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Abstract 17 

Winter flounder (Pseudopleuronectes americanus) is a benthic flatfish that is economically 18 

important for recreational and commercial fishing in North America. In the last twenty years, 19 

the species has undergone a drastic decline, mainly due to anthropic influence. The goal of 20 

this study was to gain knowledge on habitat preferences and behavior of juvenile winter 21 

flounder to improve the management of natural stocks and optimize release sites of juveniles 22 

produced for stock enhancement. Three abiotic factors (sediment, current, and salinity) 23 

potentially influencing the distribution of flatfish species were tested in a recircurlating flume 24 

with juvenile winter flounder. Time budgets of observed behaviors including swimming, 25 

orientation, and burying capacity were analyzed. Sediment texture was the only factor that 26 

significantly influenced the burying behavior of winter flounder juveniles; shear velocity, 27 

salinity, and sediment had no effect on the orientation of juveniles. 28 

 29 
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Introduction 33 

Winter flounder (Pseudopleuronectes americanus) is a eurythermal and euryhaline 34 

flatfish found in the shallow coastal waters of North America from Georgia (U.S.) to the 35 

Labrador coast (Canada) (Scott and Scott 1988). This species supports a commercial fishery 36 

in Canada and the United States that is mainly driven by market price (Atlantic States Marine 37 

Fisheries Commission, 2012; Fisheries and Oceans Canada, 2012). Because the American 38 

and Canadian stocks have declined since the 1980s, the conservation of winter flounder 39 

populations is a major concern on the east coast of the United States (Atlantic States Marine 40 

Fisheries Commission 2012; Fisheries and Oceans Canada 2012). To support sport fishing, 41 

the release of hatchery-reared juveniles to stimulate the renewal and size of natural 42 

populations is an option to be considered (Fairchild 2010). However, the survival rate of 43 

released juveniles remains low (Fairchild and Howell 2004; Fairchild 2013). The lack of 44 

natural stimuli in the hatchery environment could suppress anti-predatory behaviors or 45 

decrease cryptic abilities when juveniles are released in the wild (Kellison et al. 2000; 46 

Fairchild and Howell 2004).  47 

Young-of-the-year (0+) flounder are found over a wide range of depths and sediment 48 

types (Able and Fahay 1998), but habitat preference seems to be size dependent, as seen in 49 

both laboratory and field experiments (Phelan et al. 2001). While juveniles from 50 to 95 50 

mm in size prefer sandy substrate (Phelan et al. 2001), 0+ may prefer cobble of an 51 

intermediate complexity (Pappal et al 2009). High densities of 0+ have also been observed 52 
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in eelgrass habitats (Lazzari 2015) and the presence of prey has been shown to modify habitat 53 

selectivity (Gibson 1994; Phelan et al. 2001; Fairchild and Howell 2004). The presence of 54 

complex three-dimensional structures such as macroalgae or pebbles has also been shown to 55 

influence burying behavior (Stoner et al. 2001; Fairchild et al. 2005; Pappal et al. 56 

2009). However, 1- to 3-year-old fish have been far less studied than 0+ winter flounder 57 

juveniles.  58 

The effects of both salinity and the benthic boundary layer flows on the behavior of 59 

juvenile winter flounder have been poorly documented. Wirjoatmodjo and Pitcher (1984) 60 

suggested that salinity likely has a limited impact on the distribution of estuarine fish based 61 

on their adaptive osmoregulatory capacity, but the abundance of Pleuronectes platessa 62 

juveniles seems to be salinity dependent (Poxton and Nasir 1985). Greer Walker et al. (1978) 63 

suggested that Limanda yokohamae juveniles use tidal currents to preserve their energetic 64 

reserves, but the effect of currents on the energy budget is not available for P. americanus. 65 

Juveniles and adults have been observed to undergo foraging tidal migrations (Tyler 1971), 66 

but the main mechanisms driving these migrations remain largely unknown.  67 

The overall aim of this study was to define the most suitable habitats for juveniles. This 68 

type of information could be useful for managing releases of hatchery-produced juveniles 69 

through a restoration program, for fishing management, and for the development of marine 70 

protected areas. The objectives of this study were to test how the burying, orientation, and 71 

swimming behaviors of 2+ hatchery-reared juvenile winter flounder are influenced by 72 
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sediment texture, salinity, and shear-stress intensity. Our first hypothesis was that the time 73 

spent in positive rheotaxis would increase proportionally when shear stress increases. We 74 

also hypothesized that the rate of burial would be higher in finer sediment, and that no effect 75 

of salinity would be found on any of the three behaviors studied.  76 

 77 

 78 

Methods 79 

Juvenile hatchery conditions 80 

Two-year-old winter flounder juveniles (mean length 10.35 ± 0.82 cm, mean weight 81 

17.1 ± 3.4 g) produced at the Pointe-au-Père Aquaculture Research Station (ISMER, UQAR, 82 

Quebec, Canada) were used for this study. Scott and Scott (1988) reported a mean length of 83 

11.4 cm in Passamaquody Bay (NB, Canada) and 17.8 cm in St. Marys Bay (NS, Canada) 84 

for two-year-old wild winter flounder. Considering that these areas are warmer than the St. 85 

Lawrence Estuary, the size of juveniles likely was close to the wild juveniles from this area. 86 

In the Gulf of St. Lawrence, length at 50% maturity has been estimated to be 21 cm in males 87 

and 24 cm in females (DeCelles and Cadrin 2011). Egg fertilization was done according to 88 

Ben Khemis et al. (2000), and larval and post-settlement juvenile rearing followed Vagner et 89 

al. (2013). During the experimental period, juveniles were reared in rectangular open-flow 90 

tanks supplied with filtered sea water (50 μm, 5 L min−1) pumped from the St. Lawrence 91 

Estuary; the inlet was 1 km off shore from the station. Tanks were exposed to artificial light 92 
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(6.5 μEinstens m−2 s−1, natural photoperiod). Commercial filtration sand was used as the 93 

substratum and juveniles were fed with a commercial food (Lansy microdiet, INVE 94 

Aquaculture Inc.) at a daily rate of 3% of their body weight.  95 

  96 

Flume experiments 97 

Experiments were conducted using the Aquatron racetrack flume at the Aquaculture 98 

Research Station. This recirculating flume was designed to generate steady, turbulent, 99 

benthic boundary flows induced by the friction of 12 rolling plastic disks (0.5 cm thick). A 100 

description of the benthic boundary layer (BBL) conditions and the flume’s technical details 101 

can be found in Redjah et al. (2010). Briefly, the experimental zone (91.5 × 45 cm) was filled 102 

with a layer of at least 5 cm of sediment. For each trial, water depth was set at 15 cm to 103 

maximize development of the BBL (Olivier et al. 1996), resulting in a water volume of 800 104 

L.  105 

Two weeks before the beginning of the experimental period, which lasted four weeks 106 

(29 May to 24 June 2015), we decreased the salinity in two of the four rearing tanks to 15‰ 107 

by mixing saltwater with dechlorinated tap water. The other two tanks were subjected to 108 

natural salinity (26.44 ± 0.76‰) and temperature (6.53 ± 0.62°C) variations.  109 

For each experiment, five juvenile winter flounder were randomly chosen from the two 110 

saltwater or brackish water tanks for the salinity treatment. Different juveniles were used for 111 

each experiment, for a total of 100 individuals for the whole experimental period. Four 112 
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treatments with five replicates each (total of 20 trials) were evaluated. Each treatment 113 

included one salinity (15 or 25) and one sediment (gravel [-1 phi, 2.23 mm] or sand [+1 phi, 114 

0.75 mm]) type, for a total of four possible combinations. The mean shear velocity (u*) was 115 

increased from 0.26 to 1.78 cm s-1 for the sandy sediment and from 0.35 to 2.14 cm s-1 for 116 

the gravel. This corresponds to an increase in current speed interval (Uz) from 5 cm s-1 to 30 117 

cm s-1 for the two sediment types. Five Uz values were considered for the analysis: 10 min 118 

plateaus of 5, 5 to 20, 20, 20 to 30, and 30 cm s-1 (Fig. 1). An increase of Uz = 5 cm of 1 cm 119 

s-1 per minute was used to avoid substrate erosion.  120 

The same protocol was used for each trial. One day before an experiment, the flume 121 

was emptied and rinsed with freshwater. Sediments to be tested were disinfected with a 122 

Vircon solution (10 g per 1 L of water; Vircon, Vétoquinol, Lavaltrie, Quebec, Canada) for 123 

12 h and then rinsed with freshwater for another 12 h. Sediment was placed in the 124 

experimental section and the flume was filled with either brackish or salt water. Batches of 125 

juveniles, which were transported in a jar with a solution of 0.13 L of stresscoat per 1 L of 126 

brackish or salt water (Stresscoat+, Mars Fishcare Inc., Hamilton, PA, USA) then were 127 

introduced into the experimental zone. Because preliminary tests showed that the juvenile 128 

winter flounder dispersed throughout the flume, we installed plastic grid barriers to restrict 129 

them to the experimental section and applied a low current (shear velocity less than u* = 0.20 130 

cm s-1) and aeration for the night. This acclimation period lasted for 16 hours, during which 131 

the photoperiod and light intensity conditions were similar to those of the rearing tanks. 132 
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Juveniles were starved for 24 h before the beginning of the experiments to avoid digestion 133 

during the experiments, which could potentially reduce their activity. The following morning, 134 

the barriers were removed and the experiment started with the increase in u* as detailed in 135 

Figure 1. Flounder juveniles were weighed and measured after each trial. Because the flume 136 

was located in a room with no air-temperature control, seawater temperature increased from 137 

7 ± 1°C at the beginning of each trial to 14.25 ± 1°C at the end. This means that the 138 

acclimation period in the flume started at the juvenile rearing temperature but that 139 

observations were made at a higher temperature range. Experimental conditions were the 140 

same for all trials. 141 

A GoPro HERO3 Silver Edition camera (GoPro Inc., San Mateo, California, USA) was 142 

used in dorsal view to record fish behavior in the experimental zone during all experiments. 143 

Based on all video recordings, we identified three types of behavioral responses of juvenile 144 

winter flounder to salinity and sedimentary treatments: swimming activity, orientation 145 

relative to the main current, and burying ability. To establish time budgets (% of active 146 

behavior per observation period), we only considered the activity of flounder in the 147 

experimental zone. Moreover, individuals staying more than 75% of the observation period 148 

outside of the experimental zone were excluded from the time-budget analyses of behaviors 149 

for that observation period. We adopted this approach to avoid attributing a very high 150 

behavior score to a fish staying most of its time outside the experimental zone. 151 

 152 
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Behavioral variables 153 

Several variables were defined according to the particular type of behavioral response. 154 

Burying-dependent variables included six states: “not buried,” “body covered less than 25% 155 

by sediment,” “body covered from 25% to 50%,” “body covered from 50% to 75%,” “body 156 

covered from 75% to 100%,” and “totally buried.” Orientation-dependent variables included 157 

“positive rheotaxis,” “negative rheotaxis,” and “transverse position.” The first two situations 158 

were scored if juveniles were at least at a 70 degree’ angle from the transverse position (for 159 

scoring of orientation, see Champalbert et al. 1994). Orientation variables were only scored 160 

when juveniles were in contact with the sediment. Variables related to swimming activity 161 

included: “swimming close to the sediment with periods of rest,” “passive drifting,” 162 

“swimming far from the sediment,” and “carried away by the current.” These four swimming 163 

variables were combined to form the variable “total swimming activity.” Time spent outside 164 

the experimental zone also was recorded. The Observer XT 9 software (Noldus Information 165 

Technology B.V., Wageningen, Netherlands) was used to analyze the videos and create the 166 

time-budget database. 167 

 168 

Statistical analyses 169 

The effect of salinity and sediment treatments as well as the shear velocity range on 170 

behavioral variables (burying, orientation, and swimming) were analyzed by three-way 171 

ANOVA with repeated measures for each hydrodynamic level using STATISTICA v6.0 172 
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(Dell Inc., Tulsa, Oklahoma, USA). Normality was verified with the Kolmogorov-Smirnov 173 

test and heteroscedasticity with Levene’s test. We performed a square-root transformation on 174 

“total swimming activity” and “not buried” data to attain normality. We also combined the 175 

“75% buried,” “50% buried,” and “25% buried” variables into a single “25% to 75% buried” 176 

variable to allow data normality. We were not able to analyze all the data relative to the “less 177 

than 25% buried” variable because this condition did not occur for sand treatments. We thus 178 

only analyzed data associated with the gravel treatment for that variable. It should be noted 179 

that treatment effects of the whole set of variables also were analyzed using a three-way 180 

PERMANOVA. Data were transformed prior to the analysis (square root of arc cosinus). The 181 

software Primer 6.1.1.12 and the PERMANOVA+ add-on (PRIMER-E Ltd, Ivybridge, 182 

United Kingdom) were used. The PERMANOVA analyses (9999 permutations) were based 183 

on an Euclidian distance matrix. Homoscedasticity was tested with the PERMDISP 184 

procedure (p < 0.05). Because the results were similar to those obtained with ANOVA, they 185 

are not presented here. Length and weight of juveniles were compared with a two-way 186 

ANOVA (sediment and salinity factors) to validate the absence of differences between 187 

treatments. We did not use these data as covariates because no differences between 188 

treatments were found (p > 0.05).   189 

 190 

Results 191 
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Sediment treatment was the only factor that significantly influenced the burying 192 

behavior of winter flounder juveniles (Table 1A, 1B &1C), yet sediment had no effect on 193 

rheotaxis behaviors (Table 1D, 1E & 1F). The time budgets of the three burying variables 194 

(100% buried, 25–75% buried, and not buried) were significantly different between sand and 195 

gravel treatments. Burying behavior was hindered in the gravel treatment: juveniles spent 196 

significantly more time not buried or 25% to 75% covered in the gravel treatment 197 

experiments (Fig. 2). Close to 80% of juveniles tested on sand were 100% covered in 198 

sediment compared to less than 10% in those tested on gravel (Fig. 2).  199 

Neither shear velocity, salinity, nor sediment affected  juvenile orientation (Table 1D, 200 

1E & 1F); our first hypothesis was then rejected. The only significant interaction was found 201 

between sediment and u* (Table 1G), and this was explained by a significant increase in 202 

flounder found outside the experimental zone when submitted to high shear velocities with 203 

gravel in the experimental zone (Fig. 3). At intermediate u*, i.e., from 0.29 to 1.18 cm s-1 for 204 

sand and 0.35 to 1.42 cm s-1 for gravel (Uz corresponding to 5 cm s-1 to 20 cm s-1), the average 205 

percentage of time spent in the experimental zone in positive rheotaxis, negative rheotaxis, 206 

or in a transverse orientation were 30.4 ± 6.1, 30.1 ± 6.1, and 37.5 ± 4.8%, respectively. 207 

Orientation was not affected by any of the three variables (Table 1D, 1E, 1F). Although shear 208 

velocity did not influence the total swimming activity (Table 1H), there was no occurrence 209 

of “passive drifting” or “carried away by the current” during the first two observation periods 210 

for shear velocity. We could only determine time budgets for these variables starting at 211 
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u*=1.18 cm s-1 for sand and 1.42 cm s-1 for gravel (Uz of 20 cm s-1). For the “passive drifting” 212 

swimming type, fish propelled themselves in the water column close to the sediment in the 213 

same direction as the flow and glided by being pushed by the current. Individuals were seen 214 

in various conditions floating through the experimental zone without touching the bottom. A 215 

few individuals attempted to glide, but pushed themselves too far from the bottom (z>5 cm) 216 

and were carried away by the flow while tumbling backwards. Thus, the swimming type 217 

“carried away by the flow” only happened when fish were swimming against the flow. At 218 

high hydrodynamic conditions, swimming far from the bottom was the least efficient 219 

swimming response. Without quantifying it, we observed that the heads of fish were higher 220 

than the rest of the body when they propelled themselves in the water column. No fish was 221 

carried away when buried or resting on top of sediment. 222 

Discussion 223 

Swimming behavior 224 

The first contribution of this work is the detailed characterization of the swimming 225 

modes used by winter flounder juveniles. While the experimental conditions did not modify 226 

the time spent in total swimming activity, we observed that more individuals used the flow 227 

and were passively transported at high shear velocities (u* > 1 up to 2.14 cm s-1). Below this 228 

threshold value, we did not observe any passive drifting. Indeed, mathematical calculations 229 

previously showed that passive drifting can reduce the cost (energy consumption) of 230 

swimming by 90% per unit distance in juvenile flatfishes (Weihs 1978), but such transport is 231 
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restricted to the direction of the flow. When studying tidal migrations of juvenile and adult 232 

winter flounder with underwater cameras at Passamaquody Bay (NB, Canada), Tyler (1971) 233 

observed that fish followed the direction of the tidal current. Although Tyler (1971) did not 234 

describe the type of swimming, it is reasonable to hypothesize that passive drifting was used 235 

during these tidal migrations. More recently, He (2003) reported an average swimming speed 236 

of 0.96 body lengths per second at 4.4 °C in adult winter flounder (27 to 48 cm), which 237 

corresponds to adult size.  238 

In the present study, a few cases of juveniles unable to withstand the flow were 239 

observed (“carried away by the flow” behavior), but only when fish were swimming away 240 

from the sediment. We speculate that by exposing more body surface to the flow, juveniles 241 

increase the drag force, causing them to tumble backwards. When this happens, they are no 242 

longer able to swim, and some individuals tumbled backwards over the entire flume. This 243 

could be problematic in natural habitats because the fish could be carried away to unsuitable 244 

habitats.  245 

The behavior “swimming close to the sediment with periods of rest” was expressed by 246 

juveniles actively swimming close to the sediment with clear fin movement, often for a short 247 

distance followed by a rest period. This type of swimming was observed in all directions at 248 

all the tested shear velocities, and visual observations suggest that the juveniles glided 249 

because of fin movements and not because of a flow effect. This type of swimming has also 250 

been observed in juvenile plaice in natural habitats (Gibson 1980). When actively swimming 251 
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close to the bottom, juvenile winter flounder were not using BBL flows for transport. 252 

Although our experimental design was such that fish observations were made only from the 253 

flume’s water surface, we hypothesized that transport was driven by fin movements and body 254 

propulsion. The resting periods observed between these short swimming activities could 255 

indicate that this type of swimming was energetically costly. The experimental flume work 256 

of Joaquim et al. (2004) used a cardiac function test to demonstrate this energy demand for 257 

a similar swimming type in adult winter flounder. However, the major advantage of this type 258 

of swimming compared to passive drifting is that fish can swim in any direction relative to 259 

the flow while remaining close to the sediment.  260 

In contrast to sandy treatments, juveniles that had settled on gravel left the experimental 261 

zone significantly more often and remained longer at rest on the flume’s bottom under high 262 

shear velocity conditions. This fish movement was clearly active: no sediment erosion 263 

occurred and fish were not passively carried away. Juvenile plaice and turbot tested for 264 

sediment selection in the laboratory were observed to favor a bare surface over a coarse 265 

substrate (Nasir and Poxton, 2001); this may suggest that coarse sediments are unsuitable 266 

substrates for juveniles. Indeed, areas of high hydrodynamics associated with coarse 267 

sediments have been shown to reduce growth in juvenile winter flounder in a New Hampshire 268 

estuary, and it was suggested that the energy spent in unsuccessful burying could explain the 269 

low growth rates (Fairchild et al. 2005).  270 
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If these movements were active, why would fish select a bare surface over gravel? 271 

When submitted to high current speeds, winter flounder juveniles could use postures to 272 

prevent being carried away by the current, as described for plaice in Arnold and Weihs (1978) 273 

and Gerstner and Webb (1998). Behavioral responses include evacuating water under the 274 

body by fin burying, body undulations, and fin beating. Similarily, it was observed that 275 

juvenile sturgeons (Acipenser brevirostrum) increase station-holding with high current 276 

velocity, probably to reduce energetic costs from swimming (Kieffer et al. 2009). We can 277 

hypothesize that juveniles were not able to burrow deep enough into coarse sediments (lack 278 

of strength) or correctly perform the postures to prevent themselves from being carried away 279 

by the current. We suggest that it was easier to maintain contact with the bottom on resin-280 

covered wood than on gravel. Unfortunately, the walls of the flume were opaque, preventing 281 

lateral observations of the fish. 282 

 283 

 284 

Effects of sediment and salinity on juvenile flounder behavior 285 

The selectivity of winter flounder juveniles for sandy over gravelly sediments was 286 

evident in the present work, strengthening previous results of experiments conducted on both 287 

cultured and wild juveniles (age-0 winter flounder: gravel [18 mm], coarse sand [1.55 mm], 288 

fine sand [0.137 mm], Manderson et al. 2000; age-0 winter flounder, muddy sand [0.27 mm], 289 

fine sand [0.21 mm], coarse sand [0.54 mm], fine gravel [1.58 mm], gravel [3.21 mm], Phelan 290 
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et al. 2001; 20–32 mm juveniles, small grain size [250–1000 mm], large grain size [1000–291 

2000 mm], Fairchild and Howell 2004) as well as from caging studies and beam trawl field 292 

surveys (Goldberg et al. 2002). However, none of these cited studies integrated time-budget 293 

assessments or characterization of swimming behaviors and orientation in BBL flows, 294 

especially when considering shear velocity – sediment texture interactions.  295 

In sand, fish were able to cover themselves entirely just after their introduction to the 296 

flume. Ellis et al. (1997) demonstrated that the cryptic ability in plaice is a learned behavior 297 

and observed that flatfish reared without sediment in tanks need time to learn how to bury 298 

themselves properly. Our juveniles were reared in tanks filled with filtration sand from hatch 299 

until metamorphosis, which could explain the high burying speed observed in our study.  300 

In our work, salinity had no influence on the behavior or selectivity of sediment by the 301 

flounder. We chose to acclimate juveniles to the salinity conditions of the two treatments 302 

(salinity of 15 and 25 for at least one week of acclimatization) before transfer to the flume to 303 

avoid osmotic shock that could have generated subsequent erratic or unnatural behavioral 304 

responses.  305 

 306 

Orientation 307 

Unlike what has been shown in other flatfish species, our results did not indicate that juvenile 308 

winter flounder adopt a rheotaxic position with increasing current, which should be the most 309 

hydrodynamic position (Arnold and Weihs 1978). Rheotaxis has been observed at current 310 
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speeds lower than the maximum value used in our study in many flatfish species such as adult 311 

plaice on a bare surface (Arnold and Weihs 1978) and juvenile sole on sediment 312 

(Champalbert and Marchand 1994). In sole, only buried juveniles could withstand a current 313 

of 20 cm s-1 when placed in a hydrodynamic tunnel with a bottom covered with sediments 314 

(Champalbert and Marchand, 1994). This study was carried out on smaller fish (2–3 cm) than 315 

the ones we used and they positioned themselves in positive rheotaxic positions as soon as 316 

the current increased. It is possible that rheotaxis and burial are mechanisms used by the 317 

juvenile sole to resist current. The absence of such behaviors in winter flounder juveniles 318 

could be explained by a strong adhesion to the substrate: no juvenile flounder on the ground 319 

(covered or not with sediments) was carried away by the force of the current, even at a speed 320 

of 30 cm s-1. The only observations of animals carried by the current were made on 321 

individuals swimming in the water column.  322 

 323 

 324 

Conclusion 325 

Our results clearly indicate that winter flounder juveniles use different types of 326 

swimming depending on current speed, that they more readily abandon a gravel bottom for 327 

bare smooth surfaces at high shear stress, and that they have a higher burial rate in sand. In 328 

both sediment types, the effect of salinity on swimming, orientation, and burying behaviors 329 

was negligible. This information is not only of interest in terms of the ecological 330 
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understanding of habitat preference, but also can be used to facilitate habitat selection for the 331 

purpose of population enhancement. Our results indicate that coastal areas characterized by 332 

fine sediment and low current speeds have a high potential for the successful establishment 333 

of juvenile winter flounder nurseries.  334 

A better understanding of the effects of abiotic factors on the behavior of juvenile 335 

winter flounder will improve our understanding of their distribution and habitat preferences. 336 

The release of juveniles in unsuitable environments, i.e., with regard to hydrodynamics and 337 

sediment texture, may induce greater dispersion rates. Unnatural behaviors of juvenile 338 

cultured flatfishes, such as spending more time off-bottom, have been shown to increase the 339 

risk of predation (Kellison et al. 2000; Fairchild and Howell 2004). Our finding that the 340 

presence of high current speeds and gravel sediment increases swimming activity in fish can 341 

lead to an informed choice of release environments for cultured juvenile winter flounder that 342 

could prevent dispersion and reduce their visibility to predators.  343 

 344 
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Table 1: ANOVA table for the different types of measured behaviours (Table sections A 460 

through H)  461 

Variable tested A - Time budget of ''100% buried'' B - Time budget of ''25% to 75% 

buried'' 

SS DF F P SS DF F P 

Slope intercept 14.657 1 120.99 <0.001 15.442 1 104.054 <0.001 

Sediment 11.229 1 92.696 <0.001 2.525 1 17.015 <0.001 

Salinity 0.057 1 0.471 0.502 0.021 1 0.144 0.709 

Sediment x Salinity 0.056 1 0.469 0.503 0.017 1 0.116 0.737 

Error 1.817 15   2.226 15   

Shear stress 0.023 4 0.423 0.791 0.161 4 1.59 0.188 

Shear stress × Sediment 0.058 4 1.061 0.383 0.023 4 0.233 0.918 

Shear stress × Salinity 0.013 4 0.24 0.914 0.109 4 1.076 0.375 

Shear Stress × Sediment × 

Salinity 

0.04 4 0.725 0.577 0.114 4 1.12 0.355 

Error 0.828 60   1.527 60   

 

 

 

C - Time budget of ''not buried'' 

 

D - Time budget of ''positive 

rheotaxis'' 

SS DF F P SS DF F P 
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Slope intercept 4.832 1 47.905 <0.001 8.124 1 38.657 <0.001 

Sediment 1.748 1 17.336 <0.001 0.147 1 0.699 0.416 

Salinity 0.05 1 0.503 0.488 0.086 1 0.411 0.53 

Sediment × Salinity 0.006 1 0.068 0.796 0.031 1 0.147 0.705 

Error 1.513 15   3.152 15   

Shear stress 0.198 4 1.333 0.267 0.03 4 0.213 0.929 

Shear stress × Sediment 0.3 4 2.018 0.103 0.336 4 2.34 0.065 

Shear stress × Salinity 0.078 4 0.53 0.713 0.12 4 0.834 0.508 

Shear Stress × Sediment × 

Salinity 

0.119 4 0.805 0.526 0.122 4 0.852 0.497 

Error 2.233 60   2.157 60   

 E - Time budget of ''negative 

rheotaxis'' 

F- Time budget of ''transverse 

orientation'' 

SS DF F P SS DF F P 

Slope intercept 6.185 1 30.599 <0.001 17.978 1 93.421 <0.001 

Sediment 0.001 1 0.009 0.923 0.12 1 0.625 0.441 

Salinity 0.032 1 0.154 0.699 0.007 1 0.036 0.85 

Sediment × Salinity 0.018 1 0.093 0.763 0 1 0.001 0.97 

Error 3.031 15   2.886 15   

Shear stress 0.134 4 1.324 0.271 0.246 4 2.353 0.063 

Shear stress × Sediment 0.246 4 2.426 0.057 0.156 4 1.499 0.213 

Shear stress × Salinity 0.101 4 1.001 0.414 0.073 4 0.699 0.595 
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 462 

 463 

  464 

Shear Stress × Sediment × 

Salinity 

0.082 4 0.812 0.522 0.182 4 1.741 0.152 

Error 1.524 60   1.569 60   

 G - Time budget of ''outside the 

experimental zone'' 

H - Time budget of ''total swimming 

activity'' 

 SS DF F P SS DF F P 

Slope intercept 10.112 1 99.659 <0.001 0.389 1 39.47 <0.001 

Sediment 0.949 1 9.357 0.007 0.015 1 1.557 0.231 

Salinity 0.226 1 2.229 0.154 0.001 1 0.118 0.735 

Sediment × Salinity 0.032 1 0.323 0.577 0.003 1 0.363 0.555 

Error 1.623 16   0.148 15   

Shear stress 0.557 4 9.877 <0.001 0.019 4 0.892 0.474 

Shear stress × Sediment 0.376 4 6.67 <0.001 0.011 4 0.507 0.73 

Shear stress × Salinity 0.126 4 2.244 0.073 0.047 4 2.137 0.087 

Shear Stress × Sediment × 

Salinity 

0.061 4 1.098 0.365 0.003 4 0.172 0.951 

Error 0.902 64   0.33 60   
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Figure 1: Experimental design for the increase of shear stress according to time for the 465 

treatments “sand” and “gravel”. Time = 0 minutes is the beginning of the experiment, after 466 

the acclimation period. 467 

 468 

Figure 2: Time budget for the behaviors “not buried”, “25%-75% buried” and “100% 469 

buried”, observed at current speeds of 20–30 cm s-1. Mean ± SE. All results on gravel are 470 

significantly different (p ≤ 0.05) than the one on sand. N = 10 for each bar. 471 

 472 

Figure 3: Current speed and sediment effects (current speed × sediment interaction, p ≤ 0.05) 473 

on time budget for juveniles that spent time outside of the experimental zone. Mean ± SE. 474 

Means with different letters are significantly different (p ≤ 0.05). N = 5 for each bar.  475 


