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areas (18-50% saturation). The impact of a one-week exposure to different
levels of dissolved oxygen (100, 40, 30, and 20% saturation) at 5°C was
evaluated in adult shrimp and juvenile Greenland halibut; the effect of
acute exposure to severe hypoxia was also assessed in Greenland halibut.
The activities of key enzymes involved in aerocbic (citrate synthase [CS],
cytochrome ¢ oxidase [COX]) and anaerobic (pyruvate kinase [PK],
phosphoenolpyruvate carboxykinase [PEPCK], lactate dehydrogenase [LDH])
pathways, and of enzymes involved in antioxidant defence (superoxide
dismutase, glutathione peroxidase [GPx], and catalase [CAT]) were
measured. gPCR analysis was also performed in Greenland halibut. In
northern shrimp exposed to chronic hypoxia, muscle CS activity decreased
by ~40%. Muscle LDH activity was significantly reduced, with a more
intense reduction in males. At the same time, hepatopancreas GPx activity
increased under hypoxia, and this response was stronger in males.
Overall, the results suggest the presence of a threshold above 40%
saturation and higher hypoxia tolerance in males. In juvenile Greenland
halibut, exposure to chronic hypoxia elicited a more wide-ranging
enzymatic response than did acute exposure to severe hypoxia. Under
chronic hypoxia, CS activity decreased and PK and LDH activity were
respectively 46% and 57% lower than in normoxia. There were no major
changes in the activity of antioxidant enzymes, but activity in normoxia
was high compared to other fish species. Interestingly, the relative
expression of genes coding for muscle COX (severe hypoxia), liver PEPCK
(chronic), and CAT (chronic) activities were triggered in hypoxia. The
absence of a corresponding change in enzyme activity makes the
interpretation of these results difficult, but clearly there was a
response at the transcription level. Overall, the results indicate that
these two species are particularly well adapted to withstand severe
hypoxia.
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Highligths

e Northern shrimp and Greenland halibut are particularly adapted to withstand severe
hypoxia

¢ In these two species, readjustments of metabolic capacity occur at a DO level above
40% sat.

e Metabolic response is not adjusted to the intensity of hypoxia

¢ In northern shrimp, females could be less tolerant to chronic hypoxia than males
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Abstract

In the Estuary and Gulf of St. Lawrence, northern shrimp (Pandalus borealis) and Greenland
halibut (Reinhardtius hippoglossoides) are usually found at depths >150 m and thus
frequently inhabit hypoxic areas (18-50% saturation). The impact of a one-week exposure to
different levels of dissolved oxygen (100, 40, 30, and 20% saturation) at 5°C was evaluated
in adult shrimp and juvenile Greenland halibut; the effect of acute exposure to severe hypoxia
was also assessed in Greenland halibut. The activities of key enzymes involved in acrobic
(citrate synthase [CS], cytochrome ¢ oxidase [COX]) and anacrobic (pyruvate kinase [PK],
phosphoenolpyruvate carboxykinase [PEPCK], lactate dehydrogenase [LDH]) pathways, and
of enzymes involved in antioxidant defence (superoxide dismutase, glutathione peroxidase
[GPx], and catalase [CAT]) were measured. qPCR analysis was also performed in Greenland
halibut. In northern shrimp exposed to chronic hypoxia, muscle CS activity decreased by
~40%. Muscle LDH activity was significantly reduced, with a more intense reduction in
males. At the same time, hepatopancreas GPx activity increased under hypoxia, and this
response was stronger in males. Overall, the results suggest the presence of a threshold above
40% saturation and higher hypoxia tolerance in males. In juvenile Greenland halibut,
exposure to chronic hypoxia elicited a more wide-ranging enzymatic response than did acute
exposure to severe hypoxia. Under chronic hypoxia, CS activity decreased and PK and LDH
activity were respectively 46% and 57% lower than in normoxia. There were no major
changes in the activity of antioxidant enzymes, but activity in normoxia was high compared
to other fish species. Interestingly, the relative expression of genes coding for muscle COX
(severe hypoxia), liver PEPCK (chronic), and CAT (chronic) activities were triggered in
hypoxia. The absence of a corresponding change in enzyme activity makes the interpretation

of these results difficult, but clearly there was a response at the transcription level. Overall,
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the results indicate that these two species are particularly well adapted to withstand severe

hypoxia.
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1. Introduction

Northern shrimp (Pandalus borealis) and Greenland halibut (Reinhardtius hippoglossoides)
support the two most important fisheries in the Estuary and Gulf of the St. Lawrence (EGSL).
In terms of value of the Canadian Atlantic coast commercial landings, northern shrimp
accounted for 20% of shellfish catches and Greenland halibut for 34% of groundfish catches
in 2013 (DFO, 2013). Northern shrimp is a protandric hermaphrodite that reproduces first as
a male then changes sex and reproduces as a female for the rest of its life (Bergstrom, 2000;
Shumway et al., 1985). This species is particularly abundant at 150-300 m in the EGSL
waters (Chabot et al., 2007; Savard, 2012; Simard and Savard, 1990), which are characterized
by chronic low values of dissolved oxygen (DO) (18-50% air saturation [sat. hereafter])
(Gilbert et al., 2005). Recently, Ait Youcef et al. (2013) showed that the St. Lawrence
Estuary is a major nursery area for the EGSL population of Greenland halibut and that

habitats selected by this species are characterized by low DO levels.

Northern shrimp and Greenland halibut were both shown to be very tolerant to hypoxia. The
critical oxygen thresholds (O2it) were previously determined to be 15.5% and 9% sat.,
respectively, for female and male northern shrimp at 5°C (Dupont-Prinet et al., 2013a) and
15% sat. for juvenile Greenland halibut maintained at the same temperature (Dupont-Prinet et
al., 2013b). These values are close to the lowest DO levels encountered in the St. Lawrence
Estuary, where oxygen concentrations in water deeper than 150 m have been stable at around
18-25% sat. since the mid-1980s (Galbraith et al., 2015; Gilbert et al., 2005, 2007). Even
though the Oz was low for these two species, living at the edge of their hypoxia tolerance
could imply metabolic costs. Indeed, DO level has been found to directly impact metabolism
(Brett, 1979; Fry, 1971) and, consequently, growth, activity level, and the ability to process

meals (e.g., Bell etal., 2003; Brandt et al., 2009; Chabot and Dutil,1999; Claireaux and
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Chabot 2016; Pichavant et al., 2002; Reiber and McMahon, 1998; Wilhelm Filho et al.,
2005). By reducing the acrobic scope (AS; the difference between maximal metabolic rate
and standard metabolic rate), hypoxia may induce a shift from aerobic to anaerobic
metabolism and modify the activity of regulatory enzymes, as previously shown in numerous
fish and invertebrate species. In Paralvinella grasslei, hypoxia induced a ~60% decrease in
citrate synthase (CS) activities in the gills and gut and a 64% (gut) to 89% (gills) decrease in
the activity of cytochrome ¢ oxidase (COX); these two enzymes are used as indices of
aerobic metabolic capacity (Marie et al., 2006). Similarly, a ~30% decrease in COX activity
in Cyprinus carpio muscle was induced after a 6 h exposure to hypoxia (0.5 mg O2 L'l) (Zhou
etal., 2000). In Neohelice granulata, anoxia induced a ~50% to 60% increase in pyruvate
kinase (PK) activity, indicating an increase in glycolytic flow (Marqueze et al., 2011), while
hypoxia caused an increase of ~500% in lactate dehydrogenase (LDH; involved in
fermentation) activity in Lithodes santolla gills (Paschke et al., 2010) and an 80% increase in
gills and a 250% increase in muscle of Litopenaeus vannamei (Sofianez-Organis et al., 2012).
The aerobic pathway and hypoxia both stimulate the production of reactive oxygen specics
(ROS), which can damage cells and cause oxidative stress (Chandel et al., 2000; Cooper et
al., 2002; Wilhelm Filho et al., 2005). In cells, the antioxidant defence system prevents
oxidative stress by removing ROS. Superoxide dismutase (SOD), glutathione peroxidase
(GPx), and catalase (CAT) are key enzymes involved in these mechanisms. For instance,
hypoxia induced a ~68% increase in SOD in Lifopenaeus vannamei muscle (Parilla-Taylor
and Zenteno-Savin, 2011) and a ~55-75% increase in gills and a 300% increase in muscle of

Leiostomus xanthurus (Cooper et al., 2002).

The aim of this study was to evaluate how exposure to a range of low oxygen levels, from

moderate hypoxia to levels close to O2gi, may affect the regulation of metabolism and the
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enzymes involved in antioxidant defence in these two species. Both shrimp and juvenile
Greenland halibut were chronically exposed to DO levels corresponding to 40, 30, and 20%
sat. Juvenile Greenland halibut were also exposed for a short period (~ 1 h) to acute hypoxia
(DO levels slightly below Oacrit). Following hypoxia exposure, the activities of key enzymes
involved in aerobic (CS, COX) and anacrobic (PK, PEPCK [phosphoenolpyruvate
carboxykinase|, LDH) metabolism and for enzymes involved in antioxidant response (SOD,
GPx, CAT) were surveyed. The expressions of genes coding for these enzymes were also

analyzed in juvenile Greenland halibut.

2. Material and Methods

2.1. Experimental animals

Northern shrimp were caught in the St. Lawrence estuary off Godbout (49° 19' N, 67° 36' W)
in summer 2009 at about 140 m of depth. Juvenile Greenland halibut were caught by trawling
during Fisheries and Oceans Canada (DFO) fishing operations in the St. Lawrence Estuary.
Animals were transferred to rearing tanks at DFO’s Maurice Lamontagne Institute (48° 38' N,
68° 9' W) and maintained under natural photoperiod conditions for several months before
being used in experiments. Natural seawater was supplied (salinity ~28; DO ~100% sat,) and
water temperature was maintained at 5°C. This temperature is representative of temperature
conditions encountered by northern shrimp and Greenland halibut in the deep channels of the
EGSL. Shrimp were fed in excess three times a week with a diet consisting of equal
proportions of frozen Atlantic krill (Meganyctiphanes norvegica and Thisanoessa sp.),
capelin (Mallotus villosus), and shrimp (Pandalus spp.) whereas halibut were fed three times
a week to satiation with capelin and shrimp. All animals had fasted for three days prior to any

experiment. Experimental methods complied with regulations of the Canadian Council on
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Animal Care and were approved by the Maurice Lamontagne Institute and the Université du

Québec a Rimouski animal care committees.

2.2. Experimental design

For chronic exposure, the general experimental schema is presented in Fig. 1. The
experimental set-up consisted of three independent 800 L flow-through circular tanks. Each
tank was supplied with a constant flow of seawater from a gas exchange column (flow rate:
10 L min™; temperature and salinity: 5.2 £ 0.2°C and 27.4 £ 0.5 for shrimp, 5.4 £ 0.3°C and
25.3 £ 0.7 for halibut). A mixture of air and nitrogen gas was injected into the column to
control DO. A computer connected to an O electrode (Oxyguard, model 420, Oxyguard
International, Denmark) monitored and regulated O, saturation in each tank every 5 min by
adjusting the proportion of nitrogen gas injected into each column. In shrimp, 10 females
(cephalothorax length [CL] 24.8 £ 1.3 mm) and 10 males (CL 19.7 £ 2.1 mm) were held for
one week at three different levels of dissolved oxygen (39.7+1.5,30+ 1.4, and 20.2 + 1.3%
sat.). For Greenland halibut, the experiment was done on juveniles (sex determination was
not possible), and each tank contained 10 juveniles (fork length 24.7 = 2.8 cm). DO levels
were 41.0£0.1,29.4+ 0.1, and 18.6 = 0.1% sat. Hereafter, these DO levels are called 40, 30,
and 20% sat. Animals were not fed during the experiment to avoid excessive energy demands
related to digestion in hypoxia or differences in appetite that could have made comparisons
among treatments difficult. After one week of exposure to the different DO levels, shrimp
were anaesthetized on ice, muscle and hepatopancreas were removed and sectioned, then
sections were frozen in liquid nitrogen and stored at -80°C until enzymatic analysis.
Greenland halibut were anaesthetized with metomidate hydrochloride (AquacalmTM;

5 mg L), and white muscle and liver were sampled, frozen in liquid nitrogen, and stored at
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-80°C until further analyses. Ten shrimp of each sex and 10 fish sampled from the rearing

tank (100% sat.) and similarly processed were used as the control group.

The protocol for the Ozt experiment (Greenland halibut only) is described in Dupont-Prinet
et al. (2013b); the animals tested in this previous study were sampled here for enzymatic
analysis (see Fig. 1 for an outline). After ~ 1 h below Oqit (acute hypoxia), fish were
removed from the respirometer, anaesthetized with tricaine methane sulfonate (MS-222;
0.18 g L'l), and immediately dissected. White muscle (from the middle of the fish, on its left
side) and liver tissues were sampled, separated into aliquots, immediately frozen in liquid

nitrogen, and stored at -80°C until further analysis.

2.3. Enzyme activities

Tissue samples were weighed (wet mass) and then homogenized in five volumes of
phosphate buffered saline solution (PBS, pH 7.5) containing 0.1% Triton X-100 and 1 mM
methylene diamine tetra-acetic acid (EDTA). Samples were homogenized on ice with a
sonicator (XL2020, Heat Systems Inc.) and then centrifuged (1500 G) for 15 min at 4°C. The
supernatant was recovered and divided into aliquots for enzyme activity determinations. The
activities of CS, COX, LDH, and PK were analyzed in muscle tissue which is involved in
locomotor activity and represents the largest proportion of body mass, while the activities of
GPx, SOD, CAT, and PEPCK were measured in hepatopancreas and liver, tissues that are
strongly involved in the antioxidant defence. The indices of acrobic metabolic capacity (CS
and COX) were measured according to Childress and Somero (1979) as modified by Bailey
et al. (2005) for CS and according to Marie et al. (2006) adapted from Hand and Somero
(1983) for COX. The indices of anacrobic metabolic capacity (PK, PEPCK, and LDH) were

measured according to Childress and Somero (1979) as modified by Bailey et al. (2005) for
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PK and LDH, and Petrescu et al. (1979) as adapted by Jamieson ¢t al. (1999) for PEPCK.
Enzymes related to the capacity to respond to oxidative stress (SOD, GPx, and CAT) were
measured according to Flohé and Otting (1985) as modified by Marie et al. (2006) for SOD,
Paglia and Valentine (1967) for GPx, and using the Invitrogen™ Amplex® Red Catalase Kit
(Burlington, ON, Canada) for CAT. For all enzymatic assays, substrate and cofactor
concentrations yielding optimal reaction velocities were used with homogenates diluted to
obtain linear reaction slopes for a minimum of five minutes. In muscle homogenates of
shrimp, the dilution factor was 25 for CS and COX analyses, 100 for LDH, and 500 for PK.
In hepatopancreas homogenates, the dilution factor was 50 for GPx and 100 for SOD. In
muscle homogenates of Greenland halibut, the dilution factor was 25 for CS and 500 for
LDH and PK. In liver homogenates, the dilution factor was 5 for GPx and PEPCK, and 25 for
SOD. No enzyme activity could be measured (below the detection limit) for PEPCK and
CAT in shrimp hepatopancreas, for COX in Greenland halibut white muscle, and for CAT in
Greenland halibut liver. Total protein concentrations were determined in muscle and
hepatopancreas using the Lowry method modified by Peterson (1977). All chemicals were
obtained from Sigma-Aldrich®. Total and specific enzymatic activities were measured and
expressed as U (umoles min™) g™ of wet tissue and U mg™ of protein, respectively. All
analyses were performed in duplicate using standard methods adapted for a microplate

reader. If the two measurements were more than 10% apart, the analysis was repeated.

2.4. Gene expression

Given that sequences for most of the genes studied are not known in crustaceans, gene
expression was measured in Greenland halibut only. The relative expressions of eight genes
were measured in white muscle (COX, CS, LDH, and PK) or liver (PEPCK, CAT, GPx, and

SOD) samples (10 per treatment). Genes encoding for the /8S ribosomal unit and GAPDH
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were used as reference genes. Total RNA was extracted from 25 mg of liver from each
Greenland halibut using the RNeasy Plus Mini Kit (Qiagen Inc., ON, Canada) or from 25 mg
of white muscle using the RNeasy Fibrous Tissue Mini Kit (Qiagen Inc., ON, Canada). RNA
integrity and quantity were determined using a NanoVue Plus spectrophotometer (GE
Healthcare, QC, Canada) and a 2% agarose gel with ethidium bromide (500 ug mL™). The
extracted RNA was immediately transformed to cDNA. Reverse transcription was performed
in two steps on 1 pg of total RNA in duplicate using the Quantitect Reverse Transcription Kit
(Qiagen Inc., ON, Canada). The integrity and quantity of cDNA were verified using a
NanoVue Plus spectrophotometer (GE Healthcare, QC, Canada). Duplicate cDNAs were
pooled for each sample and real-time PCR was performed using the AmpliTaq Gold® 360
Master Mix Kit (Applied Biosystems, Foster City, CA). Complementary DNA samples were

separated into aliquots and kept frozen at -20°C until further analysis.

The mRNA sequences for the reference (GADPH and /85) and target (COX, CS, LDH, PK,
PEPCK, CAT, GPx, and SOD) genes were not available for R hippoglossoides in the
GeneBank databases. Therefore, oligonucleotide primers were designed from the known
sequences available for other fish species using the NCBI resource Primer-Blast to obtain
PCR products ranging from 90 to 150 pb. The following sequences were used: GAPDH from
Paralichthys olivaceus |GenBank: AB029337]; /85 from P. olivaceus |GenBank:
EF126037]; CS from Gadus morhua |GenBank: DQ059757.1]|; COX from
Pseudopleuronectes americanus |[GenBank: EU752157.1]; PK from Scophthalmus maximus
[GenBank: AF467775|; PEPCK from Platichthys stellatus [GenBank: JF414418]; LDH
from Fundulus heteroclitus |GenBank: L.43525.1]; SOD from P. olivaceus [GenBank:
EF681883.1]; CAT from P. olivaceus |GenBank: GQ229479.1|; and GPx from P. olivaceus

[GenBank: EU095498.1]|. Primers were synthesized using Integrated DNA Technologies™

10
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(Coralville, IA, USA). On test samples of muscle and liver tissue, each amplicon obtained
with the different primers was amplified by polymerase chain reaction (PCR) using the
AmpliTaq Gold® 360 Master Mix Kit (Applied Biosystems, Foster City, CA). Integrity of
PCR products was verified on 2% agarose gel with ethidium bromide (500 ug mL™).
Amplified products of expected sizes were purified in a column using the QIAquick PCR
Purification Kit (Qiagen Inc., ON, Canada). The ligation and transformation of amplicons
were performed respectively with the TOPO TA Cloning Kit for Sequencing (Invitrogen Inc.,
ON, Canada) and One Shot Chemically competent Escherichia coli (Invitrogen Inc., ON,
Canada). Bacterial cDNA was extracted using the EZNA Plasmid Mini Kit (Omega Bio-Tek
Inc., Norcross, GA). Nucleotides were isolated with the Ultra-Step Dye Terminator Removal
Kit (Eazy Nucleic Isolation, Ezna, Omega Bio-Teck, Norcross, GA) and sequenced in
forward and reverse senses with the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems, Foster City, CA). Alignments between the sequence obtained and the sequence
used for primer design were performed for each gene; the similarity percentages obtained
were 97% for GAPDH, 99% for 188, 93% for CS, 90% for COX, 90% for PK, 95% for
PEPCK, 94% for LDH, 92% for SOD, 69% for CAT, and 92% for GPx. From the sequences
obtained, TagMan probes and primers were designed with Primer Express software 3.0
(Applied Biosystems, Foster City, CA). Sequences for these primers and probes are presented

in Table 1.

Real-time PCR analyses for cach gene were performed in triplicate in a total volume of 10 puL
containing 50 ng of cDNA, 18 uM of each primer (reverse and forward), 5 uM of TagMan
probe, and 5 pL. of TagMan Fast Universal PCR Master Mix (2x) (Applied Biosystems,
Foster City, CA). The thermal cycling of real-time PCR (7900HT; Applied Biosystems,

Foster City, CA) was initiated with an incubation at 50°C for 2 min then at 95°C for 20 sec.

11
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Forty PCR cycles were then performed, each of which consisted of heating at 95°C for 1 sec
and at 60°C for 20 sec. Cycle threshold (Ct) values were automatically calculated on the log
curve for each gene with Expression Suite 1.0 software (Applied Biosystems, Foster City,
CA). Stabilities of reference gene (/8S and GAPDH) expressions were tested by one-way
ANOVA (F[336=0.32, P=0.31 and F3;36=1.82, P=0.16, respectively, in muscle; F336=0.61,
P=0.61 and F336=0.23, P=0.87 in liver). The comparative Ct method (AACt method) (Livak
and Schmittgen, 2001) was used to determine which gene transcripts were up- or down-
regulated according to DO level (100% sat. was used as the control) as 2'AACt, where AACt is
the ACt for the unknown minus ACt for the calibrator sample (100% sat.). Ct is the difference
between the Ct for the target gene and the mean of reference genes (18S and GAPDH). For
all calculations of relative gene expression, a DO level of 100% sat. was considered as the

control group.

2.5. Statistical analysis

Normality and homogeneity of variances were verified by Kolmogorov-Smirnov and Levene
tests. Data on COX, CS, and LDH enzyme activities in female shrimp muscle, on COX
enzyme activity in male shrimp muscle, and on CS enzyme activity in Greenland halibut
muscle were log transformed to avoid heteroscedasticity. Student's t-tests were used to
compare control and hypoxia responses between controls and juvenile Greenland halibut
exposed to acute hypoxia. One-way ANOVAs were used to test the effects of DO level on
enzyme activities and on gene expressions in shrimp and juvenile Greenland halibut exposed
to chronic hypoxia. For shrimp, data from females and males were analyzed separately
because of the size difference between the two sexes and the absence of an allometric
coefficient. When significant treatment effects were found, a posteriori Tukey tests were used

to compare means (0=0.05). Pearson's correlations between total and specific enzymatic
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activity responses were verified for all enzymes. Statistical analyses were performed with

Statistica software (Statsoft v.6.1, Tulsa, OK, USA).
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3. Results

Specific and total enzyme activitics measured in shrimp of both sexes and juvenile Greenland
halibut exposed to chronic hypoxia at 5°C were significantly correlated (R between 0.73 and
0.98 depending on the enzyme, P < 0.001). Similar significant correlations were also obtained
for juvenile Greenland halibut exposed to acute hypoxia (R between 0.68 and 0.98,

P <0.001). Total activity is presented here because it is best suited to be related to
transcription activity. However, specific activities can be found in Supplemental Tables 1, 2,

and 3.

3.1. Northern shrimp — chronic hypoxia

In muscle tissue, COX activity remained unchanged under chronic exposure to hypoxia but
CS activity significantly decreased by ~40% in both sexes; these responses were similar at all
three hypoxia levels (Table 2). There was a significant 67% decrease in LDH activity
between control males and those exposed to 40, 30, and 20% sat. (Table 2). In females, LDH
activity was more suppressed at 20% sat. compared to normoxia, with intermediate activities
at 30 and 40% sat. (Table 2). PK activity was not affected by chronic exposure to hypoxia in

either sex (Table 2).

Chronic exposure to hypoxia increased GPx activity in the hepatopancreas of males by 480%
with no significant difference among the three levels of hypoxia (Table 2). The SOD
response pattern was unclear, with the lowest activity being recorded at 30% sat. and the
highest at 40 and 20% sat. (Table 2). In females, the GPx activity increased by 148% at 20%
sat. compared to normoxia, and intermediate activities were observed at 40 and 30% sat.
(Table 2). In contrast to males, SOD activity remained unchanged. PEPCK and CAT

activities were not detectable in either sex.
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3.2. Greenland halibut — chronic hypoxia

No COX activity could be detected in white muscle even though the COX gene was
expressed (Fig. 2A). There was a significant effect of chronic hypoxia on CS activity (Table
3). A posteriori tests did not indicate any specific differences, but activity decreased globally
under hypoxia. Nevertheless, no change in the relative expression of the C'S gene could be
detected (Fig. 2A). PK and LDH activities were respectively 46% and 57% lower in juveniles
exposed to chronic hypoxia than in controls whatever the hypoxia level (Table 3), but no
change in PEPCK activity was observed. The relative expression of the PK and LDH genes
remained unchanged, but the PEPCK gene was overexpressed under hypoxia (Fig. 2B).
There was no increase in enzymatic activity related to antioxidant defence (Table 3), but the
CAT gene was significantly overexpressed when juveniles were exposed to chronic hypoxia

(Fig. 2C).

3.3. Greenland halibut — severe hypoxia

CS enzymatic activity was not affected (Table 4), and the relative expression of the C'S gene
was not significantly different between controls and juveniles acutely exposed to severe
hypoxia (Fig. 3A). However, the relative COX gene expression was twice as high after
exposure to severe hypoxia (Fig. 3A). LDH activity decreased by 37.6% in severe hypoxia
(Table 4), but the relative LDH gene expression increased by 62% (Fig. 3B). PK and PEPCK

activities remained the same, with no difference in their gene expressions (Fig. 3B, 3C).

A 37% decrease in CAT activity was observed in muscle tissue following hypoxia exposure,

but no change in the activities of enzymes involved in antioxidant defence was observed in
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liver (Table 4). Similarly, there was no significant difference in the relative expressions of the

three genes surveyed relative to this function (Fig. 3C).

4. Discussion

4.1. Aerobic pathway

As expected, CS activity (Krebs cycle) decreased under chronic hypoxia in both species,
which is consistent with the decrease in acrobic scope (AS) caused by acute low DO levels in
both species (Dupont-Prinet et al., 2013a, 2013b). In shrimp, the response was similar in
males and females, even though females have been previously shown to be more sensitive to
severe hypoxia (i.e., they have a higher Oaqit; Dupont-Prinet et al., 2013a). Since the response
was similar from 40 to 20% sat., the threshold to initiate a significant decrease must be above
40% sat., and the response does not appear to be related to DO level below that threshold.
Indeed, Dupont-Prinet et al. (2013a) previously showed that acrobic scope was the same

between 35% sat. and 22% sat. in this species (AS=0.043 mg O; h! g'1 at 35-22% sat.).

In contrast to chronic exposure, there was no significant decrease in CS activity and C'S gene
expression remained stable in Greenland halibut juveniles under acute hypoxia even though
fish had been unable to meet their standard metabolic rate for about 1 hour (Dupont-Prinet et
al., 2013a). It was not possible to detect COX enzyme activity in the white muscle of juvenile
Greenland halibut. White muscle contains few mitochondria—it is mainly fueled by
glycolysis (Richards et al., 2002; Wood, 1991), which implies that the acrobic capacity
should be low. However, even though the respiration capacity of white muscle is low per unit
of tissue, white muscle represents the largest muscle mass in flatfish, and COX gene

expression in muscle tissue increased in juveniles exposed to both chronic and acute hypoxia.
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In C. carpio, decreased COX activity has been observed in white muscle after six hours of
exposure to hypoxia, but long-term exposure (seven days) resulted in a significant increase
(Zhou et al., 2000). In the African cichlid, Pseudocrenilarus multicolor, CS and COX
activities were similar in white skeletal tissue for fish raised for one year in normoxia or
hypoxia (Crocker et al., 2013). However, increased COX and decreased CS activity were
recorded in the heart and brain, respectively, of fish exposed to hypoxia (Crocker et al.,

2013), indicating tissue-specific responses.

4.2. Anaerobic pathway

Contrary to initial assumptions, activities were unchanged or lower in enzymes involved in
anaerobic pathways (PK, LDH, PEPCK) in northern shrimp muscle or in juvenile Greenland
halibut, and this was true whether the animals were exposed to chronic or acute hypoxia. In
northern shrimp, PK activity, which regulates the glycolytic flux, remained constant, whereas
LDH activity, which catalyzes the transformation of pyruvate into lactate, was lower in
hypoxia in both sexes. This may suggest a decrease in the maximum glycolytic capacity or a
decrease in energy needed by shrimp muscle. Under acute severe hypoxia, Dupont-Prinet et
al. (2013b) found not only that LDH activity decreased, but that there was also a significant
decrease in PK and PEPCK activities in female shrimp while only a decrease in PEPCK was
observed in males. PEPCK is involved in neoglucogenesis, so a drop in activity could
indicate a decline in glucose recycling, which may negatively impact glycolysis and
fermentation during chronic hypoxia exposure. These results are inconsistent with those
previously found in other crustaceans. For example, a long exposure to hypoxia increased
glucose and lactate levels in Penaeus vannamei hemolymph (12 days at 1.5 and 2.5 mg O, L
1, ~16.6 and ~27.6% sat.; Racotta ¢t al., 2002). Morcover, LDH activity was similar from 40

to 20% sat. in males while the response varied according to % sat. in females, indicating a
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greater sensitivity to hypoxia in females. This corroborates the higher Ozt measured by

Dupont-Prinet et al. (2013a) in female shrimp.

In juvenile Greeland halibut, PK and LDH activities both decreased after exposure to chronic
hypoxia, indicating a down-regulation of the glycolytic pathway, but only LDH activity
decreased following acute exposure to severe hypoxia. The hypoxia response was similar
from 40 to 20% sat., indicating a threshold response situated above 40% sat. Different
physiological strategies seem to be used by fishes whether or not they are tolerant to hypoxia.
The decrease in anacrobic capacity could reduce energetic costs in fish, as has been suggested
in Fundulus grandis (decreased LDH and PK activities in white muscle; Martinez ¢t al.,
2006). In Fundulus heteroclitus, which is considered as hypoxia tolerant, decreased LDH
activity was also observed during the first 28 days of exposure to hypoxia (Greaney et al.,
1980). However, some fishes exposed to hypoxia have different types of responses. For
example, Nikinmaa and Rees (2005) showed that glycolytic enzyme activities can increase,
decrease, or remain unchanged during hypoxia in fishes, and Crocker et al. (2013) found no
significant difference in PK activity after one year of hypoxia exposure in the African cichlid
Pseudocrenilaburus multicolor. In C. carpio, a species also considered as hypoxia tolerant,
no difference in white muscle LDH activity was detected after 168 h of exposure to low DO
levels (Zhou et al., 2000). Conversely, hypoxia induced an augmentation of PK activity in
Astronotus crassipinnis muscle (Chippari-Gomes et al., 20035) and an increase of LDH
capacity in Leiostomus xanthurus muscle (Cooper et al., 2002); these two species are

characterized by their high tolerance to hypoxia.

The decrease in anaerobic capacity could be related to a decline in energy needs by the

organism. Greenland halibut migrates vertically during foraging and has been described as a
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“yoracious, bathypelagic predator” (Scott and Scott, 1988). In the EGSL, DO is not
homogencous in the water column, and low DO concentrations start at ~150 m (Gilbert et al.,
2005). It is then plausible that Greenland halibut experience different (higher) DO levels
when they migrate into the water column to feed. Even though the enzymatic activity was
lowered, the relative expression of the PK and LDH genes increased. Processes occurring
between gene expression and enzymatic activity thus likely occurred to explain the decrease

in enzyme activity (¢.g., Nikinmaa and Rytkonen, 2011, 2012; Olsvik et al., 2006).

Liver PEPCK activity was stable and independent of DO level or acute vs. chronic exposure,
while there was a three-fold increase at the transcription level following chronic hypoxia
exposure. How an increase in relative expression could occur without concomitant
differences in total enzymatic activity is not clear. It is possible that the increased expression
was not large enough to result in changes in total activity or that other regulation pathways
were simultaneously activated, but it certainly raises the question of how to interpret gene

expression data when physiological aspects are not examined.

4.3. Antioxidant defence

Both male and female shrimp exposed to chronic hypoxia conditions had higher
hepatopancreas GPx activity compared to those in normoxia. Interestingly, the increase in
GPx activity was far stronger in males (+480%) than in females (+148%). SOD activity was
also enhanced, but only in males, which suggests that females were less able to prepare for
reoxygenation than males. Changes in the activities of enzymes involved in antioxidant
defence following hypoxia exposure have also been observed in other crustaceans, such as
Pacific white shrimp, Litopenaeus vannamei, in which hypoxia induced a rise in GPx activity

(Parilla-Taylor and Zenteno-Savin, 2011). Catalase activity was not detected in the
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hepatopancreas of either males or females, even though this enzyme has been shown to be
present in the hepatopancreas of other shrimp species. In the Pacific white shrimp, CAT
activity and CAT expression in hepatopancreas did not differ compared to normoxia after
24 h of hypoxia exposure (Trasvifia-Arenas et al., 2013), but it significantly increased in the
gills. The male vs. female response to hypoxia is poorly documented in the literature, and
these differences in hypoxia resistance certainly deserve further study. The results strongly

support a threshold response at levels below 40% sat.

In juvenile Greenland halibut, no change in either GPx or SOD activity or in the relative
expression of their respective genes was observed. Hypoxia induced an up-regulation of CAT
gene expression, but CAT activity remained so low that it was below the detection limit of
the assay, suggesting a very minor role of this enzyme in this species. Liver tissue is the most
sensitive to oxidative stress caused by the accumulation of reactive oxygen species (ROS)
(Ruppert et al., 2004), which is why a response of enzymes involved in the antioxidant
response was expected. If enzyme activity is compared with those of other species, such as C.
carpio (Lushchak et al., 2005, 2001) or Sparus aurata (Pérez-Jiménez et al., 2012), the
activity present in normoxia could be sufficient to protect juveniles from any potential
oxidative stress. The levels of antioxidant enzymes are linked to the capacity of the organism
to cope with oxidative stress (Hermes-Lima and Zenteno-Savin, 2002; Hochachka and Lutz,
2001; Lushchak, 2011; Martinez-Alvarez et al., 2005). For example, strong antioxidant
defences were present in several tissues of C. carpio, a species well known for its high
tolerance to hypoxia (Lushchak et al., 2005, 2001). In acute severe hypoxia conditions,
juvenile Greenland halibut showed a 37% decrease in muscle CAT activity with no
noticeable activity in liver, suggesting a certain impairment of the antioxidant capacity when

oxygen levels were very low. In some species considered as highly tolerant to severe hypoxia
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and even anoxia, hypoxia induced an increase in liver SOD activity (L. xanthurus; Cooper et
al., 2002), in liver CAT activity (Carassius auratus, Lushchak et al., 2001), and in GPx
activity (Sparus aurata; Pérez-Jiménez et al., 2012). However, no increase in SOD activity
was observed following acute “moderate™ hypoxia exposure at three different temperatures in
Pimephales promelas, a species also considered to be hypoxia tolerant (Clotfelter et al.,

2013).

Temporal differences in genomic and protein responses may exist that could explain the
different responses obtained for gene expression and enzymatic activity levels, and effects in
translation mechanisms (protein synthesis) may also be present (Everett et al., 2012;

Nikinmaa and Rytkénen, 2011, 2012).

4.4 Conclusions

Overall, the results suggest a general decrease in the activities of enzymes related either to
acrobic or anaerobic pathways rather than a shift in metabolic pathways when these two
maring species are exposed to hypoxia. In shrimp, antioxidant defence mechanisms are
clearly stronger in males than in females, supporting previous conclusions on the higher
hypoxia tolerance in males (Dupont-Prinet et al., 2013a), while in juvenile Greenland halibut,
the antioxidant mechanisms present in normoxia may be sufficient to adequately respond to
environmental hypoxia. The physiological response of northern shrimp and Greenland halibut
to chronic hypoxia has important ecological implications considering that they are abundant
at depths from 150-300 m in the EGSL (Bourdages et al., 2010; Chabot et al., 2007; Gilbert
etal., 2007; Savard, 2012), where DO levels have been reported to range between 18 and

50% sat. The heads of the deep channels (Laurentian, Anticosti, Esquiman) are particularly
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important for juvenile Greenland halibut even though these arcas are also the most severely
hypoxic regions of the EGSL (18-30% sat.; Gilbert et al., 2007, 2005). The

responses observed for these two species indicate that they readjust their metabolic capacity
at a threshold DO level somewhere between normoxia and 40% sat. rather than respond
based on the intensity of hypoxia. A reduction of metabolic costs in hypoxia may allow more
flexibility when DO conditions worsen. Altogether, the reduction of aerobic scope (Dupont-
Prinet et al., 2013a, 2013b) and the indication of decreased metabolic costs would indicate
some penalty either in terms of growth or reproduction. Indeed, in a study based on data
obtained from wild juvenile Greenland halibut from the EGSL, Ait Youcef et al. (2015)
showed that the growth rate of juvenile Greenland halibut varied inversely with dissolved
oxygen levels and that a significant decrease in growth rate was observed when oxygen
conditions were below 25% sat. The effects of long-term hypoxia on these variables need to
be investigated further to fully understand how these two important commercial species cope
with environmental hypoxia and how resource management should be adapted to take the
impact of this environmental factor into consideration, especially considering that increasing
population density along the St. Lawrence River and Estuary and climate warming could both
contribute to a further decline in DO levels in the deep channels of the EGSL (Chabot and

Gilbert, 2013; Lavoie et al., 2013).
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Table 1: Set of primers (F=forward; R=reverse) and TaqMan probes designed for
Reinhardtius hippoglossoides using Primer Express software and used for gene expression
analysis by quantitative RT-PCR. Reference genes: ribosomal 18S (18S) and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH); target genes involved in acrobic metabolism: citrate
synthase (CS), cytochrome ¢ oxidase (COX); target genes involved in anacrobic metabolism:
lactate dehydrogenase (LDH), pyruvate kinase (PK), phosphoenol pyruvate kinase (PEPCK);
target genes involved in the antioxidant defence: catalase (CAT), glutathione peroxidase

(GPx), superoxide dismutase (SOD).

Gene Primer set (5'23") TagMan probe (5'23')

18S F - CCTTGGTCTGTGATGCCCTT CCACACTGACTGGATC

R - TCTCGGCGAAGGGTAGACAC

GAPDH F -GCTGTAGGCAAACTCATTGTCGTA CATGAGACCAGCTTGA

R - ATCGCCCTCAATGACCACTT

CS F - GCACCCCATGTCTCAGTTCA TGCTGCCATCACAGC

R - GCCGCTCTCGCTGTTCAG

COX F-TCTGTCCCTTCCCGTCTTAGC CAGGGATTACAATGCTAC

R - GTGTTGAGGTTGCGGTCTGTT

LDH F - CAAGTACAGCCCCAACTGCAT CTGATGGTGGTCTCC

R - GGCCACGTAGGTCAGGATGT

PK F - TCCATGCTGAGACCATCAAGAA TCCGCGAGGCAGC

R - ACAGATCCTGCACCGAAGCT

PEPCK F - CCACTCAGCTGCCCAAGATC TTCCACGTCAACTGGT

R - ATCCGCTGGGGTTCTTTCTG

CAT F -TGTCGGTGTGTGTCTGGGTAA AGAAGAGACGACCCTGC

R - GCAAGCCCCGACAAGATG
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GPx

SOD

F - TTGCAGTTCTCCTGATGTCCAA

R - TCCAAGGGTCTCGTTGTTCTG

F - CATGCTGGTCCTACTGATGCA

R - TGCTCCAGCAGTCACATTCC

CTGATTGCAGGGAACA

ACAGGCACATTGGAG
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Table 2: Wet mass (g), cephalothorax length (CL, mm), and total enzyme activity (U g of wet tissue) in muscle or hepatopancreas of female (F)

and male (M) northern shrimp atter one week ot exposure to 40, 30, or 20% sat. at 5°C. Enzymes involved in aerobic metabolism: cytochrome ¢

oxidase (COX), citrate synthase (CS), enzymes involved in anaerobic metabolism: pyruvate kinase (PK), lactate dehydrogenase (LDH),

phosphoenol pyruvate kinase (PEPCK), antioxidant enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT). Mean

+ s.em.; N = sample size; (N) (in parentheses) = sample size when N was different from the treatment. Results of one-way ANOVAs for the

different variables are also presented (F = F value with degrees of freedom between groups and within groups; P = probability values; significant

values are in bold). Within rows, means with different letters are significantly different. b.d.: activity below the detection limit of the assay.

Sex DO FQ[3.38] P
F3[3.36]
100% 40% 30% 20%
N ¥ 13 10 9 10
M 10 10 10 10
Mass F 10.76 = 0.32 1032 +0.34 1025 +0.71 10.79 + 0.49 0.38 0.77
M 282+027% 567 £0.52° 456+037% 488+0.62° 6.72 <0.01
CL F 27.88 +2.24 2472+ 031 24.41+0.57 2534 +0.41 133 028
M  1639+052° 20.51+0.60° 18.86+0.68° 19.48 +0.72° 7.58 <0.01
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Muscle COX 0.144 +0.013 0.127 +0.045 0.152 = 0.037 0.074+0.014(7) 107 0376
0.202 + 0.024 0.232 +0.054 0.224 +0.056 0.159 +0.038 0.54 0657
CS 1.93+0.10° 1.09 +0.18° 127 +0.15° 0.91 +0.06° 1342 <0.01
2.60+0.16° 1.60 +0.19° 1.46 +0.10° 152 +0.14° 13.03 <0.01
PK 53.87+6.86 40.92 +4.82 36.04 +5.15 4736 +4.90 1.84 0157
6631 +5.93 52.51 +8.09 50.16 + 4.43 67.92 + 5.80 219 0.106
LDH 2121+0.76°¢ 455+242%(9) 11.60+430° 2.514+0.77%(9) 15.13 <0.01
1724 +0.91° 6.31+1.15° 568+ 1.43° 4.84 +1.55° 20.73 <0.01
Hepatopancreas GPx 241+0.60° 435+046% 4.01+0.66% 598 +0.97° 485 <0.01
0.74+0.31* 3.71+£039° 471+043° 44510.50° 19.66 <0.01
SOD 11665 + 2190 13592 +3041 13810 + 2798 12698 + 2323 0.16 0.926
10467+ 1738 16527 +3975° 5465+ 1910° 16273 +3050 ° 3.51 0.025
CAT bd bd bd bd
bd bd bd bd
PEPCK bd bd bd bd
bd bd bd bd
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Table 3: Wet mass (g), length (cm), and of total enzyme activity (U g™ of wet tissue) in muscle or liver of juvenile Greenland halibut after one

week of exposure to 100, 40, 30, or 20% sat. at 5°C. Enzymes involved in aerobic metabolism: cytochrome ¢ oxidase (COX), citrate synthase

(CS), enzymes mvolved in anaerobic metabolism: pyruvate kinase (PK), lactate dehydrogenase (LDH), phosphoenol pyruvate kinase (PEPCK),

antioxidant enzymes: glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT). Mean + s.e.m.; N = sample size; (N) (in

parentheses) = sample size when N was different from the treatment. Results of one-way ANOVAs for the different variables are also presented

(F =F value with degrees of freedom between groups and within groups; P = probability values; significant values are in bold). Within rows,

means with different letters are significantly different. b.d.: activity below the detection limit of the assay.

DO F[3.36] P
100% 40% 30% 20%
N 10 10 10 10
Mass 93.6+17° 152.6+£209° 118.1+145™ 1422+134%™ 334 0.030
Length 227402 2544+ 1.1 239409 249406 211 0.116
Muscle CS 227+0.18 1.49 +0.24 1.88+020(9) 1.51+021(9) 3.11 0.039
COX bd. b.d. b.d. b.d.
PK 4307+397° 2547+188" 21.11+153° 2266+352° 1216  <0.01
LDH 8876+777° 3981+588" 3687+295% 3691+643° 1790  <0.01
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Liver

PEPCK 0.78 £0.04

GPx

SOD

CAT

0.71 £ 0.04
152114 127+0.14(9)
1409 £219 (9) 1162 =258

b.d. b.d.

0.75+0.03

1.03+0.15

1557 + 384

b.d.

0.67 £0.02

1.20 £0.16

900.0 + 182

b.d.

1.87

1.93

1.13

07088

0.142

0.352
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Table 4: Wet mass (g), length (cm), and total enzyme activity (U g of wet tissue) in muscle or liver of juvenile Greenland halibut exposed to

severe hypoxia or normoxia. Mean + s.e.m.; N = sample size; (N) (in parentheses) = sample size when N was different from the treatment.

Within rows, means with asterisks are significantly different (* p <0.05 and ** p < 0.01). b.d.: activity below the detection limit of the assay.

Tissue Enzyme Normoxia Severe hypoxia

N 10 12

Mass 93.6+1.7 91.5+6.1

Length 227+0.2 237+1.1

Muscle Citrate synthase 227+0.2 1.86 £ 0.1
Cytochrome ¢ oxidase b.d. b.d.
Lactate dehydrogenase 88.8+7.8 55.4+£9.9*
Pyruvate kinase 43.1+4 37.6+3.7
Phosphoenolpyruvate carboxykinase 0.33 +£0.09 0.37+0.08 (10)

Catalase
Glutathione peroxidase

Superoxide dismutase

15403 £ 101.9

n.d.

31952.1+817.2

969.9 £ 152%*
n.d.

28974.4£1926.3
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Liver

Phosphoenolpyruvate carboxykinase
Glutathione peroxidase
Superoxide dismutase

Catalase

0.78 £ 0.03
1.52+0.1
1409.3 + 218.8 (9)

b.d.

0.73+0.03

1.25+0.2

1046.8 £ 161.2

b.d.
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Figure captions

Figure 1. General experimental schema.

Figure 2. Relative genomic expression (2'AACt

) of genes coding for indicators of acrobic
metabolism (A), anaerobic metabolism (B), and antioxidant response (C) in juvenile
Greenland halibut exposed to chronic hypoxia or to normoxia. Citrate synthase (CS),
Cytochrome ¢ oxidase (COX), Lactate dehydrogenase (LDH), pyruvate kinase (PK),
Phosphoenolpyruvate carboxykinase (PEPCK), Catalase (CAT), Superoxide dismutase (SOD)
and Glutathione peroxidase (GPx) (mean = standard error, n=10). The dotted line indicates

the standardized level of gene expression in the reference group (normoxia). “b” and “B”

indicate significant differences (p < 0.05) from normoxia.

Figure 3. Relative genomic expression (225N of genes coding for indicators of aerobic
metabolism (A), anacrobic metabolism (B), and antioxidant response (C) in juvenile
Greenland halibut exposed to acute severe hypoxia or to normoxia. Citrate synthase (CS),
Cytochrome c oxidase (COX), Lactate dehydrogenase (LDH), pyruvate kinase (PK),
Phosphoenolpyruvate carboxykinase (PEPCK), Catalase (CAT), Superoxide dismutase (SOD)
and Glutathione peroxidase (GPx)(mean = standard error, n=10). The dotted line indicates the
standardized level of gene expression in the reference group (normoxia). Asterisks indicate a

significant difference between the two groups (* p <0.05 and ** p < 0.01).
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Collection of animals

Acclimatation to laboratory conditions
5°C, salinity ~28, normoxia,
Natural photoperiod conditions

Northern shrimp

Transfer into 3 experimental tanks:
39.7,30 or 20.2% sat. Control group
10 females and 10 males per tank 100% sat.
1 week
anaesthesia

Wet weight and cephalothorax length

Sampling of muscle and hepatopancreas

storage at -80°C

Greenland halibut

Transfer into 3 experimental tanks:
41, 29.4 or 18.6% sat.

10 fish per tank
1 week

Transfer into respirometer
12 fish
until PO,

Wet weight and length

Sampling of white muscle and liver

anaesthesia

storage at -80°C

Enzymatic analysis:
in muscle: CS, COX, LDH, PK
in liver/hepatopancreas: PEPCK, CAT, GPx, SOD

Gene expression analysis:
Reference genes: GADPH, 18S
Target genes in muscle: CS, COX, LDH, PK
Target genes in liver: PEPCK, CAT, GPx, SOD
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