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Abstract

The aim of this study was to evaluate how variations in total lipids, fatty acids, and total
and free amino acids in eggs affect embryonic development throughout the spawning season in
cultured walleye (Sander vitreus). Eggs were obtained from 4-year-old females and pooled based
on spawning time: they were assigned to four consecutive periods during a one-month spawning
season according to the first spawning occurrence in the female broodstock. Hatching success
was significantly higher at the intermediate spawning period (87.3 + 2.4%), and no eggs hatched
in the late spawning group (p < 0.05). Egg diameter was significantly larger for the two
intermediate spawning periods, which is related to the greater larval length at hatch during these
two periods. Successful development was associated with the quality of lipid reserves throughout
ontogeny. For polar fatty acids, there was a specific retention of essential fatty acids (EFA),
particularly of the most abundant, i.e., docosahexaenoic acid (DHA), which made up more than
40% of the polar fatty acid fraction. For total amino acids, lysine (LYS) and serine (SER) levels
were significantly higher in eggs from the intermediate spawning periods and were preferentially
depleted during embryogenesis. During embryogenesis, energy was derived primarily from
triacylglycerols (TAG), proteins, and non-essential free amino acids. Our results suggest that the
content of EFA and amino acids in eggs may explain differences in egg quality and success of
larval development within a broodstock population. Our results clearly show that the timing of
ovulation during the spawning period affects the success of walleye aquaculture production.
Keywords: walleye, spawning period, eggs, embryogenesis, hatching success, ontogeny, total

lipids, fatty acids, total amino acids, free amino acids
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1. Introduction

Walleye (Sander vitreus) is a valuable sport and commercial fish species in the northern
United States and Canada. In the US, over one billion walleye fry and fingerlings are produced
annually by public hatcheries for stocking enhancement programs; the broodstock is largely
captured wild fish (Fenton et al., 1996; Malison et al., 1998; Rinchard et al., 2005). Nevertheless,
efforts to raise walleye fry to marketable size remain in the early stages: more research and
development is needed to ensure profitable production, including a better understanding of
biochemical requirements during early life stages. The few previous studies that were done on
biochemical composition during ontogeny were almost all performed on wild fish (Czesny et al.,
2005; Johnston et al., 2007), but constraints are different when dealing with captive broodstock
and egg rearing. For one thing, hormone treatment is generally used to induce spawning in
captive female walleye (Malison et al., 1998). Such hormonal manipulations might result in
different spawning periods and variable biochemical composition of eggs within the same
broodstock population.

Egg size as well as egg composition (especially fatty acids and amino acids) can have a
significant impact on the early life history of fish (Czesny et al., 2005). The influence of egg
biochemical composition on offspring quality has been demonstrated in several teleost species
(Bruce et al., 1993; Navas et al., 1997). Lipids allocated to egg production in walleye are divided
between a lipoprotein yolk (LPY), which contains polar lipids and some neutral lipids, and an oil
globule entirely filled with neutral lipids, principally triacylglycerols (Moodie et al., 1989). The
LPY is used to satisfy the structural as well as caloric and micronutrient requirements of embryos
and young larvae, and it is largely exhausted before exogenous feeding begins (McElman and
Balon, 1979).

Under culture conditions, hatching success and embryonic survival have been related to
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essential polyunsaturated fatty acid content (Fernandez-Palacios et al., 2011; Keckeis et al., 2000;
Mazorra et al., 2003; Moodie et al., 1989; Pickova et al,, 1997). Amino acids (free amino acids
[FAA] and protein constituents) are vital for all living organisms. During early fish ontogeny,
they are used as fuel molecules, signaling factors, and substrates for the synthesis of a wide range
of bioactive molecules (Finn and Fyhn, 2010). It has been suggested that amino acids are the
main substrate for energy metabolism and protein synthesis in the embryos of some marine fish
species, such as Atlantic cod (Gadus morhua) (Clarke et al., 2010; Finn et al., 1995a) and
Atlantic halibut (Hippoglossus hippoglossus) (Finn et al., 1995b). Moreover, FAA were
associated with egg viability in these species (Zhu et al., 2003). Little is currently known of the
variability in the quantity and quality of egg fatty acid and amino acid profiles during the
walleye’s reproductive season.

This study explores intraspecific variations in total lipids, lipid class composition, and
fatty acid and amino acid profiles in eggs from captive walleye broodstock. The objective was to
assess variations occurring through the spawning season and to determine how they may affect

walleye ontogeny from fertilization to 200 degree-days (DD) post fertilization.

2. Materials and methods

2.1. Spawning and egg production

Eggs were collected from broodstock maintained at the Station Piscicole Trois-Lacs fish
farm (Wotton, Quebec, Canada). Fish were kept in a 5 m’ circular indoor tank with a flow-
through system (1 L h™') and natural photoperiod. The stimulation of sexual maturation began in
April 2012 by an increase of temperature from 4.8 + 0.4°C to 9.6 + 1.9°C over one month. The
broodstock group comprised 98 first-spawning females and 54 males (4 years old; mean weight

433 + 78 g; mean length 36 + 3 cm). Fish were fed with a mix of dry pellets (commercial trout
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food, 45% protein, 17% lipid; 44/16 from Martin Mills Inc., Ontario, Canada) and frozen pieces
of trout (Salvelinus fontinalis) and mackerel (Scomber scombrus) five times a week from June
2011 to mid-November 2011.

Since there are no external indications of ovulation, oocyte maturation was monitored
weekly by sampling ovaries from 15 to 25 females. Gametes were stripped when the first signs of
ovulation occurred. Eggs were classified into four groups according to the timing of ovulation
(number of days after the first occurrence): early spawning period (P, 3 d after first occurrence),
intermediate spawning periods (P;. 5 d; P5. 8 d), and late spawning period (P4, 11 d). Each period
included several fish, and eggs were pooled (Table 1). All females were injected once with 150
IU of human chorionic gonadotropin (hCG) on 10 May. Females that spawned on P,, P3, or Py
were injected with a second dose of 500 IU of hCG on 13 May.

At each spawning period, fish were anaesthetized with MS,,, (5 mg L) in well-
oxygenated fresh water and gametes were collected by hand stripping. Eggs were fertilized using
the standard dry fertilization method (Malison and Held, 1996): eggs were collected from each
female in a dry 500 mL plastic bowl and immediately fertilized with the milt of two to three
males; the mixture was left undisturbed for 1-2 min. A mixture of Fuller’s earth and water (3
cups Fuller’s earth per 4 L of water) was added to the eggs and stirred to remove the sticky
matrix and avoid egg clumping during incubation. Fertilized eggs from a single spawning period
were pooled, left for 2-3 h during hardening, and then subdivided into two equal volumes and
incubated in 6 L jars (15.8 cm diameter and 45.7 cm high) with a flow rate of 20 L min™.
Incubators were supplied with pumped water from an external pond that had been previously
drum filtered (90 pm), sand filtered (20 pm), and vacuum degassed. Temperature was monitored
daily. The upwelling water flow in each incubator jar was regulated to ensure continuous gentle

movement of the eggs. From two days after fertilization until just prior to hatching, formaldehyde



treatments were applied daily at a concentration of 50-100 mg of formaldehyde L™ of water for

15 min to prevent fungal development.

2.2. Sample collection

For each batch produced, about 150 eggs were sampled after fertilization to determine
fertilization and survival success: 30 to 40 embryos were sampled (five replicates per incubator)
at 30, 60, 155, and 200 degree-days (DD) post fertilization. Three replicates were frozen in liquid
nitrogen and stored at -80°C for biochemical analysis, and the two others were preserved in 1%
glutaraldehyde for biometric analysis. The same sampling procedure was used at hatch and
before mouth opening. Hatching success (%) was estimated using triplicate subsample counts of
larvae from a well-mixed incubator, taking into account the initial number of fertilized eggs and

the number of dead and viable eggs removed during incubation.

2.3. Biometric analysis

Egg diameter, oil droplet diameter, and larval length at hatch were measured with a high
resolutionVHX-2000 digital microscope (Keyence, Osaka, Japan) adjusted to magnifications of

30-200x and set in high dynamic range mode with light shift.

2.4. Biochemical analysis

Lipids were extracted according to the Folch et al. (1957) procedure modified by Parrish
(1999). The relative proportions of the different lipid classes (ketones [KET], triacylglycerols
[TAG], free fatty acids [FFA], sterols [ST], acetone-mobile polar lipids [AMPL], and
phospholipids [PL]) were determined using an latroscan Mark-VI analyzer (latron Laboratories
Inc., Tokyo, Japan) and were developed in a four-solvent system (Parrish, 1987; 1999). In
addition, lipid extracts were separated into neutral and polar fractions by silica gel (30 x 5 mm

i.d., packed with Kieselgel 60, 70-230 mesh; Merck, Darmstadt, Germany) hydrated with 6%
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water and eluted with 10 mL of chloroform:methanol (98:2 v/v) for neutral lipids followed by 20
mL of methanol for polar lipids (Marty et al., 1992). The neutral fraction was further eluted on an
activated silica gel with 3 mL of hexane and diethyl ether to eliminate free sterols. All fatty acid
methyl esters (FAME) were prepared as described by Lepage and Roy (1984) and analyzed in
MSMS scan mode (ionic range: 60—650 m/z) on a Polaris Q ion trap coupled to a Trace GC
(Thermo Finnigan, Mississauga, ON, CA) equipped with a Valcobond VB-5 capillary column
(VICI Valco Instruments Co. Inc., Broakville, ON, CA). FAME were identified by comparison of
retention times with known standards (37 component FAME Mix, PUFA-3, BAME, and
menhaden oil; Supelco Bellefonte, PA, USA) and quantified with tricosanoic acid (23:0) as an
internal standard. Chromatograms were analyzed using integration Xcalibur 1.3 software
(Thermo Scientific, Mississauga, ON, CA).

For total amino acid (TAA) analysis, samples were diluted with 2 mL distilled water and
hydrolyzed with equal parts of 12 N HCI containing 10% phenol at 110 °C for 24 h. Free amino
acids (FAA) and TAA were extracted and derivatized using EZ:faast™ GC-FID FAA and TAA
analysis kits (Clarke et al., 2010). A volume of 100 pL from each sample was mixed with 100 pL
of an internal standard, norvaline (0.2 mM), and n-propanol, and passed through a sorbent tip. It
was then washed with 200 pL of n-propanol for FAA analysis and 200 pL Milli-Q water for the
TAA analysis. The sorbent material was ejected in an eluting medium consisting of 3:2 sodium
hydroxide/n-propanol. Next, 50 pL chloroform and 100 uL iso-octane were added to the solution
to form an organic layer containing the amino acids, and derivatization was completed with 1 N
HCI before being run on a Varian 3800 GC-FID (Agilent Technologies, Palo Alto, CA, USA) to
obtain amino acid composition with the exception of taurine and arginine. Each amino acid was

quantified with a known quantity of internal standard.
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2.5. Statistical analysis

Reproductive characteristics of females, egg and larva measurements, fertilization,
survival, intact oil droplet and hatching successes were analyzed with one-way analysis of
variance (ANOVA) followed by a posteriori Tukey multiple comparison tests when assumptions
of homoscedasticity and normality were verified with Levene and Shapiro-Wilk tests,
respectively. Data were transformed (log or arcsine square root) when necessary. One-way
ANOVAs were used to estimate variations of total lipid classes, total fatty acids from neutral and
polar fractions, total proteins, and total free amino acids according either to spawning periods (P,
P,, P5, and P4) or to DD post fertilization (30, 60, 155, and 200). Multiple linear regression
analyses were used to test whether egg and oil droplet diameters could predict larval length at
hatch. These analyses were performed with the SPSS 16.0 package. Permutational multivariate
analysis of variance (PERMANOVA with 9999 permutations), including posteriori pair-wise
comparisons, were performed on profiles of lipid classes, fatty acids, and amino acids.
Assumptions of homoscedasticity were verified with a PERMDISP test, and data were
transformed (arcsine square root) when necessary (Sokal and Rohlf, 1995). To analyze the
similarity between spawning periods or DD post fertilization, non-metric multi-dimensional
scaling (n-MDS) and SIMPER analysis were run using a Bray-Curtis similarity matrix with
PRIMER 6 (v. 6.1.12) and PERMANOVA+ (v. 1.0.2). We compared variabilities between the
neutral and polar lipid fractions among the different spawning periods using coefficients of
variation (CV). Standard errors of the CVs across populations were estimated with a jackknife

method (Efron and Gong, 1983).

3. Results

3.1. Reproductive characteristics
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Total length and weight of females were similar among spawning periods (p =0.8 and p =
0.4 for length and weight, respectively) (Table 1). However, egg diameter was greater at the
intermediate (P,, P3) spawning periods (Table 1, Fepo diameter 3, 120) = 42.2, p < 0.01) while the oil
droplet diameter was greater in Py and P3 eggs (£oil droplet diameter (3, 120y = 4.8, p = 0.03). Fertilization
and survival success at 4 h post fertilization were both significantly higher in P; and P, eggs
(Table 1; Frertilization 3,6) = 6.9, p = 0.02; Faurival 3,6y = 11.6, p < 0.01). Egg batches from the late
spawning period (P4) had the lowest fertilization and survival successes (49.9 £ 5.5 and 56.8 +
6.7%, respectively). The hatching success was significantly different among spawning periods
(F3,4= 129, p < 0.01), with the highest observed in P, eggs (87.3 + 2.4%) and no hatching in P4
eggs. Larval length at hatch was significantly higher at P; than at P, and P (Table 1; #larval tength 2,
g4y = 10.9, p < 0.01), and larval length at hatch was positively correlated with egg and oil droplet

diameters (5, 5= 24.5, p=0.01, 7° = 0.94).

3.2. Egg biochemical composition in relation to walleye ontogeny

3.2.1. Lipids
Total lipid concentration of eggs at 30 DD post fertilization differed significantly

according to the spawning period (F3, 3y = 34.6, p <0.001; Fig. 1). Total lipids accounted for 22 +
7% of the egg dry mass (DM), with the highest (30 + 3% of DM) and lowest (12 + 3% of DM)
levels in eggs from the P, and P4 groups, respectively (Fig. 1). Similar trends were observed for
total fatty acids in both neutral and polar fractions (Freutral fatty acid (3, 4) = 642.65 Fpolar fatty acid (3, 4) =
11.9, p < 0.001). The major lipid classes were KET, TAG, and PL, accounting for 33, 30, and
28% of total lipids, respectively (Fig. 1). The lipid composition did not differ among eggs
obtained from different spawning periods (p = 0.22).

The polar fraction fatty acid composition of 30 DD post-fertilization eggs did not vary

with spawning period (p = 0.17) (Table 2). However, the neutral lipid fatty acid composition was
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significantly different in P4 eggs compared to the other three spawning periods (Pseudo - I3 4=
15.2, p=0.01). SIMPER analysis showed that the 18:1 n-9 and 16:1 n-7 contents explained most
of this difference. In addition, proportions of MUFA and PUFA were significantly lower in P4
eggs (one-way ANOVA; Fyura 3, 4 = 12.2; Fpura 3, 4 = 12.0, p = 0.01). We predicted that
variations in the relative abundance of fatty acids among the reproductive periods would be
higher in the neutral than in the polar lipid fraction, and we tested this for fatty acids of particular
interest. Our comparison of CVs among the four spawning periods at 30 DD post fertilization
indicates that the variability was consistently higher in the neutral than in the polar fraction as

predicted, except for arachidonic acid (20:4 n-6), 18:2 n-6, 18:3 n-3, MUFA, and PUFA (Fig. 2).

3.2.2. Amino acids
Aspartic acid (ASP), cystathionine (CTH), and glutamic acid (GLU) quantitatively

dominated the FAA pool in Sander vitreus eggs at 30 DD post fertilization, accounting for 32 +
7,17 £ 3, and 9 + 2% of total FAA, respectively (Table 3). Essential amino acids (EAA) (valine
[VAL], leucine [LEU], isoleucine [ILE], threonine [THR], histidine [HIS], methionine [MET],
phenylalanine [PHE], lysine [LYS], and tryptophan [TRP]) accounted for 21 + 5% of the FAA.
Concerning TAA, alanine (ALA), GLU, and ASP were the dominant non-essential amino acids
(NEAA), contributing an average of 37% of the TAA at 30 DD post fertilization for the four
spawning periods (Table 3). VAL, LEU, and ILE were the most abundant EAA. Total FAA
concentration in eggs at 30 DD post fertilization averaged 0.7 = 0.2 mg g, with no change
among spawning periods (p = 0.07). Total protein concentration averaged 6.3 + 2.6 mg g, and
TAA differed according to the spawning period (Pseudo - Fraa 3,3 = 7.8, p = 0.04). SIMPER
analysis showed that LYS (EAA fraction) and SER (NEAA fraction) explained more than 20 and
12%, respectively, of the differences among the four spawning periods. LYS and SER were three

times higher in P, eggs.

10
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3.3. Use of biochemical reserves during embryonic development

Because P, eggs had the highest hatching and survival successes, we only considered this
group when investigating the use of biochemical reserves during embryonic development.

Total lipids decreased by almost half during embryonic development (ED) (F3,6) = 6.5, p
=0.02), i.e., from 173.3 £ 21.6 mg g at 30 DD to 99.7 + 11.0 mg g at 200 DD. Lipid class
composition varied significantly during embryogenesis (Pseudo — F3, 4= 19.3, p = 0.03): TAG
decreased from 30.7 + 2.4% at 30 DD to 4.7 + 1.7% at 200 DD while PL increased from 31.8 +
3.2% to 83.0 = 5.7% for the same period (Fig. 3). Fatty acid proportions in the polar fraction
changed during ED (Pseudo — F3, 4 = 28.1, p = 0.03). SIMPER analysis showed that DHA
contributed the most to this difference, decreasing significantly during development. In contrast,
no changes were observed in the neutral fraction (p = 0.06). FAA and TAA profiles varied during
ED (Pseudo — Fraa 3, 4y= 7.0, p = 0.02; Pseudo — Fraa 3, 4y = 8.4, p = 0.01), with significant
decreases in ASP and CTH from 30 to 200 DD post fertilization in the FAA fraction and
significant decreases in LYS and SER from 30, 60, 155, and 200 DD post fertilization in the

TAA fraction.

4. Discussion

Walleye (Sander vitreus) hatcheries still rely largely using broodstock composed of
captured wild fish. To improve offspring growth and survival, a better understanding of the
biochemical events occurring in early life stages and the impact of egg biochemical composition
on subsequent ontogeny are needed. To the best of our knowledge, our study is one of a few that
reports 1) evidence of an effect of egg biochemical composition on survival and 2) changes in

biochemical composition during embryogenesis. Our results highlight the importance of DHA

11
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(EFA), LYS (EAA), and SER, ASP, and CTH (NEAA) for egg viability and during larval
development as well as reveal how late spawning may dramatically affect egg quality.

Variability in offspring survival within one broodstock may be related to many factors,
such as spawning timing and hormonal induction (Malison et al., 1998; Migaud et al., 2013). Our
data demonstrate a trend in decreasing mean egg size towards the end of the reproductive season,
with the lowest egg survival and hatching success at the latest spawning period. This is in
agreement with previous results obtained for walleye from Lake Ontario (Johnston et al., 2005;
2007). However, no effect of spawning timing was found on embryonic survival to the eyed stage
in a walleye population from Ohio (Czesny et al., 2005). The decrease in egg size in the late-
spawning batch could be due to the depletion of female energy reserves, as has been shown in
Atlantic cod (Chambers and Waiwood, 1996; Kjesbu, 1989) and Atlantic halibut (Evans et al.,
1996). Within a given species, it is commonly accepted that larger eggs have better survival and
produce larger offspring (Bromage et al., 1994; Heath et al., 2003). However, some studies on
trout and sea bass showed that eggs of varying size may exhibit similar developmental
competence (Bromage et al., 1992; Cerda et al., 1994). In our study, no relationship was found
between egg size and survival or hatching success, but we found a positive correlation between
egg size and larval size at hatch. Our results suggest that egg size may exert a stronger influence
over post-hatch survival than embryonic survival, at least under culture conditions. Czesny et al.
(2005) showed that even though egg size varied among females from an inland reservoir, it was
unrelated to the egg lipid content.

Relatively little is known about the role of egg biochemical composition in early survival
of walleye. Based on the reproductive results, we hypothesized that eggs with the best hatching
success would have the highest amounts of total lipids, with higher proportions of essential fatty

acids and amino acids. Our results clearly showed that eggs from the latest spawning period (0%
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hatching success) had the lowest total lipid content, while eggs from the intermediate spawning
periods (highest hatching success) had intermediate levels of total lipids. A positive effect of egg
lipid content on embryonic survival and hatching was not expected because much of the lipid
reserves in walleye eggs is contained in the large neutral oil droplet, which is not consumed
before hatching (Johnston et al., 2007; Moodie et al., 1989).

The advantage of greater total lipid stores to hatching success is not clear. A relationship
between egg total lipid content and egg viability has been observed in freshwater fishes, although
contradictory reports exist concerning this relationship. High egg lipid content increased viability
in roach and bream (Zhukinskiy et al., 1981) while no definite or negative effects were observed
in walleye (Czesny and Dabrowski, 1998; Czesny et al., 2005), sole, sea bass, turbot
(Devauchelle et al., 1982), Macquarie perch (Sheikh-Eldin et al., 1996) and common dentex
(Samace et al., 2009).

The proportions of lipid classes identified in walleye eggs are typical of fish eggs with a
lipid globule (Kaitaranta and Ackman, 1981; Wiegand, 1996). Our results indicate that hatching
success was probably related to the relative proportions of some fatty acids and/or amino acids.
Hatching success has been associated with egg fatty acid composition in wild fish populations
such as cod and walleye (Czesny and Dabrowski, 1998; Moodie et al., 1989; Salze et al., 2005),
although such a relationship is not always present.

Polar fatty acid profiles did not vary with the spawning period and did not appear to
influence hatching success. Fatty acid profiles at 30 DD post fertilization revealed very high
levels of DHA in the polar fraction. Similar high DHA levels in the polar fraction of walleye eggs
were also found by Czesny and Dabrowski (1998) and Moodie et al. (1989), suggesting its
selective retention during embryogenesis, as well as by Abi-Ayad et al. (2000) and Henrotte et al.

(2010) in Eurasian perch eggs. A high proportion of DHA in the polar fraction demonstrates the

13
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importance of this fatty acid. It is likely related to special function since this compound is
relatively rare at lower trophic levels in freshwater environments (Henderson and Tocher, 1987;
Wiegand, 1996). Czesny and Dabrowski (1998) showed that the polar fraction of walleye egg
lipids—in particular the essential fatty acids DHA, EPA, and AA—is noticeably less affected by
the broodstock’s nutritional status. We found stable proportions of AA + EPA compared with
proportions of either fatty acid individually, which is of interest because AA and EPA are
biochemical precursors in the eicosanoid synthesis pathways (Fernandez-Palacios et al., 2011)
and both compete for enzymes in the cyclo-oxygenase and lipoxygenase pathways, with AA
being the preferred substrate (Ferndndez-Palacios et al., 2011). This could explain the high
variability of the AA concentration in the lipid polar fraction.

We suggest that the higher levels of MUFA and PUFA in the neutral fraction for the first
three spawning periods could be good indicators of offspring quality. Johnston et al. (2007)
showed that the PUFA composition of neutral lipids in walleye eggs had only a minor influence
on hatching success, suggesting that the relative abundance of PUFA in this fraction could be
more important to offspring viability in the post-hatch period. In a marine species, the common
dentex, Samaee et al. (2009) showed that high quality egg batches also had higher concentrations
of total PUFA and some MUFA. Other studies showed that MUFA in the neutral fraction are
preferentially utilized during embryonic development in various fish species (Fraser et al., 1988;
Mourente and Vazquez, 1996; Rennestad et al., 1994; Tocher et al., 1985; Wiegand, 1996).
Indeed, in starved Eurasian perch larvae, MUFA contributed 37% of the energy from total fatty
acid catabolism (Abi-Ayad et al., 2000).

Total lipids, especially TAG, decreased from 30 to 200 DD post fertilization. Such an
observation suggests that TAG were used as a primary endogenous energy reserve prior to

exogenous larval feeding (Falk-Petersen et al., 1989; Mejri et al., 2012; Samaee et al., 2009;

14
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Sewall and Rodgveller, 2008). Variations in the polar fraction during embryogenesis—more
precisely, the decrease of DHA—suggest that polar lipids have both structural and energetic
roles. DHA assures membrane fluidity, which is required for rapid cell division and growth
during embryogenesis (Wiegand et al., 2004).

Environmental factors such as temperature affect the lipid composition of fish tissues
(Olsen et al., 1999). Indeed, a decrease in water temperature has been associated with an increase
in PUFA content in carp tissues (Kayama et al., 1986) or with an increase in DHA content in
Atlantic salmon (Olsen and Skjervold, 1995); these effects are likely related to the positive
correlation between the degree of unsaturation of fatty acids and membrane fluidity. In our study,
the decrease in DHA could be an adaptive mechanism to reduce membrane fluidity with the
increase in temperature occurring during ED. In contrast, Abi-Ayad et al. (2004) working on
pikeperch larvae, in a stable temperature environment, did not notice specific retention of DHA.
In contrast to lipids, relatively little research has been conducted on the role of egg protein
composition during ontogeny on subsequent offspring performance. Amino acids are important
constituents of fish eggs since they are required by the embryo for protein synthesis and are a
major energy source prior to hatching (Rennestad et al., 2003). Moreover, amino acids are
required to synthesize the apolipoproteins required for absorption of the oil droplet (Mani-Ponset
et al., 1996; Poupard et al., 2000).

Free amino acids are more important in pelagic marine eggs than in freshwater and
benthic marine eggs, where they may represent less than 5% of egg constituents. For example, in
common dentex, a marine pelagophil teleost, FAA account for more than 20% of DM in eggs and
play an important role during embryogenesis (Samaee et al., 2010). In freshwater eggs, an
organic osmolyte pool would be disadvantageous for embryonic osmoregulation in a

hypoosmotic environment (Finn and Fyhn, 2010). The significant decrease of FAA (ASP and
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CTH) during ED may suggest that these components could be used as energy sources. While
EAA are preferentially used for growth in fish larvae, NEAA are used as energy substrates
(Abboudi et al., 20006).

Concerning total amino acids, two interesting features were noticed: 1) lysine and serine
were three times higher in P, eggs (intermediate spawning period) than in those from the other
spawning periods; 2) these two amino acids explained most of the variations occurring during
ED, and they decreased significantly from 30 to 200 DD post fertilization. There is little
information about the exact roles of these amino acids at this life stage, but it is known that
lysine, an EAA in fish, plays an important role in the formation of collagen, which is important in
early life stages for development of the skeletal system and skin (Finn and Fyhn, 2010; Ohkubo
et al., 2008). Moreover, L-carnitine, which is synthesized from LYS and MET, is required for the
transport of fatty acids from the cytosol into mitochondria for B-oxidation (Brown et al., 2005;
Harpaz, 2005). In their review, Rennestad et al. (1999) noted that in fish eggs characterized by oil
globules (e.g., Sander vitreus), 50% of the energy is derived from amino acids (predominately
FAA, but with some contribution from proteins) and 50% from neutral lipids such as TAG and
wax and/or steryl esters. Furthermore, there may be an interrelationship between these potential
energy sources (Rennestad et al., 1999; Rosa et al., 2003). Our findings suggest that there may be
a concomitant use of free NEAA, proteins, and lipids as energy sources during walleye
embryogenesis. Other limiting constituents may include the relative or absolute amounts of
vitamins, macrominerals, and maternally transferred hormones, such as thyroid hormones
(Brooks et al., 1997), all of which have been linked to both embryonic and post-hatch survival in

fish (Hey et al., 1996).

5. Conclusion
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This study shows that the timing of ovulation during the spawning period could be a
strong determinant in walleye hatching success and early survival. During embryogenesis, energy
is derived primarily from TAG, proteins, and non-essential free amino acids, with a possible
concomitant use of DHA to reduce membrane fluidity. Even though proteins represent less than
1% of the dry mass, the depletion of LYS and SER in TAA during embryogenesis in the
intermediate spawning groups suggests a critical role during walleye ontogeny. Since walleye
culture is still not well developed, the data presented in this study bring useful information
concerning larval protein and lipid requirements that could be used to formulate well-balanced

broodstock diets.
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Figures Legends

Fig. 1. Changes in total lipid content and lipid class composition (KET: ketones; TAG:
triacylglycerols; FFA: free fatty acids; ST: sterols; AMPL: acetone-mobile polar lipids; PL:
phospholipids) in walleye (Sander vitreus) eggs at 30 degree-days post fertilization (mean + SD).
Different letters indicate statistically significant differences among spawning periods. Spawning
periods were defined as the number of days following the first occurrence of ovulation: early (P,
3 d), intermediate (P, 5 d; P3, 8 d), and late (P4, 11 d).

Fig. 2. Variations in the proportions of selected fatty acid classes among eggs from different
spawning periods at 30 degree-days post fertilization (shaded bars: neutral lipid fraction; solid
bars polar lipid fraction). Values represent jackknifed means + one standard error. Results of two-
tailed #-tests are indicated (ns: not significant; *: p < 0.05).

Fig. 3. Changes in the major lipid class composition (KET: ketones, TAG: triacylglycerols, PL:
phospholipids) in walleye (Sander vitreus) eggs and larvae at 30, 60, 155, and 200 degree-days

post fertilization (mean £+ SD).

Table 1. Reproductive characteristics (mean + SD) of female walleye and their eggs and larvae
collected throughout the 2012-spawning season from a broodstock in captivity. Means in a row

with different letters are significantly different (ANOVA: p < 0.05). Spawning periods within the
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reproductive cycle were defined according to the number of days following the first occurrence
of ovulation: early spawning: P;, 3 d; intermediate spawning: P,, 5 d and P;, 8 d; and late
spawning: P4, 11 d.

Table 2. Fatty acid composition of neutral and polar lipids of walleye eggs (% weight of total
neutral and polar lipids + SD) at 30 degree-days post fertilization at different spawning periods
(Py, Py, P3, and P4). Spawning periods within the reproductive cycle were defined according to
the number of days following the first natural occurrence of ovulation: early spawning: Py, 3 d;
intermediate spawning: P,, 5 d, and P3, 8 d; and late spawning: P4, 11 d. Different letters indicate
significant differences among spawning periods for the neutral fraction.

Table 3. Free and total amino acid contents (% of total amino acids + SD) of walleye eggs at 30
degree-days post fertilization at different spawning periods (P;, P,, P3, and P4). Spawning periods
within the reproductive cycle were defined according to the number of days following the first
natural occurrence of ovulation: early spawning: Py, 3 d; intermediate spawning: P,, 5 d, and P3, 8

d; and late spawning: P4, 11 d.
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Table(s)

Table 1. Reproductive characteristics (mean = SD) of female walleye and their eggs and larvae collected
throughout the 2012 spawning season from a broodstock in captivity. Means in a row with different letters
are significantly different (ANOVA: p < 0.05). Spawning periods within the reproductive cycle were defined
according to the number of days following the first occurrence of ovulation: early spawning: P;, 3 d;

intermediate spawning: P,, 5 d and P3, 8 d; and late spawning: P4, 11 d.

Reproductive cycle

Py P, P; P,
Females
N 7 8 48 35
Length (mm) 360.00 £ 21.40 364.37 £ 38.02 370.62 £ 31.61 368.37 £ 25.90
Weight (g) 438.85 £ 49.04 419.75+81.43  483.20+111.88 458.40 + 76.48
Eggs and Larvae

Egg diameter (mm) 1.95+0.05 2.01 £0.07° 2.01+ 0.08" 1.83+0.07¢
Oil droplet diameter (mm) 0.75+0.07 0.70 + 0.07° 0.77 + 0.04* 0.73 + 0.06™
Larval length on hatch (mm) 6.80 +0.25" 6.85+0.29" 7.10 = 0.37* -
Fertilization success (%) 75.92 +11.26" 78.76 + 0.34* 68.16 + 531" 49.92 + 5.54°
Intact oil droplet (%) 77.16 £ 4.27° 7529+ 6.81" 61.26 + 5.15™ 47.00 + 4.24°
Survival success (%) 85.18 + 4.89" 87.79 + 5.80" 71.64 + 7.84™ 56.76 + 6.74"
Hatch success (%) 56.90 + 9.76" 87.28 £ 2.43" 41.01 + 8.50" 0.00+ 0.00°




Table 2. Fatty acid composition of neutral and polar lipids of walleye eggs (% weight of total neutral and
polar lipids + SD) at 30 degree-days post fertilization at different spawning periods (Py, P,, P3, and Py).
Spawning periods within the reproductive cycle were defined according to the number of days following the
first natural occurrence of ovulation: early spawning: P;, 3 d; intermediate spawning: P, 5 d, and P53, 8 d; and
late spawning: P4, 11 d. Different letters indicate significant differences among spawning periods for the

neutral fraction

Fatty acids Neutral fraction Polar fraction
Spawning periods

P, P, P; P, P, P, P; P,
C14:0 1.9+ 0.0 22+03 2.1+0.0 2.5+0.0 1.9+£0.1 09+03 1.1 £0.0 09+04
Cl16:0 8.6+ 0.1 93+0.2 8.0+0.1 9.5+ 0.0 18.8+0.1 189+02 176 £05 194+1.7
C18:0 0.8+ 0.0 0.9+0.0 0.6+0.0 1.1+ 0.0 49+0.1 52+09 5.1+0.1 5.6+0.6
C19:0 0.1+ 0.0 02+0.0 0.1+£0.0 0.2+ 0.0 0.8+0.1 0.8+0.0 0.8+0.0 1.0£0.0
> SFA% 12.0£3.1 132+£33 114+29 139+34  266+6.8 268 +68 256 £63 28.0+7.0
Cl6:1n-7 15.1+£0.1 11.3+£3.1 146+05 17.4+£0.2 2.4+0.1 25+03 2.5+0.0 3.4+£0.7
C18:1n-9 31.5+1.0 32.5+0.5 30.5+0.8 18.8+1.7 2.7+0.1 33+05 3.0+00 89+76
C20:1n-9 1.3+0.0 1.8+0.0 1.5+£0.0 1.6+0.1 1.9+£0.0 27+0.5 2.6+0.1 2.7+0.0
> MUFA% 495+ 12.1°  47.0+£12.0" 48.0+11.7° 39.4+85" 8.1=1.1 96+14 9.0+13 16.0+£32
C18:2n-6 159+0.8 17.2+0.6 16.6 + 0.0 10.6 £0.2 4.8+0.1 56+02 54+02 5.4+04
C18:3n-6 0.8+0.0 0.9+0.0 0.8+£0.0 0.9+0.0 0.3+0.0 0.5+0.0 0.4+0.0 0.5+0.0
C20:3n-6 0.7+0.0 0.6 +0.1 0.6+0.0 0.9+0.0 3.7+£0.0 3.0+0.1 34+02 29+04
C20:4n-6 0.1+0.0 0.1+0.0 0.1+£0.0 0.1+0.0 0.1+0.0 0.1+0.0 0.1+0.0 0.2+0.0
C18:3n-3 2.8+0.0 2.6+0.6 2.7+0.0 32+0.1 0.5+0.0 0.4+0.0 0.5+0.0 0.00
C20:3n-3 1.1+0.0 09+03 0.9+0.0 1.4+0.0 5.5+£0.0 45+0.1 5.1+ 04 26+1.5
C20:5n-3 32+0.1 34+03 3.8+£0.0 43+0.1 6.6+02 6.7+0.5 7.5+£02 63+1.0
C22:6n-3 11.4+£0.0 11.6+1.0 11.9+0.0 10.7+£05 453+09 446+ 0.8 448+0.1 40.0+69
> PUFAB 37.1+54" 38.7+5.8" 38.7+57" 325+64" 678+137 66.5+13.5 68.2=13.6 58.8+122
>n-3 19.2+4.6 19.5+4.7 203+4.38 237+54 583+16 56.7+ 1.4 582+15 493+13
>n-6 17.8+£6.9 19.1+75 184+72 21.0+8.1 9.5+£25 979+ 19 99+24 9.5+£3.0
Total lipids
(mggh) 94.0+1.0 53.0 £19.7 61.2+0.3 481+13 222429 148+ 4.6 15.0 £ 1.6 6.9+3.8

T Includes 15:0, 17:0, and 20:0; ¥includes 15:1,17:1, 14:1 n-5, 22:1 n-9, and 24:1; ® includes 18:4 n-3






Table 3. Free and total amino acid contents (% of total amino acids + SD) of walleye eggs at 30 degree-days
post fertilization at different spawning periods (P, P,, P3, and P4). Spawning periods within the reproductive
cycle were defined according to the number of days following the first natural occurrence of ovulation: early

spawning: Py, 3 d; intermediate spawning: P,, 5 d, and Ps, 8 d; and late spawning: P4, 11 d.

Amino acids Free amino acids (FAA) Total amino acids (TAA)

Spawning periods

P, P, P; Py P, P, P; Py
Essential amino acids
Valine. VAL 3.5 39+0.2 3.7+02 36+04 93 10.8+1.3 8.6+0.5 8.0+0.7
Leucine. LEU 3.6 46+0.7 45+03 26+09 11.1 10.6 £ 0.8 11.0+£04 11.5+ 0.0
Isoleucine. ILE 2.4 27+£05 2.1+02 1.2+0.7 6.8 7.5+£09 6.8+04 6.6+04
Threonine. THR 0.0 0.0 0.4+0.5 0.6+0.8 3.6 59+0.6 3.4+03 4.1+0.1
Histidine. HIS 2.1 2604 2.0+0.1 1.4+02 0.7 0.0 1.7+0.2 25+02
Methionine. MET 22 3.0+03 2.1+0.3 09+0.5 2.6 2.0+0.1 2.8+0.2 2.4+0.5
Phenylalanine. PHE 1.9 22403 1.2+02 1.7+0.7 5.9 42+02  48%03 57+04
Lysine. LYS 3.9 59+0.5 45+0.5 26+2.1 5.0 15.6+0.2 73+0.2 53+0.8
Tryptophan. TRP (TRY) 0.5 1.1+£0.5 0.6+0.0 0.4+0.6 ND ND ND ND
Non- essential amino acids

Alanine. ALA 6.4 6.8+1.0 47+04 28+1.5 15.6 176+ 1.5 150+0.2 13.5+0.2
Sarcosine. SAR 1.6 1.0+£0.7 12+0.2 0.0 0.1 03+0.0 0.4+0.0 0.2+0.0
Glycine. GLY 2.0 22+02 32+02 21+04 6.8 6.8+1.0 6.2+0.2 6.1+0.2
Serine. SER 0.0 0.0 0.0 04+0.6 0.0 62+1.5 1.3+0.6 3.4+0.6
Proline. PRO 14 1.4+02 1.9+0.1 1.3+09 53 59+0.6 47+0.0 53+0.3
Thioproline. TPR 0.9 1.5+1.3 1.3+0.3 06+02 ND ND ND ND
Aspanic acid. ASP 33.6 242+7.1 309+03 393+48 8.1 10.4+04 79+0.5 7.5+£0.1
Hydroxyproline. HYP 0.1 0.1+£0.0 0.7£0.6 02+02 0.1 0.1+£0.0 0.1£0.0 0.3+£0.0
Glutamic acid. GLU 7.8 11.4+1.6 8.6+2.7 8.1+1.1 13.8 10.2+3.2 13.1+£0.6 11.8+ 0.6
Glutamine. GLN 4.4 1.8+23 3.2+0.0 49+0.2 ND ND ND ND
Tyrosine. TYR 2.6 25+04 2.1+0.5 2.8+0.9 2.75 0.8+0.2 3.7+0.1 3.9+0.0
CyStathionine. CTH 15.3 16.6 £ 0.8 13.9+£0.2 19.6 £ 6.0 ND ND ND ND
Cystine. cC 0.1 0.2+0.0 03+0.1 0.4+0.0 ND ND ND ND
> Essential 20.5 263+3.2 21.4+£03 153+73 453 459+44 46.8+14 46.4+ 0.8
> Non-essential 79.4 73.6+53 76.5+1.7 84.6 +3.2 54.6 540+ 1.1 53.1+1.1 52.8+0.8
> Acidic 49.7 422+ 1.0 485+03 53.5+23 23.7 189+0.2 21.4+£0.0 19.7+ 0.6
2 Basic 6.1 8.6+ 3.0 6.6 +0.7 40+0.8 58 15603 9.0+ 0.2 7.8+0.8
2 Aromatic 8.2 10.2+ 3.2 7.3+0.0 7.1+73 9.4 43 +4.4 103+14 12.1+0.8
Essential/Non-essential 0.2 03+ 00  02+00 0.1+0.1 0.8 0.8+0.1 0.8+0.0 0.8+ 0.0
Total (mg.g™) 0.7 0.6 +0.1 0.6+0.1 1.0+0.2 8.0 34+02 4.8+0.2 89+13

ND: not detected amino acids
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