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SM1 Variance of τ̂HYB based on linear models

Let us consider a linear model such that yi = xiβ + εi. Then, τ̂HYB = τ̂xβ̂ and τẏ = τxβ,
where τx is a vector that contains the totals of the auxiliary variables in the population. The
variance of τ̂HYB can be expressed as:

Vmd(τ̂HYB − τy) = Vmd(τ̂HYB − τẏ) + Vm(τẏ − τy)
= βTVd(τ̂x)β + τxVm(β̂)τ Tx + Tr(Vd(τ̂x)Vm(β̂))

+
N∑
i=1

Vm(εi) +
N∑
i=1

N∑
i′ 6=i

COVm(εi, εi′) (S1)

where Tr(·) is the trace of the matrix argument and N is the population size. The first
three terms are actually the variance of the product of the two independent random variables
τ̂xβ̂, which is well known in statistics (see Goodman, 1960). The last two terms come from
the residual errors of the super-population model. Similar mathematical development applied
to the forestry context can be found in St̊ahl et al. (2016) and Fortin et al. (2016a).

SM2 Bias of the variance estimator of τ̂BS

Throughout the following mathematical developments, we will assume that the number of
realizations B tends to infinity. Let us consider a linear model such that yi = xiβ + εi,
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with εi ∼ N(0, σ2). Since the vector β is unknown, it is replaced by its estimate β̂, which
is assumed to follow a multivariate normal distribution, i.e., β̂ ∼ N(β,Vm(β̂)). For each
realization, random deviates are drawn to account for the residual errors and the errors in
the parameter estimates. These deviates would be drawn from the two normal distributions
mentioned above if β, Vm(β̂) and σ2 were known. To obtain a feasible estimator, the pa-
rameters of these distributions are replaced by their estimates. If we define εβ = β̂ − β as

the errors in the parameter estimates such that εβ ∼ N(0, V̂m(β̂)), then:

yi,b = xiβ̂ + xiεβ,b + εi,b (S2)

The variance estimator in Eq. 9 can be re-expressed as:

V̂md(τ̂BS − τy) = V̂m(τ̂y,b) + Êm[V̂d(τ̂y,b)]

= V̂m

(∑
i∈s

yi,b
πi

)
+ Êm

[∑
i∈s

(
1− πi
π2
i

)
y2
i,b +

∑
i∈s

∑
i′ 6=i

(
πii′ − πiπi′
πiπi′

)
yi,byi′,b
πii′

]
(S3)

The term xiβ̂ + xiεβ,b + εi,b can be substituted for yi,b in Eq. S3, and the first term on
the right-hand side then becomes:

V̂m

(∑
i∈s

yi,b
πi

)
= V̂m

(∑
i∈s

xiβ̂ + xiεβ,b + εi,b
πi

)

= V̂m

(∑
i∈s

xiεβ,b
πi

+
∑
i∈s

εi,b
πi

)

= τ̂xV̂m(β̂)τ̂ Tx + V̂m

(∑
i∈s

εi,b
πi

)

= τ̂xV̂m(β̂)τ̂ Tx +
∑
i∈s

(
V̂m(εi)

π2
i

)
+
∑
i∈s

∑
i′ 6=i

ĈOVm(εi, εi′)

πiπi′
(S4)

where τ̂x is the estimated total of the auxiliary variables throughout the population.
With a little algebra, the second term on the right-hand side of Eq. S3 can be re-expressed

as:

Êm

[∑
i∈s

(
1− πi
π2
i

)
y2
i,b +

∑
i∈s

∑
i′ 6=i

(
πii′ − πiπi′
πiπi′

)
yi,byi′,b
πii′

]
= β̂T V̂d(τ̂x)β̂

+ Tr(V̂d(τ̂x)V̂m(β̂)) +
∑
i∈s

(
1− πi
π2
i

)
V̂m(εi) +

∑
i∈s

∑
i′ 6=i

(
πii′ − πiπi′
πiπi′

)
ĈOVm(εi, εi′)

πii′

(S5)

Combining Eqs. S4 and S5 yields:
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V̂md(τ̂BS − τy) = β̂T V̂d(τ̂x)β̂ + τ̂xV̂m(β̂)τ̂ Tx + Tr(V̂d(τ̂x)V̂m(β̂))

+
∑
i∈s

(
2− πi
π2
i

)
V̂m(εi) +

∑
i∈s

∑
i′ 6=i

(
2πii′ − πiπi′

πiπi′

)
ĈOVm(εi, εi′)

πii′
(S6)

In the same conditions, i.e. with the same sample and the same super-population model,
the limit of τ̂BS when B approaches infinity is actually τ̂HYB:

lim
B→∞

τ̂BS =

∑B
b=1 τ̂y,b
B

=
1

B

B∑
b=1

∑
i∈s

xiβ̂ + xiεβ,b + εi,b
πi

=
∑
i∈s

1

πi

B∑
b=1

xiβ̂ + xiεβ,b + εi,b
B

=
∑
i∈s

xiβ̂

πi

= τ̂HYB (S7)

Consequently, the variance of the estimator is exactly the same as the one shown in
Section SM1:

Vmd(τ̂BS − τy) = βTVd(τ̂x)β + τxVm(β̂)τ Tx + Tr(Vd(τ̂x)Vm(β̂))

+
N∑
i=1

Vm(εi) +
N∑
i=1

N∑
i′ 6=i

COVm(εi, εi′) (S8)

where N is the population size.
Given that:

E

[∑
i∈s

(
2− πi
π2
i

)
V̂m(εi)

]
=

N∑
i=1

(
2− πi
πi

)
Vm(εi) (S9)

and:

E

[∑
i∈s

∑
i′ 6=i

(
2πii′ − πiπi′

πiπi′

)
ĈOVm(εi, εi′)

πii′

]
=

N∑
i=1

N∑
i′ 6=i

(
2πii′ − πiπi′

πiπi′

)
COVm(εi, εi′) (S10)

it can be shown that the estimator in Eq. S6 overestimates the true variance (Eq. S8) by
the quantity:
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E[V̂md(τ̂BS − τy)− Vmd(τ̂BS − τy)] = 2Tr(Vd(τ̂x)Vm(β̂)) +
N∑
i=1

(
2

πi
− 2

)
Vm(εi)

+
N∑
i=1

N∑
i′ 6=i

(
2πii′ − 2πiπi′

πiπi′

)
COV(εi, εi′) (S11)

This estimator can be corrected as follows:

V̂md,CORR(τ̂BS − τy) = V̂m(τ̂y,b) + 2V̂d(τ̂ȳ)− Êm[V̂d(τ̂y,b)]

= τ̂xV̂m(β̂)τ̂ Tx + β̂T V̂d(τ̂x)β̂ − Tr(V̂d(τ̂x)V̂m(β̂))

+
∑
i∈s

(
V̂m(εi)

πi

)
+
∑
i∈s

∑
i′ 6=i

(
ĈOVm(εi, εi′)

πii′

)
(S12)

where V̂d(τ̂ȳ) is obtained by substituting ȳi =
∑B

b=1
yi,b
B

for yi in the HT variance estimator

defined in Eq. 3. When the model is linear, limB→∞ V̂d(τ̂ȳ) = β̂T V̂d(τ̂x)β̂, and the bias of
this corrected estimator is then:

E[V̂md,CORR(τ̂BS − τy)− Vmd(τ̂BS − τy)] = 0 (S13)

The only sampling-related variance component in this variance estimator (Eq. S12) is
V̂d(τ̂ȳ), which is equal to β̂T V̂d(τ̂x)β̂ when the model is linear. All the other terms, i.e.,

V̂m(τ̂y,b) + V̂d(τ̂ȳ)− Êm[V̂d(τ̂y,b)], compose the model-related variance. The sampling-related
variance is only included in the model-related component as a correction factor.

SM3 Quantification of the bias of the variance estima-

tor

As shown in Section SM2, a variance estimator based on the law of total variance and a
parametric bootstrap has the following bias:

Bias[V̂md(τ̂BS − τy)] = 2Tr(Vd(τ̂x)Vm(β̂)) +
N∑
i=1

(
2

πi
− 2

)
Vm(εi)

+
N∑
i=1

N∑
i′ 6=i

(
2πii′ − 2πiπi′

πiπi′

)
COVm(εi, εi′) (S14)

where τ̂BS is the estimated total, τy is the true (but unknown) total, Tr(·) is the trace of

a matrix argument, τx is the total of the auxiliary variables across the population, β̂ is the
vector of parameter estimates of the super-population model, N is number of units in the
population, πi is the inclusion probability of population unit i, εi is the residual error term
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of the super-population model for unit i, and πii′ is the joint inclusion probability, i.e., the
probability that both units i and i′ are part of the sample. Indices m and d stand for model
and probability design features, respectively.

Term Tr(Vd(τ̂x)Vm(β̂)) is asymptotically equal to 0. In the context of simple random sam-
pling without replacement (SRSWoR) of large populations, πii′ ≈ πiπi′ and term

2πii′−2πiπi′
πiπi′

tends to 0. Thus, this bias can be approximated as follows:

Bias[V̂md(τ̂BS − τy)] ≈
N∑
i=1

(
2

πi
− 2

)
Vm(εi) (S15)

Now, let us assume that the inclusion probability is equal across the population units.
With SRSWoR, πi = n/N for ∀i (Gregoire and Valentine, 2008, p. 37), and the bias is then:

Bias[V̂md(τ̂BS − τy)] ≈
N∑
i=1

(
2

πi
− 2

)
Vm(εi)

=

(
2N

n
− 2

) N∑
i=1

Vm(εi)

=

(
N

n
− 1

)
2NV̄m,ε (S16)

where V̄m,ε is the average variance of the residual error term across the population, i.e.,

V̄m,ε =
∑N

i Vm(εi)/N .
Thus, there are three factors that affect the magnitude of the bias: the population size,

the sample size and the average residual variance of the super-population model. This bias
never tends to 0 unless the whole population is censused, i.e., n = N . As a matter of fact,
this bias will increase along with the population size.

Since the variance Vmd(τ̂BS− τy) also increases with the population size, the relative bias
can provide a better idea of the impact of this bias. Let us assume that the super-population
model is linear and that the covariance between the error terms is negligible. Building on
the link between the estimate of the total and that of the mean µ̂ = τ̂ /N (Gregoire and
Valentine, 2008, p. 40), the relative bias can be approximated as:

Bias[V̂md(τ̂BS − τy)]
Vmd(τ̂BS − τy)

≈
(
N
n
− 1
)

2NV̄m,ε

Vmd(τ̂BS − τy)

=

(
N
n
− 1
)

2NV̄m,ε

βTVd(τ̂x)β + τxVm(β̂)τ Tx + Tr(Vd(τ̂x)Vm(β̂)) +
∑N

i=1 Vm(εi)

=

(
N
n
− 1
)

2NV̄m,ε

N2
(
βTVd(µ̂x)β + µxVm(β̂)µTx + Tr(Vd(µ̂x)Vm(β̂)) + V̄m,ε/N

)
=

2(1− n/N)V̄m,ε

n
(
βTVd(µ̂x)β + µxVm(β̂)µTx + Tr(Vd(µ̂x)Vm(β̂)) + V̄m,ε/N

)
(S17)
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In the context of a large population with a low sampling intensity, terms n/N and
V̄m,ε/N are both close to 0. At first glance, it could be assumed that the relative bias
asymptotically decreases with increasing sample sizes. However, term Vd(µ̂x) does the
same. Under the assumption of equal inclusion probabilities across the population units,
then Vd(µ̂x) ≈ Vd(xi)/n and the approximation of the relative bias further simplifies to:

Bias[V̂md(τ̂BS)]

Vmd(τ̂BS)
≈ 2V̄m,ε

βTVd(xi)β + nµxVm(β̂)µTx + Tr(Vd(xi)Vm(β̂))
(S18)

The approximation S18 makes it possible to distinguish two different patterns. On the
one hand, if the model-related variance is greater than the sampling-related variance, then
term nµxVm(β̂)µTx contributes to a greater part of the denominator and the relative bias
will decrease with an increasing sample size. On the other hand, if the sampling-related
variance, mainly represented by term βTVd(xi)β, is the most important component of the
denominator, then the increasing sample size should have a negligible effect on the relative
bias. In both cases, the relative bias proportionally decreases to any decrease in the average
residual variance of the super-population model.

In practice, the sampling-related variance is much greater than the model-related variance
in most cases (e.g. McRoberts and Westfall, 2014; St̊ahl et al., 2014; Fortin et al., 2016b),
which implies that the increasing sample size should have a negligible effect on the relative
bias. If the super-population model was fitted to a large dataset and the observations of this
dataset were collected under SRSWoR, then:

V̄m,ε

βTVd(xi)β
≈ 1−R2

R2
(S19)

where R2 is the coefficient of determination of the super-population model.
Given this large dataset, we can assume that µxVm(β̂)µTx and Tr(Vd(xi)Vm(β̂)) are

negligible and that the relative bias could be roughly approximated as:

Bias[V̂md(τ̂BS)]

Vmd(τ̂BS)
≈ 2(1−R2)

R2
(S20)

Note that all these approximations of the relative bias also apply to the estimator of the
mean since both the numerator and the denominator of the relative bias are divided by N2.

SM4 Model of Fortin et al. (2009)

Fortin et al. (2009) designed a model to predict the presence and volume conditional on the
presence for five log grades in standing trees of sugar maple (Acer saccharum Marsh.) and
yellow birch (Betula alleghaniensis Britton). The minimum diameter at breast height (DBH,
1.3 m in height) for commercial use of these two species is set at 23.1 cm in the province of
Québec, Canada. Trees below this threshold are not considered in the model.

In brief, the model has two parts: a first one based on logistic regression, which aims
at predicting the presence of the log grades in a particular tree, and a second one based on
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linear regression, which predicts the volumes of the log grades conditional on their presence.
Each part consists of a system of five simultaneous equations, one for each log grade.

Let i, j, and k be the indices of the plots, the trees and the log grades, respectively. In
Fortin et al. (2009), the model was fitted with the species in interaction with the other fixed
effects, but for the sake of simplicity, we will omit the species index here. The first part of
the model can be described as follows:

Pr(vijk > 0) =
eλ0,k+λ1,kdij+λ2,kd

2
ij

1 + eλ0,k+λ1,kdij+λ2,kd
2
ij

(S21)

where vijk is the volume of log grade k in tree j of plot i and dij is the tree DBH (cm)
and λ0,k, λ1,k, and λ2,k are parameters to be estimated.

The second part of the model predicts the volume conditional on the presence of the log
grade in the tree and can be expressed as:

ln(vijk | vijk > 0) = γ0,k + γ1,kdij + εijk (S22)

where γ0,k and γ1,k are parameters to be estimated and εijk is a residual error term.
The vector of within-tree residual error terms is assumed to follow a multivariate normal
distribution so that:

εij =


εij1
εij2
εij3
εij4
εij5

 ∼ N5(0,R) (S23)

According to the data structure reported in Fortin et al. (2009), the fit of the first part
of the model had 1590 degrees of freedom. The fit of the second part could be estimated
at 599 degrees of freedom. Given the dimensions of the two vectors of parameters and their
variance-covariance matrices, the estimates are not listed here but they can be provided upon
request to the first author.

SM5 Model of Schneider (2007)

The model of Schneider (2007) aims at predicting the volume of five log grades – pulpwood,
sawlog, low-grade sawlog, veneer, and low-grade veneer – in standing trees of white birch
(Betula papyrifera Marsh.). The model consists of a series of submodels, with the predictions
of some being used as predictors in others, and requires an assessment of the tree quality.
This classification, which can be found in MRN (1995), is essentially inspired by the work of
Hanks (1976). Based on the presence of external defects, there are four possible tree quality
classes, A, B, C, and D, ranging from the highest to the lowest quality. Trees below 23.1 cm
in DBH do not qualify for this classification and are therefore, given none (N). The flowchart
of the model is presented in Fig. S1.

Let i and j be the indices of the plots and the trees, respectively. Let us also define k
as the index of the submodel. The first submodel predicts the height (m) to a small-end
diameter of 20 cm (h20ij):
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Predict height to a small-end 
diameter of 20 cm

Predict commercial 
volume

Tree 
quality

Predict pulpwood 
volume 

Predict low-grade 
sawlog volume

Predict sawlog volume

Class N Class A, B, or C

Class D

Tree DBH 
Tree quality
Plot elevation

Predict sawlog volume

Tree DBH 
> 29.0 cm

and
predicted height 

to 20 cm 
> 5.0 m

Predict veneer volume

Predict low-grade veneer 
volume

no yes

Class D

Volumes of 
Pulpwood
Sawlog
Low-grade sawlog
Veneer
Low-grade veneer

Figure S1: Flowchart of the model of Schneider (2007). DBH: diameter at breast height
(1.3 m).

h20ij = (λ1 + λ2elevi) · dij · (1− eλ3(dij−15))λ4 + εij1 (S24)

where elevi is the elevation (m) of plot i, dij is the diameter (cm) measured at 1.3 m in
height (DBH), λ1, λ2, λ3, and λ4 are parameters to be estimated, and εij1 is a residual error
term.

The second submodel predicts the commercial volume as follows:

vcomij = λ5 + λ6(dij − 9) · ĥ20ij + λ7isABij + εij2 (S25)

where vcomij is the commercial volume (m3) of tree j in plot i, ĥ20ij is the prediction of
the height to a small-end diameter of 20 cm as provided by the previous submodel (Eq. S24),
isABij is a dummy variable that takes the value of 1 if the tree quality belongs to class A or
B according to the current quality classification or 0 otherwise, λ5, λ6, and λ7 are parameters
to be estimated, and εij2 is a residual error term.

The third submodel predicts the volume of pulpwood in the tree:

vpulpij =
v̂comij

1 + e
λ8−λ9

ĥ20ij
dij

+ εij3 (S26)
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where vpulpij is the pulpwood volume (m3) of tree j in plot i, v̂comij is the prediction
of the commercial volume according to the previous submodel (Eq. S25), λ8 and λ9 are
parameters to be estimated, and εij3 is a residual error term.

If the tree has no quality class, then the only possible log grades are pulpwood and low-
grade sawlog (Fig. S1). The volume of low-grade sawlog is then predicted as the difference
between the commercial volume and the pulpwood volume.

For trees with a quality class, if one of these three conditions is true:

1. The tree belongs to the lowest quality class, i.e., D.

2. Its DBH is smaller than 29 cm.

3. Its predicted height to a small-end diameter of 20 cm is smaller than or equal to 5 m.

then the only possible log grades are pulpwood and sawlog. The sawlog volume is then
predicted as the difference between the commercial volume and the pulpwood volume.

For all the other trees, a fourth submodel predicts the volume of sawlog grade:

vsawij =
v̂comij − v̂pulpij

1 + eλ10−λ11dij
+ εij4 (S27)

where vsawij is the volume (m3) of sawlog grade, v̂pulpij is the prediction of pulpwood
volume according the previous submodel (Eq. S26), and λ10 and λ11 are parameters to be
estimated, and εij4 is a residual error term.

A fifth submodel predicts the volume of low-grade veneer:

vlgvenij =
v̂comij − v̂pulpij − v̂sawij

1 + λ12dij
+ εij5 (S28)

where vlgvenij is the volume (m3) of low-grade veneer, v̂sawij is the prediction of sawlog
volume according to the previous submodel (Eq. S27), λ12 is a parameter to be estimated,
and εij5 is a residual error term. The volume of veneer is then predicted as the residual
volume once the predictions of pulpwood, sawlog and low-grade veneer volumes have been
subtracted from the commercial volume.

The submodels were simultaneously fitted and the vector of within-tree residual error
terms was assumed to follow a multivariate normal distribution:

εij =


εij1
εij2
εij3
εij4
εij5

 ∼ N5(0,Rij) (S29)

In order to account for heteroscedasticity, Rij can be re-expressed as:

Rij = σ2Γ
1/2
ij ΨΓ

1/2
ij (S30)

where σ2 is the residual variance, matrix Ψ is a correlation matrix and Γij is diagonal
matrix with its elements being defined by variance functions:
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Γij =



ĥ20
2θ1

ij 0 0 0 0

0 v̂com
2θ2
ij 0 0 0

0 0 v̂pulp
2θ3

ij 0 0

0 0 0 v̂saw
2θ4
ij 0

0 0 0 0 v̂lgven
2θ5

ij


(S31)

where v̂lgvenij is the prediction of low-grade veneer volume according to the submodel
shown in Eq. S28, θ1, θ2, θ3, θ4, and θ5 are the parameters of the variance functions that are
estimated during the model fit as well as the elements of the correlation matrix Ψ.

According to the data structure reported in Schneider (2007), the model fit had 607
degrees of freedom. Given the dimensions of the vector of parameters and its variance-
covariance matrix, the estimates are not listed here but they can be provided upon request
to the first author.
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Ressources naturelles du Québec. Service des inventaires forestiers.
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