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Abstract

The aim of this study was to evaluate how variations in total lipids, fatty acids, and total 

and free amino acids in eggs affect embryonic development throughout the spawning season in 

cultured walleye (Sander vitreus). Eggs were obtained from 4-year-old females and pooled based 

on spawning time: they were assigned to four consecutive periods during a one-month spawning 

season according to the first spawning occurrence in the female broodstock. Hatching success 

in the late spawning group (p < 0.05). Egg diameter was significantly larger for the two 

intermediate spawning periods, which is related to the greater larval length at hatch during these 

two periods. Successful development was associated with the quality of lipid reserves throughout 

ontogeny. For polar fatty acids, there was a specific retention of essential fatty acids (EFA), 

particularly of the most abundant, i.e., docosahexaenoic acid (DHA), which made up more than 

40% of the polar fatty acid fraction. For total amino acids, lysine (LYS) and serine (SER) levels 

were significantly higher in eggs from the intermediate spawning periods and were preferentially 

depleted during embryogenesis. During embryogenesis, energy was derived primarily from 

triacylglycerols (TAG), proteins, and non-essential free amino acids. Our results suggest that the 

content of EFA and amino acids in eggs may explain differences in egg quality and success of 

larval development within a broodstock population. Our results clearly show that the timing of 

ovulation during the spawning period affects the success of walleye aquaculture production.

Keywords: walleye, spawning period, eggs, embryogenesis, hatching success, ontogeny, total 

lipids, fatty acids, total amino acids, free amino acids 
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1. Introduction

Walleye (Sander vitreus) is a valuable sport and commercial fish species in the northern 

United States and Canada. In the US, over one billion walleye fry and fingerlings are produced 

annually by public hatcheries for stocking enhancement programs; the broodstock is largely 

captured wild fish (Fenton et al., 1996; Malison et al., 1998; Rinchard et al., 2005). Nevertheless, 

efforts to raise walleye fry to marketable size remain in the early stages: more research and 

development is needed to ensure profitable production, including a better understanding of 

biochemical requirements during early life stages. The few previous studies that were done on 

biochemical composition during ontogeny were almost all performed on wild fish (Czesny et al., 

2005; Johnston et al., 2007), but constraints are different when dealing with captive broodstock 

and egg rearing. For one thing, hormone treatment is generally used to induce spawning in 

captive female walleye (Malison et al., 1998). Such hormonal manipulations might result in 

different spawning periods and variable biochemical composition of eggs within the same 

broodstock population.

Egg size as well as egg composition (especially fatty acids and amino acids) can have a 

significant impact on the early life history of fish (Czesny et al., 2005). The influence of egg 

biochemical composition on offspring quality has been demonstrated in several teleost species 

(Bruce et al., 1993; Navas et al., 1997). Lipids allocated to egg production in walleye are divided 

between a lipoprotein yolk (LPY), which contains polar lipids and some neutral lipids, and an oil 

globule entirely filled with neutral lipids, principally triacylglycerols (Moodie et al., 1989). The 

LPY is used to satisfy the structural as well as caloric and micronutrient requirements of embryos 

and young larvae, and it is largely exhausted before exogenous feeding begins (McElman and 

Balon, 1979). 

Under culture conditions, hatching success and embryonic survival have been related to 
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essential polyunsaturated fatty acid content ( -Palacios et al., 2011; Keckeis et al., 2000; 

Mazorra et al., 2003; Moodie et al., 1989 ). Amino acids (free amino acids 

[FAA] and protein constituents) are vital for all living organisms. During early fish ontogeny, 

they are used as fuel molecules, signaling factors, and substrates for the synthesis of a wide range 

of bioactive molecules (Finn and Fyhn, 2010). It has been suggested that amino acids are the 

main substrate for energy metabolism and protein synthesis in the embryos of some marine fish 

species, such as Atlantic cod (Gadus morhua) (Clarke et al., 2010; Finn et al., 1995a) and 

Atlantic halibut (Hippoglossus hippoglossus) (Finn et al., 1995b). Moreover, FAA were 

associated with egg viability in these species (Zhu et al., 2003). Little is currently known of the 

variability in the quantity and quality of egg fatty acid and amino acid profiles during the 

son. 

This study explores intraspecific variations in total lipids, lipid class composition, and 

fatty acid and amino acid profiles in eggs from captive walleye broodstock. The objective was to 

assess variations occurring through the spawning season and to determine how they may affect 

walleye ontogeny from fertilization to 200 degree-days (DD) post fertilization. 

2. Materials and methods

2.1. Spawning and egg production

Eggs were collected from broodstock maintained at the Station Piscicole Trois-Lacs fish 

farm (Wotton, Quebec, Canada). Fish were kept in a 5 m3 circular indoor tank with a flow-

through system (1 L h-1) and natural photoperiod. The stimulation of sexual maturation began in 

April 2012 by an increas

broodstock group comprised 98 first-spawning females and 54 males (4 years old; mean weight 
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food, 45% protein, 17% lipid; 44/16 from Martin Mills Inc., Ontario, Canada) and frozen pieces 

of trout (Salvelinus fontinalis) and mackerel (Scomber scombrus) five times a week from June 

2011 to mid-November 2011. 

Since there are no external indications of ovulation, oocyte maturation was monitored 

weekly by sampling ovaries from 15 to 25 females. Gametes were stripped when the first signs of 

ovulation occurred. Eggs were classified into four groups according to the timing of ovulation 

(number of days after the first occurrence): early spawning period (P1, 3 d after first occurrence), 

intermediate spawning periods (P2: 5 d; P3: 8 d), and late spawning period (P4: 11 d). Each period 

included several fish, and eggs were pooled (Table 1). All females were injected once with 150 

IU of human chorionic gonadotropin (hCG) on 10 May. Females that spawned on P2, P3, or P4

were injected with a second dose of 500 IU of hCG on 13 May. 

At each spawning period, fish were anaesthetized with MS222 (5 mg L-1) in well-

oxygenated fresh water and gametes were collected by hand stripping. Eggs were fertilized using 

the standard dry fertilization method (Malison and Held, 1996): eggs were collected from each 

female in a dry 500 mL plastic bowl and immediately fertilized with the milt of two to three 

males; the mixture was left undisturbed for 1

cups per 4 L of water) was added to the eggs and stirred to remove the sticky 

matrix and avoid egg clumping during incubation. Fertilized eggs from a single spawning period 

were pooled, left for 2 3 h during hardening, and then subdivided into two equal volumes and 

incubated in 6 L jars (15.8 cm diameter and 45.7 cm high) with a flow rate of 20 L min-1. 

Incubators were supplied with pumped water from an external pond that had been previously 

drum , sand filtered , and vacuum degassed. Temperature was monitored 

daily. The upwelling water flow in each incubator jar was regulated to ensure continuous gentle 

movement of the eggs. From two days after fertilization until just prior to hatching, formaldehyde 
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treatments were applied daily at a concentration of 50 100 mg of formaldehyde L-1 of water for

15 min to prevent fungal development. 

2.2. Sample collection

For each batch produced, about 150 eggs were sampled after fertilization to determine 

fertilization and survival success: 30 to 40 embryos were sampled (five replicates per incubator) 

at 30, 60, 155, and 200 degree-days (DD) post fertilization. Three replicates were frozen in liquid 

nitrogen and stored at - d in 1% 

glutaraldehyde for biometric analysis. The same sampling procedure was used at hatch and 

before mouth opening. Hatching success (%) was estimated using triplicate subsample counts of 

larvae from a well-mixed incubator, taking into account the initial number of fertilized eggs and 

the number of dead and viable eggs removed during incubation.   

2.3. Biometric analysis

Egg diameter, oil droplet diameter, and larval length at hatch were measured with a high

resolutionVHX-2000 digital microscope (Keyence, Osaka, Japan) adjusted to magnifications of 

30 200x and set in high dynamic range mode with light shift. 

2.4. Biochemical analysis (Folch et al., 1957)

Lipids were extracted according to the Folch et al. (1957) procedure modified by Parrish 

(1999). The relative proportions of the different lipid classes (ketones [KET], triacylglycerols 

[TAG], free fatty acids [FFA], sterols [ST], acetone-mobile polar lipids [AMPL], and 

phospholipids [PL]) were determined using an Iatroscan Mark-VI analyzer (Iatron Laboratories 

Inc., Tokyo, Japan) and were developed in a four-solvent system (Parrish, 1987; 1999). In 

addition, lipid extracts were separated into neutral and polar 

i.d., packed with Kieselgel 60, 70 230 mesh; Merck, Darmstadt, Germany) hydrated with 6% 
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water and eluted with 10 mL of chloroform:methanol (98:2 v/v) for neutral lipids followed by 20 

mL of methanol for polar lipids (Marty et al., 1992). The neutral fraction was further eluted on an 

activated silica gel with 3 mL of hexane and diethyl ether to eliminate free sterols. All fatty acid 

methyl esters (FAME) were prepared as described by Lepage and Roy (1984) and analyzed in 

MSMS scan mode (ionic range: 60 650 m/z) on a Polaris Q ion trap coupled to a Trace GC 

(Thermo Finnigan, Mississauga, ON, CA) equipped with a Valcobond VB-5 capillary column 

(VICI Valco Instruments Co. Inc., Broakville, ON, CA). FAME were identified by comparison of 

retention times with known standards (37 component FAME Mix, PUFA-3, BAME, and 

menhaden oil; Supelco Bellefonte, PA, USA) and quantified with tricosanoic acid (23:0) as an 

internal standard. Chromatograms were analyzed using integration Xcalibur 1.3 software 

(Thermo Scientific, Mississauga, ON, CA).(Lepage and Roy, 1984)

For total amino acid (TAA) analysis, samples were diluted with 2 mL distilled water and 

acids (FAA) and TAA were extracted and derivatized using EZ:faastTM GC-FID FAA and TAA 

analysis kits (Clarke et al., 2010

of an internal standard, norvaline (0.2 mM), and n-propanol, and passed through a sorbent tip. It 

L of n-propanol for FAA analysis and 200 L Milli-Q water for the 

TAA analysis. The sorbent material was ejected in an eluting medium consisting of 3:2 sodium 

hydroxide/n-propanol. Next, 50 L chloroform and 100 L iso-octane were added to the solution 

to form an organic layer containing the amino acids, and derivatization was completed with 1 N 

HCl before being run on a Varian 3800 GC-FID (Agilent Technologies, Palo Alto, CA, USA) to 

obtain amino acid composition with the exception of taurine and arginine. Each amino acid was

quantified with a known quantity of internal standard.



1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2.5. Statistical analysis

Reproductive characteristics of females, egg and larva measurements, fertilization, 

survival, intact oil droplet and hatching successes were analyzed with one-way analysis of 

variance (ANOVA) followed by a posteriori Tukey multiple comparison tests when assumptions 

of homoscedasticity and normality were verified with Levene and Shapiro-Wilk tests, 

respectively. Data were transformed (log or arcsine square root) when necessary. One-way

ANOVAs were used to estimate variations of total lipid classes, total fatty acids from neutral and 

polar fractions, total proteins, and total free amino acids according either to spawning periods (P1, 

P2, P3, and P4) or to DD post fertilization (30, 60, 155, and 200). Multiple linear regression 

analyses were used to test whether egg and oil droplet diameters could predict larval length at 

hatch. These analyses were performed with the SPSS . Permutational multivariate 

analysis of variance (PERMANOVA with 9999 permutations), including posteriori pair-wise 

comparisons, were performed on profiles of lipid classes, fatty acids, and amino acids. 

Assumptions of homoscedasticity were verified with a PERMDISP test, and data were 

transformed (arcsine square root) when necessary (Sokal and Rohlf, 1995). To analyze the 

similarity between spawning periods or DD post fertilization, non-metric multi-dimensional 

scaling (n-MDS) and SIMPER analysis were run using a Bray-Curtis similarity matrix with 

PRIMER 6 (v. 6.1.12) and PERMANOVA+ (v. 1.0.2). We compared variabilities between the 

neutral and polar lipid fractions among the different spawning periods using coefficients of 

variation (CV). Standard errors of the CVs across populations were estimated with a jackknife 

method (Efron and Gong, 1983).

3. Results
3.1. Reproductive characteristics
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3.2.1. Lipids

Total lipid concentration of eggs at 30 DD post fertilization differed significantly 

according to the spawning period (F(3, 8) = 34.6, p < 0.001; Fig. 1)

levels in eggs from the P1 and P4 groups, respectively (Fig. 1). Similar trends were observed for 

total fatty acids in both neutral and polar fractions (Fneutral fatty acid (3, 4) = 642.6; Fpolar fatty acid (3, 4) = 

11.9, p < 0.001). The major lipid classes were KET, TAG, and PL, accounting for 33, 30, and

28% of total lipids, respectively (Fig. 1). The lipid composition did not differ among eggs 

obtained from different spawning periods (p = 0.22).   
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3.2.2. Amino acids

Aspartic acid (ASP), cystathionine (CTH), and glutamic acid (GLU) quantitatively 

dominated the FAA pool in Sander vitreus eggs at 30 DD post fertilization, accounting for

7, total FAA, respectively (Table 3). Essential amino acids (EAA) (valine 

[VAL], leucine [LEU], isoleucine [ILE], threonine [THR], histidine [HIS], methionine [MET], 

phenylalanine [PHE], lysine [LYS], and tryptophan [TRP]) accounted for

Concerning TAA, alanine (ALA), GLU, and ASP were the dominant non-essential amino acids

(NEAA), contributing an average of 37% of the TAA at 30 DD post fertilization for the four 

spawning periods (Table 3). VAL, LEU, and ILE were the most abundant EAA. Total FAA 

concentration in eggs at 30 DD post fertilization averaged 0.7 .2 mg g-1, with no change 

among spawning periods (p = 0.07). Total protein concentration averaged 6.3 .6 mg g-1, and 

TAA differed according to the spawning period (Pseudo - FTAA (3, 3) = 7.8, p = 0.04). SIMPER

analysis showed that LYS (EAA fraction) and SER (NEAA fraction) explained more than 20 and 

12%, respectively, of the differences among the four spawning periods. LYS and SER were three 

times higher in P2 eggs.
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Because P2 eggs had the highest hatching and survival successes, we only considered this 

group when investigating the use of biochemical reserves during embryonic development.

Total lipids decreased by almost half during embryonic development (ED) (F(3, 6) = 6.5, p 

-1 -1 at 200 DD. Lipid class 

composition varied significantly during embryogenesis (Pseudo F(3, 4) = 19.3, p = 0.03): TAG 

period (Fig. 3). Fatty acid proportions in the polar fraction

changed during ED ( F(3, 4) = 28.1, p = 0.03). SIMPER analysis showed that DHA 

contributed the most to this difference, decreasing significantly during development. In contrast, 

no changes were observed in the neutral fraction (p = 0.06). FAA and TAA profiles varied during 

ED ( FFAA (3, 4) = 7.0, p = 0.02; FTAA (3, 4) = 8.4, p = 0.01), with significant 

decreases in ASP and CTH from 30 to 200 DD post fertilization in the FAA fraction and

significant decreases in LYS and SER from 30, 60, 155, and 200 DD post fertilization in the 

TAA fraction. 

4. Discussion

Walleye (Sander vitreus) hatcheries still rely largely using broodstock composed of 

captured wild fish. To improve offspring growth and survival, a better understanding of the

biochemical events occurring in early life stages and the impact of egg biochemical composition 

on subsequent ontogeny are needed. To the best of our knowledge, our study is one of a few that 

reports 1) evidence of an effect of egg biochemical composition on survival and 2) changes in 

biochemical composition during embryogenesis. Our results highlight the importance of DHA 
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(EFA), LYS (EAA), and SER, ASP, and CTH (NEAA) for egg viability and during larval 

development as well as reveal how late spawning may dramatically affect egg quality.

Variability in offspring survival within one broodstock may be related to many factors, 

such as spawning timing and hormonal induction (Malison et al., 1998; Migaud et al., 2013). Our 

data demonstrate a trend in decreasing mean egg size towards the end of the reproductive season, 

with the lowest egg survival and hatching success at the latest spawning period. This is in 

agreement with previous results obtained for walleye from Lake Ontario (Johnston et al., 2005; 

2007). However, no effect of spawning timing was found on embryonic survival to the eyed stage

in a walleye population from Ohio (Czesny et al., 2005). The decrease in egg size in the late-

spawning batch could be due to the depletion of female energy reserves, as has been shown in 

Atlantic cod (Chambers and Waiwood, 1996; Kjesbu, 1989) and Atlantic halibut (Evans et al., 

1996). Within a given species, it is commonly accepted that larger eggs have better survival and 

produce larger offspring (Bromage et al., 1994; Heath et al., 2003). However, some studies on 

trout and sea bass showed that eggs of varying size may exhibit similar developmental

competence (Bromage et al., 1992; ). In our study, no relationship was found 

between egg size and survival or hatching success, but we found a positive correlation between 

egg size and larval size at hatch. Our results suggest that egg size may exert a stronger influence 

over post-hatch survival than embryonic survival, at least under culture conditions. Czesny et al. 

(2005) showed that even though egg size varied among females from an inland reservoir, it was 

unrelated to the egg lipid content.

Relatively little is known about the role of egg biochemical composition in early survival

of walleye. Based on the reproductive results, we hypothesized that eggs with the best hatching 

success would have the highest amounts of total lipids, with higher proportions of essential fatty 

acids and amino acids. Our results clearly showed that eggs from the latest spawning period (0% 
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hatching success) had the lowest total lipid content, while eggs from the intermediate spawning 

periods (highest hatching success) had intermediate levels of total lipids. A positive effect of egg 

lipid content on embryonic survival and hatching was not expected because much of the lipid 

reserves in walleye eggs is contained in the large neutral oil droplet, which is not consumed 

before hatching (Johnston et al., 2007; Moodie et al., 1989).

The advantage of greater total lipid stores to hatching success is not clear. A relationship 

between egg total lipid content and egg viability has been observed in freshwater fishes, although

contradictory reports exist concerning this relationship. High egg lipid content increased viability 

in roach and bream (Zhukinskiy et al., 1981) while no definite or negative effects were observed 

in walleye (Czesny and Dabrowski, 1998; Czesny et al., 2005), sole, sea bass, turbot 

(Devauchelle et al., 1982), Macquarie perch (Sheikh-Eldin et al., 1996) and common dentex 

(Samaee et al., 2009).

The proportions of lipid classes identified in walleye eggs are typical of fish eggs with a 

lipid globule (Kaitaranta and Ackman, 1981; Wiegand, 1996). Our results indicate that hatching 

success was probably related to the relative proportions of some fatty acids and/or amino acids.

Hatching success has been associated with egg fatty acid composition in wild fish populations 

such as cod and walleye (Czesny and Dabrowski, 1998; Moodie et al., 1989 Salze et al., 2005), 

although such a relationship is not always present.

Polar fatty acid profiles did not vary with the spawning period and did not appear to 

influence hatching success. Fatty acid profiles at 30 DD post fertilization revealed very high 

levels of DHA in the polar fraction. Similar high DHA levels in the polar fraction of walleye eggs 

were also found by Czesny and Dabrowski (1998) and Moodie et al. (1989), suggesting its 

selective retention during embryogenesis, as well as by Abi-Ayad et al. (2000) and Henrotte et al. 

(2010) in Eurasian perch eggs. A high proportion of DHA in the polar fraction demonstrates the 
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importance of this fatty acid. It is likely related to special function since this compound is 

relatively rare at lower trophic levels in freshwater environments (Henderson and Tocher, 1987; 

Wiegand, 1996). Czesny and Dabrowski (1998) showed that the polar fraction of walleye egg 

lipids in particular the essential fatty acids DHA, EPA, and AA is noticeably less affected by 

the broodstock nutritional status. We found stable proportions of AA + EPA compared with 

proportions of either fatty acid individually, which is of interest because AA and EPA are 

biochemical precursors in the eicosanoid synthesis pathways ( -Palacios et al., 2011)

and both compete for enzymes in the cyclo-oxygenase and lipoxygenase pathways, with AA 

being the preferred substrate ( -Palacios et al., 2011). This could explain the high 

variability of the AA concentration in the lipid polar fraction.

We suggest that the higher levels of MUFA and PUFA in the neutral fraction for the first 

three spawning periods could be good indicators of offspring quality. Johnston et al. (2007) 

showed that the PUFA composition of neutral lipids in walleye eggs had only a minor influence 

on hatching success, suggesting that the relative abundance of PUFA in this fraction could be 

more important to offspring viability in the post-hatch period. In a marine species, the common 

dentex, Samaee et al. (2009) showed that high quality egg batches also had higher concentrations

of total PUFA and some MUFA. Other studies showed that MUFA in the neutral fraction are 

preferentially utilized during embryonic development in various fish species (Fraser et al., 1988; 

; ; Tocher et al., 1985; Wiegand, 1996). 

Indeed, in starved Eurasian perch larvae, MUFA contributed 37% of the energy from total fatty 

acid catabolism (Abi-Ayad et al., 2000).

Total lipids, especially TAG, decreased from 30 to 200 DD post fertilization. Such an 

observation suggests that TAG were used as a primary endogenous energy reserve prior to 

exogenous larval feeding (Falk-Petersen et al., 1989; Mejri et al., 2012; Samaee et al., 2009;
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Sewall and Rodgveller, 2008). Variations in the polar fraction during embryogenesis more 

precisely, the decrease of DHA suggest that polar lipids have both structural and energetic 

roles. DHA assures membrane fluidity, which is required for rapid cell division and growth 

during embryogenesis (Wiegand et al., 2004).

Environmental factors such as temperature affect the lipid composition of fish tissues 

(Olsen et al., 1999). Indeed, a decrease in water temperature has been associated with an increase 

in PUFA content in carp tissues (Kayama et al., 1986) or with an increase in DHA content in 

Atlantic salmon (Olsen and Skjervold, 1995); these effects are likely related to the positive 

correlation between the degree of unsaturation of fatty acids and membrane fluidity. In our study, 

the decrease in DHA could be an adaptive mechanism to reduce membrane fluidity with the 

increase in temperature occurring during ED. In contrast, Abi-Ayad et al. (2004) working on 

pikeperch larvae, in a stable temperature environment, did not notice specific retention of DHA. 

In contrast to lipids, relatively little research has been conducted on the role of egg protein 

composition during ontogeny on subsequent offspring performance. Amino acids are important 

constituents of fish eggs since they are required by the embryo for protein synthesis and are a 

major energy source prior to hatching ( ). Moreover, amino acids are 

required to synthesize the apolipoproteins required for absorption of the oil droplet (Mani-Ponset 

et al., 1996; Poupard et al., 2000).

Free amino acids are more important in pelagic marine eggs than in freshwater and 

benthic marine eggs, where they may represent less than 5% of egg constituents. For example, in 

common dentex, a marine pelagophil teleost, FAA account for more than 20% of DM in eggs and 

play an important role during embryogenesis (Samaee et al., 2010). In freshwater eggs, an 

organic osmolyte pool would be disadvantageous for embryonic osmoregulation in a 

hypoosmotic environment (Finn and Fyhn, 2010). The significant decrease of FAA (ASP and 
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CTH) during ED may suggest that these components could be used as energy sources. While 

EAA are preferentially used for growth in fish larvae, NEAA are used as energy substrates 

(Abboudi et al., 2006). 

Concerning total amino acids, two interesting features were noticed: 1) lysine and serine 

were three times higher in P2 eggs (intermediate spawning period) than in those from the other 

spawning periods; 2) these two amino acids explained most of the variations occurring during 

ED, and they decreased significantly from 30 to 200 DD post fertilization. There is little 

information about the exact roles of these amino acids at this life stage, but it is known that 

lysine, an EAA in fish, plays an important role in the formation of collagen, which is important in 

early life stages for development of the skeletal system and skin (Finn and Fyhn, 2010; Ohkubo 

et al., 2008). Moreover, L-carnitine, which is synthesized from LYS and MET, is required for the 

-oxidation (Brown et al., 2005; 

Harpaz, 2005). In their review, noted that in fish eggs characterized by oil 

globules (e.g., Sander vitreus), 50% of the energy is derived from amino acids (predominately 

FAA, but with some contribution from proteins) and 50% from neutral lipids such as TAG and 

wax and/or steryl esters. Furthermore, there may be an interrelationship between these potential 

energy sources ( ; Rosa et al., 2003). Our findings suggest that there may be 

a concomitant use of free NEAA, proteins, and lipids as energy sources during walleye 

embryogenesis. Other limiting constituents may include the relative or absolute amounts of 

vitamins, macrominerals, and maternally transferred hormones, such as thyroid hormones 

(Brooks et al., 1997), all of which have been linked to both embryonic and post-hatch survival in 

fish (Hey et al., 1996).  

5. Conclusion
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This study shows that the timing of ovulation during the spawning period could be a 

strong determinant in walleye hatching success and early survival. During embryogenesis, energy 

is derived primarily from TAG, proteins, and non-essential free amino acids, with a possible

concomitant use of DHA to reduce membrane fluidity. Even though proteins represent less than 

1% of the dry mass, the depletion of LYS and SER in TAA during embryogenesis in the 

intermediate spawning groups suggests a critical role during walleye ontogeny. Since walleye 

culture is still not well developed, the data presented in this study bring useful information 

concerning larval protein and lipid requirements that could be used to formulate well-balanced 

broodstock diets.
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Figures Legends 

Changes in total lipid content and lipid class composition (KET: ketones; TAG: 

triacylglycerols; FFA: free fatty acids; ST: sterols; AMPL: acetone-mobile polar lipids; PL:

phospholipids) in walleye (Sander vitreus) eggs at 30 degree-

Different letters indicate statistically significant differences among spawning periods. Spawning 

periods were defined as the number of days following the first occurrence of ovulation: early (P1, 

3 d), intermediate (P2, 5 d; P3, 8 d), and late (P4, 11 d).

Variations in the proportions of selected fatty acid classes among eggs from different 

spawning periods at 30 degree-days post fertilization (shaded bars: neutral lipid fraction; solid 

bars polar lipid fraction). Values represent jackknifed means + one standard error. Results of two-

tailed t-tests are indicated (ns: not significant; *: p < 0.05). 

Changes in the major lipid class composition (KET: ketones, TAG: triacylglycerols, PL:

phospholipids) in walleye (Sander vitreus) eggs and larvae at 30, 60, 155, and 200 degree-days 

Table 1. Reproductive characteristics (mean SD) of female walleye and their eggs and larvae 

collected throughout the 2012-spawning season from a broodstock in captivity. Means in a row 

with different letters are significantly different (ANOVA: p < 0.05). Spawning periods within the 
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reproductive cycle were defined according to the number of days following the first occurrence 

of ovulation: early spawning: P1, 3 d; intermediate spawning: P2, 5 d and P3, 8 d; and late 

spawning: P4, 11 d. 

Table 2. Fatty acid composition of neutral and polar lipids of walleye eggs (% weight of total 

-days post fertilization at different spawning periods 

(P1, P2, P3, and P4). Spawning periods within the reproductive cycle were defined according to 

the number of days following the first natural occurrence of ovulation: early spawning: P1, 3 d; 

intermediate spawning: P2, 5 d, and P3, 8 d; and late spawning: P4, 11 d. Different letters indicate 

significant differences among spawning periods for the neutral fraction.

Table 3.

degree-days post fertilization at different spawning periods (P1, P2, P3, and P4). Spawning periods 

within the reproductive cycle were defined according to the number of days following the first 

natural occurrence of ovulation: early spawning: P1, 3 d; intermediate spawning: P2, 5 d, and P3, 8 

d; and late spawning: P4, 11 d. 



Table 1. Reproductive characteristics (mean SD) of female walleye and their eggs and larvae collected 

throughout the 2012 spawning season from a broodstock in captivity. Means in a row with different letters 

are significantly different (ANOVA: p < 0.05). Spawning periods within the reproductive cycle were defined 

according to the number of days following the first occurrence of ovulation: early spawning: P1, 3 d;

intermediate spawning: P2, 5 d and P3, 8 d; and late spawning: P4, 11 d. 

Reproductive cycle
P1 P2 P3 P4

Females

N 7 8 48 35

Length (mm)

Weight (g)

Eggs and Larvae

Egg diameter (mm) 0.05b a a c

Oil droplet diameter (mm) 0.07a 0.07b 0.04a ab

Larval length on hatch (mm) b b a -

Fertilization success (%) a a ab b

Intact oil droplet (%) a a ab b

Survival success (%) a a ab b

Hatch success (%) b a b c

Table(s)



Table 2. Fatty acid composition of neutral and polar lipids of walleye eggs (% weight of total neutral and 

-days post fertilization at different spawning periods (P1, P2, P3, and P4). 

Spawning periods within the reproductive cycle were defined according to the number of days following the 

first natural occurrence of ovulation: early spawning: P1, 3 d; intermediate spawning: P2, 5 d, and P3, 8 d; and 

late spawning: P4, 11 d. Different letters indicate significant differences among spawning periods for the 

neutral fraction

Fatty acids Neutral fraction Polar fraction
Spawning periods

P1 P2 P3 P4 P1 P2 P3 P4

1. .0 2. .3 2. .0 2. .0 1. .1 0. .3 1. .0 0. .4
8. .1 9. .2 8. .1 9. .0 18. .1 18. .2 17. 0.5 19. .7
0. .0 0. .0 0. .0 1. .0 4. .1 5. .9 5. .1 5. .6
0. .0 0. .0 0. .0 0. .0 0. .1 0. .0 0. .0 1. .0
12. .1 13. .3 11. .9 13. .4 26. .8 26. .8 25. .3 28. .0
15. .1 11. .1 14. .5 17. .2 2. .1 2. .3 2. .0 3. .7
31. .0 32. .5 30. .8 18. .7 2. .1 3. .5 3. .0 8. .6
1. .0 1. .0 1. .0 1. .1 1. .0 2. .5 2. .1 2. .0

49. .1a 47. .0ab 48. .7a 39. .5b 8. .1 9. .4 9. .3 16. .2
15. .8 17. .6 16. .0 10. .2 4. .1 5. .2 5. .2 5. .4
0. .0 0. .0 0. .0 0. .0 0. .0 0. .0 0. .0 0. .0
0. .0 0. .1 0. .0 0. .0 3. .0 3. .1 3. .2 2. .4
0. .0 0. .0 0. .0 0. .0 0. .0 0. .0 0.1 .0 0. .0
2. .0 2. .6 2. .0 3. .1 0. .0 0. .0 0. .0 0.00
1. .0 0. .3 0. .0 1. .0 5. .0 4. .1 5. .4 2. .5
3. .1 3. .3 3. .0 4. .1 6. .2 6.7 .5 7. .2 6. .0

11. .0 11. .0 11. .0 10. .5 45. .9 44.6 .8 44. .1 40. .9
37. .4a 38. .8a 38. .7a 32. .4b 67. .7 66.5 .5 68. .6 58. .2
19. .6 19. 4.7 20. .8 23. .4 58. .6 56.7 .4 58. .5 49. .3
17. .9 19. .5 18. .2 21. .1 9. .5 9. .9 9. .4 9. .0

94. .0 53. .7 61. .3 48. .3 22. .9 14. .6 15.0 .6 6. .8

Includes 15:0, 17:0, and 20:0; includes 15:1, 17:1, 14:1 n-5, 22:1 n-9, and 24:1; includes 18:4 n-3





-days 

post fertilization at different spawning periods (P1, P2, P3, and P4). Spawning periods within the reproductive 

cycle were defined according to the number of days following the first natural occurrence of ovulation: early 

spawning: P1, 3 d; intermediate spawning: P2, 5 d, and P3, 8 d; and late spawning: P4, 11 d.

Amino acids Free amino acids (FAA) Total amino acids (TAA)

Spawning periods

P1 P2 P3 P4 P1 P2 P3 P4
Essential amino acids

Valine. VAL 3.5 3. .2 3. .2 3. .4 9.3 10. .3 8. .5 8. .7
Leucine. LEU 3.6 4. .7 4. .3 2. .9 11.1 10. .8 11. .4 11. .0
Isoleucine. ILE 2.4 2. .5 2. .2 1. .7 6.8 7. .9 6. .4 6. .4
Threonine. THR 0.0 0.0 0. .5 0. .8 3.6 5. .6 3. .3 4. .1
Histidine. HIS 2.1 2. .4 2. 0.1 1. .2 0.7 0.0 1. .2 2. .2
Methionine. MET 2.2 3. .3 2. .3 0. .5 2.6 2. .1 2. .2 2. .5
Phenylalanine. PHE 1.9 2. .3 1. .2 1. .7 5.9 4. .2 4. .3 5. .4
Lysine. LYS 3.9 5. .5 4. .5 2.6 .1 5.0 15.6 .2 7. .2 5. .8
Tryptophan. TRP (TRY) 0.5 1. .5 0. .0 0. .6 ND ND ND ND
Non- essential amino acids

Alanine. ALA 6.4 6. .0 4. .4 2. .5 15.6 17. .5 15. .2 13. .2
Sarcosine. SAR 1.6 1. .7 1. .2 0.0 0.1 0. .0 0. .0 0. .0
Glycine. GLY 2.0 2. .2 3. .2 2. .4 6.8 6. .0 6. .2 6. .2
Serine. SER 0.0 0.0 0.0 0. .6 0.0 6. .5 1. .6 3. .6
Proline. PRO 1.4 1. .2 1. .1 1. .9 5.3 5. 0.6 4. .0 5. .3
Thioproline. TPR 0.9 1. .3 1. .3 0. .2 ND ND ND ND
Aspartic acid. ASP 33.6 24. .1 30. .3 39. .8 8.1 10. .4 7. .5 7. .1
Hydroxyproline. HYP 0.1 0. .0 0. .6 0. .2 0.1 0. .0 0. 0.0 0. .0
Glutamic acid. GLU 7.8 11. .6 8. .7 8. .1 13.8 10. .2 13. .6 11. .6
Glutamine. GLN 4.4 ND ND ND ND
Tyrosine. TYR 2.6 2.75
Cystathionine. CTH 15.3 ND ND ND ND
Cystine. C-C 0.1 ND ND ND ND

20.5 45.3
79.4 76.5 54.6
49.7 23.7
6.1 5.8
8.2 9.4
0.2 0.8

Total (mg.g-1) 0.7 8.0

ND: not detected amino acids 
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