation.
This can be achieved, for example, by injecting the generated java code of the previous step
into the Next Generation Access Control (NGAC) framework [35] to represent the AC rules
of a system in a graph—the objects, the relationships between them, and the subjects that
interact with the system in a way that adheres the semantics of an organization.

J. Cybersecur. Priv. 2022, 2 59

Figure 22. A sample of Eclipse Xtend notation.

5.4. Policy Analysis and Assessment

Policies with minimum quality may lead to situations, for example, preventing users
from accessing data they are allowed to access or releasing data to unauthorized parties.
In some other cases, the AC model may not even have a policy concerning some requests
which may lead to uncertainties concerning the obtained AC decision. For higher confirma-
tion of security for data and resources, it is important to investigate whether such policies
fit for their purposes [36,37]. This phase is to analyze and assess the obtained policies
before enforcing them. It consists of two main sub-phases or steps.

5.4.1. Analysis of Quality Requirements of a Policy

This step consists of assuring the quality of the obtained AC policies and making sure
that they are consistent, relevant, minimal, complete, and correct with respect to the actions
needed to be performed by subjects on some objects [13,36].

• Consistency means investigating that the obtained policies do not include both an
allow and deny decision to the same subject for the action of an object.

• Relevance means checking if the obtained policies do not contain rules that do not
apply to any action performed by subjects. In other words, making sure that subjects
do not have any authorization to access object(s) and perform action(s) that they are
not expected to execute.

• Minimality refers to investigating that the obtained policies do not include redundant
or unnecessary policies.

• Completeness means that, for a given access request to access an object, there must be
a corresponding policy, and any action to be executed by the subjects on any object
the default decision that should be taken by AC model is to deny the access.

• Correctness refers to the process of checking that the policies conform with their
intended goals and are in compliance with the system requirements.

J. Cybersecur. Priv. 2022, 2 60

Hence, this phase is of major importance while implementing AC rules in highly
dynamic and heterogeneous computing environments, especially IoT environments. Unfor-
tunately, although several methods for policy analysis and assessment are proposed [13,38],
they have major shortcomings. For example, they do not address all the quality require-
ments, e.g., they only address consistency and minimality, they analyze and assess the
obtained policies of only some AC models (e.g., RBAC policies), and they also require
all possible AC requests as input [13]. Hence, the proposed methods are not suitable for
dynamic and distributed environments. Moreover, developing an approach for analyzing
the quality requirements of a policy at runtime is of major importance, especially for today’s
environments such as IoT and industry 4.0 where data are generated in real-time basis.

5.4.2. Assessing Policy Enforceability

Policy assessment is the process of predicting and evaluating the possible impacts
of policy options by, for example, testing policies with respect to a set of scenarios to
determine their enforceability. The enforceability of AC policies is a challenging task due
to its high dependence on contexts, for example, some policies can be easily enforced
within an organization, and the same policy may not be enforceable in the IoT context.
Assessing enforceability of policies may require monitoring the intended system and
gathering information about some unexpected events, delays, system failures, etc., and
based on this information, the AC system could assess the difficulty or impossibility of
enforcing certain policies [13,39]. Moreover, AC systems should also allow identifying
constant policy abusers and provide the required evidence to exclude users who do not
respect the best practices of an organization. For example, by controlling who goes where
in a certain context, to ensure that accessing sensitive areas are limited to users with the
needed permission, the AC system should hence be able to detect intruders and prevent
them from accessing these areas.

Assessing policy enforceability is critical for a new networking generation such as IoT
computing environments due to the huge number of interconnected devices, millions of
users, the various contexts, and other facts. The ability to detect inappropriate or unusual
behavior, assess it as a real event, and use the evidence to support additional system
training or enforcement is of tremendous value for any organization.

5.5. Policy Enforcement

Policy enforcement is where all the previous phases and steps come together to serve
an organization and where the final decision is triggered to subsequently enforce the valid
AC decisions. One of the fundamental capabilities of organization security systems is their
ability to support security, organization standards, and AC policy enforcement. A policy
enforcement entity could be a network device on which policy decisions are enforced. This
phase is usually handled by software or hardware that serves as proxy, gateway, or any
other centralized control point in a network. The defined AC policies must specify the
needed action(s) if breaches occur. If so, the software or hardware, which works as a policy
enforcement point in the network, (1) detects the breaches by comparing the request status
with the assessed policy in Section 5.4 (previous phase), then (2) takes the needed action by
allowing or denying the access request [40].

6. Open Issues and New Opportunities

The emergence of new technologies, especially IoT and industry 4.0 systems, needs
the application of robust and advanced security mechanisms. However, security models
and AC solutions were not developed to address the current challenges of highly dynamic
environments. They are not able to meet the needs of transparency, scalability, shareability,
interoperability, and end-to-end security. Accordingly, several studies confirm that a deep
revision and adaptation of those mechanisms need to be considered [41,42]. In this paper,
we present a development approach in AC for complex, dynamic, and heterogeneous
environments. The characteristics of the HEAD metamodel, and the development approach

J. Cybersecur. Priv. 2022, 2 61

for its phases, explained in Section 5, allow developing essential issues in the domain and it
opens new opportunities and various research directions which will be summarized in this
section. Hence, having an advanced AC metamodel, that is generic, dynamic, extensible,
and supports the hierarchy of components, allows for developing and integrating various
other important issues such as:

• HEAD metamodel could be enhanced to dynamically generate AC policies according
to users’ context, profile, device, etc., since is based on a multi-level rule engine.

• In collaborative computing environments, distributed multiple cyber-physical areas
interoperate with each other to provide an intelligent environment for users to achieve
their collaborative activities. Hence, the features of the HEAD metamodel would
facilitate fulfilling the collaboration and interoperability between the derived and
heterogeneous AC models and their components among distributed multiple cyber-
physical areas.

• The continuous technology upgrades impose the need to migrate AC policies from one
model to another. The HEAD metamodel supports all the necessary tools to enhance
with this new feature, in addition to its features.

• HEAD metamodel could be enhanced to implement and include built in packages
or set of tools with predefined AC models, for example, the most used models DAC,
MAC, RBAC, and ABAC. This could minimize the technical implementation efforts
and facilitate administrative efforts to define policies.

• Since the definition for hundreds of thousands of attributes, expressing rules and
policies, and performing implementation require a lot of time and resources, artificial
intelligence (AI) techniques could be used, for example, object recognition to identify
objects and define their attributes. Hence, the administrator could modify, add, or
remove some attributes instead of creating hundreds of objects and thousands of
attributes, especially in very large and complex systems.

• It could be enhanced and implemented to extract the data flow of an organization
to define the rules after extracting the entities and attributes, then the administrator
could be notified if there are some missing rules that must be defined.

• The features of the HEAD metamodel allow integrating AC to other systems, for
example, intrusion detection systems.

• The flexible, upgradable, and dynamic nature of the HEAD metamodel makes it
adaptable and applicable to distributed systems; hence, it allows developing and
implementing blockchain-based AC systems.

Each of the above points is itself an opportunity (in addition to many other opportuni-
ties) for enhancing AC in today’s computing environments using a unifying framework. In
summary, the HEAD metamodel contributes to the development of knowledge in the field
and can be considered as a paradigm shift toward reshaping the existing models and AC
methods, especially in the field of industry.

7. Conclusions

The ability to control access to sensitive data and resources in conformity with AC
policy is a fundamental security requirement. Despite the access control research over the
decade, the significant technology progressions and the limited ability of the existing AC
mechanisms force the need to develop and enhance AC methods. Hence, the development
stages of AC models over the decades produce heterogeneous AC models which impose
the need to develop AC metamodels to encompass the heterogeneity of the existing models
and find more advanced AC features. Unfortunately, the proposed AC metamodels are
not generic enough to define and enforce the essential AC requirements, especially with
the presence of various challenges such as the emergence of ubiquitous computing and
pervasive systems, the revolution of industry 4.0, the adoption of telework due to the
COVID-19 pandemic, the digital transformation, and many other facts. All these oblige
the need for defining and enforcing a larger set of static and dynamic AC policies and the
requirement to set up a new and general approach.

J. Cybersecur. Priv. 2022, 2 62

However, as explained in this paper, there is a limited number of the proposed AC
metamodels, and the existing ones have several limitations and cannot follow the needed
upgrades which must accompany the various technology progressions. For this purpose,
we have proposed the HEAD AC metamodel with advanced features. In this paper, we
explain our development approach starting from the metamodel development phase and
reaching to the policy enforcement phase. We explain the achieved steps and the remaining
ones in order to employ this metamodel in developing many other essential phases in
this domain. The aim of this is to draw a complete strategy instead of tackling each issue
separately. In our experience so far, AC research and practice focuses on one phase and
confuses issues that cut across multiple phases. The purpose of this paper is to explain and
clarify the functionality of all phases to close the enormous gaps between them. To the best
of our knowledge, this is the first paper that considers all the needed phases and steps and
opens new opportunities in the domain based on an advanced AC metamodel, especially
since the last AC metamodel was proposed in 2015 and another extended one was in 2016.
This reflects the importance of setting up new strategies, methods, and opportunities to
share with researchers and experts in the domain, a new approach that tackles the different
facets and is based on an unconventional AC metamodel.

Author Contributions: Conceptualization, N.K., M.A. and H.I.; formal analysis, N.K. and M.A.;
visualization, N.K., M.A. and H.I.; software, N.K.; investigation, N.K., M.A. and H.I.; writing—
original draft, N.K.; writing—review and editing, M.A. and H.I. supervision, M.A. and H.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC), grant number 06351.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Acknowledgments: We acknowledge the support of Fonds Québécois de la Recherche sur la Nature
et les Technologies (FRQNT), and Centre d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Quader F, Janeja V P. Insights into Organizational Security Readiness: Lessons Learned from Cyber-Attack Case Studies. J.

Cybersecur. Priv. 2021, 1, 638–659. [CrossRef]
2. Krehling, L.; Essex, A. A Security and Privacy Scoring System for Contact Tracing Apps. J. Cybersecur. Priv. 2021, 1, 597–614.

[CrossRef]
3. Kashmar, N.; Adda, M.; Ibrahim, H. HEAD Metamodel: Hierarchical, Extensible, Advanced, and Dynamic Access Control

Metamodel for Dynamic and Heterogeneous Structures. Sensors 2021, 21, 6507. [CrossRef] [PubMed]
4. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Access Control Metamodel for Policy Specification and Enforcement: From

Conception to Formalization. Procedia Comput. Sci. 2021, 184, 887–892. [CrossRef]
5. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. A Review of Access Control Metamodels. Procedia Comput. Sci. 2021, 184, 445–452.

[CrossRef]
6. Kashmar, N.; Adda, M.; Atieh, M. From Access Control Models to Access Control Metamodels: A Survey. In Future of Information

and Communication Conference; Springer: Cham, Switzerland, 2019; pp. 892–911. [CrossRef]
7. Abd-Ali, J.; El Guemhioui, K.; Logrippo, L. A Metamodel for Hybrid Access Control Policies. J. Softw. 2015, 10, 784–797.

[CrossRef]
8. Abramov, J.; Anson, O.; Dahan, M.; Shoval, P.; Sturm, A. A methodology for integrating access control policies within database

development. Comput. Secur. 2012, 31, 299–314. [CrossRef]
9. Kashmar, N.; Adda, M.; Ibrahim, H. Access Control Metamodels: Review, Critical Analysis, and Research Issues. J. Ubiquitous

Syst. Pervasive Netw. 2021, 16, 2. [CrossRef]
10. Wolfe, C. State of the Market: Access Control. Security Distributing and Marketing (SDM) Magazine, 5 April 2021.
11. Al Kukhun, D. Steps Towards Adaptive Situation and Context-Aware Access: A Contribution to the Extension of Access Control

Mechanisms within Pervasive Information Systems. Ph.D. Thesis, Université de Toulouse, Toulousen, France, 2012.

J. Cybersecur. Priv. 2022, 2 63

12. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H. Deriving Access Control Models based on Generic and Dynamic Metamodel
Architecture: Industrial Use Case. Procedia Comput. Sci. 2020, 177, 162–169. [CrossRef]

13. Bertino, E.; Jabal, A.A.; Calo, S.; Verma, D.; Williams, C. The challenge of access control policies quality. J. Data Inf. Qual. 2018,
10, 1–6. [CrossRef]

14. Soltani, N.; Jalili, R. Enforcing Access Control Policies over Data Stored on Untrusted Server. In Proceedings of the 2017 14th
International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), Shiraz, Iran, 6–7
September 2017; pp. 119–124. [CrossRef]

15. Kashmar, N.; Adda, M.; Atieh, M.; Ibrahim, H., Access Control in Cybersecurity and Social Media. In Cybersécurité et Médias
Sociaux; Presses de l’Université: Laval, QC, Canada, 2021; Chapter 4.

16. Hasiba, B.A.; Kahloul, L.; Benharzallah, S. A new hybrid access control model for multi-domain systems. In Proceedings of the
2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017;
pp. 766–771. [CrossRef]

17. Rajpoot, Q.M.; Jensen, C.D.; Krishnan, R. Integrating attributes into role-based access control. In Proceedings of the IFIP
Annual Conference on Data and Applications Security and Privacy, Fairfax, VA, USA; Springer: Cham, Switzerland, 13 July 2015;
pp. 242–249. [CrossRef]

18. Kaiwen, S.; Lihua, Y. Attribute-role-based hybrid access control in the internet of things. In Proceedings of the Asia-Pacific Web
Conference, Cham, Switzerland, 5 September 2014; pp. 333–343. [CrossRef]

19. Oh, S. Permission-Centric Hybrid Access Control. In Advances in Web and Network Technologies, and Information Management;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 694–703. [CrossRef]

20. Kim, S.; Kim, D.K.; Lu, L.; Song, E. Building hybrid access control by configuring RBAC and MAC features. Inf. Softw. Technol.
2014, 56, 763–792. [CrossRef]

21. Ennahbaoui, M.; Elhajji, S. Study of access control models. Proc. World Congr. Eng. 2013, 2, 3–5.
22. Aliane, L.; Adda, M. HoBAC: Toward a higher-order attribute-based access control model. Procedia Comput. Sci. 2019, 155, 303–310.

[CrossRef]
23. Servos, D.; Osborn, S.L. HGABAC: Towards a formal model of hierarchical attribute-based access control. In International

Symposium on Foundations and Practice of Security; Springer: Cham, Switzerland, 2014; pp. 187–204. [CrossRef]
24. Layouni, F.; Pollet, Y. Fi-orbac: A model of access control for federated identity platform. In Proceedings of the IADIS International

Conference Information Systems, Barcelona, Spain, 27 February 2009.
25. Nguyen, P.H.; Nain, G.; Klein, J.; Mouelhi, T.; Le Traon, Y. Model-driven adaptive delegation. In Proceedings of the 12th Annual

International Conference on Aspect-Oriented Software Development, New York, NY, USA, 24 March 2013; pp. 61–72. [CrossRef]
26. Klarl, H.; Molitorisz, K.; Emig, C.; Klinger, K.; Abeck, S. Extending Role-based Access Control for Business Usage. In Proceedings

of the 2009 Third International Conference on Emerging Security Information, Systems and Technologies, Athens, Greece, 18–23
June 2009; pp. 136–141. [CrossRef]

27. Adda, M.; Aliane, L. HoBAC: fundamentals, principles, and policies. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 5927–5941.
[CrossRef]

28. Barker, S. The next 700 access control models or a unifying meta-model? In Proceedings of the 14th ACM Symposium on Access
Control Models and Technologies, New York, NY, USA, 3 Jun 2009; pp. 187–196. [CrossRef]

29. Bertolissi, C.; Fernández, M. A metamodel of access control for distributed environments: Applications and properties. Inf.
Comput. 2014, 238, 187–207. [CrossRef]

30. Khamadja, S.; Adi, K.; Logrippo, L. Designing flexible access control models for the cloud. In Proceedings of the 6th International
Conference on Security of Information and Networks, Aksaray, Turkey, 26–28 November 2013; pp. 225–232. [CrossRef]

31. Trninić, B.; Sladić, G.; Milosavljević, G.; Milosavljević, B.; Konjović, Z. Policydsl: Towards generic access control manage-
ment based on a policy metamodel. In Proceedings of the 2013 IEEE 12th International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT), Budapest, Hungary, 22–24 September 2013; [CrossRef]

32. Slimani, N.; Khambhammettu, H.; Adi, K.; Logrippo, L. UACML: Unified access control modeling language. In Proceedings
of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 7–10 February 2011;
pp. 1–8. [CrossRef]

33. Alves, S.; Degtyarev, A.; Fernández, M. Access control and obligations in the category-based metamodel: a rewrite-based
semantics. In International Symposium on Logic-Based Program Synthesis and Transformation; Springer: Cham, Switzerland 2014;
pp. 148–163. [CrossRef]

34. Korman, M.; Lagerström, R.; Ekstedt, M. Modeling enterprise authorization: a unified metamodel and initial validation. Complex
Syst. Inform. Model. Q. 2016, 7, 1–24. [CrossRef]

35. Ferraiolo, D.; Chandramouli, R.; Kuhn, R.; Hu, V. Extensible access control markup language (XACML) and next generation
access control (NGAC). In Proceedings of the 2016 ACM International Workshop on Attribute Based Access Control, New
Orleans, LA, USA, 11 March 2016; pp. 13–24. [CrossRef]

36. Bertino, E.; Jabal, A.A.; Calo, S.; Makaya, C.; Touma, M.; Verma, D.; Williams, C. Provenance-based analytics services for access
control policies. In Proceedings of the 2017 IEEE World Congress on Services (SERVICES), Honolulu, HI, USA, 25–30 June 2017;
pp. 94–101. [CrossRef]

J. Cybersecur. Priv. 2022, 2 64

37. Hu, V.C.; Kuhn, D.R.; Xie, T. Property verification for generic access control models. In Proceedings of the 2008 IEEE/IFIP Inter-
national Conference on Embedded and Ubiquitous Computing, Shanghai, China, 17–20 December 2008; Volume 2, pp. 243–250.
[CrossRef]

38. Hu, V. C.; Kuhn, R.; Yaga, D. Verification and Test Methods for Access Control Policies/Models; NIST Special Publication: Gaithersburg,
MD, USA, 2017; Volume 800, p. 192. [CrossRef]

39. Vanickis, R.; Jacob, P.; Dehghanzadeh, S.; Lee, B. Access control policy enforcement for zero-trust-networking. In Proceedings of
the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK, 21–22 June 2018; pp. 1–6. [CrossRef]

40. Norman, T. 5-Electronics Elements (High-Level Discussion). In Integrated Security Systems Design, 2nd ed.; Norman, T., Ed.;
Butterworth-Heinemann: Boston, MA, USA, 2014; pp. 49–55. [CrossRef]

41. Ouaddah, A.; Mousannif, H.; Abou Elkalam, A.; Ouahman, A.A. Access control in the Internet of Things: Big challenges and new
opportunities. Comput. Netw. 2017, 112, 237–262. [CrossRef]

42. Ravidas, S.; Lekidis, A.; Paci, F.; Zannone, N. Access control in Internet-of-Things: A survey. J. Netw. Comput. Appl. 2019,
144, 79–101. [CrossRef]

CHAPTER 6

GENERAL CONCLUSION

The ability to control access to sensitive data in conformity with policy is perhaps the most essential
security requirement, especially with the massive presence of new paradigms and technologies, also
with the emergence of digital transformation and intelligent solutions based on the industry 4.0 or
smart industry concept. To prevent any unauthorized access to logical or physical resources, several
AC methods are implemented to control what users can access, when, and how by enforcing the
defined organizational AC policies. In this context, various research issues are conducted in this
domain, and AC metamodels is the most recent topic in this domain. AC metamodels are developed
to serve as unifying frameworks that are able to include the heterogeneity of all AC features and
allow deriving different instances of AC models. However, AC policy languages should follow the
continuous development of highly ubiquitous technologies and information systems, especially with
the concept of IoT and industry 4.0 applications. Developing a new policy language is increasingly
challenging due to the dynamic and heterogeneous structures of the current networking generation.

The main objective of this research project is to design new and advanced AC metamodel that
conforms to organizational (e.g., companies, industries, and hospitals) AC security policies, and adapts
the decision making, according to technology progression to meet organizational and users’ needs. On
this basis, a Hierarchical, Extensible, Advanced, and Dynamic AC metamodel is developed, named
HEAD metamodel, which takes into consideration the continuous technology changes and upgrades.
Its meta-components unify the heterogeneous components of AC models, it allows specifying and
deriving any AC model (existing and non-existing AC models). It is dynamic and allows defining
any new component/attribute with the relationships between components, and allows extending the
already derived models to follow technology upgrades. Additionally, another powerful feature that
exists in the HEAD metamodel is the hierarchy of components (any type of component) to meet hier-
archical authorizations, hence administrators can start with creating a number of entities then add their
hierarchy which would help in controlling access to data with less maintenance costs compared to cre-
ating a large number of non-hierarchical entities. Moreover, the DSL language of HEAD metamodel
allows specifying unlimited number of policy classes with the flexibility of defining entities/attributes
for each policy class, also it allows expressing combined and uncombined rules for the same hybrid
model. For the implementation, Eclipse (xtext) is used to define the DSL of HEAD metamodel. We il-
lustrate our approach with several successful instantiations of various models to show how it supports
advanced features compared to other metamodels. For the evaluation and validation, HEAD meta-
model is employed to specify the needed AC policies for two case studies inspired by the computing
environment of ITMI; the first is for ITMI’s local (non-IoT) environment and the second for ITMI’s
IoT environment.

The results show that HEAD metamodel is feasible and can be adapted and integrated with
various local and distributed environments, able to serve as a unifying framework, answer the current
AC requirements and follow the needed policy upgrades. Also, we show that HEAD metamodel can
be implemented to generate AC rules using other platforms.

6.1 ACHIEVED OBJECTIVES

Within the framework of this thesis, the main objective is to develop a new AC metamodel with
advanced features adaptable to centralized and computing environments, and able to work as a base
to overcome the limitations of the existing metamodels. However, the most significant contribution of
this work lies in features of the proposed AC metamodel. To achieve this, our work was divided into
different phases reflected in different chapters (journal papers) throughout this thesis.

In Chapter 3, the formalization of AC metamodel with the needed steps are presented. To
achieve this, the heterogeneous components of different AC models are unified after reviewing the
common models and the proposed metamodels in the domain (Chapter 2), then different examples of
policy expressions related to different domains (local, social media, IoT . . .) are analyzed. Thereafter,
the unified components are used as meta-components, with the relationships between them, for the
HEAD metamodel and they are classified into three main components. The first is Explicit which
refers to something that is real and exists in an organization (e.g., subjects and objects), the second
is Implicit which refers to something described or explained in the AC rules (e.g., actions), and the
third is Setting which refers to components that are included to have more accurate and regulated
access to resources (e.g., constraints). Hereinafter, the relationships between the meta-components
are depicted to allow creating different hierarchical levels of components, and instantiating various
hybrid models. The meta-policy is expressed in terms of Explicit, Implicit, and Setting components,
then any policy is expressed in terms of the derived components of the meta-policy. Accordingly, we
designed a generic metamodel, able to create any needed component for any model, able to create
different levels of hierarchy, able to extend the derived models since it flexibly allows creating new
components/attributes, and dynamic to express larger set of static and dynamic AC policies. Moreover,
the DSL language of HEAD metamodel is expressed using Eclipse-xtext, the syntax of the language is
simple and flexible to appropriately express AC policy requirements and overcomes the complication
of existing language expressions.

In Chapter 4, to verify the technical feasibility of HEAD metamodel, the DSL of HEAD meta-
model is used to specify the needed AC policies for two case studies related to industrial environments
inspired by ITMI’s local (non-IoT) and IoT environments. The needed AC model(s) for each case
study is derived, then xtend notation is used to transform the DSL and generate the needed java code
which represents the concrete instance of the derived AC model. At the system level and after pol-
icy configuration, the output of java is Cypher statements which express the AC rules for each case
study. For policy enforcement, the Cypher statements are injected into Neo4j database to represent
the NGAC policy as a graph, then we run some Cypher queries to get NGAC authorization responses.
The results show that HEAD metamodel can be adapted and integrated with local and distributed
computing environments, able to serve as a unifying framework, answer the current AC requirements
and follow the needed policy upgrades. Additionally, we implemented an administrative panel, using
VB.NET and SQL, to show that HEAD metamodel can be implemented to generate AC rules using
other platforms.

142

6.2 COMPARISON BETWEEN HEAD METAMODEL AND OTHER AC METAMODELS

In Table 8 we summarize the features of HEAD metamodel which distinguish it from the other
existing metamodels.

Table 8
Comparison between HEAD Metamodel and other AC metamodels.

Metamodel Access Control Metamodels

Features HEAD Metamodel Other Metamodels

Unify compo-
nents

Unify all the heterogeneous components of het-
erogeneous AC models.

Some metamodels unify some of the hetero-
geneous components under the notion of ‘cat-
egory’ which includes roles, groups, security
levels, etc.

Generality
Include all features and components of common
AC models and allow deriving various instances
of various models.

Hybrid structures to derive some AC models
rather than generic metamodels

Dynamism
Allows defining and adding any type of com-
ponents and attributes for existing models and
non-existing ones.

None of the existing metamodels support this
feature, and they are not dynamic enough to de-
fine static and dynamic AC policies.

Extensibility
New components can be defined and integrated
with already derived models to support new AC
features in addition to the previous ones.

Some metamodels are extended but not extensi-
ble, and none of the existing metamodels sup-
port this feature.

Hierarchical
It allows defining multi-levels of all compo-
nents (e.g., role, context) to conform to the hi-
erarchical organizational structures.

Some metamodels support the feature of hier-
archy for some components, and none of them
consider the context hierarchy which an impor-
tant feature in complex and highly dynamic en-
vironments.

Upgradability Able to follow technology upgrades and update
any policy.

None of the existing metamodels support this
feature, and they have reached their limits.

Unified frame-
work

Allows creating any model, in addition to any
hybrid model with different policy classes (e.g.,
case study 2), and hybrid models with hybrid
components (e.g., case study 1)

Allow creating some models based on features
employed in their hybrid structures.

Adaptability Can be implemented in different centralized and
distributed environments, especially IoT.

They provide solutions for specific cases and
scenarios.

Novelty A new development in the domain with ad-
vanced features (all of the above).

The last AC metamodel was proposed in 2015
(Abd-Ali et al., 2015).

6.3 FUTURE PERSPECTIVES

Throughout this thesis we show that the distinct design of HEAD metamodel and how it could
be used to solve various AC issues associated with the emergence of ubiquitous computing and per-
vasive information systems. Its features allow developing essential issues in the domain and it opens
new opportunities and various research directions. As future perspectives we aim to develop several
theoretical and practical tools to extend its features in order to meet the different AC requirements
with the presence of various technology trends.

143

As theoretical future perspectives, HEAD metamodel can be extended to address the following:

• In collaborative computing environments, distributed multiple cyber-physical areas interoperate
with each other to provide an intelligent environment for users to achieve heir collaborative ac-
tivities. Hence, the features of the HEAD metamodel would facilitate fulfilling the collaboration
and interoperability between the derived and heterogeneous AC models and their components
among distributed multiple cyberphysical areas.

• The continuous technology upgrades impose the need to migrate AC policies from one model
to another. The HEAD metamodel supports all the necessary tools to enhance with this new
feature, in addition to its features.

• To develop the needed tools to analyze and assess the obtained policies at the run-time before
enforcing them in order to avoid uncertainties concerning the obtained AC decision. Policy
analysis and assessment are for assuring the quality of the generated AC policies and making
sure that they are consistent, relevant, minimal, complete, and correct with respect to the required
actions by subjects on some objects. This process is of major importance while implementing
AC policies in highly dynamic and heterogeneous environments, especially IoT.

As practical future perspectives, HEAD metamodel can be extended to support the following:

• HEAD metamodel could be enhanced to dynamically generate AC policies according to users’
context, profile, device, etc., since is based on a multi-level rule engine.

• HEAD metamodel could be enhanced to include built in packages or set of tools with predefined
AC models, for example, the most used models DAC, MAC, RBAC, and ABAC. This could min-
imize the technical implementation efforts and facilitate administrative efforts to define policies.

• Since the definition for hundreds of thousands of attributes, expressing rules and policies, and
performing implementation require a lot of time and resources, artificial intelligence (AI) tech-
niques could be used, for example, object recognition to identify objects and define their at-
tributes. Hence, the administrator could modify, add, or remove some attributes instead of
creating hundreds of objects and thousands of attributes, especially in very large and complex
systems.

• It could be enhanced and implemented to extract the data flow of an organization to define the
rules after extracting the entities and attributes, then the administrator could be notified if there
are some missing rules that must be defined.

• The features of the HEAD metamodel allow integrating AC to other systems, for example, intru-
sion detection systems. The flexible, upgradable, and dynamic nature of the HEAD metamodel
makes it adaptable and applicable to distributed systems; hence, it allows developing and imple-
menting blockchain-based AC systems.

Each of the above points is itself an opportunity (in addition to many other possible opportuni-
ties) for enhancing AC in today’s computing environments based on a unified framework. In summary,
the HEAD metamodel contributes to the development of knowledge in the field and can be considered
as a paradigm shift toward reshaping the existing models and AC methods, especially in the field of
industry.

144

APPENDIX I

Future of Information and Communication Conference, 14-15 March 2019, San Francisco, US
pp. 892-911. Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-12385-7_61

145

From Access Control Models to Access Control

Metamodels: A Survey

Nadine Kashmar1, Mehdi Adda2 and Mirna Atieh3

1,2 Université du Québec à Rimouski, Rimouski QC G5L 3A1, Canada
kasn0002@uqar.ca1, mehdi_adda@uqar.ca2

3 Lebanese University, Hadat, Lebanon
matieh@ul.edu.lb

Abstract. Access control (AC) is a computer security requirement used to

control, in a computing environment, what the user can access, when and how.

Policy administration is an essential feature of an AC system. As the number of

computers are in hundreds of millions, and due to the different organization

requirements, applications and needs, various AC models are presented in

literature, such as: Discretionary Access Control (DAC), Mandatory Access

Control (MAC), Role Based Access Control (RBAC), etc. These models are

used to implement organizational policies that prevent the unauthorized

disclosure of sensitive data, protecting the data integrity, and enabling secure

access and sharing of information. Each AC model has its own methods for

making AC decisions and policy enforcement. However, due to the diversity of

AC models and the various concerns and restrictions, its essential to find AC

metamodels with higher level of abstraction. Access control metamodels serve

as a unifying framework for specifying any AC policy and should ease the

migration from an AC model to another. This study reviews existing works on

metamodels descriptions and representations. But, are the presented

metamodels sufficient to handle the needed target of controlling access

especially in the presence of the current information technologies? Do they

encompass all features of other AC models? In this paper we are presenting a

survey on AC metamodels.

Keywords: Metamodel, model, access control, policy, security.

1 Introduction

As long as there is an increase and development in the use for internet services, there

is also an increase and a critical need for computer security solutions [1, 2]. Computer

security and the related topics were and still the main issues in the world of

Information Technology (IT).

Over the years until today, IT security and privacy are critical concerns for

academic, economic, social, industrial, and governmental organizations. Access

Control (AC) is one of the most important and critical aspects of IT security. For this

purpose, different AC models and policies are developed. In literature, various AC

models are proposed, such as: Discretionary Access Control (DAC) [3, 4], Mandatory

Access Control (MAC) [3, 5, 6], Role-Based Access Control (RBAC), Attribute-

Based Access Control (ABAC) [3, 4, 5, 7], and Organization Based Access Control

(OrBAC) [5]. Each AC model is developed either to overcome limitations found in

previous models or as a solution for a specific use case and application.

Finding a unified AC model becomes a significant issue due to the need to include

all features offered by the existing AC models, which in some cases, are incompatible

and irreconcilable. Also, due to the widespread and heterogeneity of interconnected

networks and distributed systems, heterogeneity of platforms and applications, and

due to diversity of users, the necessity to design a well coherent AC architecture for

enterprises becomes a must. In this context, different AC metamodels, to address

these issues, are presented in literature to serve as a unifying framework for

specifying and enforcing different AC policies. In the following sections we will

summarize existing AC metamodels. Nevertheless, before describing and comparing

these metamodels, we have to explore some basic concepts related to AC.

The remaining of this paper is organized as follows: Section II summarizes the

existing AC models, their advantages and limitations. The AC usage in different

system levels are presented in section III. Section IV describes the concept of AC

metamodels, the metamodeling tools, and provides a comprehensive overview about

the existing AC metamodels. Section V presents the potential research issues. Section

VI concludes this paper.

2 Access Control Models

2.1 A Brief Overview

Access control is defined as an essential security requirement in the field of IT. Each

organization has its own information system where a set of policies is defined based

on conditions where users can access all or some system resources. Implementing

these policies is essential to protect resources. AC methods are carried out at different

IT infrastructure levels. They are used in operating systems, databases, networks, and

information systems. The goal is to protect files, directories, regulate access to

database objects and fields, and protect applications' information (payroll processing,

e-health…). etc. However, the primary objective of access controls is the fulfillment

of the defined AC policies [1, 2].

Generally speaking [3, 4, 5], AC models and mechanisms are defined in terms of

subjects, objects and access rights. The subject concept usually refers to a user or

program; the object concept refers to an entity a user wants to have access to such as a

file, a table or a class. However, a subject may or may not have an access right to an

object. Access right means that a subject is able or perform an operation on an object.

The operation may be read, write, execute, etc. In other words, a user (subject) can

perform an operation (read, write…) on an object (file, class…) if he has a permission

to do so. To carry out an operation, access rights are required. To manage who and

how operations must be carried out, privileges or AC must be defined. Data resources

are protected under different access policies. A model is the projection of the scope of

policies and the needed behavior between subject and object entities. Policies are a set

of guidelines, which are generalized, abstracted, formally, or semi-formally described

[3]. Several research surveys are presented in literature with detailed descriptions

about AC models. In the following sections we summarize the concept of each model.

2.2 Discretionary Access Control (DAC)

In late 1960s, Discretionary Access Control (DAC) model was first introduced by

Lampson, a member of a curriculum design team. In DAC, the system protection

notion includes three major components: a set of objects, a set of domains, and a

matrix. Lampson’s work was then extended by Graham and Denning, where the term

“subject” was included instead the domain. Then, the extended Lampson’s work was

developed by Harrison, Ruzzo and Ullman (HRU) to find a formal proof that tracking

privilege propagation was undecidable in general [3].

DAC is defined as a user-centric AC model in the sense that a file owner

determines the permissions that are assigned to other users requiring access to the file

[4]. DAC mechanism allows users control the access rights (read, write…) to their

files without the need of a pre-specified set of rules. The access rights are specified by

Access Control Matrix (ACM), where AC rights of subject(s) over object(s) are

specified. Other variations of implementing AC matrix include Capability Lists (CLs)

and Access Control Lists (ACLs). In the concept of CLs the user access rights are

stored by rows, whereas in ACLs the access rights for various users on a file are

stored by columns. Lampson and Harrison Ruzzo Ullman (HRU) are two DAC

models [3].

DAC model is very flexible to assign access rights between subjects and objects.

But it also has limitations where the system maintenance and verification of security

principles are extremely difficult, since users control access rights to their owned

objects. Also, the possible attacks for Trojan horses [3, 5].

2.3 Mandatory Access Model (MAC)

In 1970s, Mandatory Access Control (MAC) protection was presented to include the

use of a security kernel. In 1987, a paper was published in IEEE Symposium of

Security and Privacy, where crucial differences between commercial and military

security requirements were presented by Clark and Wilson [3].

In MAC users cannot define AC rights by themselves. The AC policy is managed

in a centralized manner. MAC model is based on the concept of security levels

associated with each subject and object, where permissions and actions are derived.

Security classes have hierarchical and nonhierarchical components. The hierarchical

components include types: unclassified (U), confidential (C), secret (S), and top-

secret (TS) where TS ≥ S ≥ C ≥ U, to classify subjects and objects into levels of trust

and sensitivity. For objects a security level is called the classification level and for

subjects it is called clearance level. The nonhierarchical component is represented by

a set of categories. Security labels indicate security levels for classification of objects

and clearance of subjects, and uses two security properties, simple security property

and *-property. Bell and LaPadula (BLP) of multi-level security and BIBA are two

MAC variants. In BLP, a subject is allowed to read an object if the subject’s clearance

is ≥ than the object’s classification, and to write if it is ≤. In BIBA, a subject is

allowed to read an object if the subject’s clearance is ≤ than the object’s classification,

and to write if it is ≥ [3, 5].

This model is presented to overcome the limitations of DAC model, which is the

Trojan Horse attacks, by centralizing access control. In [6], it is mentioned that MAC

model is relatively straightforward and is considered to be a good model for

commercial systems that operate in hostile environments such as web servers and

financial institutions where the risk of attack is very high. Also, it has limitations,

since it is difficult to implement due to the dependence on trusted components, and

the necessity for applications to be rewritten to adhere to MAC labels and properties.

Similarly, the assignment of security levels by the system places limits on user actions

which prevents dynamic modification of the original policies.

2.4 Role-Based Access Control (RBAC)

Based on historical practices, Role-Based Access Control (RBAC) was defined as a

job a user performs, and he/she can be assigned one or more roles to indirectly

associate permissions with users [3].

RBAC model is considered as an alternative approach to MAC and DAC. In

RBAC, users can be assigned several roles and a role can be associated with several

users [4]. A role means a collection of permissions to use objects to perform a job

function that combines the authority and responsibility assigned to a subject who

plays this role, e.g. accountant, director, engineer, etc. each role is associated with

privileges or permissions [3]. The aim of RBAC is to facilitate the administration of

the AC policy. It governs the access of a user to information through roles for which

the user is authorized to perform. RBAC model is based on several entities, which are,

users, roles, permissions, actions, operations, and objects. Each role can have many

permissions, and permissions may be assigned to many roles. A subject can operate or

play many roles and a role can be performed by different subjects [5]. Several RBAC

models are proposed in the literature, Flat RBAC (RBAC0), Hierarchical RBAC

(RBAC1), Constrained RBAC (RBAC2), and Symmetric RBAC (RBAC3) [5, 7].

This model has many benefits, it has central administration of role memberships

and ACs. It may also be applied in distributed areas because it is based on the concept

of constraints and inherence [5, 6]. In RBAC, role hierarchy specifies which roles and

permissions are available to subjects based on different inheritance mechanisms. Role

hierarchies and permission inheritance in RBAC models are explained in [8, 9]. Also,

in distributed areas where different resources are shared among users, RBAC has

powerful means of specifying AC decisions [10]. Conversely, it also has some

drawbacks. It is frequently criticized for the difficulty of setting up an initial role

structure and for inflexibility in rapidly changing IT technologies. For example,

RBAC provide poor support for dynamic attributes such as time of day, which might

be needed when determining user permission [11]. Another drawback is reflected in

large systems, where role inheritance and the need for customized privileges make

administration potentially heavy [6].

2.5 Organization Based Access Control (OrBAC)

Organization Based Access Control (OrBAC) is first presented in 2003. The aim of

this model is to solve some problems in the previous AC models (DAC, MAC and

RBAC), to find a more abstract control policy. It is designed to address the subject,

object and action, in such a way that the policy determines what subject(s) has some

action(s) to access some object(s). Each organization (clinic, banks, hospitals…) is

comprised of a structured group of subjects having certain roles, or entities. This

model exceeds the concept of only granting permissions to subjects, it also addresses

the concept of prohibitions, obligations and recommendations [5]. A role may have a

permission, prohibition or obligation to do some activity on some view given an

associated context. In this model seven entities are defined, a) the abstract level or

organizational (1- Role, 2- Activity, 3- View) and b) the concrete level (4- Subject, 5-

Action, 6- Object). The seventh entity is Context lies between the two levels to have a

correspondence between the elements of each level. The context is presented in

OrBAC to express dynamic rules for relations between entities, for example,

Permission, Prohibition, Isprohibited, Recommendation, Ispermitted, Isobligatory,

Isrecommended, Obligation [5, 12].

The OrBAC has an advantage in eliminating conflicts between security rules. It also

has some vulnerabilities to some kinds of attacks, e.g. covert channels [5].

2.6 Attribute-Based Access Control (ABAC)

Attribute Based Access Control (ABAC) concepts have paralleled that of RBAC. It

has some advantages over RBAC, because of its benefits in authorization

management and its ability to support dynamic attributes. The main idea behind

ABAC is to grant or deny user requests based on arbitrary attributes of the user and

selected attributes of the object that may be globally recognized [3, 11]. It enables

precise AC which allows a higher number of discrete inputs into an AC decision. This

provides a larger set of possible combinations of variables to reflect a larger set of

possible rules to express policies [8]. Recently, this model gained attention from

businesses, academia and organizations due to the limitations in RBAC model. Two

standards that widely address the ABAC framework are: The Extensible AC Markup

Language (XACML) and Next Generation AC (NGAC) with AC facility for

applications and other important features [3].

In ABAC, subjects are enabled to access a wider range of objects without

specifying individual relationships between each subject and each object. As well as,

there are three types of attributes: subject, object and environmental attributes. The

first two are common to all ABAC models. The third type used in some models that

depend on the availability of system sensors that can detect and report values, they

may include the current time or day of the week. Despite the benefits of ABAC model

over the other models and its flexibility to assign policies and security features, it has

a number of limitations such as [2]:

• The problem of determining the current set of permissions available to all users.

• Its implementations require significant time to run.

• It is often not possible to compute the set of users that may have access to a

given resource.

• It is difficult to efficiently calculate the resulting set of permissions for a given

user as all objects would need to be checked against all relevant policies.

The historical AC models are summarized to provide an overview of their concepts,

benefits and limitations. This overview gives a conception about creating new AC

models, combining some of their features, or finding models with higher level of

abstraction (metamodels).

3 Access Control Usage

This section explains how AC models are generally integrated in any Information

System (IS). In general, the IS is composed of six components: hardware, software,

data, procedures, people and communication. IT security concepts are related to each

component of any IS. For a secure environment, security must be carefully managed.

Moreover, any connected computer to the internet is vulnerable to attacks. Thus, the

IS components are also under threat. Subsequently, various AC models and principles

are deployed to protect the IS environment. Their function is to control which object

have access to which subject in the system (files to read, programs to execute, data to

share, etc.). Fig. 1 shows AC at different levels in a system. Applications may be

written on top of middleware, such as a database management system. The

middleware use services provided by the underlying operating system. Also, the

operating system of ACs usually relies on hardware features provided by the

processor or by associated memory management hardware [13].

The IT security requirements are widely explained in literature. Some examples of

these requirements are: protection from improper access, user authentication, data

integrity, etc. In the following sections we will present AC usage in operating systems,

databases, networks, cloud computing, and Internet of Things (IoT).

Fig. 1. Access control levels in a system [13].

3.1 Access Control in Operating Systems

Access control mechanisms are provided with Operating Systems (OSs) to authenticate

system administrators and users using some procedures, for example, passwords. After

authentication, AC play an important role in allowing users to access files,

communications ports, and other system resources. User permissions are modeled as a

matrix of access permissions, where columns represent files/folders and rows represent

users. In this context, a file owner determines the permissions that are assigned to other

users requiring access to the file. However, only these users may have some

permissions (privileges), on the file, to read, write, execute, etc. An ACM is used to

show the users’ access rights on a system and the files in it [4]. Although ACMs can be

used to implement protection mechanisms, they don’t scale well with many users. For

example, in an institution with a large number of users and applications, a plenty of

entries will occur and this will cause a performance problem and administrative

mistakes. Two practical ways to overcome those issues are presented in [13]. Firstly,

by using groups or roles to manage the privileges of large sets of users simultaneously.

Secondly, by storing the ACM either by columns (ACL) or rows (CLs).

3.2 Access Control in Databases

Today, it is common for institutions to have databases (DBs) with critical data, such

as: bank accounts, employment records, hospital reports, etc. Thus, the security needs

become very critical, especially for online users. DB management systems (Oracle,

SQL…) have their control mechanisms and users should have different types of

permissions based on their job functions. In this context, OS play an important role to

separate the DB from other applications running on the same computer by identifying

users. Besides, ACLs and CLs are mixed to provide the needed mechanisms for DBs

[13]. Database users should have different types of permissions based on their job

functions. Each user should only have the permissions which are granted for him after

his login to the system, which is known as authorization. These permissions are

assigned to determine the user actions within the DB.

Different DB tasks and maintenance procedures must be occurred, these tasks must

be implemented by DB administrators. These tasks include creating DBs, removing

unneeded DBs, managing disk space allocation, monitoring performance, and

performing backup and recovery operations. DB platforms allow default system

administrators to perform such tasks and delegate permissions to other users [14].

3.3 Access Control in Networks

Network (NW) security is also an essential part of IS. In this domain, different issues

must be taken into consideration, which are: the NW design, NW device security,

firewalls, virtual private NWs, Intrusion Detection and Prevention Systems (IDPS),

etc. The section below describes and summarizes these considerations [15].

The requirements of NW security and budgets are specified based on NW design.

For this, different aspects must be taken into consideration in designing NWs, such as:

availability, cost, performance, number of users, etc. In security, it is important to

enable effective and secure links to other NWs, provide a platform that is helpful for

securing sensitive NW assets, and identify critical security controls and understand

the consequences of a failure of these controls. Also, NW device security concern is

how to use routers and switches to increase the security of the NW. The

internetworking protocol in use today is known as Transmission Control

Protocol/Internet Protocol (TCP/IP). It is a suite of protocols and applications that

have discrete functions that map to the Open Systems Interconnection (OSI) model.

Each connected device on a NW has two NW addresses: The Media Access Control

(MAC) address, and the IP address. However, there are several configuration steps to

configure the device (router, switch…) for increased security. The various steps are:

switch security practices, ACLs, administrative practices, Internet Control Message

Protocol (ICMP), logging to routers, etc. Furthermore, firewalls are defined as the

first line of defense between the internal NW and untrusted NWs like the Internet.

They play an important role in controlling application communication and other

functions, such as: Network Address Translation (NAT), antivirus, e-mail (spam)

filtering, IDPS, etc. Virtual Private Networks (VPNs) are created by establishing a

virtual connection using dedicated connections is to provide a secured communication

channel over public NWs. To secure VPNs, different issues must be addressed, e.g.

the authentication process, client configuration, etc. A security administrator always

checks the system and security log files looking for something abnormal. Audit tools

are used by administrators to detect a wide range of rogue events, such as:

unauthorized registry changes, protocol attacks, Denial of service (DoS) attacks, etc.

Also, for website security different methods are handled, e.g. prevention of SQL

injection, using complex passwords, management of cookies, and others.

The AC models are developed to match the security needs in all aspects of IT. In

the presence of new technologies, such as: Cloud Computing and IoT, it is worth

presenting some AC mechanisms in such fields.

3.4 Access Control in Cloud Computing

Cloud Computing (CC) is an emerging technology. Due to the huge amount of data

which are generated from different end users’ applications and information systems,

CC is considered as an efficient solution for easier and faster storage retrieval of data.

In CC, users can access computer services via the internet and this makes their data

vulnerable to attacks. For this reason, different AC methods for CC are presented in

literature. This section presents some of AC in CC methods.

Onankunju, in [16], introduces a method for providing secure AC in CC after

presenting the possible CC attacks, e.g. DoS and authentication attacks. Hence, a

hierarchical structure using a clock is presented to upload, download, and delete files

to and from the cloud. The root of the hierarchical structure is the trusted authority

which authorizes the top-level domain authorities. Also, domain authorities authorize

cloud users. The system is composed of 4 parts: cloud owner, untrusted cloud, clock

and cloud users. The user, with a key, encrypts his data before uploading it to the

untrusted cloud. For the user, to access his data, he should send a request to the cloud

owner which in turn sends him back a key. The key remains available for a certain

period, then it becomes invalid after the clock stops counting. The user should access

his data within the time limit. Another method is proposed in [17]. The method avoids

using static passwords, it uses a one-time password and one day password. Whereas,

the first password expires in two minutes, and the second one after twenty-four hours.

The user receives passwords with encryption via e-mail for each login session.

3.5 Access Control in IoT

In [18], IoT is defined as “a world-wide network of interconnected objects uniquely

addressable, based on standard communication protocols”. Which means a huge

number of heterogeneous objects, with different technologies and platforms, are

communicating together via the internet. Hence, all devices connected to the internet

are vulnerable to attacks, and this is the case for IoT devices. In this context, various

authentication and AC methods in IoT are also presented in literature, to integrate

security issues with this technology.

Liu et al. in [19] propose a model to find a secure communication between things

by a certain procedure. The main idea of this procedure is based on verifying

identities between two IoT devices. The method is based on implementing

authentication protocol in the presentation layer, where identification key

establishment occurs. They adopt the concept of authorization in RBAC model, and

for secure key establishment they implement Elliptic Curve Cryptosystem (ECC).

Moreover, authors in [20] propose a “smart contract-based framework to implement

distributed and trustworthy access control”. Their aim is “to apply the smart contract-

enabled blockchain technology to achieve distributed and trustworthy AC for the

IoT”. This framework contains multiple Access Control Contracts (ACCs), one Judge

Contract (JC), and one Register Contract (RC). ACCs are implemented between

subjects and objects for AC. JC is used for judging the unpleasant behavior of the

subject during AC. RC is used to manage the ACCs and JC. To demonstrate the

framework feasibility, case studies are addressed.

Different other AC proposals are presented in this field, which reflects the

evolutionary stage of CC, IoT, and security concerns due to the presence of attacks.

4 Access Control Metamodels

The need to use AC methods in different system levels and technologies, imposes the

necessity of finding AC models with combined features from two or more models.

Due to the continuous increase and upgrade of information technology features, the

presence of security threats also increases. The technological environment which is

open to all types of users is a crucial concern, because it is also open to various types

of attacks. This makes security enforcement, through AC models, an urgent need. So,

many AC models are presented in literature with combined features from two or more

AC models based on research motivations and needs. For example, we can find many

models with combined features from both RBAC and ABAC. Some hybrid RBAC

and ABAC models and others are presented for this purpose.

In [11] and due to RBAC’s difficulty to set up an initial role structure in rapidly

changing environments, and because RBAC does not support dynamic attributes, the

idea of adding attributes to RBAC is addressed. The aim is to find a model that

supports dynamic attributes specially in organizations. These features are presented to

handle relationship between roles and attributes to provide better AC features in

dynamic environments. Also, authors in [21] target the idea of enhancing features

from both RBAC and ABAC, because both have complimentary features to each

other. Hence, Attribute Enhanced RBAC model (AERBAC) is presented. The model

“retains the flexibility offered by ABAC, yet it maintains RBAC’s advantages of

easier administration, policy analysis and review of user permissions [21]”.

However, AC models must consider the continuous developments and changes.

The new technologies (CC, IoT...), the variety of platforms and applications, users’

types, etc. comprise a complex fact in controlling secure and private accesses to the

needed resources in different areas. All this makes AC models and even combining

some features of them are insufficient to handle the needed target. This fact forces the

need to find models with higher level of abstraction, which is called AC metamodels.

The aim of AC metamodels is to serve as a unifying framework for specifying and

enforcing any AC policy. For this purpose, different research works are present and

still conducting for finding an AC metamodels. The following sections present some

existing AC metamodels.

4.1 Metamodel Definition

Before exploring the existing AC metamodels, it is worth mentioning some essential

definitions and ideas about metamodeling. Metamodel in [22] is defined as a textual,

graphical/visual, or formal representation of concepts and how they are linked

together. In other words, it is a structure of a collection of concepts in a certain

domain. These concepts might be terms, rules, guidelines, etc. for an institution or

organization. In [23], metamodeling is defined as modeling of a model, where they

should describe the permitted structure to which models must adhere. Furthermore,

models and metamodels need adaptable supporting tools due to changing

requirements and policies. As mentioned earlier, metamodels can be illustrated using

textual, graphical or formal representations. Though, different metamodeling tools

and languages are presented in [22, 23] such as: Unified Modeling Language (UML),

Meta-Object Facility (MOF), Eclipse Modeling Framework (EMF), MetaEdit,

Conceptbase, and other tools. Fig. 2 shows the metamodel abstraction levels. M3 is an

instance of a model, it defines a specific information domain. M2 is an instance of

metamodel, it defines a language to describe an information domain. M1 is an instance

of a Meta-metamodel, it defines the language for specifying a model. M0 is the

infrastructure for a metamodeling architecture, it defines the language for specifying

metamodels [22].

Fig. 2. The Four-layer metamodelling Architecture [23].

4.2 State of Art

Korman et al. in [24] propose a unified metamodel designed using Enterprise

Architecture (EA) modeling language, the ArchiMate, and explain its use on many

Meta-
metamodel

Metamodel Model
Semantic Artifacts

(e.g. code, simulation)

M0 Layer
M1 Layer M2 Layer M3 Layer

Conforms to Conforms to

defines defines abstracts

Implement

scenarios and two business cases. Their aim is to combine different AC models in a

single EA model, and to propose an extension to an established EA modeling

language. Their model targets the challenge of flexibly modeling policies of

authorization according to the most well-known AC models: DAC, MAC (BPL,

BIBA, and Chinese Wall), RBAC, and ABAC, in terms of EA. The authors

summarize some of the existing AC models, then define the vocabulary of these

models, such as: subjects, objects, sessions, etc. to use them later in their presented

metamodel. Then, they represent the conceptual models for the most basic common

terms of AC, which are: subject, object, and access mode for the same purpose of

later use. Also, the configurations of DAC, BLP, BIBA, Chinese Wall (CW),

RBAC0,1,2,3, and ABAC are represented as metamodels, e.g. in Fig. 3 they represent

the metamodel for ABAC. Finally, these predefined steps are used as an introduction

before presenting their unified metamodel in Fig. 4. The model mostly builds on the

conceptual model of ABAC for its ability to emulate most functions of the other AC

models.

Fig. 3. Metamodel for expressing configurations of ABAC [24]

Fig. 4. Unified metamodel for modeling authorization [24]

Authors in [25] propose an AC metamodel to concurrently handle multiple AC

models. Their metamodel consider four models, which are: CW, BLP, BIBA, and

RBAC models. They start from the general concepts of metamodels; the object,

subject, access mode, role, and the instances of associations between metamodeling

elements (subject and role). They present the decision concept which relies behind

applying logical rules that are expressed in terms of AC metamodel elements. As

proposed, each AC metamodel has a special element called Decision Handler. Fig. 5

illustrates the initial concept of their metamodel. Then, kernel AC elements are

presented to later illustrate the associations between metamodel elements. These

elements are: Object, Objects Group, Subject, Subjects Group, Access Mode,

Additional Attribute, Query, Environmental Attribute, and Decision. Objects Group

and Subject Group respectively represent sets of objects and subjects sharing some

properties. The AccessMode represents, for example, some actions like: read, write,

execute, etc. Query is the access request on an object by a subject. Environmental

Attribute is used to hold information related to access request events such as time,

place, temperature, etc. Additional Attribute represents a construct associated to a

metamodel element to support the specification of some property of that element.

Decision (e.g. permit, deny, indeterminate, NotApplicable…) is where the response is

issued by the AC request. The metamodel is implemented with the four AC models

(CW, BLP, BIBA, and RBAC) as shown in Fig. 5. ACmetaModelElement is a

generalization of any element of the AC metamodels other than DecisionHandler. The

proposed AC metamodels relies on a subset of UML but without determining how an

instance of the metamodel returns an AC decision. To do so, First Order Logic (FOL)

mapping is used for relating entities to their types, specifying relationships between

entities, and for expressing a decision logic based on relations. To specify the

integration of several AC metamodels of a hybrid AC policy, they presented an

example of Integration Metamodel (IM) based on Ascending Decisions Tree (ADT).

Hybrid AC policies mean applying multiple AC specifications and policies. Fig. 6

shows the ADT metamodel example which concludes with only one AC decision as

output, in response to a set of multiple AC decisions as input. ADT nodes are,

DecisionHandler instances and nodes applying Combining Algorithms (ComAls).

DecisionHandler instance issues its AC decision based on its metamodel decision

logic (explained in [25]). ComAlNode issues its decision by applying its ComAl on

the decisions of its direct children nodes. It has a unique root which returns the

decision of the whole tree with the hybrid AC policy. Finally, the proposed IM

metamodel is illustrated in Fig. 7, which encompasses the whole above concepts.

Fig. 5. DecisionHandler specializations in access control metamodels [25]

Fig. 6. An ADT integrating multiple AC metamodels instances [25]

Fig. 7. The main view of IM metamodel [25]

Besides, designing AC metamodels for distributed environments (consisting of

several sites) are also taken into account. This is due to the importance of finding

dynamic or collaborative policies, to consider system changes or collaborate with

other policies of several sites. This concept is covered in [26], where authors present

the importance of finding a formal specification language to define AC models and

policies in such environments. For this purpose, the concept of rewriting techniques

(for security policies and protocols) is suggested to provide semantics for distributed

AC mechanisms. Also, they mention some several available rewrite-based

programming languages for fast prototyping, such as, Muade. Their proposed

rewriting techniques are defined as an instance of a metamodel based on Distributed

Event Based AC model (DEBAC). However, the authors first explain the advantages

of rewriting systems, then explore the existing AC models to introduce the concept of

a unifying metamodel for AC. Also, they describe the main features of the AC

metamodel and define the extension of the metamodel for distributed environments.

Second, they propose a formal specification of the distributed metamodel in a rewrite-

based language, constructed on core concepts of AC models, and focus on the

modular properties of the system. In this context, the federation notion is considered,

like database systems where several systems are integrated by a federated system and

each system preserves its autonomy. Third, general policy combining operators are

well-defined to define combinations of policies. Algebraic terms are used in all the

steps to define and rewrite policies, properties, operational semantics of the

distributed metamodel, and integrating combination operators in the distributed

metamodel. In [26], detailed explanations about the used expressions are also

provided. Similarly, a metamodel extension mechanism is proposed as a solution in

the context of MoNoGe French collaborative project [27]. This project is based on a

textual Domain Specific Language (DSL). The aim is to face up current limitations

and the lack of standard solutions in the existing project. In addition to building a

generic lightweight metamodel extension approach for the industrial environment

where rapid and efficient adaptations of the used modeling tools are needed. Authors

begin by defining the concept of modeling in real industrial projects, which deal with

different models and metamodels, in addition to supporting tools. Hence, they present

the main industrial use case of MoNoGe, which comes from DCNS (a world-leading

company in naval defense and energy that especially develops Combat Management

Systems, CMS, for ships). DCNS use two separate modeling tools: DoDAF (U.S.

Department of Defense Architecture Framework) standard, and Modelio supporting

software design and development. Then, a metamodel extension operators and a DSL

are introduced to easily use them. Also, two different implementations of their

proposed extension mechanism, based on Eclipse/EMF and the Modelio modeling

environment, are also described. Fig. 8 shows a sample of the grammar of their

proposed metamodel extension textual DSL.

Fig. 8. The Grammar metamodel extension textual DSL [27]

Furthermore, AC metamodels also consider the Web Content Management Systems

(WCMSs). WCMSs are frameworks that are widely used for web applications

development for enterprises, e.g. Drupal, Wordpress, and Joomla. Users with little

technical knowledge can fully develop technical systems due to their integrated

environment. This environment provides design definition, layout, content

management and organization of the application. In this context, Martínez et al. in

[28] highlight the importance of security requirements, since WCMSs may contain

sensitive information. Authors propose a metamodel to the representation of WCMS

AC policies, to ease the analysis and manipulation of security requirements by

abstracting them from vendor-specific details. They focus on the idea of facilitating

WCMS configuration, to minimize the possibility of vulnerabilities because users

often lack depth technical and security knowledge. Besides, authors enumerate some

law-level security aspects, for example, management of cookies, and prevention of

SQL injection vulnerabilities. Although AC techniques are integrated in most WCMS

systems, some limitations still exist in such systems, e.g. knowing the level of

protection of the implemented access policy in a WCMSs is complex and error-prone

task. For this purpose, authors propose to raise the level of abstraction of the AC

implementation, to be represented according to a vendor-independent metamodel. Fig.

9 represents the proposed WCMS metamodel sample, which is inspired by RBAC.

Fig. 9. WCMS metamodel sample [28]

The four metamodel basic elements functionalities explained in [28] are: content,

actions, permissions and subjects. The idea of their process is to automatically extract

the AC information in the domain of WCMSs. Moreover, they mention that even their

metamodel could be manually filled by investigating AC information using WCMS

administration tools, it should also be filled by an automatic reverse engineering

approach. Thus, they present an automatic process for Durpal in Fig. 10, where

Durpal contents with AC information are stored in the backend database. SQL queries

over the database are injected to obtain a model that conform their proposed WCMS

metamodel. This process allows the possibility of defining extra AC rules or

modifying them programmatically. The abstract representation of the WCMS AC

model is developed using Model Driven Engineering (MDE) where the relation

between metamodel elements can be easily realized. Concerning WCMS migration,

they present using their metamodel as a pivot representation. This illustration is to

represent the AC information of the old WCMS in a way corresponding to their

metamodel, to facilitate its analysis. Another web service metamodel is proposed in

[29] to handle the verification of authorization in Web Service Oriented Architecture

(WSOA). The aim of this metamodel is to improve the existing AC models for better

features to match the requirements of WSOA. The proposed metamodel is depicted in

Fig. 11. The metamodel is an enhancement for hierarchical RBAC and ABAC.

Conceptual UML modeling is used to present the metamodel and define the sets and

relations. In this metamodel the commonly used type of operations, e.g. read, write,

which are carried between permission and object elements are removed. Instead, the

focus on placing the input parameters of web service operation. As shown in Fig. 11,

there are two relations from permission to an object: 1) indirect relation via policy, 2)

direct relation to the input parameter, where “a parameter does not need to know if its

value is evaluated for access control [29]”. Web services Composition “consists of

multiple invocations of other Web Service Operations in a specific order [29]”. This

element plays an important role to stop execution in case of missing authorization at

an early stage. The proposed metamodel is mapped to an authorization verification

service, which is part of Identity Management (IdM) architecture. Then it is linked

with the core concern of WSOA, and the feasibility of this approach is illustrated in a

case study. Also, Web Services Description Language (WSDL) is used for service

interface definition. Likewise, addressing network security is also a critical concern.

Martínez et al. in [30] propose a model driven approach to extract network AC

policies enforced by firewalls within a network system. Their concept tackles the

problem of filtering the traffic of a network with the presence of a number of filtering

rules. based on their analysis, “the network topology, that may include several

firewalls, may impose the necessity of splitting the enforcement of the global security

policy among several elements. [30]”. In this context, their aim also is “to raise the

Fig. 10. Drupal access control extraction [28]

Fig 11. Metamodel for AC in WSOA [29]

level of abstraction of the information contained in the firewall configurations files so

that the AC policy they implement is easier to understand, analyze, and manipulate

[30]”. However, Eclipse tool (Xtext) is used to extract AC information out of the net-

filter iptables language. The features of RBAC and OrBAC AC models are

implemented in this approach. Fig. 12 shows the network connection metamodel. The

metamodel consists of two entities, host and connection. The former represents a

network host, e.g. IP address. The latter represents connections between hosts, where

the port and the protocol are specified to establish connections and specify if the

connection is allowed or denied.

Fig 12. Network connection metamodel [30]

5 Potential Research Issues

Developing AC metamodel, that covers the features of all other AC models, is a

challenging issue especially if the aim is to find a metamodel that encompasses all

existing AC models. The dynamic requirement for enforcing security issues and the

rapid propagation of technology makes it an urgent need.

The presented metamodels come with some advantages, and many case studies are

addressed to handle each metamodel design. But we notice that each metamodel is

itself a case and does not encompass a general base concept. Table I summarizes the

presented AC metamodels, which depicts different metamodels in IT systems. Also, it

indicates that metamodeling is a recent research field, especially in the last few years.

As we notice, all the presented metamodels are designed for dedicated case scenarios

or projects based on some features of AC models. Furthermore, in addition to the

achieved progressions, there are still issues to be addressed. In fact, despite the

advantages of the presented metamodel in [24], authors present some of its

limitations. For example, it misses the concept of logging, in addition to the difficulty

for a potential implementation of automated analytical capabilities of the unified

metamodel. So is the case for the other metamodels, they are not generic enough to

include all AC models features. As we can see some combined features from some

models to cure some existing deficiencies in some projects or enhancing some service

features. In addition to the concept of applying the same complex process in assigning

relationships between model elements in some metamodels.

Table 1. Summary of Presented Access Control Metamodels.

Metamodel Features

Ref. Publication Designed for Type Used Models Modeling tools

[24] 2016
Enterprise

architecture
Unified

DAC, MAC RBAC,

ABAC.
ArchiMate

[25] 2015 Enterprise Hybrid
CW, BLP, BIBA,

RBAC

UML,

FOL

[26] 2014
Distributed

Environment

Metamodel

Extension
DEBAC

Rewrite

semantics

[27] 2015
Industrial

project

Metamodel

Extension
MoNoGe project

DSL, EMF,

Modelio

[28] 2013 WCMSs
Metamodel

Extraction
RBAC MDE

[29] 2007 Web Service
Metamodel

Integration
RBAC1, ABAC UML

[30] 2012
Network

firewalls

Metamodel

Extraction
RBAC, OrBAC Xtext

In this paper, we try to spot on the idea of metamodels, the existing metamodels in

literature, and to look into future with some raised questions concerning this matter.

Subsequently, in addition to the existing concerns and metamodels, many questions

are raised, such as: is it possible to find a more general concept of metamodels? Is it

possible to implement easier and general unified structures of metamodels, and

visualize their elements more readily? Are the existing metamodels handle the feature

of flexibility for any new extensions or transformations? Or, are the current

metamodeling frameworks flexible and dynamic enough for any changes? If so, what

are the possible ways, steps or strategies to merge metamodel elements? Although

there are many metamodels are built, based on many AC models, do they overcome

the existing limitations of these AC models? Last but not least, is the existing

metamodeling tools and languages enough to answer all the above questions or some

of them?

Additionally, as presented in this survey we can see that metamodels are

implemented for different scenarios: AC models, WCMSs, and distributed

environments. Thus, is there any opportunity to find a metamodel design or plan that

encompasses the different scenarios? Or is it more efficient to find a unified

metamodel for each scenario? As a result, currently we may not have answers to the

above inquires, but at least we know that metamodels introduce a new era of

enforcing policies and controlling access in IT world.

Another interesting feature, that is missing in current AC metamodels, is the ease

of the migration from an AC model to another. In fact, having a metamodel, should

make it possible to translate an existing AC policy between the different AC models

covered by the metamodel.

6 Conclusion

We covered in this survey existing AC metamodels, and the AC models they
generally cover (DAC, MAC, RBAC…). We also presented a brief explanation about
how these AC models are used in different fields e.g. Databases, operating systems,
IoT, etc. Moreover, Metamodels are proposed in literature to concurrently handle
multiple AC models, also in distributed environments and web systems. The main
goal is to develop a metamodel that is general enough to instantiate all existing AC
models and that may also help organizations to easily migrate from an AC model to
another.

Acknowledgment

We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC), [funding reference number 06351].

References

1. Matt, B., Introduction to computer security. 2006: Pearson Education India.

2. De Capitani di Vimercati, S., S. Paraboschi, and P. Samarati, Access control: principles
and solutions. Software: Practice and Experience, 2003. 33(5): p. 397-421.

3. Hu, V.C., D.R. Kuhn, and D.F. Ferraiolo, Attribute-Based Access Control. 2018,
Norwood: Artech Hous

4. Kayem, A.V., S.G. Akl, and P. Martin, A presentation of access control methods, in
Adaptive Cryptographic Access Control. 2010, Springer. p. 11-40.

5. Ennahbaoui, M. and S. ELHAJJI. Study of access control models. in Proceedings of the
World Congress on Engineering. 2013

6. Ausanka-Crues, R., Methods for access control: advances and limitations. Harvey Mudd
College, 2001. 301: p. 20.

7. Sandhu, R., D. Ferraiolo, and R. Kuhn. The NIST model for role-based access control:
towards a unified standard. in ACM workshop on Role-based access control. 2000

8. Crampton, J. On permissions, inheritance and role hierarchies. in Proceedings of the 10th
ACM conference on Computer and communications security. 2003. ACM

9. Belokosztolszki, A., Role-based access control policy administration. 2004, University of
Cambridge, Computer Laboratory .

10. Zhang, C.N. and C. Yang, Designing a complete model of role-based access control
system for distributed networks. J. Inf. Sci. Eng., 2002. 18(6): p. 871-889.

11. Kuhn, D.R., E.J. Coyne, and T.R. Weil, Adding attributes to role-based access control.
Computer, 2010. 43(6): p. 79-81.

12. OrBAC: Organization Based Access Control. 2010; Available from:
http://orbac.org/?page_id=21 .

13. Anderson, R., Security engineering. 2008: John Wiley & Sons

14. Rhodes-Ousley, M., Information security: the complete reference. 2013: McGraw Hill
Education

15. Rajpoot, Q.M., C.D. Jensen, and R. Krishnan. Attributes enhanced role-based access
control model. in International Conference on Trust and Privacy in Digital Business. 2015.
Springer.

16. Onankunju, B.K., Access control in cloud computing. International Journal of Scientific
and Research Publications, 2013. 3(9): p. 1.

17. Hussain, S., Access Control in Cloud Computing Environment. International Journal of
Advanced Networking and Applications, 2014. 5(4): p. 2011.

18. Atzori, L., A. Iera, and G. Morabito, The internet of things: A survey. Computer networks,
2010. 54(15): p. 2787-2805.

19. Liu, J., Y. Xiao, and C.P. Chen. Authentication and access control in the internet of things.
in Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International
Conference on. 2012. IEEE.

20. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X. and Wan, J., Smart Contract-Based Access
Control for the Internet of Things. arXiv preprint arXiv:1802.04410, 2018.

21. Rajpoot, Q.M., C.D. Jensen, and R. Krishnan. Integrating attributes into role-based access
control. in IFIP Annual Conference on Data and Applications Security and Privacy. 2015.
Springer.

22. Assar, S., Meta-modeling: concepts, tools and applications, in IEEE 9th International
Conference on Research Challenges in Information Science, IEEE RCIS 2015. 2015:
Athens, Greece; Available from:
https://www.computer.org/cms/ComputingNow/education/said-assar-metamodeling-
tutorial.pdf

23. Sprinkle, J., Rumpe, B., Vangheluwe, H. and Karsai, G., 3 Metamodelling, in Model-
Based Engineering of Embedded Real-Time Systems. 2010, Springer. p. 57-76.

24. Korman, M., R. Lagerström, and M. Ekstedt, Modeling enterprise authorization: a unified
metamodel and initial validation. Complex Systems Informatics and Modeling Quarterly,
2016(7): p. 1-24.

25. Abd-Ali, J., K. El Guemhioui, and L. Logrippo, A Metamodel for Hybrid Access Control
Policies. JSW, 2015. 10(7): p. 784-797.

26. Bertolissi, C. and M. Fernández, A metamodel of access control for distributed
environments: Applications and properties. Information and Computation, 2014. 238: p.
187-207.

27. Bruneliere, H., Garcia, J., Desfray, P., Khelladi, D.E., Hebig, R., Bendraou, R. and Cabot,
J. On lightweight metamodel extension to support modeling tools agility. in European
Conference on Modelling Foundations and Applications. 2015. Springer.

28. Martínez, S., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N. and Cabot, J. Towards
an access-control metamodel for web content management systems. in International
Conference on Web Engineering. 2013. Springer.

29. Emig, C., Brandt, F., Abeck, S., Biermann, J. and Klarl, H., An access control metamodel
for web service-oriented architecture. 2007.

30. Martínez, S., Cabot, J., Garcia-Alfaro, J., Cuppens, F., & Cuppens-Boulahia, N. A model-
driven approach for the extraction of network access-control policies. in Proceedings of
the Workshop on Model-Driven Security. 2012. ACM

APPENDIX II

The 12th International Conference on Ambient Systems, Networks and Technologies (ANT), March
23 - 26, 2021, Warsaw, Poland

Procedia Computer Science, Volume 184, 2021, Pages 887-892,
https://doi.org/10.1016/j.procs.2021.03.056

167

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 184 (2021) 445–452

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2021.03.056

10.1016/j.procs.2021.03.056 1877-0509

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 12th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 23 - 26, 2021, Warsaw, Poland

A Review of Access Control Metamodels
Nadine Kashmara,c,∗, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc

aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, QC G5L 3A1, Canada
bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon

cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada

Abstract

The emergence of ubiquitous computing, especially with the Internet of Things (IoT), releases new prospects to traditional infor-
mation systems by merging new technologies and services for seamless access to information sources at anytime and anywhere.
Concurrently, this emergence opens new threats to information security and new challenges to control access to the resources. To
ensure security, several techniques have been employed, and access control (AC) is one of the essential security requirements for
IoT and non-IoT systems. Various authentication and AC methods are proposed to enforce AC policy and to prevent any unautho-
rized access to logical/physical assets. The continuous technology upgrades and the diversity of AC models force the need to find
AC metamodels with higher level of abstraction that serve as a unifying framework for specifying any AC policy. AC metamodels
are proposed to encompass AC features and are used to derive various instances of AC models and methods. In this paper we
review the proposed AC metamodels and their implementation scenarios, we analyze them, their objectives, their limitations, and
present open research questions and issues that still need to be addressed.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Access control; metamodels; IoT; Industry 4.0; security and privacy; security policy;

1. Introduction

The importance of security and privacy requirements increases with the increase of cybercriminals and cyberattacks
due to the massive presence and integration of new paradigms and technologies, such as the Cloud Computing and
the Internet of Things (IoT). Also, with the deployment of digital and intelligent solutions based on the smart industry
concept. To mitigate their impacts, several techniques have been employed, and access control (AC) is one of the
essential solutions for privacy settings to measure and optimize IT security [1] in IoT [2], cloud computing [3], social
networks [4], and other fields. AC methods are implemented to control what users can access, when and how by
enforcing AC policy to prevent any unauthorized access for logical or physical assets.

∗ Corresponding author. Tel.: +14188338800; fax: +141883311.
E-mail address: nadine.kashmar@uqar.ca

1877-0509© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 12th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 23 - 26, 2021, Warsaw, Poland

A Review of Access Control Metamodels
Nadine Kashmara,c,∗, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc

aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, QC G5L 3A1, Canada
bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon

cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada

Abstract

The emergence of ubiquitous computing, especially with the Internet of Things (IoT), releases new prospects to traditional infor-
mation systems by merging new technologies and services for seamless access to information sources at anytime and anywhere.
Concurrently, this emergence opens new threats to information security and new challenges to control access to the resources. To
ensure security, several techniques have been employed, and access control (AC) is one of the essential security requirements for
IoT and non-IoT systems. Various authentication and AC methods are proposed to enforce AC policy and to prevent any unautho-
rized access to logical/physical assets. The continuous technology upgrades and the diversity of AC models force the need to find
AC metamodels with higher level of abstraction that serve as a unifying framework for specifying any AC policy. AC metamodels
are proposed to encompass AC features and are used to derive various instances of AC models and methods. In this paper we
review the proposed AC metamodels and their implementation scenarios, we analyze them, their objectives, their limitations, and
present open research questions and issues that still need to be addressed.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Access control; metamodels; IoT; Industry 4.0; security and privacy; security policy;

1. Introduction

The importance of security and privacy requirements increases with the increase of cybercriminals and cyberattacks
due to the massive presence and integration of new paradigms and technologies, such as the Cloud Computing and
the Internet of Things (IoT). Also, with the deployment of digital and intelligent solutions based on the smart industry
concept. To mitigate their impacts, several techniques have been employed, and access control (AC) is one of the
essential solutions for privacy settings to measure and optimize IT security [1] in IoT [2], cloud computing [3], social
networks [4], and other fields. AC methods are implemented to control what users can access, when and how by
enforcing AC policy to prevent any unauthorized access for logical or physical assets.

∗ Corresponding author. Tel.: +14188338800; fax: +141883311.
E-mail address: nadine.kashmar@uqar.ca

1877-0509© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

446 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452
2 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

Various AC models are developed to enforce AC policies such as Role-Based AC (RBAC), Organization-Based AC
(OrBAC), and Attribute-Based AC (ABAC) [1, 5]. To enhance AC methods, various hybrid models are implemented
by combining features of two or more AC models [1, 6]. Additionally, with the emergence of industry 4.0 and IoT
applications, it is realized that the existing AC models have reached their limits, and they no longer meet the increasing
demand for privacy and security standards [1, 7]. This reality urge the need to find more advanced AC methods and
develop AC metamodels with advanced features for specifying and enforcing different AC policies [7, 8, 9]. AC
metamodels are used to derive various instances for the common AC models, hybrid models, and other AC methods.
Note that, in [1] we present a preliminary survey for the common used AC models with some of the proposed AC
metamodels, then raise some questions in this domain.

The objective of this paper is to present a detailed review, analyze and criticize the proposed AC metamodels, find
out their limitations in the presence of new technologies, and determine various research issues in this domain, then
raise some essential research questions. Hence, it can be considered as a pillar towards developing a new generic and
dynamic AC metamodel with advanced features for IoT and non-IoT systems. To the best of the authors’ knowledge,
this is the first paper that provides a literature review of the existing AC metamodels with discussion and critical
analysis, and various research issues in the domain. The remaining of this paper is organized as follows: section 2
summarizes the existing AC models. Section 3 presents the state-of-the-art of the proposed metamodels, their ob-
jectives, and limitations. Discussion and critical analysis, and common limitations for the proposed metamodels are
presented in section 4. Issues and open research questions are proposed in section 5. Section 6 concludes this paper
with future perspectives.

2. The Common Access Control Models

Access control is the process of restricting access to a place or resource based on defined set of security policies.
Security policies are the definition of rules that must be regulated in an organization, and they are usually defined by
managers and system administrators. An AC model is a framework for making authorization decisions based on the
defined AC policies, and AC mechanism is the processes of enforcing AC policy and translating user’s access request
[1, 5]. Despite the presence of several papers reviewing the state-of-the-art of the common AC models [1, 10], in this
paper we summarize them since they are used in the core for constructing different AC metamodels.

• Discretionary Access Control (DAC): is a user-centric AC model with three major components: objects, subjects,
and permissions. DAC allows subjects to control access permissions to their objects, an AC matrix (ACM) is an
example of how AC rights of subject(s) over object(s) can be specified. Lampson and Harrison Ruzzo Ullman
(HRU) are two variants of DAC model. [1, 5].
• Mandatory Access Control (MAC): is based on the concept of security levels (top-secret, secret, confidential)

that are associated with subjects (as clearance levels) and objects (as classification levels) where permissions
and actions are derived. In MAC, AC policy is managed in a centralized manner, it has four key components: a
set of objects, a set of subjects, permissions, and security levels. Bell and LaPadula (BLP) and BIBA (developed
by Kenneth J. Biba) are two MAC variants [1, 5].
• Role-Based Access Control (RBAC): is based on several entities: subjects, roles, permissions, actions, opera-

tions, and objects. A role means a group of permissions to use object(s) and perform some action(s), it can be
assigned to several subjects, and subjects can be assigned to several roles such as, doctor, nurse, etc. [1, 5].
RBAC example, is a hospital system where there exists a variety of relations between doctors, nurses, etc. Only
the system administrator has the right to control the system security and assign roles to users [11].
• Organization-Based Access Control (OrBAC): is presented to find more abstract AC policy. OrBAC key compo-

nents are subject, action, object at concrete level; role, activity, view at abstract level; and context lies between
the two levels to express dynamic rules for relations between entities (e.g. permission, prohibition, etc.) [1].
• Attribute-Based Access Control (ABAC): has some advantages over RBAC because of its ability to support

dynamic attributes. It has three types of attributes: object, subject and environmental (e.g. current time, location,
etc.) attributes. It allows/denies user requests based on some attributes for subjects, objects and environment,
and a set of conditions, and it is dynamic since it uses attributes to determine access decision [1, 5].

 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452 447
N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000 3

Despite the advantages of AC models, they also have some limitations. For example, (1) in DAC the granted user who
could access a file can allow other users to read it without asking the owner; (2) the assignment of security levels by
a system limits user’s actions which prevents dynamic modification of original policies in MAC; (3) in large systems
role inheritance of RBAC make administration potentially heavy; (4) poor support for dynamic attributes (e.g. time of
day) in OrBAC; and (5) ABAC implementations require significant time to run [1, 5].

Moreover, the evolution of technology trends urges the need to enhance AC methods, hence various hybrid AC
models with combined features from two or more AC models are proposed. For example, Kuhn et al. in [12] address
the feature of adding attributes to RBAC to find a model that supports dynamic attributes in organizations and provide
better AC features in dynamic environments. As well, Rajpoot et al. in [13] propose Attribute Enhanced RBAC
(AERBAC) model to enhance both RBAC and ABAC because they have complimentary features to each other. In [14],
authors purpose they propose more fine-grained, flexible, and efficient RABAC (RBAC/ABAC) model. To increase
the flexibility of RBAC, an Emergency RBAC (E-RBAC) approach is proposed in [15], and other approaches.

3. Access Control Metamodels: the state-of-the-art

The rapid evolution of technology and the limitations of AC models, force the need to find AC metamodels to
implement advanced AC features. In general, a metamodel is defined as textual, visual, or formal representation of
concepts and how they are linked together, these concepts might be rules or guidelines for an organization [1]. Our
concern in this paper is to review the proposed AC metamodels in the last decade, analyze them to find if they
are effective to follow technology upgrades. Fig. 1 illustrates a classification for the proposed AC metamodels for
centralized and distributed environments.

Classification of the proposed AC metamodels

Centralized Environments

Enterprise/Organization
Barker [17],

Slimani et al. [6],
Alves et al. [18],

Abd-Ali et al. [24]

Software Development
Frameworks

EA modeling
language

(ArchiMate)
Korman et al. [26]

Java framework
(Spring Security)

Gorshkova et al. [27]

Distributed Environments

WCMSs
Martínez et al.

[22]

Several
Sites/Systems

Bertolissi et al. [19]
Trninić et al. [20]

Cloud Computing
Khamadja et al.[19]

Xia et al. [21]

Network
Firewalls

Martínez et al.
[23]

Fig. 1. Classification for the proposed AC Metamodels

Ferraiolo et al. [16] revise some concerns and raise some issues related to AC policy enforcement and focuses
on the important role that a metamodel might play if it is achieved. To address them, a paper published by Barker
[17] demonstrates that multiple AC models can be derived as special cases from a defined AC metamodel called
Category Based Access Control (CBAC) metamodel. A category is interpreted as a synonym for, a role, a class, a
group, etc. where entities (e.g. subjects) may be assigned. CBAC includes features of MAC, DAC, and RBAC where
a wider range of constraints may be expressed based on it. In [6], Slimani et al. extend Barker’s metamodel to support
resource and action hierarchies. They propose a Unified Access Control Modeling Language (UACML) for finding
hybrid AC policies by allowing categories to be associated with other categories and finding hierarchical relationships
between them. A category is identified as a central component to abstract the key components of AC models such as
roles, security levels, etc. A CBAC metamodel extension is proposed by Alves et al. in [18] to expand a general notion
of obligation for the existing AC models and study the interaction between obligations and permissions.

Another CBAC metamodel approach is proposed in [19], for distributed environments of several sites and sev-
eral policies at each site. In their distributed metamodel the request can be passed to other sites and evaluated in a
distributed manner, they also show how a distributed, dynamic, event-based access control model (DEBAC) can be
defined as an instance of the metamodel. In the context of cloud computing, saving data on cloud servers raise se-
curity challenges to protect sensitive data. In [20] authors state that, the classical AC models (DAC, MAC . . .) are
not adequately expressive for highly flexible and dynamic environments. For this purpose, they present a metamodel
approach for cloud computing services called Category Based Access Control (CatBAC) framework which allows

448 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452
4 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

security administrators in the various company sites to find a concrete model with the constraints and specificities of
each site. Xia et al. in [21] propose another metamodel approach to handle security and privacy in cloud service, called
the Cloud Security and Privacy Metamodel (CSPM). CSPM integrates and extends the existing metamodels of cloud
security together with newly added concepts.Moreover, an approach is presented for web services by Martı́nez et al.
in [22]. They propose a metamodel for the representation of Web Content Management System (WCMS) AC policies
to ease the analysis and manipulation of security requirements by abstracting them from vendor-specific details. Al-
though AC methods are integrated in most WCMS systems (e.g. Wordpress, Durpal . . .), some limitations still exist.
For this purpose, authors aim to raise the level of abstraction of the AC implementation to be represented according
to a vendor-independent metamodel. Also, authors in [23] propose a model-driven approach to extract network AC
policies enforced by firewalls within a network system. They suggest raising the level of abstraction of the information
contained in the firewall configuration files, hence AC policy would be easier to analyze and manipulate.

Furthermore, Abd-Ali et al. in [24] propose an integration metamodel for hybrid AC policies to concurrently handle
multiple AC models. Their idea is based on the concept of abstracting each AC model (e.g. RBAC metamodel), and
each AC metamodel has a special element named DecisionHandler. The AC decision depends on integrating several
AC metamodels, and the AC decision is issued by clustering the DecisionHandler instances of a hybrid AC policy,
then apply them to combining algorithms to find one AC decision as output. Trninić et al. in [25] present PolicyDSL
as a generic AC management infrastructure for a broad set of systems to provide a general method for specifying AC
rules for different AC models. PolicyDSL is used to specify concrete AC policies in a system where a security expert
would be able to express AC policies for a given AC model using the generated DSL.

Moreover, due to the lack of security features in software development frameworks, some metamodel extensions
are proposed in the literature. Korman et al. in [26] propose a unified metamodel as a prospective extension for
ArchiMate, the common Enterprise Architecture (EA) modeling language, to support the development of enterprises
by extending their abilities to model authorization and AC in their architectures. They propose a metamodel extension
based on the conceptual model of ABAC because of its ability to include most of other AC models, then mapped to
ArchiMate to enrich its existing models. Also, Gorshkova et al. in [27] introduce a fine-grained AC model and provide
a metamodel extension for Spring Security framework to meet modern security requirements. Spring Security is one
of the open source security frameworks for Java.

Subsequently, the proposed AC metamodels especially in recent years show the concern for finding advanced AC
methods. This reflects the importance of constructing more robust AC models in all computing environments, espe-
cially with the presence of heterogenous network technologies and platforms [28]. Table 1 summarizes the proposed
AC metamodels, the core metamodel features, their types, the derived AC models instances, and the modeling tools.

4. Discussion and Critical Analysis

As shown in Table 1, AC metamodels are constructed based on features of AC models where various models (also
hybrid models) instances can be derived from them. Some metamodels are proposed as generic, unifying, hybrid, and
metamodel extension for different distributed and centralized environments. Hence:

1- Some AC metamodels are constructed based on features of some AC models, and the only AC model(s) (also
hybrid) instance(s) that can be derived are the one(s) that are employed in the core structure, for example [6]
and [24]. These metamodels are proposed as Hybrid Metamodels.

2- Some frameworks (for example, Drupal, ArchiMate, Spring Security...) are extended to support AC features of
one or more AC model, and the extracted AC policies belong to the model(s) that are used to extend the main
framework, for example [22, 23, 26, 27]. These metamodels are proposed as Metamodel Extensions.

3- Some AC metamodels are constructed based on a general notion which encompasses some AC features for some
models (for example, CBAC). Based on this metamodel, AC model instance(s) can be derived, for example
[17, 19, 20, 25]. These metamodels are proposed as Generic Metamodels.

4- Some of the existing AC metamodels are augmented with additional features to reflect a larger and more defini-
tive set of possible rules to express AC policies, for example [18] and [21]. This type of metamodels is proposed
as Metamodel Extensions.

Hence, the proposed works of AC metamodels in the literature can be classified into two concepts:

 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452 449
N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000 5

Table 1. Summary of the Proposed Access Control Metamodels

ref. Author Year Proposed for Metamodel
Visual rep.

Type Based on instance(s) Modeling lang.
Y/N Tool

Proposed AC metamodels for Distributed Environments
[19] Bertolissi et

al.
2014 Distributed

system of
several sites

Distributed
Metamodel

No n/a Generic
Metamodel

CBAC CBAC rewrite-based
operational
semantics

[20] Khamadja et
al.

2013 Cloud Com-
puting

CatBAC
metamodel

Yes UML Generic
Metamodel

CBAC Hybrid mod-
els

First-order
logic

[21] Xia et al. 2018 Cloud ser-
vices

cloud security
& privacy
(CSPM)

Yes UML Metamodel
Extension

n/a n/a UML

[22] Martinez et al. 2013 WCMSs WCMS Meta-
model

Yes MDE Metamodel
Extension

RBAC RBAC Drupal

[23] Martinez et al. 2012 Network Fire-
walls

Network Con-
nection

Yes Eclipse Metamodel
Extension

Network Fire-
walls

RBAC, Or-
BAC

Xtext

[20] Trninić et al. 2013 Set of systems PolisyDSL Yes UML Generic
Metamodel

n/a RBAC Textual DSL

Proposed AC metamodels for centralized Environments
[17] Barker 2009 Enterprise Barker’s

Metamodel
No n/a Unifying

Metamodel
CBAC RBAC,MAC Rule/Logic

Language
[6] Slimani et al. 2011 Enterprise UACML

Metamodel
Yes UML Hybrid Meta-

model
CBAC and
Hybrid mod-
els

Group based,
MAC, RBAC,
hybrid model

Object con-
straint lan-
guage (OCL)

[18] Alves et al. 2014 Enterprise Obligations in
CBAC Meta-
model

No n/a Metamodel
Extension

CBAC CBAC rewrite-based
operational
semantics

[24] Abd-Ali et al. 2015 Enterprise Integration
metamodel

Yes UML Hybrid Meta-
model

CW,BLP,BIBA,
RBAC

Hybrid mod-
els

First-order
logic

[26] Korman et al. 2016 Enterprise
Architecture
framework

Unified Meta-
model

Yes ArchiMate Metamodel
Extension

DAC,BLP,Biba,
CW,RBAC,
ABAC

DAC,BLP,CW,
RBAC,ABAC

ArchiMate

[27] Gorshkova et
al.

2017 Enterprise
application
framework

Spring secu-
rity frame-
work

Yes Java-ORM Metamodel
Extension

RBAC RBAC Spring ex-
pression
lang.(SpEL)

• In (1) and (3) the aim is to find a generic metamodel that encompasses most of the AC features where various
AC models (and hybrid models) can be derived, Fig. 2a illustrates the idea of generic metamodels. But the
proposed AC metamodels are not generic, since they have hybrid structure with some AC features rather than
a generic metamodel. This hybrid structure is employed to derive some AC models where their features are
already employed in the core metamodel structure.
• In (2) and (4) the aim is to enhance some of the existing frameworks/metamodels by extending them to support

AC features and express more AC policies, Fig. 2b illustrates the idea of metamodel extension where AC
features are added to the core metamodel/framework to allow defining (more) AC policies. Then, the extended
AC metamodel/framework can be used to derive various instances of AC models based on the added features.

Features of some AC
models, e.g. DAC, MAC,

RBAC

Access Control metamodel

DAC model

Instances that can be derived

Hybrid MAC/RBAC
model

RBAC model

…

.

.

.

For example:
• CBAC metamodel
• Drupal
• ArchiMate
• …

Access Control
metamodel or Framework

Access control metamodel with
enhanced AC features

For example:
• CBAC metamodel with

enhanced AC features
• Drupal + AC features
• ArchiMate + AC features
• …

AC features are added

Ex
te

nd
ed

(a) Concept of generic metamodel (b) Concept of metamodel extension

Fig. 2. Illustration for the concept of the proposed AC Metamodels

However, the presented AC metamodels come with some advantages and several combined features from AC
models are implemented to enhance AC features. But they also have several limitations especially in the light of new

450 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452
6 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

technologies, Table 2 summarizes the objective(s) and limitation(s) for each metamodel. Also, the existing metamodels
have some common limitations and lack some essential characteristics and can be enumerated as follows:

• each metamodel address a case and does not encompass a general concept to derive all AC models instances;
• they are not dynamic enough to follow the continuous technology progress;
• they do not address the feature of collaboration between the derived AC models;
• they do not support or address the feature of migration of AC policy from one AC model to another;
• none of them tackles the issue of finding a common set for AC concepts due to the heterogeneity of AC models;
• none of them address the context of IoT.

Table 2. Objective(s) and Limitation(s) of The Proposed Access Control Metamodels

Author(s) Objective(s) Limitation(s)

Barker [17] Multiple AC models can be derived as special cases from a de-
fined CBAC metamodel.

- lacks the support of resource and action hierarchies.

Slimani et al.
[6]

To provide support for hybrid AC policies by allowing cate-
gories to be associated with other categories and finding hierar-
chical relationships between them.

- hybrid structure to derive some AC models rather than a metamodel.

Alves et al.
[18]

To allow security administrators to check the consistency of a
policy combining authorizations and obligations.

- no explanation of how the approach could be dynamic in distributed contexts
which are rich of events and variable attributes.

Bertolissi et al.
[19]

To provide semantics for distributed AC mechanisms within
distributed environments consisting of several sites.

- no real case studies are explained or implemented.

Khamadja et
al.[20]

To develop a new cloud computing service named “Access Con-
trol as a Service”.

- no case study or testing result;
- do not explain how access can be controlled in the context of multi-cloud.

Xia et al. [21] To handle security and privacy in cloud service development
and operations.

- have not explained how access can be controlled in the context of multi-cloud.

Martinez et al.
[22]

To ease the analysis and manipulation of security requirements
in WCMSs.

- the notion of variable attributes is not considered.
- extending Drupal framework to provide support for some AC features without
explaining how these extensions can be upgraded due to updates.

Martinez et al.
[23]

To extract network AC policies enforced by firewalls within a
network system, then AC policy would be easier to understand,
analyze and manipulate.

- extending networks firewall systems to provide support for some AC features
without explaining how these extensions can be upgraded due to continuous
updates.

Abd-Ali et al.
[24]

To concurrently handle multiple AC models which are: CW,
BLP, BIBA, and RBAC.

- hybrid structure to derive some AC models rather than a metamodel.

Trninić et al.
[20]

to allow a security expert to express AC policies for a given AC
model.

- does not consider dynamic constraints.

Korman et al.
[26]

To provide support for architectures of enterprises by extending
their abilities to model authorization and AC in their frame-
works.

- difficulty for potential implementation of automated analytical capabilities.
- they extend ArchiMate framework to support some AC features without ex-
plaining how these extensions can be upgraded.

Gorshkova et
al. [27]

To provide a metamodel extension for Spring Security frame-
work to meet modern security requirements.

- they extend Spring Security framework to support some AC features without
explaining how these extensions can be upgraded.

Accordingly, constructing a unified or generic AC metamodel that considers the continuous technologies progres-
sions, the variety of information systems, and the heterogeneity of AC models is not yet achieved.

5. Issues and open research questions

This is a recent research issue, and various research are still conducting for AC metamodeling approach to find
a more general metamodel that can be used to dynamically define AC policies. Despite the proposed AC metamod-
els have some enhanced features, they lack some important characteristics that are essential to the current fact of
technologies. From this review, we can find that some issues need to be addressed which are:.

5.1. Generality

Finding a generic AC metamodel concept that includes all features of the common AC models, and can be oriented
to extract various AC models and serves as a basis for specifying any AC policy is an essential issue in this domain.
Finding this generic basis could lead to find other essential characteristics for this metamodel (e.g. collaboration
between AC models).

 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452 451
N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000 7

5.2. Dynamism

The structure of the generic AC metamodel should be dynamic with the ability to define various types of attributes
and entities, hence various models can be formulated for static and dynamic policy enforcements.

5.3. Extensibility

In the literature, several AC methods are implemented in different computing environments, some of them are
based on (or extended from) the common AC models, while others are formulated based on the needed context. This
reflects the diversity of the implemented AC models in different fields and the importance of upgrading them to follow
the continuous technology progressions. Hence, a metamodel supporting the feature of defining new components in
addition to the existing ones would allow describing larger set of possible rules to express policies. Hence, developing
a metamodel that supports this feature is important to extend and upgrade the existing AC methods, and to formulate
and implement new AC methods.

5.4. Collaboration and interoperability

In collaborative computing environments, various collection of information systems and technologies are per-
formed to support work and cooperation between organizations, sites, etc. where users are allowed/denied to commu-
nicate via a wide range of applications such as audio/video conferencing, collaborative document sharing/editing, etc.
hence, collaborative environments need to control access to their assets to increase working cooperation efficiently.
Finding a general basis for a metamodel, would permit handling multiple AC models, and would in turn permit the
collaboration between the obtained AC models and the interoperability between their components.

5.5. Migration

Another interesting feature, that is missing in current AC metamodels, is the ease of the migration from an AC
model to another. In fact, having a metamodel should make it possible to translate an existing AC policy between
the different AC models covered by the metamodel. However, a metamodel with generic, dynamic, and extendable
structure can be implemented to allow migrating the AC policies from one model to another.

However, in this context we can raise the following questions:

• how a new generic and dynamic AC metamodel can be designed?
• what are the main features, components, etc. this AC metamodel can include?
• how its structure can be developed to handle collaboration/interoperability/extension/migration of AC models?
• how to construct a common set of AC concepts for the heterogeneous AC models?

6. Conclusion and Future Perspectives

In this paper, we review and analyze the proposed AC metamodels, explain their objectives, their limitations spe-
cially with current technology progressions and upgrades, and explain the need of finding AC metamodels with higher
level of abstraction that serve as unifying frameworks for specifying any AC policy. To the best of our knowledge, this
is the first review paper with detailed analysis and explanation for the potential research issues in this domain.

In general, recent computing environments, especially IoT, are full of resources and are open to all kinds of attacks
and threats. Furthermore, access control studies gain the attention of researchers along the decades, especially with IT
continuous developments. The common limitations, which can also be considered as research issues in this domain,
that have not been addressed yet are important to be implemented with the current heterogeneous computing environ-
ments. As a contribution in this domain, we are currently developing a new AC metamodel with essential features that
address the aforementioned research issues. As a future perspective, we aim to publish a formal representation for our
AC metamodel in another paper.

452 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 445–452
8 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

Acknowledgment

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding
reference number 06351], Fonds Québécois de la Recherche sur la Nature et les Technologies (FRQNT), and Centre
d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

References

[1] N. Kashmar, M. Adda, M. Atieh, From access control models to access control metamodels: A survey, in: Future of Information and Commu-
nication Conference, Springer, 2019, pp. 892–911.

[2] S. Ravidas, A. Lekidis, F. Paci, N. Zannone, Access control in internet-of-things: A survey, Journal of Network and Computer Applications
144 (2019) 79–101.

[3] M. Sookhak, F. R. Yu, M. K. Khan, Y. Xiang, R. Buyya, Attribute-based data access control in mobile cloud computing: Taxonomy and open
issues, Future Generation Computer Systems 72 (2017) 273–287.

[4] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Access Control in Cybersecurity and Social Media, Université d’Ottawa, 2020, Ch. 4.
[5] V. Hu, D. Ferraiolo, R. Chandramouli, D. Kuhn, Attribute-Based Access Control, Artech House Publishers, 2017.
[6] N. Slimani, H. Khambhammettu, K. Adi, L. Logrippo, Uacml: Unified access control modeling language, in: 2011 4th IFIP International

Conference on New Technologies, Mobility and Security, IEEE, 2011, pp. 1–8.
[7] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, A new dynamic smart-ac model methodology to enforce access control policy in iot layers, in:

2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT), IEEE,
2019, pp. 21–24.

[8] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Smart-ac: A new framework concept for modeling access control policy, Procedia Computer
Science 155 (2019) 417–424.

[9] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Access control metamodel for policy specification and enforcement: From conception to formal-
ization, Procedia Computer Science (2021).

[10] R. Sandhu, E. Coyne, H. Feinstein, C. Y. Role-Based, Access control models, IEEE computer 29 (2) (2013) 38–47.
[11] E. O. Boadu, G. K. Armah, Role-based access control (rbac) based in hospital management, Int. J. Softw. Eng. Knowl. Eng 3 (2014) 53–67.
[12] D. R. Kuhn, E. J. Coyne, T. R. Weil, Adding attributes to role-based access control, Computer 43 (6) (2010) 79–81.
[13] Q. M. Rajpoot, C. D. Jensen, R. Krishnan, Integrating attributes into role-based access control, in: IFIP Annual Conference on Data and

Applications Security and Privacy, Springer, 2015, pp. 242–249.
[14] H. Qi, X. Di, J. Li, Formal definition and analysis of access control model based on role and attribute, Journal of information security and

applications 43 (2018) 53–60.
[15] F. Nazerian, H. Motameni, H. Nematzadeh, Emergency role-based access control (e-rbac) and analysis of model specifications with alloy,

Journal of information security and applications 45 (2019) 131–142.
[16] D. Ferraiolo, V. Atluri, A meta model for access control: why is it needed and is it even possible to achieve?, in: Proceedings of the 13th ACM

symposium on Access control models and technologies, 2008, pp. 153–154.
[17] S. Barker, The next 700 access control models or a unifying meta-model?, in: Proceedings of the 14th ACM symposium on Access control

models and technologies, 2009, pp. 187–196.
[18] S. Alves, A. Degtyarev, M. Fernández, Access control and obligations in the category-based metamodel: a rewrite-based semantics, in: Inter-

national Symposium on Logic-Based Program Synthesis and Transformation, Springer, 2014, pp. 148–163.
[19] C. Bertolissi, M. Fernández, A metamodel of access control for distributed environments: Applications and properties, Information and Com-

putation 238 (2014) 187–207.
[20] S. Khamadja, K. Adi, L. Logrippo, Designing flexible access control models for the cloud, in: Proceedings of the 6th International Conference

on Security of Information and Networks, 2013, pp. 225–232.
[21] T. Xia, H. Washizaki, T. Kato, H. Kaiya, S. Ogata, E. B. Fernandez, H. Kanuka, M. Yoshino, D. Yamamoto, T. Okubo, et al., Cloud secu-

rity and privacy metamodel, in: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development,
SCITEPRESS-Science and Technology Publications, Lda, 2018, pp. 379–386.

[22] S. Martı́nez, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, J. Cabot, Towards an access-control metamodel for web content management
systems, in: International Conference on Web Engineering, Springer, 2013, pp. 148–155.

[23] S. Martı́nez, J. Cabot, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, A model-driven approach for the extraction of network access-
control policies, in: Proceedings of the Workshop on Model-Driven Security, 2012, pp. 1–6.

[24] J. Abd-Ali, K. El Guemhioui, L. Logrippo, A metamodel for hybrid access control policies., JSW 10 (7) (2015) 784–797.
[25] B. Trninić, G. Sladić, G. Milosavljević, B. Milosavljević, Z. Konjović, Policydsl: Towards generic access control management based on a policy

metamodel, in: 2013 IEEE 12th International Conference on Intelligent Software Methodologies, Tools and Techniques (SoMeT), IEEE, 2013.
[26] M. Korman, R. Lagerström, M. Ekstedt, Modeling enterprise authorization: a unified metamodel and initial validation, Complex Systems

Informatics and Modeling Quarterly (7) (2016) 1–24.
[27] E. Gorshkova, B. Novikov, M. K. Shukla, A fine-grained access control model and implementation, in: Proceedings of the 18th International

Conference on Computer Systems and Technologies, 2017, pp. 187–194.
[28] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Deriving access control models based on generic and dynamic metamodel architecture: Industrial

use case, Procedia Computer Science 177 (2020) 162–169.

APPENDIX III

IEEE/ACM International Workshop on Software Engineering Research & Practices for the Internet
of Things (SERP4IoT), 27-27 May 2019, Montreal, Canada

Pages: 21 - 24, https://doi.org/10.1109/SERP4IoT.2019.00011

177

A New Dynamic Smart-AC Model Methodology to

Enforce Access Control Policy in IoT layers

Nadine Kashmar*, Mehdi Adda

Département de Mathématiques,

Informatique et Génie

Université du Québec à Rimouski

Rimouski, Québec

kasn0002@uqar.ca*,

mehdi_adda@uqar.ca

Mirna Atieh
Business Computer Department,

Faculty of Economic Sciences and

Administration

Lebanese University

Hadat, Lebanon

matieh@ul.edu.lb

Hussein Ibrahim
Institut Technologique de Maintenance

Industrielle (ITMI)

Sept-Îles, Québec

hussein.ibrahim@itmi.ca

Abstract—Internet of Things (IoT) is the conversion of

everyday tangible devices or machines to smart objects. This

means that these objects would be able to think, sense and feel.

For example, your home devices will be able to detect and feel

your absence to turn off the lights of empty rooms, close doors,

lock the gates, and other tasks. Thus, would it be acceptable to

find intruders who might mess up your daily life style or

control your home appliances? Absolutely not! The same idea

for factories, they definitely reject to detect any unacceptable

access from any foreigner to their logical/physical assets or

machines who might be able to locally or remotely control, for

example, any machine operation. This would cause a

significant loss for their reputation or investments, since any

vulnerability or attack can produce, for example, fault

products. So far, IoT is considered as one of the most essential

areas of future technologies, especially for the industries.

Hence, finding an environment full of smart devices needs a

smart security methodology to prevent any illegal access. In

this domain, various researches are conducted to find Access

Control (AC) models to enforce security policies that prevent

any unauthorized detection of sensitive data and enable secure

access of information. For this purpose, we present a new

dynamic Smart-AC model methodology to enforce security

policy in IoT layers.

Keywords-IoT; access control; smart; security; model; policy

I. INTRODUCTION

In literature various Internet of Things (IoT) definitions
are provided due to the integration of different technologies.
The significant amount of IoT definitions can be summarized
as a huge number of objects and devices with different
technologies and platforms that are connected to the internet
via heterogeneous networks (3G, LTE, WiFi, ZigBee …).
Figure 1 illustrates this definition. It is the integration of
several technologies, such as wired and wireless sensor
networks, identification and tracking technologies,
communication protocols shared with the next generation
internet, and distributed intelligence for smart objects [1].

The big question in IoT is how to allow a variety of
objects, such as PCs, mobile phones, sensors, etc. to interact
and cooperate with each other transparently and securely to
attain certain tasks related to consumers, companies or

industry sectors. In this domain, the main concern for them is
to keep their zone of interconnected devices and which are
connected to the internet, secure, private and controlled only
by them. Thus, finding an environment full of smart devices
needs a smart security methodology to prevent any illegal
access and enforce policy and security requirements. In this
paper, we tackle IoT security and Access Control (AC)
related issues and present a new methodology to enforce AC
policy in different IoT layers.

The paper is organized as follows: section II briefly
presents IoT limitations and challenges. Section III
summarizes the existing AC models for IoT. The architecture
of IoT layers and our methodology of integrating Smart-AC
model in IoT are explained in section IV. Section V
concludes this paper and presents future perspectives.

Figure 1. Heterogeous IoT platforms, devices and internet networks

II. IOT LIMITATIONS AND CHALLENGES

The IoT is penetrating a wide range of domains

including cities, homes, industry, healthcare, appliances, and

much more, to make everything smart, adaptable and easy.

In each area there are various opportunities and challenges.

For this purpose, different plans are conducted, various

applications are developed, and different software and

hardware technologies are cooperatively used. The core

3G

4G

5G

ZigBee

3.5G

802.11n,g,b

WAN
Ethernet

Bluetooth

WLAN

GPRS

WiFi

LTE

player in IoT technologies are the wireless technologies,

where sensor networks play a critical role for linking the

physical world with the digital world. For example, e-health

applications, environmental monitoring (temperature, plants,

weather), intelligent transportation systems, etc.

Although IoT is a popular topic, many challenging

problems still need to be addressed, specially the

technological and social aspects, before being the IoT idea

widely accepted. The IoT challenges can be summarized

under the following categories: free internet connectivity,

security and all related issues, acceptability among the

society, storage and computational ability, scalability, and

power consumption [2, 3]. Among other challenges that are

also mentioned in [4] we have: data management challenge,

data mining challenge, privacy and security challenge, and

chaos challenge. All these challenges and limitations open

wide research issues, suggestions, methodologies,

architectures, and others to address each of them. Since all

IoT devices are connected to the internet, they are vulnerable

to attacks and security threats. Hence, the core concern is the

importance of finding methods to enforce AC policies to

prevent any untrusted access and control access to the

resources. Accordingly, the acceptance or rejection of this

technology is determined by many factors, where security

and privacy are considered the main of them.

III. RELATED WORK

The challenging IoT heterogeneous environments of
interconnected networks and distributed systems, the
heterogeneity of platforms and applications, and the diversity
of users, force the necessity to design a well coherent AC
architecture to enforce AC policy and administer security
features in IoT. In this context, several IoT authentication
and AC methods are offered by researchers to integrate
security features with this technology from two or more AC
models. The most famous AC models that are presented
comprehensively and reviewed in literature are:
Discretionary Access Control (DAC), Mandatory Access
Control (MAC), Role Based Access Control (RBAC),
Organization Based Access Control (OrBAC), and Attribute
Based Access Control (ABAC) [5-7].

However, Ouaddah et. al in [8] propose SmartOrBAC
AC framework for IoT environment. It is based on OrBAC,
but due to some OrBAC limitations, it is coupled with the
RESTFUL web services mechanisms due to its preferability
for the low power constrained environment. The result is the
use of web service technologies to implement secure
collaboration between organizations. The basic AC
requirements in IoT are analyzed by Hussein et. al in [9].
The summarized AC requirements are thin clients and server
architecture, autonomous and self-contained AC,
infrastructure integration, and attributes centric AC.
However, authors adopt the community-based AC
architecture (COBAC) to administer the AC in IoT, as a
solution for these requirements. IoTCollab framework is
developed by Adda et. al in [10], it is an extended study of
RBAC and ABAC models. Its aim is to ease the
collaboration and data sharing in IoT. In [11], a collaborative

RBAC (CollRBAC) and collaborative ABAC (CollABAC)
models are described and compared in the light of IoT and
IoTCollab requirements. Moreover, a model to find a secure
communication between things is proposed by Liu et al. [12].
The main idea is to verify identities between two IoT devices
by implementing authentication protocol in the presentation
layer where identification key establishment occurs. For
Authorization, authors adopt RBAC’s authorization concept,
implement Elliptic Curve Cryptosystem (ECC) for secure
key establishment. A smart contract-based framework is
proposed in [13] to implement distributed and trustworthy
AC for the IoT by applying smart contract-enabled
blockchain technology. It contains: multiple Access Control
Contracts (ACCs), one Judge Contract (JC), and one
Register Contract (RC). For AC between subjects and
objects, ACCs are implemented. To judge the unpleasant
behavior of a subject during the AC, JC is used. To manage
the ACCs and JC, RC is used. In this context authors address
different case studies to demonstrate the feasibility of the
framework. As well, some researches address the different
layers of IoT architecture, then propose an AC model.
Authors in [14] mention that, even there is no consensus on a
wide IoT architectures, they are generally comprised of three
main components: an object layer, a middle layer(s), and an
application layer. The difference between these architectures
relies in the middle layer(s). Hence, authors propose a cloud-
enabled IoT with four-layer AC Oriented (ACO) architecture
which are: an object, a virtual object layer, a cloud service
layer, and an application layer. Their purpose is to establish a
framework to find AC models for cloud enabled IoT.

However, none of the proposed AC models encompass a
general structure or methodology. Each model addresses
certain case and implemented based on some features of
different models (RBAC, OrBAC …), knowing that these
models have limitations and deficiencies [5]. Also, none of
them consider the continuous technological changes, and it is
built for specific IoT architecture or structure. Thus, two key
points inspire us to develop a smart AC methodology which
can be implemented to find a Smart-AC model:

• The first is the word “SMART”. While we think
about IoT, we think about the smart objects which
are able to sense and communicate within the IoT
environment. Hence, we come up with the idea of a
“Smart Access Control model”.

• The second is the term “HETEROGENEOUS”. As
we know, IoT world is heterogeneous, starting from
the devices, types of networks, platforms, reaching
to the applications. As presented in literature, there
are various AC models implemented from two or
more AC models, for various cases and studies, and
they are also heterogeneous. Thus, finding a Smart-
AC model that is capable to include all AC features
and can be dynamic enough to be implemented in
any IoT environment becomes our objective.

The aim is to find a general and dynamic AC model
structure which allow building other AC models to enforce
AC policies in IoT, regardless of its architecture and type of
application (smart home, smart industry …). For example, in
the field of smart industry or industrial IoT, the new factories

of electricity rely on IoT applications. Any intrusion for such
applications can cause hazardous consequences, such as
cutting off the power for hospitals, ministries and even cities.

IV. IOT ARCHITECTURE AND THE PROPOSED SMART-AC

MODEL METHODOLOGY

A. IoT Layers

In [13], authors mention that there is no consensus on a
wide IoT architecture. In this context, [3, 14-16] state that
IoT architectures, are generally comprised of three
components: 1) the object or the perception layer, 2) the
middle or network layer(s), and 3) the application or
presentation layer (Figure 2). The object layer contains
Internet-enabled devices (cameras, sensors, …) to gather and
exchange information with other devices through the
Internet. The middle layer works as agent to transfer the
collected data from an object layer to a specific destination in
the application layer. In this layer, different network
communication technologies are used for this purpose, such
as Bluetooth, ZigBee, WiFi, 4G, etc. The application layer is
where information is received and processed. Also, it is
proposed that in some IoT architectures, the middle layer
consists of two layers: the network and the service layers.
Similarly, in some other researches it is proposed that the
middle layer consists of three layers: object abstraction,
service management, and service composition layers.

B. Smart-Access Control Model features and methodology

Various AC models are presented in literature, MAC,

DAC, RBAC, etc. each model is developed either to

overcome some limitations found in preceding models or as

a solution for a specific use case and application. Moreover,

some other AC models have some combined features from

some models to enhance some service features. Hence, our

aim is to find a Smart-AC model with the following features:

• Generic enough to include all features offered by

the existing AC models.

• Serves as a basis for specifying any AC policy.

• Eases the migration from an AC model to another.

• Handles multiple AC models and find advanced

security features and operations.

• Works as a guard to restrict accesses starting from

the physical locations reaching to the end user.

• Dynamic enough to handle the diverse needs, use

cases, and applications for AC especially with the

rapid propagation and evolution of information

technologies (cloud computing, IoT …), and others.

The features of each AC model are summarized in [5].

DAC model includes three key components: a set of objects,

a set of subjects, and a matrix. AC rights of subject(s) over

object(s) are specified and represented as Capability Lists

(CLs) and AC Lists (ACLs), which are represented as a

matrix. In MAC, AC policy is managed in a centralized way,

where security levels are associated with each subject and

object, then permissions and actions are derived. As an

alternative for DAC and MAC, RBAC model is developed,

where users can be assigned some roles and a role can be

associated to many users, and a role is a group of rights to

use some object(s). OrBAC model is implemented to

overcome some of the limitations in DAC, MAC and RBAC,

and to find a more abstract control policy.

However, Figure 3 shows our vision for a Smart-AC

model with the above mentioned, and AC models features. It

illustrates the features and parameters for all models (subjets,

objects …) with the ability to define new ones (e.g. X, Y …)

and find the needed mappings between each model entities.

Thus, any AC model can be developed by combining

features from the existing models, in addition to the ability to

add or define new ones. Hence, various models can be

implemented, migrated, and used dynamically to enforce AC

policy based on the needed security requirements. In IoT,

this approach is practical, due to its dynamicity and ability to

be upgraded based on the continuous technological changes.

Hence, the dynamic and generic properties of such model, if

implemented, 1) will help constructing new AC models

based on a general AC model concept. 2) Migrating AC

policies from one model to another will also help companies

LTE

3G
4G

5G
3.5G

802.11n,g,b

WANEthernet

Bluetooth

WLAN

GPRS

WiFi
ZigBee

Gateway

Things with sensor nodes

Cellular nodes

Middle Layer

Object Layer

Application Layer

Figure 2. General IoT Layers

Figure 3. The vision of Smart-AC model

or industry sectors reduce the complexity and cost in this

domain. 3) Different AC models can cooperate within the

same company and this would be effective for IoT

applications.

Each IoT layer needs the integration of AC model(s) to

enforce AC policy and find secure communication

environment. Various access types might exist in each IoT

layer, based on the existing objects and subjects, and the

needed security requirement to deny any illegal access and

determine who can access what and when. Based on general

architecture of IoT layers and our illustrated vision for the

Smart-AC model, Figure 4 shows how any AC model can

be combined with IoT layers (AC1, AC2, … ACn...), which

is derived/defined from the smart-AC model.

V. CONCLUSION AND FUTURE PERSPECTIVES

IoT is an emerging phenomenon, since various
technologies and applications are combined to find a real
intelligent world. Finding a secure IoT environment is a
challenging issue. Various AC models are presented in
literature to enforce AC policy in IoT, but they lack the idea
of being upgradable or dynamic to follow technology
progressions and changes. For this purpose, we present the
headlines of new methodology to define a generic Smart-AC
model, its concept is dynamic enough to define other AC
models based on the needed security requirements. As future
perspective, our aim is to implement this methodology after
defining the presented headlines, of this paper, as a formal
steps or guidelines and develop a general structure of the
proposed methodology. Also, we will consider Industrial IoT
(IIoT) or Industry 4.0 as an example to implement our
methodology.

ACKNOWLEDGMENT

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
Fonds Québécois de la Recherche sur la Nature et les
Technologies (FRQNT).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, "The internet of things:

A survey," Computer networks, vol. 54, no. 15, pp. 2787-

2805, 2010.

[2] S. C. Mukhopadhyay and N. K. Suryadevara, "Internet of

things: Challenges and opportunities," in Internet of Things:

Springer, 2014, pp. 1-17.

[3] K. Ahmad, O. Mohammad, M. Atieh, and H. Ramadan,

"IoT: Architecture, Challenges, and Solutions using Fog

Network and Application Classification," presented at the

19th International Arab Conference on Information

Technology (ACIT 2018), Lebanon, Nov. 2018.

[4] I. Lee and K. Lee, "The Internet of Things (IoT):

Applications, investments, and challenges for enterprises,"

Business Horizons, vol. 58, no. 4, pp. 431-440, 2015.

[5] N. Kashmar, M. Adda, and M. Atieh, "From Access Control

Models to Access Control Metamodels: A Survey," the

Future of Information and Communication Conference

(FICC) 2019, US, San Francisco, March 14-15, 2019.

accepted

[6] V. C. Hu, D. F. Ferraiolo, R. Chandramouli, and D. R. Kuhn,

Attribute-Based Access Control. London: Artech Hous,

2018.

[7] M. Ennahbaoui and S. Elhajji, "Study of access control

models," in Proceedings of the World Congress on

Engineering, 2013, vol. 2, pp. 3-5.

[8] A. Ouaddah, I. Bouij-Pasquier, A. A. Elkalam, and A. A.

Ouahman, "Security analysis and proposal of new access

control model in the Internet of Thing," in 2015 international

conference on electrical and information technologies

(ICEIT), 2015, pp. 30-35: IEEE.

[9] D. Hussein, E. Bertin, and V. Frey, "Access control in IoT:

From requirements to a candidate vision," in 2017 20th

Conference on Innovations in Clouds, Internet and Networks

(ICIN), 2017, pp. 328-330: IEEE.

[10] M. Adda and R. Saad, "A data sharing strategy and a DSL

for service discovery, selection and consumption for the

IoT," Procedia Computer Science, vol. 37, pp. 92-100, 2014.

[11] M. Adda, J. Abdelaziz, H. Mcheick, and R. Saad, "Toward

an access control model for IOTCollab," Procedia Computer

Science, vol. 52, pp. 428-435, 2015.

[12] J. Liu, Y. Xiao, and C. P. Chen, "Authentication and access

control in the internet of things," in 2012 32nd International

Conference on Distributed Computing Systems Workshops,

2012, pp. 588-592: IEEE.

[13] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan,

"Smart contract-based access control for the internet of

things," IEEE Internet of Things Journal, 2018.

[14] A. Alshehri and R. Sandhu, "Access control models for

cloud-enabled internet of things: A proposed architecture and

research agenda," in 2016 IEEE 2nd International

Conference on Collaboration and Internet Computing (CIC),

2016, pp. 530-538: IEEE.

[15] S. Talari, M. Shafie-Khah, P. Siano, V. Loia, A. Tommasetti,

and J. Catalão, "A review of smart cities based on the

internet of things concept," Energies, vol. 10, no. 4, p. 421,

2017.

[16] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,

"Internet of Things (IoT): A vision, architectural elements,

and future directions," Future generation computer systems,

vol. 29, no. 7, pp. 1645-1660, 2013.

LTE

3G

4G

5G
3.5G

802.11n,g,b

WANEthernet

Bluetooth

WLAN

GPRS

WiFi

ZigBee

Gateway

Things with sensor nodes

Cellular nodes

Middle Layer

Object Layer

Application Layer

AC1

AC2

AC3

AC4

AC5

AC6

AC7

AC8

ACn

ACn+1

Figure 4. The vision of Smart-AC model

APPENDIX IV

The 14th International Conference on Future Networks and Communications (FNC) August 19-21,
2019, Halifax, Canada

Procedia Computer Science, Volume 155, 2019, Pages 417-424,
https://doi.org/10.1016/j.procs.2019.08.058

183

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 155 (2019) 417–424

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2019.08.058

10.1016/j.procs.2019.08.058 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 14th International Conference on Future Networks and Communications (FNC)
August 19-21, 2019, Halifax, Canada

Smart-AC: A New Framework Concept for Modeling Access
Control Policy

Nadine Kashmara,c,*, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc
aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada

bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon
cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC, G4R 5B7, Canada

Abstract

As new technologies grow such as Internet of Things (IoT) and cloud computing, the way how people interact with devices
change. The current world of interconnectivity, the heterogeneity of networks, platforms, applications, and the diversity of users
make the modernization of security methods inevitable fact. Access Control (AC) is one of these essential security requirements
in this domain. The continuous technology propagation forces the need to enhance AC methods, which are presented in the
literature by combining features from two or more models based on a given case or scenario. The aim is to enforce AC policy and
create secure communication environments. In this paper, we summarize some of the proposed methods with combined features
from various AC models in the light of new technologies. Also, we present a deeper look for our idea of finding a methodology
for a new dynamic Smart-AC model and a use case, in addition to the challenges to implement it. Our aim is to find a general AC
framework to overcome the limitations of the presented AC methods, since they are not generic enough and do not encompass a
general concept to tackle the various IT cases. The concept of our Smart-AC method is that it can be oriented to include (or
exclude) all (or some) AC features for a given scenario or project, and work as a generic basis to encompass the heterogeneity of
all AC models. Our proposed model aims to follow up AC requirements along with technology propagations and developments.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Acess Control; Models; Smart; Policy, IoT; Cloud computing; Industry 4.0;

1. Introduction

The current world of interconnectivity is composed of heterogeneous networks, devices, platforms, applications,
etc., such environment is vulnerable to several kinds of attacks, and this impose the need of finding heterogeneous

* Corresponding author. Tel.: +14188338800; fax: +141883311
E-mail address: nadine.kashmar@uqar.ca

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 14th International Conference on Future Networks and Communications (FNC)
August 19-21, 2019, Halifax, Canada

Smart-AC: A New Framework Concept for Modeling Access
Control Policy

Nadine Kashmara,c,*, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc
aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada

bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon
cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC, G4R 5B7, Canada

Abstract

As new technologies grow such as Internet of Things (IoT) and cloud computing, the way how people interact with devices
change. The current world of interconnectivity, the heterogeneity of networks, platforms, applications, and the diversity of users
make the modernization of security methods inevitable fact. Access Control (AC) is one of these essential security requirements
in this domain. The continuous technology propagation forces the need to enhance AC methods, which are presented in the
literature by combining features from two or more models based on a given case or scenario. The aim is to enforce AC policy and
create secure communication environments. In this paper, we summarize some of the proposed methods with combined features
from various AC models in the light of new technologies. Also, we present a deeper look for our idea of finding a methodology
for a new dynamic Smart-AC model and a use case, in addition to the challenges to implement it. Our aim is to find a general AC
framework to overcome the limitations of the presented AC methods, since they are not generic enough and do not encompass a
general concept to tackle the various IT cases. The concept of our Smart-AC method is that it can be oriented to include (or
exclude) all (or some) AC features for a given scenario or project, and work as a generic basis to encompass the heterogeneity of
all AC models. Our proposed model aims to follow up AC requirements along with technology propagations and developments.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Acess Control; Models; Smart; Policy, IoT; Cloud computing; Industry 4.0;

1. Introduction

The current world of interconnectivity is composed of heterogeneous networks, devices, platforms, applications,
etc., such environment is vulnerable to several kinds of attacks, and this impose the need of finding heterogeneous

* Corresponding author. Tel.: +14188338800; fax: +141883311
E-mail address: nadine.kashmar@uqar.ca

418 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–4242 Author name / Procedia Computer Science 00 (2019) 000–000

Access Control (AC) models to prevent any illegal access. The idea of AC starts by implementing the principles of
information security (confidentiality, authorization, authentication…), then finding different AC models such as:
Discretionary Access Control (DAC) [1], Mandatory Access Control (MAC) [1, 2], Role Based Access Control
(RBAC) [1, 3, 4], Organization Based Access Control (OrBAC) [3], and Attribute Based Access Control (ABAC)
[1, 5]. But, the limitations of the existing AC models [6] and the continuous upgrade of IT technologies, force the
need to find other AC methods with combined features to enforce AC policy and administer security requirements.
However, various AC methods are presented in research field in different IT domains such as, cloud computing, IoT,
etc. Moreover, recent researches are still conducting to find the needed framework with the needed characteristics.

The main concern of this paper is to summarize and analyze the reviewed AC methods in this domain [6] and
show their limitations in the current IT revolution. Then, propose a deeper look for our idea of fining a methodology
for a new dynamic Smart-AC model [7], and present a use case to show its flexibly for modeling various AC models
(and hybrid models) in addition to the challenges for implementing this idea.

In this paper the existing AC methods with combined features and their current limitations are summarized in
section 2. In section 3, our idea for dynamic Smart-AC model methodology with a deeper look is explained. A use
case of how Smart-AC model is able to derive other AC models is explained in section 4. The challenges to
implement this methodology are discussed in section 5. Section 6 concludes this paper with future perspectives.

2. Related Work

In a computing environment controlling access is an essential security requirement. For this purpose, various AC
models are presented [1-5]. In recent years and due to the significant increase in the number of computer users,
especially in the presence of new technologies, the need for upgrading AC methods becomes an important issue.
Thus, different AC methods with combined features from various AC models are proposed to find a model with
advanced AC features, to secure the information from unauthorized access and enforce any AC policy. For example,
several model approaches with combined features from both RBAC and ABAC (called hybrid) are presented.

RBAC model does not support dynamic attributes, for this purpose Kuhn et al. in [5] address the idea of adding
attributes to RBAC to find a model that supports dynamic attributes. Their aim is to handle relationships between
roles and attributes to provide better AC features in dynamic environments. RBAC and ABAC models have
complimentary features to each other, Rajpoot et al. in [8] present the notion of enhancing features from both RBAC
and ABAC. Thus, the model Attribute Enhanced RBAC model (AERBAC) is presented, which combines the
flexibility offered by ABAC and RBAC’s advantages of easier administration and user permissions.

Various AC models are proposed for distributed environments and are widely implemented in cloud computing
and IoT, also recent researches are still conducting in such domains. In [9], the author discusses the appropriate
ABAC model features in cloud computing. An analysis of different AC mechanisms in cloud are presented in [10],
which are: DAC, MAC, RBAC, ABAC, distributed RBAC (dRBAC), and cloud optimized RBAC (coRBAC). A
survey on AC models in cloud computing is presented and analyzed in [11]. Furthermore, a method for providing
secure AC in cloud computing is introduced in [12]. The author presents a hierarchical structure, its root is the
trusted authority which authorizes the top-level domain authorities. This structure uses a clock to upload, download,
and delete files to and from the cloud. It is composed of four parts: cloud owner, untrusted cloud, clock and cloud
users. Another AC method is proposed in [13], the method uses a one-time password which expires in two minutes
and one day password expires after twenty-four hours. For each login session the user receives passwords with
encryption via e-mail. Moreover, a SmartOrBAC AC framework for IoT environment is proposed in [14]. It is based
on OrBAC model coupled with the RESTFUL web services mechanisms for its preferability for the low power
constrained environment. The proposed method allows the use of web service technologies to impose secure
collaboration between organizations. In [15], authors propose a four-layer AC Oriented (ACO) architecture: an
object layer, a virtual object layer, a cloud service layer, and an application layer. The aim of the framework is to
build AC models for cloud enabled IoT. As well, a comprehensive review about AC in the IoT with the challenges
and opportunities are presented in [16] . Different other AC methods are proposed in this field, which reflects the
importance of finding proper AC methods in the evolutionary stage of information technologies.

The communication environment in recent technologies force the importance to find dynamic and upgradable AC
methods, due to the huge number of users and the diversity of devices and platforms. The aim is to restrict and even

 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–424 419
 Author name / Procedia Computer Science 00 (2019) 000–000 3

prevent any illegal access to any resources in different fields, e.g. industry sectors, where their current performance
is widely dependent on IT technologies. After reviewing and analyzing the presented works in this domain we find
that some of them analyze and discuss the appropriate AC model features, while others present AC methods to
enforce AC policy. Thus, we find that these methods:

• Do not address the idea of finding solutions to existing AC models limitations.
• Designed based on some features of AC models (e.g. RBAC and ABAC).
• Are not dynamic enough to follow the rapid propagation of technologies.
• Do not encompass a general concept to handle the flexibility feature for any new extensions or transformations.

All of the above reasons and the heterogeneity of the presented AC methods for the various cases and studies
inspired us with an idea for a methodology to find a new dynamic Smart-AC model, which is presented in [7]. Its
aim is to find a generic concept to include all/some features of AC models and to consider the feature of dynamicity
to handle diverse use cases and applications for AC, especially with the rapid propagation of IT. In this paper we
explain this idea with a deeper look, describe how this idea can include all other AC models features, and how each
of them can be derived from this concept.

3. The Dynamic Smart-AC Model

The existence of smart objects with the current heterogeneous communication environments (networks,
applications, platforms...), inspired us to introduce a new idea for AC methodology in [7]. The idea of dynamic
Smart-AC model can be used to describe access policies, where any of the AC models or their combinations might
represent. In this paper we are presenting a deeper look for our model, Figure 1 illustrates the structure of our
dynamic Smart-AC model. It is composed of different layers:

• Definition of basic terms and parameters: each AC model has its basic terms and features (e.g. subjects, objects,
roles, permissions, mappings) which can be defined in this layer, with the ability to define new ones (e.g.
Xi=security levels, Yj=actions . . .)

• Authorization Engine: this layer is mainly composed of two parts. The first is the formulation of AC method to
model the policies of authorization according to the needed AC model. The second is the policy consistency to
check the coherence and the robustness of the obtained model policies before enforcing them.

• Policy enforcement: in this layer the AC decisions are enforced after determining whether a subject is allowed or
denied to access (e.g. read, write ...) certain object(s).

Note that, the policy consistency in authorization engine layer is not addressed in this paper. However, the Smart-
AC model concept has the following characteristics:

• The ability to find the needed mappings between model entities in Access Control Model Formulation after
defining AC policy guidelines and describing the rules and regulations in, for example, an organization.

• A hybrid AC model can be developed by combining and modeling the defined parameters.
• Various models can be implemented (described in section 4) and integrated with various IT scenarios

(organizations, distributed systems, IoT layers ...) to enforce AC policy.

The model concept is dynamic since it can be upgraded or modified to handle various use cases and applications for
AC, especially with the rapid propagation and evolution of IT technologies. Also, it is smart because it can be
oriented to include (or exclude) all (or some) AC features for a given scenario or project, and work as a framework
to encompass the heterogeneity of all AC models. In the following sections various use cases are illustrated to show
how our model concept can be oriented to implement other AC models. The research contribution in this paper is to
show the flexibly of modeling authorization policies which are mapped to any of the AC models or their
combinations using our dynamic Smart-AC model.

420 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–424
4 Author name / Procedia Computer Science 00 (2019) 000–000

Figure 1: Smart-AC Model structure

4. Healthcare: a Use Case

This section presents a use case for the Smart-AC model concept usage, to model policies of authorization
according to some of the most well-known AC models (DAC, RBAC, ABAC, and a Hybrid model). In industrial
sector, AC models are widely used due to the critical need to restrict any unauthorized access and enforce AC
policy. For this purpose, four AC model scenarios are illustrated in the following sections for the following policy:

Policy: In a hospital, the receptionists (e1 and e2) in the admission office can add/write (w) and read (r) patients'
records/files (f) which are identified by their Ids (fId), fname, dob, etc. In clinics, doctors (d) can write (w) and read
(r) his patients' prescriptions (p). Each prescription is recorded with doctor's Id (dId), a number (pnum), date
(pdate), and some details (pdetails). A nurse (n) who is helping the doctor, during her working hours within the
same timezone as the hospital and have completed 30 hours of training is allowed to read this prescription. Note
that, each worker in the hospital has his Id and a record with his related information (name, address...). Also, in
clinics the completed training hours are calculated only for nurses.

4.1. Discretionary Access Control (DAC)

DAC model is based on the identity of three key components: a set of objects, a set of subjects, and the AC
matrix (ACM). Subjects can decide the access rules (permissions) by determining how other subjects can access
their object(s) [1, 6].
DAC parameters definition for the policy:

- Subjects: receptionist (e1, e2), doctor (d) and nurse (n)
- Objects: patients' records/files (f) and patients' prescriptions (p)
- Permissions: read (r) and write (w)

Figure 2 illustrates the representation of Smart-AC model for DAC model configuration which is ACM. Likewise,
AC rights can be depicted as Capability Lists (CLs) and AC Lists (ACLs) which can also be represented as matrices.
However, the AC decisions based on DAC configuration, for policy enforcement, are: 1) The receptionists (e1 and
e2) can read and write patients' files (f), 2) Doctor(s) can read and write patients' prescriptions (p), 3) The nurse(s)
are allowed by doctors to read patients' prescriptions, and 4) deny any other access request.

4.2. Role Based Access Control (RBAC)

In this model subjects are given access based on their roles. A role is a group of rights to use some object(s) (e.g.
accountant, director, engineer, doctor, etc.), and it can be associated to many subjects [4, 6]. Thus, in RBAC
subject(s) based on their role(s) are given permissions(s) to access some object(s). The aim of RBAC is to facilitate
the administration of the AC policy.

 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–424 421
 Author name / Procedia Computer Science 00 (2019) 000–000 5

Figure 2: Smart-AC - DAC model configuration

RBAC parameters definition for the policy:
- Subjects: e1, e2, d, and n
- Objects: patients' records/files (f) and patients' prescriptions (p)
- Roles: receptionist (rp), doctor (dr), nurse (nr)
- Permissions: read (r) and write (w)

Figure 3 illustrates the representation of Smart-AC model structure for RBAC model configuration. It depicts the
relations between subjects, roles and objects with the permissions for each subject based on the defined parameters
for the policy. However, the AC decisions based on RBAC configuration, for policy enforcement, are: 1) allow
subjects who are assigned to role receptionist (rp) to read and write patients' files (f), 2) allow subject(s) who are
assigned to role doctor (dr) to read and write patients' prescriptions (p), 3) allow subject(s) who are mapped to role
nurse (nr) to read these prescriptions, and 4) deny any other access request.

Figure 3: Smart-AC - RBAC model configuration

4.3. Attribute Based Access Control (ABAC)

The advantage of ABAC model over RBAC is that it has an ability to support dynamic attributes [1]. In this
model subjects are authorized to access a wider range of objects without the need to specify individual relationships
between each subject and each object. Furthermore, in ABAC there are three types of attributes: subject, object and
environmental attributes. In ABAC, subjects who request to perform actions on objects are allowed or denied based
on their assigned attributes of the subject, assigned attributes of the object, environment conditions, and a set of
policies that are specified in terms of those attributes and conditions [1, 5].

422 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–424
6 Author name / Procedia Computer Science 00 (2019) 000–000

ABAC is dynamic and uses subject, object and environmental attributes to determine access decision. Access
control permissions are evaluated at the time of actual request is made. Consequently, to simplify representing the
idea of our Smart-AC model for ABAC configuration we define subjects and objects (in addition to the attributes) to
show the subjects and objects during permission evaluation at runtime.
ABAC parameters extraction for the policy:

- Subject: receptionist (rp); doctor (d); nurse (n)
- Subject Attributes: Id, name, department, ...
- Object: patient record/file (f), patient prescription (p)
- Object Attributes: fId, fname, dob...; pId, pdate, pdetails...
- Action: read (r) and write (w)
- Environmental Attributes: location (l), training hours (th), access duration (ad)

Figure 4 illustrates the Smart-AC model for ABAC configuration. The first layer depicts the defined policy
attributes for subjects, objects, environment, and actions. In model formulation sublayer, subject(s) with certain
attributes are allowed to access objects with some other attributes if that subject has attributes reflected in objects he
wants to access. As well, subjects’ actions are determined based on some conditions and constraints in the defined
policy. The policy and the conditions can be implemented as follows:

• A subject working in department == "admission office" can do the action == "read" and the action == "write"
for fId, fname, address… (which identify patient record) if subject.location == object.location;

• A subject working in department == "clinic" with completed training hours="N/A" can do the action == "read"
and the action == "write" for dId, pId, pdate, pdetails ... (which identify a patient prescription) if subject.location
== object.location; and

• A subject working in department == "clinic" with completed training hours >= "30" and access duration time
">= 8:00, <18" can do the action == "read" for dId, pId, pdate, pdetails ... (which identify a patient
prescription) if subject.location == object.location

Figure 4: Smart-AC - ABAC model configuration

For the first part of the defined policy and at the time when request is made, the defined attributes for subjects
(Id, name ...) with the environmental attribute (location) refer to receptionists (rp) in the admission office which
have the permission to read/write patient record (f) which is identified by its attributes (fId, fname, location ...).
Also, for the second part of the policy the attributes refer to a doctor with a permission to read/write prescriptions
which are identified by some attributes (pdate, pdetails, location ...). Likewise, the same for the final policy part.
However, the AC decisions based on ABAC configuration are: 1) allow subjects (receptionists) working in
admission office department (represented as rp in Figure 4) to read and write patients’ Ids, names, addresses, etc. in
the hospital, 2) allow subjects (doctors) working in clinics to read and write patients’ prescriptions details in the
hospital, 3) allow subjects (nurses) working in clinics with calculated training hours >= 30 to read patients’
prescriptions details and during their workinghours in the hospital, and 4) deny any other access request.

 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–424 423
 Author name / Procedia Computer Science 00 (2019) 000–000 7

4.4. RBAC/ABAC Hybrid Model

Many AC model mechanisms with combined features from both RBAC/ABAC hybrid models are presented. For
RBAC and ABAC, there are three approaches that handle the relationship between roles and attributes: dynamic
role, attribute centric, and role centric. Some hybrid models use attribute centric approach where role is defined as
an attribute for a subject [11], which depicts the case we consider in this part. Also, to simplify representing the idea
of our Smart-AC model for hybrid configuration we define subjects and objects to indicate the permissions at the
time when request is made by a subject.
RBAC/ABAC parameters extraction for the use case policy:

- Subject: user
- Subject Attributes: user-Id, username, user-role, ...
- Object: patient record/file (f), patient prescription (p)
- Object Attributes: Id, name, dob...; pId, pdate, pdetails...
- Action: read (r) and write (w)
- Environmental Attributes: location (l), training hours (th), access duration (ad)
Figure 5 illustrates the Smart-AC model for RBAC/ABAC hybrid configuration. The first layer depicts the
definition of all policy attributes for subjects, objects, environment, and actions. In model formulation sublayer,
subject(s) with certain role are allowed to access objects with some attributes. Also, subjects’ actions are
determined based on policy conditions and constraints. The hybrid model can be implemented as follows:

 Figure 5: Smart-AC - RBAC/ABAC hybrid model configuration

• A user with role == "receptionist" can do the action == "read" and the action == "write" for fId, fname, address
of patient record if user.location == object.location;

• A user with role == "doctor" can do the action == "read" and the action == "write" for dId, pId, pdate, pdetails
... of patient prescription if user.location == object.location; and

• A user with role == "nurse" can do the action == read for dId, pId, pdate, pdetails ... of patient prescription if
user.traininghours == 30 and user.access duration time ">= 8:00, <18" and user.location == object.location.

All of the above models show that the Smart-AC model is dynamic to formulate other AC models. The advantage is
that it can be used as a basis for this purpose.

5. Challenges

The idea of finding an AC model with hybrid features is not new. But, finding a Smart-AC model with the
following features is new and challenging issue: 1) Dynamic and generic enough and can oriented to
include/exclude all/some features from the existing models. 2) The ability to extract different AC models based on a
general basis and finding new ones (other than the presented models in literature). 3) The obtained AC model can be
extended or integrated with other AC methods to follow the IT developments. 4) The ease of migrating AC policies

424 Nadine Kashmar et al. / Procedia Computer Science 155 (2019) 417–4248 Author name / Procedia Computer Science 00 (2019) 000–000

from one model to another which help organizations reduce the complexity and cost. 5) The possibility to have
several AC models can cooperate within the same organization. Thus, all the mentioned challenging features would
be effective in a world with continuous IT developments and upgrades, and rich of heterogeneous applications, users
and networks. Although these features are challenging to be included in a general framework, in this paper we start
implementing the idea of our dynamic Smart-AC structure to derive other AC models.

6. Conclusion and Future Perspectives

In the current era, various technologies and applications are combined to find a real intelligent and smart world.
This fact inspires us to find a new basis for finding a Smart-AC model structure which can be implemented to obtain
other AC models. For this purpose we manipulate our idea for Smart-AC model methodology, which is presented in
[7], with a deeper look by providing a use case of how it can be used to find other AC models. Furthermore, finding
a secure communication environment is a challenging issue, for this, various AC models are presented in the
literature to enforce AC policy in different IT environments, but they lack the feature of being upgradable follow
technology progressions. In this paper, we explain how our idea can be dynamic and implemented to find other AC
models through a simple illustration for a use case. Then, we mention the challenging features for our model to be
implemented. As a future perspective, our aim is to provide detailed explanations and illustrations for our Smart-AC
layers and the needed steps to formulate AC models, then implementing more of the challenging features to show its
efficiency and consistency.

Acknowledgement

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and
Fonds Québécois de la Recherche sur la Nature et les Technologies (FRQNT).

References
[1] Hu, Vincent C, David F. Ferraiolo, and D Richard Kuhn. (2018) “Attribute-Based Access Control. ” Norwood: Artech House
[2] Ge, Xiaocheng, Fiona Polack, and Régine Laleau. (2004) “Secure databases: an analysis of Clark-Wilson model in a database

environment.” International Conference on Advanced Information Systems Engineering. 234-247. Springer, Berlin, Heidelberg.
[3] Ennahbaoui, Mohammed, and Said Elhajji. (2013) “Study of access control models.” Proceedings of the World Congress on Engineering.

2: 3-5
[4] Boadu, Edwin Okoampa, and Gabriel Kofi Armah. (2014) “Role-based access control (RBAC) based in hospital management.” Int. J.

Softw. Eng. Knowl. Eng. 3: 53-67.
[5] Kuhn, D. Richard, Edward J. Coyne, and Timothy R. Weil. (2010) “Adding attributes to role-based access control.” Computer. 43(6): 79-

81.
[6] Kashmar, Nadine, Mehdi Adda, and Mirna Atieh. (2019) “From Access Control Models to Access Control Metamodels: A Survey.”

In Future of Information and Communication Conference, 892-911. Springer, Cham.
[7] Kashmar, Nadine, Mehdi Adda, Mirna Atieh, Hussein Ibrahim (2019) “A New Dynamic Smart-AC Model Methodology to Enforce

Access Control Policy in IoT Layers.” In the 1st International Workshop on Software Engineering Research and Practices for the Internet
of Things (SERP4IoT'19), Montreal, Canada.

[8] Rajpoot, Qasim Mahmood, Christian Damsgaard Jensen, and Ram Krishnan. (2015) “Integrating attributes into role-based access control.”
In IFIP Annual Conference on Data and Applications Security and Privacy, 242-249. Springer, Cham.

[9] Khan, Abdul Raouf (2012) “Access control in cloud computing environment.” ARPN Journal of Engineering and Applied Sciences, 7(5):
613-615.

[10] Punithasurya, K., and S. Jeba Priya. (2012) “Analysis of different access control mechanism in cloud.” International Journal of Applied
Information Systems, 4(2): 34-39.

[11] Aluvalu, RajaniKanth, and Lakshmi Muddana. (2015) “A survey on access control models in cloud computing.” In Emerging ICT for
Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India (CSI), 1: 653-664. Springer, Cham.

[12] Onankunju, Bibin K. (2013) “Access control in cloud computing.” International Journal of Scientific and Research Publications, 3(9):
2250-3153.

[13] Hussain, Soorat. (2014) “Access control in cloud computing environment.” International Journal of Advanced Networking and
Applications, 5(4): 2011.

[14] Ouaddah, Aafaf, Imane Bouij-Pasquier, Anas Abou Elkalam, and Abdellah Ait Ouahman. (2015) “Security analysis and proposal of new
access control model in the Internet of Thing.” In 2015 international conference on electrical and information technologies (ICEIT), 30-
35. IEEE

[15] Alshehri, Asma, and Ravi Sandhu. (2016) “Access control models for cloud-enabled internet of things: A proposed architecture and
research agenda.” In 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), 530-538. IEEE.

[16] Ouaddah, Aafaf, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman. (2017) “Access control in the Internet of Things: Big
challenges and new opportunities.” Computer Networks, 112: 237-262.

APPENDIX V

Access Control in Cybersecurity and Social Media. Chapitre du livre Cybersécurité et médias
sociaux: qui apparaitre dans Presses de l’Université Laval.

193

1

Chapitre 4 : “Access Control in Cybersecurity and Social Media” par Nadine Kashmara,

Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc

 aDépartement de Mathématiques, Informatique et Génie, Université du Québec à Rimouski,

Rimouski, Québec

nadine.kashmar@uqar.ca, mehdi_adda@uqar.ca

bBusiness Computer Department, Faculty of Economic Sciences and Administration,

Lebanese University, Hadat, Lebanon, matieh@ul.edu.lb

cInstitut Technologique de Maintenance Industrielle (ITMI), Sept-Îles, Québec

hussein.ibrahim@itmi.ca

Biographies

Nadine Kashmar is a PhD student at Université du Québec à Rimouski (UQAR), Canada.

Her research project pertains to developing a new generic and enhanced access control

metamodel and using it in the field of Internet of Things as a use case, specifically in

Industrial IoT (IIoT). She holds her master’s degree in Science of Computer Engineering

from Beirut Arab University (BAU), Lebanon in 2016. She also has work experience in the

field of IT and teaching experience in Computer Science. Her research interests focus on

access control, IoT, Industry 4.0, and data mining.

Mehdi Adda is a professor of Computer Science at Université du Québec à Rimouski

(UQAR), Canada since June 2010. From August 2008 to May 2010, he was an invited

professor at the same university. His principal research interests lie in the fields of knowledge

and data engineering, IoT and security. Mehdi Adda obtained two PhD degrees in Computer

Science from Université de Montréal, Canada and Université de Lille, France in 2008. He

received two MSc. degrees in Computer Science from Joseph Fourier University in 2002

(Grenoble, France), and Université du Havre (Le Havre, France) in 2003 as well as an

Engineering degree in Computer Science from University of Sciences and Technology

Houari Boumediene (Algiers, Algeria) in 2001.

Mirna Atieh obtained her PhD in Informatics and Artificial Intelligence in February 2008

from the Institut national des Sciences Appliquées INSA de Rennes, France. She is currently

an Assistant Professor and Researcher at the Lebanese University in Lebanon – Faculty of

Economic Sciences and Business Administration – Department of Business Computer. Her

main research interests are in the areas of Artificial Intelligence (AI), Networking and

2

Telecommunication, and Internet of Things (IoT). She has multiple scientific collaborations

with various universities in France and Canada. She published several papers in international

conferences and journals.

Hussein Ibrahim received his PhD degree in Engineering from Université du Québec à

Chicoutimi (UQAC), Canada. From August 2009 to September 2016, he worked as research

manager at TechnoCentre éolien in Gaspé. He has been working as research manager at

Cégep de Sept-Îles in northern Quebec since September 2016, and as general manager of

Institut Technologique de Maintenance Industrielle (ITMI) in Sept-Îles since September

2018. His research interests focus on renewable energy sources integration, hybrid energy

power systems, storage energy, heat and mass transfer, energy efficiency, Industry 4.0 and

IoT.

Abstract

Social media networks and their applications (e.g. Facebook, Twitter...) are a current

phenomenon with a great impact on several aspects such as, personal, commercial, political,

etc. This media is vulnerable to various forms of attacks and threats due to the heterogeneity

of networks, diversity of applications and platforms, and the level of users' awareness and

intentions. As network technologies and their various applications evolve, the way people

interact with them changes. Thus, the main concern for all social media users is to protect

their data from any type of illegal access. With network and application developments, the

concept of controlling access evolves in various stages. It begins with the implementation of

the principles of information security (confidentiality, authentication ...), then by finding

various access control (AC) models to enforce security policy in this field. For cybersecurity

and social media, various methods are developed based on conventional AC models:

Discretionary Access Control (DAC), Mandatory Access Control (MAC), Role Based

Access Control (RBAC), Organization Based Access Control (OrBAC), and others.

In this chapter, we highlight the various types of cybercriminal attacks in social media

networks. We then introduce the challenges faced for controlling users’ access and the

importance of the AC concept for cybersecurity and social media. We will also review the

common AC models and the AC methods that are proposed to enhance privacy issues in

social networks. Based on these methods, we will conclude our chapter by analyzing them to

know their efficiency in such media and their adaptability for any future requirements.

3

1. Introduction

In social media, people create their own spaces to upload/share their private information

(photos, videos, and audios) with family and friends using various forms of social networks,

for example, Facebook, Twitter, LinkedIn, etc. Figure 1 shows the number of social network

users worldwide from 2010 with a prediction up until 2020 (Rathore et al. 2017). Social

networks allow users to extend their relationships and interact with strangers beyond family

and friends. These networks have some interesting features (Rathore et al. 2017, Ali et al.

2018, Sayaf et al. 2014), as they:

● shorten the geographical distances between people worldwide;

● are used for entertainment, education, job searching, etc.;

● allow users to share their personal data with others in a relatively private manner;

● allow users to develop their social relationships by linking their profile with other users

with similarities;

● users, companies or education sectors can create their own pages and post pertinent

information in their timeline;

● used as an effective marketing strategy.

Figure 1: Number of social network users worldwide from 2010 with prediction up until 2020 (Rathore et al. 2017)

Despite these features, we cannot ignore the fact that the increase in the number of social

network users and the quantity of shared and uploaded information and multimedia data,

result in a tremendous increase in security threats and vulnerabilities which affect users’

confidentiality, authenticity and privacy (Rathore et al. 2017, Ali et al. 2018). Furthermore,

a large number of users do not grasp the risks associated with what they post. Their lack of

knowledge leads to an increase in cybercrimes. Social media security threats and

vulnerabilities are generally divided into three categories (Rathore et al. 2017, Fire et al.

2014, Ali et al. 2018, Patsakis et al. 2015):

4

a. Traditional threats: have been a problem since the widespread of the internet usage, this

category includes many traditional attack techniques such as malware, phishing,

clickjacking, etc.

b. Social threats: this category relates to the threats that intentionally target people of all ages

(children, teenagers...) such as cyberbullying, cybergrooming, cyberstalking, risky

behaviors, etc.

c. Multimedia content threats: when social media network users generate content and upload

and share it online, they could be vulnerable to several risks from malicious behaviors

such as multimedia content exposure, shared ownership, tagging, unauthorized data

disclosure and more.

In the literature, a variety of solutions are proposed to deal with the above-mentioned threats.

AC policies are considered as one of the possible solutions for privacy settings to measure

and optimize security in social networks (Rathore et al. 2017). For this purpose, different AC

methods to enforce AC policies are developed to find secure communication environments

and prevent any illegal access from attackers to users’ information in social media networks

(Sachan et al. 2011, Sayaf et al. 2014, Carminati et al. 2006). In this chapter, our concern is

user security and privacy and for this purpose, we highlight the importance of AC

mechanisms to mitigate security risks, then we explain some recent AC methods in this

domain and how they are implemented to keep users’ zones private and secure. This chapter

is organized as follows. Social media network types and services are presented in section 2.

The security threats and the possible vulnerabilities, also the importance of AC models for

cybersecurity and social media are described in section 3. In section 4, the common AC

models are summarized and the used AC methods in social media are also described. Finally,

we conclude our chapter in section 5.

2. Social Media Network Types and Services

Current social media network services are web based. There exists numerous social media

sites and applications with various purposes, services, and types which are developed over

the years to include different types and categories. Table 1 summarizes these types of

networks and provides some examples with a description for each type.

Type Examples Description

Social/Relationship networks Facebook, Twitter,

Whatsapp, LinkedIn, Google+

People can connect and expand

their relationships.

Media sharing networks YouTube,

Instagram, Snapchat,

Facebook Live, Whatsapp,

Flickr

Users can share photos, videos,

and other media types.

5

Shopping networks Wish, Gifteehub, AliExpress Users can shop online, send

gifts, share great finds, follow

brands, etc.

Discussion forums Reddit, Quora Based on the posted subject,

people can share news and

ideas.

Bookmarking networks Pinterest, Flipboard Users can collect content they

find interesting from the

Internet, save and organize it,

so it may be consulted at a later

date (e.g. recipes, decorating

ideas, etc.).

Interest based networks Goodreads, Soundcloud,

Houzz

Allow users to connect with

other users with similar

interests and hobbies.

Sharing economy networks Airbnb, Uber, Rover,

Taskrabbit

These types of sites allow

people to advertise, find, share,

buy, sell and trade goods and

services.

Consumer review networks TripAdvisor, Booking.com,

Expedia, Local.com

These types of sites allow users

to find, review and share

information on products,

services, hotels, restaurants,

etc.

Blogging networks Wordpress, BigCommerce,

Wix, Medium, Ghost

Users can build their websites

and publish content online,

discover and comment.

Anonymous social networks After School, Anomo,

ASKfm, NoName

These types of applications

allow users to post anonymous

content and share on a private

message board, their feelings,

accolades, to gossip or snoop.

Table 1: Social Media Network Types

Social media network services are web based and need an internet connection. Users can use

web sites via various devices (computers, smart phones…) with different platforms and

applications. Some sites and applications combine more than one type, for example,

Facebook is a social network site where users can share media (photos and videos). Social

media networks allow people to expand their relationships (personal, business, education…),

shop for various items, share information, advertise products or services, and express their

feelings or to gossip. As shown in Table 1, social network types allow users of all ages to

6

address various concerns and interests. Furthermore, it is well known that the internet world

with all its related services, is vulnerable to numerous types of attacks. Hence, what are the

social media security threats and vulnerabilities? Which procedures and methods are required

to preserve user security and privacy? A media with several types of sites and services and a

large number of users of all ages, of different cultures and intentions, opens wide the doors

for such inquiries. Section 3 summarizes social media security threats, vulnerabilities and

cyberattacks.

3. Social Media Networks: User Security and Privacy

Social networks let users communicate, share posts, interests, music, recommend books,

movies and so on. The most serious concern for users in all aspects of their lives (e.g.

personal, professional, entertainment...) is how to keep their zone secure and private. Hence,

what are the possible risks when users post their private information on public networks?

Before explaining the privacy requirements for social networks, it is important to present the

security threats and vulnerabilities in this area.

3.1. Security Threats and Vulnerabilities

Social media users must realize that even when they use high security settings or websites,

and even when they only select/accept their known friends, they are unintentionally leaking

their information. Likewise, most people are unaware that the personal information they

share/upload could lead to attacks against them or their friends. Hence, they must be aware

and know the following:

● Once users post their information on a social network, there is no guarantee that this

information is still private. As the quantity of information being posted increases, so does

its vulnerability.

● It is more likely that, the more information is shared, an attacker or intruder could

impersonate users and mislead their friends with actions such as download malware, share

personal information, etc.

● On some social networks, information is publicly visible by default. Consequently, users

should be mindful to change their privacy settings to private before posting information.

Also, users must be aware that some other social networks change their privacy policy

without their approval and that some of their information which was posted as private,

may become public.

● Moreover, users should not expose themselves to several types of privacy and security

issues. For example (Rathore et al. 2017, Deliri et al. 2015):

· it is preferable not to share a large amount of personal data on social networks;

7

· users should not post their location (home, work…) or children’s location (school,

summer camping…);

· they should not provide their telephone number and credit card details, for example,

for game applications;

· users should not accept friend requests from unknown people;

· most users do not read the privacy policy and terms of service for a social network

before they create their accounts. They are therefore unaware of the policy nor of its

updates.

Consequently, this could lead to various cybercriminal attacks. As mentioned earlier, security

threats and vulnerabilities are generally divided into three categories: traditional threats,

social threats, and multimedia content threats. Table 2 summarizes the various traditional

attacks, such as spamming, phishing, etc. Through these types of attacks, an attacker tries to

obtain personal information (password, bank account details …) for a user to commit to some

critical attacks, for example, identity theft (Rathore et al. 2017, Ali et al. 2018, Fire et al.

2014, Zhang et al. 2018, Delerue et al. 2012, Deliri et al. 2015).

Threat Description

Malware A malicious software, consists of Trojan horses, viruses, or worms, used

by attackers to assault users by sending injected scripts to the legitimate

user and when clicking a malicious URL, a malware may be installed on

devices and attempt to steal personal information from the victim.

Phishing Attackers pretend to be a legitimate entity that the victim trusts, using fake

websites and emails to expose a user’s sensitive private information.

Spamming Attackers send spam or junk data in bulk to internet users which causes

network congestion.

Clickjacking A malicious mechanism used to make users click on something that is

different from what they meant to click. For example, an attacker can

manipulate users to post spam posts on their Facebook timeline, or use

users' computer hardware (e.g. camera) to record their activities.

De-anonymization Some users preserve their anonymity and privacy by using a false name.

An attacker can find their identity by linking the information that the user

has disclosed on a social network. This strategy is based on data-mining

techniques where the attacker uses tracking methods, such as tracking

cookies, or user group membership to expose the true identity of the user.

Identity/profile clone An attacker can clone an existing user’s profile in the same social media

site or in a different one. The attacker then sends friend requests to the

user’s contacts and creates a trusting link with the real user’s friends and

collects sensitive information to carry out several types of scams (e.g.

cyberbullying).

8

Inference attacks An attacker can deduce a user’s private information by exploiting other

information that has been published about him on social media, such as

data from the user’s friends list. Then, this information is carried out using

data mining techniques and can be used by the attacker to obtain internal

secret information belonging to organizations.

Information leakage Plenty of sensitive information can be inferred with great accuracy from

material users share or post, or through data shared with other mutual

users.

Sybil attacks & fake

profiles

Attackers can create many fake identities, and by manipulating them, they

can outvote the legitimate users. For example, they can boost the

reputation and popularity of a user by voting him as the “best” over other

legal users. They also have the capacity to corrupt information.

Table 2: Summary of traditional security threats and vulnerabilities in social media (Rathore et al. 2017, Fire et al. 2014,

Ali et al. 2018, Zhang et al. 2018, Delerue et al. 2012, Deliri et al. 2015)

Table 3 summarizes the social security threats and vulnerabilities which occur in this media.

Attackers can badly use the social relationship feature of social networks. This feature

enables attackers to interact with different types of users and in different ways. For example,

they can entice teenagers by conveying sympathy, love, or care, or by offering money or

gifts. Other behaviors might include espionage, blackmail, or sharing pornographic videos

and images (Fire et al. 2014, Rathore et al. 2017, Deliri et al. 2015).

Threat Description

Cyberbullying

and

cybergrooming

Cyberbullying is an intentional and iterative attempt by someone online

harassing or harming. Cybergrooming is when a child or a teenager is

humiliated and targeted with a malicious purpose by another teenager or child

via the Internet. Cyberbullying and Cybergrooming are quite dangerous as it

has led teenagers to extreme acts of violence, such as committing suicide.

Cyberstalking Some users reveal their profile’s personal information (e.g. phone number,

home address, location...). This information can be tapped by malicious users

for cyberstalking. For example, attackers can blackmail their victims through

telephone calls or by sending instant messages using a social network site.

Risky behaviors This may occur to teenagers or children through interactions with strangers

in chat rooms, direct online communication, or giving private information

and photos to an attacker. These behaviors can cause massive concerns

regarding children or teenagers’ safety.

Corporate

espionage
Attackers use espionage techniques for commercial or financial purposes.

Such techniques can be used by a competitor posing as a worker in the target

company with the intent of spying on confidential information or hacking

computers.

Table 3: Summary of social security threats and vulnerabilities in social media (Rathore et al. 2017, Fire et al. 2014,

Deliri et al. 2015)

9

Table 4 presents the different multimedia security threats and vulnerabilities content in social

media. Social network is another meaning for sharing data (photos, videos, interests, and so

on). Multimedia data, especially high-resolution videos and images make it easier for

estimating the location, geotagging, face recognition and more via multimedia retrieval

techniques. Hence, the shared multimedia data can be illegally used by an intruder to detect

the user’s location to find out if they are away from his home with the intention of theft (Fire

et al. 2014, Rathore et al. 2017, Cutillo et al. 2010, Patsakis et al. 2015)

Threat Description

Multimedia

content

exposure

Posting multimedia data (videos, images, locations...) by users can expose them

to various types of attacks, as they are disclosing an enormous amount of

sensitive information. For example, intruders may follow the continuous posts

of users' locations and when they are not home, this leaves the door open for

intruders. Also, sharing a photo or video may violate other users’ privacy if it is

posted without their permission.

Metadata Metadata provides information about other data. Multimedia content is

considered as metadata since it contains a huge amount of other data, e.g. users'

location tags, profession, family and more. Some of this metadata may be

valuable to attackers when it is revealed.

Video

conference
Most social network sites support video conferencing features (e.g. Facebook)

which provide more interaction between users. An intruder may restrict the

broadcasting of a video stream through vulnerabilities in the underlying

communication architecture, or they can access the webcam of a user by using

a malware program.

Tagging Tagging is a feature within shared multimedia data made to increase interactions

between users and to facilitate search capabilities. This feature could increase

privacy risks for tagged users. Some users do not like to upload pictures of

themselves on social media, as this feature can represent a violation to their

privacy.

Hijacking An attacker could gain control over someone and hijack his profile if the user

has a weak password. It is preferable to use strong passwords in social media

accounts and to change them frequently.

Shared

ownership
Multimedia content (photos or videos) may correlate to many users, e.g. two

people may take a photo at an event and one person can upload this photo with

their preferred privacy settings without the permission of the other.

Steganography This is a tactic for concealing data within other media data. However, a

malicious user can share malicious data by concealing it within multimedia data.

For example, a picture with concealed malicious messages might be shared by

a malicious user and a user may download it without knowing what it contains.

This type of behavior is risky for the reputation of social network sites.

Manipulation

of multimedia

content

Malicious users can distort shared multimedia data by using available tools. For

example, they can manipulate pictures to cause harm to others or to ridicule

them.

Table 4: Summary of Multimedia Content Security Threats and Vulnerabilities in Social Media (Rathore et al. 2017,

Fire et al. 2014, Patsakis et al. 2015, Cutillo et al. 2010)

10

After exploring and explaining the aforementioned social media services and attacks, we can

recognize that social media networks are the best environments for attackers to commit

cybercrimes. In this context, various researches are conducted to resolve these threats and

find the best ways to mitigate or prevent them, such as spam detection (Miller et al. 2014),

phishing detection (Lee et al. 2013, Gupta et al. 2018), watermarking (bin Jeffry et al. 2017,

Zigomitros et al. 2012), privacy settings (Ghazinour et al. 2016, Fiesler et al. 2017, Aldhafferi

et al. 2013), authentication mechanisms (Joe et al. 2017, Ikhalia et al. 2013, Jain et al. 2015),

steganalysis (Li et al. 2015, Taleby Ahvanooey et al. 2019) and other solutions. In the light

of finding solutions for social media threats and vulnerabilities, we focus on privacy which

is considered as one of the fundamental security objectives in social media environments

(Cutillo et al. 2010, Zhang et al. 2010, Madejski et al. 2012, Sayaf et al. 2014). Privacy

solutions include (Aldhafferi et al. 2013, Rathore et al. 2017, Patsakis et al. 2015):

● Protective technologies such as strong authentication and AC mechanisms;

● Users’ awareness which addresses the issue of educating users about new technologies

and explaining for them the possible risks of misusing social media networks.

In this chapter, our interest is to present and analyze the used AC methods in social media

networks, to find their effectiveness and how they could prevent or mitigate security threats.

3.2. The Importance of Access Control Methods for Cybersecurity and Social Media

Networks

In the era of social media, a huge amount of sensitive information can be easily collected,

saved or deduced. Consequently, protecting users’ privacy is the main objective for the

services provided by social media platforms (Cutillo et al. 2010). The above-mentioned

threats (section 3.1) clearly show that there are numerous security risks with the use of social

media. To minimize social media security risks, various organizations have developed a

formal policy to guide users on how to use social media sites for work-related activities

(Delerue et al. 2012). A formal policy is the definition of guidelines, rules or regulations for

a social network site (or an organization) to determine what is an acceptable or unacceptable

use of social media, what information users can or cannot share, and the consequences for

not following the defined policy. Guidelines examples for an organization can be as follows

(Delerue et al. 2012, Cutillo et al. 2010):

● users should use strong passwords and update them regularly;

● users should not use the same password for a social media site as the one they use for their

company;

● it is not allowed for users to share their organization’s information or news on social

networks.

11

Moreover, the defined social media security policies need to be effectively implemented for

social media networks. Nevertheless, some users do not comprehend or ignore the privacy

policy set by social network sites due to their level of understanding or to its complexity.

Thus, they are unaware of the security risks that could occur when posting information

(photos, videos...). In social media, AC mechanisms allow users to define their settings of

privacy via control functions such as:

● the visibility of their own information;

● allow/deny others to write on their walls;

● determining the privacy of the shared contents (public, only friends, or user-defined

group);

● Share posts with friends of friends, and many other privacy settings.

Various researches mention that (Deliri et al. 2015, Cutillo et al. 2010, Aldhafferi et al. 2013),

users' authentication and AC functions must be powerful so that cybercrimes from

cybercriminals, hackers, or spammers can be reduced as much as possible. For this purpose,

different AC models and mechanisms are developed to enforce privacy policy in social media

networks. An AC framework lets users set their privacy preferences and allows application

developers to create a customized plan based on users’ preferences. In the following section,

we first introduce the common AC models, then we review the AC models that are developed

for social media networks.

4. The Access Control Models

An access control model is a formalization for policies which are defined, by an organization

for instance, based on a set of principles or guidelines for its system to control and authorize

access to data. The common AC models implemented to prevent illegal disclosure of

sensitive data and to protect data integrity are the following: Discretionary Access Control

(DAC) (Hu et al. 2017, Ennahbaoui et al. 2013, Kashmar, Adda, and Atieh 2019), Mandatory

Access Control (MAC) (Hu et al. 2017, Ennahbaoui et al. 2013, Ausanka-Crues 2001,

Kashmar, Adda, and Atieh 2019), Role Based Access Control (RBAC) (Hu et al. 2017,

Ennahbaoui et al. 2013, Kayem et al. 2010, Sandhu et al. 2000, Kashmar, Adda, and Atieh

2019), Organization Based Access Control (OrBAC) (Kashmar, Adda, and Atieh 2019,

Ennahbaoui et al. 2013), and Attribute Based Access Control (ABAC) (Hu et al. 2017,

Kashmar, Adda, and Atieh 2019, Kayem et al. 2010, Sandhu et al. 2000). Each model has its

particular features and methods for making AC decisions and policy enforcement. Based on

these models and due to various information technology concerns and needs in different

fields, many other AC methods are extended and developed using features of two or more

AC models (Kashmar, Adda et al. 2020). In the following sections, the common AC models

12

and their features are summarized and some recent state-of-the-art AC methods for social

media networks are described.

4.1. The Common Access Control Models

Each organization has its rules, guidelines and regulations which are defined as policies to

control how users can access its logical and physical assets. An AC policy defines constraints

on whether a user’s access request to an object should be allowed or denied. Several AC

methods are implemented at different information technology (IT) infrastructure levels, they

are used in operating systems, databases, networks, etc. (Kashmar, Adda, and Atieh 2019).

The objectives of AC models can be summarized as follows:

● protect files and directories for organizations and information for all types of users;

● Regulate access to database objects and fields to protect application information such as

payroll processing, e-health. etc.;

● Minimize the risk of unauthorized access to assets, thus minimize the risk to the business

or organization.

Access right means that a subject is allowed or denied performing an operation on an object

(Hu et al. 2017). AC policies might have the following form:

Allow managers to… and…

Knowing that… if… and/or…

Except…when…

Some AC policy examples can be written as follows:

● allow users A and B to read/write from/into file F for user C;

● allow technicians to read and follow the technical report instructions for machine M,

during their working hours, if it is signed and confirmed by their technical manager;

● prevent social media users to send a friend request for user A if they are not friends of a

friend.

Consequently, the main objective of AC models is the enforcement of the defined AC

policies. In general, AC methods are defined in terms of subjects (e.g. user or program),

objects (e.g. file, table or class) and access rights.

13

4.1.1. Discretionary Access Control (DAC)

The Discretionary Access Control (DAC) model was first introduced by Lampson (in the

1960s), a member of a curriculum design team. The three major components of this model

are a set of objects, a set of domains, and a matrix (Kashmar, Adda, and Atieh 2019). Graham

and Denning then extended Lampson’s work where the term subject was included instead of

the domain. Thereafter, Harrison, Ruzzo and Ullman (HRU) extended Graham-Denning’s

work to find a more flexible model with the ability to describe several AC approaches (Hu et

al. 2017).

This AC model is a user-centric model where a file owner can control the permission of other

users requiring access to his file. Users can control the access rights (read, write, …) to their

files with the need of a pre-specified set Matrix called Access Control Matrix (ACM). Table

5 shows how AC rights of subject(s) over object(s) are specified. The intersection of u2 and

o2 means that u2 can read the object o2. This ACM can also be implemented in two other

variations, the first matrix is Capability Lists (CLs), and the second is Access Control Lists

(ACLs). In CLs a user’s access rights to access objects are represented by rows, while in

ACLs the access rights for various users to access an object are represented by columns.

Objects

Subjects

 o1 o2 o3

u1 read, write

u2 update read

u3 delete

Table 5: Access Control Matrix (ACM)

This model is provided with operating systems to authenticate system administrators and

users using passwords.

4.1.2. Mandatory Access Model (MAC)

The Mandatory Access Control (MAC) model was presented in the 1970s to include the use

of a security kernel. In this model, users cannot define AC rights by themselves. MAC is

based on the idea of security levels which are associated with each subject and object. These

levels have hierarchical and nonhierarchical components (Ennahbaoui et al. 2013, Hu et al.

2017, Kashmar, Adda, and Atieh 2019):

● the hierarchical components include unclassified (U), confidential (C), secret (S), and top-

secret (TS) types where TS ≥ S ≥ C ≥ U, to categorize subjects and objects into levels of

14

trust and sensitivity. For subjects, a security level is called clearance level and for objects

it is called classification level;

● the nonhierarchical components represent a set of categories where two security properties

are used as security labels to indicate security levels for classification of objects and

clearance of subjects, which are simple property and *-property.

There are two variants for MAC, Bell and LaPadula (BLP) and BIBA (developed by Kenneth

J. Biba). The first, simple property indicates no read up and star property indicates no write

down. Hence, a subject is permitted to read an object if its clearance is ≥ than the object’s

classification, and to write if it is less than or equal (≤). The second, simple property indicates

no read down and star property indicates no write up. Consequently, a subject is permitted

to read an object if its clearance is ≤ than the object’s classification, and to write if it is greater

than or equal (≥) (Kashmar, Adda, and Atieh 2019, Ennahbaoui et al. 2013). Moreover, MAC

standards are enforced by the operating system after they are defined by a system

administrator. This model is proposed to overcome the limitations of the DAC model.

4.1.3. Role-Based Access Control (RBAC)

The Role Based Access Control (RBAC) model was proposed by David Ferraiolo and

Richard Kuhn in 1992, it is developed as an alternative approach to MAC and DAC

(Ennahbaoui et al. 2013). The RBAC approach is based on several entities which are users,

roles, permissions, actions or operations, and objects. In this model, a role means a group of

permissions to use object(s) and perform some action(s), and this role can be associated to

several users. Also, users can be assigned to several roles based on their qualifications and

responsibilities, such as accountants, directors, engineers, etc. (Hu et al. 2017). The RBAC

model was implemented to facilitate the administration of the AC policy. It administers the

access of a user to objects through roles for which the user is authorized to perform.

The RBAC can be applied in distributed systems because it is based on the concept of

constraints and inherence. Role hierarchy determines which roles and permissions are

available to subjects based on different inheritance mechanisms (Belokosztolszki 2004,

Crampton 2003).

4.1.4. OrganizationBased Access Control (OrBAC)

The Organization Based Access Control (OrBAC) was presented in 2003 and proposed to

solve some limitations in the previous models (DAC, MAC and RBAC). Its aim is to find a

more abstract control policy. Every organization (e.g. clinics, banks, hospitals…) is

composed of a structured group of subjects having roles or entities. In OrBAC, seven entities

are defined (Ennahbaoui et al. 2013):

15

a. the abstract or organizational level composed of (1- Role, 2- Activity, and 3- View);

b. The concrete level constitutes (4- Subject, 5- Action, and 6- Object), and:

c. the seventh entity which is Context lies between the two levels to express dynamic rules

for relations between entities, for example, Permission, Prohibition, Isprohibited,

Recommendation, Ispermitted, Isobligatory, Isrecommended, Obligation between the

elements of each level.

Thus, OrBAC exceeds the notion of granting permissions to subjects, it addresses the idea of

prohibitions, obligations and recommendations. In such a way, a role may have a permission,

prohibition or obligation to do some activity on some view given an associated context

(Kashmar, Adda, and Atieh 2019).

4.1.5. Attribute-Based Access Control (ABAC)

The Attribute Based Access Control (ABAC) is the latest AC model development and its

concepts have paralleled that of RBAC. ABAC has some advantages over RBAC, because

of its ability to support dynamic attributes and its benefits in managing authorizations (Jin et

al. 2012). ABAC has three types of attributes: object, subject and environmental attributes.

This model allows or denies user requests based on some user attributes and on some other

attributes of the object and environment. It is dynamic since it uses these attributes to

determine access decisions (Hu et al. 2017), also AC permissions are evaluated at the time

of the actual user’s request. This offers a larger set of possible combinations of variables to

reflect a larger set of possible rules to express policies (Crampton 2003). Hence, subjects are

enabled to access a wider range of objects without specifying individual relationships

between each subject and each object. This an ABAC advantage over RBAC. The Extensible

AC Markup Language (XACML) and Next Generation AC (NGAC) are two standards that

widely address the ABAC framework.

To summarize, the DAC model is proposed for the academic field, and the MAC model, for

the military domain. RBAC includes features from DAC and MAC, and it is implemented to

overcome some limitations of the previous models. OrBAC includes features from DAC,

MAC and RBAC. It is proposed to find a more abstract control policy and to overcome the

deficiencies in the previous models. RBAC has some limitations in supporting dynamic

attributes such as the time of day. For this purpose, the ABAC model is proposed to support

these attributes. Likewise, all the presented AC models still have some limitations (Kashmar,

Adda, and Atieh 2019), this necessitates the need to find other AC methods with combined

features from two or more AC models, or to integrate basic privacy requirements with the

existing models. Consequently, different AC mechanisms for different computing

environments are implemented. Upgrading or finding new AC mechanisms for the current

challenging environments (social media networks, Internet of Things (IoT), cloud

16

computing, etc.) is a critical requirement to follow the continuous upgrades and to mitigate

security risks by preventing any illegal access (Kashmar, Adda, et al. 2019a, b).

4.2. Access Control Models in Social Networks

In the literature, various proposals exist to address the issue of AC in social networks. In

general, as social media users are vulnerable to attackers, security concerns are expanded to

include their privacy, financial transactions, their families and friends, cyber-theft threats and

more. In addition to these concerns, it is unacceptable to allow a hacker impersonate users

and trick their friends and families. Thus, social media services, the utilized technologies,

security threats and vulnerabilities reflect the fact that social media and cybersecurity

incorporate different security aspects, from social media sites to user behavior. In this

context, several AC mechanisms are implemented with the intent to improve and preserve

user privacy. AC methods are used in social media networks to enable users to control the

propagation of their own data and protect their privacy against attacks (section 3).

In the subsequent sections, we review the AC methods pertaining to this domain. Some are

implemented based on features of the common AC models, while others are implemented by

considering the basic privacy requirements in social networks.

4.2.1. Access Control Methods based on Features of common AC models

 In conjunction with the widespread use of social media network types and services (section

2), different AC mechanisms based on features of the common AC models are implemented.

This section presents some of the proposed AC methods in this field.

Tie-RBAC: RBAC application to Social Networks

Tie-RBAC is the RBAC application to Social Network Analysis (SNA) (Tapiador et al.

2012). SNA provides a comprehensive body of concepts and methods for modeling social

networks, it also provides the research sector with methods for social networks analysis

(O’Malley et al. 2017, Tapiador et al. 2012). Hence, Tie-RBAC indicates RBAC + SNA =

Tie-RBAC.

The objective of Tie-RBAC is for it to be implemented in a core for building social network

sites. However, social entities or actors (a user, a group, a department, an organization…) are

linked by social ties, where a tie is made up of two actors and a tie type. The first and the

second actors are the sender and the receiver of the tie. Tie types between actors include

emotional, formal or biological relationships, transfer of material resources, messages,

conversations, affiliation to same organizations, etc., for example, a tie of friendship between

actor A and actor B. Hence, a relationship in the network is the set of all ties of the same type

17

between actors. This type of relationship is called reciprocal as in Facebook, some other

relationships are non-reciprocal as in Instagram, where actor A may not follow actor B, but

the opposite is true. Tie-RBAC is based on non-reciprocal ties, it is the RBAC application to

social networks where:

● actors define their custom relationships (friend, partner, family etc.), which are equivalent

to roles;

● each actor assigns permissions to relationships, such as post to wall, read wall, etc.;

● actors establish ties using these relationships where each tie is equivalent to the association

of an actor to a role-relationship, as shown in Figure 2.

Figure 2: Tie-RBAC model: Equivalence between SNA's tie establishment and RBAC (Tapiador et al. 2012)

When establishing the tie, the sender is the entity who grants privileges to objects and the

receiver is the entity assigned to the role which gains permissions on the sender's objects. In

the Tie-RBAC model, the relationship which is defined by the sender is the role. In Figure 2,

actor A (sender) defines the relationship “friend” and allows “friend” to read the wall and

post to it. A “friend” relationship is selected when establishing the tie with actor B (receiver).

Thus, actor B is authorized to read the actor's A wall and post to it.

The purpose of this model is to provide social actors and web developers with a tool to build

websites with social network features, and to define their own relationships which are

adapted to their field of activity. Moreover, the AC enforcement in this model is the typical

RBAC (Tapiador et al. 2012).

EASiER: Encryption-Based Access Control in Social Networks with Efficient Revocation

EASiER is an architecture that supports fine-grained AC policies and dynamic group

membership by using Attribute-Based Encryption (ABE) (Jahid et al. 2011). The aim of

EASiER is to shift AC policy enforcement from the social network provider to the user by

18

means of encryption in order to mitigate the privacy risks in social networks. This case

creates a key challenge in managing to support complex policies involved in social networks

and dynamic groups. The key feature of this architecture, as mentioned by Jahid et al., is the

possibility of removing access from a user without releasing new keys to other users or re-

encrypting ciphertexts (CT). To handle this, a proxy is created to participate in the decryption

process and enforce revocation restrictions. It also cannot provide access to users who are

previously revoked. Figure 3 illustrates the EASiER architecture.

Figure. 3: EASiER architecture (Jahid et al. 2011)

The primary purpose of EASiER is to protect unintentional and intentional information

leakage in social networks through ABE. EASiER allows users to:

● define relationships by assigning attributes and keys to each other;

● create groups by assigning different attributes and keys to their social contacts;

● encrypt different parts of data such as profile information, wall posts, etc. with attribute

policies;

● only contacts with keys having sufficient attributes that satisfy a policy can decrypt the

data.

As shown in Figure 3, user or actor A can:

a. define the attributes (friend, colleague, neighbor) and;

b. create keys k1, k2, and k3 for the grouping of attributes of “colleague, friend,

neighbor” and for “colleague, neighbor”. Keys k1, k2, and k3 are then assigned to u1,

u2, and u3. User A can also encrypt his/her data with the policy “colleague or (friend

and neighbor)”;

19

c. user A may wish to end the relationship with u1 and u2 by revoking the corresponding

keys which allow them to view A’s data encrypted with any policy that their keys

satisfactorily meet. Also, user A may wish to revoke the attribute “neighbor” from k3

which is assigned to u3 and do a corresponding change in access control. The proxy

of each user is assigned a secret proxy key with revocation information;

d. it then uses its key to transform CT into a form with sufficient information and

e. that an unrevoked user can mathematically combine with his secret key, then perform

decryption where a revoked user cannot do so. The proxy key allows the disclosing

of the components during a decryption for unrevoked users, whereas revoked users

are unable to decrypt any data since they will not get assistance from the proxy. (Jahid

et al. 2011).

The EASiER mechanism does not allow the proxy to decrypt data if it does not have the

attribute keys. Additionally, a new proxy key is created each time a revocation is done, hence

revoked users are prohibited from conspiring against each other or the proxy to get the data.

However, only particular users who have the required set of attributes can decrypt the data

(Jahid et al. 2011).

Organization Based Access Control Model for Social Network

An OrBAC extension is implemented by Belbergui et al. (2016) and adapted to the Facebook

context. OrBAC is an AC model based on the organization, the first-order logic is used to

define relations between entities and AC policy which is defined on two levels. The first, is

the abstract level (role, activity, view), and the second, is the concrete level (subject, action,

object). Policy levels are adapted to the context of Facebook as follows:

● friends are defined by role (friends, friends of friends, family, etc.)

● actions are classified by activities (display, publish, etc.) and

● account owners’ data is organized by views (personal information, photos, etc.).

As stated by Belbergui et al. (2016), the process of modeling the Facebook AC policy using

OrBAC model is simulated based on the inventory of roles (friends, family, etc.), of

activities (create, consult, etc.), of views (personal information, etc.), and of access rights

(permissions). Simulation of security policy with MotOrBAC simulator is also illustrated for:

● creating organizations (Facebook, U1, etc.);

● adding abstract entities (roles, activities, views);

● adding concrete entities (subjects, actions, objects);

● adding access rights

● simulation: detection of conflicts.

20

Facebook is defined as an organization, users are defined as a sub-organization of Facebook,

and users’ accounts (u1, u2…) are defined as a sub-organization of users. Roles are defined

to be the usage by all users such as friends, families, studies, etc. Facebook users keep their

photos, videos, etc. where other members/users are authorized/denied certain actions such as

viewing pictures, writing on a wall, etc. These actions (open, view, read, search, share, etc.)

can be structured into activities (create, consult, publish, block, accept, etc.). In other words,

the entities actions define how subjects can access objects, and the structuring of these

entities is called activities. Linking these entities is called a relation, for example, consider

(org, a, a) means that the organization org considers action a, as part of activity a. Other

relations exist between views and organization objects to facilitate the management of the

security policy.

Based on the aforementioned concepts, Facebook-User policy and User-User policy are

defined. Table 6 shows some examples for the defined policies.

Facebook-User Policy User-User Policy

Permission (Facebook, users, create, account) Permission (u1, friends, consult, publications)

Obligation (Facebook, users, compose,

identifiant)

Permission (u3, friendOffriend, contact,

account)

Permission (Facebook, users, comment, wall) Permission (u1, friends, publish, wall)

Permission (Facebook, users, create, pages) Prohibition (u1, public, consult, publications)

Prohibition (Facebook, friend3,

publishinmywall, comment)
Prohibition (u1, friend1, consult, photos)

Permission (Facebook, users, accept,

friend_requests)
Prohibition (u2, public, consult, account)

TABLE 6: Examples of Facebook-User and User-User defined AC policies

For the Facebook-User policy, every user can create an account by entering his/her identity

and login information such as full name, gender, age, etc. The user is then able to share

messages with friends, publish photos and videos, join groups, create pages and events, etc.

Users’ posts and publications can be managed by account owners, consulted or commented

on by other Facebook users. For a User-User policy, users are able to manage their posts and

information, and can allow or deny their friends, family or public users to access their data.

By using the MotOrBAC simulator, the organization (Facebook) is defined, Facebook

abstract and concrete entities, subjects and their association to roles, the context and

permissions at an abstract level are also defined. Figure 4 illustrates the roles and definition

of Facebook. Figure 5 indicates the generation of permissions at a concrete level, which are

automatically generated by MotOrBAC (using update tool).

21

Figure 4: The roles and definition of Facebook using MotOrBAC (Belbergui et al. 2016)

Figure 5: The generation of permissions at the concrete level (Belbergui et al. 2016)

The detection of policy coherence then follows and counts the conflicts in abstract and

concrete levels, here are some examples:

● Example 1: Conflict between permissions and prohibitions defined by two users:

Prohibition (u1, everyone, consult, relation u1_u4)

Permission (u4, everyone, consult, relation u1_u4)

22

Users u1 and u4 are friends, when u1 prohibits everyone to consult this friendship and u4

allows it, this generates a conflict. Such conflicts show that Facebook does not suggest

any solution to these types of conflicts for users.

● Example 2: Conflict between Facebook permissions and user u1 prohibitions:

Prohibition (u1, advertisers, publishinmywall, publications)

Permission (Face, advertisers, publishinmywall, publications)

Although user u1 chooses not to publish advertisements on his wall, Facebook obliges

him to be contacted by advertisers.

● Example 3: Conflict between permissions and prohibitions assigned by Facebook to

users.

Prohibition (Face, P3, AccessControl, profile_photo)

Permission (Face, P3, AccessControl, photos)

In this example, Facebook authorizes users to control the access to all of their photos

except to their profile photo, which is always public.

Hence, OrBAC extension, which is adapted to Facebook, is used to analyze the

coherence/incoherence of the Facebook security policy to enhance privacy features.

4.2.2. Other Access Control Methods

· Multiparty Access Control Model

Social media networks provide virtual zones or spaces for users which are identified by their

profile information and contain a list of friends for each user, web pages or walls. Although

these networks provide some AC mechanisms that allow users to manage access to their own

information within their individual space, they do not provide control over information that

exists outside their own space. For this purpose, Hu et al. (2012b) propose a Multiparty

Access Control (MPAC) Model to address the following issues:

● Users can post comments on their friends’ spaces (or wall), but they cannot specify

which users can view them. They can tag friends by uploading photos, but the tagged

friends are unable to control who can see these photos and privacy concerns may be an

issue.

● Social networks provide primitive protection mechanisms for these issues, such as:

23

− allowing tagged users (e.g. Facebook) to remove the tags linked to their profiles;

− allowing users to report violations to social network site managers by requesting for

removal of the content they refuse to share with the public.

These mechanisms have several limitations as mentioned by Hu et al., for example, a tagged

user’s image is still discovered by all users who are authorized by the user who tags it even

when a tag is removed from a photo. For this reason, the MPAC model is proposed as a

solution to facilitate collaborative management of shared data in social networks in (Hu et al.

2012b). In MPAC, three scenarios are analyzed: profile sharing, relationship sharing, and

content sharing.

● In profile sharing, social applications consume user profile attributes, such as name,

birthday, activities, etc. of a user’s friends. Figure 6 depicts MPAC Pattern for profile

sharing where users are allowed to select some of their profile attributes to share with

the applications when their friends use these applications. The user’s friend is the owner

of shared profile attributes, the application is an accessor, and the user is a disseminator.

Hence, a disseminator is able to share others’ profile attributes to an accessor, and

together, the owner and the disseminator can specify AC policies to restrict the sharing

of profile attributes.

Figure 6: MPAC pattern for profile sharing (Hu et al. 2012)

● Relationship sharing is where users can share their relationships with other members and

these relationships are inherently bidirectional and might carry some sensitive

information. Most social networks allow users to control their friends list display, in this

case a user can only manage one direction of a relationship. Figure 7 illustrates the

scenario of a relationship sharing pattern. The owner which refers to the user and has a

relationship with another user called stakeholder, shares the relationship with an

24

accessor. Hence, authorization requirements should be considered from the stakeholder

and the owner, as privacy concerns for the stakeholder may be violated.

Figure 7: MPAC pattern for relationship sharing (Hu et al. 2012)

● In content sharing, users can communicate and share contents with other members.

Social network users can tag or share others to the contents they upload or post on their

pages. These contents may be related or connected with multiple users. In this scenario,

three examples are explained to represent MAPC Pattern for content sharing and are

shown in Figure 8. The first example is illustrated in Figure 8 (a), user A uploads a photo

which also contains other friends B and C. User A is the owner of the photo, B and C

are stakeholders of it. In this case, all users can determine AC policies to control who

can see this photo, not only the owner. In other words, the content has many stakeholders

who can be involved in the control of content sharing. The second is illustrated in Figure

8 (b), when user A posts a message on B’s wall mentioning user C. In this case, user A

is called a contributor of the message, user C is identified by a mention and considered

as a stakeholder of the message, hence users A and C may want to control the disclosure

of this message. As shown in Figure 8 (b), a contributor (user A) publishes a content to

others’ wall and this content might have many stakeholders or tagged users. In this case,

all related users should be authorized to define AC policies for the posted content. The

third example is demonstrated in Figure 8 (c), where users are allowed to share others’

content in such a way where user A shares content (e.g. a photo) with his friends after

viewing it in user B’s wall. The shared photo is now in user A’s space and he can

determine AC policy to allow/deny his friends to see this photo. In this situation, user A

is a photo disseminator and his privacy concerns might differ from that of user B. This

could cause leakage of sensitive information via the data dissemination procedure.

Hence, in Figure 8 (c), the owner or the contributor shares his content by uploading and

publishing it, then the disseminator is able to view and share this content. In this case, to

25

regulate content access in the disseminator’s space, all AC policies that are defined by

associated users must be enforced.

Figure 8: MPAC pattern for content sharing (Hu et al. 2012)

In a MPAC system, a group of users can collaborate together to influence the final AC

decision.

PACMAN: Personal Agent for Access Control in Social Media

Personal Agent for AC in Social Media (PACMAN) is proposed by Misra et al. (2017) as a

personal assistant agent that recommends personalized AC decisions on any information

disclosure on social environments. This can be done by combining groups generated from

the user’s network structure and using information in the user’s profile. Since social media

users do plenty of interactions, an appropriate mechanism is needed to control information

access by selecting the appropriate audience or friends from their lists. PACMAN is

presented as a personal agent for a user to calculate accurate recommendations and minimize

obtrusiveness. Figure 9 illustrates PACMAN components and inputs to produce an AC

recommendation (“allow” or “deny”).

26

 Figure 9: Components and inputs of PACMAN (Misra et al. 2017)

Relationship types are the interpersonal interactions between friends, colleagues, family, etc.

and social media users. Relationship strength is the strength or closeness of interpersonal

relationships between social media users. This strength is estimated by measuring similarities

between users’ profiles. For this purpose, various methods are proposed for estimating the

relationships tie-strength or closeness (Fogués et al. 2014, Misra et al. 2016a). Users’ total

friends and mutual friends, as stated by Misra et al. (2017), are the most suitable profile

attributes to support prediction of AC decisions. Moreover, the content of information that is

being shared is used to enhance AC methods. To address this issue, various methods are used

to generate attributes depending on the nature of the content, “for example, natural language

processing techniques can be used for text, and image processing can be used for photos

(Misra et al. 2017)”.

For PACMAN implementation, several building blocks are used (Figure 9), and the user’s

friend network is required as an input. To represent the relationship type, one of the network-

based community detection algorithms used is called Clique Percolation Method (CPM)

(Misra et al. 2016b). For relationship strength, total friends and mutual friends, which are

fetched from the users’ profile, are also used as input to the PACMAN mechanism. For the

type of content being shared, various methods to obtain content information can be applied,

Misra et al. (2017) use “manual selection of photo categories in the form of “tags” to

represent the information about content”. Consequently, “allow” or “deny” AC decisions to

the user which are recommended by PACMAN are of equal importance, this reflects the

importance of accuracy in this mechanism. Accuracy is calculated as a percentage of the total

recommendations that are correct, where:

27

Accuracy = ((F - Errors)/F).

F is the number of total friends for a user. Errors include allow and deny errors, such errors

as stated in (Misra et al. 2017) arise in the following cases:

● “An allow error occurs when PACMAN recommends a deny decision to the user when

it actually should have been allowed. These errors are essentially false negative (FN)

recommendations and result in a deny to allow change being made by the user.”

● “A deny error occurs when PACMAN recommends an allow decision to the user when

it actually should have been denied. These errors are false positive (FP)

recommendations and result in an allow to deny change by the user.”

Hence, Errors = FN + FP

For the experiment, an application similar to Facebook is created using Facebook Query

Language (FQL), and a sample of 26 participants are asked to upload 10 photos (per user).

The users are then asked to select categories for the photos in the form of tags to represent

the content information. To calculate accuracy of prediction produced for each individual

user, Weka is integrated into PACMAN to create and run the classifier applying 10-fold cross

validation. Thereafter, accuracy of recommendations produced by PACMAN are shown in

Figure 10.

Figure 10: Accuracy and ratio of changes required to recommendations made by PACMAN for all 26 users

(Misra et al. 2017)

The ratio of incorrect recommendations, allow and deny errors, shows that PACMAN

produces good quality recommendations since highly accurate recommendations are

demonstrated for almost all users.

28

5. Conclusion

Access control methods are used in computing environments to mitigate security and privacy

risks of unauthorized and illegal access to data. These methods vary depending on the

underlying structure of the system environment and the needed level of protection. In this

chapter, a spacious overview of the main aspects of AC methods as solutions to various

privacy and security related issues in social media networks is provided. First, the social

media network types and services, the possible threats, and the main privacy problems in

these networks are reviewed. Then, the importance of AC methods and the essential

requirements for social networks are explained. Subsequently, the common AC methods that

are used as a basis and implemented in different computing environments are summarized.

Consequently, we present the state-of-the-art for some recent AC methods for social

networks, and in the description of each presented method, we highlight the main

contribution of the model with the different approaches.

Based on the aforementioned work we find that, although social media networks have a set

of privacy policies, they are vulnerable to various kinds of attacks and privacy issues. The

kind of personal data in these networks needs a high level of privacy protection by means of

appropriate access control. Some AC methods are proposed in this domain to tackle the

particular structure and the fundamental privacy issues of social networks, and some other

AC methods are proposed and dedicated only for some social network sites such as Facebook

(Anwar et al. 2010) and Google+ (Hu et al. 2012a). In this context, is it possible to find an

AC method that works as a general basis and include all the needed features to enforce AC

policy in social network sites, since all the presented methods and despite their different

mechanisms focus on the same privacy issues for social media users. Furthermore, the

proposed AC methods reflect that finding AC methods for social network users is a recent

research issue, and research is still being conducted due to the lack of privacy features of

social network sites, especially that social networks are dynamically changing environments.

References

Aldhafferi, Nahier, Charles Watson, and AS Sajeev. 2013. "Personal information privacy

settings of online social networks and their suitability for mobile internet devices." arXiv

preprint arXiv:1305.2770.

Ali, Shaukat, Naveed Islam, Azhar Rauf, Ikram Din, Mohsen Guizani, and Joel Rodrigues.

2018. "Privacy and Security Issues in Online Social Networks." Future Internet 10 (12):114.

Anwar, Mohd, Zhen Zhao, and Philip WL Fong. 2010. An access control model for

Facebook-style social network systems. University of Calgary.

29

Ausanka-Crues, Ryan. 2001. "Methods for access control: advances and limitations." Harvey

Mudd College 301:20.

Belbergui, Chaimaa, Najib Elkamoun, and Rachid Hilal. 2016. "Modeling Access Control

Policy of a Social Network." International Journal of Advanced Computer Science and

Applications 7 (6).

Belokosztolszki, András. 2004. Role-based access control policy administration. University

of Cambridge, Computer Laboratory.

Bin Jeffry, Mohd Aliff Faiz, and Hazinah Kutty Mammi. 2017. "A study on image security

in social media using digital watermarking with metadata." 2017 IEEE Conference on

Application, Information and Network Security (AINS).

Carminati, Barbara, Elena Ferrari, and Andrea Perego. 2006. "Rule-based access control for

social networks." OTM Confederated International Conferences" On the Move to

Meaningful Internet Systems".

Crampton, Jason. 2003. "On permissions, inheritance and role hierarchies." Proceedings of

the 10th ACM conference on Computer and communications security.

Cutillo, Leucio Antonio, Mark Manulis, and Thorsten Strufe. 2010. "Security and privacy in

online social networks." In Handbook of Social Network Technologies and Applications,

497-522. Springer.

Delerue, Helene, and Wu He. 2012. "A review of social media security risks and mitigation

techniques." Journal of Systems and Information Technology.

Deliri, Sepideh, and Massimiliano Albanese. 2015. "Security and privacy issues in social

networks." In Data Management in Pervasive Systems, 195-209. Springer.

Ennahbaoui, Mohammed, and Said Elhajji. 2013. "Study of access control models."

Proceedings of the World Congress on Engineering.

Fiesler, Casey, Michaelanne Dye, Jessica L Feuston, Chaya Hiruncharoenvate, Clayton J

Hutto, Shannon Morrison, Parisa Khanipour Roshan, Umashanthi Pavalanathan, Amy S

Bruckman, and Munmun De Choudhury. 2017. "What (or who) is public?: Privacy settings

and social media content sharing." Proceedings of the 2017 ACM Conference on Computer

Supported Cooperative Work and Social Computing.

Fire, Michael, Roy Goldschmidt, and Yuval Elovici. 2014. "Online social networks: threats

and solutions." IEEE Communications Surveys & Tutorials 16 (4):2019-2036.

Fogués, Ricard L, Jose M Such, Agustin Espinosa, and Ana Garcia-Fornes. 2014. "BFF: A

tool for eliciting tie strength and user communities in social networking services."

Information Systems Frontiers 16 (2):225-237.

30

Ghazinour, Kambiz, Stan Matwin, and Marina Sokolova. 2016.

"YOURPRIVACYPROTECTOR, A recommender system for privacy settings in social

networks." arXiv preprint arXiv:1602.01937.

Gupta, Brij B, Nalin AG Arachchilage, and Kostas E Psannis. 2018. "Defending against

phishing attacks: taxonomy of methods, current issues and future directions."

Telecommunication Systems 67 (2):247-267.

Hu, Hongxin, Gail-Joon Ahn, and Jan Jorgensen. 2012a. "Enabling collaborative data sharing

in google+." 2012 IEEE Global Communications Conference (GLOBECOM).

Hu, Hongxin, Gail-Joon Ahn, and Jan Jorgensen. 2012b. "Multiparty access control for

online social networks: model and mechanisms." IEEE Transactions on Knowledge and

Data Engineering 25 (7):1614-1627.

Hu, Vincent C., David F. Ferraiolo, Ramaswamy Chandramouli, and D. Richard Kuhn. 2017.

Attribute-Based Access Control Norwood: Artech House.

Ikhalia, E, and CO Imafidon. 2013. "The need for two factor authentication in social media."

Proceedings of the International Conference on Future Trends in Computing and

Communication-FTCC.

Jahid, Sonia, Prateek Mittal, and Nikita Borisov. 2011. "EASiER: Encryption-based access

control in social networks with efficient revocation." Proceedings of the 6th ACM

Symposium on Information, Computer and Communications Security.

Jain, Sakshi, Juan Lang, Neil Zhenqiang Gong, Dawn Song, Sreya Basuroy, and Prateek

Mittal. 2015. "New directions in social authentication." Proc. USEC.

Jin, Xin, Ram Krishnan, and Ravi Sandhu. 2012. "A unified attribute-based access control

model covering DAC, MAC and RBAC." IFIP Annual Conference on Data and Applications

Security and Privacy.

Joe, M Milton, and B Ramakrishnan. 2017. "Novel authentication procedures for preventing

unauthorized access in social networks." Peer-to-Peer Networking and Applications 10

(4):833-843.

Kashmar, Nadine, Mehdi Adda, and Mirna Atieh. 2019. "From Access Control Models to

Access Control Metamodels: A Survey." Future of Information and Communication

Conference.

Kashmar, Nadine, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim. 2019a. "A new dynamic

smart-AC model methodology to enforce access control policy in IoT layers." Proceedings

of the 1st International Workshop on Software Engineering Research & Practices for the

Internet of Things.

31

Kashmar, Nadine, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim. 2019b. "Smart-AC: A

New Framework Concept for Modeling Access Control Policy." Procedia Computer Science

155:417-424.

Kashmar, Nadine, Mehdi Adda, Mirna Atieh, and Hussein Ibrahim. 2020. "Deriving Access

Control Models based on Generic and Dynamic Metamodel Architecture: Industrial Use

Case." The 11th International Conference on Emerging Ubiquitous Systems and Pervasive

Networks. (Accepted)

Kayem, Anne VDM, Selim G Akl, and Patrick Martin. 2010. Adaptive cryptographic access

control. Vol. 48: Springer Science & Business Media.

Lee, Sangho, and Jong Kim. 2013. "Warningbird: A near real-time detection system for

suspicious urls in twitter stream." IEEE transactions on dependable and secure computing

10 (3):183-195.

Li, Fengyong, Kui Wu, Jingsheng Lei, Mi Wen, Zhongqin Bi, and Chunhua Gu. 2015.

"Steganalysis over large-scale social networks with high-order joint features and clustering

ensembles." IEEE Transactions on Information Forensics and Security 11 (2):344-357.

Madejski, Michelle, Maritza Johnson, and Steven M Bellovin. 2012. "A study of privacy

settings errors in an online social network." 2012 IEEE International Conference on

Pervasive Computing and Communications Workshops.

Miller, Zachary, Brian Dickinson, William Deitrick, Wei Hu, and Alex Hai Wang. 2014.

"Twitter spammer detection using data stream clustering." Information Sciences 260:64-73.

Misra, Gaurav, and Jose M Such. 2017. "Pacman: Personal agent for access control in social

media." IEEE Internet Computing 21 (6):18-26.

Misra, Gaurav, Jose M Such, and Hamed Balogun. 2016a. "IMPROVE-Identifying Minimal

PROfile VEctors for similarity based access control." 2016 IEEE

Trustcom/BigDataSE/ISPA.

Misra, Gaurav, Jose M Such, and Hamed Balogun. 2016b. "Non-sharing communities? an

empirical study of community detection for access control decisions." 2016 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM).

O’Malley, A James, and Jukka-Pekka Onnela. 2017. "Introduction to social network

analysis." Methods in Health Services Research:1-44.

Patsakis, Constantinos, Athanasios Zigomitros, Achilleas Papageorgiou, and Agusti Solanas.

2015. "Privacy and security for multimedia content shared on OSNs: issues and

countermeasures." The Computer Journal 58 (4):518-535.

32

Rathore, Shailendra, Pradip Kumar Sharma, Vincenzo Loia, Young-Sik Jeong, and Jong

Hyuk Park. 2017. "Social network security: Issues, challenges, threats, and solutions."

Information sciences 421:43-69.

Sachan, Amit, and Sabu Emmanuel. 2011. "Efficient Access Control in Multimedia Social

Networks." In Social Media Modeling and Computing, 145-165. Springer.

Sandhu, Ravi, David Ferraiolo, and Richard Kuhn. 2000. "The NIST model for role-based

access control: towards a unified standard." ACM workshop on Role-based access control.

Sayaf, Rula, and Dave Clarke. 2014. "Access control models for online social networks." In

Digital Arts and Entertainment: Concepts, Methodologies, Tools, and Applications, 451-484.

IGI Global.

Taleby Ahvanooey, Milad, Qianmu Li, Jun Hou, Ahmed Raza Rajput, and Chen Yini. 2019.

"Modern text hiding, text steganalysis, and applications: a comparative analysis." Entropy

21 (4):355.

Tapiador, Antonio, Diego Carrera, and Joaquín Salvachúa. 2012. "Tie-RBAC: an application

of RBAC to Social Networks." arXiv preprint arXiv:1205.5720.

Zhang, Chi, Jinyuan Sun, Xiaoyan Zhu, and Yuguang Fang. 2010. "Privacy and security for

online social networks: challenges and opportunities." IEEE network 24 (4):13-18.

Zhang, Zhiyong, and Brij B Gupta. 2018. "Social media security and trustworthiness:

overview and new direction." Future Generation Computer Systems 86:914-925.

Zigomitros, Athanasios, Achilleas Papageorgiou, and Constantinos Patsakis. 2012. "Social

network content management through watermarking." 2012 IEEE 11th International

Conference on Trust, Security and Privacy in Computing and Communications.

APPENDIX VI

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020) November 2-5, 2020, Madeira, Portugal

Procedia Computer Science, Volume 177, 2020, Pages 162-169,
https://doi.org/10.1016/j.procs.2020.10.024

227

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 177 (2020) 162–169

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2020.10.024

10.1016/j.procs.2020.10.024 1877-0509

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Deriving Access Control Models based on Generic and Dynamic
Metamodel Architecture: Industrial Use Case

Nadine Kashmara,c,*, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc
aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada

bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon
cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC, G4R 5B7, Canada

Abstract

With the rapid propagation of technologies and their heterogenous structure of networks, platforms, applications, devices, etc.,
controlling access to physical and logical resources becomes a necessary requirement. The existing Access Control (AC) models
(also hybrid models) are not sufficient to satisfy the current needs of security requirements with this diversity of technological
aspects and computing environments due to fact of being vulnerable to various kinds of attacks and threats. Hence, AC
metamodels are proposed to serve as a unifying framework or to work as a general basis to derive multiple AC models as special
cases or instances. In the literature, several AC metamodels are presented for various scenarios for centralized (e.g. organizations,
industries, …) and decentralized (e.g. cloud computing, internet of things, …) environments to enforce AC policies. Despite
some of their advantages, they lack some essential features and have limitations specially with the current technology
propagations. In this paper, we propose a dynamic and enhanced architecture for an AC metamodel, and present an industrial use
case to explain how this architecture is generic to derive various AC model instances and can be used as a base for any future
developments in this domain.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Access control; metamodel; security and privacy; industry; IoT

* Corresponding author. Tel.: +14188338800; fax: +141883311
E-mail address: nadine.kashmar@uqar.ca

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Deriving Access Control Models based on Generic and Dynamic
Metamodel Architecture: Industrial Use Case

Nadine Kashmara,c,*, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc
aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada

bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon
cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC, G4R 5B7, Canada

Abstract

With the rapid propagation of technologies and their heterogenous structure of networks, platforms, applications, devices, etc.,
controlling access to physical and logical resources becomes a necessary requirement. The existing Access Control (AC) models
(also hybrid models) are not sufficient to satisfy the current needs of security requirements with this diversity of technological
aspects and computing environments due to fact of being vulnerable to various kinds of attacks and threats. Hence, AC
metamodels are proposed to serve as a unifying framework or to work as a general basis to derive multiple AC models as special
cases or instances. In the literature, several AC metamodels are presented for various scenarios for centralized (e.g. organizations,
industries, …) and decentralized (e.g. cloud computing, internet of things, …) environments to enforce AC policies. Despite
some of their advantages, they lack some essential features and have limitations specially with the current technology
propagations. In this paper, we propose a dynamic and enhanced architecture for an AC metamodel, and present an industrial use
case to explain how this architecture is generic to derive various AC model instances and can be used as a base for any future
developments in this domain.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Access control; metamodel; security and privacy; industry; IoT

* Corresponding author. Tel.: +14188338800; fax: +141883311
E-mail address: nadine.kashmar@uqar.ca

 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169 163

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Deriving Access Control Models based on Generic and Dynamic
Metamodel Architecture: Industrial Use Case

Nadine Kashmara,c,*, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc
aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada

bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon
cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC, G4R 5B7, Canada

Abstract

With the rapid propagation of technologies and their heterogenous structure of networks, platforms, applications, devices, etc.,
controlling access to physical and logical resources becomes a necessary requirement. The existing Access Control (AC) models
(also hybrid models) are not sufficient to satisfy the current needs of security requirements with this diversity of technological
aspects and computing environments due to fact of being vulnerable to various kinds of attacks and threats. Hence, AC
metamodels are proposed to serve as a unifying framework or to work as a general basis to derive multiple AC models as special
cases or instances. In the literature, several AC metamodels are presented for various scenarios for centralized (e.g. organizations,
industries, …) and decentralized (e.g. cloud computing, internet of things, …) environments to enforce AC policies. Despite
some of their advantages, they lack some essential features and have limitations specially with the current technology
propagations. In this paper, we propose a dynamic and enhanced architecture for an AC metamodel, and present an industrial use
case to explain how this architecture is generic to derive various AC model instances and can be used as a base for any future
developments in this domain.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Access control; metamodel; security and privacy; industry; IoT

* Corresponding author. Tel.: +14188338800; fax: +141883311
E-mail address: nadine.kashmar@uqar.ca

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks
(EUSPN 2020)

November 2-5, 2020, Madeira, Portugal

Deriving Access Control Models based on Generic and Dynamic
Metamodel Architecture: Industrial Use Case

Nadine Kashmara,c,*, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc
aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, Canada

bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon
cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC, G4R 5B7, Canada

Abstract

With the rapid propagation of technologies and their heterogenous structure of networks, platforms, applications, devices, etc.,
controlling access to physical and logical resources becomes a necessary requirement. The existing Access Control (AC) models
(also hybrid models) are not sufficient to satisfy the current needs of security requirements with this diversity of technological
aspects and computing environments due to fact of being vulnerable to various kinds of attacks and threats. Hence, AC
metamodels are proposed to serve as a unifying framework or to work as a general basis to derive multiple AC models as special
cases or instances. In the literature, several AC metamodels are presented for various scenarios for centralized (e.g. organizations,
industries, …) and decentralized (e.g. cloud computing, internet of things, …) environments to enforce AC policies. Despite
some of their advantages, they lack some essential features and have limitations specially with the current technology
propagations. In this paper, we propose a dynamic and enhanced architecture for an AC metamodel, and present an industrial use
case to explain how this architecture is generic to derive various AC model instances and can be used as a base for any future
developments in this domain.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Access control; metamodel; security and privacy; industry; IoT

* Corresponding author. Tel.: +14188338800; fax: +141883311
E-mail address: nadine.kashmar@uqar.ca

2 Author name / Procedia Computer Science 00 (2018) 000–000

1. Introduction

Nowadays, securing logical and physical assets cannot be easily achieved by traditional AC methods due to the
current fact of open computing environments, their complex architectures, and the diversity of devices and users. In
general, traditional AC models focus on which subject (user) is performing what action on which object. The AC
models that are presented in the literature are: Discretionary Access Control (DAC), Mandatory Access Control
(MAC), Role Based Access Control (RBAC), and Attribute Based Access Control (ABAC) models [1-3]. To
enhance some features of AC methods, some of these models are combined to have hybrid models in order to define
a larger set of AC policies, some hybrid AC models are presented in [4-6]. Nevertheless, hybrid models are not
enough to satisfy the current security requirements and the continuous progressions in various computing domains
such as Internet of Things (IoT), cloud computing, etc. [7]. Hence, AC metamodels with higher level of abstraction
are proposed to serve as unifying framework to define various instances of AC models, and hybrid models [1, 3].

AC metamodels are proposed and implemented for different scenarios related to web services [8, 9], software
frameworks (e.g. ArchiMate [10], Spring Security [11] ...), cloud computing [12], and others [3]. Despite the
objectives of proposing them, they lack some essential features and have some limitations (explained in section 3)
specially with the current fact of technology progressions [1, 2]. In this paper, we propose a generic and dynamic
architecture for an enhanced AC metamodel, we use an industrial use case to show its dynamicity in deriving
different AC (also hybrid) models.

For this paper some of the proposed AC metamodels in the literature are presented in section 2. In section 3, we
summarize the common limitations of the existing AC metamodels and the problematic. In section 4, we propose the
architecture of our AC metamodel. Food industry use case is proposed in section 5, to show how AC models can be
constructed based on the proposed architecture. Section 6 concludes this paper with future perspectives.

2. Related Work

Access control models and even combining some features of them are insufficient to follow the continuous
technology upgrades [13], hence this fact forces the need to find various AC models instances based on AC
metamodels. Accordingly, different metamodels are proposed in the literature and implemented in different
information technology scenarios [1, 3].

In [14], Barker propose a Category Based Access Control (CBAC) metamodel to develop many AC models by
combining the primitives of AC models, hence a wider range of constraints can be expressed. A category is defined as
a class of entities such as: roles, groups, security levels, etc. Slimani et al. [15], extend Barker’s metamodel [14] and
propose a Unified Access Control Modeling Language (UACML) to provide support for hybrid AC policies by
allowing categories to be associated with other categories and finding hierarchical relationships between them. In
[12], Category Based Access Control (CatBAC) framework for cloud computing services based on the notion of
categories is presented. The framework allows security administrators in the various company sites to find a concrete
model with the constraints and specificities of each site. Xia et al. in [16] propose Cloud Security and Privacy
Metamodel (CSPM) to handle security and privacy in cloud service development and operations via integrating and
extending the existing metamodels of cloud security together. Martínez et al. in [8] propose a metamodel to Web
Content Management System (WCMS) AC policies, to automatically extract the AC information in WCMSs and
ease the analysis of security requirements by abstracting them from vendor-specific details.

An integration metamodel for hybrid AC policies is proposed by Abd-Ali et al. in [17] to concurrently handle
multiple AC models. Their idea is to abstract each AC model (e.g. RBAC metamodel), and each AC metamodel has
a DecisionHandler element to determine the AC decision. An AC decision depends on more than one AC
metamodel. DecisionHandler instances of a hybrid AC policy are applied to combining algorithms (ComAl) to
conclude with only one AC decision as output in response to multiple AC decisions as input.

Some metamodel extensions are proposed due to the lack of security elements in software development
frameworks, for example, ArchiMate and Spring Security. Hence, Korman et al. in [10] propose a unified
metamodel as an extension for ArchiMate (common Enterprise Architecture (EA) modeling language) to support the
development of enterprises by extending their abilities to model authorization and AC in their architectures. Also, in
[11] Gorshkova et al. introduce a fine-grained AC model and provide a metamodel extension for Spring Security

164 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169 Author name / Procedia Computer Science 00 (2020) 000–000 3

framework (open source security framework for Java) to join modern security requirements. Their proposed
framework defines a fine-grained extension of RBAC.

However, some of existing AC metamodels are proposed to enhance AC features of existing frameworks by

extending them to support AC decisions and express more AC policies. Some other metamodels are proposed to find
a general metamodel basis that include most/all AC features to derive various AC model instances.

3. Problematic

Due to the continuous increase and upgrade of the current technologies, the presence of security threats also
increases. To ensure computer security, several techniques are employed for example encryption, authentication,
access control, etc. [18, 19]. Access control is one of the essential security requirements in computing environments
which are open to various kinds of attacks, and this makes security enforcement through AC models an urgent need
[1]. However, it is essential to adapt the existing AC models (MAC, RBAC…) and/or create new ones (e.g. hybrid
models [20], or others) to cope with the recent security threats. Unfortunately, it is realized that these models have
reached their limits [1, 3, 21] and they no longer meet the increasing demand for privacy and security levels.
Accordingly, several studies highlight the importance of developing AC metamodels with a higher level of
abstraction which serve as a unifying framework for the definition of any AC policy [1, 7, 13]. Developing AC
metamodels that are generic, dynamic, and upgradable is a challenging topic due to the following facts:

• The complex and heterogeneous structures of computing environments.
• The dynamic requirement for enforcing policies due to continues technology progressions.
• The importance of allowing collaboration between various AC models within the same IT architecture, e.g. IoT.
• The importance of migrating AC policies from one model to another.

In [3], we review the objective(s) and limitation(s) for each of the proposed AC metamodel. However, the common
limitations that have not been addressed yet can be summarized as follows:

• They are not generic enough to derive instances for all common AC models. They are planned for dedicated case
scenarios or projects based on some features of AC models.

• Neither the proposed AC metamodels nor the extended ones are dynamic enough to follow the IT upgrades.
• They do not support the possibility of defining new components for finding new AC models.
• None of the proposed metamodels explain how the derived AC models could collaborate within the same

architecture (e.g. cloud computing, IoT…).
• None of them handle the feature of migration from one AC model to another.

Accordingly, in section 4 we propose a new AC metamodel architecture that is dynamic and generic enough to work
as a base to overcome the aforementioned AC metamodels problems and limitations.

4. The proposed AC Metamodel Architecture

In this paper, our main concern is to find a dynamic and more generic AC metamodel architecture that includes
all key components for common AC models with the ability to define new ones for 1) any new AC method(s), and
for 2) any extension(s) or upgrades based on this architecture.

The architecture of our AC metamodel is illustrated in Fig. 1, it is mainly composed of 6 levels, and each level
may have sublevels to formulate the needed AC method then enforce the policy. Hence:

(1) Level 1: based on the defined policy, all the attributes (a1, a2, a3, …, an; where n ≥ 0) for subjects, objects,
environment, context, etc. are extracted and defined.

(2) Level 2: the defined attributes, in level 1, are aggregated to construct the needed classes (key components for
AC methods), abstract and concrete classes for subjects, objects, actions, roles, etc.

(3) Level 3: class instances are created for explicit components which are clearly stated in the policy and they
represent subjects (S1, S2, … Sn; n ≥ 0) and objects (O1, O2, …, On; n ≥ 0)

4 Author name / Procedia Computer Science 00 (2018) 000–000

(4) Level 4: class instances are created for implicit components which are extracted from a described event,
operation, context, etc. and they represent roles (R1, ..., Rn), actions (A1, … An), permissions (P1, …, Pn),
security levels (L1, …, Ln), Categories (C1, …Cn), etc.

(5) Level 5: aggregate class instances for explicit and implicit components, of level 3 and level 4, to perform the
needed assignments, for example: subjects (S1, S2, S7) role (R1), or object (On) security level (Ln), etc.

(6) Level 6: apply the needed aggregations to set the permissions, actions or operations which can/cannot be
performed by subjects over objects. This can be occurred by selecting and aggregating the needed class
instances and assignments from levels 3, 4 and 5 to construct the AC decision (allow/deny access) and check the
constraints before policy enforcement.

Fig. 1. The proposed AC metamodel Architecture

Constructing AC model(s) is based on the core components for each model (or hybrid models), for example, if
we want to construct DAC model where its key components are subjects, objects, and permissions, the definition of
attributes in layer 1 might not be considered. In section 5, we present a food industry use case with illustrations for
various AC models’ instances to show how they can be derived from the proposed architecture (in Fig. 1).

5. Industrial Use Case: Food Industry

In the field of industry, complex, costly, and sometimes potentially risky machines must be operated only by
trained and authorized users. Hence, controlling access to machines is a significant issue to prevent any damage, to
provide safe operation for machines, and to avoid any economic loss.

Food industry is one of the major industrial sectors in the world and different machines are used to handle,
prepare, cook, package, and store food and food products. For this reason, companies in this domain attempt to
improve their systems and machines, so their performance and productivity, by turning into information technology.
Hence, all food processing aspects can be monitored and controlled by an information system. In food industry, the
machines are constructed based on the demands of operation(s) and with design considerations related to machine
functionality (e.g. sorting products), food safety, hygiene, integration of analytical components, and many others.

 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169 165 Author name / Procedia Computer Science 00 (2020) 000–000 3

framework (open source security framework for Java) to join modern security requirements. Their proposed
framework defines a fine-grained extension of RBAC.

However, some of existing AC metamodels are proposed to enhance AC features of existing frameworks by

extending them to support AC decisions and express more AC policies. Some other metamodels are proposed to find
a general metamodel basis that include most/all AC features to derive various AC model instances.

3. Problematic

Due to the continuous increase and upgrade of the current technologies, the presence of security threats also
increases. To ensure computer security, several techniques are employed for example encryption, authentication,
access control, etc. [18, 19]. Access control is one of the essential security requirements in computing environments
which are open to various kinds of attacks, and this makes security enforcement through AC models an urgent need
[1]. However, it is essential to adapt the existing AC models (MAC, RBAC…) and/or create new ones (e.g. hybrid
models [20], or others) to cope with the recent security threats. Unfortunately, it is realized that these models have
reached their limits [1, 3, 21] and they no longer meet the increasing demand for privacy and security levels.
Accordingly, several studies highlight the importance of developing AC metamodels with a higher level of
abstraction which serve as a unifying framework for the definition of any AC policy [1, 7, 13]. Developing AC
metamodels that are generic, dynamic, and upgradable is a challenging topic due to the following facts:

• The complex and heterogeneous structures of computing environments.
• The dynamic requirement for enforcing policies due to continues technology progressions.
• The importance of allowing collaboration between various AC models within the same IT architecture, e.g. IoT.
• The importance of migrating AC policies from one model to another.

In [3], we review the objective(s) and limitation(s) for each of the proposed AC metamodel. However, the common
limitations that have not been addressed yet can be summarized as follows:

• They are not generic enough to derive instances for all common AC models. They are planned for dedicated case
scenarios or projects based on some features of AC models.

• Neither the proposed AC metamodels nor the extended ones are dynamic enough to follow the IT upgrades.
• They do not support the possibility of defining new components for finding new AC models.
• None of the proposed metamodels explain how the derived AC models could collaborate within the same

architecture (e.g. cloud computing, IoT…).
• None of them handle the feature of migration from one AC model to another.

Accordingly, in section 4 we propose a new AC metamodel architecture that is dynamic and generic enough to work
as a base to overcome the aforementioned AC metamodels problems and limitations.

4. The proposed AC Metamodel Architecture

In this paper, our main concern is to find a dynamic and more generic AC metamodel architecture that includes
all key components for common AC models with the ability to define new ones for 1) any new AC method(s), and
for 2) any extension(s) or upgrades based on this architecture.

The architecture of our AC metamodel is illustrated in Fig. 1, it is mainly composed of 6 levels, and each level
may have sublevels to formulate the needed AC method then enforce the policy. Hence:

(1) Level 1: based on the defined policy, all the attributes (a1, a2, a3, …, an; where n ≥ 0) for subjects, objects,
environment, context, etc. are extracted and defined.

(2) Level 2: the defined attributes, in level 1, are aggregated to construct the needed classes (key components for
AC methods), abstract and concrete classes for subjects, objects, actions, roles, etc.

(3) Level 3: class instances are created for explicit components which are clearly stated in the policy and they
represent subjects (S1, S2, … Sn; n ≥ 0) and objects (O1, O2, …, On; n ≥ 0)

4 Author name / Procedia Computer Science 00 (2018) 000–000

(4) Level 4: class instances are created for implicit components which are extracted from a described event,
operation, context, etc. and they represent roles (R1, ..., Rn), actions (A1, … An), permissions (P1, …, Pn),
security levels (L1, …, Ln), Categories (C1, …Cn), etc.

(5) Level 5: aggregate class instances for explicit and implicit components, of level 3 and level 4, to perform the
needed assignments, for example: subjects (S1, S2, S7) role (R1), or object (On) security level (Ln), etc.

(6) Level 6: apply the needed aggregations to set the permissions, actions or operations which can/cannot be
performed by subjects over objects. This can be occurred by selecting and aggregating the needed class
instances and assignments from levels 3, 4 and 5 to construct the AC decision (allow/deny access) and check the
constraints before policy enforcement.

Fig. 1. The proposed AC metamodel Architecture

Constructing AC model(s) is based on the core components for each model (or hybrid models), for example, if
we want to construct DAC model where its key components are subjects, objects, and permissions, the definition of
attributes in layer 1 might not be considered. In section 5, we present a food industry use case with illustrations for
various AC models’ instances to show how they can be derived from the proposed architecture (in Fig. 1).

5. Industrial Use Case: Food Industry

In the field of industry, complex, costly, and sometimes potentially risky machines must be operated only by
trained and authorized users. Hence, controlling access to machines is a significant issue to prevent any damage, to
provide safe operation for machines, and to avoid any economic loss.

Food industry is one of the major industrial sectors in the world and different machines are used to handle,
prepare, cook, package, and store food and food products. For this reason, companies in this domain attempt to
improve their systems and machines, so their performance and productivity, by turning into information technology.
Hence, all food processing aspects can be monitored and controlled by an information system. In food industry, the
machines are constructed based on the demands of operation(s) and with design considerations related to machine
functionality (e.g. sorting products), food safety, hygiene, integration of analytical components, and many others.

166 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169 Author name / Procedia Computer Science 00 (2020) 000–000 5

Consequently, any misuse from machine operators or maintenance engineers for them could influence their
performance and efficiency, and this could lead to hazardous consequences. For example, machine-related injuries,
falling objects, gas release, poisoning, etc. which in general could lead to loss of money and maybe lives.

The main goal for any food industry factory is to move the local food to consumers locally or globally with
precise and defined quality. In our use case we focus on FruitCanning factory, its functionality, the machines, the
staff, and the products, to show how some operations can be performed in such environment with the dedicated
permissions for each user or group of users. Our AC metamodel architecture is used to instantiate different AC
models to enforce the defined policies in the use case.

5.1. Use Case

Fruit Canning is a popular method to distribute certain fruits (or vegetables) to the marketplace. FruitCanning
factory includes several machines for fruit processing, for example, pre-treatment machine (M1), fruit crusher
machine (M2), fruit extractor machine (M3), sterilization machine (M4), and many others. Recent machines are
accomplished to keep track of the settings, the daily operating hours, the identity of the operator(s), the type of the
produced products, and other important data. Operating these machines can be occurred physically or via an
information system, hence a well coherent access control configurations are needed. However, to ensure food
quality and safety, machines must only be controlled by authorized users for example machines operators,
maintenance engineers, and heads of sectors. Actions on machines include turning on/off the machine(s), monitoring
machine(s) performance, modifying machine(s) settings, inserting order specifications (quantity, order deadline,
product type, ...), fixing some malfunctions, and other operations.

Only maintenance engineers Evan and Bob can monitor (read) the log files and fix any disrupt. The team leader
Romy is able to control the machines by turning them on or off, modify their settings, and insert order(s) details. The
machine operators Eve and Mike can access the machines M1, M2 and M3 to operate them (on/off) and sort the
produced products. Head sectors and maintenance engineers could access all the machines.

To ensure food safety and due to pandemic COVID-19, none of the users would be able to enter the factory
before undergoing the necessary tests, and in case of coming back from a travel they must be quarantined for 14
days. Fig. 2 illustrates the AC schema of the use case for the users and their access rights over the machines.

Fig. 2. Use case – AC schema

5.2. Role Based Access Control

In Role Based Access Control model (RBAC) a role can be associated to many subjects. Subjects are given
permission to perform some actions based on their roles (e.g. engineers, managers …). The key components in
RBAC are subjects, objects, roles and permissions to perform actions [1, 13, 22]. In Fig. 3, we use our AC
metamodel architecture to construct RBAC policy for the use case of FruitCanning factory. Since RBAC does not
support the notion of attributes, we start our illustration from level 2 where we define the needed RBAC components
(classes) and which are extracted from the above use case. We have 3 types of users (machine operators,
maintenance engineers, and team leader), various actions (modify, fix, read, …), and 3 roles (leader, engineer, and
operator). At levels 3 and 4 the instances for explicit and implicit components are created, then subjects are assigned

 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169 167 Author name / Procedia Computer Science 00 (2020) 000–000 5

Consequently, any misuse from machine operators or maintenance engineers for them could influence their
performance and efficiency, and this could lead to hazardous consequences. For example, machine-related injuries,
falling objects, gas release, poisoning, etc. which in general could lead to loss of money and maybe lives.

The main goal for any food industry factory is to move the local food to consumers locally or globally with
precise and defined quality. In our use case we focus on FruitCanning factory, its functionality, the machines, the
staff, and the products, to show how some operations can be performed in such environment with the dedicated
permissions for each user or group of users. Our AC metamodel architecture is used to instantiate different AC
models to enforce the defined policies in the use case.

5.1. Use Case

Fruit Canning is a popular method to distribute certain fruits (or vegetables) to the marketplace. FruitCanning
factory includes several machines for fruit processing, for example, pre-treatment machine (M1), fruit crusher
machine (M2), fruit extractor machine (M3), sterilization machine (M4), and many others. Recent machines are
accomplished to keep track of the settings, the daily operating hours, the identity of the operator(s), the type of the
produced products, and other important data. Operating these machines can be occurred physically or via an
information system, hence a well coherent access control configurations are needed. However, to ensure food
quality and safety, machines must only be controlled by authorized users for example machines operators,
maintenance engineers, and heads of sectors. Actions on machines include turning on/off the machine(s), monitoring
machine(s) performance, modifying machine(s) settings, inserting order specifications (quantity, order deadline,
product type, ...), fixing some malfunctions, and other operations.

Only maintenance engineers Evan and Bob can monitor (read) the log files and fix any disrupt. The team leader
Romy is able to control the machines by turning them on or off, modify their settings, and insert order(s) details. The
machine operators Eve and Mike can access the machines M1, M2 and M3 to operate them (on/off) and sort the
produced products. Head sectors and maintenance engineers could access all the machines.

To ensure food safety and due to pandemic COVID-19, none of the users would be able to enter the factory
before undergoing the necessary tests, and in case of coming back from a travel they must be quarantined for 14
days. Fig. 2 illustrates the AC schema of the use case for the users and their access rights over the machines.

Fig. 2. Use case – AC schema

5.2. Role Based Access Control

In Role Based Access Control model (RBAC) a role can be associated to many subjects. Subjects are given
permission to perform some actions based on their roles (e.g. engineers, managers …). The key components in
RBAC are subjects, objects, roles and permissions to perform actions [1, 13, 22]. In Fig. 3, we use our AC
metamodel architecture to construct RBAC policy for the use case of FruitCanning factory. Since RBAC does not
support the notion of attributes, we start our illustration from level 2 where we define the needed RBAC components
(classes) and which are extracted from the above use case. We have 3 types of users (machine operators,
maintenance engineers, and team leader), various actions (modify, fix, read, …), and 3 roles (leader, engineer, and
operator). At levels 3 and 4 the instances for explicit and implicit components are created, then subjects are assigned

6 Author name / Procedia Computer Science 00 (2018) 000–000

to their roles at level 5. The association of actions to objects (machines) which can be performed by users (subjects)
based on their roles are depicted in level 6.

Fig. 3. Use case – RBAC

5.3. Hybrid RBAC/ABAC

Attribute Based Access Control (ABAC) model support dynamic attributes, the key components in ABAC are
actions, subject attributes, object attributes, and environmental attributes. Access control decisions are assessed at
run time when request is made by subject(s) to perform action(s) on object(s) [1, 22]. Hence, they are
allowed/denied based on their attributes, object attributes, environment conditions, and a set of policies that are
specified in terms of those attributes and conditions. In this section we illustrate a hybrid RBAC/ABAC model and
use the attribute centric approach [4] where a role is defined as an attribute for a user (subject). Note that in our
illustration in Fig. 4, we define instances for subjects and objects with the aggregated attributes to represent the idea,
since permission evaluation occurred at runtime.

For the above use case, let us say that the maintenance engineer Evan has recently arrived from a vacation and his
quarantined duration is less than 14 days. Also, the machine operator Eve after undergoing the COVID-19
examination, in her record the COVID-19-Test indicates TRUE. Hence, both workers are not allowed to enter the
factory before having their COVID-19-Test = FASLE. Fig. 4 illustrates hybrid RBAC/ABAC model for the use case
based on the AC metamodel architecture.

We use the metamodel architecture to construct hybrid RBAC/ABAC policy for the above use case. We start our
illustration from level 1 to define all the attributes (for subjects, objects, and environment), in level 2 the needed
components (classes) are illustrated with attribute aggregations, note that role is defined as an attribute. At levels 3
and 4 the instances for explicit and implicit components are created, then the supposed permissions for subjects are
assigned at level 5. The access rights to objects, and the defined constraints are checked before policy enforcement
at level 6.

Other AC methods can be constructed based on this architecture to enforce AC policies in any computing

environment. As we can see from Fig. 3 and Fig. 4, we can define all the needed attributes and components no
matter what feature(s) the model could have, and we can traverse its layers based on the needed model formulation.

168 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169
 Author name / Procedia Computer Science 00 (2020) 000–000 7

Fig. 4. Use case – hybrid RBAC/ABAC

6. Conclusion and Future Perspective

In this paper we propose a new architecture for an AC metamodel which can be developed to work as a basis to
overcome the common limitations of the existing metamodels. We present a food industry use case to show its
dynamicity in constructing and deriving AC models and how generic it is. Our metamodel architecture encompasses
the base characteristics to follow the continuous technology upgrades since:

1) it has a general base concept to derive different AC models,
2) new AC components can be defined, in addition to the common ones, and new AC models can be formulated.
3) it is dynamic since various types of attributes can be defined and various models can be formulated, for static

and dynamic policy enforcements.
4) it would facilitate the collaboration process between different AC models which are implemented within

different for example IoT layers, since they are derived from the same architecture.
5) it is upgradable due to its dynamic architecture in its different levels, and this would allow migrating the AC

policies from one model to another.

We believe that the architecture of this AC metamodel introduces a new era of controlling access in the light of new
technologies (IoT, cloud computing, social networks, ...) due to the above characteristics which can be manipulated
for different AC implementations. As future perspective, we aim to provide a formal representation for the design of
our AC metamodel architecture with more detailed explanations and illustrations for its levels with a formal
language. Also, show its challenging characteristics in the current computing environments, specially IoT, and
provide a detailed industrial use case which tackles industry 4.0.

 Nadine Kashmar et al. / Procedia Computer Science 177 (2020) 162–169 169
 Author name / Procedia Computer Science 00 (2020) 000–000 7

Fig. 4. Use case – hybrid RBAC/ABAC

6. Conclusion and Future Perspective

In this paper we propose a new architecture for an AC metamodel which can be developed to work as a basis to
overcome the common limitations of the existing metamodels. We present a food industry use case to show its
dynamicity in constructing and deriving AC models and how generic it is. Our metamodel architecture encompasses
the base characteristics to follow the continuous technology upgrades since:

1) it has a general base concept to derive different AC models,
2) new AC components can be defined, in addition to the common ones, and new AC models can be formulated.
3) it is dynamic since various types of attributes can be defined and various models can be formulated, for static

and dynamic policy enforcements.
4) it would facilitate the collaboration process between different AC models which are implemented within

different for example IoT layers, since they are derived from the same architecture.
5) it is upgradable due to its dynamic architecture in its different levels, and this would allow migrating the AC

policies from one model to another.

We believe that the architecture of this AC metamodel introduces a new era of controlling access in the light of new
technologies (IoT, cloud computing, social networks, ...) due to the above characteristics which can be manipulated
for different AC implementations. As future perspective, we aim to provide a formal representation for the design of
our AC metamodel architecture with more detailed explanations and illustrations for its levels with a formal
language. Also, show its challenging characteristics in the current computing environments, specially IoT, and
provide a detailed industrial use case which tackles industry 4.0.

8 Author name / Procedia Computer Science 00 (2018) 000–000

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) [funding reference number 06351], Fonds Québécois de la Recherche sur la Nature et les Technologies
(FRQNT), and Centre d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

References

[1] N. Kashmar, M. Adda, and M. Atieh, "From Access Control Models to Access Control Metamodels: A Survey," in Future of
Information and Communication Conference, 2019, pp. 892-911: Springer, 2019.

[2] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn, Attribute-Based Access Control. Norwood: Artech House, 2018.
[3] N. Kashmar, M. Adda, M. Atieh, and H. Ibrahim, "Towards a New Generic and Enhanced Access Control Metamodel: A Complete

Introduction, Review and Roadmap," ACM Transactions on Internet Technology, no. Special Issue on Human-Centered Security,
Privacy, and Trust in the Internet of Things (Submitted), 2020.

[4] D. R. Kuhn, E. J. Coyne, and T. R. Weil, "Adding attributes to role-based access control," Computer, vol. 43, no. 6, pp. 79-81, 2010.
[5] Q. M. Rajpoot, C. D. Jensen, and R. Krishnan, "Integrating attributes into role-based access control," in IFIP Annual Conference on

Data and Applications Security and Privacy, 2015, pp. 242-249: Springer.
[6] F. Nazerian, H. Motameni, and H. Nematzadeh, "Emergency role-based access control (E-RBAC) and analysis of model

specifications with alloy," Journal of information security and applications, vol. 45, pp. 131-142, 2019.
[7] N. Kashmar, M. Adda, M. Atieh, and H. Ibrahim, "A new dynamic smart-AC model methodology to enforce access control policy in

IoT layers," in 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things
(SERP4IoT), 2019, pp. 21-24: IEEE.

[8] S. Martínez, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and J. Cabot, "Towards an access-control metamodel for web
content management systems," in International Conference on Web Engineering, 2013, pp. 148-155: Springer.

[9] C. Bertolissi and M. Fernández, "A metamodel of access control for distributed environments: Applications and properties,"
Information and Computation, vol. 238, pp. 187-207, 2014.

[10] M. Korman, R. Lagerström, and M. Ekstedt, "Modeling enterprise authorization: a unified metamodel and initial validation," Complex
Systems Informatics and Modeling Quarterly, no. 7, pp. 1-24, 2016.

[11] E. Gorshkova, B. Novikov, and M. K. Shukla, "A fine-grained access control model and implementation," in Proceedings of the 18th
International Conference on Computer Systems and Technologies, 2017, pp. 187-194.

[12] S. Khamadja, K. Adi, and L. Logrippo, "Designing flexible access control models for the cloud," in Proceedings of the 6th
International Conference on Security of Information and Networks, 2013, pp. 225-232: ACM.

[13] N. Kashmar, M. Adda, M. Atieh, and H. Ibrahim, "Smart-AC: A New Framework Concept for Modeling Access Control Policy,"
Procedia Computer Science, vol. 155, pp. 417-424, 2019.

[14] S. Barker, "The next 700 access control models or a unifying meta-model?," in Proceedings of the 14th ACM symposium on Access
control models and technologies, 2009, pp. 187-196.

[15] N. Slimani, H. Khambhammettu, K. Adi, and L. Logrippo, "UACML: Unified access control modeling language," in 2011 4th IFIP
International Conference on New Technologies, Mobility and Security, 2011, pp. 1-8: IEEE.

[16] T. Xia et al., "Cloud Security and Privacy Metamodel," in Proceedings of the 6th International Conference on Model-Driven
Engineering and Software Development, 2018, pp. 379-386: SCITEPRESS-Science and Technology Publications, Lda.

[17] J. Abd-Ali, K. El Guemhioui, and L. Logrippo, "A Metamodel for Hybrid Access Control Policies," JSW, vol. 10, no. 7, pp. 784-797,
2015.

[18] H. Pooda, "Évaluation Et Comparaison Des Modèles de Contrôle D'accès," Université de Sherbrooke, 2016.
[19] M. A. Abakar, "Etude et mise en oeuvre d'une architecture pour l'authentification et la gestion de documents numériques certifiés:

application dans le contexte des services en ligne pour le grand public," Saint-Etienne, 2012.
[20] H. Qi, X. Di, and J. Li, "Formal definition and analysis of access control model based on role and attribute," Journal of information

security and applications, vol. 43, pp. 53-60, 2018.
[21] M. Ennahbaoui and S. Elhajji, "Study of access control models," in Proceedings of the World Congress on Engineering, 2013, vol. 2,

pp. 3-5.
[22] N. Kashmar, M. Adda, M. Atieh, and H. Ibrahim, "Access Control in Cybersecurity and Social Media," in Cybersécurité et médias

sociaux: qui sera publié par l’Université d’Ottawa, 2019.

APPENDIX VII

The 11th International Symposium Frontiers in Ambient and Mobile Systems (FAMS), March 23 -
26, 2021, Warsaw, Poland

Procedia Computer Science, Volume 184, 2021, Pages 887-892,
https://doi.org/10.1016/j.procs.2021.03.111

237

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 184 (2021) 887–892

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2021.03.111

10.1016/j.procs.2021.03.111 1877-0509

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 11th International Symposium on Frontiers in Ambient and Mobile Systems (FAMS)
March 23 - 26, 2021, Warsaw, Poland

Access Control Metamodel for Policy Specification and
Enforcement: From Conception to Formalization

Nadine Kashmara,c,∗, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc

aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, QC G5L 3A1, Canada
bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon

cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada

Abstract

With the widespread of data, applications, and devices in today’s dynamic computing environments, controlling access to assets
from multiple sources is a key challenge, especially with the presence of cybercriminals and cyberattacks. Several access control
(AC) models are developed and implemented in different computing environments to control users’ access to resources. But,
the emergence of ubiquitous computing, especially the concept of industry 4.0 and IoT applications, releases new prospects to
traditional information systems by merging new technologies and services for seamless access to information sources at anytime
and anywhere. With this fact, it is realized that these AC models no longer meet the increasing demand for privacy and security
standards. Hence, several AC metamodels with higher level of abstraction are developed as unifying frameworks for specifying
any AC policy. Unfortunately, the proposed AC metamodels have several limitations. One of these limitations is that they are not
generic enough to include all features and the heterogeneous AC models. In this paper we propose a solution for this limitation by
developing a generic AC metamodel where its features can be upgraded to answer the needs and facts of the new technologies.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: access control; metamodel; security and privacy; IoT; policy;

1. Introduction

Security and privacy requirements increase with the massive presence of new paradigms and technologies. To
ensure cybersecurity, various security methods are applied and AC is one of the essential security requirements in
this domain. Several AC methods have been implemented to control access to different resources, for example, role-
based AC (RBAC) and attribute-based AC (ABAC) models [1, 2]. Information security is often considered to have
three essential components; technology, operations and users. Technology is the principal aspect since it encompasses

∗ Corresponding author. Tel.: +14188338800; fax: +141883311.
E-mail address: nadine.kashmar@uqar.ca

1877-0509© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 11th International Symposium on Frontiers in Ambient and Mobile Systems (FAMS)
March 23 - 26, 2021, Warsaw, Poland

Access Control Metamodel for Policy Specification and
Enforcement: From Conception to Formalization

Nadine Kashmara,c,∗, Mehdi Addaa, Mirna Atiehb, Hussein Ibrahimc

aDépartement de mathématiques, informatique et génie, Université du Québec à Rimouski, 300 Allée des Ursulines, QC G5L 3A1, Canada
bBusiness Computer Department, Faculty of Economic Sciences and Administration, Lebanese University, Hadat, Lebanon

cInstitut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada

Abstract

With the widespread of data, applications, and devices in today’s dynamic computing environments, controlling access to assets
from multiple sources is a key challenge, especially with the presence of cybercriminals and cyberattacks. Several access control
(AC) models are developed and implemented in different computing environments to control users’ access to resources. But,
the emergence of ubiquitous computing, especially the concept of industry 4.0 and IoT applications, releases new prospects to
traditional information systems by merging new technologies and services for seamless access to information sources at anytime
and anywhere. With this fact, it is realized that these AC models no longer meet the increasing demand for privacy and security
standards. Hence, several AC metamodels with higher level of abstraction are developed as unifying frameworks for specifying
any AC policy. Unfortunately, the proposed AC metamodels have several limitations. One of these limitations is that they are not
generic enough to include all features and the heterogeneous AC models. In this paper we propose a solution for this limitation by
developing a generic AC metamodel where its features can be upgraded to answer the needs and facts of the new technologies.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: access control; metamodel; security and privacy; IoT; policy;

1. Introduction

Security and privacy requirements increase with the massive presence of new paradigms and technologies. To
ensure cybersecurity, various security methods are applied and AC is one of the essential security requirements in
this domain. Several AC methods have been implemented to control access to different resources, for example, role-
based AC (RBAC) and attribute-based AC (ABAC) models [1, 2]. Information security is often considered to have
three essential components; technology, operations and users. Technology is the principal aspect since it encompasses

∗ Corresponding author. Tel.: +14188338800; fax: +141883311.
E-mail address: nadine.kashmar@uqar.ca

1877-0509© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

888 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 887–892
2 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

various trends and concerns. Some examples of recent trends that increase the evolution of security threats are the
growth in usage of mobile devices, the widespread of IoT concept and its applications and devices, and other trends.

With the current evolution of technology trends it is realized that controlling users’ access and the operations they
perform on information cannot be overlooked when developing approaches related to information security. As well,
it is realized that AC models and hybrid models1 have reached their limits, and they no longer meet the increasing
demand for privacy and security standards with the widespread of devices and resources [1, 3]. This fact force the
need develop AC metamodels that serve as unifying frameworks to include multiple AC models to define and enforce
larger set of AC policies [3, 4]. Unfortunately, the proposed AC metamodels in the literature lack some key features
(section 3) which are essential to follow to continuous technology progressions and upgrades [1, 3, 5].

The remaining of this paper is organized as follows. In section 2, we summarize some of the proposed AC meta-
models. In section 3, we present the challenges and the common limitations of the existing metamodels. In section 4,
we present our AC metamodel and its elements. In section 5, we present some examples of how AC policies can be
illustrated using our metamodel concept. Section 6 concludes this paper with future perspectives.

2. Related Work

Access control metamodels are presented in the literature to concurrently handle multiple AC models. Various AC
metamodels are proposed for centralized and distributed computing environments [1, 3, 5]. In this section we present
them, and in section 3 we summarize their common limitations in the light of several challenges in this domain.

Barker in [6], proposes a Category Based Access Control (CBAC) metamodel where multiple AC models can be
derived as special cases from it. CBAC includes features of mandatory AC (MAC), discretionary AC (DAC), and
RBAC models. Since Barker’s metamodel lacks the support of resource and action hierarchies, Slimani et al. in [7]
extend Barker’s metamodel and propose a Unified Access Control Modeling Language (UACML) to provide support
for resource and action hierarchies. A CBAC metamodel extension also proposed by Alves et al. in [8] to deal with
authorization and obligation assessment, to expand a general notion of obligation for the existing AC models and study
the interaction between obligations and permissions. In [9], khamadja et. al present a metamodel approach for cloud
computing services called Category Based Access Control (CatBAC) framework, that allows security administrators
in a company with various sites to find a concrete model with the constraints and specificities of each site, since the
classical AC models (DAC, MAC . . .) are not adequately expressive for highly flexible and dynamic environments. To
handle security and privacy in cloud services, Xia et al. [10] propose Cloud Security and Privacy Metamodel (CSPM)
which integrates and extends the existing metamodels of cloud security together with newly added concepts. For web
services, Martı́nez et al. in [11] propose a Web Content Management System (WCMS) metamodel inspired from
RBAC concept to automatically extract the AC information in the domain of WCMSs. Moreover, Abd-Ali et al. in
[12] propose an integration metamodel for hybrid AC policies to concurrently handle multiple AC models where one
AC decision as output can be obtained in response to multiple AC decisions as input.

The proposed AC metamodels show the concern of finding AC methods with enhanced features to enforce security
policies in different computing environments. This reflects the importance of constructing more robust AC models,
especially in the recent years with the presence of heterogenous network technologies and platforms.

3. Challenges and the Common Limitations of the Existing Metamodels

The definition of security policies with the current computing environments, especially IoT, involves complexities
and challenges due to 1) the heterogeneity of security plans for information systems such as centralized, decentralized,
or both; 2) the diversity of access control rights which might be raised from different information systems such as
allow, deny, or undetermined, for different units such as subjects, roles, etc.; 3) the heterogeneity of security policies
for different AC models and their extensions; 4) the heterogeneity of AC concepts of various AC models such as
objects, subjects, actions, permissions, etc., and 5) the heterogeneity of networks, platforms, devices, etc. Due to
these complexities and challenges, several AC metamodels are proposed including features of multiple AC models to

1 A hybrid model combines features from two or more AC models.

 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 887–892 889
N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000 3

derive various AC models instances. Unfortunately, they have common limitations which cannot be ignored with the
emergence of ubiquitous computing and with the deployment of industry 4.0 and IoT applications. In [5], we review
and analyze the proposed AC metamodels, they have some common limitations: (1) they are not generic enough and
do not to include all features of AC the common models2, (2) they are not dynamic and cannot follow technology
upgrades, (3) no new attributes/entities can be defined, hence cannot be extended, (4) the derived AC models cannot
collaborate within the same computing architecture (e.g. IoT), (5) none of them support the feature of AC policy
migration from one AC model to another, and (6) none of them implemented in the context of IoT systems.

4. The Proposed Access Control Metamodel

In this paper we focus on solving the “generic” limitation by finding a common set of AC concepts for the het-
erogeneous AC models. Having a generic metamodel would allow 1) integrating or including new AC elements for
new AC models; 2) building dynamic metamodel with the ability to define new attributes for static/dynamic policy
enforcement; 3) the instances of AC models could collaborate and their entities can be interoperable in distributed
systems; and 4) facilitate the idea of AC migration from one AC model to another.

4.1. The Roadmap Towards the Formal Representation

Before representing our metamodel we should mention that we have started from scratch, Fig. 1 summarizes the
steps we have achieved. The first phase is reviewing and analyzing the proposed metamodels to find out their objectives
and limitations [1, 13, 5]. The second phase is defining the scope of the solution and our preliminary idea for solving
the limitations [2], building the metamodel concept [4], and its general architecture [3]. The third phase is representing
our AC metamodel and the relationships between its components (sections 4.2 and 4.3).

Review & Critical Analysis:Review & Critical Analysis:
• General review of the existing AC models and metamodels in various IT domains.
• Deeper review of the proposed AC metamodels, critical analysis, and find out their limitations.
• General review of the existing AC models and metamodels in various IT domains.
• Deeper review of the proposed AC metamodels, critical analysis, and find out their limitations.

Idea and DesignIdea and Design

[1, 13]
[5]

• Frame the problem, set the goals, and develop the possible scope of the solution
• Build the concept of the new metamodel.
• Design general and dynamic architecture of our AC metamodel based on the concept in [4].

• Frame the problem, set the goals, and develop the possible scope of the solution
• Build the concept of the new metamodel.
• Design general and dynamic architecture of our AC metamodel based on the concept in [4].

Formalization of metamodel: Visual RepresentationFormalization of metamodel: Visual Representation

• Representing the components of the metamodel and the relationships between them.• Representing the components of the metamodel and the relationships between them.

[2]
[4]
[3]

Fig. 1. The steps from review to formal representation

4.2. The Metamodel Elements: common concepts of heterogeneous AC models

Security policies define the principles and guidelines on which access is granted or denied. In general, security
policies include common concepts and attributes which are common to all AC models:

1- a set of concepts (and attributes) to describe subjects and objects.
2- a set of concepts (and attributes) that describe the authorized subjects.
3- a set of concepts (and attributes) that explain the different access rights.
4- a set of concepts (and attributes) that set various constraints and conditions.
5- a set of concepts (and attributes) that describe the context (environmental context) to access objects.

Consequently, the above concepts are illustrated in Fig. 2 and they are interpreted as follows:

• in (1), subjects (e.g. operators, doctors ...) and objects (e.g. machines, patient files ...) are concepts that refer to
something real and exists. In our illustration we name them explicit concepts.

2 The common AC models are: discretionary AC (DAC), mandatory AC (MAC), role-based AC (RBAC), organization-based AC (OrBAC), and
attribute-based AC (ABAC)

890 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 887–892
4 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

Concepts attributes

explicit implicit setting

subjects objects authorization units procedural units constraints context

category role group … permission obligation operation … contextual constraintsnon-contextual constraints

Fig. 2. The elements of our Access Control Metamodel

• in (2), the described concepts, in general, are related to how subjects are classified or assigned (for example, in
RBAC subjects are assigned to roles). We name this set of concepts authorization units, and they include roles,
categories, security levels, etc. Also, in (3) the concepts refer to processes or functions that can be performed
by some authorized units on objects. We name this set of concepts procedural units, and they include actions,
permissions, etc. In our illustration authorization units and procedural units belong to implicit concepts.
• in (4) and (5), the concepts refer to the settings which are planned and determined to have more accurate

and regulated access to resources. The setting includes the context and constraints, where context includes
contextual constraints, and constraints include contextual and non-contextual constraints.

Note that, the concepts of some AC methods (e.g. ABAC) are built using aggregation operations on the attributes.

4.3. The Formalization of Our Access Control Metamodel

In this section we use the term entity (or class) instead of element, and attribute list (attlist[]) instead of attributes.
In Fig. 3 we illustrate our AC metamodel and the relationships between its entities.

subject
Attlist[]

object
Attlist[]

authorization unit

Attlist[]

procedural unit

Attlist[]

Explicit Implicit

1 …*

0 …*

constraints

1 …*

1 …*

Setting

context
Attlist[]

category role group

…..…

permission operation action

……..

0 …*0 …*

0 …*

0 …*

0…*

0 …*

contextual
constraints

non-contextual
constraints

Fig. 3. A visual representation of our Access Control Metamodel

• Subject (S): A set of subjects S = {s1, ..., sn}. The subjects represent entities within a system that are able to
initiate access requests. The class Subject has an association with the abstract class Authorization Unit.
• Authorization Unit (AU): A set of authorization units AU = {au1, ..., aun}. AU class is defined as an abstract

class, hence AU must be specialized to create specific authorization units such as roles, categories, security
levels, etc. to which subjects can be assigned. AU example:

au1 : role(r1, .., rn)⇒ au1 = {au11, .., au1n}; au2 : category(c1, .., cn)⇒ au2 = {au21, .., au2n}
hence, AU = {au1 = {au11, . . . , au1n}; au2 = {au21, . . . , au2n}; ...; aun = {aun1, . . . , aunn}}

• Object (Ob): A set of objects Ob = {ob1, ..., obn}. An object represents the files, devices, etc. The class Object
has an association with the abstract class Procedural Unit.

 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 887–892 891
N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000 5

• Procedural Units (PU): A set of procedural units AU = {pu1, ..., pun}. PU class is defined as an abstract class,
hence PU must be specialized to create specific procedural units such as actions, permissions, etc. to which
objects can be assigned. In other words, it represents operations that can be performed on objects. PU example:

pu1 : action(a1, .., an)⇒ pu1 = {pu11, .., pu1n}; pu2 : operation(op1, .., opn)⇒ pu2 = {pu21, .., pu2n}
hence, PU = {pu1 = {pu11, . . . , pu1n}; pu2 = {pu21, . . . , pu2n}; ...; pun = {pun1, . . . , punn}}

• Constraint (Const): A set of contextual and/or non-contextual constraints Const ={const1, ..., constn}.
• Context (Con): A set of contexts Con = {con1, ..., conn}. The context class is to represent the dynamic con-

text information which brings new challenges to AC models and methods. A context expression conx can be
expressed in terms of aui, pu j, obk, and constl (contextual conditions). Hence,

Con = {(au1, pu1, ob1, const1), ..., (aum, pun, obr, consty)} ⊆ AU × PU × Ob ×Const

Note that in some AC models AU might be equivalent to S, for example in DAC model subjects are not assigned
to roles, categories, etc. and AU is an empty set.

Furthermore, our metamodel provides support for creating hierarchy for classes of AU (e.g. role hierarchy), PU (e.g.
action hierarchy), and object or resource hierarchy by aggregating AUs, PUs, and objects. These hierarchical relation-
ships are depicted by an aggregation association. The association between S and AU, is to assign subjects to roles,
groups, categories or other AUs. The association between AU & PU and PU & O, is to represent which AUs are able
to perform some PUs (actions, permissions ...) and access some objects. Note that, PUs might have a set of contextual
and/or non-contextual constraints before being performed on objects. Our metamodel provides support for formulat-
ing AC models and hybrid models for different policies by allowing AUs to be associated with other AUs, As shown
in Fig. 3 as a self-association edge with a diamond exists on class AU. However, the rule can be represented as:

Rule = 〈AU,Ob, PU,Con〉
Which means, an authorization unit (or subject) can access object(s) and perform some procedures or actions based
on some context and constraints. Note that, in some models we might have an empty set of AU, Con, or Const.

5. Access Control Policy: Examples and Illustrations

- ABAC policy: In clinics department of a hospital, the doctors Mark and Joe can read/write their patients’
prescriptions. The nurse Joyce who has completed 30 hours of training is allowed to read prescriptions which
are identified by doctor’s Id (dId), a number (pnum), date (pdate), and some details (pdetails). All workers
(doctors, nurses ...) in the hospital have their Ids and a record with their related information (name, address...).
ABAC allows/denies subject requests based on some attributes of subjects, objects, environment, and a set of
constraints [5]. In Fig. 4a we illustrate concrete model as an ABAC policy example based on our AC metamodel.
The explicit attributes for subjects are for doctors (id, name, ...), nurses (id, name, training hours, ...), and the
patient presecription object (pNum, pDate, ...). The implicit attributes for PUs which represent the actions read
and write (actionType). The setting refers to contextual attributes (login-location) and the constraints.

- Hybrid MAC/RBAC:In clinics department of a hospital, the doctors Mark and Joe have a clearance level “Top
Secret” that is equal to the classification level of the object patient prescription. Hence, doctors are allowed to
read/write prescriptions. Also, the nurse Joyce has clearance level “Secret” and can read patient prescription.
In Fig. 4b we illustrate concrete model as an example of hybrid MAC3/RBAC policy. In the defined policy,
some subjects are assigned to doctor and nurse roles, subjects are permitted to read an object if their clearance
level is � than the object’s classification level, and to write if it is greater than or equal (�). Note that, if for
example the clearance level for doctor Joe is “secret”, then he is only allowed to read patient prescription.

6. Conclusion and Future Perspectives

In this paper, we propose an AC metamodel that addresses the “generic” limitation of the existing AC metamodels
[5]. To the best of our knowledge, this is the first metamodel in the literature that solves the issue of heterogeneity of

3 In our example we use BIBA (developed by Kenneth J. Biba), a MAC variant

892 Nadine Kashmar et al. / Procedia Computer Science 184 (2021) 887–892
6 N. Kashmar et al. / Procedia Computer Science 00 (2019) 000–000

(a)

<<subject>>
ID: 1001
Name: Mark
Login-loca.:..
…

<<action>>
write

<<subject>>
ID: 1051
Name: Joe
Login-loca.:
…

<<subject>>
ID: 101
Name: Joyce
Train. hrs: 37
Login-loca.: ..

<<objtect>>
pNum: 106
dID: 1051
pDate: ….
details: …

<<action>>
read

<<contextual constraint>>
Login-location = hospital? (true)

<<non- contextual constraint>>
Training hours >= 30? (true)

<<subject>>
Mark

<<object>>
Prescription

<<subject>>
Joe

<<subject>>
Joyce

<<role>>
doctor <<role>>

nurse

<<action>>
read

<<action>>
write<<security level>>

top secret
<<security level>>

secret

(b)

Fig. 4. (a) ABAC policy and (b) Hybrid MAC/RBAC policy examples based on our metamodel

concepts for various AC models. Unifying a common set of AC concepts allows us to develop generic AC metamodel
that can be used as a base to solve other exisitng limitations in this domain. We present the formalization of our meta-
model (as visual representation) and illustrate some AC policy examples. As future perspective in this domain, we aim
to 1) illustrate more examples to show the hierarchy for classes of AU, PU, and object; 2) define the grammar of our
formal language for the metamodel using xtext; 3) develop Domain Specific Language (DSL) for policy instantiation;
4) present a use case and show how all AC models can be derived (also hybrid models); 5) develop more metamodel
features and show how the other limitations can be resolved; 6) apply the metamodel to IoT case study.

Acknowledgment

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding
reference number 06351], Fonds Québécois de la Recherche sur la Nature et les Technologies (FRQNT), and Centre
d’Entrepreneuriat et de Valorisation des Innovations (CEVI).

References

[1] N. Kashmar, M. Adda, M. Atieh, From access control models to access control metamodels: A survey, in: Future of Information and Commu-
nication Conference, Springer, 2019, pp. 892–911.

[2] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, A new dynamic smart-ac model methodology to enforce access control policy in iot layers, in:
2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT), IEEE,
2019, pp. 21–24.

[3] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Deriving access control models based on generic and dynamic metamodel architecture: Industrial
use case, Procedia Computer Science 177 (2020) 162–169.

[4] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Smart-ac: A new framework concept for modeling access control policy, Procedia Computer
Science 155 (2019) 417–424.

[5] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, A review of access control metamodels, Procedia Computer Science (2021).
[6] S. Barker, The next 700 access control models or a unifying meta-model?, in: Proceedings of the 14th ACM symposium on Access control

models and technologies, 2009, pp. 187–196.
[7] N. Slimani, H. Khambhammettu, K. Adi, L. Logrippo, Uacml: Unified access control modeling language, in: 2011 4th IFIP International

Conference on New Technologies, Mobility and Security, IEEE, 2011, pp. 1–8.
[8] S. Alves, A. Degtyarev, M. Fernández, Access control and obligations in the category-based metamodel: a rewrite-based semantics, in: Inter-

national Symposium on Logic-Based Program Synthesis and Transformation, Springer, 2014, pp. 148–163.
[9] S. Khamadja, K. Adi, L. Logrippo, Designing flexible access control models for the cloud, in: Proceedings of the 6th International Conference

on Security of Information and Networks, 2013, pp. 225–232.
[10] T. Xia, H. Washizaki, T. Kato, H. Kaiya, S. Ogata, E. B. Fernandez, H. Kanuka, M. Yoshino, D. Yamamoto, T. Okubo, et al., Cloud secu-

rity and privacy metamodel, in: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development,
SCITEPRESS-Science and Technology Publications, Lda, 2018, pp. 379–386.

[11] S. Martı́nez, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, J. Cabot, Towards an access-control metamodel for web content management
systems, in: International Conference on Web Engineering, Springer, 2013, pp. 148–155.

[12] J. Abd-Ali, K. El Guemhioui, L. Logrippo, A metamodel for hybrid access control policies., JSW 10 (7) (2015) 784–797.
[13] N. Kashmar, M. Adda, M. Atieh, H. Ibrahim, Access Control in Cybersecurity and Social Media, Université d’Ottawa, 2021, Ch. 4.

BIBLIOGRAPHY

Abd-Ali, J., El Guemhioui, K., & Logrippo, L. (2015). A metamodel for hybrid access control
policies. JSW, 10(7), 784–797.

Adda, M., & Aliane, L. (2020). Hobac: fundamentals, principles, and policies. Journal of
Ambient Intelligence and Humanized Computing, 11(12), 5927–5941. https://doi.org/
10.1007/s12652-020-02102-y

Al Kukhun, D. (2012). Steps towards adaptive situation and context-aware access: a con-
tribution to the extension of access control mechanisms within pervasive information
systems (Doctoral dissertation). Université de Toulouse, Université Toulouse III-Paul
Sabatier.

Aliane, L., & Adda, M. (2019). Hobac: toward a higher-order attribute-based access control
model. Procedia Computer Science, 155, 303–310.

Alves, S., Degtyarev, A., & Fernández, M. (2014). Access control and obligations in the
category-based metamodel: a rewrite-based semantics. International Symposium on
Logic-Based Program Synthesis and Transformation, 148–163.

Antunes, M., Maximiano, M., Gomes, R., & Pinto, D. (2021). Information security and cy-
bersecurity management: a case study with smes in portugal. Journal of Cybersecurity
and Privacy, 1(2), 219–238.

Assar, S. (2015). Meta-modeling: concepts, tools and applications. IEEE RCIS’15: 9th Inter-
national Conference on Research Challenges in Information Science.

Barker, S. (2009). The next 700 access control models or a unifying meta-model? Proceed-
ings of the 14th ACM symposium on Access control models and technologies, 187–
196.

Bertino, E., Jabal, A. A., Calo, S., Verma, D., & Williams, C. (2018). The challenge of access
control policies quality. Journal of Data and Information Quality (JDIQ), 10(2), 1–6.

Bertolissi, C., & Fernández, M. (2014). A metamodel of access control for distributed envi-
ronments: applications and properties. Information and Computation, 238, 187–207.

Cruz-Piris, L., Rivera, D., Marsa-Maestre, I., De La Hoz, E., & Velasco, J. R. (2018). Access
control mechanism for iot environments based on modelling communication proce-
dures as resources. Sensors, 18(3), 917.

Ennahbaoui, M., & Elhajji, S. (2013). Study of access control models. Proceedings of the
World Congress on Engineering, 2, 3–5.

Ferraiolo, D., & Atluri, V. (2008). A meta model for access control: why is it needed and is it
even possible to achieve? Proceedings of the 13th ACM symposium on Access control
models and technologies, 153–154.

Gorshkova, E., Novikov, B., & Shukla, M. K. (2017). A fine-grained access control model
and implementation. Proceedings of the 18th International Conference on Computer
Systems and Technologies, 187–194.

https://doi.org/10.1007/s12652-020-02102-y
https://doi.org/10.1007/s12652-020-02102-y

Hasiba, B. A., Kahloul, L., & Benharzallah, S. (2017). A new hybrid access control model
for multi-domain systems. 2017 4th International Conference on Control, Decision
and Information Technologies (CoDIT), 0766–0771.

Hu, V. C., Ferraiolo, D. F., Chandramouli, R., & Kuhn, D. R. (2017). Attribute-based access
control. Artech House.

Hu, V. C., Kuhn, D. R., Ferraiolo, D. F., & Voas, J. (2015). Attribute-based access control.
Computer, 48(2), 85–88.

Jaidi, F., Labbene Ayachi, F., & Bouhoula, A. (2018). A methodology and toolkit for deploy-
ing reliable security policies in critical infrastructures. Security and Communication
Networks, 2018.

Kaiwen, S., & Lihua, Y. (2014). Attribute-role-based hybrid access control in the internet of
things. Asia-Pacific Web Conference, 333–343.

Kashmar, N., Adda, M., & Atieh, M. (2019). From access control models to access control
metamodels: a survey. Future of Information and Communication Conference, 892–
911.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H. (2019a). A new dynamic smart-ac model
methodology to enforce access control policy in iot layers. 2019 IEEE/ACM 1st In-
ternational Workshop on Software Engineering Research & Practices for the Internet
of Things (SERP4IoT), 21–24.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H. (2019b). Smart-ac: a new framework con-
cept for modeling access control policy. Procedia Computer Science, 155, 417–424.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H. (2020). Deriving access control models
based on generic and dynamic metamodel architecture: industrial use case. Procedia
Computer Science, 177, 162–169.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H. (2021a). Access control in cybersecurity
and social media. Cybersécurité et médias sociaux.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H. (2021b). Access control metamodel for pol-
icy specification and enforcement: from conception to formalization. Procedia Com-
puter Science, 184, 887–892.

Kashmar, N., Adda, M., Atieh, M., & Ibrahim, H. (2021c). A review of access control meta-
models. Procedia Computer Science, 184, 445–452.

Kashmar, N., Adda, M., & Ibrahim, H. (2021a). Access control metamodels: review, critical
analysis, and research issues. Journal of Ubiquitous Systems and Pervasive Networks,
3(1).

Kashmar, N., Adda, M., & Ibrahim, H. (2021b). Head metamodel: hierarchical, extensible,
advanced, and dynamic access control metamodel for dynamic and heterogeneous
structures. Sensors, 21(19), 6507.

Kashmar, N., Adda, M., & Ibrahim, H. (2022a). Head access control metamodel: distinct de-
sign, advanced features, and new opportunities. Journal of Cybersecurity and Privacy,
2(1), 42–64. https://doi.org/10.3390/jcp2010004

246

https://doi.org/10.3390/jcp2010004

Kashmar, N., Adda, M., & Ibrahim, H. (2022b). Head access control metamodel: distinct
design, advanced features, and new opportunities. Journal of Security and Privacy (in
press).

Khamadja, S., Adi, K., & Logrippo, L. (2013). Designing flexible access control models for
the cloud. Proceedings of the 6th International Conference on Security of Information
and Networks, 225–232.

Kim, S., Kim, D.-K., Lu, L., & Song, E. (2014). Building hybrid access control by configuring
rbac and mac features. Information and Software Technology, 56(7), 763–792.

Klarl, H., Molitorisz, K., Emig, C., Klinger, K., & Abeck, S. (2009). Extending role-based
access control for business usage. 2009 Third International Conference on Emerging
Security Information, Systems and Technologies, 136–141.

Korman, M., Lagerström, R., & Ekstedt, M. (2016). Modeling enterprise authorization: a
unified metamodel and initial validation. Complex Systems Informatics and Modeling
Quarterly, (7), 1–24.

Krehling, L., & Essex, A. (2021). A security and privacy scoring system for contact tracing
apps. Journal of Cybersecurity and Privacy, 1(4), 597–614. https://doi.org/10.3390/
jcp1040030

Layouni, F., & Pollet, Y. (2009). Fi-orbac: a model of access control for federated identity
platform. IADIS International Conference Information Systems Barcelona, Spain.

Martinez, S., Cabot, J., Garcia-Alfaro, J., Cuppens, F., & Cuppens-Boulahia, N. (2012). A
model-driven approach for the extraction of network access-control policies. Proceed-
ings of the Workshop on Model-Driven Security, 1–6.

Martinez, S., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., & Cabot, J. (2013). To-
wards an access-control metamodel for web content management systems. Interna-
tional Conference on Web Engineering, 148–155.

Nguyen, P. H., Nain, G., Klein, J., Mouelhi, T., & Le Traon, Y. (2013). Model-driven adap-
tive delegation. Proceedings of the 12th annual international conference on Aspect-
oriented software development, 61–72.

Oh, S. (2007). Permission-centric hybrid access control. Advances in web and network tech-
nologies, and information management (pp. 694–703). Springer.

Rajpoot, Q. M., Jensen, C. D., & Krishnan, R. (2015a). Attributes enhanced role-based access
control model. International Conference on Trust and Privacy in Digital Business, 3–
17.

Rajpoot, Q. M., Jensen, C. D., & Krishnan, R. (2015b). Integrating attributes into role-based
access control. IFIP Annual Conference on Data and Applications Security and Pri-
vacy, 242–249.

Servos, D., & Osborn, S. L. (2014). Hgabac: towards a formal model of hierarchical attribute-
based access control. International Symposium on Foundations and Practice of Secu-
rity, 187–204.

Slimani, N., Khambhammettu, H., Adi, K., & Logrippo, L. (2011). Uacml: unified access
control modeling language. 2011 4th IFIP International Conference on New Tech-
nologies, Mobility and Security, 1–8. https://doi.org/10.1109/NTMS.2011.5721143

247

https://doi.org/10.3390/jcp1040030
https://doi.org/10.3390/jcp1040030
https://doi.org/10.1109/NTMS.2011.5721143

Soltani, N., & Jalili, R. (2017). Enforcing access control policies over data stored on untrusted
server. 2017 14th International ISC (Iranian Society of Cryptology) Conference on
Information Security and Cryptology (ISCISC), 119–124.

Trninić, B., Sladić, G., Milosavljević, G., Milosavljević, B., & Konjović, Z. (2013). Policydsl:
towards generic access control management based on a policy metamodel. 2013 IEEE
12th International Conference on Intelligent Software Methodologies, Tools and Tech-
niques (SoMeT).

Xia, T., Washizaki, H., Kato, T., Kaiya, H., Ogata, S., Fernandez, E. B., Kanuka, H., Yoshino,
M., Yamamoto, D., Okubo, T., et al. (2018). Cloud security and privacy metamodel.
Proceedings of the 6th International Conference on Model-Driven Engineering and
Software Development, 379–386.

248

	doctoralthesis - 2 (1).pdf
	Acknowledgment
	Résumé
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	 General Introduction
	Research Context and Motivation
	Access Control
	Access Control Challenges within Dynamic and Heterogeneous Structures
	Problematic
	Objectives
	Research Methodology
	Thesis Originality and Contributions
	The Structure of the thesis

	 Access Control Metamodels: Review, Critical Analysis, and Research Issues
	Introduction
	Access Control Models
	Access Control Metamodels
	Discussion and Critical Analysis
	Research issues and open questions
	Conclusion and Future Perspectives

	 HEAD Access Control Metamodel for Dynamic and Heterogeneous Structures
	Introduction
	Related Works
	Formalization of Access Control Policies
	Defining the Grammar of HEAD Metamodel
	Deriving Access Control Models
	Generating Policies: Examples and Illustrations
	Conclusions and Future Perspectives

	 Instantiation and Implementation of HEAD Metamodel in Industrial Environment: non-IoT and IoT Case Studies
	Introduction
	Related Works
	HEAD Metamodel
	The Subject of Study: Technological Institute for Industrial Maintenance (ITMI)
	Case Study 1—ITMI: non-IoT
	Case Study 2—ITMI: IoT
	HEAD administrative panel
	Evaluation and Validation of HEAD metamodel
	Limitations of HEAD Metamodel
	Conclusions and Future Perspectives

	 HEAD Access Control Metamodel: Distinct Design, Advanced Features, and New Opportunities
	Introduction
	Access Control Challenges within Dynamic and Heterogeneous Environments
	Access Control Models: the development stages
	Issues and Limitations of the Existing AC Metamodels
	HEAD Metamodel: Development Approach to Access Control in Dynamic and Heterogeneous Environments
	Open Issues and New Opportunities
	Conclusions

	 General Conclusion
	Achieved objectives
	Comparison between HEAD Metamodel and other AC metamodels
	Future Perspectives

	 From access control models to access control metamodels: A survey
	 A Review of Access Control Metamodels
	 A New Dynamic Smart-AC Model Methodology to Enforce Access Control Policy in IoT layers
	 Smart-AC: A New Framework Concept for Modeling Access Control Policy
	 Access Control in Cybersecurity and Social Media
	 Deriving Access Control Models based on Generic and Dynamic Metamodel Architecture: Industrial Use Case
	 Access Control Metamodel for Policy Specification and Enforcement: From Conception to Formalization
	Bibliography

