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AVANT-PROPOS 

L'objet de cette thèse de doctorat est l'étude des variations spatiales et temporelles 

du phytoplancton en mer de Beaufort, englobant le plateau continental du Mackenzie et le 

golfe d'Amundsen, au cours de la période libre de glace. Ce doctorat a été réalisé dans le 

cadre du programme CASES (Canadian Arctic ShelfExchange Study). 

Le cœur de la thèse est constitué de trois chapitres, présentés sous forme d'articles 

scientifiques rédigés en anglais. Le premier chapitre a été accepté pour publication dans la 

revue Marine Ecology Progress Series avec corrections mineures: « Phytoplankton 

biomass and production in the southeastern Beaufort Sea in fall 2002 and 2003 » Brugel S, 

Nozais C, Poulin M, Tremblay J-E, Miller LA, Simpson KG, Gratton Y, Demers S. 

Les résultats rapportés dans cette thèse ont fait l 'objet de trois affiches et de deux 

présentations orales présentées au cours de plusieurs congrès: CASES general meetings, 

Montréal - 2004, Winnipeg - 2006 et Québec - 2007, ASLO Summer Meeting, Santiago de 

Compostela - 2005. 
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RESUME 

Cette thèse de doctorat est consacrée à l'étude des variations spatiales et temporelles 

du phytoplancton du sud-est de la mer de Beaufort, comprenant le plateau continental du 

Mackenzie et le golfe d'Amundsen, au cours de la période libre de glace. La communauté 

phytoplanctonique a été caractérisée par la biomasse, la production primaire et la structure 

de taille du phytoplancton <20 )lm. 

En automne en 2002 et 2003, la biomasse phytoplanctonique et la contribution des 

cellules >5 )lm étaient plus élevées dans le golfe d'Amundsen que sur le plateau continental 

du Mackenzie. Au début de l'automne 2003, la communauté phytoplanctonique du golfe 

d 'Amundsen présentait les caractéristiques d'une efflorescence automnale, qui aurait 

possiblement culminé à la fin du mois de septembre. Les proportions élevées de production 

primaire par rapport à la biomasse et la dominance générale des cellules <5 )lm suggéraient 

que la production automnale en mer de Beaufort était entretenue par un recyclage actif. En 

automne 2003, la diminution de la biomasse phytoplanctonique et de la production primaire 

au cours du temps était probablement due à la diminution de la disponibilité en lumière. 

Au printemps et en été 2004, les différences de distIibution spatiale étaient 

également marquées. En juin, la communauté phytoplanctonique était dans une situation de 

pré-bloom dans le sud du golfe d'Amundsen, et en situation de post-bloom au centre du 

golfe, en raison de l'ouverture précoce de la polynie du Cap Bathurst. Dans le golfe 

d'Amundsen, la biomasse chlorophyllienne, ainsi que la contribution des cellules >5 )lm, 

restaient faibles du printemps à l'été. Par contre, sur le plateau continental du Mackenzie, 
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les phénomènes d'upwelling liés au vent et l'extension du panache des eaux du fleuve 

Mackenzie favorisaient la production phytoplanctonique, en augmentant la biomasse 

chlorophyllienne due aux cellules >20 !lm et l'export potentiel de production primaire en 

profondeur. En général, les proportions élevées de production primaire par rapport à la 

biomasse, ainsi que l'absence d'accumulation de cellules >5 !lm dans le golfe d'Amundsen, 

suggéraient une forte pression de broutage sur le phytoplancton et un recyclage actif. Dans 

le golfe d'Amundsen, la production primaire annuelle a été estimée à 21 g C m-2 a- l . Cette 

faible valeur résulte probablement d'une sous-estimation liée à l'extrapolation, mais 

également du faible niveau hivernal de nitrates, qui pré-conditionnait vraisemblablement 

faible production phytoplanctonique annuelle. 

La structure de taille du phytoplancton <20 !lm a été étudiée en automne 2003 et au 

printemps et en été 2004. Le picophytoplancton «3 !lm) dominait le phytoplancton <20 !lm 

en abondance pendant toutes les saisons. Dans le golfe d'Amundsen, le picophytoplancton 

répondait plus rapidement que le nanophytoplancton au retrait printanier des glaces. De 

plus, les conditions de retrait des glaces modelaient la structure de taille du phytoplancton 

<20 /lm. En outre, en été, la circulation et la fonte de glace mobile favorisaient la 

croissance du pico- et du nanophytoplancton de 3-10 !lm. En automne, la diminution de la 

disponibilité en lumière était probablement responsable de la chute de l'abondance du 

phytoplancton <20 /lm. Sur le plateau continental du Mackenzie, le phytoplancton <20 /lm 

était dominé, au large, par le picophytoplancton en été et en automne, alors que, près de la 

côte, le picophytoplancton était moins dominant en été qu'en automne. Le panache des 

eaux du fleuve Mackenzie était probablement une source de cellules de plus grande taille en 
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été (nanophytoplancton) qu'à la fin de l'automne (pico- et nanophytoplancton de 3-10 /lm). 

En général , les cellules picophytoplanctoniques étaient fortement retenues dans les eaux de 

surface, et entretenaient probablement un réseau trophique microbien très actif. 

Cette étude souligne l'importance des cellules phytoplanctoniques de petite taille 

«3-5 /lm) dans le réseau trophique de la mer de Beaufort. Ces cellules dominaient la 

biomasse et la production pour la plus grande partie de la période libre de glace, notamment 

dans le golfe d'Amundsen où la dynamique du couvert de glace semble être le principal 

facteur de variations spatio-temporelles. Par contre, sur le plateau continental du Mackenzie 

les apports d'eaux douces du fleuve Mackenzie et les phénomènes d 'upwelling le long du 

talus continental favoriseraient épisodiquement la production de cellules 

phytoplanctoniques de grande taille. 



VII 

TABLE DES MA TIERES 

AVANT-PROPOS ..... ........ .... .. ...... .. ........ ....... .. ........... ..... ........ .. ... ... .. ....... ...... ..... ... ... .... ...... ... i 

REMERCIEMENTS .... .. .. .. ... .. .. .... ... ..... ... .. .. ........ ...... ....... .. ...... .. .. ........ ... ... .. ............ ... ... ..... .. ii 

RESUME .. .... ........... ... ... .... ...... ..... ... ... .. .. ....... ... ..... .. ......... ..... ....... .. ... .... ..... .. ...... .... ... ......... .. . iv 

TABLE DES MA TIERES ... ...... ..... ... ... ... ...... ... ....... ......... .... .. ......... ... .. ......... ........ ..... ... .. .... vii 

LISTE DES FIGURES ...... ..... .. ............. ...... .... .. ... ........ .. .......... ...... .. ..... .... .... ...... ............. ... . .ix 

LISTE DES TABLEAUX ... .. .... ....... ... .... ....... .. ... .......... .... ...... .. .. .... ......... ... ........ .. ..... .. ..... .. xii 

INTRODUCTION GENERALE ................ ...... .. .. ...... .... .. ......... .... ....... ... .. ...... ... .. ...... ...... ... ... 1 

CHAPITRE 1. .... ......... ... .. ..... .. .. .. .... ....... ... ....... ............ .. ........ .. ..... ..... .... ....... .. ... .. ......... ......... 14 

PHYTOPLANKTON BIOMASS AND PRODUCTION IN THE SOUTHEASTERN 

BEAUFORT SEA IN FALL 2002 AND 2003 

RESUME .. ... ... ... ......... ............ ..... ... ..... ..... .... ........ .. ... ... .. ...... ..... ..... .. ..... .. .. .............. ...... .. . 15 

ABSTRACT .. ......... ... .. .... .. .. ... ..... ... .... .... ... .... ........ .. .. .. .. ..... .. .... ... .... ...... .. ...... ........... ...... ... 16 

INTRODUCTION .. .. ...... ..... ... .... .... .. .... ....... ....... ......... .... .... ..... ... ..... ...... ............ .. ............ 17 

MATERIALS AND METHODS ... .. .. .. ... .... ... ....... .... ...... ..... ... ..... ........ ............. ..... ... ..... ... 20 

RESULTS .... .. .... .. ... ... ... ... ............ .... ... .. ...... .. ... ... ...... .... .. .... .. ......... ..... ... .... ... .. ... ... ..... .. ..... 29 

DISCUSSION ... ... ...... ..... .... .. .... ... ... .. .... ........ ... .... ..... : .... ... ... ... ... ....... ........... .. ......... .. ..... ... 41 

CHAPITRE II .... ... .... ..... .... .... .. .. .. .... .. ... .... ..... ......... ..... ......... ... .. .. ... .... ... .. ........ ..... .... ..... ...... . 52 

PHYTOPLANKTON DYNAMICS IN SPRING AND SUMMER IN THE 

SOUTHEASTERN BEAUFORT SEA 

RESUME ..... ..... ...... .. ...... ...... ..... ... .... ...... ..... ... ... ..... ... ... .. .... .. ........ ... ..... ......... ....... .... .. ... ... 53 



Vlll 

ABSTRACT ....... ....... .. ... ..... ....... .... ....... ....... ... ....... .. .......... ..... ............. ...... ... .. ... .... .... .... ... 54 

INTRODUCTION ... ... ............... ... .. .... .. .......... ........ ..... ........ ....... .. ...... .. ....... ........ .. ..... .. ... . 55 

MATERIALS AND METHODS .... .......... .. .... .. ..... ... .... ....... .. ........... .. ..... ..... ... ..... ...... .. ... . 58 

RESULTS ...... ....... .... ..... ... ...... ..... .. ...... ... .... ...... ..... ..... .... ..... ...... .. ... .. ........... .... ... .. ...... ... ... 68 

DISCUSSION ... .. ...... .... ..... ......... ............... ... ............... ....... ... ......... ...... ..... ...... .... .. ....... .. .. 87 

CHAPITRE III .... .. ............ .... .... ... .... .. ... .... .... ......... ... ... ..... .. .. ........ .... .... .... ...... ..... .. ............ ... 98 

SPATIO-TEMPORAL DISTRIBUTION OF PICO- AND NANOPHYTOPLANKTON IN 

THE SOUTHEASTERN BEAUFORT SEA 

RESUME ..... ........ ......... .... .... ... .... .. .. ....... .... ........ .. ... ..... ..... ... ........ .. ... ...... ...... .... .. .... ......... 99 

ABSTRACT .... ..... .. .... .. ...... ..... ......... ... ........ .... .... .. ......... .... .. .... ... ... .... .......... ....... ....... ..... 100 

INTRODUCTION ..... .... ... .... ... ....... ...... ... ........ ......... ... ... ... .... .. ... ...... .. .. ..... .... ... ..... ... ...... 1 0 1 

MATERIALS AND METHODS ... ...... .... ......... ... ..... .. .. ..... .. .... ......... ... ....... .. ... .... .... .. ..... 104 

RESULTS ... ...... ..... .. ... .. ... ..... .. .... .... .. ... ....... ... .... .. .. ...... .. ..... ...... ......... ... ........ ...... ... .. ....... 110 

DISCUSSION ........ ... ... ........... ..... .... ... .. ......... ........ ...... ...... .... ..... ...... ...... .. .. .. .. ............ .... 129 

CONCLUSION GENERALE ........ .. ........ .. .. .... ..... ......... .......... ....... .. .... ... ........ ......... .... .... .. 139 

REFERENCES BIBLIOGRAPHIQUES ................ .. ...... ... .. .. ... .. .. .. .. ..... ... ...... .... .............. .. 148 



LISTE DES FIGURES 

INTRODUCTION GENERALE 

Figure 1 Situation et particularités géographiques de la mer de Beaufort .... .... .. .... ..... . 9 

CHAPITRE l 

Figure 1 Location of stations sampled in (a) early fall 2002, (b) early faH 2003 
and (c) late fall 2003 (AG: Amundsen Gulf; FB: Franklin Bay; MS: 
Mackenzie Shelf) ............ ............ ... ..... ...... .... ...... .. ..... ...... ... ..... .. .. .... ..... ...... .. 24 

Figure 2 Spatial distribution of chi a biomass (integrated over 50 m) in 
mg chI a m-2 during early faH 2002, with the percent contribution of 
large phytoplankton cells (>5 !lm) to biomass labelling each station ...... .... 34 

Figure 3 Spatial distribution of chi a biomass (integrated over 50 m) in 
mg chI a m-2 during early faU 2003, with the percent contribution of 
large phytoplankton cells (>5 !lm) to biomass labelling each station ... .... ... 34 

Figure 4 Spatial distribution of chi a biomass (integrated over 50 m) in 
mg chi a m-2 during late faH 2003 , with the percent contribution of large 
phytoplankton ceHs (>5 !lm) to biomass labelling each station ............. ...... 35 

Figure 5 Rates of total particulate primary production (PT) and estimates of 
maximum potential export of this particulate primary production (Pex) 
(in mg C m-2 d-I

), during the three cruises: early faH 2002 (stations 24, 
49, 65, 66 and 101) and 2003 (stations 718, CA07, CAIO, CA15 and 
CA18) and late faH2003 (stations 718, 709, 506,124,112 and 200) .. ... ... .. 36 

Figure 6 Multidimensional scaling ordination plot of phytoplankton community 
composition (based on species abundances) (open symbols: early fall 
2002, grey symbols: early faH 2003, black symbols: late faU 2003; 
circles: Mackenzie shelf stations, diamonds: Amundsen Gulf stations 
and triangles: stations out of Mackenzie shelf and Amundsen Gulf 
regions) ......... ... ..................... ....... .... .......... .. ... .... ........................ ...... ........ .. .. 39 

Figure 7 Relationship between daylength and chi a biomass (integrated over 50 
m) in early and late fall 2003 (closed symbols: stations from the 
Amundsen Gulf, open symbols: stations out of the Amundsen Gulf) ......... .48 

IX 



CHAPITRE II 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Study area in the southeastem Beaufort Sea (FB : Franklin Bay) ......... ........ 59 

Spatial distribution of (a) chI a biomass (integrated over 50 m) in 
mg chI a m-2, (b) percent contribution of cells >5 )lm and (c) cells >20 
)lm to biomass, during spring 2004 ........ ... .... .................. .... ..... ...... ........ ... ... 74 

Spatial distribution of (a) chI a biomass (integrated over 50 m) in 
mg chI a m-2, (b) percent contribution of cells >5 )lm and (c) cells 
>20 )lm to biomass, during summer 2004 ..... ... ............. ... .. .... .... .... .. ..... .... .. . 75 

Vertical profiles of chI a (mg chI a m-3), temperature (oC) and salinity 
(psu) at stations beyond the Mackenzie River plume influence. The dark 
line corresponds to the bottom of the PML and the dotted line to 1 % 
isolume ....... .. ....... ..... .... ... .................. .... ... ........ .. .. ........ .. ...... ...... .... ... .. .... ... ... 77 

Multidimensional scaling ordination plot of species abundances (a) in 
spring 2004, (b) in summer 2004, (c) in the Amundsen Gulf (AG) in 
spring and summer 2004, and (d) over the Mackenzie shelf(MS) ... .... .. ..... . 80 

Rates of total particulate primary production (PT) and estimates of 
maximum potential export of this particulate primary production (P ex) 
(in mg C m-2 d-I

) integrated over the euphtotic zone from spring and 
sumlner 2004 .. ...... .... ........ .. .... ........ ................ ... .. .. ... .................... ..... ..... ..... .. 85 

CHAPITRE III 

Figure 1 Location of stations sampled in the southeastem Beaufort Sea (AG: 
Amundsen Gulf; FB: Franklin Bay; MS: Mackenzie SheIf) ...... .... ..... ... ... . 105 

Figure 2 Average (over 50 m) <20 )lm phytoplankton and picophytoplankton 
«3 )lm) abundances and total (ChIT) and <20 )lm (Chl<20 )lm) chI a 
concentrations (integrated over 50 m) (a), average (over 50 m) small (3-
10 )lm) and large (> 10 )lm) nanophytoplankton cell abundances (b), and 
average contribution of pico- «3 )lm) and nanophytoplankton (3-10 )lm 
and > 1 0 )lm) to <20 )lm phytoplankton cell abundance (c) in spring 
2004 .... .... ...... ...... ..... ... .... .... ... .. ... ... ........ .. ..... .... .. .... .................................... 116 

x 



Figure 3 Average (over 50 m) <20 )lm phytoplankton and picophytoplankton 
«3 )lm) abundances and total (ChlT) and <20 )lm (Chl<20 )lm) chI a 
concentrations (integrated over 50 m) (a), average (over 50 m) small (3-
10 )lm) and large (> 10 /lm) nanophytoplankton cell abundances (c), and 
average contribution of pico- «3 )lm) and nanophytoplankton (3-10 )lm 
and > 1 0 )lm) to <20 /lm phytoplankton cell abundance (c) in summer 
2004 in the Amundsen Gulf region ... ........ ........ ...... ...... ... ... ... ... ... ... ... ....... .. 119 

Figure 4 Average (over 50 m) <20 )lm phytoplankton and picophytoplankton 
«3 )lm) abundances and total (ChlT) and <20 )lm (Chl<20 )lm) chI a 
concentrations (integrated over 50 m) (a), average (over 50 m) small (3-
10 )lm) and large (> 10 )lm) nanophytoplankton cell abundances (b), and 
average contribution of pico- «3 )lm) and nanophytoplankton (3-10 )lm 
and > 1 0 )lm) to <20 )lm phytoplankton cell abundance (c) in summer 
2004 over the Mackenzie shelf and slope region .. .. .. .. ...... .... .. .. .. ... ...... .. .. .. . 121 

Figure 5 Average (over 50 m) <20 )lm phytoplankton and picophytoplankton 
« 3 )lm) abundances and total (ChIT) and <20 )lm (Chl<20 )lm) chI a 
concentrations (integrated over 50 m) (a), average (over 50 m) small (3-
10 )lm) and large (> 1 0 )lm) nanophytoplankton cell abundances (b), and 
average contribution of pico- «3 )lm) and nanophytoplankton (3-10 )lm 
and > 1 0 )lm) to <20 )lm phytoplankton cell abundance (c) in early faH 
2003 .. .... .... .... ...... ..... .... ..... .... .... .... ..... .. ..... ..... ..... .. ...... ........ ... .... ... .. .. ....... ... 124 

Figure 6 Average (over 50 m) <20 )lm phytoplankton and picophytoplankton 
« 3 )lm) abundances and total (ChlT) and <20 )lm (Chl<20 )lm) chI a 
concentrations (integrated over 50 m) (a), average (over 50 m) smaH (3-
10 )lm) and large (> 1 0 )lm) nanophytoplankton cell abundances (b), and 
average contribution of pico- «3 )lm) and nanophytoplankton (3-10 )lm 
and >10 )lm) to <20 )lm phytoplankton cell abundance (c) in late faU 
2003 .... .................... .. ... .... .... .. .............. ........ .. ...... ..... .................... ... .. .. .. ... .. 126 

Figure 7 Average (over 50 m) picophytoplankton «3 )lm) and 
nanophytoplankton (3-10 )lm and > 10 )lm) cell abundances as a function 
of the day ofthe year in fall 2003 in the Amundsen GulL .. .. .... ...... .......... 127 

Xl 



LISTE DES TABLEAUX 

CHAPITREI 

Table 1 Stations sampled for biomass, primary production and taxonomy during 
aIl cruises .. ........... ...... .. ... ...................... ... ... .... ..... ... .... .. ......... .... .... ............... 23 

Table 2 ChI a biomass (integrated over the upper 50 m) and the relative 
contribution of large phytoplankton ce Ils (>5 /lm) to this biomass on the 
Mackenzie shelf and in the Amundsen Gulf during the different cruises, 
mean ± SD, the number of stations is in brackets .. ..... ...... .. .... .. ...... ....... ....... 33 

Table 3 Average percent contribution of the major algal groups to the 
phytoplankton cel! abundances on the Mackenzie shelf and in the 
Amundsen Gulf for the two sampling years (in early faU 2002, station 65 
was not included in the average calculation of the shelf region) .. ............... .40 

CHAPITRE II 

Table 1 Stations sampled for the different measurements during spring and 
SUlnmer 2004 .. ....... .... ... .. .......... ... ..... ... ... .......... ... ... .... ..................... .... ....... ... 61 

Table 2 ChI a biomass (integrated over the upper 50 m) and the relative 
contribution of large phytoplankton cells >5 /lm and >20 /lm to this 
biomass in spring, for groups 1 and 2, and in summer in the Amundsen 
Gulf and on the Mackenzie shelf, mean ± SD, the number of stations is 
in brackets ..................... .. ... ...... .... ...... ...... ... .... ... ... ... ... ... ... ...... .. ... ..... ... .... .... . 73 

Table 3 A verage percent contribution of the major algal groups to the 
phytoplankton cell abundances in spring, for groups 1 and 2, and in 
summer in the Amundsen Gulf and on the Mackenzie shelf, in surface 
and deep waters ....................................... .... ... .. ..... ..... ... ... ... .......... .... ......... ... 81 

Table 4 Photosynthetic parameters measured in spring and summer from surface 
and deeper waters ........ ........................................ ......... ..... ... ............. ......... ... 83 

Table 5 Photosynthetic parameters measured from surface and deeper waters of 
stations influenced by the Mackenzie River plume ... ..... .. .... ... .... ...... .... ....... 84 

CHAPITRE III 

Table 1 Location and periods of sampling in the southeastem Beaufort Sea .. ... ..... 106 

XII 



Table 2 Pico- «3 /lm), small nano- (3-10 /lm) and large nanophytoplankton 
(> 10 /lm) abundances (averaged over the upper 50 m) and their relative 
contribution to <20 /lm phytoplankton cell abundance for the different 
seasons, in the Amundsen Gulf and on the Mackenzie shelf, mean ± SD, 
the number of stations is in brackets ... ...... ... ... ... ... ........ ......... ...... .. ...... ..... .. 115 

Table 3 Pico- «3 /lm), small nano- (3-10 /lm) and large nanophytoplankton 
(> 10 /lm) abundances (averaged over the upper 50 m) (mean ± SD) and 
their relative contribution to <20 /lm phytoplankton cell abundance, and 
sea ice conditions in spring for the different groups of stations ..... ....... .... . 117 

Table 4 Pico- «3 /lm), small nano- (3-10 /lm) and large nanophytoplankton 
(> 1 0 /lm) abundances (mean ± SD) and their relative contribution to <20 
/lm phytoplankton cell abundance over the Mackenzie shelf in the river 
plume and the upper 10 m and the whole Polar Mixed Layer (PML) .. ...... 122 

Table 5 Proportion of pico- and nanophytoplankton ce Ils sinking out of the upper 
50 m for the different sampling seasons over the southeastem Beaufort 
Sea (in percentage) ......... .. ......... .... ......... ..... .... .... ....... ... .... ...... .. ........ .. .. .... .. 128 

X III 



1 

INTRODUCTION GENERALE 

L'océan Arctique 

Depuis la seconde moitié du XIXième siècle, les activités humaines ont conduit à une 

augmentation considérable des concentrations en dioxyde de carbone (C02) atmosphérique, 

de l'ordre de 31 % (IPCC 2001), qui a engendré des perturbations climatiques et 

notamment l'augmentation de la température globale. La température globale a augmenté 

de l ,5°C depuis 150 ans (Overpeck et al. 1997). Les régions situées aux hautes latitudes, 

comme l'océan Arctique, sont plus vulnérables au phénomène de réchauffement climatique 

(Vinnikov et al. 1999, ACIA 2005). En effet, au cours du XXième siècle la température 

atmosphérique en Arctique a augmenté de 5°C au-dessus des terres (IPCC 2001), et ce, à un 

rythme deux fois élevé que pour le reste du globe (ACIA 2005). Des modèles climatiques 

prévoient une augmentation de température de 3,9 à 4,5°C pour l'Arctique d'ici 2050, alors 

qu'elle ne serait que de 1,7 à 2,2°C au niveau global (Dixon et al. 2003). De surcroît, un 

rétrécissement et un amincissement du couvert de la glace de mer ont été observés en 

Arctique (Cavalieri et al. 1997, Johannessen et al. 1999, Rothrock et al. 1999, Vinnikov et 

al. 1999). L'étendue du couvert de glace estival s'est réduite de 15-20 % ces trois dernières 

décennies (ACIA 2005), et son épaisseur a diminué de 12 % en moyenne (Holloway & Sou 

2002). Depuis 2001, la réduction du couvert de glace estival s'est accélérée atteignant un 

taux de 10 % par décennie, et l'année 2007 a enregistré la plus faible étendue de glace 

estivale de 4,28xl06 km2 (NSIDC 2007). Selon les projections climatiques dans un contexte 
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de réchauffement global, l'océan Arctique serait totalement libre de glace en été à la fin du 

xxrième siècle (ACrA 2005, Serreze et al. 2007) ou dès 2040 (Holland et al. 2006). La 

réduction du couvert de glace et l'augmentation de température observées ces dernières 

années seraient également dues aux variations naturelles de la circulation atmosphérique, 

i.e. l'oscillation arctique (Deser et al. 2000), dont l'effet pourrait être amplifié par les 

changements provoqués par les activités humaines (Shindell et al. 1999). Quelles que soient 

les causes de la réduction de couvert de glace, à tenne, l'océan Arctique deviendrait un 

océan à couvert de glace saisonnier (Arzel et al. 2006, Zhang & Walsh 2006). En outre, la 

fonte hâtive des glaces au printemps, ainsi que la formation tardive du couvert de glace en 

automne, allongeraient la période libre de glace (Stroeve et al. 2006). 

Au-delà de son couvert de glace, l'océan Arctique est également caractérisé par une 

très forte stratification, qui est principalement due à des apports fluviaux très importants 

(Macdonald et al. 2004a). En effet, alors que l'océan Arctique ne représente que 1 % du 

volume total des océans, il reçoit Il % des apports fluviaux globaux (Dittmar & Kattner 

2003). Les apports d'eau douce maintiennent la faible densité de la couche de surface (~O-

50 m) au-dessus de l'halocline pelmanente fonnée par des eaux plus denses d'origine 

pacifique ou atlantique, ce qui limite les échanges entre les eaux de surface et les eaux plus 

profondes (Macdonald et al. 1987, McLaughlin et al. 1996). Dans l'océan Arctique, les 

plateaux continentaux couvrent 52,7 % de la superficie (Jakobsson et al. 2004). Ces régions 

soutiennent une forte production primaire (AMAP 1998, Sakshaug 2004), qui atteint 80 % 

de la production primaire totale de l'océan Arctique (Hill & Cota 2005). Les variations 
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saisonnières y sont particulièrement marquées par la superposition des fluctuations du débit 

des fleuves au cycle de fonnation et fonte des glaces (Jakobsson et al. 2004). Dans un 

contexte de changement climatique, l'accroissement des précipitations sur les bassins 

versants des fleuves arctiques augmenterait leur débit (Peterson et al. 2002, 2006, ACrA 

2005). Par conséquent, les plateaux continentaux arctiques, qui sont des environnements 

très variables et encore peu étudiés (Cannack et al. 2006), seraient particulièrement 

vulnérables au changement climatique. 

Dans les régions polaires, les zones d' eau libre entourées de glace sont appelées des 

polynies. Ces polynies peuvent être libre de glace toute l'année ou recouvertes pendant les 

périodes les plus froides (Smith et al. 1990). La réduction précoce de l'étendue et de 

l ' épaisseur de la glace favorise la production primaire, qui est généralement plus forte dans 

les polynies que dans les régions adjacentes (Pesant et al. 1996, Klein et al. 2002, Tremblay 

& Smith 2007). Ces zones très productives ont également un grand intérêt écologique en 

Arctique, puisqu'elles représentent des aires primordiales de reproduction et d 'alimentation 

pour de nombreux oiseaux et mammifères marins (Stirling 1980, 1997). De plus, les 

polynies sont libres de glace pour de plus longues périodes que les régions adjacentes, et 

représenteraient de ce fait des modèles pour l' étude des mers arctiques dont la période 

d ' englacement diminuerait (Tremblay et al. 2006). 
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Importance et dynamique saisonniere du phytoplancton 

Le phytoplancton constitue la première voie d ' incorporation du carbone inorganique 

dans les écosystèmes marins à travers le processus de photosynthèse ; le carbone 

biogénique phytoplanctonique est ensuite transféré vers les niveaux trophiques supérieurs 

par broutage (Legendre 1990). Le carbone phytoplanctonique peut être exporté en 

profondeur vers les réseaux trophiques benthiques et conduire à la séquestration de carbone 

à long tem1e (Legendre & Le F èvre 1995). Le transfert du phytoplancton à travers 

l 'écosystème pélagique est fonction de la taille des cellules phytoplanctoniques. Selon la 

taille des cellules, le phytoplancton est divisé en picophytoplancton «2 ou 3 /lm), 

nanophytoplancton (2-3 à 20 /lm) et microphytoplancton (>20 /lm) (Sieburth et al. 1978, Li 

1986). Les cellules de grande taille du nano- et du microphytoplancton (généralement >5 

/lm) sont préférablement exportées en profondeur (Chisholm 1992), par sédimentation de 

cellules intactes, de pelotes fécales issue du broutage par le meso- et macrozooplancton ou 

de neige marine (Legendre 1990). Les cellules de plus petite taille (pico- et 

nanophytoplancton <5 /lm) , quant à elles, sont retenues dans les eaux de surface et sont 

broutées par le microzooplancton, alimentant ainsi le réseau trophique microbien (Legendre 

& Le Fèvre 1995). 

La production pnmalre est régie par de nombreux mécanismes physiques et 

chimiques, dont l'intensité du mélange vertical, l'intensité lumineuse et la disponibilité en 

éléments nutritifs (Smith & Sakshaug 1990). Dans les milieux marins où l 'azote est 

l 'élément nutritif qui limite la production phytoplanctonique, comme dans l'océan Arctique 
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(Wheeler et al. J 997), l'azote nouvellement disponible dans la zone euphotique sous fonne 

de nitrate, provenant du mélange vertical, de remontée d ' eaux profondes ou d ' apports 

continentaux et atmosphériques, favorise la production de cellules de grande taille (Dugdale 

& Goering 1967), alors que l'azote provenant de la minéralisation bactérienne ou de 

l'excrétion animale sous forme d ' ammonium implique des cellules de petite taille (Harrison 

& Wood 1988, Agawin et al. 2000). 

Dans l'océan Arctique, les variations du couvert de glace influencent la production 

phytoplanctonique (Smith & Sakshaug 1990). La présence de glace diminue fortement la 

pénétration de lumière dans la colonne d'eau (Palmisano et al. 1987), et le cycle de 

formation et de fonte de la glace contraint la période production phytoplanctonique à 

quelques mois (Sakshaug 2004). La saisonnalité induite par la glace est couplée à celle de 

l' inclinaison solaire; les régions au-delà de 66,7°N sont soumises à l 'absence totale de 

lumière autour du solstice d'hiver et à des périodes d'éclairement continu autour du solstice 

d'été (Smith & Sakshaug 1990). L'efficacité photosynthétique ainsi que le taux de 

croissance du phytoplancton sont fortement dépendants de l'intensité lumineuse (Sakshaug 

& Slagstad 1991). Dans l 'océan Arctique, outre les variations saisonnières, la disponibilité 

en lumière est très variable, en raison de la formation importante de nuages et de brouillard, 

notamment lorsque les eaux sont libres de glace, et de la dérive des glaces flottantes, qui 

diminuent la quantité de lumière dans la colonne d ' eau (Sakshaug & Slagstad 1991). 

L'intensité du mélange vertical influence également l'efficacité photosynthétique du 

phytoplancton en exposant les cellules plus ou moins rapidement à différentes intensités 
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lumineuses. Or les mécanismes de photoacclimatation se mettent généralement en place à 

des échelles de temps qui peuvent être plus importantes que celles des variations du 

mélange vertical ou de l'éclairement incident, générant des processus de photoinhibition 

(Harrison & Platt 1986). La stabilité de la colonne d 'eau est également dictée par le cycle 

de fonnation et de fonte de la glace (Cannack & Macdonald 2002). Typiquement au 

printemps, des efflorescences algales se développent suite à l 'augmentation de 

l'éclairement incident, à la pénétration accrue de la lumière dans la colonne d 'eau et à la 

stratification induite par la fonte des glaces, et ce, jusqu 'à épuisement des sels nutritifs 

disponibles dans la zone euphotique (Sakshaug 2004). D 'autres efflorescences peuvent se 

produire à la suite d ' un réapprovisionnement de la couche de surface en éléments nutritifs 

(remontée d 'eaux profondes, mélange vertical induit par le vent, apports continentaux ... ) 

jusqu'en automne. 

Jusqu 'à récemment, il était considéré que le nano- et le microphytoplancton (>5 

)lm) dominaient les communautés phytoplanctoniques de l'océan Arctique (von Quillfeldt 

1997, Sakshaug 2004). Cependant, des travaux plus récents se sont intéressé aux formes 

phytoplanctoniques de plus petite taille (Wassmann et al. 2006) et ont souligné 

l' importance du phytoplancton de petit taille «5 )lm) dans l'océan Arctique en tenne 

d 'abondance (Mostajir et al. 2001, Lovejoy et al. 2002, Sherr et al. 2003, Not et al. 2005, 

Schloss et al. 2008, Tremblay 2008), de biomasse (Lovejoy et al. 2002, 2007, Sherr et al. 

2003) et de production primaire (Gosselin et al. 1997, Lee & Whitledge 2005). Dans un 

contexte de changement climatique, la réduction du couvel1 de glace allongerait la période 
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de production, favorisant ainsi la production phytoplanctonique. Cependant, l'effet d 'une 

modification du mélange vertical (intensité et profondeur de mélange), due à l'exposition 

de la couche de surface aux vents, poulTait avoir un impact difficilement prévisible sur la 

structure des communautés phytoplanctoniques (Sakshaug 2004) . 

La mer de Beaufort 

La mer de Beaufort borde l'Alaska et les TelTitoires du Nord-Ouest, et s ' étend au-

dessus du bassin Canadien. La partie canadienne de la mer de Beaufort comprend le plateau 

continental du Mackenzie et le golfe d 'Amundsen (Fig. 1). Le plateau continental du 

Mackenzie est relativement étroit (- 120km) et sillonné par le canyon Mackenzie sur la 

bordure ouest et le canyon Kugmallit au centre (Macdonald et al. 2004b). Le golfe 

d 'Amundsen est situé entre la bordure est du plateau continental et l'île de Banks, et abrite 

la polynie du Cap Bathurst (Topham et al. 1983). 

En mer de Beaufort, la circulation générale est gouvernée par le gyre de Beaufort 

qUi impose une circulation anticyclonique aux eaux de surface et au pack de glace 

pluriannuelle. Le long de la côte, la circulation est dictée par les vents (AMAP 1998). En 

sub-surface (50-75 m), le contre-courant de Beaufort impose une circulation cyclonique, 

qui déplace les eaux vers l'est le long du plateau continental (Aagaard 1984). Les eaux de 

surface de la couche de mélange s'étalent sur les 50 premiers mètres ; en dessous se 

trouvent les eaux d'origine pacifique issues du détroit de Bering ; plus en profondeur (sous 

- 220 m) les eaux sont d'origine atlantique (Carmack et al. 2004). La très forte stratification 
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empêche le plus souvent un apport de sels nutritifs dans la couche de surface à partir des 

eaux pacifiques riches en éléments nutritifs. Cependant, des phénomènes d 'upwelling sont 

souvent observés le long du plateau ainsi qu'au niveau des canyons Mackenzie et 

Kugmallit (Williams et al. 2006, 2008), pennettant ainsi un apport de nutriments dans la 

couche de surface (Macdonald et al. 1987). 

En mer de Beaufort, la glace se fonne en octobre suite à la baisse de température. 

Sur le plateau continental, la banquise s'étend jusqu'au chenal de séparation qui fait partie 

du système de chenaux de séparation circum-arctique. Au-delà du chenal de séparation, le 

couvert de glace est constitué par un mélange de glace nouvellement formée et de glace 

pluriannuelle, puis par le pack de glace pluriannuelle (Barber & Hanesiak 2004). Le 

mouvement du pack de glace pluriannuelle est dicté par la circulation du gyre de Beaufort, 

et la limite du pack de glace s'étend plus ou moins au sud selon les champs de pression 

atmosphérique. La période de débâcle est variable d'année en année, mais se produit 

généralement fin mai . La disparition de la glace peut être lente, ainsi en juillet et août les 

glaces peuvent persister, alors qu 'en septembre la zone est totalement libre de glace (Barber 

& Hanesiak 2004). 
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Figure 1 : Situation et particularités géographiques de la mer de Beaufort (adaptée de 
http://earthobservatory.nasa.gov/Newsroom/Newlmages/images.php3?img_id=16340). 
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Les dernières études publiées portant sur l'écosystème pélagique et notamment sur 

le phytoplancton en mer de Beaufort ont été conduites dans les années ·70-80, 

essentiellement en zone très côtière (Alexander 1974, Homer & Schrader 1982, Homer 

1984, Parsons et al. 1988) et sur le plateau continental (Hsiao et al. 1977, Parsons et al. 

1989, Carmack et al. 2004), le golfe d'Amundsen n'ayant fait l 'objet d'échantillonnage 

qu ' à partir de 2002 (Lee & Whitledge 2005). De plus, seule la période estivale a été étudiée 

en raison des conditions de glace rendant l'accès difficile et de l'absence de logistique 

adéquate. Considérant la variabilité actuelle du couvert de glace et les prévisions futures 

quant à son étendue, le programme CASES (Canadian Arctic Shelf Exchange Study) a été 

mis en place afin d ' étudier l'effet de la variabilité du couvert de glace sur le système de la 

mer de Beaufort en terme de flux biogéochimiques et d'échanges entre le plateau 

continental et le bassin profond. 

Le fleuve Mackenzie se déverse sur le plateau continental du Mackenzie. En temles 

de débit, le Mackenzie est le quatrième fleuve en Arctique, et déverse annuellement 330 

km3 d ' eau douce sur le plateau (Macdonald et al. 1998). Ce fleuve est le plus important en 

considérant la charge sédimentaire qui peut atteindre 124x106 tonnes par an (Holmes et al. 

2002). Soixante dix pour cent des eaux sont déversés entre mai et septembre, les débits les 

plus forts étant observés entre mai et juin (Carmack & Macdonald 2002). Les eaux 

déversées sur le plateau influencent la production phytoplanctonique, puisqu'elles 

constituent une source importante d'éléments nutritifs mais aussi de particules, qui 

diminuent la pénétration de la lumière dans la colonne d'eau (Parsons et al. 1989, Carmack 
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et al. 2004). La production pnmalfe annuelle sur le plateau est estimée entre 20 et 28 

g C m-2 (Macdonald et al. 1987, Lavoie et al. 2008). 

Dans le golfe d'Amundsen, la polynie du Cap Bathurst est fonnée par advection de 

la glace sous l'influence des vents (Cannack & Macdonald 2002), elle s'ouvre le plus 

souvent en juin jusqu 'à ce que la glace se refonne en octobre (Arrigo & Van Dijken 2004). 

Selon les données satellitaires de chlorophylle, le cycle saisonnier de production 

phytoplanctonique semble relié à la dynamique du couvert de glace et notamment à la 

période et à la vitesse d 'ouverture de la polynie (Arrigo & Van Dijken 2004). De plus, la 

période de production phytoplanctonique semble marquée par deux périodes 

d 'efflorescence, la première à la fin du printemps ou début de l' été, et la deuxième à la fin 

de l'été ou début d 'automne. La production annuelle estimée par Arrigo et Van Dijken 

(2004) est très variable, entre 90 et 175 g C m-2, ce qui placerait la polynie du Cap Bathurst 

panni les écosystèmes pélagiques les plus productifs de l'océan Arctique. 

Objectifs 

Dans le contexte climatique actuel, l' océan Arctique semble condamné au 

changement. Des études récentes ont déjà rapporté des modifications des écosystèmes 

pélagiques arctiques (Hegseth et al. 2008, Wassmann et al. 2008), cependant de 

nombreuses données nécessaires à la compréhension du fonctionnement des écosystèmes 

marins arctiques manquent encore dans certaines régions (Cannack et al. 2006). L'objet de 

ce travail est l'étude la communauté phytoplanctonique, notamment en tennes de biomasse, 

de production primaire et de structure de taille, en relation avec les forçages 
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environnementaux dans la mer de Beaufort au cours de la période libre de glace. Cette 

étude était articulée autour de plusieurs hypothèses, abordées dans les différents chapitres, 

selon lesquelles : (1) hors des périodes d'efflorescence, la communauté phytoplanctonique 

serait dominée par les cellules de petite taille, (2) la disponibilité en lumière et le couvert de 

glace modèleraient la dynamique saisonnière des communautés et de la production 

phytoplanctonique, (3) la forte stratification de la colonne d'eau limiterait la production 

primaire au cours de la période libre de glace en empêchant de nouveaux apports 

d'éléments nutritifs dans la zone euphotique, (4) les eaux du fleuve Mackenzie 

influenceraient les communautés phytoplanctoniques par le biais des apports d'eau douce, 

d 'éléments nutritifs et de particules, et (5) les phénomènes d'upwelling le long du plateau 

continental favoriseraient le développement du phytoplancton. 

Le premier chapitre traite plus particulièrement de la biomasse et de la production 

phytoplanctonique au cours de la période automnale. La fin de la période productive a été 

très peu étudiée dans l'océan Arctique en général, en raison des contraintes logistiques liées 

aux conditions climatiques (Hegseth 1997). Le programme CASES a permis d'étudier la 

transition d'une période favorable à la production phytoplanctonique à une période de 

forçages environnementaux extrêmes (diminution de la lumière incidente et des 

températures jusqu'au point de congélation, et la formation de glace). De plus, des 

campagnes d'échantillonnage, couvrant une même période au cours de deux années 

successives, a permis une comparaison interannuelle. La distribution spatiale, ainsi que la 
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dynamique temporelle, de la biomasse phytoplanctonique ont été mises en relation avec 

facteurs environnementaux. 

Le deuxième chapitre correspond à l'étude de la biomasse et de la production 

phytoplanctonique au cours du printemps et de l'été, après dislocation du couvert de glace. 

La dynamique saisonnière du phytoplancton a été plus particulièrement étudiée dans le 

golfe d'Amundsen, alors que les variations de la distribution spatiale du phytoplancton ont 

été considérées dans le golfe d 'Amundsen et au niveau du plateau continental de 

Mackenzie, sous l 'influence de forts débits du fleuve Mackenzie. De plus, la production 

primaire annuelle a été estimée pour le golfe d'Amundsen à partir d'un cycle saisonnier 

composite de production primaire. 

Le troisième chapitre a été consacré à la caractérisation de la structure de taille des 

communautés phytoplanctoniques <20 !lm. Dans l'océan Arctique, les populations du 

picophytoplancton et du nanophytoplancton de petite taille ne sont étudiées que depuis 

quelques années, malgré leur grande importance au sem des communautés 

phytoplanctoniques (Mostajir et al. 2001, Not et al. 2005, Lovejoy et al. 2006, 2007). Les 

variations saisonnières et spatiales de la distribution du pico- et du nanophytoplancton ont 

été examinées en relation avec les forçages environnementaux, tels que la dynamique du 

couvert de glace et les apports du fleuve Mackenzie. 



CHAPITRE 1 

PHYTOPLANKTON BIOMASS AND PRODUCTION IN THE SOUTHEASTERN 

BEAUFORT SEA IN FALL 2002 AND 2003 
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RESUME 

Les communautés phytoplanctoniques du plateau continental du Mackenzie et du 

golfe d'Amundsen (mer de Beaufort) ont été caractérisées (biomasse chlorophyllienne, 

production primaire et taxonomie) en automne en 2002 et en 2003. Les différences spatiales 

étaient marquées, et ce, particulièrement en début d'automne. La biomasse 

phytoplanctonique totale et la contribution des grandes cellules (>5 !lm) à la biomasse 

étaient plus élevées dans le golfe d'Amundsen que sur le plateau continental du Mackenzie. 

La communauté des cellules autotrophes (> 10 !lm) était dominée en abondance par les 

diatomées dans le golfe d 'Amundsen et par les dinoflagellés sur le plateau continental du 

Mackenzie. L'abondance des chlorophycées mettait en évidence l'influence du fleuve 

Mackenzie sur le plateau continental du Mackenzie. Contrairement à l'année 2002, lorsque 

tous les échantillons provenaient du début de l' automne, la communauté phytoplanctonique 

du golfe d'Amundsen, en 2003, présentait les caractéristiques d'une efflorescence 

automnale, qui aurait possiblement culminé à la fin du mois de septembre. Cependant, en 

début d'automne, les taux de production primaire étaient similaires pour les deux années, 

atteignant une moyenne de 75 mg C m-2 fi. Les proportions élevées de production primaire 

par rapport à la biomasse et la dominance générale des cellules de petite taille «5 !lm) 

suggèrent que la production en mer de Beaufort était entretenue par un recyclage actif. En 

automne 2003 , la diminution de la biomasse phytoplanctonique et de la production primaire 

au cours du temps était probablement due à la diminution de la disponibilité en lumière. 

Enfin, la production primaire estimée, dans cette étude, pour la période automnale, de la 

mi-septembre à la fin du mois d'octobre, pourrait augmenter de 15 % J'estimation de 

production primaire annuelle précédente pour la mer de Beaufort. 
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ABSTRACT 

The phytoplankton community of the Mackenzie shelf and the Amundsen Gulf 

(southeastem Beaufort Sea) was characterized (e.g. chlorophyll a biomass, pnmary 

production and taxonomy) during fall 2002 and 2003. Spatial differences were evident, 

particularly in early fall. Total phytoplankton biomass and the contribution of large cells 

(>5 )..lm) to biomass where higher in the Amundsen Gulf than on the Mackenzie shelf. The 

community of autotrophic cells (> 1 0 ~m) was numerically dominated by diatoms in the 

Amundsen Gulf and by dinoflagellates on the Mackenzie shelf. The abundance of 

chlorophytes revealed the influence of the Mackenzie River on the Mackenzie shelf. 

Contrary to 2002, when a1l measurements were from early fa 11 , the phytoplankton 

community of the Amundsen Gulf in 2003 presented the characteristics of a late bloom, 

which presumably peaked in late September. In early fall , however, rates of primary 

production were similar for both years, averaging 75 mg C m-2 d-J
• High primary 

production-to-biomass ratios and overall dominance of small cells «5 ~m) suggest that 

pelagie production in the southeastem Beaufort Sea was sustained by active recycling. 

During faH 2003, a temporal decrease in phytoplankton biomass and primary production 

likely resulted from decreasing light availability. Overall, the faU primary production 

estimated in this study, from mid-September to the end of October, cou Id increase the 

annual primary production previously estimated for the Beaufort Sea by 15 %. 
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INTRODUCTION 

The increasing impacts of climate change at northem latitudes make arctic 

ecosystems a major environmental concem (ACIA 2005). Field studies, as weil as 

numerical simulations, indicate that the Arctic Ocean and more particularly its marginal 

seas are warming [aster than other oceans (Rigor et al. 2000, Comiso 2003). The arctic sea 

ice minimum extent (i .e. summer) decreased of about 8x 105 km2 over the 1978-2003 period 

(Johannessen et al. 2004), and numerical models predict that the Arctic Ocean could be free 

of ice in summer by the end of the 21 st century (Serreze et al. 2007) or as early as 2040 

(Rolland et al. 2006). Since 2002, the Arctic Ocean has experienced minimal sea ice extent 

records, with a new maximum in summer open water in September 2007 (NSIDC 2007, 

Comiso et al. 2008), suggesting the acceleration of sea ice cover shrinking. The Arctic 

Ocean is also strongly influenced by large river inflow (Macdonald et al. 2004a), and the 

freshwater inputs will likely increase through the intensification of the hydrological cycle 

(Peterson et al. 2002); therefore its marginal seas would be ev en more sensitive to c1imate 

change impact (ACIA 2005). Arctic ecosystems are expected to be affected by c1imate 

changes, e.g., shifts in the biodiversity and the food web structure (Gradinger & Bluhm 

2005); though it is unclear how these changes will impact the components and pathways of 

carbon cycling (Walsh et al. 2004, Wassmann 2004). Analysis of cJimate-related changes in 

arctic ecosystems and model validation need to be based on historical measurements, in 

order to identify where the impacts of climate change are most likely to be observed. 
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However su ch data are stiU missing in sorne biologically active regions and seasons in the 

Arctic Ocean (Carmack & Wassmann 2006). 

Arctic marine environments are characterized by large seasonal variations in solar 

radiation and sea ice coyer (Sakshaug & Slagstad 1991). Indeed, pelagie phytoplankton 

production is usually constrained to the summer months between sea ice melting in spring 

and the freeze-up in faU, and high phytoplankton production and standing stocks are 

restricted to relatively short periods of the ice-free season (Sakshaug 2004). Moreover, 

phytoplankton is the most important mediator of carbon flow in pelagic ecosystems, and 

phytoplankton cell size is a critical factor in the fate of carbon through the food web 

(Legendre & Le Fèvre 1995). For example, carbon export and transfer to higher trophic 

levels are favoured by large ceIl production (Legendre & Le F èvre 1991). However, blooms 

of large microphytoplankton cells are often constrained to a couple of weeks and smaller 

cells, i.e. nano- and picophytoplankton, often dominate outside these periods (Not et al. 

2005). 

The highest rates of primary production in the Arctic Ocean are observed on 

continental shelves and in polynyas (Sakshaug 2004, Stirling 1997). Nevertheless, little 

research has been undertaken on the phytoplankton dynamics of interior continental shelves 

due to logistical constraints, and this holds particularly true for the southeastem Beaufort 

Sea (Homer & Schrader 1982, Carmack et al. 2004). In the Beaufort Sea, the last study of 

phytoplankton on the Mackenzie shelf was conducted in the late 80's (Cannack et al. 

2004), and very few direct measurements were taken in the Amundsen Gulf (Lee & 

Withledge 2005). Recent satellite-based surveys have revealed a strong interannual 
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variability of the sea ice coyer and potentially of phytoplankton dynamics in the Amundsen 

Gulf, which contains a large reCUITent polynya (Arrigo & Van Dijken 2004). In the CUITent 

c1imate change context, the ice-free season, that is the phytoplankton productive season, is 

expected to lengthen (Sakshaug 2004); however, Iittle is known about phytoplankton 

dynamics at the end of the growth season (Hegseth 1997), under decreasing temperature, 

sea ice fonnation, and reduced light availability. Conditions at the end of the productive 

season have been rarely studied in the Arctic (Heimdal 1983, Hegseth 1997), but numerical 

models predict that light limitation would terminate phytoplankton growth (Slagstad & 

St01e-Hansen 1991). 

The spatio-temporal distribution of phytoplankton needs to be studied in order to 

understand ecosystems and biogeochemical cycles and to later model the impacts of cJimate 

change on the Arctic Ocean and its marginal seas (Cannack & Wassmann 2006). In the 

framework of the Canadian Arctic Shelf Exchange Study (CASES), the southeastem 

Beaufort Sea, comprising the Mackenzie continental shelf and the Amundsen Gulf, was 

studied in faU 2002 (mid-September to mid-October) and 2003 (end of September to end of 

November). This study focuses on the factors influencing phytoplankton production and 

biomass distribution, as weil as interannual variability, and development at the end of the 

growth season in the southeastem Beaufort Sea. 
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MA TE RIALS AND METHODS 

Studyarea 

The Mackenzie shelfis sha\low and bounded by the Amundsen Gulfto the east, and 

the Canada Basin to the north. The surface circulation in the Mackenzie shelf and its 

surrounding regions is mainly driven by wind forcing, the Mackenzie River discharge, and 

thennohaline convection during freeze-up (Cannack & Chapman 2003). The Mackenzie 

shelf is strongly influenced by the Mackenzie River, which has the highest sediment and 

organic carbon loads of aIl arctic rivers (Holmes et al. 2002). Over the sampling area, the 

water colUlTID is typically fonned by the Polar Mixed Layer (0-50 m), overlying the Co Id 

Halocline Layer (50-200 m), mainly fOl-med by waters of Pacific origin, and the Atlantic 

Layer (>200 m) (Cannack et al. 1989, McLaughlin et al. 1996). Beyond the shelf-break, the 

surface circulation is dominated by the south bran ch of the anticyclonic Beaufort gyre that 

drives the pack ice and the surface waters westward (Cannack & Macdonald 2002), below 

50-85 m, the eastward Beaufort counter-current carries waters of Pacific origin along the 

slope (Pickart 2004). 

The area is characterized by three main features related to sea ice dynamics. On the 

shelf, the new sea ice typically fom1s in October; offshore, the mobile permanent pack ice 

comprises annual and multiyear sea ice and drifts following the Beaufort gyre, while the 

Cape Bathurst polynya is generally located at the entrance of the Amundsen Gulf (Barber & 

Hanesiak 2004) . 
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Region definition 

Stations were separated according to their locations relative to 128.35°W, which 

barely corresponds to the tip of the Cape Bathurst, as in Simpson et al. (2008). Stations east 

of 128.35°W with a depth > 150 m were considered to be in the Amundsen Gulfregion, and 

stations west of 128.35°W on the Mackenzie shelf and sI ope were considered as Mackenzie 

shelf stations (Fig. 1) (station CA 13 in early faU 2003 was excJuded from the shelf region 

owing to its cJoseness to the pack ice) . 

Sampling 

Sampling took place, during the Canadian Arctic Shelf Exchange Study (CASES), 

in the southeastern Beaufort Sea (69-72°N, 120-1400 W) over the Mackenzie shelfarea and 

the Amundsen Gulf, during the preliminary cruise of fall 2002 (23 September - 14 

October) on board the CCGS Pierre Radisson, and during early (30 September - 13 

October) and late faU 2003 (16 October - 14 November) on board the CCGS Amundsen. 

We separated the sampling periods in early and late fall periods, according to the time 

elapsed between sampling of the shelf and gulf regions (one week or more) and also to the 

larger decrease in light availability from mid-October. Water samples were collected with a 

rosette sampler SBE-carousel (Seabird) fitted with twenty-four 12 1 Niskin bottles (Ocean 

Test Equipment Inc.), a SBE-9pIus CTD and a Seapoint chlorophyll fluorometer. AU water 

samples were collected at fixed depth (surface, 5, 10, 15, 25 and 50 m) and at fluorescence 

maximum at ail stations (n=73) (Table 1). At stations with primary production estimations 

(n= 16), additional water samples were taken at six or five photic depths detailed below 



22 

(Table 1). The photic depths were established after calculating the light attenuation 

coefficient, -KI, using a Secchi disk (Parsons et al. 1984). Samples for phytoplankton were 

pre-filtered on a 333 !lm mesh in order to remove large zooplankton. 

The depth of the Surface Mixed Layer (SML) was caIculated according to Thomson 

and Fine (2003) and the bottom of the Polar Mixed Layer (PML) is defined by the 31.6 

isohaline (Carmack et al. 1989). 

Inorganic nutrient concentrations (nitrate + nitrite, phosphate and silicic acid) were 

measured on board using standard colorimetric methods (Grasshoff 1999) as described in 

Schloss et al. (2008) for 2002 and in Simpson et al. (2008) for 2003 . 

In 2003, downwelling PAR irradiance was collected using a GUV-SI0 surface 

radiometer (Biospherical Instruments) from 30 September to 7 November. Data collection 

was stopped before the end of the cruise due to weather conditions (snow faIl). 
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Table 1: Stations sampled for biomass, pnmary production and taxonomy during ail 
crulses. 

Biomass 

Production 

Taxonomy 

2002 

Early fall 

23 Sep - 14 Oct 

Ali stations 
(36) 

24, 49, 65,66, 83 , 101 

24, 49, 65, 66, 83 , 101 

Early fall 

30 Sep - l3 Oct 

Ail stations 
(11) 

718, CA07, CAIO, 
CA15 , CA18 

718, CA07, CAIO, 
CA15 , CA18 

2003 

Late faU 

16 Oct - 14 Nov 

AIl stations 
(26) 

718,709, 506, 124, 
112, 200 

718, 715, 712, 709, 
706, 703 , 124, 112, 
100, 206, 200, 400, 
406, 409, 415, 312, 

306, 300 
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1. Shelf region + Gulf region It. Other 

Figure 1: Location of stations sampled in (a) early fa112002, (b) early fa112003 and (c) late 
fall 2003 (AG: Amundsen Gulf; FB: Franklin Bay; MS: Mackenzie Shelf). 
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Chlorophyll a determination 

For the determination of phytopiankton chlorophyll a (chi a) concentration, water 

sub-sampies of 0.5 to 1 1 were filtered onto glass fibre filters (poresize 0.7 f.lm , Whatman 

GF/F) (total biomass) and 5 f.lm polycarbonate filters (Poretics) (large cells biomass). Chi a 

concentrations were determined with a 10-AU Turner Designs fluorometer following 24 hr 

extraction in 90 % acetone at 5°C in the dark without grinding (Parsons et al. 1984). 

Concentrations of chi a were corrected for phaeopigments by acidification of the extract 

(Knap et al. 1996). Ali values were integrated over 50 m at all stations. At stations with 

primary production estimates, chI a concentrations were also integrated over the euphotic 

zone. As the euphotic zone was not measured at ail stations, the depth of 50 m was chosen 

for integration of chi a concentration values in order to include the euphotic zone, the PML 

and the deep chi a maximum for most of the stations. 

Phytoplankton production 

Particulate primary production was estimated from six photic depths in 2002 (100, 

40, 20, 10, 5 and 1 % of surface irradiance) and five photic depths in 2003 (100, 50,25 , 10 

and 1 % of surface irradiance) using the 14C uptake method (Knap et al. 1996). Samples 

were incubated in 500 ml polycarbonate bottles (two Iight and one dark with DCMU [3-

(3 ,4-dichlorophenyl)-1 , I-dimethyi urea]), inoculated with 20 to 30 f.lCi of NaH I4C03-, and 

placed under in situ simulated conditions in on-deck incubators, with running surface 

seawater and incident irradiances adjusted with neutrai density filters . The total added 

activity was deten11ined in triplicates by adding 250 f.ll of ethanolamine and 10 ml Ecolume 
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scintillation fluid (lCN) to a 250 I.tI inoculated water sub-sample. After 24 hours of 

incubation, water sub-samples (150 ml or more) were filtered onto glass fibre filters 

(poresize 0.7 )lm, Whatman GF/F) (total particulate primary production) and 5)lm 

polycarbonate filters (Poretics) (large cell particulate primary production). Non-

incorporated 14C was removed by addition of 250)l1 of 0.5N HCL Vpon complete 

evaporation of the acid, 10 ml of Ecolume scintillation cocktail were added. The activity 

was detennined using a Beckman Liquid scintillation system 3801 Series in 2002 and a 

Packard Liquid Scintillation Analyzer Tri-Carb 2900 TR in 2003. Primary production rates 

were estimated with the actual DIC concentrations measured by coulometric titration 

(Johnson et al. 1993, DOE 1994). AlI counts were dark-corrected and daily pnmary 

production rates were integrated over the euphotic zone. Incubations were initiated early in 

the moming (minimal PAR) in order to reduce the variability in 14C accumulation 

(Mingelbier et al. 1994). Water samples for primary production measurements were taken 

in ice-free waters in early faH 2002 and 2003, and at stations with no or undefined sea ice 

coyer (i.e. partial presence of new ice) in late fall , therefore no correction for sea ice 

concentration was applied. 

The [ratio can be estimated from primary production rates following this equation: 

f= 0.04 + 0.74 (PUPT), r2 = 0.80, where PT corresponds to total particulate primary 

production in the euphotic zone and PL to large cells production in the euphotic zone 

(Tremblay et al. 1997). The phytoplankton new production, which corresponds to the 

maximum potential export of particulate primary production from the euphotic zone, can be 
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further derived from the [ratios (Dugdale & Goering 1967, Eppley & Peterson 1979): 

P ex = PT x [ratio. 

Taxonomie identification 

Water sub-samples (250 ml) were collected at the fluorescence maxImum for 

phytoplankton cell identification and enumeration (Table 1). The samples were fixed with 

acidic Lugol solution (4 % final concentration) and stored in the dark at 4°C until analysis. 

Water samples of 50 to 100 ml were settled in Zeiss-type settling chambers for at least 12 

hr before cell enumeration with a Leitz Diavert inverted microscope with phase contrast 

optics at 250x and 400x. The main taxonomie references used to identify phytoplankton 

were Tomas (1997), Jensen and M0estrup (1998), Bérard-Therriault et al. (1999) and 

Throndsen et al. (2003). Some dinoflagellates and diatoms unidentified were grouped in 

size classes (5-10, 11-20, 21-50 and >50 ).lIn) , while chlorophytes, chrysophytes, 

dictyochophytes, cryptophytes, euglenophytes, prasinophytes and prymnesiophytes 

unidentified to species or genus level were also grouped according to their size classes «5, 

5-10, 11-20 and >20 )..un), as weil as unidentified flagellates. 

Statistical analyses 

In order to investigate differences in chI a biomass integrated over 50 m (total and 

large size fractions) between the different regions and cruises, the non-parametric pair 

comparison Mann-Whitney U test was applied, as the data did not me et nonnal distribution 

and homoscedasticity (Zar 1999). The small number of observations for primary production 
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rates and [ratios prec1uded statistical analyses of regional differences. Association between 

pairs of surface values of variables was measured with the Pearson moment pro du ct 

correlation (r coefficient) for aU variables, as there were no large deviations from nonnality 

(Zar 1999). We ran partial correlations to examine the interactions between three variables 

in order to remove spurious correlations. First-order partial correlation considers the 

relation between two variables, while holding constant the value of a third variable (Zar 

1999), (coefficient rx,ylz represents the relationship between the variables x and y, while 

holding the variable z constant), significance tests for the first-order partial coefficients 

were made with Student's t-test with df = n - 3 (My ers & Weil 2003). Regressions were 

perfonned on paired variables for which a significant correlation was found. Ali statistical 

tests were carried out with the Statistica 6.0 pro gram (StatSoft). 

Multivariate approaches were applied to the community analysis. Phytoplankton 

ceU abundances data were ordinated by non-metric multi-dimensional scaling (MDS) 

(Clarke 1993). The input was a similarity matrix based on Bray-Curtis similarity of fourth-

root transformed ceU abundances, to put more weight on the species composition in the 

samples (Field et al. 1982). The relevant species, in supporting regional or temporal 

differences, were further detelmined by the SIMPER procedure. The multivariate analyses 

were perfonned with the program Primer version 5.0 (Plymouth Marine Laboratory). 
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RESULTS 

Physico-chemical conditions 

Infonnation on the sea ice coyer during the sampling periods was gathered from the 

Canadian Ice Service. In 2002, stations 18 to 33 and 49 to 65 were sampled in ice-free 

waters, whereas stations 36 to 45 were sampled at the edge of the arctic pack ice (see Fig. 

la for station location). Newly fonned sea ice was present at stations 69 to 81 , while the 

pack ice had moved south so as both old and grey drifting ice were present from stations 83 

to 92. Stations in the middle part of the Amundsen Gulf were free of ice at time of sampling 

(stations 95 to 101), whereas stations sampled in the southern part of the gulf(stations 3 to 

15, 104, 107 and 110) were partly covered by new and grey ice. In early faIl 2003 , old ice 

in strips was present at stations 718 and CA 1 0 over the Mackenzie shelf. Stations CA04, 

CA07 and CA 13 were sampled close to the pack ice (see Fig. 1 b for station location). In the 

Amundsen Gulf, ail stations were ice-free the second week of October 2003. In late fall 

2003, newly fonned sea ice was present over the Mackenzie shelf and the Amundsen Gulf, 

and started to consolidate the beginning ofNovember. 

The daylength decreased in 2002 from 14 hr on 23 September to 9 hr on 14 

October. In 2003 the daylength decreased from 13 to 9 hr for the early faH period and from 

8 hr on 19 October to 3 hr on 19 November for the late fall period. Daily solar incoming 

PAR irradiance measured in 2003 declined with time and ranged between 2321 and 7361 

mmol photon m-2 dol in early fall and between 336 and 1649 mmol photon m-2 dol in late 

faU. 
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Salinity and temperature allowed us to identify the stations strongly influenced by 

the Mackenzie River outflow. The fall 2002 temperature and salinity fields throughout the 

sampling area have been described by Garneau et al. (2006). Sea surface temperature was 

generally below -0.5°C beyond the influence of the river, while river-influenced stations 

had wanner surface temperature and low salinity (i.e. stations 59, 62, 66, 69 and 75; see 

Fig. la for station location). However, the marine physical characteristics of the most 

inshore station 65 were attributed to upwelling of deeper water (Garneau et al. 2006). 

During early fall 2003, sea surface temperature was usually below -0.5°C and only station 

718 (see Fig. lb for station location) was influenced by the river plume. Later in fall along 

the transect off the Mackenzie River mouth, the freshwater influence was only detected at 

stations 718 and 715 (see Fig. le for station location). At that time, sea surface temperature 

was colder and below -1 °C at most stations. 

Both in 2002 and 2003 , the surface mixed layer (SML) was generally thinner on the 

Mackenzie shelf, ranging typically from 5 m close to the river mouth to 12-15 m offshore. 

In the Amundsen Gulf, the average SML depth was usually larger than on the shelf ranging 

from 7 to 20 m. The SML was generally thicker during late fall th an earlier in the year. 

The concentrations of phosphate and silicic acid were always in excess in both 2002 

and 2003 compared to dissolved inorganic nitrogen, which was the limiting element 

(Simpson et al. 2008). In 2002, nitrate+nitrite were generally depleted throughout the PML 

with concentrations weil below 1 !lM in the SML and below 3-4 !lM at the bottom of the 

PML, and averaging 92 mmol m·2 over the first 50 m. The Amundsen Gulf area had slightly 

higher nitrate+nitrÏte concentrations than the shelf area. In eariy fall 2003, the 
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nitrate+nitrite distribution was the same with an average availability of 94 mmol m-2 over 

the first 50 m. Later in fa Il , despite a slight replenishment at the bottom of the PML, 

nitrate+nitrite concentrations remained low in the surface layer and averaged 120 mmol m-2 

over the first 50 m. 

Chlorophyll a concentrations 

In faIl 2002, chi a concentrations were generally ]ow « 1 mg m-3) throughout the 

water column. The maximum concentration usuaIly occurred at surface water, except for 

the stations north of the Mackenzie shelf close to the pennanent pack ice edge (36 to 45), 

where a weak deep chlorophyll maximum was observed. The vertical distribution of the 

chi a concentrations was similar on the Mackenzie shelf and in the Amundsen Gulf: 

concentrations were maximal in the SML (the top 10 to 20 meters approximately), 

decreased slightly down to the bottom of the PML or to the sediments on the shaIlow shelf 

and reached very low values below 50 m « 0.1 mg chi a m-3). In early faH 2003 , the 

vertical di stribution followed almost the same pattern, but in the middle of the Amundsen 

Gulf, a deep chi a maximum > 1 mg chI a m-3 was observed at about 25 m, between the 

SML and the bottom of the PML. Later in the faIl , chI a concentrations decreased with time 

from 0.80 to 0.l5 mg m-3 at the surface. The vertical distribution in the shelf and in the gulf 

regions followed the same trend as the one observed in 2002. 

Integrated chi a biomass (over 50 m), as weil as the contribution of large 

phytoplankton ce Ils to biomass, are presented in table 2 for both the shelf and gulf regions . 

In faIl 2002, from the end of September to mid-October, chi a biomass varied considerably 
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throughout the sampling area, i.e. from 2.8 to 25.9 mg m-2 at stations 62 in the river plume 

and 12 in Franklin Bay respectively (Fig. 2). Both biomass and contribution oflarge cells to 

biomass in the Amundsen Gulf were significantly higher than over the Mackenzie shelf 

region (Mann-Whitney U test, p < 0.01) (Table 2). Along the pack ice edge (stations 36 to 

45) , the biomass and the size structure were highly variable. This high variability was also 

observed on the Mackenzie shelf, where biomasses were higher at stations strongly 

influenced by freshwater inputs (i.e. stations 59, 66, 69 and 75) (Fig. 2). The biomass was 

more homogeneously distributed in the Amundsen Gulf, though high biomasses and 

contributions of large cells to biomass were observed in Franklin Bay. For the same period 

in 2003, phytoplankton biomass reached comparable values (9 .9 to 36.5 mg chi a m-2) (Fig. 

3). lndeed, on the Mackenzie shelf, there was no difference in biomass and size structure 

between the two years (Mann-Whitney U test, p > 0.05); whereas in the Amundsen Gulf, 

despite comparable biomasses for both year, the contribution of large cells to biomass was 

higher in 2003 (Mann-Whitney U test, p < 0.05) (Table 2), reaching a maximum of 61 % of 

the biomass at station CAlS . In 2003, the difference between the regions cou Id only be 

noted by the higher contribution of large cells to biomass in the Amundsen Gulf (Mann-

Whitney U test, p < 0.05), probably resulting from the small number of observations (Fig. 

3). Later in 2003, from mid-October to mid-November, integrated biomass decreased 

throughout this period from 15.5 to 6.3 mg chI a m-2
, which could at least partially explain 

the differences found between the Mackenzie shelf and the Amundsen Gulf, which was 

sampled later (Mann-Whitney U test, p < 0.05) (Fig. 4). However, the biomass size 
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structure was the same for both regions, and showed a strong dominance of cells smaller 

than 5 !lm (Fig. 4), which contributed on average to 70 % of the biomass. 

Table 2: Chi a biomass (integrated over the upper 50 m) and the relative contribution of 
large phytoplankton ce Ils (>5 !lm) to this biomass on the Mackenzie shelf and in the 
Amundsen Gulf during the different cruises, mean ± SD, the number of stations is in 
brackets. 

Chi a biomass Contribution of large cells (%) 
(mg m-2) 

2002 Shelf ll± 4.9 (13) 25 ± 8 (13) 
Early faH Gulf 18 ± 4.3 (16) 31 ± Il (16) 

2003 Shelf 14 ± 2.8 (5) 26 ± 12 (5) 
Early fall Gulf 26 ± 10.5 (4) 50 ± 12 (4) 

2003 Shelf 14 ± 1.7 (5) 34 ± 10 (5) 
Late faIl Gulf 10 ± 2.9 (13) 30 ± 7 (13) 
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Figure 2: Spatial distribution of chI a biomass (integrated over 50 m) in mg chI a m-2 during 
early fall 2002, with the percent contribution of large phytoplankton cells (>5 /lm) to 
biomass labelling each station. 
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Figure 3: Spatial distribution of chI a biomass (integrated over 50 m) in mg chI a m-2 during 
early fall 2003, with the percent contribution of large phytoplankton cells (>5 /lm) to 
biomass labelling each station. 
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Figure 4: Spatial distribution of chI a biomass (integrated over 50 m) in mg chI a m-2 during 
Jate fall 2003 , with the percent contribution of large phytoplankton cells (>5 /lm) to 
biomass labelling each station. 

Primary production 

Maximum production rates were generally observed at the surface in both 2002 and 

2003 sampling periods. The contribution of large phytoplankton cells to primary production 

was the same as that observed for the biomass for ail the sampling periods (data not 

shown). Integrated particulate primary production rates, which were estimated from the end 

of September to the beginning of November, are presented in figure 5. From the end of 

September to mid-October 2002, integrated primary production rates averaged 73 ± 36 

mg C m-2 d-I, which was close to the average value of 78 ± 27 mg C m-2 d- I for the same 

period in 2003. Later in 2003, production rates decreased strongly until 4 November, and 

averaged a third of the rates seen earlier in the season (23 ± Il mg C m-2 d- I
) . 

In 2002,fratios were about 0.17 for the whole sampling area. In 2003 for the same 

period, fratios were about the same on the Mackenzie shelf area (0.18), whereas higher 
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values above 0.30 were recorded in the Amundsen Gulf. During the second half of October, 

f-ratios remained about the same level as in 2002 or earlier in the season in 2003 on the 

Mackenzie shelf and averaged 0.17. 

The potential export of primary production (Pex) from the euphotic zone was 

estimated on the basis of the f-ratio calculations. P ex estimates were variable throughout the 

sampling area and the seasons (Fig. 5). In 2002, Pex averaged 14 ± 10 mg C m-2 d- 1 and 

never exceeded 25 % of the primary production. One year later, P ex rates were almost the 

same, averaging 25 ± 22 mg C m-2 d- 1
, but they accounted for up to 60 % of the primary 

production in the Amundsen Gulf. Later in the season, Pex decreased like the primary 

production rates to low levels of 4 ± 2 mg C m-2 d- 1 on average. 
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Figure 5: Rates of total particulate primary production (PT) and estimates of maximum 
potential export of this particulate primary production (Pex) (in mg C m-2 d- 1

), during the 
three cruises: early faU 2002 (stations 24, 49, 65, 66 and 101) and 2003 (stations 718, 
CA07, CA IO, CAlS and CAI8) and late faH 2003 (stations 718,709,506, 124, 112 and 
200). 
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Cell abundance and taxonomie composition 

The phytoplankton communities of the Mackenzie shelf and Amundsen Gulf 

regions were composed of 229 taxa, incJuding 53 diatom, 64 dinoflage11ate and 45 

flagellate species. In early faU, phytoplankton ceU abundances were comparable for 2002 

and 2003 , ranging from 14x 104 to 82 x 104 ceUs rI and from 17x 104 to 73 x 104 ce11s rI , 

respectively; while decreasing in late fa11 2003, with abundances ranging from 15 x l04 to 

46 x 104 ceUs rI . The phytoplanktonic community was mainly composed ofphytoflage11ates, 

which accounted for 58 to 82 % of the ceU abundance during a11 the sampling periods, 

except in early faU 2003 in the Amundsen Gulf, where the community was dominated by 

diatoms (49 % of the ceU abundance on average). During both sampling periods in 2002 

and 2003 , no cyanobacteria were observed in samples from the Mackenzie shelf and the 

Amundsen Gulf. Some regional differences based on the main algal classes were observed 

during aU sampling periods (Table 3). Chlorophytes were only present on the Mackenzie 

shelf even at very low abundances (1106 to 2212 ceUs rI). In the Amundsen Gulf, 

dinoflagellates were mostly represented by athecate speCles (Gymondinium spp. or 

Gyrodinium spp.), whereas in the shelf area thecate specIes (Heterocapsa rotundata 

(Lohmann) Hansen) were more abundant. Fina11y, the Mackenzie shelf area also showed 

higher abundances of prasinophytes (Pyramimonas spp.) and lower abundances of diatoms 

than the Amundsen Gulf. We further examined phytoplankton communities using MDS 

analysis (Fig. 6). In 2003, samples from the Mackenzie shelf and the Amundsen Gulf were 

weU separated, whereas this regional difference was less pronounced in 2002. Early fall 

2003 samples from the Amundsen Gulf were also distinct from those of the late faU period. 
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On the Mackenzie shelf, the same species or genera were responsible for the similarity 

within and between the sampling season, i.e. Chrysochromulina spinifera (Fournier) 

Pienaar et Norris, Heterocapsa rotundata , Pyramimonas spp. , Gymnodinium spp (11 -20 

!lm) and <5 !lm unidentified flagellates . In the shelf region in 2003 , the community 

composition of the two sampling periods, i.e. early and late faIl , had a similarity higher than 

50 % preventing them to separate out on theMDS plot. The outlier from the 'shelf 2002 ' 

group (upper right hand corner of Fig. 6) was station 65 ; there pennate diatoms were 

unusually abundant (2 x 104 cell s rI), whereas dinoflageIlates, chrysophytes, cryptophytes 

and prasinophytes had very low cell abundances, and chlorophytes and choanoflagellates 

were completely absent. In the Amundsen Gulf, the dissimilarity between early and late fall 

2003 was mostly due to the following centric diatoms taxa which dominated in early fa1l , 

Chaetoceros contortus Schütt, C. socialis Lauder, C. diadema (Ehrenberg) Gran, C. 

constrictus Gran, C. ingolfianus Ostenfeld, spores of Chaetoceros spp., Leptocylindrus 

danicus Cleve and Attheya septentrionalis (0strup) Crawford. On the contrary in late fall 

2003, the phytoplankton community was characterized by the dominance of <10 /lm 

unidentified flagellates, Chrysochromulina spinifera, Chrysochromulina spp. , 

Gymnodinium spp. , Amphidinium cf. kesslitzii Schi ller, Pseudopedinella pyriforme Carter 

and Thalassionema nitzschioides (Grunow) Mereschkowsky. 
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Figure 6: Multidimensional scaling ordination plot of phytoplankton community 
composition (based on species abundances) (open symbols: early faH 2002, grey symbols: 
early fall 2003, black symbols: late faH 2003 ; circles: Mackenzie shelf stations, diamonds: 
Amundsen Gulf stations and triangles: stations out of Mackenzie shelf and Amundsen Gulf 
regions). 
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Table 3: Average percent contribution of the major algal groups to the phytoplankton cell 
abundances on the Mackenzie shelf and in the Amundsen Gulf for the two sampling years 
(in early fall 2002, station 65 was not incJuded in the average calculation of the shelf 
region). 

2002 2003 

Barly fall Barly faH Late fall 

Shelf Gulf Shelf Gulf Shelf Gulf 

Diatoms 1.1 6.5 4.9 48.7 3.4 4.2 
Centrics 0.7 4.1 3.6 45.0 2.9 2.7 
Pennates 0.4 2.5 1.3 3.7 0.5 1.5 

Dinoflagellates 9.7 11.6 20.8 8.9 14.2 9.7 
Athecate 4.7 9.7 10.0 8.0 8.1 9.4 
Thecate 5.0 1.9 10.8 0.9 6.1 0.3 

Chlorophytes 0.3 0.0 0.5 0.0 0.8 0.0 
Chrysophytes 1.4 0.5 0.8 0.6 0.6 0.0 
Dictyochophyceae 2.1 2.8 1.2 0.4 2.3 1.4 
Cryptophytes 7.2 5.7 6.1 1.5 2.0 1.2 
Prasinophytes 26.2 4.3 17.0 0.5 15.3 1.8 
Prymnesiophytes 5.9 21.3 14.7 4.9 25 .0 23.9 
Unidentified flagellates 36.4 40.2 17.1 30.3 25.6 53.0 
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DISCUSSION 

Estimates of phytoplankton biomass in the Beaufort Sea are very scarce and were 

until now absent for the end of the productive period, i.e. the fall (Homer & Schrader 1982, 

Cannack et al. 2004). However, the low biomass « 1 mg chI a m-3) we observed during 

two consecutive autumns are consistent with concentrations measured at the end of 

September in waters northwest of Spitsbergen (Heimdal 1983). Integrated biomasses for the 

whole Beaufort Sea were on average 15.8 and 10.5 mg chi a m-2 for early and late faIl , 

respectively, consistent with the range of 9.6 to 24.0 mg chi a m-2 measured in early 

October in the Barents Sea (Hegseth 1997). Our biomass estimates were also within the 

range of 7.1 to 28 mg chI a m-2 recorded in the Weddell Sea during austral faH , in April 

(Dower et al. 1996) but twice higher than the range of 4.1 to 2.4 mg chI a m-2 measured in 

the Ross Sea in April (Smith et al. 2000). During the two faH seasons and throughout the 

study area, the phytoplankton biomass was generally dominated by small phytoplankton 

cells «5 /lm) , which contributed to about 70 % of the biomass, except in early fall 2003 in 

the Amundsen Gulf. The dominance of small ceHs has been previously reported in the 

Beaufort Sea in fall 2002 (Garneau et al. 2006, Schloss et al. 2008) and in the Greenland 

Sea in October (Gradinger & Ikavalko 1998), as weIl as in summer in the central Arctic 

(Gosselin et al. 1997) and the Barents Sea (Not et al. 2005). 

During our study, the strong stratification constrained the vertical distribution of the 

phytoplanktonic biomass in the shallow SML and the PML. In ice-covered regions, 

concentration of phytoplankton biomass in upper waters is typical, owing to the 
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stratification due to ice melt in summer (Borstadt & Gower 1984). Consistent with previous 

studies of the Beaufort Sea (Macdonald et al. 1987, Cannack et al. 2004), nitrogen .was the 

potential limiting element for phytoplankton growth, as indicated by N/P ratios always < 6 

in the upper 50 m. The strong episodic winds blowing during 2002 and 2003 sampling 

periods (Environment Canada 2002, 2003) were unable to al!ow a significant replenishment 

of the surface water layers in nitrogen, because of the strong stratification. In fall 2003, 

Simpson et al. (2008) reported high ammonium concentrations of 17.4 mmol m-2 in the 

PML, which accounted for about 20 % of the total inorganic nitrogen sources. Those high 

ammonium concentrations suggest an active nitrogen recycling in the upper water colmnn, 

supporting the general dominance of small phytoplanktonic cells on biomass observed in 

2003 (except in the Amundsen Gulf in early fall). 

Spatial distribution 

Despite different sampling coverage during the two years, some regional differences 

in the phytoplankton community between the Mackenzie shelf and the Amundsen Gulf 

regions persisted, and some general trends can characterized both regions, apart from the 

early fall period in the Amundsen Gulf. The spatial differences were solely based on 

integrated phytoplankton biomass levels and biomass size structure on the 5 Ilm threshold, 

and further confinned by taxonomie identifications. In the early fal! periods of 2002 and 

2003, the Amundsen Gulf was characterized by higher biomasses and a higher contribution 

of large phytoplankton cells to biomass compared to the Mackenzie shelf region (Table 2). 

The stronger stratification on the Mackenzie shelf, likely due to freshwater inflow, could 
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maintain less favourable conditions for phytoplankton growth in surface waters, with a 

severe light attenuation by particle load, and nitrogen deficiency as the Mackenzie River is 

onlya weak source ofthis element (Cannack et al. 2004, Simpson et al. 2008). 

Prasinophytes were an important group of the Mackenzie shelf phytoplankton 

community accounting for up to 31 % of the total phytoplankton ceIl abundance (Table 3), 

which is consistent with pigment analyses perfonned by Lovejoy et al. (2007), showing that 

prasinophytes made up 38 % of chi a concentrations in faIl 2002. The taxonomie 

composition of dinoflagellates also showed sorne marked differences between the 

Mackenzie shelf and the Amundsen Gulf region (Table 3), with almost comparable cell 

abundances of thecate and athecate species in the shelf region as opposed to a much greater 

cell number of athecate over the thecate species in the gulf region. Thecate dinoflagellates 

were mainly represented by a single species Heterocapsa rotundata, which is lmown as 

autotrophic (Olli 1999), while athecate dinoflagellates were mostIy composed of species 

from the genera Gy mnodinium and Gyrodinium, known as being capable of heterotrophy 

(Levinsen et al. 1999, Jensen & Hansen 2000, Levinsen & Nielsen 2002, Rat'kova & 

Wassmann 2002). Thecate dinoflagellates dominated autotrophic phytoplankton cells larger 

than 10 flm on the Mackenzie shelf, while diatoms were paramount for this group in the 

Amundsen Gulf for aIl the sampling periods. The high contribution to cell abundance of 

potentially heterotrophic athecate dinoflagellates, among cells larger than 10 flm, suggests 

the importance of the microbial food web in the southeastern Beaufort Sea during the 

autumnal season, which has been previously highlighted by some authors (Parsons et al. 

1989, Garneau et al. 2006, Simpson et al. 2008). Chlorophytes were only observed on the 
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Mackenzie shelf, and during late fall 2003 their abundance decreased with the distance 

offshore, which implied a dilution of the freshwater species cells as the river waters spread 

over the shelf; a similar feature was reported for the coastal Laptev Sea (Tuschling et al. 

2000). 

In 2002, the more intensive sampling over the Mackenzie shelf highlighted the high 

spatial variability and the importance of the freshwater input over this region. In front of the 

Mackenzie River estuary, stations close to the river mouth (i.e., stations 65 and 62) had 

lower biomasses and contribution of large cells to biomass compared to the group of 

stations offshore (i.e. , stations 59, 66 and 69) (Fig. 2). In 2002, the Mackenzie River plume 

was deflected to the west before curving back to the east further offshore (Garneau et al. 

2006), which may explain the higher biomasses recorded at the group of stations with low 

surface salinities (i.e. , stations 59, 66 and 69). This group of stations was isolated from the 

river mouth by wind-driven upwelling of higher-salinity deep waters (Garneau et al. 2006), 

which were observed at station 65. At this station, despite low biomass, maximum 

fluorescence occurred near the bottom at 31 m. The phytoplankton community was 

characterized by low abundance of flagellate groups and high number of pennate diatoms, 

including numerous empty frustules , and by a low phaeopigments concentration compared 

to total chloropyllous pigments. Thus upwelling Iikely led to the development of a deep 

maximum of actively growing phytoplankton cells 20 meters above the bottom. Another 

location of interest is the Franklin Bay, in the southwest of the Amundsen Gulf region (Fig. 

2). There, high phytoplankton biomasses were observed in 2002, with a high contribution 

of large cells, which probably transfer the food energy required to sustain the high 
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zooplankton biomass (Darnis et al. 2007) and high benthic meiofauna biomass (Bessière et 

al. 2007). 

During the study period, the phytoplanktonic biomass and its size structure were 

more variable over the Mackenzie shelf area. Multiyear ice often drifted over this region in 

early faH and the resulting intennittent shading of the water colmTIn could have been partly 

responsible for the variability in phytoplankton standing stock over the Mackenzie shelf 

reglon. 

Interannual variability 

ln the Amundsen Gulf, the phytoplanktonic community was different between the 

two years, ev en if the sampling was perfonned the second week of October in both cases. 

ln 2002, the community was typical of post-bloom conditions under limited nitrogen 

availability, with low biomass concentrated in the surface layer and contribution of large 

cells around 30 %, which seems to be a baseline value for the fall in the Amundsen Gulf 

(Table 2) . In 2003 , at stations in the middle of the Amundsen Gulf, phytoplankton biomass 

was still reaching high values, with a deep chi a maximum, and the biomass was dominated 

by large cells (50 %) and centric diatoms. However, the low nitrate concentration and the 

high abundance of centric diatom spores (up to 13 % of centric diatom cell number) at the 

deep chI a maximum of stations CAlS and CAl8 suggest that the phytoplanktonic 

community was at the end of a bloom period the second week of October 2003. Arrigo and 

van Dijken (2004) highlighted seasonal trends based on Sea WiFS-derived chlorophyll 

concentrations from 1998 to 2002 in the Amundsen Gulf. Despite a high interannual 
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variability, an autumnal bloom seemed to be a recurrent feature, even if the timing, 

importance and duration of these blooms differed widely over these five years. In 2002 the 

au turnn a 1 bloom started at the end of August and was already over by October when we 

conducted our sampling in the region. The latest autumnal bloom was observed at the end 

of September 2000 and was of low amplitude. Following the pattern of Arrigo and van 

Dijken (2004), the phytoplanktonic community structure, we observed during the second 

week of October 2003 , could imply that the bloom had started the last week of September. 

On the Mackenzie shelf, the few stations sampled in early faIl 2003 do not allow us 

to comment on the interannual variability in that area . 

Temporal changes 

In the Beaufort Sea, the temporal evolution during faH 2003 was characterized by a 

decrease in biomass and taxonomic diversity from the end of September to mid-November, 

and this trend was even more pronounced in the Amundsen Gulf since a bloom ended 

during the early fall period. As the season progressed, the light availability and the 

daylength sharply decreased , surface temperature dropped, and new ice fonned, which 

further limited light penetration in the water colurnn. As the Mackenzie River water inflow 

strongly influences the surface temperature over the Mackenzie shelf, the effect of the 

temperature decrease was examined only for the Amundsen Gulf. Temperature did not 

directly influence phytoplankton growth, since there was no significant correlation between 

surface chI a concentration and temperature (t-test, p > 0.05). However, surface chI a 

concentrations were strongly correlated with the daylength (rchla. daylenglh/temperalure = 0.69, t-
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test p < 0.05). During faU 2003, integrated phytoplankton biomass decreased exponentiaUy 

when daylength was shorter than 8 hr (Fig. 7). Light availability was therefore Iikely the 

most important factor constraining phytoplankton production in late faU. At the end of 

October, strong southeast winds blew in the Amundsen Gulf region (Environment Canada 

2003), and were likely responsible for the slight replenishment of nutrients at the bottom of 

the PML. However, phytoplankton could not take advantage of the nutrient availability 

since light was the main limiting factor. Even if the influence of sea ice fonnation on 

phytoplankton could not be assessed, owing to the nature of the data available, the ice coyer 

probably shaded the water co IUlnn , thus the relationship observed between the daylength 

and the phytoplankton biomass likely includes the effect of the ice coyer. However, in the 

context of climate change, which would lengthen the ice-free season at high latitude, the 

phytoplankton production season would probably not be expanded in fa 11 , since light 

availability, i.e. solar incoming irradiance and daylength, would remain the main factor 

constraining phytoplankton growth. 
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Figure 7: Relationship between daylength and chI a biomass (integrated over 50 m) in early 
and late fall 2003 (closed symbols: stations from the Amundsen Gulf, open symbols : 
stations out of the Amundsen Gulf). 

Phytoplankton production 

Primary production rates, for early fal! on the Mackenzie shelf, ranged from 15 to 

119 mg C m-2 d-1 (Fig. 5), fa lling in the same range (40-100 mg C m-2 d-1
) reported in 

August by Cannack et al. (2004), but lower than summer primary production rates (100 to 

11 90 mg C m -2 d-I
) recorded by Hsiao et al. (1977) . The Mackenzie shelf production was 

also comparable to the 50 to 170 mg C m-2 d-I reported for the Laptev Sea/Lena River 

system in September (Sorokin & Sorokin 1996). In early October, primary production 

ranged from 92 to 105 mg C m-2 d-1 in the Amundsen Gulf, whi le two months before our 

2002 sampling, Lee and Whitledge (2005) found similar rates ranging from 79 to 145 

mg C m-2 d-1 in the Amundsen Gulf and Canada Basin. The latest faIl primary production 

estimates made to date in the Arctic Ocean showed also similar rates from 72 to 148 
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mg C mo2 dol at the end of September and beginning of October northwest off Spitsbergen 

(Heimdal 1983). Primary production rates decreased to low levels of 12-43 mg C mo2 dol 

until the beginning of November, and were close to austral faH estimates (April) of 22 to 27 

mg C mo2 dol in the Weddell Sea (Dower et al. 1996) and 13 to 18 mg C mo2 dol in the Ross 

Sea (Smith et al. 2000). 

The persistent nitrate dep1etion observed during our study, together with the high 

integrated primary production-to-biomass ratios (usually > 5) measured in early faH, 

suggests that active phytoplankton grazing prevented the accumulation of phytoplankton 

biomass and also that recycling was efficient; such high1y dynamic food webs have 

previously been reported in the Arctic Ocean by Wheeler et al. (1996). The f-ratios 

estimated from the size structure of the phytoplankton community were low and close to f­

ratios measured in August in the Canada Basin and the Amundsen Gulf (0.25 ± 0.13, Lee & 

Whitledge 2005) and in the Chuckchi Sea (0.05-0.38, Cota et al. 1996), where 

phytoplankton production was dependent upon ammonium. Thus, the f-ratio estimates 

further support the high recycling efficiency prevailing in the southeastem Beaufort Sea 

during faH. 

The potential phytoplankton production that could be exported out of the euphotic 

zone was only about 17 % for the whole study. In the Amundsen Gulf, we estimated a high 

potential carbon export out of the euphotic zone at 40 % of the primary production in 

October 2003 , probably resulting from the declining bloom situation. However, the 

potential primary production exported out of the upper halocline would probably be even 

lower, which is consistent with the marine particulate organic carbon flux accounting for 
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22 % of the primary production measured at 200 m north of Franklin Bay for the same 

period (Forest et al. 2008). 

The new production estimates (fromf-ratios), derived from the size structure of the 

phytoplankton community, were in good agreement with the new production based on N I5 

uptakes experiments conducted during the CASES pro gram (Simpson 2008). Moreover, 

various estimation methods of potential carbon production export were compared by 

Gameau et al. (2007) for the North Water polynya, and they concluded that the method of 

Tremblay et al. (1997) gave good estimates of new production in arctic seas; our results 

thus further support this statement. 

In the Arctic, most annual phytoplankton production calculations, based on direct 

primary production measurements, are estimated over a 120 or 150 days period, usually 

starting in Mayor June and ending in September. However, blooms can occur even as late 

as October (Hegseth 1997, Arrigo & van Dijken 2004), and primary production is still 

detectable in November (Richardson et al. 2005). Cannack et al. (2004) estimated an 

annual production of 12-16 g C m-2 y-I from early April to early September in the Beaufort 

Sea. Based on our measurements, from mid-September to the end of October, primary 

production would be around 3.3 and 2.3 g C m-2, in the Amundsen Gulf and on the 

Mackenzie shelf, respectively; thus the annual primary production estimate of Cannack et 

al. (2004) would be increased by 14 to 19 %. Autumnal primary production is rarely 

measured, owing to logistical problems to access arctic regions, but in the Beaufort Sea, the 

autumnal production, from mid-September to the end of October (roughly 45 days) 

accounted for at least 15 % of the total annual production. Thus, the autumnal 
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phytoplankton production can significantly contribute to the annual production in arctic 

systems, at least at latitudes similar to that of the Beaufort Sea (e.g. Chukchi Sea, East 

Siberian Sea), and the 'productivity period' should be extended by at least one month for 

such arctic systems. 
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RESUME 

La dynamique du phytoplancton a été étudiée dans le sud-est de la mer de Beaufort 

au printemps et en été 2004. En juin, la communauté phytoplanctonique était dans une 

situation de pré-bloom dans le sud du golfe d'Amundsen, et en situation de post-bloom au 

centre du golfe, en raison de l 'ouverture précoce de la polynie du Cap Bathurst. En juillet et 

en août, le phytoplancton formait un maximum de chlorophylle profond à la base de 

l 'halocline, qui correspondait également à la nitracline. Dans le golfe d ' Amundsen, la 

biomasse chlorophyllienne, ainsi que la contribution des cellules de grande taille (>5 /lm), 

restaient faibles du printemps à l'été. Sur le plateau continental du Mackenzie, les 

phénomènes d'upwelling liés au vent et l'extension du panache des eaux du fleuve 

Mackenzie favorisaient la production phytoplanctonique, en augmentant la biomasse 

chlorophyllienne due aux cellules de grande taille (>20 /lm) et l ' export potentiel de 

production primaire en profondeur. En mer de Beaufort, le phytoplancton présentait des 

caractéristiques photosynthétiques d'adaptation aux faibles intensités lumineuses du 

printemps à l'été, et ce, même en surface, où une limitation en éléments nutritifs aurait pu 

contraindre l'adaptation à des intensités lumineuses élevées. En général, les proportions 

élevées de production primaire par rapport à la biomasse, ainsi que l' absence 

d'accumulation de cellules de grande taille (>5 /lm) dans le golfe d ' Amundsen, suggèrent 

une forte pression de broutage sur le phytoplancton et un recyclage actif en mer de 

Beaufort. Dans le golfe d'Amundsen, la production primaire annuelle a été estimée à 21 

g C m-2 a- I
. Cette faible valeur résulte probablement d 'une sous-estimation liée à 

l ' extrapolation, mais également du faible niveau hivernal de nitrates, qui pré-conditionnait 

vraisemblablement la faible production phytoplanctonique annuelle. 
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ABSTRACT 

Phytoplankton dynamics was investigated in the southeastem Beaufort Sea in spring 

and summer 2004. In June, the phytoplankton community experienced pre-bloom 

conditions in the southem part of the Amundsen Gulf, and post-bloom conditions in the 

middle of the gulf, owing to the earlier opening of the Cape Bathurst polynya. In July-

August, phytoplankton fonned a typical deep chlorophyll maximum at the bottom of the 

Polar Mixed Layer, which corresponded to the nitracline. In the Amundsen Gulf, the 

chlorophyll a biomass, as weIl as the contribution of large cells (>5 , . .un) , remained low 

from spring to summer. Meanwhile, over the Mackenzie shelf, wind-driven upwelling and 

the Mackenzie River plume spreading enhanced phytoplankton production, increasing the 

chlorophyll a biomass due to large cells (>20 f.lm) and the primary production potential 

export to the bottom. Over ail the southeastem Beaufort Sea, phytoplankton presented 

photosynthetic characteristics of shade-adaptation throughout spring and summer, even at 

surface where nutrient limitation might limit adaptation to high light intensities. Overall 

high primary production-to-biomass ratios, as weIl as the lack of large cells (>5 f.lm) 

accumulation in the Amundsen Gulf, suggests a high grazing pressure on phytoplankton 

and an active recycling in the Beaufort Sea. In the Amundsen Gulf, the annual primary 

production was estimated to 21 g C m-2 y-l. This low value resulted probably from 

underestimation linked to uncertainties in the calculation, but also from the low pre-

conditioning winter nitrate inventory, which probably set a low limit to the annual 

phytoplankton production. 
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INTRODUCTION 

The Arctic Ocean is strongly impacted by the ongomg global trend towards 

wanning (ACIA 2005 , IPCC 2007). Over the 1978-2003 period, the arctic sea ice minimum 

extent has decreased by 8x105 km2 (Johanessen et al. 2004). Moreover, the Arctic Ocean 

has experienced minimal sea-ice extent records since 2002, with a new maximum in 

summer open water in September 2007 (NSIDC 2007, Comiso et al. 2008), suggesting the 

acceleration of sea-ice co ver shrinking. The Arctic Ocean is expected to be free of ice in 

summer by the end of the 21 st century (Serreze et al. 2007) or as early as 2040 (Holland et 

al. 2006), as predicted by numerical simulations. In addition, the Arctie Ocean receives 

large river inflows (Macdonald et al. 2004a) and the predicted rise in freshwater discharge 

(Peterson et al. 2002) wou Id make its marginal seas even more sensitive to climatic change 

(ACIA 2005). Arctic ecosystems are expected to be affected by climatic changes, though 

the impacts on food web structure and carbon cycling pathways are unclear (Wassmann 

2004). The identification and analysis of climate change impacts, as well as model 

validation, requires field measurements ; but such data are still lacking in some biologically 

active regions of the Arctic Ocean (Carmack & Wassmann 2006). 

Large variations in sea ice cover and solar radiations usually constrain pelagic 

phytoplankton production between spring sea ice melt and faH freeze-up, with high 

phytoplankton production and standing stocks restricted to relatively short periods of the 

ice-free season (Sakshaug 2004). In spring, phytoplankton blooms are generally set up by 

sea ice retreat and often tenninated by nutrient limitation (Sakshaug & Skjoldal 1989, 
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Carmack et al. 2006, Tremblay et al. 2006). Late blooms can also occur in late summer or 

in fall, as wind mixing reintroduces nutrients in surface layers (Arrigo & van Dijken 2004, 

Carmack et al. 2006). The production of large phytoplankton cells favors carbon export and 

transfer to higher trophic levels (Chisholm 1992); however, large microphytoplankton cells 

are often constrained to bloom periods of a couple of weeks, while smaller cells, i.e. nano-

and picophytoplankton, often dominate outside these periods (Not et al. 2005). 

Arctic continental shelves and polynyas are the most productive regions of the 

Arctic Ocean (Sakshaug 2004, Stirling 1997). Polynyas are generally highly productive 

regions due to their physical characteristics su ch as early sea ice coyer retreat in spring and 

the physical forcing allowing nutrient replenishment (Smith 1995, Klein et al. 2002, 

Tremblay & Smith 2007). These aspects make polynyas ideal regions to study climatic 

change impacts because of their reduced sea ice coyer (Tremblay et al. 2006). Among arctic 

shelves, interior continental shelves, which are strongly influenced by river discharge, have 

been poorly studied in terms of phytoplankton dynamics (Cannack & Wassmann 2006). In 

the Beaufort Sea, phytoplankton was only studied in the 70 and 80 's over the Mackenzie 

shelf (Hsiao et al. 1977, Homer & Schrader 1982, Cannack et al. 2004), and almost not in 

the Amundsen Gulf (Lee & Withledge 2005). The Cape Bathurst polynya, which is located 

in the Amundsen Gulf, has been suggested to be a highly productive region by satellite 

surveys (Arrigo & Van Dijken 2004), nevertheless it has never been confirmed by field 

measurements. In order to make predictions about how phytoplankton dynamics might 

change in the Arctic as a whole, it is essential to investigate polynyas su ch as the Cape 

Bathurst polynya. Therefore, in the context of climatic change, the acquisition of time 
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series of phytoplankton biomass is essential to understand its dynamics in the Beaufort Sea. 

The spatial and temporal variability in phytoplankton biomass and production was thus 

investigated in the southeastem Beaufort Sea in spring and summer 2004. This study 

addresses the spring to summer seasonal phytoplankton dynamics, the physical factors 

driving phytoplankton spatial distribution and production, and the phytoplankton standing 

stocks and primary production. 
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MA TERIALS AND METHODS 

Studyarea 

The Mackenzie shelf is shallow and bounded by the Amundsen Gulf to the east, and 

the Canada Basin to the north (Fig. 1), and it is crossed by the Mackenzie and Kugmallit 

canyons, which are sites known to favour upwelling (Macdonald et al. 1987, Williams et al. 

2006, 2008). The surface circulation in the Mackenzie shelf and its surrounding regions is 

mainly driven by wind forcing, the Mackenzie River discharge, and thermohaline 

convection (Cannack & Chapman 2003). The Mackenzie River strongly influences the 

Mackenzie shelf and its maximum discharge usually occurs at the end of June (Carmack & 

Macdonald 2002). Over the sampling area, the water colurnn is typically fonned by the 

Polar Mixed Layer (0-50 m), overlying the Cold Halocline Layer (50-200 m), mainly 

formed by waters of Pacific origin, and the Atlantic Layer (>200 m) (Cannack et al. 1989, 

MacLaughlin et al. 1996, Simpson et al. 2008). Beyond the shelf-break, the surface 

circulation is dominated by the south branch of the anticyclonic Beaufort gyre that drives 

the mobile pennanent pack ice and the surface waters westward (Carmack & Macdonald 

2002), below 50-85 m, the eastward Beaufort counter-current carries waters of Pacific 

origin along the slope (Pickart 2004). 

The Cape Bathurst polynya, a large recurrent polynya lies within the Amundsen 

Gulf (Smith et al. 1990), where high interannual variability results in sea ice retreat 

occurring as early as April or as late as late June (Arrigo & van Dijken 2004). 
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Figure 1: Study area in the southeastern Beaufort Sea (FB: Franklin Bay). 

Sampling 

Sampling took place in the southeastern Beaufort Sea (69-72°N, 120-1400 W) during 

spnng (4 - 21 June) and summer 2004 (26 June - 10 August) on board the CCGS 

Amundsen, ID the framework of the Canadian Arctic Shelf Exchange Study (CASES) 

program. The Amundsen Gulf region was sampled in spring and summer (16 July - 10 

August) 2004, whereas the Mackenzie shelf area was only sampled in summer (26 June -

27 July). Water samples were collected with a rosette sampler SBE-carousel (Seabird) 

fitted with twenty-four 12 1 Niskin bottles (Ocean Test Equipment Inc.), a SBE-9plus CTD, 

a Seapoint chlorophyll fluorometer and a QCP2300 Biospherical PAR (Photosynthetically 

Available Radiation) sensor. AU water samples were collected at fixed depth (surface, 5, 

10, 15, 25 and 50 m) and at fluorescence peaks at a1l stations (n=55) (Table 1). At stations 

with primary production estimations (n=17), additional water sampi es were taken at five 
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photic depths detailed below (Table 1). The photic depths were established after calculating 

the light attenuation coefficient, KI, using a Secchi disk (Parsons et al. 1984). Samples for 

phytoplankton were pre-filtered on a 333 )lm mesh in order to remove large zooplankton. 

The depth of the Surface Mixed Layer (SML) was calculated according to Thomson 

and Fine (2003) . The 3l.6 isohaline defines the bottom of the Polar Mixed Layer (PML), 

and the isohaline 32.4 is characteristic of waters ofPacific origin (Carmack et al. 1989). 

Dissolved inorganic carbon (DIC) concentrations used in phytoplankton production 

calculation were measured by coulometric titration (Johnson et al. 1993, DOE 1994). 

Inorganic nutrient concentrations (nitrate + nitrite, phosphate and silicic acid) were 

measured on board using standard colorimetric methods (Grasshoff 1999) as described in 

Simpson et al. (2008). 

Downwelling PAR (400- 700 mu) irradiance was acquired using a GUV -510 surface 

radiometer (Biospherical Instruments) . Underwater downwelling PAR profiles were 

collected at some stations using a PUY -500 radiometer (Biospherical Instruments) around 

noon . Irradiance profiles were recorded from the surface down to 60-75 m (or to the bottom 

at shallow stations). Underwater irradiance measurements were corrected for dark current 

measured in the field using light-tight neoprene caps. The depth of the euphotic zone (1 % 

isolume) was further estimated by linear regression of the natural logarithm of underwater 

downwelling irradiance versus depth. PAR irradiance at sampling depth was obtained from 

the CTD PAR sensor. 

Wind speed and direction at Tuktoyaktuk and Cape Parry (Fig. 1) were obtained 

from the Weather Archive of Environment Canada (http: //climate.weatheroffice.ec.gc.ca). 



61 

Table 1: Stations sampled for the different measurements during spring and summer 2004. 

Season Date Station Sampling Season Date Station Sampling 

Spring June 4 206 Biomass, Taxo, PP, PE Summer July 12 606 Biomass, Taxo 

5 256 Biomass 13 650 Biomass, Taxo, PP 

7 108 Biomass, Taxo, PP, PE 16 200 Biomass, Taxo, PP, PE 

8 11 2 Biomass, Taxo 18 11 8 Biomass, Taxo 

9 11 5 Biomass, Taxo 19 309 Biomass, Taxo, PP, PE 

10 11 7 Biomass, Taxo, PP, PE 19 312 Biomass, Taxo 

Il 124 Biomass, Taxo 20 315 Biomass 

12 41 4 Biomass, Taxo 21 41 5 Biomass, Taxo, PP, PE 

14 409 Biomass, Taxo 21 41 2 Biomass 

15 406 Biomass, Taxo, PE 23 409 Biomass, Taxo, PP, PE 

17 403 Biomass, Taxo 24 406 Biomass, Taxo 

17 400 Biomass , Taxo 24 403 Biomass, Taxo 

19 303 Biomass, Taxo, PP, PE 25 400 Biomass, Taxo 

21 300 Biomass, Taxo 27 72 1 Biomass, Taxo 

21 CA20 Biomass, Taxo 28 124 Biomass, Taxo 

Summer June 26 600 Biomass 29 11 5 Biomass, Taxo 

27 609 Biomass, Taxo 30 109 Biomass, Taxo 

28 703 Biomass, Taxo 30 215 Biomass, Taxo 

30 709 Biomass, Taxo, PP 31 212 Biomass 

July 4 906 Biomass, Taxo, PP, PE 31 209 Biomass, Taxo 

5 909 Biomass, Taxo August 1 206 Biomass, Taxo, PP, PE 

6 912 Biomass, Taxo, PP, PE 1 203 Biomass, Taxo 

7 809 Biomass, Taxo 6 200b Biomass, Taxo, PP, PE 

8 803 Biomass, Taxo, PP, PE 7 124b Biomass 

9 706 Biomass, Taxo 8 11 8b Biomass 

10 712 Biomass, Taxo 9 112 Biomass, Taxo 

10 715 Biomass, Taxo 10 106 Biomass, Taxo, PP, PE 

II 718 Biomass, Taxo, PP, PE 

Biomass: total and fractionated chI a measurements; Taxo: phytoplankton taxonomie 
identifications; PP: primary production measurements and PE: photosynthetic parameters 
estimation. 



62 

Region definition 

Stations of the summer sampling period were separated according to their locations 

relative to 128.35°W, which roughly corresponds to the tip of the Cape Bathurst. Stations 

west of 128.35°W on the Mackenzie shelf and slope (depth < 400 m) were considered as 

Mackenzie shelf stations, and stations east of 128.35°W were considered to be in the 

Amundsen Gulf region. However, the coastal station 415 was not considered in the 

Amundsen Gulf region. 

Chlorophyll a determination 

For the determination of phytoplankton chiorophyll a (chi a) concentration, water 

sub-samples of 0.5 to 1 1 were filtered onto glass fibre filters (poresize 0.7 f.lm, Whatrnan 

GF/F) (total biomass), 5 f.lm polycarbonate filters (Poretics) (large cells biomass) and 20 

f.lm Nitex filters. ChI a concentrations were determined with a 10-AU Turner Designs 

fluorometer following 24 hr extraction in 90 % acetone at 5°C in the dark without grinding 

(Parsons et al. 1984). Concentrations of chI a were corrected for phaeopigments by 

acidification of the extract (Knap et al. 1996). AlI values were integrated over 50 m at a11 

stations. At stations with primary production estimates, chI a concentrations were also 

integrated over the euphotic zone. As the euphotic zone was not measured at a11 stations, 

the depth of 50 m was chosen for integration of chI a concentration values in order to 

include the euphotic zone, the PML and the deepest chI a peak for most of the stations. 
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Taxonomie identification 

Water sub-samples (250 ml), for phytoplankton ceIl identification and enumeration, 

were collected at the fluorescence peaks at aIl stations, and additionally at surface and the 

1 % isolume depth for stations with primary production estimates (Table 1). The samples 

were fixed with acidic Lugol solution (4 % final concentration) and stored in the dark at 

4°C until analysis. Water samples of 10 to 100 ml were settled in Zeiss-type settling 

chambers for at least 12 hr before cell enumeration with a Leitz Diavert inverted 

microscope with phase contrast optics at 250x and 400x. The main taxonomic references 

used to identify phytoplankton were Tomas (1997), Jensen and M0estrup (1998), Bérard-

Therriault et al. (1999) and Throndsen et al. (2003). Some dinoflagellates and diatoms 

unidentified were grouped in size classes (5-10, 11-20, 21-50 and >50 !lm), while 

chlorophytes, chrysophytes, dictyochophytes, cryptophytes, euglenophytes, prasinophytes 

and prymnesiophytes unidentified to species or genus level were also grouped according to 

their size classes «5, 5-10, 11-20 and >20 !lm), as weIl as unidentified flagellates. 

Photosynthetis/irradiance relationships 

Photosynthesislirradiance relationships were measured by 14C uptake using a small-

volume, short-incubation time method adapted from Lewis & Smith (1983). Stations were 

sampled at two or three depths : surface, chlorophyll maximum and 1 % isolume (Table 1). 

Under dim light, one 100 ml water sub-sample was poured into a flask where 160 !lCi of 

NaH I4C03- were added. After a gentle homogenisation, 3 ml aliquots were dispensed into 

23 clean 20 ml borosilicate scintillation vials. The vials were then placed under an artificial 
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light gradient, and maintained at low temperature (in situ temperature ± 2°C) us mg a 

circulating water bath. The range of light intensities was created by the use of neutral 

density screens. Light intensities from lOto 1500 /lmol m-2 S-I (PAR) within the incubator 

were measured with a scalar irradiance meter (QSL-IOO Biospherical Instruments). Three 

scintillation vials were incubated in the dark. The total added activity was detennined 

(triplicates) by adding 250 /lI of the inoculated water sub-sample into 10 ml Ecolume 

scintillation fluid (ICN) containing 250 /lI ethanolamine. After 1 hour of incubation, non-

incorporated 14C was removed by adding 500 /lI of 6N HCL After 24 hours, 500 /lI of 6N 

NaOH were added to the samples to avoid pH changes, then 15 ml of scintillation cocktail 

were added and the samples were counted using a Packard Liquid Scintillation Analyzer 

Tri-Carb® 2900 TR scintillation counter. Counts were transfonned into carbon fixation 

rates using actual DIC concentrations and dark-corrected. 

Carbon fixation data were nonnalised to chi a and fitted to the equation of Platt et 

al. (1980) using an iterative non-linear regression (Statistica 7): 

pB = psB X [1- exp(-aE / p'B)] X [exp( -pE / p'B)] (1) 

where p B is the photosynthesis nonnalized to chi a concentration (mg C (mg chi ar l h-I); 

p'B is the theoritical maximum for photosynthesis in the absence of phototinhibition 

(mg C (mg chi ar l h-I); lX is the initial rate of photosynthesis (mg C (mg chi ar l h-I 

(/lmol m-2 s-Irl); f3 is a measure of photoinhibition (mg C (mg chi ar l h- I (/lmol m-2 s-Irl). 

The actual maximal photosynthetic rate P:ax (mg C (mg chi ar l h-I) and the optimal 

irradiance for photosynthesis Ek (/lmol m-2 S-I) were calculated as follows: 
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P:ax = p'B X [a I(a + ,8)] x [,8 I(a + ,8)]fJ /a (2) 

Phytoplankton production 

Particulate primary production was estimated from five photic depths (100, 50, 25, 

10 and 1 % of surface irradiance) using the 14C uptake method (Knap et al. 1996). Samples 

were incubated in 500 ml polycarbonate bottles (two light and one dark with DCMU [3-

(3,4-dichlorophenyl)-I, I-dimethyl ure a]) with 20 to 30 /lCi of NaH I4C03-, and placed 

under in situ simulated conditions in on-deck incuba tors, with running surface seawater and 

incident irradiances adjusted with neutral density filters. The total added activity was 

determined in triplicates by adding 250 /lI of ethanolamine and 10 ml Ecolume scintillation 

fluid (ICN) to a 250 /lI inoculated water sub-sample. After 24 hours of incubation, water 

sub-samples (150 ml or more) were filtered onto glass fibre filters (poresize 0.7 /lm, 

Whatman GFIF) (total particulate primary production) and 5 flm polycarbonate filters 

(Poretics) (large celI particulate primary production). Non-incorporated 14C was removed 

by addition of 250 /lI of 0.5N HCL Upon complete evaporation of the acid, 10 ml of 

Ecolume scintillation cocktail were added. The activity was determined using a Packard 

Liquid Scintillation Analyzer Tri-Carb 2900 TR. Primary production rates were estimated 

with the actual DIC concentrations. AlI counts were dark-corrected and daily primary 

production rates were integrated over the euphotic zone. Incubations were initiated early in 

the moming (minimal PAR) in order to reduce the variability in 14C accumulation 

(Mingelbier et al. 1994). 
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The f-ratio can be estimated from primary production rates following this equation: 

f= 0.04 + 0.74 (Pd PT), r2 = 0.80, where PT corresponds to total particulate primary 

production in the euphotic zone and PL to large cells production in the euphotic zone 

(Tremblay et al. 1997). The phytoplankton new production, which corresponds to the 

maximum potential export of particulate primary production from the euphotic zone, can be 

further derived from the f-ratios (Dugdale & Goering 1967, Eppley & Peterson 1979): 

P ex = PT X f-ratio. 

Statistical analyses 

ln order to investigate differences in chI a biomass integrated over 50 m (total, 

>5 !lm and >20 !lm size fractions) between the different regions or seasons, the non-

parametric pair comparison Mann-Whitney U test was applied, as the data did not meet 

normal distribution and homoscedasticity (Zar 1999). The small number of observations for 

primary production rates and f-ratios precluded statistical analyses of regional differences . 

Association between pair variables was estimated with the Spearman rank correlations (r 

coefficient), as data did not follow a normal distribution (Zar 1999). Ali statistical tests 

were carried out with the Statistica 7.0 program (StatSoft). 

Multivariate approaches were applied to the community analysis. Phytoplankton 

cell abundances data were ordinated by non-metric multi-dimensional scaling (MDS) 

(Clarke 1993). The input was a similarity matrix based on Bray-Curtis similarity of fourth-

root transformed and standardised cell abundances, to put more weight on the species 
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composition in the samples (Field et al. 1982). Those analyses were perfoffiled with the 

program Primer version 5.0 (Plymouth Marine Laboratory). 
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RESULTS 

Physico-chemical conditions 

During spring and summer, aH stations were free of ice at sampling time. However, 

in spring stations 206, 256 and 108, in the south of the Amundsen Gulf, were sampled short 

after seasonal sea ice started to retreat (ca. 15 days), whereas station CA20 was sampled 

longer after sea ice retreated (ca. 30 days) (see Fig. 2a for stations location) . North of the 

Amundsen Gulf, sea ice retreated earlier, though mobile sea ice could be present in the 

middle of the Amundsen Gulf in spring and summer. Sea ice was also present at stations 

north of the shelf slope (703, 706, 650 and 600) prior to sampling (see Fig. 3a for stations 

location). 

Daily downweHing PAR irradiance decreased from spnng to summer, rangmg 

respectively from 22.6 to 63.3 and 14.7 to 57.2 mol photon m-2 d-I
. In spring, daily 

minimum irradiance ranged from 15 to 110 )..tmol photon m-2 S-I and daily maximum from 

620 to 1480 )..tmol photon m-2 
S-I. In summer, daily minimum irradiance varied from 1 to 

120 )..tmol photon m-2 S-I and maximum from 315 to 1360 )..tmol photon m-2 S-I. 

In spring, stations south of the Amundsen Gulf were characterised by low sea 

surface temperature (-1.3 to -1.1 oC), relatively high surface salinity (ca. 30.1) and thin 

SML (6 to 15 m) and PML (16 to 26), consistent with a recent ice retreat. In the middle of 

the Amundsen Gulf, sea surface temperature and salinity were higher (-0.7 to -0.2°C and 

30.2 to 30.5, respectively) and both SML and PML were thicker (11 to 55 m and 36 to 

63 m, respectively). Station CA20 presented the same characteristics than stations in the 
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middle of the Amundsen Gulf, but its surface temperature was higher. In the area around 

the northeast corner of the Mackenzie shelf, physical characteristics were markedly 

different, sea surface temperature and salinity were high (0.6 to 1.8°C and 30.5 to 32.1, 

respectively) and the SML became thicker as the PML thinned. At station 400, waters of 

Pacific origin were present at Il m, as shown by the 32.4 salinity threshold. This could 

indicate the occurrence of upwelling, consistent with strong easterlies winds blowing in the 

area during the two weeks prior to sampling. 

In the Amundsen Gulf, sea surface temperature was generally higher in summer (-

0.7 to 7.1°C) than in spring and surface salinity lower owing to sea ice melt (19.6 to 30.3). 

In general, lower surface temperature and salinity resulted probably from mobile sea ice 

moving over the Amundsen Gulf (stations 109, 215, 212, 106 and 112). The SML was 

usually thin (ca. 4 to Il m), whereas the PML laid above 30 to 60 m. 

Over the Mackenzie shelf and slope, offshore stations showed low sea surface 

temperature and high surface salinity, whereas warrn surface tempe rature and low salinity 

were found close to the coast associated to the Mackenzie River plume. At time of 

sampling, the Mackenzie River flow was still high, about 14500 m-3 S-I (Water survey of 

Canada, Environment Canada, www.wsc.ec.gc.ca). The Mackenzie River waters fonned a 

wann brackish layer of 5 to 10 m over the shelf, which was present at stations 912, 909, 

906,809,803, 718,715 and 712 (surface temperature from 4.6 to 9.3°C and surface salinity 

from 15.0 to 23.9). The SML corresponded to this brackish layer (see Fig. 3 for stations 

location). The PML was thinner inshore and thicker offshore. Waters of Pacific origin were 
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also present at shallow depths at stations 609 and 912, suggesting upwelling of deep water 

masses over the shelf at the end of June and early July. 

In the Amundsen Gulf, the depth of the euphotic zone (l % isolume) was 

comparable in spring and summer, and roughly conesponded to the bottom of the PML 

around 40 to 60 m. Over the Mackenzie shelf, the euphotic zone was deep offshore (40 to 

55m) and shallower close to the river mouth (3 to 20 m), with the thinnest euphotic zone at 

stations 912 to 909. 

Over aIl sampling seasons and regions, nitrate was likely the limiting nutrient in the 

upper 50 m (N/P < 6) (Simpson et al. 2008), but was still at moderate concentrations at the 

bottom of the PML (> 1 )lM). ln spring, stations south of the Amundsen Gulf showed 

relatively high nitrate inventories in the upper SOm (223 to 242 mmol m-2) , which were not 

depleted at surface. Nitrate were depleted at surface « 1 )lM) at all other stations, which 

had low nitrate inventories (averaging 107 mmol m-2
) , ex ce pt station 400, exhibiting the 

highest nitrate inventory (404 mmol m-2) . ln summer, nitrate inventories were also low in 

the gulf (averaging 91 mmol m-2 over 50 m) and depleted at surface. Over the Mackenzie 

sheIf, nitrate were aiso generally depleted at surface and presented low inventories (141 

mmoi m-2 on average), however nitrates were still abundant at the surface of sorne inshore 

stations with high inventories (206 to 440 mmol m-2
). 

Chlorophyll a concentrations 

ln spring, there was almost no chI a maximum at stations in the middie of the 

Amundsen Gulf and stations recentIy ice free, and phytoplankton biomass was concentrated 
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above the PML, where chi a concentrations ranged from 0.01 to 0.67 mg m-3. ChI a 

maxima were present at stations 406, 303 and CA20, reaching the highest concentration of 

22.4 mg m-3 at 35 m of station 303. At stations over the eastem part of the Mackenzie shelf, 

chi a concentrations were high from the surface to the chi a maximum (1.2 to 16.5 mg m-3) . 

Both fractionated chi a concentrations (>5 )lm and >20 )lm) were positively correlated to 

total chi a concentrations (p < 0.05). Based on integrated chI a biomass and its size 

structure, two groups of stations could be discriminated (Fig. 2). Group 1 inc1uded the 

stations in the middle of the Amundsen Gulf and stations recently ice free (206, 256, 108, 

112, 115, 117, 124, 414 and 409) , whereas group 2 comprised stations west of the gulf 

(406, 403 , 400, 300, 303 and CA20). Group 1 stations presented significantly lower 

biomass and significantly lower contribution of cells >5 )lm and >20 )lm than stations from 

group 2 (Mann-Whitney U test, p < 0.05) (Table 2). At group 1 stations, the biomass varied 

from 1.7 to 33.7 mg chI a m-2 with a low average contribution of cells >5 )lm (24 %) and 

cells >20 )lm (10 %), whereas in group 2 the biomass ranged from 56 to 439 mg chi a m-2 

with high average contribution of cells >5 )lm (85 %) and cells >20 )lm (59 %). 

In summer, phytoplankton biomass fonned a deep chi a maximum in the Amundsen 

Gulf, which generally laid at the bottom of the PML and the euphotic zone. Deep chi a 

peaks averaged 0.82 mg m-3 and reached 3.92 mg m-3 at station 312. Phytoplankton 

biomass and its size structure did not show any spatial pattem, and were rather 

homogeneously distributed in the Amundsen Gulf (Fig. 3). As in spring, fractionated (>5 

)lm and >20 flm) and total chi a concentrations were also positively correlated (p < 0.05). 

Phytoplankton biomass in summer was not significantly different from the spring group 1 
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(Mann-Whitney U test, p > 0.05), and varied from 8.0 to 50.6 mg chI a m-2. Although in 

summer, >5 !lm ceUs contribution to biomass was slightly higher than in spring (Mann-

Whitney U test, p < 0.05), small ceUs «5 !lm) dominated the phytoplankton biomass 

(Table 2). 
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Table 2: ChI a biomass (integrated over the upper 50 m) and the relative contribution of 
large phytoplankton ce Us >5 ~m and >20 ~m to this biomass in spring, for groups 1 and 2, 
and in summer in the Amundsen Gulf and on the Mackenzie shelf, mean ± SD, the number 
of stations is in brackets. 

ChI a biomass Contribution of ceUs Contribution of ceUs 
(mg mo2

) >5 ~m (%) >20 ~m (%) 

Spring Group 1 13.2 ± 1004 24 ± 21 10 ± 16 
(9) (9) (9) 

Group 2 204.2 ± 155.9 85 ± Il 59 ± 12 
(6) (6) (6) 

Summer Gulf 18.8 ± 8.9 32 ± 16 6±8 
(2 1 ) (21) (21 ) 

Shelf 94.6 ± 121.9 66± 28 55 ± 27 
(15) (11 ) (11 ) 
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Figure 2: Spatial distribution of (a) chI a biomass (integrated over 50 m) in mg chI a m-2, 

(b) percent contribution of cells >5 )lm and (c) ce Ils >20 )lm to biomass, during spring 
2004. 
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Figure 3: Spatial distribution of (a) chI a biomass (integrated over 50 m) in mg chI a m-2, 

(b) percent contribution of cells >5 Ilm and (c) cells >20 /lm to biomass, during summer 
2004. 
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In summer, the vertical distribution of chI a at stations over the continental sI ope or 

north of the Mackenzie shelf was similar to that in the gulf, with a weak maximum (OA 

mg m-3 on average) at the bottom of the PML. Over the Mackenzie shelf, two chI a peaks 

were usually observed, the first in the top few meters, in the river plume, (0.3 to 7.2 

mg m-3) and the second at the bottom of the PML (0.3 to 26 mg m-3). At stations over the 

Mackenzie and Kugmallit canyons, the PML was thinner close to the shore, and pacific 

waters were ev en present at 22 m of stations 912, however the chI a peaks associated to this 

water masses were below the euphotic zone (Fig. 4). Phaeopigments were at low 

concentration compared to total chloropyllous pigments and never exceeded 10 % at both 

chI a peak depths. Phytoplankton biomass and size structure were highly variable over the 

shelf (Fig. 3). Fractionated (>5 /lm and >20 /lm) and total chI a concentrations were again 

positively correlated (p < 0.05) and significantly higher over the shelf th an in the 

Amundsen Gulf in summer (Mann-Whitney U test, p < 0.05) (Table 2). Phytoplankton 

biomass was high at stations influenced by the river plume (12 to 350 mg chI a m-2) and 

dominated by large phytoplankton cells (42 to 78 % due to cells >5 /lm and 26 to 86 % to 

cells >20 /lm) (Table 2). This was also true at stations on the eastem part of the shelf, 

where biomass reached a maximum of 400 mg chI a m-2 at station 609, with maximal 

contribution of cells >5 /lm and >20 /lm of 94 and 83 % respectively. 
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Figure 4: Vertical profiles of chI a (mg chI a m-3), temperature (OC) and salinity (psu) at 
stations beyond the Mackenzie River plume influence. The dark line corresponds to the 
bottom of the PML and the dotted line to 1 % isolume. 
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Cell abundance and taxonomie composition 

The phytoplankton communities of the Mackenzie shelf and Amundsen Gulf 

regions were composed of 273 taxa, including 84 diatom, 78 dinoflagellate and 66 

flagellate species. During spring and summer, no cyanobacteria were observed in samples 

from the Amundsen Gulf and the Mackenzie shelf, despite the river plume influence. 

Phytoplankton cell abundances followed generally the seasonal and spatial pattern of 

biomass. In spring, phytoplankton cell abundance was higher at group 2 (S4 x 104 to 

4S0 x l04 cells rI) than group 1 stations (26 x l04 to 88 x l04 cells rI). Moreover, shelf 

stations had higher cell abundances in summer (ll x l04 to 666x l04 cells rI) than gulf 

stations (21 x 1 04 to 170x 104 cells rI). 

In spring, the two groups defined by the biomass structure were also separated on 

the MDS ordination plot (Fig. Sa). Unidentified flagellates and prymnesiophytes 

(Chrysochromulina spp., Chrysochromulina spinifera (Fournier) Pienaar and Norris) 

dominated the phytoplankton community of group 1 stations; whereas at group 2 stations 

diatoms dominated and penna te and centric species were equally present (Table 3). Centric 

diatoms were represented by Thalassiosira hyalina (Grunow) Gran, T. antarctica Comber, 

T. nordenskioeldii Cleve, Chaetoceros socialis Lauder, C. wighamii Brightwell, and 

pennates diatoms by species commonly growing in sea ice Fragilariopsis spp., 

Fragilariopsis cylindrus (Grunow) Krieger, F. oceanica (Cleve) Hasle, Navicula pelagica 

Cleve, Fossula arctica Hasle Syvertsen and von Quillfeldt, and Pseudo-nitzschia 

delicatissima (Cleve) Kuntze. In summer, samples from the Amundsen Gulf were more 

similar than samples from the Mackenzie shelf (Fig. Sb). In the gulf, the community was 
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mainly composed of unidentified flagellates and centric diatoms (C socialis, Chaetoceros 

cf. minimus (Levander) Marino, Giuffré, Montresor and Zingone, and C tenuissimus 

Meunier) (Table 3). The summer phytoplankton communities of the Amundsen Gulf were 

more similar to the spring communities of group 1 stations than group 2 stations (Fig. 5c). 

In summer, Mackenzie shelf phytoplankton communities were generally dominated by 

diatoms, mostly centric (C soeialis, C wighamii and T nordenskioeldii) , and unidentified 

flagellates (Table 3). In the area strongly influenced by the river plume, surface and deep 

samples were weIl discriminated (Fig. 5d). The surface communities consisted of centric 

diatoms (C wighamii, C soeialis, spores of C holsatieus Schütt, T nordenskioeldii and 

spores of Melosira aretiea (Ehrenberg) Ralfs) and unidentified flagellates (Table 3). Deeper 

communities were also dominated by centric diatoms (C socialis, C wighamii, T. 

nordenskioeldii, spores of C soeialis cf. socia/is and spores of C holsatieus) and 

unidentified flagellates , but showed a high proportion of pennate diatoms (F. eylindrus, 

Aehnanthes taeniata (Grunow) Round and Basson, F. oceaniea, Pseudo-nitzsehia cf. 

pseudodelieatissima (Hasle) Hasle) and prymnesiophytes (C spinifera and Phaeoeystis 

pouehetii (Hariot) Lagerheim) (Table 3). 
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Figure 5: Multidimensional scaling ordination plot of species abundances (a) in spring 
2004, (b) in summer 2004, (c) in the Amundsen Gulf (AG) in spring and summer 2004, and 
(d) over the Mackenzie shelf (MS). 
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Table 3: Average percent contribution of the major algal groups to the phytoplankton cell 
abundances in spring, for groups 1 and 2, and in summer in the Amundsen Gulf and on the 
Mackenzie shelf, in surface and deep waters. 

Spring Summer 

Group 1 Group 2 Gulf Shelf Surface Deep 

Diatoms 9.3 70.3 21.2 46.3 40.1 56.0 

Centric 5.7 34.0 16.5 35.1 34.0 38.2 

Pennate 3.6 36.3 4 .7 11.2 6.1 17.8 

Dinoflagellates 8.6 3.3 8.8 5.6 4.9 6.3 

Athecate 7.7 2.6 8.2 4 .9 3.9 5.7 

Thecate 0.9 0.6 0.5 0 .7 1.1 0.6 

Chlorophytes 0.0 0.2 0.1 0.2 0.3 0.1 

Chrysophytes 0.1 0.1 5.6 4 .7 13.3 0.6 

Dictyochophytes 3.4 1.7 2.0 1.7 2.6 0.5 

Cryptophytes 2.9 1.7 2.0 1.0 1.4 0.8 

Prasinophytes 2.1 0.4 3.2 3.1 4.2 1.5 

Prymnesiophytes 22 .5 8.0 9.9 7.9 0.3 8.9 

Unidentified flagellates 40.7 7.9 42 .0 23.4 30.7 19.9 

Choanoflagellates 7.4 5.5 2 .7 5.1 1.1 4 .8 
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Photosynthetis/irradiance relationships 

Photosynthesis exhibited a saturation response as a function of irradiance at aIl 

stations. The mean a value was 0.054 mg C (mg chI ar' h-' ()lmol m-2 s-'r' , ranging from 

0.003 to 0.113 mg C (mg chI ar' h-' ()lmol m-2 soIr'. The mean ~:ax value was 2.77 

mg C (mg chI ar' h-' [range 0.01 to 38.38 mg C (mg chI ar' h-I)] , and the average Ek 

value was 69 )lmol m-2 sol. The photoinhibition parameter fJ averaged 0.0 12 

mg C (mg chI ar l h-' ()lmol m-2 soIr'. There was no clear difference between the regions 

and seasons (Table 4). However, there was a slight trend of decreasing a and increasing Ek 

from spring to summer. In surface samples, a and Pn~ax were usually higher than at depth, 

while Ek was generally lower at surface. Surface Ek was usually close, or lower, th an 

PAR irradiance available at sampling depth during the day. In the Mackenzie river plume 

waters, stations 912, 906 and 718 exhibited high a and P:ax and low Ep while at station 

803 , a and P:ax were low, and lower than deeper at that station with the opposite trend for 

Ek (Table 5). The PIE parameters did not show any correlation with phytoplankton 

assemblage compostion, neither to physico-chemical variables. 
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Table 4: Photosynthetic parameters measured III spring and summer from surface and 
deeper waters. 

a jJ P:ax Ek 

Spring Surface 0.039 ± 0.048 0.0011 ± 0.0008 1.5 ± 1.8 48 ±28 

(5) (5) (5) (5) 

Deep 0.219 ± 0.222 0.0677 ± 0.1522 11.2 ± 14.1 43 ± 30 

(7) (7) (7) (7) 

Summer Surface 0.027 ± 0.020 0.0013 ± 0.0018 1.2 ± 0.8 49 ± 18 

(lI) (lI) ( Il) ( 11 ) 

Deep 0.010 ± 0.008 0.0009 ± 0.0023 0.8 ± 0.4 97 ± 42 

(l 8) (18) (18) (18) 

Mean ± SD, the number of samples is between brackets . 
Initial slope a [(mg C) (mg chi ar l h-I ()lmol m-2 S-Irl], photoinhibition parameter fJ 
[(mg C) (mg chi ar l h-I ()lmol m-2 s- Ir l], actual maximal photosynthetic rate P:ax 

[mg C (mg chi ar l h-I], optimal irradiance for photosynthesis Ek ()lmol m-2 S-I) . 
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Table 5: Photosynthetic parameters measured from surface and deeper waters of stations 
influenced by the Mackenzie River plume. 

Station Depth a P':ax Ek 

912 Surface 0.025 l.30 52 

1 % isolume 0.002 0.21 93 

906 Surface 0.03 1 0.89 30 
1 % isolume 0.006 0.60 100 

718 Surface 0.026 0.83 31 
1 % isolume 0.008 0.68 88 

803 Surface 0.008 0.40 52 
1 % isolume 0.035 0.55 15 

Initial slope a [(mg C) (mg chI ar l h-I (/lmol m-2 S-Ir l] , actual maximal photosynthetic rate P:ax [mg C (mg chI ar l h-1J , optimal irradiance for photosynthesis Ek ()lmol m-2 S-I). 

Primary production 

ln spring, integrated primary production rates were variable and averaged 254± 182 

mg C m-2 d-I in the Amundsen Gulf, while later in summer primary production rates were 

lower and less variable about 105±26 mg C m -2 d-I
, except at station 415 characterised by 

maximum rate of 812 mg C m-2 d-I (Fig. 6). Over the Mackenzie shelf, the highest 

production rates were measured at station beyond the river plume and the lowest offshore. 

On average integrated primary production rates were 177±177 mg C m-2 d-I over the 

Mackenzie shelf (Fig. 6) . 
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Figure 6: Rates of tota l particulate primary production (PT) and estimates of maximum 
potential export of thi s particulate primary production (Pex) (in mg C m-2 d-I

) integrated 
over the euphtotic zone [rom spring and surnrner 2004. 
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For ail the sampling periods, f-ratios ranged from 0.10 to 0.58. The highestf-ratios 

corresponded to stations 303 in spring, 906 and 912 beyond the river plume in summer, and 

415 and 200 in July. The potential export of primaI)' production (P ex) from the euphotic 

zone estimated from those f-ratios was variable throughout the sampling are a and seasons 

(Fig. 6). ln the Amundsen Gulf, Pex accounted for 10 to 39 % of primary production in 

spring, as in summer (range of Il to 46 %), and P ex values were similar between seasons 

when station 303 was not considered. Over the Mackenzie shelf region, the river plume 

drove primary production potential export with high Pcx values from 40 to 281 mg C m-2 d-I 

inshore (39 to 58 % of primary production) and low P ex values from 6 to 10 mg C m-2 d-I 

offshore (12 to 16 %). 
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DISCUSSION 

Phytoplankton seasonal dynamics 

Spring and summer periods were only sampled in the Amundsen Gulf area, 

therefore the seasonal dynamics could only be considered in this region. In spring, stations 

from the southem part of the Amundsen Gulf were sampled right after seasonal ice 

retreated, and the resulting phytoplankton biomass was low with variable contributions of 

>5 ).lm phytoplankton cells (Fig. 2). Moreover, nitrate concentrations at surface were close 

to the winter concentrations measured in Franklin Bay (Tremblay et al. 2008), suggesting 

that the phytoplankton community was in a pre-bloom stage. The exposure of 

phytoplankton cells to high light intensities could be responsible for the lag observed 

between ice retreat and phytoplankton growth, as cells were probably shade-adapted (Kirst 

& Wiencke 1995) and might take up to two weeks to be fully adapted to high light 

intensities (Tremblay et al. 2006). The station CA20 was sampled roughly two weeks after 

seasonal ice retreat, by that time phytoplankton formed a deep chlorophyll maximum 

(OCM) with relatively high chI a concentration (2.5 mg chI a m-3), as well as a large 

contribution of >5 ).lm and >20 Ilm cells to biomass (96 % and 49 % respectively). 

Phytoplankton had consumed nutrients in the surface waters and the biomass accumulated 

above the PML where nutrients were still available. Diatoms dominated the DCM, with 

equal proportion of centric and penna te species. Pennate forms were represented by species 

(Fragilariopsis cylindrus, Navicula pelagica and Pseudo-nitzschia delicatissima), which 

were commonly growing in first-year sea ice in the area (M. Rozanska, pers. comm.). This 
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suggests that a spring phytoplankton bloom developed following sea ice retreat and was 

probably seeded by ice algae. If we consider the time elapsed since ice retreat, the lag 

between ice retreat and phytoplankton growth and the biomass level measured at sampling 

time, the bloom duration could be reasonably approximated around two weeks, as was also 

estimated by nutrient draw-down (Simpson 2008). 

In the middle of the Amundsen Gulf, the low phytoplankton biomass and 

contribution of large cells (>5 Jlm) (Fig. 2), together with the nitrate depletion, suggest that 

this area was already in post-bloom situation in early June, though no DCM was detected. 

Winds in the region typically force sea ice in and out of the area (Darnis et al. 2007) and the 

presence of sea ice prior to sampling may probably have led to unfavourable conditions for 

phytoplankton growth, through water colurnn shading, melting and mixing, preventing 

phytoplankton to form DCM. Sea ice retreat and melting is not a continuous process in the 

Amundsen Gulf (Arrigo & van Dijken 2004, Barber & Hanesiak 2004), and sea ice can be 

occasionally forced into the area. Hence, spring blooms might not follow closely the 

seasonal ice retreat and be uncoupled in time and space in the Amundsen Gulf, as the 

persistence of DCM. 

In summer, phytoplankton biomass formed a DCM, fuelled by nutrients from the 

Pacific halocline aIl over the Amundsen Gulf. The summer formation of DCM is also 

common in other arctic regions (Barents Sea, Owrid et al. 2000) and polynyas (North-East 

Water, Smith et al. 1995; North Water, Tremblay et al. 2006). Compared to spring DCM, 

summer DCM had lower sea ice signature, since most of sea-ice associated diatom species 

vanished. Although sea ice dynamic was less important in summer than in spring, the 
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presence of ice floes prior to sampling was associated to lower biomass and contribution of 

large cells (>5 ~m) (Fig. 3). The shading of the water column during ice floes course was 

more likely responsible for the biomass decrease. The recurrent presence of sea ice in the 

Amundsen Gulf seemed to be the main factor of phytoplankton biomass variability in 

summer. Even if nitrates were still available at the DCM, the contribution of ce Ils >5 )lm 

and >20 ~m to biomass were low or very low. Hence, the lack of accumulation of large 

cells, which were mostly dia toms, suggests an active grazing by mesozooplankton, which is 

consistent with the high flux of fecal pellets in the Amundsen Gulf (Juul-Pedersen 2007, 

Forest et al. 2008). 

ln the Amundsen Gulf, the summer vertical distribution of phytoplankton biomass 

differed from that of fall 2002. In October 2002, phytoplankton did not form DCM and was 

homogenously distributed in the first 30-40 m (Darois et al. 2007, Chapitre 1), whereas in 

October 2003 , a DCM associated to bloom conditions formed at 30-35 m, and disappeared 

later in October to follow the same distribution as in fall 2002 (Chapitre 1). The thinning of 

the euphotic zone, due to decreasing solar radiations, was more likely responsible for the 

DCM shoaling from summer to faU and its later disappearance. However, light availability 

was probably sufficient to sustain summer DCM until the end of August (Lee & Whitledge 

2005). 

Mackenzie River plume influence 

The Mackenzie River waters form a buoyant layer that spreads over the Mackenzie 

shelf and responds quickly to wind stress and wind direction shift (Macdonald & Yu 2006). 
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Winds from the east tend to exp and the river plume offshore toward the Canada Basin, 

whereas winds from the northwest force the plume eastward along the Tuktoyaktuk 

peninsula (Macdonald & Yu 2006). In June and July 2004, winds at Tuktoyaktuk carne 

dominantly from the east with frequent strong winds from the northwest. At the end of June 

and beginning of July, winds carne from the east, expanding the river plume offshore, and 

shifted to blow from southwest-northwest from 2 July and favoured the eastward expansion 

. of the plume. The offshore station (906) was sampled soon after winds direction shifted and 

therefore presented the strongest river influence over the Mackenzie canyon, as shown by 

low salinity and high temperature (Fig. 4). The Mackenzie River plume was associated to 

high biomass, mostly comprising diatoms of nano- or microphytoplanktonic size, and high 

primary production (Fig. 4 and 6). However, phytoplankton communities in the river plume 

waters included numerous spores of the neritic centric diatom Chaetoceros holsaticus, 

indicating a decaying community as river plume waters aged or mixed with more saline 

waters . The high potential primary production export out of the euphotic zone, which 

corresponded to the river plume layer, was consistent with carbon flux measured at 25 m by 

Juul-Pedersen et al. (2008). This suggests that the Mackenzie River plume enhances 

primary production and carbon export on the shelf over short time periods depending on 

winds direction and strength. 

Influence of winds on the shelf 

Canyons crossing the Mackenzie shelf are sites of preferential upwelling 

(Macdonald et al. 1987) as the eastern corner of the Mackenzie shelf, where surface salinity 
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evidenced upwelling in June after two weeks of dominant easterlies at Tuktoyaktuk and 

Cape Parry. This upwelling event promoted high phytoplankton biomass over the eastem 

part of the shelf but also over the shelf slope. At station 303, the high biomass was mainly 

due to a thin DCM composed of diatoms. Nitrate concentration at DCM depth of station 

303 was as low as concentrations at DCM depth during summer. Moreover, despite high 

primary production rate, the potential export was only of 39 %, suggesting that the bloom 

was already declining. Forest et al. (2008) estimated this bloom duration to less than five 

days, and explained its decline by shifts in wind direction. Wind-driven upwelling would 

thus favour short pulses of enhanced primary production and export. 

The thinning of the PML over the Mackenzie and Kugmallit canyons, together with 

the strong easterlies that blew in the area prior to sampling, suggests that DCM observed at 

stations 906 to 912 and 712 to 718 was due to upwelling of nutrient-rich pacifie waters over 

the shelf. At DCM, phytoplankton was actively growing, as evidenced by low 

phaeopigment concentration «10 % of chI a concentration, data not shown), DCM were 

thus not related to phytodetritus resuspension. Over Kugmallit canyon, DCM were within 

the euphotic zone defined by the 1 % isolume at offshore stations, whereas at station 718 

the DCM was laying between 1 and 0.1 % isolumes (Fig. 4). At stations 912 and 909, DCM 

were also situated between 1 and 0.1 % isolumes, while at station 906, light availability at 

DCM on sampling day was below 0.1 % of surface irradiance. Owing to the high variability 

in the Mackenzie River plume extension, light availability at DCM was likely variable from 

day to day, therefore light limitation would not occur for long periods. As the 1 % isolume 

was constraint to the surface brackish layer, primary production measurements at stations 
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718, 912 and 906 reflected only river plume production. Thus, upwelling related primary 

production was not assessed over the Mackenzie shelf. Furthermore, in turbid coastal 

waters of arctic shelves it would be interesting to estimate phytoplankton production until 

the 0.1 % isolume in June and July, when surface solar irradiance is maximal. 

PIE parameters 

From spring to summer, the PIE parameters measured in the Amundsen Gulf and 

over the Mackenzie shelf were close to that measured for other regions in the Arctic Ocean 

(Baffin Bay, Harrison & Platt 1986; Barents Sea, Rey 1991; Greenland Sea, Jensen et al. 

1999), and also to those recorded in Antarctica (van Hilst & Smith 2002, Stambler 2003). 

Those parameters were characteristic of shade-adapted phytoplankton celIs, i.e. high initial 

slope a, low maximal photosynthetic rate P:ax and low optimal irradiance for 

photosynthesis Ek (Harrison & Platt 1986) (Table 4). ln surface sampi es, Ek was generally 

close to üradiance at sampling time (early morning) and depth, therefore phytoplankton 

cells were light saturated roughly ten hours around midday, as they received more light 

energy than their absorption capacity (Kashino et al. 2002). ln the Amundsen Gulf, Ek at 

surface was close or lower than Ek at depth, suggesting that surface communities were less 

adapted to their light environment than deep communities (from DCM or 1 % isolume). 

The surface nitrate depletion could limit phytoplankton acclimation to high irradiances at 

surface (Kashino et al. 2002). Moreover, Ralph et al. (2007) showed that during melting 

salinity stress could decrease the acclimation capacity of sea ice microalgae. Hence, the 
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presence of sea ice, melting throughout spring and summer in the Amundsen Gulf, could be 

an additional constrain to phytoplankton acclimation. Surface communities were dominated 

by flagellates and prasinophytes or chrysophytes, while in deep communities flagellates and 

diatoms dominated. Diatoms have high acclimation capacity, as they displayed a wide 

range of photoacclimation processes, and this could also have favoured the better 

acclimation of deep phytoplankton communities. 

In the Mackenzie River plume, photosynthetic parameters in early July were close 

to that measured one month later at the river mouth by RetamaI et al. (2008). However, Ek 

was slightly higher at the end of July when river sediment load was lower, thus high 

turbidity could have led to shade-adaptation of the river plume phytoplankton. Below the 

river plume, at depth where river plume waters mixed with shelf waters, photosynthetic 

parameters were the same as those from surface at the offshore station (Table 5). In 

addition, photosynthetic parameters values suggest that phytoplankton from marine shelf 

waters was acclimated to high inadiances before the river plume extension shaded the 

water column. 

Phytoplankton biomass 

In the Beaufort Sea, phytoplankton growth seemed to be mostly constrained by 

nitrate availability. The whole study area presented also high primary production to 

biomass ratios (5 to 18), which is common to other arctic regions, as the Barents Sea (Rey 

et al. 2000) or the central Arctic (Gosselin et al. 1997, Olli et al. 2007), and indicates a high 
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grazing pressure. Thus, in spring and summer, phytoplankton dynamics resulted from a 

complex combination of bottom-up and top-down controls. 

During our study, the differences in phytoplankton communities of the Amundsen 

Gulf and the Mackenzie shelf were more likely due to the physica1 forcing prevailing in 

both regions. The Amundsen Gulf represented a stable environment, where the strong 

stratification cou Id not be broken by winds during the sampling periods and the main factor 

of variability was sea ice dynamics . In contrast, the Mackenzie shelf was a highly variable 

environment strongly influenced by the Mackenzie River runoff and winds (river plume 

extension, she1f-break upwelling). 

In the Amundsen Gulf, outside bloom periods, the phytoplankton biomass was 

re1atively low and mostly due to small cells «5 )lm, ca. 70 % of biomass), consistent with 

measurements taken in the area in summer 2002 (Lee & Withledge 2005). These 

characteristics are common to the Barents (Not et al. 2005) and Greenland (Legendre et al. 

1993) seas in summer or the central Arctic (Gosselin et al. 1997), but differed from other 

polynyas. ln the Cape Bathurst polynya, the 2.5 to 3.5 fold lower phytoplankton biomass, 

compared to the Northeast water polynya (Smith et al. 1995) and the Northwater polynya 

(Klein et al. 2002) respectively, reflected probably the limited nutrient availability. 

The Mackenzie she1f was characterized by a strong offshore gradient, with high 

biomass dominated by microphytoplankton (>20 )lm) inshore, and low biomass dominated 

by small ce Ils «5 )lm) over the continental slope. This gradient was already observed by 

Parsons et al. (1989) in the Beaufort Sea, but also on Russian shelves receiving large ri vers 

outflow in the Kara (Deubel et al. 2003) and Laptev seas (Heiskanen & Keck 1996). 
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Furthermore, the Mackenzie shelf phytoplankton biomass was similar to prevIOUS 

measurements in the Beaufort Sea (Homer & Schrader 1982, Parsons et al. 1989) but also 

to biomass of the Russian Kara and Laptev Seas (Nothig et al. 2003 , Tuschling et al. 2000). 

Primary production and ex port 

ln the Amundsen Gulf, spnng and summer pnmary production rates ( 198 

mg C m-2 d-I and 105 mg C m-2 d-I respectively) are lower than primary production 

measured in the Northwater polynya (1427 mg C m-2 d- ' in June and 414 mg C m-2 d-I in 

July, Klein et al. 2002) and the Northeast water polynya (210 mg C m-2 d-I in July, Smith 

1995). This would place the Cape Bathurst polynya among the less productive polynyas in 

the Arctic. Meanwhile, the summer primary production is very similar to the rate of 106 

mg C m-2 d-I estimated in the Canada Basin and the Amundsen Gulf in late August 2002 

(Lee & Whitledge 2005) and to the production measured in the Canada Basin north of the 

Chukchi Sea in late August (123 mg C m-2 d- I
, Cota et al. 1996). Finally, the Amundsen 

Gulf primary production compares weIl with production levels of the central Arctic 

(Gosse lin et al. 1987, Olli et al. 2007) and the northem Barents Sea (Hegseth 1988), but 

remains at least twice lower than production in the Greenland Sea (Legendre et al. 1993, 

Richardson et al. 2005). Over the Mackenzie shelf, primary production was variable and 

exhibited an inshore-offshore gradient with lower rates offshore as observed in inner arctic 

shelf (Laptev Sea, Sorokin & Sorokin 1996). Primary production (40 to 487 mg C m-2 d-I
) 

falls in the range of previous estima tes for the Beaufort Sea (Hsiao et al. 1977, Carmack et 
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al. 2004) and is similar to rates measured in the Laptev Sea (Sorokin & Sorokin 1996, 

Schmid et al. 2006). 

We can build a composite annual primary production estimate and its potential 

export based on a composite productive period with faIl measurements from 2002 and 2003 

(Chapitre 1) and spring and summer measurements in 2004 in the Amundsen Gulf. The 

productive period covered June to October. We extrapolated the gap in primary production 

measurements from mid-August to mid-September using summer and faIl rates . A spring 

bloom of two weeks was estimated, however no measurement of this spring bloom were 

obtained, hence we used primary production rate measured during the upwelling-related 

bloom (spring 2004). Based on these conditions, the annual primary production reached 21 

g C m-2 il, of which 26 % could potentially be exported out of the euphotic zone. This 

estimate would be a lower estima te, since we did not measure the actual primary production 

during the spring bloom, and we could not incJude a fall bloom in the calculation. This 

annual primary production is in the same range as the estimate of 12-16 g C m-2 y-I for the 

Beaufort Sea (Carrnack et al. 2004) and 23-28 g C m-2 il over the Mackenzie shelf slope 

(Lavoie et al. 2008), but 4 to 9 times lower than the satellite estimate of 90 to 175 

g C m-2 il in the Cape Bathurst polynya (Arrigo & van Dijken 2004). The annual primary 

production from Arrigo and van Dijken (2004) is comparable or higher than alIDual primary 

production of the Chukchi Sea (80 g C m-2 l, Hill & Cota 2005; 55 g C m-2 il, Lee et al. 

2007) , the Bering Sea (84-150 g C m-2 il, Rho & Whitledge 2007) or the Northwater 

polynya (152 g C m-2 il, Klein et al. 2002), which are systems with recurrent nutrients 

supply during the ice free season. Therefore, the actual annual primary production in the 
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Amundsen Gulf would probably lay between 20 and 90 g C m-2 il . Based on the same 

caJculation, the potential carbon export out of the euphotic zone would average 5 

g C m-2 il . However, for the same period the marine particulate organic carbon flux at 

200 m in Franklin Bay reached 4 g C m-2 il (Forest et al. 2008) and would account for 

18 % of annual primary production. Considering the high stratification in the Amundsen 

Gulf, the flux measured in Franklin Bay further confirms that the annual primary 

production of 21 g C m-2 y-l in the Amundsen Gulf is underestimated. 

In the Amundsen Gulf, phytoplankton production seems mostly constrain by the 

winter nutrient inventory available when sea ice retreats, as over the Mackenzie shelf slope 

(Lavoie et al. 2008). Winter nutrients inventories have never been reported before for the 

Amundsen Gulf, therefore we cannot state if the low annual phytoplankton production is a 

general characteristic of the Cape Bathurst polynya. Over the Mackenzie shelf, enhanced 

phytoplankton production was associated to the river plume expansion and shelf-break 

upwelling, which pronl0ted potential carbon export to depth. In a context of cJimatic 

change, with shorter sea ice covered season, winds could promote winter nutrients 

inventories build-up and increase shelf-break upwelling frequency, both favouring high 

phytoplankton production and potential export. However, the impact of reduced sea ice 

coyer in the Beaufort Sea remains a matter of discussion. 
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CHAPITRE III 

SPATIO-TEMPORAL DISTRIBUTION OF PICO- AND NANOPHYTOPLANKTON IN 

THE SOUTHEASTERN BEAUFORT SEA 
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RESUME 

La structure de taille du phytoplancton <20 /lm a été étudiée dans le sud-est de la 

mer de Beaufort en automne 2003, ainsi qu'au printemps et en été 2004, par cytométrie en 

flux. Le picophytoplancton «3 /lm) dominait le phytoplancton <20 /lm en abondance 

pendant toutes les saisons. Dans le golfe d'Amundsen, le picophytoplancton répondait plus 

rapidement au retrait printanier des glaces que le nanophytoplancton (>3 /lm). De plus, les 

conditions de retrait des glaces (i.e. la vitesse) modelaient la structure de taille du 

phytoplancton <20 /lm . En outre, en été, la circulation et la fonte de glace mobile 

favorisaient la croissance du pico- et du nanophytoplancton de 3-10 /lm. En automne, la 

diminution de la disponibilité en lumière était probablement responsable de la chute de 

l'abondance du phytoplancton <20 /lm. Cependant, le pico- et le nanophytoplancton de 3-

10 /lm étaient plus sensibles que le nanophytoplancton > 1 0 /lm, dont les abondances 

restaient constantes tout au long de l'automne. Sur le plateau continental du Mackenzie, le 

phytoplancton <20 /lm était dominé, au large, par le picophytoplancton en été et en 

automne, alors que, près de la côte, le picophytoplancton était moins dominant en été qu'en 

automne. Le panache des eaux du fleuve Mackenzie était probablement une source de 

cellules de plus grande taille en été (nanophytoplancton) qu'à la fin de l'automne (pico- et 

nanophytoplancton de 3-10 /lm). En général, les cellules picophytoplanctoniques étaient 

fortement retenues dans les eaux de surface, et entretenaient probablement un réseau 

trophique microbien très actif dans la mer de Beaufort. 
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ABSTRACT 

SmaU phytoplankton «20 f..lm) size structure was investigated in the southeastem 

Beaufort Sea in faU 2003 and during spring and summer 2004, using flow cytometry. 

Picophytoplankton «3 f..lm) dominated <20 f..lm phytoplankton abundances over aIl the 

seasons. In the Amundsen Gulf, picophytoplankton responded faster to sea ice retreat th an 

nanophytoplankton ceIls (>3 f..lm) . Moreover, sea ice retreat conditions (i.e. speed) 

modelled the <20 f..lm phytoplankton size structure. In addition, mobile sea ice motion and 

melt during summer favoured pico- and small nanophytoplankton (3-10 )lm) growth . In 

fa Il, decreasing light availability likely drove <20 f..lm phytoplankton abundance drop, 

however pico- and sma11 nanophytoplankton (3-10 f..lm) were more sensitive than large 

nanophytoplankton (> 10 f..lm) , which maintained steady abundances throughout faIl. Over 

the Mackenzie shelf, <20 f..lm phytoplankton was dominated by picophytop1ankton offshore 

in summer and faIl , whereas close to the shore, picophytoplankton was less dominant in 

summer than in fa11. The plume of the Mackenzie River waters was likely a source of larger 

ce Ils in summer (nanophytoplankton) than in late fall (pico- and small nanophytoplankton) . 

OveraU, there was a very high retenti on of picophytoplankton ceIls in the surface waters, 

probably sustaining the efficient microbial food web of the southeastem Beaufort Sea. 
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INTRODUCTION 

The Arctic Ocean is more sensitive to ongomg warmmg trend than temperate 

latitude regions (ACIA 2005 , IPCC 2007). Field and satellite observations indicate that the 

Arctic Ocean is warming [aster than other oceans (Rigor et al. 2000, Comiso 2003). 

Furthermore, from 1978-2003 the arctic sea-ice minimum extent (i.e. summer) decreased 

by 7.4 % (Johanessen et al. 2004). Since 2002, the Arctic Ocean has experienced minimal 

sea-ice extent records with a new maximum in summer open water in September 2007 

(Comiso et al. 2008), suggesting that sea ice shrinking is accelerating. In addition, 

numerical simulations predict that the Arctic Ocean could be free of ice in summer by the 

end of the 21 st century (SeITeze et al. 2007) or even by 2040 (Holland et al. 2006). The 

Arctic Ocean is also characterised by its large river inflow (Macdonald et al. 2004a), which 

would probably rise through the predicted intensification of the hydrological cycle under 

global warming trend (Peterson et al. 2002). Therefore, the arctic marginal seas would be 

particularly sensitive to climatic change impacts (ACIA 2005). Climatic change will likely 

affect arctic marine ecosystems, but the impact on food webs structure and carbon cyc1ing 

remains uncertain (Walsh et al. 2004, Wassmann 2004, Hare et al. 2007). Prediction of 

c1imate-related changes, as well as model validation, requires the understanding of CUITent 

functioning of arctic ecosystems. However, gaps still need to be filled in sorne biologically 

active regions and seasons in the Arctic Ocean (Carmack & Wassmann 2006). 

Arctic pelagic ecosystems are characterized by large seasonal variations in solar 

radiation and sea ice cover (Sakshaug & Slagstad 1991). Phytoplankton productive season 
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is usually short, between spring sea ice melt and fall freeze-up , with high phytoplankton 

production and standing stocks restricted to even shorter periods of the ice-free season 

(Sakshaug 2004). Phytoplankton cell size is a critical factor in the fate of carbon through 

the food web, with large phytoplankton cells favoring carbon expol1 and transfer to higher 

trophic levels (Chisholm 1992). The Arctic Ocean has traditionally been thought to be 

dominated by microphytoplankton (>20 flm) (von Quillfeldt 1997). However, recent 

studies focused on smaller phytoplankton forms (Wassmann et al. 2006) and showed active 

microbial food webs involving <3 flm phytoplankton (Lovejoy et al. 2002, Sherr et al. 

2003, Lovejoy et al. 2007) and noteworthy carbon fixation by <5 flm phytoplankton 

(Gosselin et al. 1997, Lee & Whitledge 2005). Only a couple of studies focused on the size 

structure of small phytoplankton (Mostajir et al. 2001 , Not et al. 2005 , Schloss et al. 2008, 

Tremblay 2008), though microphytoplankton cells are often constrained to bloom periods, 

while smaller cells (i.e. nano- and picophytoplankton) often dominate outside these periods 

(Not et al. 2005). 

The Beaufort Sea is an area of particular interest since it comprises the Mackenzie 

continental shelf and the Cape Bathurst polynya. Polynyas are considered as highly 

productive areas (Stirling 1997, Klein et al. 2002, Tremblay & Smith 2007), and represent 

preferential regions to study climatic change impacts owing to their reduced sea ice coyer 

(Tremblay et al. 2006). Interior continental shelves, such as the Mackenzie shelf, are 

strongly influenced by river discharge (Carmack & Wassmann 2006), and the Beaufort Sea 

receives the 4th highest annual freshwater discharge in the Arctic from the Mackenzie River 

(Racho Id et al. 2004). The Beaufort Sea exhibits a wide range of physical forcing, which 
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might strongly influence the slze structure of <20 ~m phytoplankton assemblages. 

Therefore, in the framework of the Canadian Arctic Shelf Exchange Study (CASES), the 

spatial and temporal variations in <20 ~m phytoplankton, i.e. pico- and nanophytoplankton, 

was investigated in the southeastem Beaufort Sea in faH 2003 and in spring-summer 2004. 

This study focuses on the description of the <20 ~m phytoplankton size structure and its 

seasonal and spatial variations in relation to physical forcing, and the importance of pico-

and nanophytoplankton in the pelagie ecosystem of the Beaufort Sea. 
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MATERIALS AND METHODS 

Studyarea 

The shallow Mackenzie shelf is bounded by the Amundsen Gulf to the east, and the 

Canada Basin to the north (Fig. 1). The surface circulation in the Mackenzie shelf and its 

surrounding regions is mainly driven by wind forcing, the Mackenzie River discharge, and 

thermohaline convection (Carmack & Chapman 2003). The Mackenzie River strongly 

influences the Mackenzie shelf and its maximum discharge usually occurs at the end of 

June (Rachold et al. 2004). Over the sampling area, the water column is typically formed by 

the Polar Mixed Layer (0-50 m), overlying the Cold Halocline Layer (50-200 m) from 

Pacific origin, and the Atlantic Layer (>200 m) (Carmack et al. 1989, MacLaughlin et al. 

1996). Beyond the shelf-break, the surface circulation is dominated by the south bran ch of 

the anticycJonic Beaufort gyre that drives the mobile permanent pack ice and the surface 

waters westward (Carmack & Macdonald 2002), below 50-85 m, the eastward Beaufort 

counter-current carries waters of Pacific origin along the slope (Pickart 2004). 

The Cape Bathurst polynya is a large recurrent polynya generally located at the 

entrance of the Amundsen Gulf (Barber & Hanesiak 2004). Sea ice dynamics in this region 

exhibit a high interannual variability, and in spring, sea ice retreat can occur from April to 

late June (Arrigo & van Dijken 2004). 
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Figure 1: Location of stations sampled in the southeastem Beaufort Sea (AG: Amundsen 
Gulf; FB : Franklin Bay; MS: Mackenzie Shelf). 

Sampling 

In the framework of the Canadian Arctic Shelf Exchange Study (CASES), sampling 

took place in the southeastem Beaufort Sea (69-72°N, 120-1400 W) during early (30 

September - 13 October) and late fa li 2003 (16 October - 14 November), and spring (4 - 21 

June) and summer 2004 (26 June - 10 August) on board the CCGS Amundsen (Fig. 1 and 

Table 1). Water samples were collected with a rosette sampler SBE-carousel (Seabird) 

fitted with twenty-four 12 1 Niskin bottles (Ocean Test Equipment Inc.), a SBE-9plus CTD 

and a Seapoint chlorophyll fluorometer. Water samples were ta ken at 6 to 10 depths in the 

upper 100 meters (fixed depth: surface and ca. 5, lO, 15, 25 , 50, 75 and 100 m; and 

fluorescence peaks). Samples for phytoplankton were pre-filtered cnte a 333 )lm mesh in 

order to remove large zooplankton. 
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Table 1: Location and periods of sampling in the southeastern Beaufort Sea. 

Year Season Region Sampling dates 

2003 Early fall Mackenzie shelf 30 September - 6 October 

Amundsen Gulf 9 - 13 October 

2003 Late faH Mackenzie shelf 19 - 22 October 

Amundsen Gulf 26 October - 19 November 

2004 Spring Amundsen Gulf and 4 - 21 June 
eastem Mackenzie shelf 

2004 Summer Mackenzie shelf 26 June - 27 July 

Amundsen Gulf 16 July - 10 August 

Daily SMMR-SSMII sea ice concentrations were calculated from daily ice 

concentration data provided by the National Snow and 1ce Data Center (Cavalieri et al. 

1996, updated 2006) for each 25 x25-km pixel containing sampling stations from 

September 2003 to August 2004. 

DownweHing PAR (Photosynthetically Active Radiation, 400-700 nm) irradiance 

was acquired using a GUY -510 surface radiometer (Biospherical Instruments). Underwater 

downwelling PAR profiles were collected at sorne stations during spring and summer 2004 

using a PUY -500 radiometer (Biospherical Instruments) around noon. Irradiance profiles 

were recorded from the surface down to 60-75 m (or to the bottom at shallow stations). 

Underwater irradiance measurements were corrected for dark current measured in the field 
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using light-tight neoprene caps. The depth of the euphotic zone (1 % isolume) was further 

estimated by linear regression of the natural logarithm of underwater downwelling 

irradiance versus depth. 

The depth of the Surface Mixed Layer (SML) was calculated according to Thomson 

and Fine (2003). The 31 .6 isohaline defines the bottom of the Polar Mixed Layer (PML), 

and the 32.4 isohaline is characteristic of waters of Pacific origin (Carrnack et al. 1989). 

Samples for inorganic nutrient measurements were taken at the same depth than 

phytoplankton sampi es. Inorganic nu trient concentrations (nitrate + nitrite, phosphate and 

silicic acid) were measured on board using standard colorimetric methods (Grasshoff 1999) 

as described in Simpson et al. (2008). 

Region definition 

Stations were separated according to their locations relative to 128.35°W, which 

barely corresponds to the tip of the Cape Bathurst. Stations west of 128.35°W on the 

Mackenzie shelf and slope (depth < 400 m) were considered as Mackenzie shelf stations, 

and stations east of 128.35°W were considered to be in the Amundsen Gulf region. 

However, in early faU station CA13 was excluded from the shelf region owing to its 

c10seness to the pack ice and the coastal station 415 was not considered in the Amundsen 

Gulf region. 
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Chlorophyll a determination 

For the determination of phytoplankton chlorophyll a (chI a) concentration, water 

sub-samples of 0.5 to 1 1 were filtered onto glass fibre filters (poresize 0.7 )lm, Whatman 

GF/F) (total biomass) and 20 )lm filters (Nitex) (>20 )lm biomass). ChI a concentrations 

were determined with a 10-AU Turner Designs fluorometer following 24 br extraction in 

90 % acetone at 5°C in the dark without grinding (Parsons et al. 1984). Concentrations of 

chI a were corrected for phaeopigments by acidification of the extract (Knap et al. 1996). 

ChI a concentrations <20 )lm was obtained by subtraction. Ali values were integrated over 

50 m. The depth of 50 m was chosen for integration of chI a concentration values in order 

to include the euphotic zone, the PML and the deepest chI a peak for most of the stations. 

Flow cytometry 

Samples were preserved in 1 % paraformaldehyde final concentration (Marie et al. 

2005) and frozen at 80°C for later counts of phytoplankton cells «20)lm) using a Epics 

Altra flow cytometer (Beckman-Coulter) equipped with a 488 nm laser (15 mW output) . 

Prior to analysis, samples were pre-filtered on 40 )lm mesh size. The flow rate was set on 

100 )lI min- I and the acquisition time ranged from 5 to 20 min. The analyzed sample 

volume was determined from the change in mass corrected for a dead volume of 50 )lI. One 

)lm microspheres (0.96 )lm Fluoresbrite YG, Polysciences) were added to each sample as 

an internaI standard. Forward light scatter (FSC), side Iight scatter (SSC), orange 

fluorescence from phycoerythrin (575 ± 20 nm) and red fluorescence from chloprophyll 

(675 ± 10 nm) were measured. The orange fluorescence allows the discrimination of 
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phycoerythrin-containing cyanobacteria. Pico- and nanophytoplankton were discriminated 

based on FSC calibration with polystyrene microspheres of known size (3 ~m Fluoresbrite 

YG, Polysciences, and Flow cytometry size calibration kit, Invitrogen). In this study, 

picophytoplankton corresponds to the <3 ~m cells, small nanophytoplankton to 3-1 0 ~m 

cells and large nanophytoplankton to > 1 0 ~m cells. All abundances were averaged over 

50 m. 

Statistical analyses 

ln order to investigate differences in pICO- and nanophytoplankton abundances 

between the different regions and water masses, the non-parametric pair comparison Mann-

Whitney U test was applied, as the data did not meet normal distribution and 

homoscedasticity (Zar 1999). The distribution of biological «20 ~m, <3 ~m, 3-1 0 ~m and 

> 1 0 ~m abundances) and physical (depth, salinity, temperature, nutrients and underwater 

PAR) variables was not normal and data could not be transformed so as to reach a normal 

distribution. Moreover depth, salinity, temperature and underwater PAR irradiance were all 

correlated (Spearman rank correlations, p < 0.05); therefore no statistical analysis could be 

performed to analyse the relationships between biological and physical variables. Ali 

statistical tests were carried out with the Statistica 7.0 program (StatSoft). 
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RESULTS 

Physico-chemical conditions 

In spring 2004, sea ice retreat occurred around the 161h May in the middle of the 

Amundsen Gulf and the eastem part of the Mackenzie shelf, whereas it started one week 

later in the southem part of the Amundsen Gulf about the 22nd May. Ali stations were 

sampled in open water (i.e. ice concentration < 50 %), however the delay between sea ice 

retreat and sampling was different. This delay was about 15 days for the group of stations 

south of the Amundsen Gulf (206,256 and 108), while it ranged from 25 to 35 days for the 

other stations. Most of the sampling area was completely free of ice during summer 2004, 

however sea ice was observed at sorne stations in the Amundsen Gulf(315, 415, 412,109, 

215 and 109, concentration < 30 %). There, presence ofsea ice was usually associated with 

low surface temperature. Sea ice (concentration < 50 %) was also present over the 

Mackenzie shelf slope and northward. ln early fall 2003, stations were still in open water at 

sampling time. In late fall 2003 , new sea ice fOffi1ed over the entire sampling area and 

started to consolidate in November. 

The daylength lasted 24 hours from June to August 2004, whereas it decreased from 

13 hours on 30 September to 3 hours on 19 November 2003. Daily solar incoming PAR 

irradiance decreased from spring to summer 2004 (14.7 to 63.3 mol photon m-2 d-I
) and in 

fall 2003 (0.3 to 7.4 mol photon m-2 d- I
). 

ln spring 2004, low surface temperature (ca -1.2°C) characterised the group of 

stations south of the Amundsen Gulf, which was associated with thin SML (6 to 15 m) and 
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PML « 26 m). Surface temperature were slightly higher in the middle of the Amundsen 

Gulf (-0.7 to -0.2°C), with thicker SML and PML (11 to 55m and > 36m, respectively). 

Over the eastem part of the Mackenzie shelf and slope, salinity data highlighted shelf-break 

upwelling. ln this area, surface temperature was high (> O°C) and the SML thickness 

ranged from 7 to 30 m and that of the PML from 0 to 55 m. In the Amundsen Gulf, surface 

temperature was generally higher in summer (ca 3.3°C). Low surface temperature and 

salinities were associated to recent sea ice melt (stations 109,215, 212 and 106). The PML 

thickness ranged from 30 to 60 m, whereas the SML remained thin (4 to Il m). In summer 

2004, surface salinity and surface temperature followed an inverse trend over the 

Mackenzie shelf and slope, with high salinity and low temperature offshore, and low 

salinity and warrn temperature inshore, associated to the Mackenzie River plume. River 

plume waters were found at stations 912, 909, 906, 809, 803,718,715 and 712. The SML 

and PML became thicker offshore (from 10 to 23 m and 15 to 60 m, respectively), inshore 

the SML corresponded to the river plume (ca. 5 m). Shelf-break upwelling was a1so 

evidenced by the high salinity at shallow depths over the shelf. ln early faH 2003, surface 

temperature had decreased and was usually < 0.5°C, except at station 718 under the river 

plume influence. Later in faIl, surface temperature declined under -laC, even at station 

under the river plume influence (718, 715 and 712). During faH, the SML became thicker 

offshore over the Mackenzie shelfand slope (5 to 15 m), while its thickness ranged from 10 

to 20 m in the Amundsen Gulf. The bottom of the PML usually laid between 30 and 50 m. 

In spring and summer 2004, the depth of the euphotic zone (1 % isolume) generally 

matched the bottom of the PML about 40 to 60 m in the Amundsen Gulf. Over the 
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Mackenzie shelf, it fol!owed and inshore-offshore gradient, with a deeper euphotic zone 

offshore (40 to 55 m) and a shallow euphotic zone close to the shore (3 to 20 m) associated 

with the Mackenzie River plume. 

During al! the sampling periods, nitrate was more likely the limiting nutrient in the 

upper 50 m (N/P < 6) (Simpson et al. 2008). Nitrate concentrations were generally low in 

the upper 50 m, though nitrate concentrations were stil! moderate at the bottom of the PML 

(> 1 )lM). Nitrate inventories were low at most of the stations (ca. 100 mmol m-2 in the 

upper 50 m), however they were moderate to high (> 200 mmol m-2 in the upper 50 m) at 

stations south of the Amundsen Gulf in spring 2004 and at stations under shelf-break 

upwelling influence in spring and summer 2004. 

Chi a biomass 

Phytoplankton biomass exhibited high seasonai and spatial variations. In spnng 

2004, the biomass was low at stations south of the Amundsen Gulf (7 mg chI a m-2) and 

increased in the middle of the gulf (16 mg chI a m-2), however the contribution of 

phytoplankton <20 )lm cells was roughly the same around 92 %. At stations close and over 

the eastem part of the Mackenzie shelf, the biomass reached 204 mg chI a m-2, of which 

only 36 % were due to <20 )lm cells. In summer, the biomass averaged 19 mg chI a m-2 in 

the Amundsen Gulf and was mostly due to <20 )lm cells (94 %). Over the Mackenzie shelf 

and s)ope, the biomass decreased offshore, whereas the contribution of <20 )lm cells 

increased. The average biomass was high (89 mg chI a m-2) and the contribution of <20 )lm 

cells low around 26 %. ln early fal! 2003 , the biomass was lower over the Mackenzie shelf 
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(14 mg chI a m-2), while the contribution of <20 )lm cells increased to 96 %. Later in faH, 

the biomass remained roughly constant (at 14 mg chI a m-2) and <20 )lm cells contributed 

to 79 %. In the Amundsen Gulf, <20 )lm cells represented about 63 % of the biomass (26 

mg chI a m'2) in early fa Il, but it was only estimated at 2 stations. The biomass further 

decreased to 10 mg chi a m-2 with 90 % due to <20 )lm cells. 

Pico- and nanophytoplankton 

Pico- and nanophytoplankton populations 

Over aIl the season sampled, several populations composed nanophytoplankton (3-

10 )lm and > 1 0 )lm), whereas the picophytoplankton «3 )lm) fraction was due to one 

single population. In spring and summer, the picophytoplankton population had a size 

mainly comprised between roughly 1 and 2.5 )lm, while in fall the size of this population 

seemed smaI1er, with maximal size only slightly larger than 2 )lm. Sorne phycoeryhtrin-

containing cells with a small size were detected, however no distinct population was 

observed. Therefore, the question of the presence or absence of cyanobacteria could not be 

addressed, and picophytoplankton hereafter will only represent picoeukaryotes. 

Pico- and nanophytoplankton distribution in the upper 50 meters 

In spring 2004, picophytoplankton dominated the <20 )lm phytoplankton abundance 

III the upper 50 meters over the entire sampled region (Table 2). Picophytoplankton 

abundances were an order of magnitude higher than that of 3-10 )lm nanophytoplankton, 

which were in tum an order of magnitude higher than > 1 0 )lm nanophytoplankton 
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abundances (Table 2). Three groups of stations could be separated by the <20 /lm 

phytoplankton size structure. Stations south of the Amundsen Gulf (group 1) were 

characterised by low concentrations of pico- and nanophytoplankton and a lower 

contribution of picophytoplankton to <20 /lm phytoplankton abundance (Fig. 2 and Table 

3). Stations in the middle of the Amundsen Gulf (group 2) showed the highest 

picophytoplankton abundances in spring and contributed to 97 % of <20 /lm phytoplankton 

(Fig. 2 and Table 3). The last group consisted in stations close or over the eastem part of 

the Mackenzie shelf and slope (group 3). There higher abundances of nanophytoplankton 

coincided with higher <20 /lm phytoplankton biomass (Fig. 2 and Table 3). ln group 1 

stations, pico- and nanophytoplankton were homogeneously distributed over the upper 

15 m of the SML, with picophytoplankton abundances ranging from 600 to 3800 cells mr'. 

ln the middle of the gulf, pico- and nanophytoplankton were evenly distributed over the 

entire PML. There picophytoplankton reached maximal abundance of 23900 cells mr' . At 

group 3 stations, the vertical distribution of pico- and nanophytoplankton was markedly 

different. At stations over or close to the shelf slope, pico- and nanophytoplankton formed a 

deep maximum of abundance at the bottom of the PML matching the chlorophyll 

maximum, whereas at shallow stations over the shelf two maxima of pico- and 

nanophytoplankton abundance were observed at the surface and at depth. ln group 3 

stations, maximal picophytoplankton abundance reached only 15300 cells mr'. 
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Table 2: Pico- «3 !lm), small nano- (3-10 !lm) and large nanophytoplankton (> 10 !lm) 
abundances (averaged over the upper 50 m) and their relative contribution to <20 !lm 
phytoplankton cell abundance for the different seasons, in the Amundsen Gulf and on the 
Mackenzie shelf, mean ± SD, the number of stations is in brackets. 

Season Region Cell abundance (ce Ils mr J
) Contribution (%) 

<3 ~m 3-10 ~m > 10 ~m <3 ~m 3-10 ~m > 10 ~m 

Spring 7001 ± 4760 343 ± 219 103 ± 109 91 6 2 
(n = 15) 

Summer Shelf 1977 ± 1576 349 ± 176 130 ± 105 73 20 7 
(n = 16) 

Gulf 6363 ± 5207 356 ± 160 87±47 92 6 2 
(n = 21) 

Early faU Shelf 2991 ± 878 227 ± 51 66 ± 17 91 7 2 
(n = 5) 

Gulf 2224 ± 402 21O ± 19 45 ± II 90 9 2 
(n = 4) 

Late fall Shelf 2515 ± 422 158 ± 66 68 ± 30 89 6 2 
(n = 5) 

Gulf 1581 ± 523 178 ± 60 44 ± 29 87 10 3 
(n = 14) 
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Figure 2: Average (over 50 m) <20 !lm phytoplankton and picophytoplankton «3 !lm) 
abundances and total (ChlT) and <20 !lm (Chl<20 !lm) chI a concentrations (integrated 
over 50 m) (a), average (over 50 m) small (3-10 !lm) and large (> 10 !lm) 
nanophytoplankton cell abundances (b), and average contribution of pico- «3 !lm) and 
nanophytoplankton (3-10 !lm and > 1 0 !lm) to <20 !lm phytoplankton cell abundance (c) in 
spring 2004. 
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Table 3: Pico- «3 !lm), small nano- (3-10 !lm) and large nanophytoplankton (> 10 !lm) 
abundances (averaged over the upper 50 m) (mean ± SD) and their relative contribution to 
<20 !lm phytoplankton cell abundance, and sea ice conditions in spring for the different 
groups of stations. 

Cell abundance (cells mrl) 

<3 !lm 

3-10 !lm 

> 1 0 !lm 

Contribution to cell abundance (%) 

<3 !lm 

3-10 !lm 

> 10 !lm 

Number of days from ice break-up 

Number of days in open water 

!ce concentration (%) 

Number of stations 

Group 1 

958±516 

117 ± 23 

36 ± 5 

84 

12 

4 

15 ±1 

8±3 

38 ± 14 

3 

Group 2 

10382 ± 4321 

295 ± 78 

36 ± Il 

97 

3 

o 
26 ± 2 

7 ± 4 

19 ± 21 

6 

Group 3 

6642 ± 2979 

504 ± 251 

203 ± 114 

90 

7 

3 

32 ± 2 

16 ± 4 

14 ± 16 

6 
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In summer 2004, the <20 /lm phytoplankton of the Amundsen Gulf was also 

dominated by picophytoplankton which represented 92 % of <20 /lm phytoplankton cells 

(Table 2). Pico- and nanophytoplankton formed a maximum in abundance at depth . 

Nanophytoplankton maximal abundances matched the chlorophyll maximum depth (i .e. the 

bottom of the PML and the euphotic zone), while picophytoplankton maximal abundances 

occurred at the chlorophyll maximum depth or slightly above. The spatial distribution of 

pico- and nanophytoplankton abundances was not very variable over the gulf, though 

extremely high picophytoplankton maximal abundances of 51000 and 63000 cells mr l 

were recorded at stations 212 and 109, respectively (Fig. 3). Higher chlorophyll biomass 

was associated to higher nanophytoplankton numbers, as in spring (Fig. 3). Maximum 

nanophytoplankton abundances were observed at the coastal station 415 with 5000 and 500 

cells mr l of3-10 /lm and > 10 /lm cells respectively. 
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Figure 3: Average (over 50 m) <20 !lm phytoplankton and picophytoplankton «3 !lm) 
abundances and total (ChIT) and <20 !lm (Chl<20 !lm) chI a concentrations (integrated 
over 50 m) (a), average (over 50 m) small (3-10 !lm) and large (> 10 !lm) 
nanophytoplankton cell abundances (c) , and average contribution of pico- «3 !lm) and 
nanophytoplankton (3-10 !lm and > 1 0 /lm) to <20 /lm phytoplankton cell abundance (c) in 
summer 2004 in the Amundsen Gulf region. 
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Contrary to the Amundsen Gulf, the spatial distribution of pICO- and 

nanophytoplankton over the Mackenzie shelf and slope in summer 2004 was highly 

variable, and both picophytoplankton abundances and contribution to <20 !lm 

phytoplankton abundance were significantly lower than in the adjacent Amundsen Gulf 

(Mann-Whitney U test, p < 0.05) (Table 2). Nanophytoplankton abundance followed an 

inshore-offshore gradient, as the chiorophyll biomass, with higher nanophytoplankton 

abundance and biomass close to the coast, while picophytoplankton showed the inverse 

trend with higher abundances offshore (Fig. 4). Maximum picophytoplankton numbers 

about 7000 cells mr) were observed at offshore stations 600 and 703 , but also at station 400 

with 8500 cells mr). Nanophytoplankton (3-10 !lm) exhibited the highest abundance in 

association to the river plume (1300 and 300 cells mr) of 3-10 !lm and > 1 0 !lm cells, 

respectively, at station 906) or to shelf-break upwelling (2300 and 1200 cells mr) of 3-10 

!lm and > 1 0 !lm cells, respectively, at station 609). Offshore deep maximum of pico- and 

nanophytoplankton abundance corresponded to the chlorophyll maximum and the bottom 

of the PML. Inshore pico- and nanophytoplankton cells were generally concentrated in the 

surface layer, which corresponded to river plume waters. Over the Mackenzie shelf and 

sI ope, nanophytoplankton (3-10 !lm and > 1 0 !lm) abundances were significantly higher in 

the river plume waters than in the underlying and adjacent surface waters of the PML 

(upper 10 m and whole PML) (Mann-Whitney U test, p < 0.05) (Table 4) . 
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Figure 4: Average (over 50 m) <20 Ilm phytoplankton and picophytoplankton «3 Ilm) 
abundances and total (ChIT) and <20 Ilm (Chl<20 Ilm) chi a concentrations (integrated 
over 50 m) (a), average (over 50 m) small (3-10 Ilm) and large (> 10 Ilm) 
nanophytoplankton cell abundances (b), and average contribution of pico- «3 Ilm) and 
nanophytoplankton (3 -1 0 Ilm and >10 Ilm) to <20 Ilm phytoplankton cell abundance (c) in 
summer 2004 over the Mackenzie shelf and slope region. 
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Table 4: Pico- «3 /lm), small nano- (3-10 /lm) and large nanophytoplankton (>10 /lm) 
abundances (mean ± SD) and their relative contribution to <20 /lm phytoplankton cell 
abundance over the Mackenzie shelf in the river plume and the upper 10 m and the whole 
Polar Mixed Layer (PML). 

Season Water layer Cel! abundance (cel!s mr l
) Contribution (%) 

<3 ).un 3- 10 1lm > 10 Ilm <31lm 3-10 Ilm > 10 Ilm 

Surnmer River plume 2172 ± 1077 907 ± 308a, b 182 ± 97a, b 64a 30a 6 
(0 = 16) 

PML > 10 m 2125 ± 1919 542 ± 338 115 ± 69 71 24 5 
(0 = 33) 

PML 1887 ± 1828 452 ± 348 120 ± 137 64 28 8 
(0 = 79) 

Early faU River plume 4979 ± 597b 392 ± 73b 82 ± 8 91 7 2 
(0 = 3) 

PML > 10 m 4685 ± 1319 300± 124 60 ± 21 93 6 
(0 = 10) 

PML 3162 ± 1825 254 ± 104 67 ± 35 87 10 3 
(0 = 21) 

Late faU River plume 7124 ± 1576a, b 435 ± 91 b 67 ± 2l a, b 93 b 6b 

(0 = 8) 

PML >10 m 5665 ± 811 342 ± 80 40± 14 94 6 0 
(0 = 8) 

PML 3229 ± 2218 256 ± 89 47 ± 20 87 10 3 
(0 = 23) 

The number of samples is in brackets, a and b denote significant difference between River 
plume and the upper 10 m and the whole PML, respectively (Mann-Whitney U test, p < 
0.05). 
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In early faH 2003, pico- and nanophytoplankton abundances and contribution to <20 

)lm phytoplankton abundance was similar in the Amundsen Gulf and the Mackenzie shelf 

regions (Fig. 5 and Table 2). Picophytoplankton contributed to 90 % of <20 )lm 

phytoplankton abundance, as in spring and summer in the Amundsen Gulf, however pico-

and nanophytoplankton numbers were lower compared to the spring and summer periods 

(Table 2). Picophytoplankton abundance reached a maximum of 7300 cells mr1 at station 

CAI8, and nanophytoplankton maximal abundances were attained at station CA20 (750 

and 130 cells mr1 of3-10)lm and >10)lm cells, respectively). The vertical distribution of 

pico- and nanophytoplankton was similar in the Amundsen Gulf and over the Mackenzie 

shelf with cells concentrated in the upper 15 to 25 m. The Mackenzie River influence was 

only detected at station 718, which presented the highest nanophytoplankton abundance 

over the shelf (400 and 110 cells mr1 of 3-10 )lm and > 1 0 )lm cells, respectively). Pico-

and small nanophytoplankton abundance in the river plume waters were similar to the 

surface 10 m of PML waters, but higher than the whole PML waters (Mann-Whitney U 

test, p < 0.05) (Table 4). 
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Figure 5: Average (over 50 m) <20 )lm phytoplankton and picophytoplankton «3 )lm) 
abundances and total (ChIT) and <20 )lm (Chl<20 )lm) chi a concentrations (integrated 
over 50 m) (a), average (over 50 m) small (3 -10 )lm) and large (>10 )lm) 
nanophytoplankton cell abundances (b), and average contribution of pico- «3 )lm) and 
nanophytoplankton (3-10 )lm and > 1 0 )lm) to <20 )lm phytoplankton cell abundance (c) in 
early faU 2003_ 
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In late fall 2003 , the Mackenzie shelf regIOn was characterised by higher 

picophytoplankton abundances compared to the Amundsen Gulf (Mann-Whitney U test, 

p < 0.05) (Fig. 6 and Table 2). This difference was probably due to the Mackenzie River 

influence, since river plume waters had significantly higher pico- and nanophytoplankton 

abundances than underlying and adjacent PML waters (Mann-Whitney U test, p < 0.05) 

(Table 4). Pico- and nanophytoplankton cells were concentrated in the upper 10 m to 25 m 

over the Mackenzie shelf, and in the top 15 to 25 m in the Amundsen Gulf. Maximum 

picophytoplankton abundances were recorded at station 718 (8900 cells mrl) over the 

Mackenzie shelf, and at station 124 (7900 cells mrl) at the beginning of the sampling in the 

Amundsen Gulf. In the Amundsen Gulf, pico- and small nanophytoplankton abundance 

decreased over time, while large nanophytoplankton abundance remained stable (Fig. 6 and 

Fig. 7). The decrease was more pronounced for picophytoplankton th an small 

nanophytoplankton, resulting in a lower contribution of picophytoplankton to <20 Ilm 

phytoplankton abundance (Fig. 6 and Table 2). 
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Figure 6: Average (over 50 m) <20 /lm phytoplankton and picophytoplankton «3 /lm) 
abundances and total (ChlT) and <20 /lm (Chl<20 /lm) chI a concentrations (integrated 
over 50 m) (a), average (over 50 m) small (3-10 /lm) and large (>10 /lm) 
nanophytoplankton cell abundances (b), and average contribution of pico- «3 /lm) and 
nanophytoplankton (3-10 /lm and > 1 0 /lm) to <20 /lm phytoplankton cell abundance (c) in 
late fall 2003. 
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Pico- and nanophytoplankton in deep waters 

Picophytoplankton dominated <20 !lm phytoplankton abundance in the upper water 

column (top 50 m), with an average contribution of 81 % for aU sampling periods and 

regions, whereas below 50 m in underlying waters of Pacific characteristics (salinity 

> 32.4), this contribution dropped to 45 %. The abundance of <20 !lm phytoplankton ceUs 

below 50 m was compared to the <20 !lm phytoplankton ceUs abundance of the upper 

50 m. The proportion of <20 !lm phytoplankton ceUs below the upper 50 m, i.e. out of the 

PML, was estimated for aU size fractions (Table 5). The proportion of large 

nanophytoplankton ceUs below 50 m represented roughly half of their abundance in the 

upper 50 m, while 96 % of picophytoplankton ce Us would remained in the upper layer 

(Table 5). The proportion of picophytoplankton ce Us below 50 m was constant over the 

seasons, while the proportion of nanophytoplankton ceUs below 50 m was higher in faU. 

Table 5: Proportion of pico- and nanophytoplankton cells below the upper 50 m for the 
different sampling seasons over the southeastern Beaufort Sea (in percentage of cell 
abundance of the upper 50 m). 

Proportion of cells below 50 m (%) 

<3 Jlm 3-10 Jlm >10 Jlm 

Spring 2 13 21 

Summer 5 22 45 

Early fall 4 46 113 

Late fall 8 42 113 

Average 4 25 55 
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DISCUSSION 

Picophytoplankton populations 

Picophytoplankton showed high abundances throughout the seasons and regions in 

the southeastem Beaufort Sea. The predominance of picophytoplankton in cell abundance 

has previously been reported in other arctic regions. Regardless of the size threshold used 

to define picophytoplankton, our results faU in the range of picophytoplankton abundances 

observed in the Barents Sea (Throndsen & Kristiansen 1991 , Not et al. 2005), the Baffin 

Bay (Mostajir et al. 2001, Tremblay 2008), the Greenland Sea (Booth & Smith 1997, 

Waniek et al. 2005), the central Arctic (Booth & Homer 1997, Sherr et al. 2003), the 

Bering Sea (Liu et al. 2002a, 2002b) and the Beaufort Sea (Rozanska et al. 2007, Schloss et 

al. 2008, Tremblay 2008). 

The presence of cyanobacteria in the Beaufort Sea has been reported by Waleron et 

al. (2007) using epifluorescence microscopy. The abundances of cyanobacteria reported 

(200 to 1400 ceUs mr1
) would have been sufficient to be detected and form a distinct 

population by flow cytometry, but their estimates of picoeukaryotes abundance «3 /lm, 

100 to 2400 ceUs mrl) was at least 2-fold lower than our picophytoplankton abundances for 

the same period one year later. The preservation protocol used in our study could have 

altered cyanobacteria fluorescence and prevented the detection of distinct populations, 

however our preservation protocol and the use of flow cytometry seemed to be more 

relevant for picoeukaryotes counting in the Beaufort Sea. 
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Only one population composed the picophytoplankton size fraction, its cell size 

seemed to vary from 1 /lm to less than 3 /lm for aIl seasons. The species Micromonas 

pusilla (Butcher) Manton and Parke has been identified as the main constituent of 

picophytoplankton in the Barents Sea (Throndsen & Kristiansen 1991, Not et al. 2005), but 

also in the Greenland Sea (Booth & Smith 1997) and the central Arctic (Sherr et al. 2003). 

Moreover, Terrado et al. (2008) identified micromonas-like cells by epifluorescence 

microseopy in the Beaufort Sea during winter and spring 2004, and Lovejoy et al. (2007) 

revealed the presence of a pan-Aretie Micromonas ecotype in the Beaufort Sea in 2002 and 

2004. Therefore, the picophytoplankton population probably belonged to the genus 

Micromonas. 

Picophytoplankton size 

The upper size limit of the pieophytoplankton varies aceording to phytoplankton 

studies. The historieal definition of pieophytoplankton set the upper limit at 2 /lm (Sieburth 

et al. 1978), however the 3 /lm one is also widely used (Li 1986, Not et al. 2005, Lovejoy et 

al. 2007). In a polar environment, Vanucci and Bruni (1998) addressed the question of 

picophytoplankton size definition using epifluorescence microscopy. They concluded that 

<2 /lm and 2-3 /lm phytoplankton size fractions had different ecologieal significance in the 

Ross Sea, and further separated these two size classes (Vanueci & Bruni 1999, Vanueei & 

Mangoni 1999). In our study, the use of the 2 /lm threshold would have eut the 

picophytoplankton population, even if the part of the population >2 /lm had likely the sa me 

ecologieal significance. Therefore, pieophytoplankton relative abundanee would have been 
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underestimated by about 15 %, increasing the relative importance of nanophytoplankton. 

Despite restrictions associated to FSC as an accurate size index, the flow cytometry allows 

choosing the threshold according to the size and red fluorescence characteristics of 

phytoplankton populations. As the arctic widespread Micromonas sp. can reach up to 2.5 

flm in length (Throndsen & Kristiansen 1991), the use of 3 flm threshold and/or the 

counting ofboth <2 flm and 2-3 flm fractions would be relevant in the Arctic Ocean. 

Seasonalvariations 

Seasonal variations will only be discussed in the Amundsen Gulf, as this region was 

not under the influence of the Mackenzie River and was the most extensively sampled 

reglOn. 

ln spring, the phytoplankton size structure seemed to be related to sea ice dynamics 

(Table 3). South of the Amundsen Gulf (group 1), sea ice retreat occurred later compared to 

the northem areas, and was fast (one week). There, the biomass was due to <20 flm cells, of 

which picophytoplankton was dominant but in low numbers. Small nanophytoplankton 

abundance was similar to that reported under the ice in spring in the adjacent Franklin Bay, 

whereas picophytoplankton concentrations were almost 4 to 5-fold higher (Terrado et al. 

2008). Moreover, nitrate inventories south of the Amundsen Gulf were close to the winter 

nitrate level in Franklin Bay (Tremblay et al. 2008). This suggests that the phytoplankton 

assemblage was still adapting to the environmental conditions related to ice retreat (e.g. 

increased light intensities), and that picophytoplankton would be faster adapted to these 

conditions th an nanophytoplankton. In the middle of the Amundsen Gulf (group 2), <20 flm 
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cells dominated the biomass, with very high picophytoplankton abundances and moderate 

to low abundances of nanophytoplankton. Sea-ice retreat lasted 2.5 weeks and this are a was 

in open water conditions only since one week prior sampling. At stations close the eastem 

part of the Mackenzie shelf and slope (group 3), sea-ice retreat was only slightly faster (two 

weeks), but the phytoplankton size structure was very different from the middle of the 

Amundsen Gulf and formed a deep maximum of biomass and <20 )lm cells abundance. At 

least 40 % of the biomass was due to >20 )lm cells, however <20 )lm cells were abundant, 

and particularly nanophytoplankton. Stations close the eastem part of the Mackenzie shelf 

and slope were experiencing phytoplankton bloom situations, while at stations in the 

middle of the Amundsen Gulf nitrates were already depleted and no deep maximum 

formed. Whether a phytoplankton bloom happened in the middle of the Amundsen Gulf is 

not c1ear, even if research on arctic pelagic ecosystems proposed that surface nitrate 

depletion after sea ice break-up would be due to large blooming phytoplankton cells (large 

nano- and microphytoplankton, Smith & Sakshaug 1990, Wassmann et al. 2006). However 

if we assume that winter nitrate inventories were similar to the low inventories measured in 

the Franklin Bay (l10 mmol m-2, Simpson et al. 2008), a short bloom of large 

phytoplankton might have developed. Moreover, as nitrate reduction can be used to 

dissipate light energy when shade-adapted phytoplankton is transiently exposed to high 

light intensities (Lomas & Glibert 1999), which probably happened during sea ice retreat, 

nitrate consumption might have been even faster. Then, the slow sea ice retreat and/or the 

deep mixing would have prevented the accumulation of biomass at the bottom of the PML 

and favoured fast picophytoplankton growth over the whole PML. On the other hand, the 



133 

large nanophytoplankton abundance in the middle of the Amundsen Gulf was still similar 

to that at southern stations, therefore it can be hypothesized that the phytoplankton bloom 

was mainly due to pico- and small nanophytoplankton (i.e. celIs < 10 !lm). 

Overall, phytoplankton growth in spring in the Amundsen Gulf seemed closely 

linked to sea ice dynamics. The processes directly influencing phytoplankton growth (e.g. 

light availability, stratification/mixing, warming temperature) cannot be identified, though 

slow ice retreat seemed to favour high picophytoplankton growth, while fast sea ice retreat 

favoured the growth of pico- and nanophytoplankton and their accumulation at depth. 

Furthermore, picophytoplankton (presumably Micromonas sp.) responded faster to open 

water conditions th an nanophytoplankton. 

The spatial variability in <20 !lm cells was very small over the Amundsen Gulf in 

summer. The <20 !lm phytoplankton was dominated by picophytoplankton, present in 

abundances similar to those measured in late summer 2005 in the same region (Tremblay 

2008). In the gulf, the main source of variability was attributed to sea ice motion and melt. 

Indeed, lower surface temperature and salinity were associated to the higher pico- and small 

nanophytoplankton abundances despite low nitrate concentrations « 1 !lM). Hence, 

episodic sea ice motion and melt could favour pico- and small nanophytoplankton growth. 

On the other hand, temperature has been shown to be a major factor of picophytoplankton 

distribution in the north Atlantic (Li & Harrison 2001), but also in the Arctic (Mostajir et al. 

2001 , Tremblay 2008). In addition, Lovejoy et al. (2007) showed that an arctic strain of 

Micromonas sp. performed optimal growth at 6-8°C under moderate irradiances (50 and 

100 !lmol photon m-2 S-I), while growth was minor and similar over 0 to l2°C at lower 
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irradiances (10 Ilmol photon m-2 S-I). However, maximum picophytoplankton abundances 

corresponded to low temperature « O°C) and low to high irradiances (lOto 700 

Ilmol photon m-2 S- I) in spring, and to low temperature (-1 to 2°C) and low to moderate 

irradiances (10 to 100 Ilmol photon m-2 s-l) in summer. Thus, in the Amundsen Gulf, ev en 

though the question of top-down control remains open, picophytoplankton growth did not 

seemed to be mainly driven by temperature but rather by a combination of physico-

chemical and light conditions. 

ln early fall, pico- and nanophytoplankton abundances had decreased. Moreover, 

<20 Ilm phytoplankton was concentrated in the upper 15-25 meters. In spring maximum 

pico- and nanophytoplankton abundances coincided with temperatures < -0.5°C, and in fall 

maximum abundances were observed for similar temperatures (from -1.4 to 0.7°C). Hence, 

the vertical distribution of pico- and nanophytoplankton at surface in faU was probably 

more linked to light availability than water temperature. Later in faU, pico- and small 

nanophytoplankton abundance markedly decreased to Il th November two weeks prior 

continuous darkness of the polar night, however at that time, their abundances were still 

respectively 10 and 3-fold higher than winter abundances (Terrado et al. 2008). Both pico-

and smaU nanophytoplankton abundances decreased through the end of the year (Fig. 7). ln 

faU, decreasing solar incoming irradiance, daylength, light availability in the water colurnn 

(due to sea ice) and temperature are linked to the day of the year; the effect of each 

parame ter can therefore not be departed from the others. Since picophytoplankton and 

nanophytoplankton seemed to be able to growth fast at temperature < -1.1 oC in spring when 
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light availability increases, light availability wou Id be the major factor responsible for the 

decline of <20 /lm phytoplankton abundance during faIl . 

In the Amundsen Gulf, sea ice dynamics was of major importance in driving 

seasonal variations in <20 /lm phytoplankton growth mostly in spring and faIl, even though 

direct effect of sea ice dynamics in faIl could not be assessed owing to declining solar 

irradiance. Furthermore, in summer under low ambient nitrate concentrations, sea ice was a 

major factor driving spatial variability of <20 /lm phytoplankton growth. 

Spatial variability over the Mackenzie shelf 

The spreading of Mackenzie River waters over the shelf is highly variable and 

mainly driven by wind speed and direction (Macdonald & Yu 2006), nevertheless the 

general inshore-offshore gradient was observed over most of the shelf in summer. 

Nanophytoplankton accumulation was favoured inshore, while picophytoplankton 

abundances were higher offshore resulting in a <20 /lm phytoplankton size structure similar 

to that in the Amundsen Gulf. River plume waters seemed to be a source of 

nanophytoplankton (Table 4). This is consistent with the summer dominance diatoms 

illshore observed over the Mackenzie shelf (Hsiao et al. 1977, Parsons et al. 1989), but also 

with the picophytoplankton distribution from the Lena River/Laptev Sea, where 

picophytoplankton decreased along the salinity gradient from the river to the shelf, showing 

lower picophytoplankton abundances over the inshore shelf (Moreira-Turcq et al. 2001). At 

stations over the eastern part of the Mackenzie shelf (609 and 606), high abundances of 

both pico- and nanophytoplankton were observed; this area was not influenced by river 
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waters, but rather by shelf-break upwe11ing. ln spnng, over the eastern part of the 

Mackenzie shelf, shelf-break upwelling supported the growth of a11 <20 ~m size fractions . 

Hence, over the shelf, shelf-break upwelling drove physico-chemical conditions supporting 

high abundances of a11 <20 ~m phytoplankton size fractions , while river waters spreading 

promoted physico-chemical conditions selecting the larger Slze classes (i.e. 

nanophytoplankton ). 

ln early fall, in the river plume a11 <20 ~m phytoplankton size fractions showed 

abundances similar to the upper 10 m of the PML, but pico- and small nanophytoplankton 

had slightly higher abundances than over the whole PML (Table 4). The different <20 ~m 

phytoplankton size structures between waters from the river plume and the entire PML 

reflected thus the vertical distribution of phytoplankton in the water column at the end of 

September rather than an actual import of phytoplankton cells from the Mackenzie River. 

Later in October, river plume waters exhibited higher abundances of large 

nanophytoplankton but also of picophytoplankton. The Mackenzie River seems to be a 

source of phytoplankton cells to the adjacent Mackenzie shelf, as previously observed by 

Garneau et al. (2006) , Waleron et al. (2007) and Schloss et al. (2008). However, the size of 

<20 ~m phytoplankton imported over the shelf varied from seasons, therefore tracking river 

waters spreading over the shelf would require more precise criterions than the simple <20 

~m phytoplankton size structure. 
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Importance of <20 Ilm phytoplankton 

Picophytop1ankton dominated the <20 /lm phytoplankton assemblage over aIl the 

sampled seasons. Together with the persistent Iow nitrate concentrations in the surface 

layer, this confirms the major importance of the microbial Ioop in the Beaufort Sea 

(Garneau et al. 2008, Simpson et al. 2008). Despite high abundances and dominance in the 

upper 50 m, picophytoplankton cell numbers were only slightly higher than that of 

nanophytoplankton in the Cold Haloc1ine (Table 5). Only 4 % of picophytopIankton cells 

were sinking out of the upper 50 m. The retenti on of picophytoplankton in the surface layer 

is consistent with an active recycling food web and their small size preventing them to 

settle down. The proportion of picophytoplankton sinking cells did not vary much over the 

seasons, while this proportion increased over the year for nanophytoplankton cells. The 

lower export of nanophytoplankton ce Ils in spring and summer was probably due to active 

grazing by zooplankton, and mostly copepods (Forest et al. 2008, luul-Pedersen 2007). In 

fal1 , the proportion of <20 /lm phytoplankton cel1s exported at depth were higher than in 

spring and summer, coinciding with the increasing export ratios of particulate 

phytoplankton production estimated in fall in the Amundsen Gulf (Juul-Pedersen 2007). 

The higher proportion of nanophytoplankton cells sinking out of the upper 50 m could 

result from cell death and/or resting spore formation as conditions became unfavourable for 

growth over the autumnal season (e.g. decreasing light availability and temperature). 

ln the Beaufort Sea, picophytopIankton Iikely represents a good food source for 

microzoopIankton, as do bacteria. ln a system with such high recyc1ing efficiency, 

micrograzers probably control picophytoplankton abundance. Therefore, high abundances 
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were probably only reached in scarce occasIOn causmg a mismatch between 

picophytoplankton and mlcrograzers, su ch as episodic sea ice motion and melt, as 

heterotrophic protists are more sensitive to decreasing tempe rature than autotrophic ones 

(Rose & Caron 2007). In spite of their major role in the microbial loop, picophytoplankton 

would not significantly contribute to direct carbon export at depth, while 

nanophytoplankton likely played an important role in vertical export, and were largely 

composed of diatoms (Chapitre II). In the climatic change context, community composition 

could shift from diatoms to flagellates with rising temperature (Hare et al. 2007). On the 

other hand, high temperature rise wou Id lead to sub-optimal growth of the arctic 

Micromonas ecotype (Lovejoy et al. 2007). The potential impacts of c1imatic change on 

phytoplankton communities remain unclear. Therefore, understanding the arctic ecosystems 

functioning requires further investigations to deduce how the ongoing climate change 

would affect the phytoplankton communities and their trophic pathways. 
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CONCLUSION GENERALE 

Le programme CASES a permis l'obtention de données pour l'ensemble des saisons 

de la période libre de glace en mer de Beaufort, et par conséquent la caractérisation du 

phytoplancton en termes de biomasse, production et structure de taille des communautés. 

Dans le golfe d'Amundsen, la biomasse phytoplanctonique était dominée par des 

cellules de petite taille «5 /lm) (70%) pour l'ensemble des périodes d'échantillonnage, 

excepté début octobre 2003 . En été, la biomasse phytoplanctonique s 'accumulait pour 

former un maximum profond de chlorophylle au-dessus de la nitracline, alors qu 'en 

automne, la biomasse phytoplanctonique était concentrée en surface en raison de la faible 

disponibilité en lumière. La communauté phytoplanctonique du golfe d'Amundsen 

présentait une succession typique des régions polaires (Dale et al. 1999, Rat'kova & 

Wassmann 2002), avec une dominance des diatomées lors d'efflorescences suivie d'une 

dominance de flagellés. La communauté phytoplanctonique du golfe d'Amundsen était 

constituée de flagellés et de prymnesiophycées après l'efflorescence printanière, de 

flagellés et de diatomées en été, puis de flagellés et de prymnesiophycées en automne ou de 

diatomées lors de l'efflorescence automnale en 2003. En outre, les dinoflagellés sans 

thèque représentaient toujours une proportion significative des abondances 

phytoplanctoniques. De plus, les variations saisonnières observées confinnent l'occurrence 
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de deux périodes d'efflorescence dans la polynie du Cap Bathurst: au printemps après le 

retrait des glaces, et en automne. 

La distribution spatiale du phytoplancton sur le plateau continental du Mackenzie 

correspondait à un gradient côte-large en raison de l'influence des eaux du panache du 

Mackenzie, les communautés les plus proches de la côte étant les plus soumises aux apports 

d'eau douce, notamment en été. Près de la côte, la biomasse phytoplanctonique élevée était 

dominée par des cellules de grande taille (>20 J.lm en été et >5 J.lm en automne), alors qu'au 

large, les cellules de petite taille dominaient la biomasse. De l' été à l'automne, les 

prasinophycées et les dinoflagellés ont succédé aux diatomées près de la côte, alors qu 'au 

large les communautés étaient principalement composées de flagellés et de dinoflagellés. 

Le panache du Mackenzie représentait une zone de forte production de cellules de grande 

taille, ayant un potentiel élevé d'exportation en profondeur. De plus, le long du talus 

continental, ainsi qu'au niveau des canyons Kugmallit et Mackenzie, des phénomènes 

d'upwelling favorisaient également la forte production de cellules de grande taille, pouvant 

préférentiellement être exportée en profondeur. Contrairement au golfe d'Amundsen, où 

l'influence des vents sur la dynamique du phytoplancton n'a pas été mise en évidence, les 

vents modelaient la production phytoplanctonique sur le plateau continental du Mackenzie. 

En mer de Beaufort, la période de production phytoplanctonique couvre les mois de 

juin à octobre. Au printemps, le retrait du couvert de glace débute la période productive 

alors qu'à la fin octobre la disponibilité réduite en lumière limite la production 
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phytoplanctonique. Hors de l'influence d'événements épisodiques, tels que l'expansion du 

panache du Mackenzie, les phénomènes d'upwelling et les périodes d'efflorescence, le 

phytoplancton de la mer de Beaufort est caractérisé par une biomasse relativement faible 

dominée par des cellules de petite taille, ainsi que par de forts rapports 

productionlbiomasse. Ceci suggère un broutage important, empêchant l'accumulation de 

biomasse due aux cellules de grande taille. En outre, l'importance relative des dinoflagellés 

sans thèque, ainsi que les faibles concentrations en éléments nutritifs, révèlent l ' importance 

du réseau trophique microbien. 

La production primaire annuelle estimée pour le golfe d'Amundsen (21 g C m -2) est 

faible et constitue probablement une sous-estimation. En effet, la production liée à 

l' efflorescence automnale n'a pu être incluse dans le calcul et la production de 

l'efflorescence printanière a également été extrapolée. Cependant, cette estimation est 

proche des valeurs de production annuelle estimées pour la région du plateau continental du 

Mackenzie et le talus continental à partir de données in situ (Carmack et al. 2004, Lavoie et 

al. 2008). Cette faible valeur de production primaire pourrait être également due au faible 

réapprovisionnement hivernal de la couche de surface en nitrates (Tremblay et al. 2008), la 

disponibilité en nitrates lors du retrait des glaces pré-conditionnant le niveau de production 

primaire. En outre, la production primaire au niveau du maximum profond de chlorophylle 

ne peut pas toujours être prise en compte lorsque la production primaire est mesurée par 

incorporation de traceurs pour des profondeurs photiques prédéfinies. La production 
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phytoplanctonique des maxima profonds de chlorophylle devrait donc être mesurée pour 

pouvoir obtenir des estimations de production primaire plus représentatives. 

Du printemps à l'été, le phytoplancton présentait des caractéristiques d' adaptation 

aux faibles intensités lumineuses. D'autre part, les paramètres photo synthétiques n 'ont pu 

être mis en relation avec les variables environnementales. Ces tendances ont déjà été 

observées dans les mers polaires, où les variations des paramètres photo synthétiques 

demeurent généralement inexpliquées (Kirst & Wiencke 1995). Sous le couvert de glace, le 

phytoplancton, de même que les algues de glaces, étaient adaptés aux faibles intensités 

lumineuses (Ban et al. 2006), et suite au retrait des glaces, les cellules phytoplanctoniques 

s' accumulaient en profondeur formant un maximum profond de chlorophylle. L'adaptation 

aux faibles intensités lumineuses pourrait donc constituer un avantage à la formation rapide 

de maxima profonds de chlorophylle après le retrait des glaces. 

Tout au long de la période libre de glace, le picophytoplancton présentait des 

abondances cellulaires relativement élevées, et dominait généralement le phytoplancton 

<20 J.tm en terme d'abondance. La dynamique des glaces modifiait la structure de taille du 

phytoplancton <20 J.tm dans le golfe d'Amundsen. En effet, la fraction 

picophytoplanctonique semblait répondre plus rapidement que le nanophytoplancton au 

retrait des glaces au printemps, et le passage de glace dérivante au cours de l'été favorisait 

également le développement du picophytoplancton. De plus, la vitesse de retrait des glaces 

au printemps semblait également modeler la structure de taille des communautés. Un retrait 
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lent favoriserait la crOIssance du picophytoplancton, alors qu'un retrait plus rapide 

favoriserait les deux fractions pico- et nanophytoplanctoniques. Sur le plateau continental, 

les eaux du panache conduisaient à des conditions favorables pour le nano- et du 

microphytoplancton en été, et pour le pico- et le nanophytoplancton en automne. En outre, 

en été les phénomènes d'upwelling favorisaient la croissance de l'ensemble des classes de 

taille (pico-, nano- et microphytoplancton). Sur le plateau continental du Mackenzie, la 

structure de taille des communautés phytoplanctoniques était dictée par la combinaison des 

variations du débit du fleuve Mackenzie et des vents. Au cours de la période libre de glace, 

la forte rétention des cellules picophytoplanctoniques dans les eaux de surface souligne 

l ' importance du picophytoplancton au sein du réseau trophique microbien. 

Les années échantillonnées dans le cadre du programme CASES correspondaient au 

début de la période d'accélération de la réduction du couvert de glace dans l'océan Arctique 

(Comiso et al. 2008). En outre, les écosystèmes des mers de Bering et de Barents subissent 

déjà des transformations sous l'effet des changements climatiques (Grebmeier et al. 2006, 

Hegseth et al. 2008, Wassmann et al. 2008). Les communautés phytoplanctoniques étudiées 

dans le cadre de cette thèse pourraient donc être sur le point de changer sous l'effet des 

changements climatiques. Les changements climatiques engendreraient des perturbations 

telles que: le réchauffement de l'océan Arctique, la réduction du couvert de glace, 

l'augmentation d'apports de matières dissoutes et particulaires due au dégel du pergélisol et 

à l'érosion côtière accrue, la fonte des glaciers, ainsi que la hausse des débits fluviaux suite 

à l'accroissement des précipitations (ACIA 2005). La réduction du couvert de glace 
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permettrait une exposition plus importante des eaux de surface à l'effet des vents, 

favorisant ainsi le mélange de la couche de surface. Ainsi, des phénomènes d'upwelling 

plus fréquents et l'augmentation du débit du Mackenzie pourraient conduire à une 

augmentation de la production primaire à fort potentiel d 'exportation en profondeur sur le 

plateau continental du Mackenzie. Cependant, les apports d'eau douce accrus 

augmenteraient la stratification des eaux de surface, et l'augmentation des apports de 

matières dissoutes et particulaires diminueraient la pénétration de la lumière en profondeur. 

La diminution de la disponibilité en lumière en profondeur pourrait donc limiter la 

production des maxima profonds de chlorophylle dans le golfe d'Amundsen. Néanmoins, 

l'influence plus importante des vents pourrait favoriser le réapprovisionnement de la 

couche de surface en éléments nutritifs, augmentant ainsi la production primaire. Toutefois, 

au cours des périodes étudiées, les vents n 'ont pas atteint des intensités suffisantes pour 

altérer la stratification des eaux de surface dans le golfe d'Amundsen. A partir des 

informations disponibles, il demeure toujours difficile de prévoir quels pourraient être les 

effets des perturbations climatiques sur la production primaire. Au niveau des 

communautés phytoplanctoniques, l'invasion d'espèces issues des latitudes plus basses 

semble être une conséquence probable du réchauffement (Hegseth et al. 2008), de même 

l' augmentation de température pourrait conduire à un changement des groupes dominant 

les communautés phytoplanctoniques (Hare et al. 2008). Le manque de séries temporelles 

plus fréquentes en mer de Beaufort constitue un obstacle majeur à la compréhension du 

fonctionnement de l' écosystème de la mer de Beaufort et à la prévision des effets potentiels 

des changements climatiques. 
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Dans un océan Arctique en cours de transformation, la composition du 

phytoplancton pourrait être altérée, et des espèces provenant des latitudes plus tempérées 

pourraient migrer dans l'océan Arctique. Cependant, pour les cellules phytoplanctoniques 

de petite taille la morphologie ne semble pas être révélatrice de la spécialisation des cellules 

à l'environnement arctique, comme c'est le cas pour le genre Micromonas. La 

caractérisation génétique des espèces présentes dans l'océan Arctique permettrait 

d'identifier les espèces ou les écotypes spécialistes de l'océan Arctique, et ainsi de suivre 

l' invasion vraisemblable d'espèces phytoplanctoniques d'origine pacifique ou atlantique. 

La composition spécifique des assemblages phytoplanctoniques conditionne la 

production primaire et son transfert vers les niveaux supérieurs des réseaux trophiques . Au 

cours du programme CASES, l' échantillonnage n 'a pas permis de caractériser les périodes 

d' efflorescence, les plus susceptibles de favoriser le transfert de carbone vers le réseau 

trophique herbivore et l' export de carbone en profondeur, dans la polynie du Cap Bathurst. 

La mise en place de programmes de recherche déployant une logistique permettant de 

laisser un brise-glace tout au long de l'hiver dans la région du golfe d'Amundsen serait 

donc appropriée pour permettre d'étudier la dynamique des efflorescences 

phytoplanctoniques dans la polynie du Cap Bathurst. De même, ceci permettrait d'évaluer 

l'influence de la dynamique du couvert de glace pour l'ensemble de la période printanière. 

Au cours du programme CASES, seule la production phytoplanctonique parti cula ire 

a été estimée. Cependant, dans les régions polaires une part importante du carbone fixé par 
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le phytoplancton conduit à la formation de produits dissous (Carlson et al. 1998, Vernet et 

al. 1998). L'estimation de la production de carbone dissous permettrait donc de mieux 

comprendre le rôle du phytoplancton au sein du réseau trophique microbien. De même, la 

production primaire au niveau des maxima profonds de chlorophylle n'a pu être estimée 

dans certaines régions. Par exemple, au niveau du canyon Mackenzie, les maxima profonds 

de chlorophylle correspondaient à des profondeurs où la disponibilité en lumière 

représentait moins de 1 % de la lumière incidente. Au cours du printemps et de l'été, la 

profondeur de 0,1 % de lumière incidente serait probablement plus représentative de la 

limite de la zone euphotique. D'une manière générale, un effort particulier devrait être 

déployé afin d 'estimer la production et l'écophysiologie des maxima profonds de 

chlorophylle, ainsi que leur importance dans le transfert de carbone dans l'écosystème de la 

mer de Beaufort. De plus, il serait intéressant d 'estimer les pertes de production 

phytoplanctonique. Le broutage par le mesozooplancton et le microzooplancton est le mode 

de perte le plus fréquemment pris en considération. Cependant les pertes par lyse cellulaire 

due aux infections virales et à la mort cellulaire (programmée ou induite) semblent 

représenter une proportion significative de la production phytoplanctonique dans des 

environnements variés (e.g. régions oligotrophes, eutrophes, equatoriales, tropicales ou 

tempérées; Brussaard et al. 1995, Agusti et al. 1998, Veldhuis et al. 200 1, Agusti & 

Sanchez 2002, Brussaard 2004, Franklin et al. 2006, Baudoux et al. 2007) et devraient 

dorénavant être prises en compte afin d'élaborer les bilans de carbone dans l'océan 

Arctique. 
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Finalement, dans un environnement promIs à d ' importantes modifications sous 

l'effet des changements climatiques, où l'écosystème est enclin à subir des transformations 

abruptes, la poursuite de campagnes d 'échantillonnage régulières est essentielle pour 

comprendre le fonctionnement des écosystèmes des régions où les données sont encore peu 

disponibles, suivre l'évolution de ces écosystèmes et permettre la prédiction des impacts 

éventuels des perturbations climatiques. 
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