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RÉSUMÉ 

L'espèce de copépode pélagique Calanus finmarchicus est une espèce ubiquiste 

qui domine les communautés zooplanctoniques de l'Atlantique au nord du Gulf 

Stream, du Mid-Atlantic Bight à l'océan Arctique et du cœur des basins océaniques 

aux plateaux continentaux. Au cours de ce travail de doctorat, l'emploi pertinent de 

la modélisation numérique en complément d'abondantes données d'abondance et de 

biomasse a permis de mieux comprendre et quantifier le couplage entre la 

variabilité des processus physiques et certains aspects critiques de la dynamique des 

populations de ce copépode dans le système de l'estuaire et du golfe du St Laurent 

(ESL-GSL). 

Le golfe du Saint-Laurent (GSL) soutient un écosystème pélagique productif 

dominé par C. finmarchicus. Afin d'étudier la dynamique de populations de C. 

finmarchicus dans le GSL pour l'année 1999, nous avons dans un premier temps 

développé un modèle numérique tri-dimensionnel couplé physique-biologique 

résumant l'état de nos connaissances du système. Le deuxième chapitre de cette 

thèse présente les résultats d'un modèle de cycle de vie de C. finmarchicus 

représentant les propriétés moyennes de la population en regard des taux de 

production d'œufs, de mortalité, de développement et de comportement de nage 

couplé à un modèle de circulation régionale, piloté par des forçages 
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atmosphériques, hydrologiques et océaniques réalistes. En raison des fortes cisailles 

verticales et horizontales de courant, le comportement de migration s'est révélé 

essentiel pour reproduire les patrons d'abondance et de distribution observés. Cette 

étude identifie pour la première fois dans le GSL le « circuit Calanus », composé de 

structures hydrodynamiques distinctes reliées entre elles par la phénologie et le 

comportement de nage de C. finmarchicus. 

Aux échelles régionales et saisonnières, il ressort toutefois de cette étude que 

le processus de diapause mérite une attention particulière. En effet, afin de survivre 

à long terme dans cet environnement boréal fortement saisonnier, C. finmarchicus 

dépend d'une phase de diapause pendant laquelle l'espèce échappe aux conditions 

environnementales hivernales défavorables. Le rôle du métabolisme des lipides 

semble crucial dans le contrôle de la diapause, et nous présentons donc dans le 

troisième chapitre de cette thèse un modèle de cycle de vie de C. finmarchicus 

implémentant une approche mécaniste du contrôle de la diapause basée sur le 

métabolisme des lipides. Nous avons appliqué le modèle en 1-0 à une colonne 

d'eau, et nous avons comparé nos résultats à deux années consécutives de données 

d'abondance des copépodites et de contenu lipidique des CS provenant du nord-

ouest du golfe du Saint-Laurent. Le modèle reproduit une phénologie, des patrons 

d'abondance et de contenu lipidique de C. finmarchicus réalistes en réponse aux 

forçages environnementaux. Il génère également des variations inter-annuelles du 

timing d'entrée en diapause et de la contribution relative des différentes générations 
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au stock en diapause. Nos résultats démontrent ainsi la possibilité d'implémenter au 

sein d'un modèle de dynamique des populations de C. finmarchicus un mécanisme 

de contrôle par le métabolisme des lipides de l'entrée et de la sortie de diapause. 

Au delà de l'efficacité potentielle du processus de diapause au sein de 

l'environnement du GSL, la variabilité spatio-temporelle à méso-échelle des patrons 

de recrutement des stades copépodites détermine ultimement la quantité 

d'individus entrant en diapause, et donc le succès réel de cette stratégie. Or la 

variabilité spatio-temporelle des patrons de mortalité des premiers stades de 

développement de C. finmarchicus pourrait influencer fortement le succès de 

recrutement des stades suivants. Nous présentons donc dans le quatrième chapitre 

de cette thèse des observations décrivant la climatologie saisonnière et les patrons 

spatiaux de mortalité et de recrutement des premiers stades de C. finmarchicus dans 

l'estuaire et le golfe du Saint-Laurent, respectivement. Les patrons de recrutement 

des stades nauplii N3 ou N6 dictent respectivement les patrons d'abondance de 

nauplii N4-6 (ESL) ou copépodites Cl-2 (GSL). Or ils sont essentiellement liés aux 

patrons de survie durant le développement des œufs à N3 ou N6 qui montrent des 

variations saisonnières et spatiales importantes, le plus souvent indépendantes des 

patrons de production d'œufs. Un modèle de régression multiple démontre les effets 

opposés de la biomasse phytoplanctonique et de l'abondance des femelles dans le 

contrôle de la mortalité, illustrant l'impact bénéfique d'une forte biomasse 

phytoplanctonique sur la survie, que ce soit par une relaxation du cannibalisme ou 
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de la mortalité par inanition. Une analyse de modélisation démontre l'impact des 

différentes formulations des taux de mortalité sur l'amplitude et le timing du 

recrutement vers les derniers stades nauplii. Nos simulations suggèrent de plus que 

la température n'est pas déterminante pour les patrons de survie des stades, en 

raison de son impact général inverse sur le développement. Notre étude insiste ainsi 

sur l'importance de représenter de façon mécaniste la mortalité et la survie dans les 

modèles numériques de dynamique des population de C. finmarch icus. 

L'ensemble des travaux entrepris au long de ce doctorat visaient à améliorer la 

description mécaniste des processus fondamentaux du cycle de vie de C. 

finmarchicus. Or dans le contexte des changements climatiques appréhendés, les 

résultats présentés dans cette thèse permettront d'identifier les zones optimales, 

sub-optimales et néfastes de variation des variables environnementales pour C. 

finmarchicus dont la présence pérenne repose sur des patrons de circulation, de 

température, de production primaire et de mortalité relativement prévisibles et 

récurrents. 
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CHAPITRE PREMIER 

INTRODUCTION GÉNÉRALE 

La recherche océanographique actuelle favorise une approche des 

problématiques écologiques fondée sur une meilleure compréhension des 

interactions entre la variabilité environnementale et la distribution, l'abondance et 

la productivité des espèces. Les organismes planctoniques qui forment dans toute 

leur diversité la base des écosystèmes pélagiques sont en effet fondamentalement 

intégrés à leur environnement physique. L'environnement marin est par nature 

dynamique et les conditions "normales" d'habitat changent selon des échelles de 

temps allant de quelques années au siècle (Beaugrand et al., 2002; Lehodey et al., 

2006). À la variabilité naturelle s'ajoutent les impacts anthropiques tels que 

l'altération des débits des cours d'eau en milieu côtier et principalement 

l'augmentation du CO2 atmosphérique qui engendre, entre autres, une 

augmentation de la température et de l'acidité des océans (Denman et al., 2007). 

L'ensemble de cette variabilité influence, directement ou à travers des interactions 

écologiques, la croissance et la distribution des espèces planctoniques et donc les 

bilans de masse et d'énergie au sein des écosystèmes (Michel et al. , 2006; 
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Wassmann et al., 2006; Hirche et Kosobokova, 2007; Muraleedharan et al., 2007; 

Coyle et al., 2008). Une meilleure compréhension des réponses biologiques aux 

changements de l'environnement physique doit donc permettre l'identification de 

nouveaux axes d'interprétation des relations et tendances observées au sein des 

populations et des écosystèmes, afin ultimement de mieux prédire l'évolution des 

écosystèmes face aux changements climatiques en cours (Eckman, 1994; Bathmann 

et al., 2001). 

Dans ce contexte, les copépodes pélagiques méritent un intérêt particulier en 

raison de leur rôle clé d'interface entre la production unicellulaire 

phytoplanctonique et micro-zooplanctonique et les échelons trophiques supérieurs 

(Verity et Smetacek, 1996) . Les copépodes représentent une proportion 

considérable, croissante avec la latitude, de la biomasse zooplanctonique des océans 

(entre 60% et 95%; Mauchline, 1998) et exercent un contrôle crucial des flux de 

masse et d'énergie au sein des écosystèmes (par ex. Roy et al. , 2000; Olli et al. , 

2007). Ces organismes ont un cycle de vie de quelques semaines à quelques années, 

relativement long par rapport aux cycles cellulaires du phytoplancton et du micro-

zooplancton. Les copépodes subissent au cours de leur développement des 

changements importants de taille (de quelques dizaines de micromètres à quelques 

millimètres) de fonctions physiologiques et de comportement. Leurs capacités 

natatoires leur permettent dès les derniers stades nauplii de développer des vitesses 
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de nages supérieures de plusieurs ordres de grandeurs aux vitesses des courants 

verticaux (Svetlichnyj, 1993; Yamazaki et Squires, 1996; Incze et al. , 2001) , ce qui 

leur permet de diverger significativement du comportement de particule passive 

dévolu classiquement au plancton (Wiafe et Frid, 1996; Genin et al., 2005). La 

dynamique des populations de copépodes émerge de ces interactions complexes 

entre les individus et leur environnement physique (Leising et Franks, 2000, 2002; 

Woodson et al., 2007; Woodson et McManus, 2007). Le phénomène de résonance 

spatio-temporelle entre les processus physiques et biologiques détermine la 

croissance, la distribution et ultimement le succès écologique des populations de 

copépodes (Frontier, 1991, 2004). 

L'étude de la dynamique des populations de copépodes se retrouve donc 

confrontée à la complexité des nombreux processus physiques et biologiques 

impliqués et de leurs interactions selon différentes échelles de temps et d'espace 

(Seuront et Lagadeuc, 2001; Lough et Broughton, 2007; Ludovisi et al., 2008) . La 

modélisation numérique s'avère être ainsi un élément essentiel à tout projet visant 

une meilleure compréhension de ces systèmes couplés bio-physiques, comme le 

démontrent les diverses initiatives issues du programme international GLOBEC 

(Global Ocean Ecosystem Dynamics, http://www.globec.org). La modélisation 

numérique est un outil multidisciplinaire et intégrateur qui permet de schématiser 

les conditions complexes observées dans la nature, tout en palliant en partie au 
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problème chronique du sous-échantillonnage des variables d'intérêt. Elle permet 

donc des études quantitatives de processus autrement difficiles à mesurer (flux, 

bilans de masse, etc.), afin d'en dégager de nouvelles pistes d'interprétation et/ou 

d'exploration. Toutefois, l'identification des échelles spatio-temporelles pertinentes, 

tant pour l'observation que pour la modélisation, est une étape critique de l'étude 

numérique de la réponse des organismes marins et des cycles biogéochimiques à la 

variabilité du forçage physique (Broekhuizen et al., 1995; de Young et al. , 2004; 

Lévy, 2008). L'échelle de la population permet de couvrir les échelles temporelles 

journalière à inter-annuelle, et donc les échelles spatiales associées, c'est à dire de 

quelques kilomètres au bassin océanique. Cette gamme d'échelles spatio-temporelles 

recoupe également la résolution des observations couramment disponibles pour 

paramétrer, initialiser et valider les modèles de dynamique zooplanctonique, que ce 

soient des échantillonnages hebdomadaires par filets verticaux, des campagnes 

acoustiques quasi-synoptiques, ou encore des observations satellitales composites 

définissant les champs de nourriture disponibles. Les modèles de population 

permettent de plus de tirer le meilleur profit du couplage éventuel avec un modèle 

de circulation régionale à haute résolution spatio-temporelle et/ou avec un modèle 

d'écosystème de type NPZD (par ex. Fennel et Neumann, 2003; Speirs et al., 2006; 

Slagstad et Tande, 2007). La pertinence des modèles de dynamique des populations 

de copépodes a conduit au développement récent de types de modèles variés 

adaptés aux besoins propres aux diverses questions étudiées, et un effort particulier 
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à été fourni pour solutionner les difficultés techniques inhérentes à cette échelle 

d'approche, telles que la diffusion numérique, la prise en compte de la variabilité 

individuelle, le transfert d'échelles, etc. (Gurney et al. , 2001 ; Fennel, 2001; 

Tittensor et al. , 2003; Gentleman et al. , 2008; Hu et al., 2008; Record et Pershing, 

2008) . 

Les travaux de doctorat présentés dans cette thèse s'inscrivent dans la 

problématique générale d'une meilleure compréhension des relations entre la 

variabilité de l'environnement physique et la dynamique des populations de 

copépodes. La modélisation numérique est l'outil privilégié pour atteindre l'objectif 

général de mon doctorat qui est de mieux comprendre et quantifier le couplage 

entre la variabilité des processus physiques et la dynamique des populations 

d'une espèce cible de copépode (Calanus finmarchicus) dans le système de 

l'estuaire et du golfe du St Laurent (GSL) . L'espèce de copépode calanoïde C. 

finmarchicus domine les communautés zooplanctoniques de l'Atlantique Nord et est 

une importante proie de nombreuses larves d'espèces de poissons d'intérêt 

commercial (Sameoto et al. , 1994; Runge et de Lafontaine, 1996; Lynch et al. , 

2001 ; Buckley et Durbin, 2006) , d'oiseaux marins (Wojczulanis et al. , 2006) et de 

cétacés (Wishner et al., 1995; Baumgartner et Fratantoni, 2008). Les nombreux 

travaux menés depuis plus de dix ans dans le cadre du programme international 

GLOBEC ont mis en évidence le rôle crucial de C. finmarchicus dans les flux de 
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matière et d'énergie des bassins océaniques aux plateaux continentaux d'une part, 

et des producteurs primaires aux échelons supérieurs du réseau trophique d'autre 

part. Des exemples de liens étroits entre la variabilité des conditions 

hydrographiques, la dynamique des populations de C. finmarchicus et le 

recrutement d'espèces exploitées commercialement ont été mis en évidence à 

l'échelle de l'Atlantique Nord (Cushing, 1984; Anderson, 1994; Alheit et al., 2005; 

Pershing et al., 2005; Wassmann et al., 2006), et dans le GSL en particulier (Runge 

et al., 1999; Ringuette et al., 2002, Castonguay et al., 2008). Le GSL est une région 

particulièrement propice à l'étude de ces liens étroits de par sa situation de mer 

intérieure située à la limite sud de l'extension du couvert saisonnier de glace de 

mer, sa forte productivité pélagique mais aussi des bouleversement écologiques 

subis depuis quelques décennies. Les tendances observées jusqu'à présent et les 

modèles de circulation générale démontrent que c'est au-dessus de l'océan Arctique 

et de ses mers ancillaires que les effets des changements climatiques seront les plus 

intenses (Overpeck et al., 1997; Stempniewicz et al., 2007; Hamilton, 2007; Hirche 

et Kosobokova, 2007; Wang et al., 2007). Les impacts anticipés se combineront à 

une situation écologique déjà préoccupante en raison de l'écroulement récent des 

stocks de poissons de fond (Morue, Sébaste), et de la diminution de la teneur en 

dioxygène dissout dans les eaux profondes (Gilbert et al., 2005). Ceci justifie 

d'autant plus les efforts de recherche destinés à mieux comprendre les bases de 

l'écosystème pélagique du GSL. Trois aspects majeurs de la dynamique des 
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populations de C. finmarchicus ont été abordés au cours de ce doctorat: (1) le 

comportement de migration verticale, (2) la diapause et (3) la mortalité. 

La persistance inter-annuelle de la population de C. finmarchicus dans un 

système fortement advectif tel que le GSL peut résulter de deux phénomènes, soient 

l'apport advectif d'individus issus de populations extérieures au GSL par ses 

frontières ouvertes (Détroits de Belle-Isle au nord-est et de Cabot au sud-est) et 

l'interaction du comportement individuel de migration verticale avec les structures 

hydrodynamiques verticales et horizontales. Zakardjian et al. (2003) ont élaborés 

dans le cadre de la composante canadienne du programme GLOBEC un premier 

modèle 3-D couplé physique-biologie décrivant les variations saisonnières de 

l'abondance et de la distribution de C. finmarchicus sur la plateau continental de 

l'Atlantique canadien. Ce modèle suggère une importance marquée de la circulation 

régionale sur la dynamique des populations de C. finmarchicus dans cette région. 

Zakardjian et al. (2003) concluent à un GSL auto-suffisant agissant comme source 

de C. finmarchicus pour les régions avoisinantes, en aval de ce système. Toutefois 

l'approche climatologique, la résolution horizontale de l'ordre du rayon local de 

déformation de Rossby (environ 10 km) et l'absence de migrations nycthémérales 

chez C. finmarchicus ne permettent pas à ce modèle de rendre compte pleinement 

des interactions entre le comportement migratoire des copépodes et la variabilité 

naturelle à haute fréquence des conditions océanographiques. Les migrations 
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verticales ontogéniques et nycthémérales du zooplancton sont fondamentales pour 

le maintient des populations dans les régimes de circulation fortement advectifs tels 

que les estuaires ou les upwelling côtiers (e.g. Batchelder et al., 2002; Souriseau et 

al., 2006) . Le deuxième chapitre de cette thèse traitera donc de l'impact du 

comportement des migrations nycthémérales et ontogéniques sur la variabilité 

de la distribution et de l'abondance de C. finmarchicus dans le GSL. Un modèle 

de cycle de vie de C. finmarchicus est couplé à un modèle tri-dimensionnel à haute 

résolution spatio-temporelle de circulation du GSL couplé glace marine - océan 

(Saucier et al., 2003, 2009) afin de représenter les échelles spatio-temporelles 

adéquates. 

Au delà de la variabilité aux échelles synoptique et saisonnière, la variabilité 

inter-annuelle de l'abondance et de la distribution d'une espèce de zooplancton 

faisant face à une variabilité fortement périodique des conditions 

environnementales repose sur sa capacité à éviter les périodes défavorables en 

terme de reproduction et/ou de mortalité. Le genre Calanus a développé une 

stratégie de diapause permettant aux stades pré-adultes d'éviter la saison de faible 

productivité primaire hivernale en résidant en profondeur (de 150 à plus de 2000 m 

selon la topographie) dans un état de métabolisme réduit (Hirche, 1996). Ce 

comportement est un élément fondamental de la phénologie de l'espèce, c'est à dire 

de la succession temporelle des phénomènes périodiques du cycle de vie de C. 
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finmarchicus en réponse à la variabilité des facteurs du milieu. La phénologie d'une 

espèce définit le cadre le plus large et le plus plastique de son adaptabilité à un 

milieu en changement (Miller et al., 1991). Les mécanismes qui contrôlent l'entrée 

et la sortie de diapause sont toutefois mal compris, mais il est fréquemment observé 

que les fenêtres temporelles d'entrée et sortie de diapause peuvent différer entre des 

régions proches, par exemple entre l'estuaire maritime et le nord-ouest du GSL 

(Johnson et al., 2008). Ces données ont de plus démontré à l'échelle de l'Atlantique 

Nord-Ouest l'absence de corrélations entre les patrons spatio-temporels de diapause 

et les variables environnementales telles que la biomasse phytoplanctonique, la 

température et la photopériode. Ces observations renforcent la vision de la diapause 

comme un phénomène intégrateur de l'historique environnemental des individus. 

De récentes analyses physiologiques, démographiques et génétiques supportent 

l'hypothèse d'un contrôle de l'entrée et sortie de la diapause par le métabolisme des 

lipides (Miller et al., 2000; lrigoien, 2004; Saumweber et Durbin, 2006; Tarrant et 

al., 2008; Johnson et al., 2008). D'importantes quantités de réserves lipidiques sont 

observées chez les individus en diapause, et une proportion de ces réserves 

correspondant aux besoins métaboliques associés à la mue vers l'adulte, à la 

maturation précoce des gonades et à la migration ontogénique vers la surface 

persiste au sortir de la diapause (Jonasdottir, 1999; Rey-Rassat et al. , 2002; 

Saumweber et Durbin, 2006). Ainsi un individu entrant en diapause sans une 

quantité de lipides suffisante pour subvenir aux besoins métaboliques de la longue 
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période de diapause, de la mue imagina le, de la maturation des gonades et de la 

migration vers la surface serait perdu pour la population, que ce soit en raison d'une 

mort par inanition ou d'un retour trop précoce vers les eaux de surface encore 

inhospitalières de l'hiver. Il apparaît donc nécessaire de développer une formulation 

mécaniste du phénomène de la diapause au niveau de la population, afin d'obtenir 

une réponse plastique du modèle de cycle de vie de C. finmarchicus face à la 

variabilité inter-annuelle et à d'éventuels changements du climat océanique (Miller 

et al., 1991; Speirs et al., 2006). Le troisième chapitre de cette thèse testera donc 

l'hypothèse du contrôle de l'entrée et la sortie de diapause par le métabolisme 

des lipides chez C. finmarchicus dans le contexte environnemental du GSL. Un 

modèle 1-D de cycle de vie de C. finmarchicus tenant compte de la biomasse des 

stades de développement (adapté de Fennel, 2001) permet de représenter un cycle 

de vie complet étalé sur deux années consécutives, forcé par des données de 

température et de nourriture obtenues à deux stations de monitorage dans le nord-

ouest du GSL. 

Finalement, la mortalité est un processus fondamental pour le contrôle 

quantitatif de la dynamique des populations de C. finmarchicus (par ex. Arnkv~rn et 

al., 2005). Bien que s'exerçant au niveau individuel, la mortalité des copépodes 

transcende les échelles spatio-temporelles à travers les divers processus physiques et 

biologiques qui la gouvernent, tels que la température (Hirst et al., 2002), le 
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rayonnement UV (Kouwenberg et al., 1999; mais voir aussi Skreslet et al., 2005), la 

prédation par les divers invertébrés (Ohman et al., 2008) et vertébrés (Ohman et 

Hsieh, 2008) marins ou encore par leur congénères (cannibalisme; Ohman et 

Hirche, 2001; Basedow et Tande, 2006). L'ensemble de ces relations conduit à des 

réponses non-linéaires des populations aux changements de conditions 

environnementales (Ohman et al., 2004). Chez les copépodes libérant leurs œufs 

dans la colonne d'eau lors de la ponte comme C. finmarchicus, la mortalité décroît 

considérablement des œufs et premiers stades nauplii aux stades de développement 

ultérieurs. Chez C. finmarchicus les taux de mortalité des œufs sont considérables 

avant la floraison phytoplanctonique printanière, et ils semblent exercer une 

influence déterminante sur les patrons saisonnier et régional de recrutement des 

stades copépodites dans la Mer de Norvège et la Mer d 'Irminger (Ohm an et Hirche, 

2001 ; Heath et al., 2008). Ainsi, la description précise et la compréhension des 

processus à l'origine des patrons spatio-temporels de mortalité demeurent parmi les 

défis les plus importants de la modélisation de la dynamique des population de 

zooplancton (Ohman et Wood, 1995; Runge et al. , 2004). En effet, la mortalité est 

un terme de fermeture essentiel aux modèles numériques de dynamique des 

populations. Une formulation densité-dépendante garantit la stabilité des solutions, 

et une représentation adéquate des taux de mortalité propre à chaque stade de 

développement ainsi qu'une formulation pertinente des relations fonctionnelles avec 

les variables environnementales sont requises pour simuler correctement les timings 
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et les abondances observées (par ex. Speirs et al., 2006). Toutefois les preuves 

directes de l'action de processus densité-dépendant, de relations fonctionnelles avec 

les variables environnementales et de leur impact sur le recrutement et la 

dynamique des populations de copépodes demeurent rares (Peterson et Kimmerer, 

1994; Oye et Liang, 1998; Hirst et al., 2007) , en raison de la difficulté d'obtenir des 

estimés fiables de valeurs de mortalité in situ. Ce manque de données limite le 

développement de fonctions mécanistes de la mortalité des stades de 

développement de copépodes requises par les modèles bio-physiques de dynamique 

des populations zooplanctoniques marines (Runge et al., 2005). La méthode des 

tables de survie verticales (<< Vertical Life Table », VL T) est depuis quelques années 

employée dans le cadre particulier du milieu marin. La méthode VLT est basée sur 

les ratios des abondances instantanées des stades de développement successifs 

plutôt que sur l'évolution temporelle de l'abondance de chaque stade de 

développement. L'approche VLT permet ainsi d'estimer les taux de mortalité et leur 

variabilité spatiale pour des données synoptiques ou encore leur variabilité 

temporelle pour des séries temporelles à une station de monitorage. Le quatrième 

chapitre de cette thèse testera l'hypothèse selon laquelle les patrons de 

recrutement des stades nauplii avancés de C. finmarchicus dépendent de la 

variabilité des taux de mortalité (de survie) des tout premiers stades (œufs et 

nauplii), et non pas seulement de la variabilité du taux de ponte des femelles 

associé à des taux de mortalité constants. L'application de l'approche VLT à des 



38 

séries temporelles et à des observations synoptiques d'abondance des stades de 

développement de C. finmarchicus et de variables environnementales dans le GSL 

permet de décrire la climatologie saisonnière et le patron spatial de la mortalité des 

premiers stades de développement et du recrutement des stades subséquents. Des 

relations empiriques entre la mortalité, la biomasse phytoplanctonique, la 

température et l'abondance de femelles adultes permettent quant à elles de 

contraster l'impact de formulations déterministes et mécanistes de la mortalité sur 

la dynamique des populations de C. finmarchicus dans un modèle simple de cycle de 

vie. 



CHAPITRE II 

IMPACTS OF THE INTERACTION BETWEEN THE HYDRODYNAMICS AND THE 

MIGRATION BEHAVIOR ON THE POPULATION DYNAMICS OF Calanus 

finmarchicus IN THE GULF OF ST. LAWRENCE, CANADA: A 3-D MODELING 

APPROACH 
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1 Résumé 

Le golfe du Saint-Laurent (GSL) est un système dynamique qui soutient un 

écosystème pélagique productif, dominé par le copépode Calanus finmarchicus. Cet 

environnement offre de grands défis pour l'étude des interactions entre la 

démographie des populations planctoniques et la variabilité des processus 

océanographiques physiques. Nous avons donc développé un modèle numérique tri-

dimensionnel couplé physique-biologique afin d'étudier la dynamique de 

populations de C. finmarchicus dans le GSL, pour l'année 1999. Nous avons couplé 

un modèle de cycle de vie de C. finmarchicus représentant les propriétés moyennes 

de la population en regard des taux de production d'œufs, de mortalité, de 

développement et du comportement de nage à un modèle de circulation régionale 

piloté par des forçages atmosphériques, hydrologiques et océaniques réalistes. La 

distribution et l'abondance de C. finmarchicus se sont révélées très sensibles au 

comportement de migration en raison des fortes cisailles verticales et horizontales 

de courant. Le comportement de migration nycthéméral est ainsi essentiel pour 

reproduire les patrons de distribution observés. Cette étude identifie pour la 

première fois dans le GSL le « circuit Calan us » , composé de structures 

hydrodynamiques distinctes reliées entre elles par la phénologie et le comportement 

de nage de C. finmarchicus. 
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2 Introduction 

One fundamental goal of the modem oceanographie researeh is to gain a 

better understanding of the complex interactions between the dynamic ocean's 

physieal environment and the distribution, abundance and productivity of the 

pelagie species (e.g. Eckman, 1994). From this perspective, copepods represent the 

keystone of pelagie ecosystems, by filtering the environmental variability through 

trophic transfer from primary production to higher trophic levels (Williams et al. , 

1994; Smith, 1995; Kobari et al., 2003; Leising et al., 2005 ; Peters, 2006; Wassman 

et al., 2006; Olli et al., 2007). Significant links between the variability of physical 

properties of the ocean, populations dynamics of copepods and fisheries 

productivity have already been observed (Runge, 1988; Anderson, 1994; Skreslet, 

1997; Runge et al., 1999; Sundby, 2000; Lehodey et al. , 2006; Loeng and 

Drinkwater, 2007). However, such relationships remain difficult to explain and 

quantify by observations alone, owing to the large space and time scales involved 

(Fromentin and Planque, 1996; Greene et al., 2003), and the complex interactions 

between the copepod species and their environment (Fiksen et al. , 2005; Frost, 

2005; Pierson et al., 2005; Pringle, 2007; Basedow et al., 2008; Visser at al. , 2009). 

Copepods undergo important physiological and behavioral changes during their 

development from the egg stage to the adult (Mauchline, 1998). Their physiologie 

and demographie responses to the variability of the environment are not linear (e.g. 
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Campbell et al., 2001). Moreover, the swimming velocities developed by copepodite 

stages are greater than the typical vertical velocities in the ocean (Yamazaki and 

Squires 1996; Incze et al., 2001). Several species perform extensive migrations in 

the water column. Ontogenetic migration associated with the winter-time diapause 

process has basin-scale implications on the population dynamics of calanoid 

copepods (Backhaus et al., 1994; Heath et al., 1999, 2008; Falk-Petersen et al., 

2008), while the diel vertical migrations (DVM) performed by copepodite stages 

during the productive season complicates the way they interact at meso- to regional 

scale with the vertical gradients in the physical and biological environments and the 

sheared circulation (Hannah et al., 1997; Zakardjian et al., 1999; Batchelder et al., 

2002; Genin et al., 2005; Carr et al., 2008). 

The GSL is a semi-enclosed marginal sea, characterized by pronounced 

horizontal and vertical gradients in circulation, tempe rature and salinity, and the 

southern-most seasonal sea-ice cover in the North Atlantic area. The physical 

dynamics of the Gulf of St. Lawrence is, to a large extent, controlled internally 

rather than remotely by large-scale oceanic processes Ce.g., Koutitonsky and 

Bugden, 1991). The general cyclonic circulation in the GSL is driven by both the 

seasonal freshwater discharge from the St. Lawrence River and the synoptic 

meteorological systems (Koutitonsky and Bugden, 1991; Saucier et al., 2003, 2009). 

This dynamic system sus tains a productive pelagic ecosystem, whose zooplankton 
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community is dominated by the copepod Calanus finmarchicus (de Lafontaine et al., 

1991). A few studies provide sorne insight into the interactions between the 

hydrodynamics and the population dynamies of C. finmarchicus in the GSL. Plourde 

and Runge (1993) developed the concept of the "Calanus pump": while in summer 

females C. finmarchicus sustain high egg production rates in the Lower St. Lawrence 

Estuary (LSLE), the residual surface circulation supply surface-dwelling early 

development stages to downstream regions of the GSL through the Gaspé Current 

(GC). Plourde et al. (2001) also argued for the existence of a compensatory 

upstream advection at depth of overwintering C. finmarchicus from the GSL, in 

order to maintain the population within the estuary. In the shallow southern GSL 

downstream of the GC, Runge et al. (1999) reported a negative correlation between 

an index of the St. Lawrence river freshet (RNSUM index: Koutitonsky and Bugden, 

1991) and the C. finmarchicus biomass, but no causal relationship however. Using a 

climatological coupled physical-biological model, Zakardjian et al. (2003) fo und 

that advection of C. finmarchicus by horizontal currents indeed plays an important 

role in its population dynamics at the regional scale, between different sub-areas of 

the GSL / Scotian Shelf system. Only ontogenetic migrations were considered 

however, and the relatively coarse time and space resolutions of this first modeling 

study did not allow to explore the interactions between the DVM behavior and the 

natural variability of the oceanographie conditions. DVM is however a potentially 

efficient way to retain a zooplankton population into an advective environment 
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such as the LSLE - GSL system, whenever a vertically (Zakardjian et al., 1999) and/ 

or horizontally sheared circulation exists (Sourisseau et al. , 2006). Hence DVM 

should be considered with ontogenetie migrations as an element of a life -cycle 

strategy adapted to this environment, and designed to compensate for the eventual 

loss byadvection (Eiane et al., 1998). 

In order to achieve a coherent and comprehensive understanding of the 

population dynamics of C. finmarchicus in the GSL system, we coupled a stage-

based biological model of C. finmarchicus to a regional circulation model of the GSL, 

driven by realistie atmospheric, hydrologie and oceanic forcing (Saucier et al., 

2003). The model was applied for 1999, the second year of data acquisition of the 

Atlantic Zonal Monitoring Program (AZMP) of the Department of Fisheries and 

Ocean Canada which covers the Canadian Atlantic continental shelf with several 

fixed stations (Therriault et al. , 1998). The high spatio-temporal resolution of the 

model allowed to characterize (1) the predominant features of the spatio-temporal 

patterns of distribution and abundance of C. finmarchicus in the GSL, (2) the 

sensitivity of these patterns to both the ontogenetic and diel migration behavior of 

late copepodite stages and (3) to quantify the relative contributions of advection, 

temperature and food to the environmental forcing. 
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3 Material and Methods 

3.1 Circulation and ecological models 

The 3-D sea ice-ocean model driving the C. finmarchicus life cycle model was 

detailed in Saucier et al. (2003, 2004) and Smith et al. (2006b). This physical 

model represents the current sea-ice and ocean components of the Canadian 

Operational Weather Forecast model GEM (Pellerin et aL, 2003), and the Canadian 

Regional Climate Model (Faucher et aL, 2004). The physical model is based on 

shallow water and hydrostatic approximations. It includes a 3-D flux-corrected 

transport scheme and a level 2.5 turbulence c10sure model. The coastal ocean 

model is coupled to a multi-category dynamic sea ice model and a two-Iayer plus 

one snow layer thermodynamics. The model domain covers the estuary and the Gulf 

of St. Lawrence, from the inland limits of the upper estuary near Québec City (Ile 

d'Orléans), to the open boundaries delimited by the Strait of Belle-Isle and Cabot 

Strait (Fig. II-l). The grid resolution is 5 km on the horizontal (approximately half 

the local Rossby radius of deformation) and 5 m in the vertical, with the free 

surface and the bottom layers adjusted respectively to the sea level and the local 

topography. The model was forced by 3-hourly atmospheric fields provided by the 

Canadian Operational Weather Forecast Model, daily run-off data of 28 major 

tributaries, a monthly reanalysis of Bourgault and Koutitonsky (1999) for the St. 



46 

Lawrence River run-off, and hourly water level (27 co-oscillating tidal constituents) 

and monthly temperature and salinity profiles prescribed at Cabot Strait and the 

Strait of Belle-Isle. The forcing fields were interpolated at the time resolution (5 

min) of the model. The model computed fully prognostic solutions for water levels, 

currents, temperature, salinity, turbulent kinetic energy and sea-ice properties. 

Comparisons of the model outputs to recent and historical observations have shown 

that the model reproduced the high frequency to inter-annual variability in the 

circulation, water masses properties and sea-ice conditions of the GSL under the 

given realistic hydrological and atmospheric forcing (Saucier et al. , 2003; Smith et 

al., 2006b). 
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Figure II-l. Model domain with bathymetry and locations of sampling stations. 1 is 

Rimouski, 2 is Anticosti Gyre (AG), 3 is Gaspé Current (GC) and 4 is Shediac. Small 

crosses: Sampling grid of the Mackerel stock assessment cruise. Near Cabot Strait is 

an example of the grid resolution of the model. For this figure and every other map, 

the Mercator projection is used. 
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The 3-D Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model 

developed by Le Fouest et al. (2005, 2006) provided food concentrations for the 

egg production of C6f. It comprised two class of phytoplankton (small and large 

celIs), two classes of zooplankton (micro- and meso-zooplankton) , and two classes 

of detritus (Dissolved and particulate organic matter). The NPZD model was 

coupled to the 3-D circulation model described above. Profiles of observed 

Chlorophyll a and nitrate concentrations as well as SeaWIFS- and AYHRR-derived 

data were used to validate the ability of the model to simulate realistic seasonal and 

spatial patterns at meso- and regional scales in primary production and micro-

plankton biomass (Le Fouest et aL, 2005, 2006). Food fields were obtained by 

summing large and small phytoplanktonic cells (Ohman and Runge, 1994) . Units of 

the NPZD model were mmol N.m-3, which were converted in mg c'm-3 according to 

a constant conversion factor of 79.5. 

3.2 C. finmarchicus life history model 

The life-history model of C. finmarchicus (Tables II-l , 11-2 and 11-3) was 

adapted from Zakardjian et al. (2003). The biologie al rates of development, 

reproduction and mortality depended on the local environmental conditions and 

neglected the individual histories. The model took into account the egg, five 
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naupliar and six juvenile copepodite stages, along with a diapausing copepodite 

stage (CSd) and the male and female adult stages (C6m and C6f). The first two 

non-feeding nauplii stages were grouped together. The model used moulting rates 

defined from stage-specifie, temperature-dependent development times (Campbell 

et al., 2001). A Monotonie Upstream Scheme for Conservation Laws (MUSCL, van 

Leer, 1979) was used to compute the transfer from one stage to the next (Record 

and Pershing, 2008). This numerical scheme significantly reduced the numerical 

dispersion along the stage axis compared to the forward Euler method routinely 

employed to resolve the partial differential equations system generated by the 

biological stage-based model. The final moult into adults was equally partitioned 

between C6m and C6f. A sexual maturation time of 10 days was assumed for C6f 

(Plourde and Runge, 1993). The spawning function for C6f varied according to food 

concentration only (mg C m-3) , as Runge and Plourde (1996) showed a weak 

temperature dependence of egg production rates in the GSL area. Spawning 

occurred only at night. 
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Table II-l. DifferentiaI equations for the time evolution of the state variables in the 

life-cycle model of C. finmarchicus. Functions are given in table II-2 and stage-

specifie parameters in table II-3. 

Eggs 

Generic stage Si 

Diapausing stage 

Adult males 

( ) 
a WEgg Egg 

Rx C6f - t Egg + m Egg Egg - az 
as () aws 
_ 1 = t . 1 S 1 - t+m S _ 1 1 a t 1- 1- 1 lIa z 

aCSd 
a t 

aWCSd CSd 
az 

aC6m ()( ) aWc6m C6m = 0.51 - D tcs CS +tcsd CSd - rnC6 C6m - ---'----at , m az 
Immature females aC6j 

at 
Mature fernales 
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Table II-2. Functions of the biological rates for the life-cycle model of C. 

finmarchicus. Stage-specifie parameters are given in table II-3. 

Egg production rate R = R max (1-e (C< FOOd)) 

Transfer rate 

Diapause 

Mortality rates: 

with Rmax = 60 fem-1.d-1 and ex = -0.02 m3.mgC1 
(a) 

ti = l/SDi with SDi = ai(Temp+9.11 ) -2.o5 

for development from Eggs to C5 (b) and 

SDi = 20 days for C5d exiting from diapause(C\ 

SDi = 10 days for C6j maturing into C6f(d) 

DGSL = tanh( (1 + cos( 2rr(d + 35)/365 ) ) 2 ) 

DLSLE = tanh( 2 X(1+cos( 2rr(d+15)/ 365 ) ) 15) 

Temperature m T = ( Temp / 10 )2 

Egg m Egg = m T 
( 0.488 + 0.033 (C6j+C6j +CS ) ) (e) 

Nauplii mNi = m T ( mONi + L.N i / 8000 ) 

Copepodite mCi = mT 
( mOCi + Le / 2000 ) 

Vertieal swimming: Wi = wt ax tanh( 0.03 ( z - ZiOPl ) ) ~ 

with Ziopt = Zimin + 0.5( ztax - Zimin )( I -tanh ( 3 

cos(2rrt/24) ) ) 

for migrating stages, else see table II-3; 

and ç = signe 0.5 - U[O,l] ( 1 - (z - ZioPt )2 / 15 ) ) 

(a) Plourde and Runge, 1996; (b) Campbell et al. , 2001 ; (c) Zakardjian et al., 2003; (d) 

Plourde, unpublished data; (e) Ohman and Hirche, 2001 
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Table II-3. Stage-specifie parameters used in the C. finmarchicus life-cycle model. 

Stage Belehradek Basic Maximum Ontogenetic Minimum Maximum 

parameter(a) mortality swimming convergence migration migration 

rate (b) velocity (c) depth (d) depth (d) depth (d ) 

a i (days) mOi (dayso!) wmax (m ho!) z op, (m) z min (m) z max (m) 

Eggs 595 0.50 1.0 5 

Nl-2 969 0.50 0.7 5 

N3 1387 0.20 1.6 5 

N4 759 0.20 1.6 5 

N5 715 0.20 1.6 5 

N6 841 0.10 2.7 5 

Cl 966 0.08 3.2 5 

C2 1137 0.06 4.7 5 

C3 1428 0.04 6.1 5 

C4 2166 0.02 7.6 5 0 100 

CS 4083 0.02 9.4 5 0 100 

C5d 0.002 9.4 175 

C6m 0.08 10.8 75 50 150 

C6j 0.02 10.8 5 0 100 

C6f 0.02 10.8 5 0 100 

(a) Campbell et al., 2001; (b) Fitted; (c) Zakardjian et al., 2003; (d) This study Fig. 3; Plourde 

and Runge, unpublished 
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The dynamics of diapause is a key element in the population dynamics of C. 

finmarchicus. A considerable part of the life-cycle is spent in diapause (mainly as 

CS) deep in the water column (Plourde et al., 2001; Heath et al., 2004; Saumweber 

and Durbin, 2006). In our model, CS stage was allowed at the end of its 

development to either enter diapause (Csd) or to moult into adult in a proportion 

determined by a seasonally varying funetion (Fig. 11-2). Johnson et al. (2008) 

showed that the onset of diapause oeeurs in late summer in both the LSLE and the 

north-west GSL, while exit from diapause is delayed by at least one month in the 

LSLE relative to the north-west GSL. The empirieal diapause funetions were 

therefore parameterized aeeording to climatology of the abundance of CS from 

monitoring stations loeated in the LSLE and the north-west GSL (Fig. 11-2). Owing 

to the laek of data from central and north-east GSL, the north-west GSL dia pause ' 

funetion was uniformly applied to these regions. 
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Figure II-2 . Vertically integrated abundance (l03.m·2) of CS observed between 1994 

and 2001 at the Rimouski (crosses) and the AG (circles) stations. Lines are the 

empirical diapause functions derived from the data. Dashed line: proportion of C5d 

remaining in diapause in the GSL area. Dotted line: proportion of C5d remaining in 

diapause in the LSLE area. Continuous line: proportion of CS allowed to enter 

diapause over the whole domain. 
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Mortality exerts a major control on population dynamics. In general, stage 

specific mortality rates in broadcast spawner copepods decay dramatically from 

eggs to adults (Heath et al. , 2000; Hirst and Ki0rboe, 2002; Hirst et al., 2007) . We 

used stage-dependent basic mortality rates, decreasing from 0.5 (eggs) to 0.02 dol 

(C6f) , except for C6m and C5d for which the mortality rate was three times higher 

th an for C6f (Ki0rboe, 2006) and 10 times lower than for CS (Gislason et al. , 2007) 

respectively. Density-dependent formulation of mortality was important for the 

overa11 stability of the solution and basic stage-dependent mortality rates were 

modulated by distinct density-dependent functions for egg, nauplii and copepodites 

respectively (Table II-2) . For eggs, we followed Ohman and Hirche (2001) based on 

the aceumulating evidences of eannibalistic behavior of Calanus spp eopepodites on 

con-specifie eggs (Bonnet et al. , 2004; Basedow and Tande, 2006; Plourde et al. , 

2009). Fina11y, mortality inereased in a11 stages for tempe rature above 10°C (Table 

II-2), so that it doubles at approximatively l4.l 0 C (Speirs et al. , 2006; Hellaouët 

and Beaugrand, 2007) . 

3.3 Vertical migrations 

Ontogenetie vertical migrations assoeiated to the diapause pro cess and daily 

vertical migrations during development in late copepodite stages are generally 
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observed in C. finmarchicus (e.g. Simard et al., 1985). Data collected in spring and 

early fall 1998 in the north-west GSL showed DVM behavior in sorne of the 

copepodite stages (Fig. II-3, Plourde et al., unpublished) . In spring, most of C5 were 

probably still in diapause (Fig. II-3E), while in fall their bimodal distribution at 

night combined to the depth of the deep compone nt suggest DVM for actively 

growing C5 within the 0-100m layer, and diapause for the others between 125-150 

m (Fig. II-3F). Diapausing individuals were also likely to be responsible of the 

bimodal night-time vertical distribution of C4 in spring (Fig. II-3C). A weak DVM 

behavior was present in Cl-3 (Fig. II-3A, 3B) , whereas C6f showed clear DVM 

during both periods (Fig. II-3G, 3H). 
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Figure II-3. Diel vertical distribution of C. finmarchicus copepodite stages observed 

in the north-west GSL and the LSLE during spring (left column) and autumn (right 

column) 1998. Day-time: white, night-time: black. (A-B) Cl-3. (C-D) C4. (E-F) total 

CS (active and diapausing). (G-H) C6f. 
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The GSL environment is characterized by marked heterogeneities, such as the 

topographic discontinuity formed by the deep channels, the vertically sheared 

estuarine circulation, the stratification of the water column with the presence of a 

co Id intermediate layer, etc (Koutitonsky and Budgen, 1991) . When considering the 

population dynamics of C. finmarchicus in the GSL, vertical migrations are likely to 

interact strongly with those physical features. Our study considered two scenarios 

of swimming behavior according to the seasonal observations of the vertical 

distribution and migration of the C. finmarchicus copepodite stages described above. 

The first scenario (no-DVM) took only into account ontogenetic migration 

associated with the entry and the exit from diapause with aH stages ascribed to a 

fixed preferential depth (Table 11-3). Diapausing C5d were centered at 175 m, while 

C6f and aH other active stages remained near the surface. The second scenario 

(DVM) allowed DVM between surface and 100 min copepodite stages C4, active CS 

and C6f. Males stayed at 75 m in both scenarios. In both cases, egg sinking was 

considered (Knutsen et al. , 2001), and egg reaching the bottom before hatching 

were considered lost from the population. The swimming behavior was formulated 

following Zakardjian et al. (1999). Stage-specifie swimming speed was defined as 

the product of (1) a maximum swimming velocity, (2) a depth dependent 

hyperbolic tangent function, leading to downward (respectively upward) swimming 

when copepods are ab ove (respectively below) their stage-specifie convergence 

depth. Ontogenetic migrations corresponded to a constant convergence depth, 



59 

while time-varying stage-specifie convergence depths allowed to simulate DVM 

(Table II -3). The maximum velo city was set to three body lengths per second for 

stages exhibiting DVM in order ta get realistic timings of ascend and descend, and 

to one body length per second for the others. Wherever the converging depth was 

deeper than local topography it was set to the last layer above the bottom. A 

random dispersion factor, which could be considered as the statistical expression of 

individual variability within each stage, was necessary in order to avoid unrealistic 

concentrations in thin layers (Table 11-2) . The dispersion factor was a random 

probability for the swimming velocity to change its sign (i.e., for the modeled stage 

to change its direction of swimming). At the depth of convergence, the swimming 

velo city took the sign of a random number following a uniform distribution, and the 

distribution was gradually shifted toward the original velocity sign (i.e. , the original 

direction of the swimming) as the actual depth was farther from the depth of 

convergence. 

DVM behavior had important implications for several physiological processes 

considered in the life-cycle model of C. finmarchicus. Special consideration was 

given to the density-dependent mortality formulation of the egg. The original 

formulation of Ohman and Hirche (2001) depends on the vertically integrated 

abundance of C6f and CS. The actual feeding mode by which copepodites ingest 

eggs is not known, whether it is prey switching (Landry, 1981) or independent 
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feeding (Basedow and Tande, 2006). Moreover, DVM behavior in C. finmarch icus 

copepodites has been related to diel feeding rhythms (e.g. Simard et al., 1985; 

Durbin et al., 1995; lrigoien et al., 1998), which makes unclear if non-migrating 

late copepodite stages would eat more th an migrating on es on a daily basis. We 

thus used the original function of vertically integrated abundance (ind.m-2) of C6f 

and CS, and did not try to convert it into a function of the density (ind.m-3 ) of C6f 

and cs. 

3.4 Validation 

We used different sources of data to validate our simulations. Time series of C. 

finmarchicus abundance collected as part of the AZMP in 1999 at four monitoring 

stations located in the western part of the LSLE-GSL system were first used for 

validation (Fig. II-l). Station 2 (Anticosti Gyre), 3 (Gaspé Curent) and 4 (Shediac) 

were visited bi-monthly whereas station 1 (Rimouski) was sampled each week from 

late May to late November. Synoptic distribution of C. finmarchicus stages 

abundance in the Magdalene Shallows was obtained from a grid of 53 stations in 

late June (19th to 25th ) during the Mackerel stock assessment cmise conducted by 

DFO (Fig. II-1). Synoptic maps of the data were produced with the Ferret software 

(NOAA PMEL) , using a spline-Laplacian interpolation method. During the AZMP 
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and Mackerel stock assessment cruise, zooplankton was collected with a 1-m 

diameter 158 or 202 }.Lm mesh ring net vertically towed from the bottam ta the 

surface. At the Rimouski station, 73 and 333 }.Lm mesh size nets were used in 

combination in order to adequately sample aIl copepodite stages CPlourde et al., 

2001). Samples were preserved in 4% formaldehyde and individuals were sorted by 

development stage level later in the laboratory. Only copepodite and adult stages 

were considered for validation because early naupliar stages of C. finmarchicus are 

under sampled with the 158}.Lm and 202}.Lm nets CPlourde, unpublished data). 

3.5 Models coupling, initial and boundary conditions 

In order to distinguish local vs. advective effects on the population dynamics, 

the life-cycle model was first applied within a 1-D framework for both the no-DVM 

and DVM scenarios. It was forced by temperature and food profiles taken from the 

3-D circulation and biogeochemical models at the locations of the four monitoring 

stations. In order to make straightforward comparison possible, an initial 

abundance of 30 000 C5d m-2 was imposed at each station, based on maximal 

values observed in autumn and winter in the LSLE and GSL. 
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In a second approach, the life-cycle model was coupled to the 3-D circulation 

model and forced by the 3-D temperature and food fields provided respectively by 

the circulation and ecological models. The partial differential equation describing 

the evolution in time of a generic concentration C is: 

- +V(UC )-KH V HC- - Kv- = - +sources-smks Be - 2 B (BC) BW zC . 
Bt Bz Bz Bz 

(1) 

where U is the 3-D velocity vector, KH and Kv are the horizontal and vertical eddy 

diffusivity coefficients, respectively, Wz is the vertical swimming speed (sinking 

speed for the eggs) of the modeled stages, and sources and sinks are related to the 

biological processes described above. At each time step, the transport of each state 

variable was first computed using a 3-D flux-corrected transport scheme (Saucier et 

aL, 2003), and a Euler forward scheme for the swimming behavior (Andersen and 

Nival, 1991). Biological source and sink terms were then explicitly computed by the 

biological routines. 

The simulations were carried out for the year 1999, using initial physical fields 

(temperature and salinity) and boundary conditions based on observations provided 

by the AZMP in November 1998, which were interpolated on the numerical grid of 

the model. No data set were available at the appropriate space and time scales over 

the LSLE-GSL system for the abundance, distribution and stage structure of the C. 
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finmarchicus population. The biological initial conditions assumed a late fa ll - early 

winter uniform population of C5d within a depth range of 100 to 250 m, with a 

vertically integrated abundance of 30000 m-2 • The GSL is thought to be self-

sustaining, being a source of C finmarchicus for the downstream areas of the 

continental shelf (Zakardjian et al., 2003). Thus in order to simplify the 

interpretation of the results, we did not consider in a first approach inflow of 

copepods at the open boundaries. However, in a second series of simulations we 

applied climatological monthly abundances obtained from station 27 (AZMP) off 

eastern Newfoundland (Fig. II-1) at both the Strait of Belle-Isle and Cabot Strait 

boundaries, in order to estimate the contribution of external sources to the C 

finmarchicus population dynamics in the GSL. The integrated abundances of the 

stages from the climatology where converted in concentrations, according to the 

DVM scenarios (Table II-3) and the diapause function prescribed in our model. For 

the fifth copepodite stage, observations did not discriminate diapausing from active 

individuals. CS were thus split active and diapausing modeling stages according to 

the diapause function of the model (Fig. II-2). 

3_ 6 Empirical Orthogonal Functions analysis 

Empirical Orthogonal Functions (EOF) were used to quantitatively de scribe 
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the dominant spatio-temporal patterns of variability in abundance and distribution 

of C. finmarchicus in relation with relevant environmental variables. EOF analysis is 

widely used in meteorological, oceanographie and environmental studies (e.g. 

Fuentes-Yaco et al., 1997; Iida and Saitoh, 2007). EOF analysis extracts a reduced 

set of descriptors (modes) which represent both the main temporal and spatial 

variations included in the original data. The temporal variance of the data is 

successively partitioned into orthogonal spatial patterns (statistically independent) 

called modes, each one trying to account for the maximum variance possible. The 

time evolution of each EOF mode is described by the principal component (PC) time 

series. The observed pattern at a given time is given by the sum of the mean and 

each EOF mode, weighted by the value of the corresponding PC at that time. In 

general, only the first few EOF modes, which account for the highest fraction of the 

variance, are associated with physical processes. Then the causes of variation of 

those uncorrelated individual orthogonal functions can be examined separately. 

Thus, EOF analysis provides an effective way to summarize and interpret the few 

significant spatio-temporal patterns embedded into the data. EOF analyses were 

performed using the Ferret software (NOM PMEL) using the algorithm of Chelton 

et al. (1982) on the daily abundances of Nauplii (1-6) , total CS (active CS + 

diapausing CSd) and females. 
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Figure lIA. Annual mean of the simulated currents (m.s·l ) for 1999 in the GSL 

between (A) the surface to 30m, CB) 30rn to 100rn and CC) 100m to the bottorn. 
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4 Results 

4.1 Environmental conditions 

We summarize our current understanding of the circulation in the LSLE-GSL 

system, illustrated by results from the 1999 simulation of the 3-D physical model 

(Fig. 11-4; Saucier et al. 2003, Smith et al. 2006b). The general surface circulation in 

the GSL (Fig. II-4A) is cyclonic. The surface currents, mainly driven by the 

freshwater outflow and wind stress, are the strongest (yearly average of c.a. 0.2 m.s -

1) along the path of the freshwater outflow through the northwestern GSL, the 

southern GSL and Cabot Strait. Strong surface currents are also present in the 

northeastern Gulf owing to the inflow of Labrador Current waters through the Strait 

of Belle-Isle. The residual eastward component of the general cyc10nic circulation is 

enhanced until early summer, whereas the westward component is strengthened 

thereafter, in response to the seasonal freshwater and wind forcing (Saucier et al. 

2003, 2009). The St. Lawrence river freshwater runoff forms a buoyancy driven 

uns table baroc1inic coastal jet along the south shore of the Gaspé peninsula, the 

Gaspé Current (GC). Through a buoyancy current, the transport in the first 30 m is 

increased by a factor of six at the mouth of the Lower Estuary and a factor of 10 

through Honguedo Strait, when further adding the contribution from the westward 

circulation through the Jacques Cartier Strait. The GC is known to form instabilities 
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which can either join a quasi-permanent barotropic cyclonic gyre west of Anticosti 

Island, the Anticosti Gyre (AG), or propagate downstream through Honguedo Strait, 

generating pulses of surface estuarine waters downstream on the Magdalene 

Shallows (Tang, 1980; Reszka and Swaters, 1999; Sheng, 2001; Saucier et al., 

2003). A second branch of the GC follows the deep Laurentian Channel (LC) farther 

east. Both branches join to exit the GSL through Cabot Strait about 4 ta 6 months 

after freshwater exits the St. Lawrence River. 

Another major oceanographic feature of the LSLE-GSL system is the Cold 

Intermediate Layer (CIL) located between c.a. 30 and 100 m (Banks, 1966; 

Koutitonsky and Bugden 1991; Gilbert and Pettigrew, 1997; Galbraith, 2006). The 

CIL is trapped in spring when the onset of stratification caps the near-freezing 

surface layer (T < O°C and S = 32-33) between a warm mixed surface layer CT 

> 1SoC and S = 23-32) and denser but warmer deep waters (T= 4-6°C and S = 

34.6) of North Atlantic origin (see below, Fig. II-SC). The mean circulation within 

the CIL shows a general cyclonic motion of about 0.1 m.s-1 (Fig. HAB). It is driven 

by the tidal "pumping" of intermediate waters at the he ad of the Le, inflow through 

the strait of Belle-Isle, and the surface circulation. The vertical shear prevailing 

between the surface and the intermediate circulation regimes is particularly 

relevant within the framework of this study and is the strongest at the mouth of the 

Estuary, and in the Honguedo Strait where it reaches its maximum during the 



68 

spring freshet. 

The residual upstream circulation of the denser Atlantic layer below the CIL 

(Fig. II-4C) is mainly driven by faH and winter withdrawal in the Estuary, owing to 

reduced water column stability and tidal and wind driven mixing and entrainment. 

The mean velocity is about 0.01 m.s-1. The transport of this deep water layer 

exhibits a strong seasonal pattern which is characterized by a relative isolation of 

the deeper layer (reduced withdrawal) during spring and summer, and maximum 

extraction (uplift and entrainment) during faH and winter. The mean residence time 

is 1.3 yrs between 150 m depth and the bottom. The mean simulated transit time 

between Cabot Strait and the Estuary is 2.7 yrs, in general agreement with Bugden 

(1991). While there are still gaps in our understanding of the circulation dynamics 

of the GSL, the sum of these recent studies give us confidence in the model's ability 

to produce realistic simulation of the variability of oceanic conditions in the GSL 

from tidal to seasonal time-scales. 
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Figure II-S. Environmental conditions simulated for 1999 in the GSL. (A) Annual 

mean of temperature averaged between 0 and 30 m (OC) . (B) Temporal evolutions 

of temperature (OC) horizontally averaged over the whole area deeper than 100 m. 

White line: 100 m isobath. (C) Annual mean of chlorophyll a integrated between 0 

and 30 m (mg.m-2
). (D) Temporal evolutions of chlorophyll a (mg.m-3) horizontally 

averaged over the whole area deeper th an 100 m. Thin line : maximum depth (100 

m) of migrating active copepodites. 
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The coupled 3-D physical- NPZD model provided two other important forcing 

fields (Fig. II-S). There is a clear gradient in the annual spatial pattern of 

temperature, averaged over the first 30 m of the water column (Fig. II -SA). The 

lower surface temperatures are found over the deep LSLE and north-west GSL, 

while warm temperatures are located over the shallow southern and eastern GSL. 

The circulation has a critical influence over this spatial pattern: the tidal "pumping" 

of CIL waters at the head of the LC is the main source of cold waters in the surface 

layer in the LSLE, while synoptic upwelling events along the north shore couid act 

as local sources of co Id waters aiong the north coast. Water masses from estuarine 

origin slowIy warm up during their transit over the Magdaiene Shallows ( < 70 m) in 

summer and faU. On the eastern margin of the GSL, the inflow of Atlantic Waters at 

Cabot Strait bring warmer waters along the shore of Newfoundland. The time 

evolution of the tempe rature averaged over the area of the GSL deeper th an 100m 

clearly shows the seasonai trend and the formation of the CIL (Fig. II-SB). The 

coldest surface tempe rature occurred in February-March, whereas the warmest 

occurred between August and September. Warm temperatures (> 10°C) however 

remained constrained to the first 20 m of the water column by the CIL « 2°C), 

which forms at the surface during winter and remains untiIIate faU. 

Chlorophyll a biomass integrated over the first 30 m of the water column 

shows an annuai spatial gradient in complete opposition with the temperature 
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spatial pattern (Fig. II-SC). Chlorophyll biomass is highest in the LSLE, the north-

west GSL and the Honguedo Strait area, and the lowest in the north-east and south-

east GSL. The co Id waters pumped at the he ad of the LC bring nutrients to the 

surface, which add to the nutrient load of the St Lawrence river run-off. Nutrients 

are then consumed by the primary production as the surface water masses follow 

the residual circulation. Over the deep LC, episodic events of strong wind mixing 

and upwelling maintain the nutrients level around their limiting concentrations, 

while on the shallower areas (Magdalene Shallows) , the absence of this kind of 

nutrient inputs allows only regenerated primary production during most of the 

productive season. The phytoplanktonic bloom develops in co Id waters in May and 

June, prior to the onset of thermal stratification ofthe water column (Fig. II-50). 

4.2 Comparison of observed and simulated patterns: the influence of circulation 

Data from the four monitoring stations located along the main west-to-east 

surface circulation axis in the GSL system (See Fig. II -1 and Fig. II -4A) provided 

information on the temporal trends, and the abundance patterns of the copepodite 

stages of C. finmarchicus within this advective area. We present the results for the 

CS stage, which complete the life-cycle of the population through the dia pause 

process in the deep layer, and C6f which produce the second generation of the 
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population within the productive surface layer. Both the I-D and 3-D simulations of 

each scenario are presented. 
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Figure II-6. Observed (crosses) and simulated (Dashed line: I-D; continuous line: 3-

D simulations) vertically integrated abundances (103.m-2) of C. finmarchicus total CS 

(active and diapausing). Background shading: simulated vertical densities (103.m-2) 

of active and diapausing CS at the stations locations. Left column: simulations for 

the no-DVM migration scenario. Right column: simulations for the DVM migration 

scenario. Observations are the same in both cases. (A-B) Station 1. (C-D) Station 2. 

(E-F) Station 3. (G-H) Station 4. 
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The abundance of the total CS (active and diapausing components) simulated 

within the I-D framework were similar between both the no-DVM (Fig. II-6, left 

column) and DVM (Fig. II-6, right column) scenarios. Simulated abundances 

generally increased from station 1 to station 4, because of a lower cumulative 

mortality of C. finmarchicus stages driven by shorter development in response to 

positive gradient in temperature. I-D simulations overestimated observations In 

each station except at station 1, which is characterized by a short period of 

sampling and a sharp increase in abundance of CS in late summer (Fig. II-6A, 6B). 

Observed abundances of CS at each station showed a typical seasonal pattern with 

high abundances in winter in the deep LC (St. 2), a minimum in the abundance of 

CS in May-June and the build-up of the diapausing CS stock in late summer-early 

autumn (Runge and de Lafontaine, 1996; Plourde et al. , 2001; Zakardjian et al., 

2003). The observed differences between the stations are weIl reproduced by the 3-

D simulations, which took into account the impacts of the circulation. It shows a 

lower abundance of CS at the coastal station 3 in late winter and late autumn (in 

diapause in the model) , and the late appearance of CS in early summer at the 

shallow station 4. Simulated abundances of CS were lower in the 3-D than in the I-

D simulations, and they were generally underestimated relative to observation in 

the no-DVM scenario. The 3-D DVM scenario produced a better match with the 

observations. Comparing I-D and 3-D results, station 2 appeared to be the least 

affected by the hydrodynamics in the DVM scenario. On the contrary, the strong 
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vertical shear in the estuarine circulation affected the abundance pattern of CS at 

station 1, where deep dwelling diapausing CS were advected upstream in winter, 

and surface-dwelling early stages were flushed downstream in summer. 
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Figure II-7. Observed (crosses) and simulated (Dashed line: I -D; continuo us line: 3-

D simulations) integrated abundances (103.m-2) of C. finmarchicus C6f. Background 

shading: simulated vertical densities (103.m-2) of C6f at the stations locations. Left 

column: simulations for the no-DVM migration scenario. Right column: simulations 

for the DVM migration scenario. Observations are the same in both cases. (A-B) 

Station 1. (C-D) Station 2. (E-F) Station 3. (G-H) Station 4. 
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No major differences in the simulated abundances of C6f appeared either 

within the 1-D framework between the no-DVM (Fig. 11-7, left column) and DVM 

(Fig. II-7, right column) scenarios. The 1-D simulations results overestimated 

observations in every station, and simulated abundances of the second generation 

of C6f increased from station 1 to station 4 in both scenarios, following, again, the 

spatial gradient in temperature. The major issue revealed by the analysis of the CS 

remained valid for the C6f; the observed local differences between the stations are 

better reproduced by the 3-D simulations for the DVM scenario, for at least three of 

the four stations. Moreover, station 2 appeared to be the least affected by the 

hydrodynamics when DVM behavior occurred (Fig. 11-7C, D). However, circulation 

dramatically affected the abundance of C6f at station 1, where surface-dwelling C6f 

were largely flushed downstream in the no-DVM scenario. Results from both 

scenarios did not convincingly matched the observations at the shallow station 4. 

For this location, the no-DVM scenario seemed however to better reproduce 

observations. 
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Figure II-8. Integrated abundances (103.m·2) of C. finmarchicus total CS (le ft 

column) and C6f Cright column). CA, D) Observations from the 19th to the 25th of 

June 1999 over the Magdalene Shallows. Results from the CB, E) no-DVM a nd the 

CC, F) DVM scenario were sampled in space and time following the cruise track, and 

then interpolated in the same way as the observed abundances. The white line 

indicates the 100m isobath. 
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The distributions of CS and C6f of C. finmarchicus observed on the Magdalene 

Shallows in la te June 1999 allow the assessment of the realism of the spatial 

patterns simulated for these stages in both the no-DVM and DVM scenarios (Fig. lI-

S). Observations showed that a major proportion of CS (Fig. II-SA) , and almost all 

of the C6f (Fig. II-SD) were constrained by the steep slope at the southern limit of 

the LC, around the 100 m isobath. The deeper Shediac Valley off the Gaspé 

peninsula seemed to be the route taken by sorne CS and C6f to spread over the 

Magdalene Shallows (Fig. II-SA, D). However , our scenarios leaded to marked 

differences. In the no-DVM scenario, CS and C6f distributions were similar, with 

maximum abundances in the central and southern Magdalene Shallows (Fig. II-SB, 

E). In the DVM scenario however, maximum abundances were located close to the 

tip of the Gaspé peninsula, and immediately downstream of the Shediac Valley (Fig. 

II-SC, SF). The overall distributions of both stages were patchy, forming spatial 

patterns doser to the observations than what resulted from the no-DVM scenario. 
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Figure II-9. Simulated vertically integrated abundances (l03.m-2) of development 

stages of C. finmarchicus for the no-DVM scenario. First column: C6f. Second 

column: nauplii. Third column: copepodites 1 to 3. Fourth column: copepodites 4 

and S. Fifth column: CSd. First row: pt of January 1999. Second row: l Sth of April. 

Third row: lSth of June. Fourth row: pt of September. Fifth row: 31st of December. 
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Figure II-10. Simulated vertically integrated abundances (103.m-2) of development 

stages of C. finmarchicus for the DVM scenario. First column: C6f. Second column: 

nauplii. Third column: copepodites 1 to 3. Fourth column: copepodites 4 and S. 

Fifth column: CSd. First row: pt of January 1999. Second row: lS th of April. Third 

row: lS th of June. Fourth row: 1 s t of September. Fifth row: 3 r t of December. 
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4.3 DVM vs. no-DVM impacts on the simulated C. finmarchicus dynamics 

For both migration scenarios the population was composed exclusively of 

diapausing CS d, located in the deepest parts of the GSL at the beginning of 1999 

(Fig. II-9E, Fig. II-I0E). Differences among scenarios appeared in April with females 

and nauplii of the first generation. In the no-DVM scenario, C6f recently molted in 

April (Fig. II-9F) and the first generation of nauplii (Fig. II-9G). Both C6f and 

nauplii were mainly located over the west and central LC, but also deep within the 

Baie-des-Chaleurs and the Shediac Valley. They were less abundant in the LSLE and 

the eastern GSL, owing to the St Lawrence freshwater runoff and the inflow of 

Atlantic waters through Cabot Strait, respectively. The patchy distribution of these 

stages formed complex mesoscale structures. In June, the abundance of females was 

low (Fig. II-9K) and the population structure was dominated by nauplii (Fig. II-9L) 

and early copepodite stages (Fig. II-9M). The production area was displaced south 

and east, and the resulting distributions over the Magdalene Shallows were more 

homogeneous in summer than in spring. High abundances of nauplii and early 

copepodites were found south of Cabot Strait. In the western GSL, high abundances 

remained within the Gaspé Current instabilities. In September, the production are a 

of the second generation moved further eastward (Fig. II-9Q, 9R). The highest 

abundances were found for an the stages within the Cabot Strait area, south-east off 



83 

Anticosti Island and within the north-east GSL, while the lowest were in the LSLE 

and west GSL. The abundances of active CS and diapausing Csd increased (Fig. II-

9S, 9T) while the abundances of the larval stages decreased. FinaIly, the last day of 

1999 the Csd stock was formed within the deepest parts of the GSL (Fig. II -9Y). An 

eastward spatial gradient appeared, with abundance of CSd comparable to the 

initial conditions only east of Honguedo Strait. 

For the DVM scenario, the distribution of C6f (Fig. II -lOF) and nauplii (Fig. II-

lOG) in April corresponded weIl to the previous distribution of the Csd stock, which 

was constrained by the topography of the GSL (Fig. II -1 OE). The abundance of C6f, 

and thus the abundance of the newly produced nauplii, were high in the north-west, 

and north-east GSL and in the central Le. However few females were found over 

the Magdalene Shallows (Fig. II-4B). The low abundances along the eastern margin 

of the GSL resulted from the inflow of Atlantic waters through Cabot Strait, as in 

the no-DVM case. In June, C6f from the first generation (Fig 10K), nauplii (Fig 10L) 

and copepodites stages (Fig. II-10M, ION) remained present within the whole GSL 

system. The stage structure of the population was dominated by nauplii and early 

copepodite stages, and the major production areas were located in the western GSL, 

the northern half of the Magdalene Shallows, and the central LC until west of Cabot 

Strait. The lowest abundances were found on the southern half of the Magdalen 

Shallows and in the north-east GSL. In early September, the second generation of 
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C6f (Fig. II-lOP) was weIl established in the GSL, with highest abundance on the 

Magdaien Shallows, while the second generation of nauplii (Fig. II-lOQ) and 

copepodites (Fig. II-lOR, lOS) was still abundant in the whole GSL system. Finally, 

in December the diapausing CSd stock was mostly observed in the deeper areas of 

the region (Fig. II-IOY). The abundance of CSd were slightly higher than the initial 

conditions, but the distribution similar, except for the upstream LSLE. 

4.4 Spatio-temporal scale of variability revealed by EOF analysis 

The EOF analysis was focused on three stages or groups of stages: (1) total CS 

which couid present DVM behavior as active CS and which closed the life cycle of 

the population with the diapause process within the deep layer of the GSL, (2) C6f 

which could perform DVM between the surface layer and the CIL and whose 

dynamics governed the production of the new generations and (3) Nauplii which 

remained associated to the surface layer in both migration scenarios and initiated 

the new generations. The annually averaged abundances of each of the three 

development groups are presented in fig. II -11. The first three EOF modes together 

accounted for approximately 70% to 90% of the variance in the abundance of each 

stage analyzed in both migration scenarios (Table IIA). 
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Table lIA. Proportion of the variance of the abundance of total C5 (active and 

diapausing) , C6f and nauplii from both migration scenarios accounted for by the 

first three modes of the Empirical Orthogonal Functions (EOF) analysis. 

no-DVM / DVM 

C5-C5d 

C6f 

Nauplii 

EOF 1 (%) 

64.4 / 68.1 

45.2 / 45.2 

60.3 / 60.8 

EOF 2 (%) 

22.1 / 15.6 

26.1 / 19.6 

14.9 / 11.3 

EOF 3 (%) 

4.3 / 4.5 

5.7 / 3.7 

6.7 / 4.9 
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The first EOF mode accounted between 45 and 70 % of the variability in 

abundance (Fig. II-12) . This mode was characterized by coherent variations 

(positive eigenvalues only) over the whole GSL, according to a bimodal principal 

component (PC) corresponding to the production of the two generations. In 

general, the second generation of C. finmarchicus appears earlier in the no-DVM 

scenario, but it has a stronger contribution to the spatio-temporal patterns in the 

DVM scenario. This reflects the influence of colder temperature on the development 

times of the stages performing DVM within the CIL, and it also enlightens the 

sustained productivity in the western and northern GSL, owing to the greater 

retention of the developing population in the DVM scenario (Fig. II-12F, 121) . Thus 

the first EOF mode quantified that about half to two-third of the spatio-temporal 

variability in the abundance of the stage analyzed was explained by the response of 

c. finmarchicus to its environment in terms of demographic processes (timing of 

diapause, development times, egg production, etc.). 
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Figure II-12. Eigenvalues and associated principal components of the first modes of 

the Empirical Orthogonal Functions (EOF) analysis of the vertically integrated 

abundance of total CS (Upper row), C6f (Middle row) and nauplii (Lower row) 

from the no-DVM (Left column) and DVM (Right column) scenarios. Middle 

column: principal components; black line: no-DVM scenario; Red line: DVM 

scenario. 
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Specifie response to the environmental forcing appeared in the successive 

second and third EOF modes. The second EOF mode accounted for about I l to 26% 

of the variance in the abundance of the stages (Fig. II-13). This mode showed for 

each scenario a clear diehotomy between the first generation of females and nauplii, 

occurring in spring over the deepest part of the GSL, and the second generation 

developing over the shallow southern GSL and along the east and north shores. The 

contrasted pattern revealed by the second EOF mode probably reflected the imprint 

of the surface residual circulation at the regional and seasonal scale on the two 

successive generations of C. finmarchicus in the LSLE-GSL system, during the period 

delimited by the exit from and the entry into diapause. 
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Figure II-13 . Eigenvalues and associated principal components of the second modes 

of the Empirical Orthogonal Functions (EOF) analysis of the vertically integrated 

abundance of total CS (Upper row), C6f (Middle row) and nauplii (Lower row) 

from the no-DVM (Left column) and DVM (Right column) scenarios. Middle 

column: principal components; black line: no-DVM scenario; Red line: DVM 

scenario. 
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Finally, the third EOF mode accounted for approximately 4 to 6% of the 

variance in the abundance of the stages (Fig. II-14 and Fig. II-15). It brought 

however sorne relevant information for the C6f and nauplii stages. There were 

important differences between both migration scenarios for C6f (Fig. 11-14). In the 

no-DVM scenario, the third EOF showed an important contribution to the spatial 

pattern of abundance of C6f from the deepest part of the GSL in February and 

March, exduding the LSLE (Fig. II-14A). An abrupt shift occurred later between 

April and May (Fig. II-14B) when the influence of C6f increased in the LSLE, within 

the GC and over the Magdalene Shallows. This corresponds to the distinct timing of 

arousal from diapause for females from the GSL and the LSLE (see Fig. 11-2). In the 

DVM scenario, the third EOF mode described a patchy spatial pattern of variability 

(Fig. II -14C) characterized also by an abrupt shift, but occurring in summer in this 

case (Fig. II-14D). According to this mode, in early summer C6f in the downstream 

estuarine flow, within the instabilities of the GC, over the northern half of the 

Magdalene Shallows and off south-west Newfoundland contributed more to the 

distribution pattern. From August onward, the more important distribution areas 

are found in the Baie-des-Chaleurs and southern Magdalene Shallows, in the south-

east LC, the north-east GSL and along the north coast of the GSL and LSLE. This 

spatio-temporal pattern presented striking similarities with the second dominant 

mode of variability of surface temperature (Fig. II-14E). Beyond the overwhelming 

contribution of the seasonal trend in surface tempe rature (94.8% of the variance 
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explained by the first EOF mode of temperature) , the second EOF mode of surface 

temperature reflects the seasonality of the surface circulation. In the DVM scenario, 

the third EOF mode mainly represented the impacts of the mesoscale surface 

circulation on the second generation of C6f. For nauplii however, the third EOF 

mode revealed spatio-temporal patterns similar for both migration scenarios (Fig. II-

15) . The first generation of nauplii appeared in the north-east GSL in early spring, 

but it rapidly spread in the west and south GSL, where the production remained 

until late summer when north-east GSL once again contributed more to the 

distribution pattern of the second generation. This pattern mimics in spring the 

second dominant mode of variability in chlorophyll a (Fig. II-ISE, I SF) . The clear 

distinction between the importance of the central and north-east GSL before the end 

of April, and the west and south GSL thereafter reflects the detrimental effect of 

both the flushing by the spring freshet (Zakardjian et al. , 2000) and the turbidity of 

estuarine water masses on the phytoplankton productivity in the western GSL in 

spring (Le Fouest et al., 2005). Hence the third EOF mode of the abundance of 

nauplii reflect the impact of the spatio-temporal patterns of the spring 

phytoplankton bloom on the production of offspring by the females. 
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A noDVM C6f EOF3: 5.7% 

C DVM C6f EOF3: 3.7% 

E Temp. EOF2: 2 .2% 

Figure II-14. Third modes of the Empirical Orthogonal Functions (EOF) analysis of 

the vertically integrated abundance of (A-B) C6f fram the no-DVM scenario and (C-

D) C6f from the DVM scenario. (E-F) Third mode of the EOF analysis of 

temperature vertically averaged between 0 and 30 m. 
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Figure II-I5. Third modes of the Empirical Orthogonal Functions (EOF) analysis of 

the vertically integrated abundance of (A-B) nauplii from the no-DVM scenario and 

(C-D) nauplii from the DVM scenario. (E-F) Third mode of the EOF analysis of 

chlorophyll a vertically integrated between 0 and 50 m. 
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4.5 Influence of the open boundaries 

When the monthly climatology of C. finmarchicus abundance of St. 27 (Fig. II-

16A) was imposed at the open boundaries, the amount of diapausing CS at the end 

of the simulated year is increased by 13.6% and 11% in the no-DVM and DVM 

scenario, respectively (Fig. II-16B, 16C). The lower productivity of the no-DVM 

scenario explained this difference. In both scenario, the anomaly of abundance of 

C5d extended from the Cabot Strait area toward the north-east GSL, along the 

Newfoundland coast. The influence of inflows of Labrador Current waters through 

the Strait of Belle-Isle appeared limited compared to inflows of surface and deep 

Atlantic waters through Cabot Strait. A dense aggregation formed south-west off 

Newfoundland, owing ta the deep circulation patterns. The high abundance of C5d 

found in this area (> 104.m-2) corresponds to the concentration imposed at the 

Cabot Strait boundary in December (Fig. II-16A). Hence the contribution of the 

surface dwelling productive stages seems of little importance to the overall 

population dynamics of C. finmarchicus in the GSL. 
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Figure II-16. (A) Time series of the climatological abundances of C. finmarchicus 

obtained at St. 27. Dotted line: integrated abundance of nauplii, left-hand scale. 

Dashed line: copepodites 1 to 3, right-hand scale, as each following stages. Bold 

line: copepodite 4 and 5 (active and diapausing). Continuous line: adult females. 

Anomaly (in proportion) of the vertically integrated abundance of CSd the 31st of 

December 1999 for the (B) no-DVM and (C) DVM scenario, between a simulation 

with the climatology of C. finmarchicus stage structure imposed at the open oceanic 

boundaries, and a simulation without import of C. finmarchicus. 
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5 Discussion 

5.1 Response ta environmental variability 

A major consequence of the increase in the surface temperature experienced in 

different sub-regions in the GSL was an increase in net productivity in the I-D 

simulations, which was clearly observed in the greater abundance of CSd at the end 

of the growing season along the general positive temperature gradient from station 

l to 4 (Fig. II-SA; Fig. II-6). This greater net recruitment at higher temperature 

resulted from a shorter development time of the surface-dwelling early stages 

leading to a reduced cumulative mortality during development, despite an increase 

in mortality prescribed in the model when tempe rature exceeds IODC. The presence 

of the CIL induced a delay in the maturation of the second generation in the DVM 

scenario because of the longer development times of the copepodite stages (C4-CS) 

migrating within the CIL. The overall productivity between both scenarios remained 

similar because the low mortality rates of the migrating stages (Table II-3) had little 

influence on the cumulated mortality of the population, as egg and naupliar stages 

experienced much greater mortality rates in our model. 

In the 3-D simulations, the no-DVM scenario showed a lower overall 
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productivity (lesser overwintering stage abundance) relative to the DVM scenario 

(Fig. 11-9-12). This partly reflected the influence of chlorophyll a concentration on 

the egg production rate of females. The concurrent but opposite eastward motion of 

C. finmarchicus population (Fig. 11-9) and westward increase in primary production 

during summer (Fig. II-SB) resulted in a spatial mis-match hindering the population 

egg production. Taking into account the impacts of hydrodynamics by coupling the 

model with the 3-D circulation model was actually critical to get a realistic 

representation of the patterns of abundance of C. finmarchicus stages in the GSL 

system (Fig. II-6-7). The observed and simulated time series at the monitoring 

stations in the western GSL showed three distinct regimes: the upstream LSLE (St. 

1), the north-west AG-GC area (St. 2 and 3), and the downstream western 

Magdalene Shallows (St. 4). Advection plays an essential role in the connectivity 

between these locations. The model simulations allowed to "fill the gaps" between 

the stations and to characterize the spatio-temporal scale of variability across the 

whole system. According to the results, the DVM in late copepodite stages positively 

impacted abundances and generally le ad to a better simulation of observed 

temporal patterns in a system characterized by important vertical shears between 

the surface (downstream residual currents, Fig. II-SA) and the CIL (upstream 

residual currents, Fig. II-SB) , as weIl as important meso-scale horizontal circulation 

features. The spatial pattern remained however conditioned by the topography and 

the pattern of ontogenetic migrations associated to the diapause (Fig. II-13) . 
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5.2 Diel vertical migrations 

The DVM behavior emerged as a critical feature of the population dynamics of 

C. finmarchicus in the LSLE-GSL system. However DVM has been mostly overlooked 

in region-scale 3-D modeling studies of the dynamics of C. finmarchicus (Bryant et 

al., 1997; 1998; Lynch et al., 1998; Miller et al., 1998; Speirs et al., 2005, 2006). 

The differences in the distribution patterns between both migration scenarios 

resulted essentially from direct interactions between the migration behavior of late 

copepodites and both hydrodynamic features and the steep topography of the GSL. 

Relative to the no-DVM scenario, DVM promoted the maintenance of the first 

generation in the north-west and central GSL. Later in summer, it hindered the 

transport of late copepodite stages in the surface outflow near Cabot Strait. These 

findings agree with the patterns revealed in a previous study of the interactions 

between the hydrodynamics and the migration behavior of zooplankton within the 

Irish Sea, in the north-east Atlantic continental shelf (Emsley et al., 2005). Without 

the DVM behavior, the second generation of C6f was concentrated in the south-east 

GSL in late June - early July, within strong surface outflow on the south side of 

Cabot Strait (Fig. II-4A). This scenario resulted in a massive export of the second 

generation of C. finmarchicus. Losses by advection at the open boundaries of the 

system in the no-DVM scenario was 5 ta 10 times greater than losses estimated in 

the DVM simulation. In the no-DVM scenario, egg mortality was increased relative 
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to the DVM scenario mainly because of a greater egg loss to the bottom owing to 

the displacement of the C6f over the shallow southern GSL. Thus, in the absence of 

DVM, interactions between hydrodynamic and demographic processes lead to a 

poor representation of abundance patterns in the western GSL (Fig. II-6-7), 

unrealistic spatial structures (Fig. 11-8) and a marked west to east spatial gradient, 

even in the winter diapausing stock (Fig. 11-9Y). The contribution of the populations 

from the surrounding continental shelf are limited to the central and eastern GSL 

(Fig. 11-16B-C), and hence is not likely to counter this tendency. 

The year-round maintenance of the C. finmarchicus population in the GSL 

system requires a mechanism for the population to avoid the losses due to the 

eastward residual surface circulation. C. finmarchicus late copepodite stages should 

migrate between the surface layer and its underneath counter current within the 

CIL to remain in the western LSLE-GSL system. According to the 2-D modeling 

study of Zakardjian et al. (1999), individuals should stay four times longer within 

the CIL to compensate for the flushing at the surface. However, the 3-D spatio-

temporal pattern in circulation considerably alters this theoretical 2-D dynamics. 

Sourisseau et al. (2006) explored with a model of swimming krill coupled to the 

same 3-D circulation model as ours, the potential for krill populations to form dense 

aggregations at the head of the LC. They did not manage to reproduce the dense 

aggregations observed with their diel migration scenario, but they stressed that the 
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upstream advection along the northern shore of the estuary and north-west GSL 

should play a key role. Analysis of the fluxes at the LSLE mouth in our simulations 

(not shown) revealed that upstream inflow of C. finmarchicus can be as high at the 

surface along the north shore as within the CIL in late summer - early autumn, 

when the overwintering deep-dwelling stock is formed. Upstream surface advection 

resulted from the interactions between the instabilities of the GC and the quasi-

permanent AG, which could generate synoptic, high-frequency recirculation features 

along the the north shore of the north-west GSL (See Fig. II-10Q, R, S). However 

the presence of the diapausing population during faH and winter within the residual 

upstream currents of the deep layer remained essential for the persistence of the 

population in the GSL. Our formulation of the diapause process could even have 

underestimated the contribution of the CSd stage, if more of the first generation of 

CS were to enter dia pause in summer. A fixed proportion of each generation of CS 

entering diapause is indeed an alternative formulation, which is yet only supported 

by its simplicity and apparent efficiency in different situations (e.g. Miller et al. 

1998, Tittensor et al. 2003, Speirs et al. 2006, Slagstad and Tande 2007). 

In our DVM scenario, the diel and ontogenetic vertical migrations of C. 

finmarchicus ensures the presence of the population within the most dynamic 

upstream flow regimes, according to the season: migrating stages within the CIL in 

spring and summer and diapausing stage in the deep layer in autumn and winter. 
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The inclusion of DVM also promotes accumulation, compression and retention, or 

dispersion processes at the relevant spatio-temporal scales (Mackas et al., 1985; 

Malchow et al., 2001). Interactions between the swimming abilities of migrating 

stages and the horizontally or vertically sheared currents shape the spatial scale of 

the plankton patchiness in the system (Franks, 1992; Genin et al., 2005). In this 

regional study, the importance of the interactions between the migration behavior 

and advection contrasts with the oceanic basin scale situation, where those 

interactions are of limited relevance with respect to the perennial spatio-temporal 

patterns of the C. finmarchicus population (Speirs et al., 2006) . DVM does not seem 

to confer any adaptive advantage to the open ocean hydrodynamic environment. 

However, in the deep oceanic basins stage-specifie ontogenetic position in the water 

column is a useful adaptation to escape during diapause the bad environmental 

conditions of the mixed surface layer, deepened by the strong winter-time mixing 

processes. 

The migration behavior remams a schematic deterministic function of our 

model, which is in part responsible for the remarkable match between the spatio-

temporal scales in vertical migrations and the vertical shear of the currents. Spatio-

temporal variability is likely to occur in reality (Heywood, 1996), and results of our 

simulations did not mIe out the possibility of a more flexible behavior for sorne of 

the stages. Copepods face the constant need to balance immediate constraints like 
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the requirement for food, the visual predation risk in surface waters and the 

reduced growth in co Id waters. The environmental conditions prevailing during the 

spring phytoplankton bloom are characterized by a relatively homogeneous 

temperature profile, high food concentration and low predators biomass. Hence, 

limited migrations could benefit the females in spring (Lampert et al., 2003; Liu et 

al., 2003). Then, the onset of the DVM should coincide with the following increase 

in zooplankton biomass, as late copepodite stages can reduce predation risk by 

migrating within (or beneath) the CIL. Thus the complex DVM behavior couid be, in 

a further step, mechanistically formulated in terms of weighted influences on the 

swimming behavior of the light penetration profile, the depth of the CIL and the 

depth of the maximum phytoplankton concentration (Batchelder et al. , 2002; Liu et 

al., 2006; Neumann and Fennel, 2006). However, more field observations are 

needed to support such developments, and population level modeis such as ours 

still lack the ability to take into account the physiological conditions of the 

individual, for example. 

5.3 Influence of circulation regimes 

The analysis of the coupling between the life-cycle of C. finmarchicus and the 

3-D circulation in the western GSL allows to complement the "Calanus pump" 
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hypothesis (Plourde and Runge, 1993). This hypothesis stressed the role of the 

LSLE/ GC system as an important source of C. finmarchicus for the rest of the GSL 

during summer. AlI year long, the GC forms baroc1inic instabilities (meanders), 

probably triggered by the interaction between the freshwater runoff and eastward 

wind events (Mertz et al. , 1988, 1991). According to our results, during summer 

these instabilities increase the residence time of surface waters west of Honguedo 

Strait, while sporadic wind forcing leads to pulsed transport of these surface water 

masses over the western Magdalene Shallows and the central GSL. This mechanism 

fits with the "Calanus pump" hypothesis, but it extends to the north-west GSL as 

weIl the source region for the southern and eastern GSL. The tight coupling 

between the LSLE and the north-west GSL is characterized by important 

recirculation events taking place from mid-summer (August) until winter, during 

the whole period of production of the second generation of C. finmarchicus. 

Recirculation features are visible in the abundances from the DVM scenario (Fig. 11-

10P-S). Variability due to mesoscale surface circulation features represents less than 

5% of the variability in females on the scale of the whole GSL, but it actually has 

major consequences for local dynamics. This circulation regime tightens the 

connection between the LSLE and the north-west GSL during a period of low 

abundance of the second generation in the LSLE. This mechanism provides surface-

dwelling copepodite stages from the north-west GSL for the build-up of the 

overwintering stock in the LSLE, a few months before the deep circulation carries 
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upstream diapausing CS originating from the north-west GSL. The existence of two 

contrasting circulation regimes in the north-west GSL challenges the generally 

accepted view of a permanent frontal zone between the GC and the AG (Sevigny et 

al., 1979; Tang, 1980; Fortier et al., 1992). The simulation results showed that high 

frequency circulation events, such as summer GC instabilities, act to couple both 

circulation features. These circulation modes also extend their influence further 

downstream, especially in spring and summer. 

These findings allow to answer to one of the most significant linkage found 

between physical and ecological processes in the GSL. The abundance of C. 

finmarchicus females and the index of Mackerel recmitment are significantly and 

positively correlated with each other, but inversely correlated to the St Lawrence 

river freshwater mn-off index (RIVSUM index). In order to explain the negative 

correlation between the freshwater mn-off and the zooplankton biomass in the 

southwest GSL, Runge et al. (1999) hypothesized that when relaxed, the buoyancy 

driven surface circulation allowed more of the C. finmarchicus rich waters from the 

central Laurentian Channel (LC) to spread over the Magdalene Shallows. 1999 was 

a year of below average mn-off and high abundance of C. finmarchicus in the 

southern GSL (Castonguay et aL, 2008). According to our results, variability in the 

seasonal colonization of the southwest GSL is more likely to result from variations 

in the efficiency of the "Calanus pump" previously described. Advection of 
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individuals between the central LC and the Magdalene Shallows did not contribute 

to the variability of the system, and no unusual circulation feature occurred across 

the southern limit of the Le. Ouellet et al. (2003) showed that the spatial scale of 

variability of the SST was larger and more isotropie in the central GSL (between 

100 and 175 km) than in the western part of the GSL (less than 100 km) , including 

the western Magdalene Shallows which is the major route for zooplankton patches 

to penetrate within the area. The seasonal colonization of the southern GSL is 

similar in several aspects to the mechanism first hypothesized by Backhaus et al. 

(1994) for the North Sea (see also Gallego et al., 1999; Harms et al. , 2000) . The 

major difference is the smaller spatial scales involved in the GSL, which greatly 

increases the importance of the DVM (Hannah et al. , 1997). Contrary to the 

southern GSL, the north-east GSL is able to maintain high abundances of both 

diapausing and active stages of C. finmarchicus throughout the year, especially in 

the DVM scenario. According to our results, it would nonetheless benefit fro m 

external imports through the open boundaries. The surrounding areas of the 

continental shelf essentially contribute through Cabot Strait (Fig. II-16) , and the 

influence of inflowing waters is strongly limited west of Esquiman Channel. Thus 

the inter-annual maintenance of the C. finmarchicus population within the GSL 

system did not rely on external sources, and the GSL can actually act as a source of 

C. fi nmarchicus for the downstream continental shelf area, as suggested by 

Zakardjian et al. (2003). More data are however needed to explore further the 
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dynamics of the north-east GSL. 

Our model results showed that the few monitoring stations and the frequency 

of sampling cannot allow a comprehensive understanding of the C. finmarc hicus 

population dynamics in the LSLE-GSL system. However the data available constitute 

a good starting point ta build models in order to gain a more thorough 

understanding of the mechanisms driving the pelagie ecosystem of the GSL. Data 

sets are needed ta initialize such models, and ideally others are needed to confro nt 

the results of the model to the observations. The AZMP pro gram could 

advantageously benefit from additional stations in the eastern part of the GSL, as 

already proposed by Ouellet et al. (2003). 

6 Conclusion 

Our study is the first to quantify, on a regional scale and for a specifie year, 

the key patterns in the distribution, abundance and stage composition of the C. 

finmarchicus population in a dynamic continental shelf area, the LSLE-GSL system. 

It is moreover the first study to explicitly link the variable migration behavior 

exhibited by C. finmarchicus with the various circulation patterns occurring in its 

habitat along the year, as an essential element of a successfullife-cycle strategy. It is 
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the first study to demonstrate the existence of a resident C. finmarchicus population 

in a coastal area, with limited contribution of external oceanic populations. Sorne 

studies improved our understanding of the impacts of the interactions between the 

hydrodynamics and ontogenetic migrations (e.g. Johnson et al. , 2006) , or the 

swimming behavior of active stages (e.g. Hannah et al., 1997; Emsley et al. , 2005; 

Carr et al., 2008) on the population dynamics of C. finmarchicus in the complex 

coastal domain. Our study is however the first to integrate in a comprehensive way 

both DVM and ontogenetic migrations into a complete life-cycle model of C. 

finmarchicus during a whole year. This is an important step in our ability ta draw 

robust explanations for the "Calanus circuit" formed by circulation features 

separated in time and space, but linked together by the life-cycle of C. finmarchicus. 

Saucier et al. (2009) showed through sensitivity studies of the same 3-D circulation 

model that realistic alterations of either the wind forcing or the fresh water run-off 

affect considerably the hydrodynamics of the GSL, as well as the exchanges with the 

Labrador Current and the North Atlantic waters. The apprehended climatic changes 

will affect in a yet unpredictable way both hydrological and wind forcing. Hence, 

the hydrodynamics inside the complex and heterogeneous GSL will probably be 

affected in a near future, and consequently impact the planktonic species whose 

perennial presence rely on well established recurrent patterns. 



CHAPITRE III 

THE CONTROL OF DIAPAUSE BY THE LIPID METABOLISM IN Calanus 

finmarchicus : A POPULATION MODEL PUT TO THE TEST 
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7 Résumé 

Afin de survivre dans un environnement boréal fortement saisonnier, Calanus 

finmarchicus dépend d'une phase de diapause pendant laquelle l'espèce échappe aux 

conditions environnementales hivernales défavorables. De récentes données 

démographiques, physiologiques et génétiques suggèrent un rôle crucial du 

métabolisme des lipides dans le contrôle de la diapause. Nous présentons dans cette 

optique un modèle de cycle de vie de C. finmarchicus implémentant une approche 

mécaniste du contrôle de la diapause, basée sur le métabolisme des lipides. Le 

mécanisme du modèle de diapause obéit à deux règles: (l) les stades copépodites S 

(CS) actifs entrent en diapause lorsque le ratio lipides sur carbone total excède une 

valeur seuil, et (2) les CS en diapause en sortent lorsque leurs réserves lipidiques 

approche d'une valeur seuil. Nous avons appliqué le modèle en 1-D à une colonne 

d'eau, et nous avons comparé nos résultats à deux années consécutives de données 

d'abondance des copépodites et de contenu lipidique des CS, provenant du nord-

ouest du golfe du Saint-Laurent. Le modèle reproduit une phénologie et des patrons 

d'abondance et de contenu lipidique de C. finmarchicus réalistes en réponse aux 

forçages environnementaux, ainsi que des variations inter-annuelles du timing 

d'entrée en dia pause et de la contribution relative des différentes générations au 

stock en diapause. Nos résultats supportent l'hypothèse d'un contrôle par le 

métabolisme des lipides de l'entrée et de la sortie de diapause chez C. finmarchicus. 
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8 Introduction 

The pelagie copepod Calanus finmarchicus is a dominant component of the 

zooplankton community across the North Atlantic bore al domain. Its life-cycle 

shows two distinct phases, a period of active growth and reproduction during the 

spring-summer within the productive surface layer, and an extended overwintering 

period (diapause) at depth, essentially as copepodite S (CS) stage (Hirche, 1996a, 

1996b). The phenology of C. finmarchicus shows regional plasticity at the scale of 

the North Atlantic, probably related to regional variations in environmental 

conditions (Planque et al., 1997). The timing of initiation and termination of 

dia pause could vary by several months at smaller spatial scale across the continental 

shelf in the Northwest Atlantie (Johnson et al., 2008). 

The relationships between the key environmental parameters (tempe rature 

and food) and the physiologieal processes (growth, development and egg 

production) of C. finmarchicus are relatively weIl characterized owing to numerous 

laboratory, mesocosm and in situ studies (e.g. Harris et al. , 2000; Campbell et al. , 

2001) . However, no equivalent knowledge is yet available regarding the control of 

the diapause phase of the life cycle. Johnson et al. (2008) concluded that in the 

Northwest Atlantic "no consistent pattern in the gradients of environmental cues 
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[ ... ] could explain the observed dormancy entrance and exit patterns". Meanwhile, 

modeling studies showed the inability of simple trigger mechanisms such as the 

level of chlorophyll a biomass or photoperiod to explain the timing of entrance in 

diapause at the scale of the North Atlantic (Speirs et al., 2006). Those conclusions 

enlighten the integrative nature of the diapause process, which translates the 

variability of multiple environmental factors into one particular life-cycle strategy. 

What could be the role of the diapause process for C. finmarchicus facing a 

changing environment (Denman et al., 2007) ? The phenology is more susceptible 

ta follow rapid changes in environmental conditions than is the metabolism of a 

species, either by acclimation or adaptation (Miller et al., 1991). If environmental 

changes remain within an acceptable range, diapause dynamics may buffer possible 

detrimental effects by allowing C. finmarchicus to avoid periods of unfavorable 

conditions leading to low reproductive output or high mortality, hence maximizing 

the reproductive value of the species. 

Recent physiologie (Jonasdottir, 1999; Miller et al. , 2000; Rey-Rassat et al. , 

2002; Hassett, 2006; Saumweber et al., 2006), genetic (Tarrant et al., 2008) and 

demographic (Johnson et al., 2008) evidences support the hypothesis of a crucial 

role for the lipid metabolism in the control of diapause (Irigoien, 2004; Saumweber 
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and Durbin, 2006; Johnson et aL, 2008). High amounts of wax esters are generally 

observed in animaIs in diapause, confined within their oil sac (Miller et aL, 1998b; 

Ingvarsdottir et aL, 1999; Jonasdottir, 1999; Saumweber and Durbin, 2006). A 

variable but significant proportion of lipid storage remains at the end of the 

diapause period (Plourde and Runge, 1993; Saumweber and Durbin, 2006), which 

apparently matches the metabolic needs of both the go nad maturation associated to 

the final molt (Rey-Rassat et aL, 2002) and of the ontogenetic vertical migration of 

newly molted adult females (Jonasdottir, 1999). Therefore, the difference between 

the initial and the final amount of lipid storage would coyer the energetic costs 

associated with several months in diapause. One could reasonably argue for sorne 

threshold level of lipid storage above which diapause can be initiated, which would 

support the metabolic requirement during the diapause period, and the maturation 

process at the time of molting (Fiksen, 2000). The ration ale is that individuals 

ente ring diapause without a sufficient amount of lipid would eventually be lost 

from the population, as they will be starving at depth or migrating to the surface in 

unfavorable environmental conditions. However, along this hypothesized lipid-

driven diapause mechanism (Saumweber and Durbin, 2006) , it is possible for other 

cues to influence the time of exit from diapause. These signaIs could be either 

internaI, like a reduced development rate, or external like the stimulating effect of 

the advection bringing individuals into the surface layer, as suggested by sorne 

observations and incubation experiments Ce.g. Durbin et aL, 1997). 
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For the last ten years, numerous modeling studies brought quantitative 

insights on the population dynamics of C. finmarchicus. However the lack of a c1ear 

understanding of the controls of the diapause le ad previous investigators to (1) 

impose alternatively the date of its initiation or the fraction of each generation 

entering diapause and (2) to impose the date of its termination, in order to 

reproduce the targetted phenol ogy (Carlotti and Wolf, 1998; Lynch et al., 1998; 

Miller et al., 1998a; Tittensor et al., 2003; Zakardjian et al., 2003; Speirs et al., 

2006; Slagstad and Tande, 2007). Such a deterministic approach precludes 

sensitivity studies of C. finmarchicus population dynamics to inter-annual or long 

term variations in environmental forcing. Thus a few authors developed me chanis tic 

approaches of the diapause. Fiksen (2000) added three model "genes" to C. 

finmarchicus individuals, which lead to a rule for entry into diapause involving the 

lipid over somatie tissue ratio, while the exit from dia pause remained forced by the 

length of the day. Hind et al. (2000) assumed that diapause duration was controlled 

by the normal development processes operating at a reduced rate, after it was 

initiated by a low food availability threshold. Speirs et al. (2006) however showed 

that this model failed to reproduce the large variations in phenology across the 

whole geographic are a of C. finmarchicus . Our study represents to our knowledge 

the first attempt to test a mechanistic approach based entirely on the lipid 

metabolism for the control of the diapause in a population model of C. finmarchicus. 

We adapted the stage-resolved biomass population model of copepods developed by 
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Fennel (2001) and modified by Stegert et al. (2007) to C. finmarchicus. 

In our study the diapause process obeyed to two rules: (1) active CS enter 

diapause when their ratio of lipid to total body carbon exceeds a fitted threshold 

value and (2) diapausing CS exit diapause when their lipid storage approaches a 

given proportion of their structural mass (minimal threshold). We implemented the 

model in a 1-D water column framework, and compared our results to observations 

of abundance of copepodite stages, body carbon and lipid contents of CS from three 

monitoring stations located in the north-west Gulf of St. Lawrence, eastern Canada. 

9 Materials and Methods 

9.1 O-D base model design 

We developed a stage-resolving biomass model for C. finmarchicus following 

Fennel (2001) and Stegert et al. (2007). The model computed stage-specifie 

biomass CB.) and abundance CN), and the resulting mean individual mass Cm = B. / 
l l l l 

N) . According to the critical moulting mass (CMM) concept developed by Carlotti 

and Sciandra (1989), the stage-specifie CMM was the mass threshold above which 
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moulting to the net stage occurred. Thus the development of the stages resulted 

from the interplay of the stage-specifie growth Cg) and CMM, both driven by 

environmental conditions of food and temperature, which gives for a generic model 

stage: 

dB; 
dt 

dN; 

dt 
t . l· N . 1 - t .. I N . 1-, 1 l - 1,1+ l 

with t. . 1= fCm . ) the transfer rate between the state variables, controlled by the 
1,1+ l 

mean individual mass of the stage. Detailed descriptions of the formulations of 

CMM, growth and transfer rates are given in the following sections, and aU 

equations and parameters are presented in Tables III-I and III-2. The number of 

stages described by the model resulted from the trade-off between the needs for an 

accurate representation of growth and development processes and computational 

efficiency. We considered the egg stage, a non-growing category grouping nauplii 1 

and 2 CN1-N2), stage nauplii 3 divided in three size classes (N3 1' N32, and N3) in 

order to cope with the continuo us recruitment from non-growing stages Csee 

discussion), and each other nauplii (N4-N6) and copepodite stageCC1-C6) 

individually. New adults were shared equally between males CC6m) and females 

CC6f). We also defined a diapausing stage (CSd) . The model allows a better 

determination of the variation of the stage duration, the individu al me an mass 



117 

threshold condition for moulting preventing numerically induced "premature 

maturation" inherent to simple stage-based model. Moreover, it allows the inclusion 

of structural and lipid compartments in the formulation of the diapause process 

du ring stage CS, as described hereafter. 
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Table III-lo State variables and equations used to simula te the temporal and spatial 

evolution of the state variables. 

State variables Description 

B. 
1 

Biomass of stage i 

Biomass of structural compartment of stage i 

BiL Biomass of lipid compartment of stage i 

B CS = Bcss + BCSL Biomass of stage CS 

B CSd = B CSdS + B CSdL Biomass of stage CSd 

N 
1 

Abundance of stage i 
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Table III -1. Continued. 

DifferentiaI equations 

Biomass 

Egg (1) 

Non-growing nauplii (2) 

o B. 

ot Generic stage (3) 1 

8 Bcss = 
8 t 

B (1 ) ( ) 8 W cs B css 
t C4,cs C4 + - P2 gcs Bcs - t cs,C6 + kcs Bcss + 8 z CS structural (4) 

8 BCSL 

ot 

8 BCSdS --= ot 

o B CSdL 

ot 

Abundance 

RBC6! 

M E 
- (tE,N12 + kE) N E + 

t i- 1,i N i- l - (t i,j+l +kj )N j + 

o N C6! 

ot 

CS lipid (5) 

Diapause structural (6) 

o w EN E Egg (9) oz 

8 wN. 
1 1 Generic stage (10) 

oz 



Table III-l. Continued. 

Parameters equations: 

Critieal moulting mass 

M T, T , = al , i + a 2, i 

F e( - a 4 ( F - S) ) for C4-C6, else M,F = 1 M = 1 - a3 , , " 

Growth 

F (- a ,(F - S ) ) 
g = 1 - e 7, ' 

i 

m _ _ (mi - Mi)2 g, - 1 , MX - M-
l , 

Egg production 

( - a (F - S) 1 RF = 1 - e 4 

T F m 
g C6f = R ,R . g C6f 

120 

Temp. dependence (12.1) 

Food dependence (12.2) 

Stage-specifie CMM (12) 

Temp. dependence (13.1) 

Food dependence (13.2) 

Mass dependence (13 .3) 

Stage-specifie growth (13) 

f(Temperature) (14.1) 

f(Food) (14.2) 

Egg production (14) 

Female's growth (15) 
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Transfer from stage to stage 

1 
t i,i +l = if T > 0, else t. +1= 0 

1, 1 
Non-growing st. (16.1) (T+9.11) - 2.05 alO,i 

t j,i+ l = Growing st. (16.2) 

if mi ~ Mit, else ti,i+l = 0 Diapause (16.3) 

Diapause 

f(Lipid) (17) 

Mortality of non-feeding stages 

f
surf. 

k {E,N12J = aIl + a 12 bott. N C6f if f
surf. 
b011. N C6f ~ 2000 ind.m·2 f(Dens i ty) (18 .1) 

else k {E,N12} = 0.51 (18.2) 

Swimming behaviour 

z~;' = z:"' + LI z;"' -'"'( 1-tanh ( 3 ,cos ( 2rr t ;44) ) Optimal depth (19.1) 

Zj = Zimig for migrating stages, else see Table III-2 

1 z-z 
( ( )

2 ) 
E = sign 2' - U[O,I ] 1-l'f Stochastic param. (20.2) 

Swimming speed (20) 
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Table 1II-2. Parameters descriptions, units and values. f- means "same as le ft", -

means "not defined" and Var. means "variable" (see text) . 

Description & Units Egg N12 N3 N4 Ns N6 Cl C2 C3 C4 CS C5d C6f C6m 

DifferentiaI equations 

P2 Allocation 
of growth 
to lipid 

Nd Fitted (see text) 

Critical moulting mass 

a l ,i Temp. coef. p.,g C 0.23 0.23 0.5 0.76 1.14 1.8 3.4 9.4 28.9 94 332 262 -

a2 ,i Temp. coef. j.Lg.0C- l 0 <- <- -0.06 -0.28 -1.09 -4.71 -18.8 - -6.26-

a3,i Food effect Nd o <- 0.25 0.5 0.5 -

a4 Shape coef. m3.mg-l 0.02 

Growth 

a S,i Temp coef. d-l - 0.015 <- <- <- 0.07 0.065 0.05 0.055 0.025 0.005 0.025 -

- 0.025 <- <- <- 0.14 0.028 0.027 0.015 0.01 0 0.01 

mi me an 
mass 

M iX Max. mass p.,g C 

-----------
Egg production 

- 0.04 <- <- <- 0.03 <-

1.1M <-
1 

as Temp coef. d-l 0.02198 

a
9 

Temp coef. 0C- l 0.116 

0.02 <-

0.9M 1.1M 
1 1 



Table III-2. Continued. 

Transfer 

alO,j Belehradek d 595 969-
coef. 

M jt Transfer fLg C 0.9M
j 
(- (- (- (- (- (-

mass 

Diapause 

Pl Lipid ratio Nd 
threshold 

Mortality 

Fitted (see text) 

a 10 coef. d-1 0.35 

123 

(- 1.1M 0.9M -
1 1 

kj constant - 0.25 0.150.1 0.08 0.05 0.4 0.03 0.03 0.02 0.002 0.020.04 

Swimming behaviour 

zjsuP Min. depth m Var. (- (- (- (- (- (- (- (- (- (- ISO Var. 50 

Zinf Max. depth m 100 100 300 100 150 
1 

WX Max. speed cm.h-1 0.3 1 1.1 1.6 2.2 2.7 3.2 4.7 6.1 7.6 9.4 9.4 10.8 10.8 
1 

a 13 Shape coef. Nd 0.03 



Table III-2. Continued. 

Transfer 

a 10, j Belehradek d 595 969-
coef. 

Mjt Transfer p.,g C 0.9M
j
.- .- .- .- .- .

mass 

Diapause 

Pl Lipid ratio Nd 
threshold 

Mortality 

Fitted (see text) 

a 10 coef. d-I 0.35 

123 

.- 1.1M. 0.9M. -
1 1 

kj constant - 0.25 0.150.1 0.08 0.05 0.4 0.03 0.03 0.02 0.002 0.020.04 

Swimming behaviour 

zjsuP Min. depth m Var. .- .- .- .- .- .- .- .- .- .- 150 Var. 50 

Z ini Max. depth m 100 100 300 100 150 
1 

W X Max. speed cm.h-1 0.3 1 1.1 1.6 2.2 2.7 3.2 4.7 6.1 7.6 9.4 9.4 10.8 10.8 
1 

a13 Shape coef. Nd 0.03 
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Critical Moulting Mass (CMM). Constant masses for the egg and nauplii stages 

were taken from the literature (Runge and Plourde, 1996; Harris et al., 2000; 

Hygum et al., 2000a), whereas copepodites' critical molting mass (CCM) were a 

function of temperature (Campbell et al., 2001). The size (body length and mass) of 

C. finmarchicus copepodite stages is positively correlated to food concentration. The 

prosome length of copepodite stages decreases with decreasing food concentration, 

and severely limiting food concentrations further induce a significant reduction of 

the carbon content of C4, CS and adults compared to individuals of the same body 

length at high food concentration (Hygum et al., 2000b; Campbell et al., 2001). 

Variability in food concentration induced a maximum of 25% of variation in carbon 

body mass for C4, and 50% for CS and C6f. The maximum body mass of the stage 

was defined as 110% of the CMM. 

Growth. Physiological processes such as respiration and ingestion were 

implicitly taken into account by linking temperature and carbon concentration, as a 

proxy of potential ingestion rate, to the net growth rate. A carbon / chlorophyll a 

ratio of 50 was used to convert chlorophyll a data into carbon concentration (Rivkin 

et al. , 1996). stage-specifie growth rate was formulated as a function of temperature 

and carbon concentration. The growth vs. tempe rature and growth vs. food 

concentration relationships were adapted from Campbell et al. (2001). Growth was 
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further modulated by a parabolic function of the me an individual mass (gm, table 
1 

III-1), ensuring that no growth occurred when the mean body mass exceeds the 

maximum body mass of the stage (Stegert et al., 2007). 

Egg production. Mass specifie egg production rate (EPR) was a function of 

temperature and carbon concentration, assuming an egg carbon mass of 0.23 J..Lg 

(Runge and Plourde, 1996). The parabolic function of the mean individu al mass of 

C6f (gm,) implied that egg production increased as the female became heavier. Egg 
1 

production was maximum when the mean mass of C6f reached its CMM, hereby 

corresponding ta the mass at maturity. The growth of C6f was directly linked to 

EPR: as long as the mean mass of C6f remains below its CMM, the proportion of 

growth not allocated to EPR was invested into the soma tic growth of C6f. Egg 

laying was assumed to occur at night between 20h00 and 4hOO (Runge and 

Plourde, 1996). 

Transfer. The transfer rate of biomass from one stage to the next was a 

function of the mean individual mass of the stage. A sigmoid function was used to 

ensure that the transfer rate was zero before the stage reached 90% of its CMM, and 

maximum when it reached its maximum body mass (Stegert et al., 2007). For non-

feeding development stages, the transfer rate of biomass from one stage to the next 
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was simply the inverse of the development duration of the stage, formulated as a 

Belehnidek tempe rature function (Campbell et al. , 2001) . 

Diapause. Stage CS was divided into an active (CS) and a diapausing (CSd) 

category. For each of these categories, biomass was divided into structural and lipid 

compartments. We assumed that the biomass of C4 contributes only to the 

structural compartment of the CS. The growth of CS was split between lipid and 

structural compartments according to a constant allocation coefficient, P2 (Tables 

III-I and III-2) . A parabolic function of the ratio of lipid carbon to total body carbon 

drove the transfer of CS toward either CSd or adults so that 50% of the CS 

transferred to CSd when the ratio reached a constant threshold, Pl' Owing to the 

absence of published and reliable data for the parameterization of both Pl and P2' 

they were defined as free parameters, selected within the uniform distributions 

PI-U[0.2,0.8J and P2-U[0.S,1]. In order to de termine the optimal set of free 

parameters {Pl'P2} under a realistic annual forcing of food and temperature, we ran 

simulations within the parameters' space, cycling ten times through the same 

climatological environmental conditions. The simulation approaching the most to a 

quasi-stationary state of population dynamics provided the optimal solution. Lipid 

accumulated by the actively growing CS fueled the metabolic demand of the non-

feeding CSd stage. "Growth rate" in CSd was negative and corresponded to the 
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demand of the structural tissues upon the lipid storage, according to a constant 

basal metabolic rate derived from respiration rate of diapausing C. fi nmarchicus at 

SoC (Saumweber and Durbin, 2006). This tempe rature corresponds ta the me an 

temperature observed in the deep waters of Atlantic origin filling the Laurentian 

Chanel where the CSd overwinter in the Gulf of St. Lawrence (Saucier et al., 2003). 

As a result, transfer of biomass and individuals from CSd ta C6m and C6f was 

driven by the reciprocal of the mass-dependent transfer function, increasing as the 

mean body mass decreased toward a lower body mass threshold. This threshold was 

defined as the structural mass at the time of entrance into diapause, in addition to a 

residual amount of lipid corresponding to half the structural mass. This residual 

amount of lipid matched the range of minimum lipid mass found in the individuals 

exiting diapause in the Gulf of Maine (Saumweber and Durbin, 2006), a value 

within the range of those estimated to be necessary to support moulting to adult 

female and gonad maturation (70 f.LgC in Ingvarsdottir et al. , 1999; 40 f.LgC in Rey-

Rassat et al. , 2002). 

Mortality. We used stage-specifie daily mortality rates decreasing 

exponentially from N3 to adults within the range of mortalities observed for C. 

finmarchicus in different regions (Ohman et al. , 2004) , except for eggs and N1-N2 

stages for which the potential effect of cannibalism by adult female was taken into 

account. We used the function of adult female abundance given by Ohman et al. 
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(2002). The mortality rate in CSd was 10% of daily mortality in non-diapausing CS 

(e.g. McLaren et al. , 2001; Gislason et al. , 2007). The mortality rate in C6m was 

twice the mortality rate of C6f (Ki0rboe, 2006). 
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Figure III-lo (A) Temperature and (B) chlorophyll a forcing used in the 1-D 

simulations. Measurements (crosses) taken at the AG and GC monitoring stations 

(St. 1 and 2, Fig. II-1) were linearly interpolated in space and time. The depth of 

maximum chlorophyll a concentration is indicated by the line. (C) Maximum 

chlorophyll a concentration (continuous line) , surface tempe rature (dashed line) 

and temperature at the depth of maximum chlorophyll a (short-dashed Hne) . 
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9.2 l-D water column model 

Deep-dwelling diapausing individu aIs are generally found weIl below the 

actively growing stages, present mainly in the first tens of meters of the water 

column (Head and Pepin, 2007). Simard et al. (1985) showed that diel vertical 

migrations (DVM) of active copepodite stages of C. finmarchicus was associated with 

a diel feeding rhythm in the St Lawrence estuary during summer. Observations 

collected in spring and late summer 1998 in the north-west GSL also showed 

evidence of DVM in sorne components of the C4, CS and C6f stages between the 

near surface at night and c.a. 100 m during the day (Fig. II-3). CS showed no 

evidence of DVM in spring as they were probably still in diapause, while in la te 

summer the bimodal distribution at night combined ta the depth of the deep 

component suggest DVM for actively growing CS, and diapause for the others. No 

DVM was obvious in Cl-3 whereas C6f showed clear DVM in both seasons. Seasonal 

stratification in the GSL and unique features like the cold intermediate layer (CIL, 

Fig. III-lA) are likely to influence any temperature dependent physiological rate of 

migrating copepods. We thus implemented the O-D model into a 1-D framework in 

order to explore the response of the model ta the vertical structure typical of the 

GSL. We tested two scenarios of migration behavior. The first (no-DVM scenario) 

followed Basedow et al. (2008), with vertical segregation of different development 
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stages aeeording to ehlorophyll a concentration preference, without DVM. Nauplii 

and young eopepodite stages were assigned to the depth of the 1 mg chlorophyll a 

m-3, C4 to the depth of the 1.5 mg chlorophyll a m-3• and both C5 and C6f seek the 

depth of maximum in chlorophyll a biomass. In the second scenario C4, C5 and C6f 

performed DVM between the depth of maximum chlorophyll a biomass at midnight 

and 100 m at noon, with a duration of ascent/ descent of 4 h. We made assumptions 

regarding (1) the CMM computation (see below) and (2) the daily growth rate of 

the migrating stages. In analogy with a diel feeding rhythm, the daily growth rate 

was eompleted during the surface period, between 20 h and 4 h (e.g. Simard et al. , 

1985; Durbin et al., 1995; Irigoien et al., 1998). The modeled do main was 300 m 

deep, with a vertical resolution of 5m, and a time step of 5 min. 

Swimming. Stage-specifie swimming speed was defined as the product of: (1) 

a maximum swimming velo city (three body lengths per second for migrating stages, 

one for the others) , (2) a depth dependent function leading ta downward (upward) 

swimming when copepods were above (below) a target depth (Zakardjian et al. , 

1999) and (3) a random dispersion term in order to avoid unrealistie concentrations 

in thin layers. The targeted depth was stage-specifie and it couid be a constant, a 

depth of specific food level, or a periodic function of time ta mimic DVM. Egg 

sinking was considered (Knutsen et al., 2001) , and it contributed to the egg 

mortality if eggs reaehed the bottom before hatching. A basic first order Eulerian 
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forward scheme was used to compute the evolution of the state variables (biomass 

and abundance) with time. This scheme is conservative, stable, fast, monotonicity 

preserving and compatible (Lipscomb and Hunke, 2004). Hence the computation of 

the ratio of biomass over abundance, i.e. the me an body mass, did not pro duce 

spurious values (Christian, 2007). The upstream Eulerian scheme was however 

diffusive, but preserving strong spatial feature was not desired as an additional 

stochastic biological diffusivity term was used. 

Adaptation of the CMM to the l-D framework. The stage-specifie relationship 

between temperature, food and the CMM is essential for the coupling between 

growth and development. Observed empirical in situ relationships between body 

size, tempe rature and food revealed seasonal and inter-annual trends (e.g. 

Mauchline, 1998). Inter-molt body size represents an integration of the 

environmental conditions experienced by the individuals during their growth. In the 

north-west GSL, strong gradients in temperature are observed in the first tens of 

meters of the water column, owing to the CIL located between 30m to 110m (Fig. 

III-lA). Chlorophyll a biomass also showed a marked vertical distribution varying 

with time (Fig. III-lB). It appeared thus inappropriate to compute stage-specifie 

CMM from the local conditions of temperature and food as late development stages 

would migrate across these strong gradients in the DVM scenario (see below). 

Spurious transfer from one stage to the next would occur as soon as the locally 
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computed CMM would faH below the actual me an body mass of the stage. Hence 

we considered two situations: (1) early stages aggregating around a target depth, 

and (2) late copepodite stages migrating between a surface (night) and a deep 

(day) optimal depth. For surface dwelling stages, the CMM was a function of 

temperature and food concentration at the target depth. For migrating stages, the 

CMM was a function of the me di an temperature and the maximum food 

concentration found between the upper and lower depths. 

In Situ data for forcing and validation. We used environmental and C. 

finmarchicus stages abundance data collected as part of the Atlantic Zonal 

Monitoring Pro gram (AZMP) conducted by the Department of fisheries and Ocean, 

Canada (Therriault et al., 1998; see Harvey et al., 2005 for zooplankton sampling 

details). We forced the 1-D model with profiles of tempe rature and chlorophyll a 

collected during two consecutive years (1999-2000) at two adjacent monitoring 

stations located in the Anticosti Gyre (AG) and Gaspé Current (GC) in the 

Northwest GSL (Fig. 11-1). Data were generally collected on a fortnightly basis. They 

were linearly interpolated in space and time and averaged ta construct profiles 

representative of the north-west GSL environment (Fig. III-1 ) . Only detailed 

abundance data for copepodite stages were available for comparison with model 

results because early nauplii stages of C. finmarchicus are heavily under-sampled 

with the sampling gear used in the AZMP. 
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Indirect quantification of total and lipid carbon content in CS were obtained 

following Miller et al. (2000) and Saumweber and Durbin (2006) , using 

measurements of prosome length and estimates of lipid sac volume with an image 

analysis system on preserved CS. Comparative analysis between preserved and fresh 

individuals showed that values from preserved individuals were on average 

underestimated by 10% (Plourde et al., unpublished). Data of total and lipid carbon 

content in CS were available for the AG station, and for a station located in the St. 

Lawrence Estuary (Station 1, Rimouski, Fig. II-l) , sampled from spring to la te 

autumn. Whereas abundance patterns of C. finmarchicus could be markedly 

different between the Rimouski and the AG-GC stations in the Northwest GSL owing 

to the regional hydrodynamic regime (Plourde and Runge, 1993; Plourde et al. , 

2001) , the carbon and lipid conditions of the individuals proved to be more 

homogeneous at this regional scale (Plourde et al. , unpublished). The biological 

initial conditions assumed an early winter population of CSd spread within a depth 

range of 200 to 300 m, with a realistic integrated abundance of 15 000 ind.m-2 

(Plourde et al. , 2001 ; Harvey et al., 2005), a mean body mass of 200 p,g of carbon, 

and a ratio of lipid to body mass of 50% the first of January 1999. 

Optimization of the free parameters and sensitivity analysis. The optimal set of 

free parameters {Pl'P2} was chosen by running simulations within the parameters' 

space in order to minimize the product of the root mean squared deviations 
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(RMSD) computed for the abundance of each copepodite stage, representing the 

me an deviation of the simulated values compared to the observations (Pifieiro et al. , 

2008). We estimated sensitivity of the DVM scenario to selected demographic 

variables and to the parameters influencing the timing and duration of diapause. 

Those parameters were mortality in Egg - Nl-2 (non-feeding stages) and in 

females, the proportion of the growth in CS allocated to lipids (P2) ' the ratio of lipid 

carbon to total carbon threshold driving entry into CSd (Pl) ' and the rate of 

consumption of lipids during diapause. We computed the RMSD of the abundance 

of CSd from the simulations ran with parameters altered by ± 10% with respect to 

the reference simulation. 

10 Results 

10.1 O-D simulations 

Development. Within the frame of our formulation, stage durations resulted 

from the interaction of the stage-specifie growth rates and critical moulting masses 

(CMM). The stages duration from N3 to adults simulated by the model at 4°C, 8°C 

and 12°C under non-limiting food conditions were slightly overestimated at 12°C 

relative to Campbell et al. (2001) , but equiproportionality was preserved (Fig. III-
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2A). The O-D model reproduced within a few days of difference the development 

times from egg to CS observed by Campbell et al. (2001) under three temperatures 

and three food conditions (Table III-3). The absence of numerical diffusion in the 

model was demonstrated by the cumulative percentage of the different stages of C. 

finmarchicus at 8°C, showing realistic synchrony in the transfer from one stage to 

the other (Fig. III-2B). The mass structure of the stages from the egg to adult female 

was compared with the CMM, and showed an exponential increase in body mass 

occurring during the development (Fig. III-2C) . The slope of the curve defined by 

the successive mass trajectories corresponded to the growth rate of the cohort. 
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Table III-3 . Oevelopment times from egg to C5 observed by Campbell et al. (2001) 

and simulated by the 0-0 base model. H is for high (-350 JLgC.L-1
), M for medium 

(-40 JLgC.L-1) and L for low (-25 JLgC.L"l) food concentrations. 

Treatment C~IE-p~e~ et al~ ~001 Madel 
- --- - --- -- ---- - -- ---_.-

12°C 1 H 22/ 23 21 

BDC 1 H 32 31 

BOC I M 46 43 

BDC 1 L 59 63 

4°C I H 56 54 



A 100+---~--~--~--~---J----~--L---~--~--~---L---+ 

80 

CIl 60 
>-o 
o 40 

20 

0 

B 100. 

80. 
Q) 
0' 
.8 60 . 
c 
Q) 
u 40. C-
Q) 

0... 

20. 

O. 

C. 103 

-1 
"0 102 C 

C 
0 
.D 

101 C-
o 
U 

0' 
ID 10° 1 
0 

10-1 

C6 

C5 

C4 
C3 
C2 
Cl 
N6 

N5 §~~~~~~~~~~~~~~~ N4 

N3 _ . -c.>-. . _ .. -_ ... .•. .• • •. : •. : 
T := ::=: 

2°C 

0 10 20 30 40 

~ 

------~ 
L 

~ 

..e:::::. -----
o 10 20 30 40 

Doys 

50 

50 

C5 C6 

C4 

C3 

C2 
Cl 

N6 
N5 

N4 
N3 

138 

Egg/N12 

Figure III-2. (A) Development time as a Belehradek function of tempe rature for N3 

to C6 stages (curves, Campbell et al. 2001) and simulated under non-limiting food 

concentration at 4°C, 8°C and 12°C by the O-D base model (crosses) . CB) Cumulative 

proportions and CC) mass trajectories of the stages simulated at 8°C and non-

limiting food concentration Cshort-dashed lines: critical moulting mass; continuo us 

lines: mean body mass). 
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Diapause. In order to test the ability of our formulation to generate a 

diapausing population, we imposed in a first O-D scenario a ratio of lipid carbon to 

body carbon threshold for the initiation of diapause of 50% (Pl)' and allocated 80% 

of the C5's growth toward lipid storage (p) . The model was forced by tempe rature 

and food conditions typical of the mixed layer in the north-western Gulf of St 

Lawrence mixed layer (Fig. III-1). Simulation was initiated with one hundred eggs 

normally distributed around day 90, when temperature exceeds ODC and the 

phytoplankton biomass increases. Both stage C5d (58.2 %) and adults (41.8%) 

appeared on day 174 (Fig. III-3B). Stage C5d moulted into adults roughly 120 days 

later, when their decreasing body mass triggers the molt toward adults (Fig. III-3C). 

The values of the parameters Pl and P2 imposed in this scenario did not allow the 

diapausing stage to last until the following spring, generating an unrealistic second 

generation issued form C5d at the end of the season. 



A 
8 

~ 6 
Q) 
'-
:::l 4 ...., 
o 
'-

~ 2 
E 
Q) 

1- 0 

-2 

B 
If) 100 
0 
:::l 

-0 80 
.~ 
-0 
C 60 -0 
'- 40 
Q) 

.D 
E 20 :::l 
Z 

30 90 

30 90 

"""" ._'.'- "., 

150 210 

150 210 

" " .. 
.~ 

270 

\ 
\ 

270 

\ 

\ 
\ 

\ 

"-
"-

"-
"-

330 

330 
C 350 -.-------''-----'----'----'----'----'---'------'----'------'---'---4 

1 300 
-0 
C 

è 250 
o 

.D 
~ 200 
u 

(Jl 150 
<D 
1 
o 100 
~ 

30 90 150 210 270 330 
Days 

200 

160 '7 
E 

120 g 
.D 
'-o 80 u 
(Jl 

40 E 

o 

140 

Figure III-3. CA) Chlorophyll a Ccontinuous line) and temperature Cdashed line) 

forcing used in the O-D simulations. CB) Abundances of a simulated cohort initiated 

with a normally distributed total of 100 eggs Cdashed line: CSd). CC) Mean mass of 

total CS (active and diapausing; continuo us line), critical moulting mass (CMM) of 

CS Cshort-dashed Hne), and CMM of diapausing CSd Cdashed line). 



141 

Population dynamics. In a second O-D scenario, we took into account 

population dynamics processes as sources (egg production) and sinks (mortality). A 

quasi-stationary population structure was reached for an optimal combination of the 

free parameters Pl = 53% and P2 = 83%. Our simulated population produced two 

generations of C6f, the first (Go) during winter-time emergence from diapause and 

the second (G
l
) at the beginning of summer (Fig. IIIAB). Then cohorts develop 

throughout summer and autumn. The maximum abundance of C6f occurred at the 

beginning of March, about 2 months prior ta the maximum egg abundance. The 

negative tempe ratures at emergence from diapause prevented growth and egg 

production, until positive tempe rature occurred around day 90. Another 20 days 

were required for C6f to attain the minimum body mass allowing the initiation of 

egg production, which is equivalent ta the maturation time observed (e.g. Runge 

and Plourde, 1996). C6f from Go persisted during the 120 days needed for the G
l 

ta 

appear, owing to their low mortality rates. The mean body mass of C6f decreased 

each time new females were recruited, and it was maximum in spring, minimum in 

summer and intermediate in autumn (Fig. IIIAC). 
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Figure IlIA. Abundance of CA) eggs, N3 Cdashed line), N6 and CB) CS Cdashed line) , 

CSd Cbold line) and C6f Cthin line). CC) Mass trajectory of each successive stage. 

Results are stable time series obtained after ten cycles of the same environmental 

forcing as Fig. III-3. 
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There were three events of egg recruitment (Fig. III-4A). The first one resulted 

from the emergence of mature C6f from the overwintering stock, the increase in 

tempe rature and the high food concentration. The second event resulted from the 

appearance of the second generation of C6f during a period of lower food 

availability but higher temperature and higher females ' body mass . The third event 

of high egg production closely followed the autumnal bloom while temperature and 

females abundance were decreasing. Seasonal changes in C6f body mass also 

influenced the abundance of eggs, as the egg production rate was formulated as a 

proportion of the body carbon content of the females. These three periods of high 

egg abundance were tracked in the abundance of N3, but they were dampened in 

the following stages, which generated several successive abundance pulses. N3 was 

the first growing stage of C. finmarchicus, and its stage duration was longer than 

any other larval stage (Campbell et aL, 2001). Those characteristics lead to the 

important difference in abundance between N3 and N4, as the high mortality rate 

of N3 (0.25 d-1) applied for an extended period. Successive events of recruitment 

into CS and C5d contributed to the progressive build-up of the diapausing stock 

during late summer and autumn, while abundance of C6f gradually declined from 

mid-summer onward. The trajectories of the me an body mass of stages clearly 

showed the appearance of the first generation around day 120 (Fig 6C), which 

takes about 80 days to achieve adulthood. It was followed by several pulses of early 

stages tractable along the body mass trajectories. The growth rate showed seasonal 



144 

variability: the slope of the curve obtained for the several cohorts developing 

throughout the year was maximal in summer between days 210 and 270, and 

decreased thereafter, being null when the tempe rature reached zero degrees. 

10.2 l-D simulations 

Environmental setting. Temperature and food profiles constructed from field 

data showed features typical of the northwest GSL. The tempe rature field was 

characterized by the cold intermediate layer (CIL, defined here by the 2°C isotherms 

in Fig. III-lA) . The CIL is formed in spring and persists until late autumn, creating a 

strong temperature gradient over the first SOm of the water column. Differences in 

temperature profiles between 1999 and 2000 were weak (Fig. III- lA). The seasonal 

pattern in chlorophyll a biomass was characterized by a spring bloom during the 

onset of the surface thermal stratification, a sub-surface summer bloom below the 

thermocline and a more variable autumnal bloom (Fig. III-lB). Temperatures 

associated wih the depth of maximum chlorophyll a biomass were typical of the 

upper CIL and remained cold throughout summer (4°C on average, Fig. III-1C). 

Interannual variability was however high; the surface spring bloom was stronger, 

and the sub-surface summer bloom was deeper in 1999 than in 2000. The autumn 

bloom occurred later and was weaker and shallower in 1999. The temperature and 
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food conditions were thus similar in July of both years (high chlorophyll a, low 

temperature) but markedly different in August, with high chlorophyll a (4 mg.m-3) 

and low temperature (3°C) in 1999, and low chlorophyll a « 1 mg.m-3) combined 

with warmer temperature (c.a. SoC) in 2000. 

no-DVM scenario . Optimization of the free parameters gave Pl = 46% and P2 = 

76%. The abundance of diapausing CSd was close to the observations in late 

autumn and winter 1999-2000, and sufficient to initiate an adequate Go of females 

in spring of 2000 (Fig. III-SA,B). Despite the difference in the environmental 

conditions between 1999 and 2000, the overwintering stock in autumn 2000 was 

also close to the observations. The diapause window was similar between the two 

years studied. The time of exit of dia pause was in early April in both years, and the 

principal annual event of recruitment of CSd occurred in both years in August when 

the first generation CG
I
) of CS achieved its CMM. Thereafter CSd composed more 

than 50% of the total CS population (active CS + diapausing CSd; Table I1I-4). 
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Figure III-S. 1-D simulation, no-DVM scenario: swimming stages seek stage-specifie 

levels of chlorophyll a. Observed and simulated abundance of (A) total CS (active 

and diapausing), (B) C6f and (C) C1-C3. Observed (crosses: AG, circles: GC, short-

dashed line: LOWESS curve) and simulated Oines) abundance refer to the left-hand 

scale. The corresponding simulated density in background refer to the color scale 

above. The upper line represents the target depth of the stages and it refers to the 

right-hand scale. 
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Inter-annual variability in environmental conditions impinged on the smaller 

successive events of recruitment of CSd in summer and autumn of each year, which 

were more variable in time and in relative contribution to the diapausing stock 

(Table III -4). The abundance of CS was overestimated in summer 1999. Massive 

recruitment of CS in 1999 followed an earlier peak in the simulated abundance of 

Cl-3 in late June - early July which did not occur in 2000, neither in the simulation 

nor in the observations (Fig. III-SC). The high abundance of Cl-3 in early summer 

1999 was close to the highest observed abundance (between 20,000 and 30,000 

ind.m-2) reported for the same period of 1999. However the abundance of Cl-3 was 

underestimated in spring 2000 and its maximum was delayed by one month until 

early July. The simulated abundance of C6f was to the contrary one month early 

both years compared to the observations. Maximum abundance of C6f followed the 

exit from diapause in April, whereas the observed maximum occurred in May. The 

comparison should however be considered with sorne caution owing ta the lack of 

data in April of both years. The abundance of females slowly decreased until August 

when a weak second generation appeared, followed by severa] cohorts during 

autumn. 
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Table I1I-4. Timing of the major events of recruitment of C5d in the DVM scenario, 

and associated relative contribution ta the total diapausing stock of each year. 

1999 13 August 30 September 1 November 
------- - - --

Proportion (%) 69 8 23 

- - --
2000 19 August 60ctober 19 November 

Proportion (%) 57 38 5 
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Figure III-6. 1-D simulation, no-DVM scenario: swimming stages seek stage-specific 

levels of chlorophyll a. Observed (crosses: AG, circles: LE, short-dashed line: 

LOWESS curve) and simulated (continuous line) (A) me an body carbon content and 

(B) lipid proportion of total CS (active and diapausing). 
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Simulated averaged body mass of CS lied within the lower range of observed 

values in summer and autumn 1999, but was underestimated relative to 

observations in summer and autumn of 2000 and during early recruitment of CS in 

June both years (Fig. III-6A). The ratio of lipid to body mass was also 

underestimated both years, and while recruiting CS had no lipid content in the 

model, the minimum proportion of lipid observed in CS ranged from 20% in 1999 

to almost 40% in 2000 (Fig. III-6B). During the overwintering period between 

August 1999 and March 2000, CSd lost almost 40% of their body mass (Fig. III -6A) , 

which me ans a ratio of lipid to body carbon decreasing from 60% to 35% (Fig. III-

6B) . 
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Figure 111-7. 1-0 simulation, OVM scenario: swimming stages seek stage-specifie 

levels of chlorophyll a and C4, CS and C6f perform OVM. (A) total CS (active and 

diapausing), (B) C6f and (C) Cl-3. Legend of the figure as in Fig. III-S. 
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DVM scenario. In this scenario, C4, CS and C6f performed DVM. Optimal 

parameters were Pl = 47% and P2 = 87%. The ratio of lipid to body mass threshold 

allowing CS to enter diapause (Pl) was similar to the one in the no-DVM, whereas 

the amount of growth allocated to lipid (p) was higher with DVM. The resulting 

abundance of C. finmarchicus stages were however similar (Fig. 111-7) , owing to the 

optimization procedure which actually minimized the difference between the 

abundances of copepodites simulated and observed. The main difference between 

both scenarios laid in the mean body mass of total CS during 2000 (Fig. 111-8A). 

Simulated body mass of total CS were higher in summer 2000 for the DVM 

scenario, and they generally fell within the range of observed values. The minimum 

in simulated body mass of CS were also higher and doser to the observations both 

years, but still almost 50 J.LgC less than observations. The ratio of lipid to body 

carbon were however similar between both scenarios (Fig. 111-8B). 
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Figure III-B. 1-D simulation, DVM scenario: swimming stages seek stage-specifie 

levels of chlorophyll a and C4, CS and C6f perform DVM. (A) mean body carbon 

content and (B) lipid proportion of total CS (active and diapausing). Legend of the 

figure as in Fig. III-6. 
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Il Discussion 

An accurate determination of the stages duration in a copepod population 

dynamies model is essential to correctly represent the life cycle. In our model, the 

development of C. finmarchicus resulted from the interaction between the stage-

specifie growth rate and the critical moulting mass (CMM) , both nonlinear functions 

of temperature and food . However, alternate formulations exist. For example, 

Fiksen (2000) designed a stage structured biomass model in which growth rate was 

a function of the temperature-dependent development rate, constant stage-specifie 

CMM, and food. It is likely that growth and development actually interact to 

determine the stage-specifie CMM (e.g. Aksnes et al. , 2006) , but data needed to 

validate such a conceptual model are still lacking. The strength and quality of the 

empirical relationships available for both stage-specifie growth rates and CMM of C. 

finmarchicus (Campbell et al., 2001) allows our model to simulate realistic 

population dynamies and biomass of C. finmarchicus, with the benefit of a light 

computational and no numerically generated "premature maturation". 

However, whenever there is strong recruitment in a growing stage, a delay of 

rnoulting to the next stage could appear. In a simplified case where mortality and 

transfer to the next stage are not considered, basie calculus shows that the time 
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evolution of the me an body mass of any stage i (m) is increased by its growth, but 
1 

decreased by the recruitment of lighter individuals from the preceding stage i-1 (see 

Fennel, 2001). The temporal derivative of the biomass Bi of the stage i, expressed in 

term of the product of the mean mass of the stage m. with its abundance N gives 
1 1 

dNi dm i m--+N.--
1 dt 1 dt 

(Dl) 

The rate of change of biomass is also dependent on the growth rate and the 

transfer rate from the preceding stage 

g.B + t l·B 1 1 l 1-, 1 l -
(02) 

while the rate of change in abundance is dependent solely from the transfer rate 

from the preceding stage 

t . l ·N 1 1- JI 1-
(03) 

Reorganizing equation (2) gives 

dmi = ~(dBi _ m . dNi ) 
dt Ni dt 1 dt 

(04) 

which becomes 

dmi = g.m. - t . 1 . N i
-

1 (m - m
1
·-

1
) dt 1 1 1- , 1 N . 1 

1 

(05) 
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when substituting equations CD2) and CD3) into equation CD4). 

Any increase in the transfer rate from stage i-1, in the abundance of stage i-1 , 

or in the difference between the me an body mass of successive stages would result-

in a higher penalty on the growth of the mean body mass of stage i, and th us on its 

stage duration. Sensitivity analysis showed that the effect of this dynamic of the 

model was typically below 20% of the theoretical development duration of the 

stage, with a maximum of 50% in a worst case scenario, i.e. high recruitment, low 

growth rate, and a two-fold increase of the mass needed ta reach the CMM Ce.g. 

N3). This "pooling effect" is inherent to population level models formulated in term 

of differential equations, aiming at describing the mean properties of a group of 

individuals. The production of abundance pulses also resulted from this inherent 

property of the model. As the mean body mass of a given stage reaches its CMM, 

moulting to the next stage occurs. By reducing the proportion of the heaviest 

individuals while lighter individuals from the preceding stage still recruits, moulting 

leads to a reduction of the me an body mass of the stage. Moulting will occur once 

again after growth increases body mass toward CMM, generating pulses in 

abundance with a time-scale dependent on the development duration of the stage 

and the eventual pooling effect described above. 

The simulated population dynamics of C. finmarchicus m 1999 was 
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characterized by a strong first generation of CS in both scenarios. The high 

abundance of CS simulated in summer 1999 was similar only to the abundance 

observed three months later. The summer stratification of the water column le ad to 

a sharp increase in surface tempe rature (Fig. III-1C) , which allowed the growth rate 

of surface-dwelling nauplii to be more than twice as high in June than in May. The 

consequent faster development implied a decrease of the cumulated mortality of the 

larval stages, hence generating a recruitment burst in the following copepodite 

stages (Fig. III-SC and III-7C). The trade-off between development duration and 

daily mortality rate in the early development stages appeared critical for the 

population dynamics of C. finmarchicus. The model was indeed sensitive ta changes 

in the mortality of young stages (Fig. III-9). The model was even more sensitive to 

the mortality of females, owing to their role in producing offspring. Mortality is 

actually time and space dependent (Ohman et al., 2004) . According ta modeling 

studies, the dependence of mortality to season, region and depth could dramatically 

alter abundance patterns (e.g. Fiksen and Carlotti, 1998; Neumann and Kremp, 

2005; Speirs et al., 2006). Exploring further the complex issue of variable mortality 

patterns was however beyond the scope of this work, which was to develop a 

formulation of dia pause control through lipid metabolism and test it against the 

strong environmental variations observed. 
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The annual minimum III body mass of CS occurred in June in both the 

observations and the simulations (Fig. III-8A). Body mass data thus suggested that 

the appearance of the first generation of CS occured as soon as June in the North-

West GSL, in contrast with abundance data which showed no significant increase 

before August. The discrepancy between both observations could result from the 

advection. The mean residual surface circulation in the north-west GSL heads 

downstream toward the Atlantic, but meso-scale horizontal circulation is dominated 

by the interactions of a baroclinic coastal current along the Gaspé peninsula (Gaspé 

Current - GC) driven by the St. Lawrence river mn-off, and a quasi-permanent off-

shore anticyclonic gyre (Anticosti Gyre - AG). Instabilities of the GC sporadically 

alter the circulation by displacing the AG core and re-circulating around it water 

masses of estuarine origin with their load of zooplankton (Tang et al., 1980; Mertz 

et al., 1988; Saucier et al., 2003; Sourisseau et al., 2006) . The deep-dwelling 

diapausing stock is not however influenced by surface circulation, but rather by the 

slow deep upstream residual circulation prevailing in the GSL system (Saucier et al., 

2003, 2009). According to this advection pattern, the drastic faH in the abundance 

of CS between the end of March and the beginning of May should provide a more 

reliable estimate of local timing of exit from diapause than the la ter increase in the 

abundance of female. The delay between the maximum abundance of females in 

May and the decrease in abundance of CS sometime in April could result from the 

strong spring freshet providing the North-West GSL with females exiting diapause in 
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the LSLE upstream. Similarly, the sustained high spring and summer abundance of 

the younger Cl-3 could partly result from the "Calanus pump" effect, which is the 

hypothesized impact of the delayed summer production in the LSLE in providing the 

North-West GSL with young stages through the residual surface circulation (Plourde 

and Runge, 1993; Plourde et al., 2001). On the contrary, flushing from the surface 

layer could contribute to the low abundance of CS observed in early summer, while 

the increase in abundance in August could result in part from the build-up of the 

diapausing stock and its slow upstream advection at depth. 

lndividual biomass gave information complementary ta abundance on the 

population dynamics of C. finmarchicus. Whereas abundance data were used to 

optimize the free parameters of the model, body mass observations served as 

independent control variables. The comparison between simulated and observed 

lipid content in CS was crucial to estimate the pertinence of our mechanistic control 

of diapause based on lipid metabolism. The simulated body mass of CS lied within 

the range of observed values only for late copepodite stages developing in a cold 

environment. The difference between the tempe rature at the depth of maximum 

chlorophyll a (no-DVM scenario) and the median temperature experienced by 

migrating stages (DVM scenario) during the major summer recruitment event of 

CSd was 4.2 oC in August 2000, compared to 1.4 oC in August 1999. The colder 

temperature experienced by the migrating C4 and CS stages in summer 2000 in the 
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DVM scenario le ad to heavier CS within the range of observed values . 

The observed minimum in body carbon (c.a. 175 fLg C) and ratio of lipid to 

body carbon (c.a. 0.35) simulated for CS in April at the end of the diapause period 

laid within the range of the observations. Moreover, these measurements are 

comparable to the carbon content of immature females arising from diapause in 

spring in the LSLE (160 to 220 fLg C fem-\ Plourde and Runge, 1993) , and the 

associated range of relative oil sac volume (0.15 to 0.3, Plourde and Runge, 1993) . 

The values reported by Plourde and Runge (1993) are equivalent to a range of lipid 

carbon remaining in immature females freshly arising from diapause of 50 to 70 fLg 

C. This corresponds to several estimations of the minimum lipid carbon needed by 

diapausing CS for the terminal molt and the maturation of the gonads, ranging from 

40 fLg C in Rey-Rassat et al. (2002) ta 70 fLg C in Ingvasdottir et al. (1999) . 

Later in summer, the observed minimum lipid fraction in newly recruited CS 

was higher than in the simulation results because no lipid compartment was 

simulated in C4. This has important implications for the parameterization of the 

allocation of growth toward lipids in cs. The 9% higher allocation of growth 

toward lipids between the DVM and the no-DVM scenarios resulted from the higher 

CMM of migrating C4 exposed to lower temperatures during their development. 
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Higher CMM in C4 me ans higher initial structural mass for recruiting CS (eq. 4, 

Table III-1), which hence need a higher proportion of their growth to be routed 

toward lipid in order to accumulate the amount required to enter diapause. The 

lipid compartment should be taken into account in stage C4 and new data are 

needed, especially as the control of diapause entry could involve the C4 stage 

(Johnson et al., 2008). However the contribution of C4 from late generations in 

terms of abundance to the diapausing population seemed limited in the north-west 

GSL. The proportion of C4 among total C4, CS and C6f stages found below 100m at 

night (Fig. II-3E, 3F) were 17% in late summer and 2.5% in spring. This 

corresponds to the lower range of what was reported for the western Atlantic, with 

10% in the Labrador Sea (Heath et al., 2004) and 12% in the Slope Waters off 

Nova-Scotia (Head and Pepin, 2007). 

The model was very sensitive to parameters involved in the control of 

diapause duration and less sensitive to demographic parameters (Fig. 1II-9). A 10% 

increase or decrease in the parameter of growth allocation toward lipids in CS (pz) 

resulted in dramatic alteration of the abundance pattern. The basal metabolic rate 

of lipid consumption in CSd was the second most sensitive parameter. While the 

former parameter defined the amount of lipid which can be accumulated during the 

growth of CS before diapause, the later defined the rate of use of lipid during 

diapause. Their combination determined the duration of diapause according to our 
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assumptions. In the case of a 10% increase (decrease) of growth allocation toward 

lipids, the time of exit from diapause of CSd was several months later (earlier) than 

expected, which le ad to spurious abundances and tG an increase (decrease) of the 

C. finmarchicus population at the end of the second year. The model responded 

inversely to a 10% increase (decrease) of the the basal metabolic rate of lipid 

consumption in CSd. The sensitivity of our model to the growth allocation toward 

lipids probably resulted from the use of a constant value. The ability to store lipids 

is probably linked tG the size of the CS individuals as proposed by Miller et al. 

(2000) and suggested by the observations of Saumweber and Durbin (2006) on 

diapausing CS. A better understanding of the complex process of growth in 

copepodites (Miller, 2008), and specifically of the process of lipid accumulation will 

lead to formulations more responsive to changes in environmental conditions and 

internaI status of the individual. Contrary to the current lack of knowledge about 

the accumulation of lipid in copepodites, several studies of the respiration rates in 

diapausing individuals allowed an accurate parameterization of the basal rate of 

lipid consumption in CSd (e.g. Ingvarsdottir et al., 1999; Saumweber and Durbin, 

2006). The sensitivity of the model to both parameters however enlightens the limit 

of the population level approach, which does not take into account the expression 

of individual variability as the variance about the mean behavior of the individuals. 

Our model is to our knowledge the first prognostic model tG test a lipid-
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controlled diapause mechanism at the population level. Our mechanism is based on 

the internaI lipid status of the mean individual, as an integrative response to the 

environment over the time scale of its development from egg to CS. Our model 

reproduced the observed coincidence of surface-dwelling developing CS and deep-

dwelling diapausing CS (e.g. Hirche, 1983; Miller et al. , 1998b), which incited 

modelers to prescribe the fraction of the CS needed to initiate diapause at each 

generation (e.g. Carlotti and Wolf, 1998; Lynch et al. , 1998; Miller et al. , 1998a; 

Tittensor et al., 2003; Zakardjian et al., 2003; Speirs et al., 2006; Slagstad and 

Tande, 2007). Our model also allowed dia pause to occur long before the 

environment becomes adverse, in accordance with theories regarding optimization 

of life histories in species undergoing a recurrent adverse period (Taylor, 1980; 

Norrbin, 1996). Short term induction of diapause in response to a catastrophic 

event (for example a low food concentration threshold) as proposed by Hind et al. 

(2000), proved not to be adequate over a wide range of environmental variability at 

the scale of the North Atlantic (Speirs et al., 2006). Strong environmental variability 

can occur at even smaller spatial scale. For example, within the AZMP covering the 

Gulf of St. Lawrence and the Newfoundland and Scotian shelves, the diapause time-

window varies by several months (Johnson et al., 2008). The plastic response of our 

model to environmental variability, and its light computational cost, allows it to be 

readily embedded in an Eulerian GCM (e.g. Fennel and Neumann, 2003) in order to 

test its ability to pro duce a realistic phenology for C. finmarchicus populations 
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undergoing strong influences from the hydrodynamics in the continental shelf of the 

north-west Atlantic (Gentleman, 2000; Johnson et al. , 2006; Miller et al. , 1998a; 

Plourde et al. , 2001 ; Zakardjian et al. , 2003) . 



CHAPITRE IV 

MORTALIlY AND SURVIVAL IN EARLY STAGES CONTROL RECRUITMENT IN 

Calanus finmarchicus 
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12 Résumé 

Nous présentons des observations décrivant la climatologie saisonnière et les 

patrons spatiaux de mortalité et de recrutement des premiers stades de Calanus 

finmarchicus dans l'estuaire et le golfe du Saint-Laurent, respectivement. La 

mortalité subie durant le développement des œufs à N3 ou N6 montrent des 

variations saisonnières et spatiales importantes, le plus souvent indépendantes des 

patrons de production d'œufs. Les patrons de recrutement des derniers stades 

nauplii dictent les patrons d'abondance de nauplii N4-6 (ESL) ou copépodites Cl-2 

(GSL). Ils sont essentiellement liés aux patrons de survie et donc largement 

indépendant des patrons de production d'œufs. Un modèle de régression multiple 

démontre les effets opposés de la biomasse phytoplanctonique et de l'abondance des 

femelles dans le contrôle de la mortalité. Ceci illustre l'impact bénéfique d'une forte 

biomasse phytoplanctonique sur la survie, que ce soit par une relaxation du 

cannibalisme ou de l'inanition. Une analyse de modélisation démontre l'impact de 

différentes formulations des taux de mortalité sur l'amplitude et le timing du 

recrutement vers les derniers stades nauplii. Nos simulations suggèrent de plus que 

la température n'est pas déterminante pour les patrons de survie des stades, en 

raison de son impact général sur le métabolisme (le développement). Notre étude 

insiste sur l'importance de représenter de façon mécaniste la mortalité et la survie 

dans les modèles numériques de dynamique des population de C. finmarchicus. 
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13 Introduction 

Accurate description of mortality patterns is one of the most important 

challenges in marine ecology and in modeling zooplankton population dynamics 

(Runge et al. , 2004). Despite its well-recognized importance in the control of 

population dynamics in planktonic copepods (Myers and Runge, 1983; Ki0rboe et 

al., 1988; Ki0rboe and Sabatini, 1994; Hirst and Ki0rboe, 2002; Twombly et al. , 

2007) , mortality has been mainly overlooked in marine ecology because of the 

inherent difficulty to obtain reliable estimates on the field. This difficulty mainly 

arises from the openness of most marine ecosystems, i.e. that planktonic 

populations are subjected to losses and gains through advective processes. Because 

of this constraint, the few studies describing marine copepod mortality using 

horizontal life table analysis (HLT) (Wood, 1994) were consequently restricted to 

semi-enclosed systems such as fjords (Ohman and Wood, 1996), or based on high-

resolution time series of relatively short duration (Ohman and Hirche, 2001; Eiane 

and Ohman, 2004). The need for robust approaches for applications in more open 

regions has recently promoted the development of the Vertical Life Table method 

(VLT) (Aksnes and Ohman, 1996). The VLT approach uses the instantaneous ratios 

between successive life stages rather than the variability of their absolute 

abundance over time, which implies different assumptions allowing its use with 
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data collected on synoptic spatial surveys or during long time series in more open 

marine habitats (AlŒnes and Ohman, 1996; Ohman et al. , 2002; Hirst et al., 2007). 

In marine copepods in general, mortality decreases sharply from the egg and 

early naupliar stages to older development stages, and shows distinct stage-specifie 

patterns among species, regions, and seasons (Kiorboe et al., 1988; Kiorboe and 

Sabatini, 1994; Eiane and Ohman, 2004; Ohman et al., 2004; Ohman et al., 2008). 

Only a few studies directly demonstrated that mortality in early stages could exert a 

strong effect on the population dynamics of marine copepods, mostly in small 

neritic species (Peterson and Kimmerer, 1994; Uye and Liang, 1998; Hirst et al., 

2007). This phenomenon has been mainly attributed either to density-dependent 

processes (cannibalism) (Liang et al., 1994; Peterson and Kimmerer, 1994; Ohman 

and Hirche, 2001; Ohman et al., 2002; Ohman et al., 2008) or to predation from 

other copepod species (Liang and Uye, 1996a, b; Ohman et al. , 2008). It is known 

that copepods could ingest con-specifie eggs and early nauplii even in presence of 

alternate algal food, although the feeding mode remains equivocal (prey switching: 

Landry, 1981; independent feeding mode: Basedow and Tande, 2006). In Calanus 

finmarchicus, egg mortality rate could exceed birth rate prior ta the spring bloom, 

and could potentially control the seasonal pattern in recruitment to copepodid 

stages in the Norwegian Sea (Hirche et al., 2001; Ohman and Hirche, 2001) . Based 

on a limited set of data, Heath et al. (2008) hypothesized that spatial pattern in 
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naupliar mortality and survival would control regional differences in recruitment to 

copepodid stages in the Irminger Sea (Heath et al., 2008). However, there is still 

very few direct demonstration of the effect of mortality and survival on copepod 

recruitment and population dynamics, neither functional relationships relating 

mortality rate to environmental parameters. This lack of knowledge precludes the 

development of mechanistic functions of mortality that are needed in biological 

model of zooplankton population dynamics (Runge et al., 2004). 

Our study aimed at testing the null hypothesis that patterns in recruitment to 

late naupliar stages in C. finmarchicus is determined solely by population egg 

production rate, implying relatively constant rate of mortality. Conversely, our 

alternate hypothesis was that variations in mortality and survival in early 

development stages control patterns in recruitment. We also aimed at developing an 

empirical relationship between mortality in early stages and key environmental 

parameters for its inclusion in a biological model. We applied the VLT approach to 

data describing seasonal and spatial environmental conditions (temperature, 

phytoplankton biomass) and C. finmarchicus population dynamics (egg production, 

stage abundance). Results were used to describe the seasonal climatology and 

spatial pattern in mortality in early stages and survival (recruitment) to late 

naupliar stages. Data from both sources were then used to test the hypothesis that 

density-dependent processes (cannibalism) in C. finmarchicus would be favored at 
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low level of alternative food by examining the relation between mortality, ambient 

phytoplankton biomass and abundance of adult females. Finally, we synthesized our 

results as a dynamic mortality formulation incorporated in a simple biological 

model of C. ftnmarchicus that was used to compare the effect of different 

deterministic and dynamic mortality formulations on population dynamics. 
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14 Methods 

14.1 Field workJ environmental variations and basic population parameters 

A 340-m deep monitoring station located 12 nautieal miles off Rimouski in the 

centrallower St. Lawrence estuary (LSLE) was visited on a quasi-weekly basis from 

April to October-November in 1994, 1996-2000, and 2006 (Fig. N-1) . Zooplankton 

was collected concurrently with hydrographie data (CTD, chlorophyll a biomass) 

with a 333-fLm (1994, 1996-2000) or a 200-fLm (2006) plankton net vertieally 

towed at 0.5 m S-l from 320-m to the surface, and with a 73-fLm net from 50 m to 

surface (Plourde et al., 2001; Plourde et al., 2003). For the purpose of our study, 

abundance of naupliar stages of C. finmarchicus was estimated from 73-fLm samples, 

while abundance of con-specifie females was determined from depth-integrated 

samples eolleeted with the 333-fLm or 200-fLm (only in 2006) nets as both sampling 

gears yield similar abundance estima tes of late development stages CPlourde, 

unpublished data). Zooplankton samples and hydrographie data were also eolleeted 

at 178 stations in the GSL in June and August 2006 (Fig. N-1). Zooplankton was 

sampled with a 200-fLm net vertieally towed at 1 m S-l from 5m ab ove the bottom to 

the surface. Naupliar stages of C. finmarchicus were distinguished from those of C. 

glacialis and C. hyperboreus, mostly present in April and May, based on stage-

specifie size frequeney distributions, and from Pseudocalanus spp and Metridia Longa 
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from both size and morphological criteria (Plourde, unpublished data; Durbin et al., 

2000). Because nauplii NI and N2 of C. finmarchicus could have been confounded 

with Metridia Longa NI-2 during sorne years, we considered that N3 was the first 

stage for which a reliable identification was achieved. 

A quantitative assessment of the mesh selection indicated that N3 and N6 of 

C. finmarchicus were quantitatively sampled with the 73-/.Lm and 200-/.Lm net 

respectively. The relationship between the width of organisms and mesh size 

described by Nichols and Thompson (1991) (their equation 4) showed that the 73-

/.Lm net captured 100% of C. finmarchicus N3 (body width of 128 /.Lm, Durbin 

unpublished data). Additionally, more than 95% of nauplii stages N3-6 of C. 

finmarchicus are found in the upper 20 m of the water column in the LSLE (Plourde 

unpublished data; Durbin et al., 2000), indicating that our sampling strategy (0-50 

m) was appropriate to reliably estimate abundance of C. finmarchicus N3. The same 

analysis applied to the 200-/.Lm net resuIted in an estimated capture efficiency of 

20% and 80% for N5 and N6 (body width N5= 169 /.Lm, N6= 203 /.Lm, Durbin 

unpublished data). Considering that (1) tow speed affects the capture efficiency of 

the smaller organisms collected by a given mesh size (CoIton et al., 1980), (2) our 

200-/.Lm net was towed at a speed typically 3 times lesser than the one used in the 

Nichols and Thompson (1991) study (1 vs 3 m S·l), and (3) we only had a limited 

number (20-25) of direct comparisons between the 73-/.Lm and 200-/.Lm (2006) , we 
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adopted a conservative approach and assumed that C. finmarch icus N6 were 

adequately sampled. Nevertheless, we assessed the potential impact of 

underestimating N6 abundance on our results by correcting N6 abundance based on 

the 80% capture efficiency estimated above and comparing daily mortality rates 

obtained with those estimated from non-corrected abundance data (see Results). 

The population egg production rate (PopEpr) was used as the input parame ter 

III the mortality estimate (see bellow). In situ Epr and hatching success were 

routinely measured at the fixed station (see Plourde and Joly, 2008 for technical 

details) with the exception of hatching success in 1994. We did not measure In situ 

Epr during the spatial surveys in 2006 but predicted it using an Ivlev (Type II) 

function relating specifie Epr to ambient chlorophyll a biomass (Plourde and Joly, 

2008). Chlorophyll a biomass during the August 2006 cruise was estimated from 

region-specifie relationships between in situ fluorescence and in situ direct 

measurement of chlorophyll a biomass done during the cruise conducted in June 

2006 (Starr, unpublished data). Epr was combined to abundance of adult females to 

estimate PopEpr assuming that an females were reproductively active during the 

spatial survey. 
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14.2 Calculation of mortality rate, survival and daily recruitment 

We used the Verticallife table (VLT) approach to calculate instantaneous daily 

mortality rate (losses) in the combined egg-N3 (seasonal data) or egg-N6 (spatial 

surveys) stages (Ohman et al., 2002). We restricted our analysis to these stages (1) 

because the high mortality rates in early development stages would 

disproportionately impact the population dynamics relative to mortality in later 

stages (Ohman et al., 2008) and (2) to minimize the potential effect of advection. 

As most of these early stages are located in the upper 0-30 m layer in the St. 

Lawrence system (Runge and de Lafontaine, 1996), they would experienced the 

same influence of transport, a prerequisite for the application of the VL T (Aksnes 

and Ohman, 1996). Development times (D, in days) were estimated with 

temperature averaged in the upper 30 m of the water column (Campbell et al., 

2001). We did not consider food limitation in the determination of D in N3, N4 and 

NS because mortality estimates appear generally little affected by variations in D 

within a factor of 2 (Ohman et al., 2004; Hirst et al., 2007). 

Mortality (m) averaged across egg-N3 (megg-N3) was estimated from equation 

(4) in Ohman et al. (2002): 
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A N3 exp - mDE_ N2 [1- exp - m1JN3 ] 

= 
PopEpr m 

where AN3 is the abundance of N3 (ind.m-Z) and Degg-Nz and DN3 is D of the aggregate 

stage eggs-N2 and the stage N3 respectively. For the estimate of megg-N6, D from egg-

NS and in N6 were used instead. 

The proportion surviving through egg-N3 (Segg-N3) was computed based on 

equation (6) and (7) of Hirst et al. (2007): 

S egg-N3 = exp( -n1egg-N3 xD egg-N3) 

where egg-N3 is replaced by egg-N6 for the estimate of Segg-N6 . 

Assuming that the population is in steady state, recruitment ta N3 (RN3) 

(ind.m-z .d-1) was obtained with: 

R N3 = PopEprxSegg_N3 

where N3 is substituted by N6 in the estimate of RN6. 

We used the abundance of nauplii N4-6 (seasonal, LSLE) and copepodite Cl-2 

(spatial, GSL) to examine the relative importance of the PopEpr and our indices of 

recruitment RN3 and RN6 in the control of the seasonal and spatial patterns in 

recruitment. We used these stages because they were not included in the estimates 

of mortality, survival and recruitment rate (inde pendent variables) but close 
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enough in the cohort development schedule to minimize bias caused by variations 

in the development state of the population. 

14.3 Condition of application of the VLT 

PopEpr shows important seasonal variations In the LSLE (Plourde et al., 

2001) , representing a potential bias when estimating mortality with the VLT 

because it assumes that the population is in steady state du ring a period equivalent 

to the development duration of the stages considered in calculations (Aksnes and 

Ohman, 1996). We tested this assumption following Hirst et al. (2007) by 

examining loge transformed PopEpr during the 7 years of data in order to identify 

periods with consistent temporal trends. We then compared for each of the 17 

periods identified the daily rates of change in PopEpr (slopes of linear regressions) 

with the mean megg-N3 during eaeh period. The former metrie represented daily 

variations in egg input while the later represented the daily variation in the 

standing stock of egg-N3. Daily rate of changes in PopEpr during the 17 periods 

identified was on average 0.054 ± 0.048 d-1 (mean ± standard deviation), typically 

one order of magnitude lower than megg-N3 (0.628 d-\ aIl data). Therefore, we 

conc1uded that temporal changes in PopEpr would not significantly bias our 

mortality estimates. 
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VL T is also appropriate to estimate mortality in stage pairs that experience the 

same effect of transport (Ohman et al., 2004). The short residence time of surface 

waters « 12 days; EI-Sabh, 1979) and D from egg to N3 greater than 14 days 

during the spring maximum in freshwater runoff (Fig. IV-2A, B) indicate that eggs 

produced in spring would encounter a greater probability of being transported 

downstream before developing to N3 than those laid during the summer-autumn 

period. Additionally, the Rimouski station is located at the upstream end of the 

Laurentian Channel, the overwintering ground of Calanus population in GSL, 

suggesting limited contribution from upstream at our sampling location (Fig. IV-l; 

Plourde et al., 2002). Therefore, there was a high potential for the egg/ N3 

abundance ratio used in the mortality calculations being biased towards the egg 

stage due to advection from late April to mid June. We therefore excluded data 

prior to day 170 (37 out of 127 sampling events) from our statistical analyses in 

order to limit the potential effect of advective losses and limit the interpretation to 

'local' environmental conditions (Fig. IV-2). 

14.4 Statistical analysis 

The seasonal climatology at the Rimouski station was described using 

LOWESS functions fitted to data from aIl years and spatial data were interpolated 
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using a cubic spline function. The main objective of our study was to relate daily 

mortality rates to environmental conditions or recruitment to population Epr and 

mortality-derived population parameters, not to contrast periods or regions. 

Therefore, multiple linear regression models were performed with individual data 

to describe the relationship between megg-N3 or megg-N6 with female abundance and 

ambient phytoplankton biomass. Independent variables were normalized in order to 

respect the conditions of application of statistical analyses. Non-linear regression 

model was used to relate mortality estimates to female abundance. Any significant 

relationships obtained with this approach would indicate that the inherent 

uncertainties of individual mortality estimates with the VLT included in these 

relationships would have been overcast by the underlying effect of independent 

variables (Aksnes and Ohman, 1996). Temperature was excluded in the analyses 

because its effect is already included in the mortality calculation using temperature-

dependent D. However, we did present the general relationship between daily 

mortality rates and ambient temperature to illustrate the general imprint of 

temperature on mortality rate as commonly do ne in the literature. No negative 

mortality estimates were obtained and stations where abundance of N3 (Rimouski 

station time series) and N6 (spatial surveys in 2006) was zero were included. 
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14.5 Biological model 

We used a stage-based model of C. finmarchicus (Zakardjian et aL, 2003) to 

test the effect of different mortality formulations on the population dynamics. 

Simulations were driven by seasonal patterns in surface temperature and 

chlorophyll a biomass typical of the climatology in the NWGSL (see Fig. IV-2A and 

9B). Five thousands females appeared in the system around day 90 and gradually 

disappeared according to a constant mortality rate. No subsequent recruitment into 

reproducing females was allowed. We tested the effect of four different 

formulations of mortality on recruitment to nauplii N4-6: (1) mortality decreasing 

exponentially from egg to late copepodid stages within the range of reported values 

for C. finmarchicus at different locations, and remaining constant with time (see Fig. 

IV-9A; Ohman et aL, 2004); (2) density-dependent megg-N2 on Georges Bank (Ohm an 

et aL, 2002) and (3) megg-N3 in the LSLE including the negative effect of algal 

biomass (our study). These two formulations in early stages were combined to 

constant mortality in older stages used in formulation (1). Finally, (4) we applied 

the formulation based on LSLE data weighted for variations in temperature using a 

QlO = 3.S and a base temperature of SoC, derived from Figure 8A in Ohman et al. 

(2002). QlO was not applied on mortality in females in order to keep reproductive 

output in spring and early summer constant among scenarios. We used a QlO 

function as temperature could not be included in the multiple regression model 
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because of non-independence from the dependent variable (mortality), and to 

consider the obvious effect of tempe rature on mortality in marine copepods in 

general (Hirst and Kiorboe, 2002), and in Calanus species in particular (Ohman et 

al. , 2002; Hirst et al., 2007). 

15 Results 

15.1 Seasonal climatology in the LSLE 

Temperature and salinity in the upper 30 m and phytoplankton biomass in the 

upper 50 m were characterized by marked seasonal variations (Fig. IV-2). 

Temperature increased gradually from a minimum of 0.4 oc in early April to its 

maximum in August (5.5 to 6°C) (Fig. IV-2A) , a pattern mirrored by an opposite 

trend in D in egg-N3 (Fig. IV-2B). Freshwater always has a strong influence in the 

LSLE with averaged values of salinity typically lower than 29 PSU with a minimum 

« 26 PSU) observed from late April to mid June (Fig. IV-2A) . The climatology of 

chlorophyll a biomass averaged in the upper 50 m showed values > 1 mg m-3 with 

the main bloom occurring in July. A second bloom was observed in autumn (Fig. IV-

2C). Blooms of lesser amplitude and shorter durations were also observed in late 

May and June (Fig. IV-2C) . 
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(A) C. finmarchicus female abundance (filled circles) and specifie egg production 

rate (open circles) and (B) population egg production rate . Lines: LOWESS 

smoothing function fitted to aU data. 
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Climatology of C. finmarchicus female abundance and reproduction showed 

marked seasonal variations (Fig. IV-3). Female abundance sharply increased in May 

and remained high until late June; this main peak in abundance was followed by 

two brief periods of high abundance in early July and early August and by a small 

peak in abundance in late September (Fig. IV-2A) . Specifie in situ Epr increased in 

May and reached maximal values (50-80 eggs fI dol) in July in response to the main 

phytoplankton bloom; specifie Epr remained high untillate September (Fig. IV-3A). 

PopEpr was characterized by three distinct peaks (> 100 X 103 eggs m-2 dol) in late 

May- early June, July and August corresponding to periods of high abundance of 

females (Fig. IV-3B). 
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(A) daily mortality rate in egg-N3 (megg-N3) and (B) proportion surviving from egg to 

N3 (Segg-N3) . Lines: LOWESS smoothing function fitted to an data . 
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Daily mortality in egg-N3 (megg-N3) and proportion surviving during 

development to N3 (Segg-N3) showed important variations (Fig. N-4). Individual 

observations of megg-N3 (0.659 ± 0.317 dol) varied by a factor of 10 while the 

LOWESS fit (time-averaged values) showed values ranging between 0.2 dol and 0.8 

dol (Fig. N-4A). Daily megg-N3 peaked on two occasions during summer, once in early 

June (day 150-160) and the other in late July and early August (days 210-220). The 

peak in megg-N3 around day 315 (November) has to be cautiously interpreted due to 

the paucity of data during this period. Segg-N3 showed minimum values 

corresponding to the periods of high mortality, and maximum values (0.01) in July 

(days 180-210) and in autumn when megg-N3 was lower (Fig. N-4B). 
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The seasonal pattern in daily recruitment to the first feeding stage N3 (RN3) 

resulted from the interplay between the pattern in survival and PopEpr (Fig. N-5A) . 

Periods of high PopEpr in late May- early June and early August resulted in poor RN3 

due to a very low survival, while the peak in R N3 occurred in July during the period 

of greater survival from egg to N3 (c.a. 0.01) and high PopEpr (Fig. N-5A, B) . This 

period of greater RN3 in July corresponded to the one of high abundance of N4-6 

(Fig. N-SB) . A secondary peak in RN3 in late September and early October (centered 

on day 270) resulted from a short period of elevated PopEpr and survival (Fig. N-

5A, B). However, this late peak in RN3 did not correspond to one in abundance of 

N4-6 (Fig. N-5B) . 

15.2 Spatial pattern in the GSL in summer 2006 

Averaged daily mortality rates in egg-N6 (megg-N6) obtained with abundance 

data corrected for potential undersampling of N6 with the 200-p,ffi net (0.548 ± 0.3 

d-1) and non-corrected abundance data (0.559 ± 0.3 d-1) differed by only 2% and 

were not significantly different (p<0.05). We therefore concluded that megg-N6 were 

reliable and adequately described mortality patterns in the GSL. 



190 

oc d- 1 

A 15 1.5 

12 1.2 

9 0 .9 

6 0 .6 

3 0 .3 

0 0 

mg.m-3 

20 0.15 

16 0.12 

12 0.09 

8 0.06 

4 0 .03 

0 0 

103.m-2.d- 1 103.m-2.d- 1 

200 5 

160 4 

120 3 

80 2 

40 

0 0 

Figure IV-6. Spatial pattern in the Gulf of St. Lawrence in summer 2006 of (A) 

surface layer tempe rature (0-30 m) and CB) phytoplankton biomass (mg chI a m-3) 

averaged in the upper 25 m, and C. finmarchicus (C) population egg production rate 

(population Epr) , CD) daily mortality rate in egg-N6 Cmegg-N6), CE) proportion 

surviving from egg to N6 and (F) daily recruitment rate to N6. Data were 

interpolated using a cubic spline function. 
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Data from the spatial surveys are shown as an overall representation of the 

processes in the GSL in summer 2006 (Fig. IV-6). Temperature and chlorophyll a 

biomass in the upper layer of the water column were generally lower and greater 

respectively in the northwest GSL relative to the eastern regions (Fig. IV-6A, B). 

Using the same sub-regions, daily megg-N6 was significantly lower (Kruskal-Wallis, 

p<O.OOl) west of the Anticosti Island (0.389 ± 0.228 d-1) than elsewhere in the 

GSL (0.644 ± 0.324 d-1). PopEpr showed important spatial variations with several 

regions of intense production (> 120 X 103 egg m-2 d-1) located in the LSLE, and in 

regions located west and east of the Anticosti Island (Fig. IV-6C). However, daily 

recruitment to N6 (RN6) showed a different spatial pattern with regions of elevated 

RN6 restricted ta few areas in the northwest GSL, off Gaspé Peninsula and in the 

eastern GSL (Fig. IV-6F). This spatial pattern closely corresponded ta the one in Segg-

N6 (Fig. IV-6E) resulting from the integration of daily megg-N6 (Fig. IV-6D) over D 

from egg to N6 estimated from temperature (Fig. IV-6A) . 
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Figure N-7. Recruitment in C. finmarchicus. Abundance of N4-6 (A-B) or N6-C1 (C-

D) in relation to population egg production rate (PopEpr: A, C) and daily 

recruitment rate to N3 (B) or NS (D). Panels A-B: seasonal data from the lower St. 

Lawrence estuary (1994-2006). Panels C-D: spatial data from the Gulf of St. 

Lawrence in June (filled circles) and August (open circles) 2006. Lines: linear 

regression fitted to the data in (B) y= 10.8x + 828.3, r2 = 0.94, (D) filled circles: 

y= 9.4x + 2218.7, r2 = 0.89; open circles: y= 1.1x + 1023.9, r2 = 0.24. 
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15.3 Relationship between PopEpr, recruitment rate and abundance of early stages 

Our results clearly support our alternate hypothesis that variations in mortality 

and survival in early development stages control patterns in recruitment in C. 

finmarchicus. Daily recruitment (RN3 or RN6) derived from mortality and survival 

estimates clearly controlled the seasonal and spatial patterns in abundance of N4-6 

in the LSLE and Cl-2 in the GSL, respectively (Fig. N-7) . While abundance of theses 

stages showed no significant relationship with PopEpr (p>0.05) (Fig. N-7A, C) , RN3 

and RN6 explained a significant percentage of the variance in the abundance of N4-6 

in the LSLE (r2 = 0.95, Fig. N-7B) and in Cl-2 in the GSL in 2006 (r2 of 0.89 and 

0.24 in June and August respectively, Fig. N-7D). Note that the relationship 

between abundance of N4-6 and RN3 in the LSLE remains highly significant without 

the high value (r2 = 0.54, p<O.OOOl , Fig. N-7B). Lower abundance of Cl-2 relative 

to PopEpr or to RN6 in August than in June 2006 also suggests that 'recruitment 

efficiency' of C. finmarchicus was lower in late summer in the GSL (Fig. N-7C, D). 
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15.4 Relation between daily mortality and the environment 

Mortality in early stages of C. finmarchicus was influenced by phytoplankton 

biomass and abundance of con-specific females (Table IV-1) . A multiple linear 

regression model (p<O.OOOl) between megg-N3 and these two parameters explained 

56% of the variability in mortality at the Rimouski station with opposite effects of 

female abundance (positive) and phytoplankton biomass (negative, Table N-1). A 

similar regression model applied to megg-N6 from the spatial surveys in 2006 was 

barely not significant (p= 0.06). However although mortality was not influenced by 

female abundance (p>0.05) , it was again negatively related to chlorophyll a 

biomass (p<0.02) (Table IV-1). This lack of effect of female was likely due to its 

low abundance during the surveys in 2006 (few observation > 2500 ind .m-2) as 

compared to our seasonal data based on several years at the Rimouski station (Fig. 

N-8A). The relationship between megg-N3 and female abundance in the LSLE was 

best described with a non-linear fit (Type II) , explaining 34% of the variability with 

constant mortality rate ab ove c.a. S 000 female m-2 (Fig. IV-SA) . Finally, neither egg 

hatching success (%) or the proportion of eggs successfully developing to N2 (data 

not shown) significantly affected megg-N3 . 
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Table N-l. Statistics of the linear multiple regression models of mortality in early 

stages of C. finmarchicus in the lower St. Lawrence estuary (seasonal climatology of 

megg-N3) and the whole GSL in 2006 (spatial pattern in megg-N6) against phytoplankton 

biomass (mg chI a.m-3) and abundance of C. finmarchicus females (C6f) (ind.m-2). 

Partial correlation coefficients are included to indicate the sign of the effect. Bold 

characters denote significant contribution of independent variables. 

Independent variables 

Intercept 

Phytoplankton biomass 

C. finmarchicus C6f abundance 

r2 adjusted 

p 

Dependent variables 

Seasonal 

mEgg-N3 

Partial corr. 
coeff. 

-0.426 

-0.134 

0.392 

0.56 

0.0001 

p 

0.0001 

0.036 

< 0.0001 

Spatial 2006 

mEgg-N6 

Partial corr. 
coeff. 

0.445 

-0.241 

0.096 

0.027 

0.0641 

p 

0.0642 

0.0310 

0.166 
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Temperature was not included in the multiple regression model as an 

independent variable because it was used to estimate the development times 

necessary to mortality calculations. Although these relationships should be 

considered with caution, we nevertheless presented megg-N3 and megg-N6 in relation to 

ambient temperature to illustrate the overall general effect of temperature on 

mortality. Daily mortality was significantly related to temperature but with a 

considerable variability (low r2
) (Fig. IV-SB). 
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Figure IV-9. Impacts of four mortality 

formulations on the recruitment to 

nauplii N4-6 using a O-D model of C. 

finmarchicus . (A) Stage-specific 

constant mortality, (B) temperature 

(dashed line) and phytoplankton 

biomass (mg chI a m-3) Oine) typical of 

the northwest GSL, (C) abundance of 

females Oine) and population egg 

production rate (PopEpr) (dashed 

line) , mortality III early stages (D) , 

proportion surviving from egg ta N3 

(E) and abundance of nauplii N4-6 (F). 

Only daily mortality in early stages 

varied among scenarios: (1) stage-

specific constant mortality in eggs, N1-

2 and N3 Oines); (2) density 

dependent mortality in egg-N2 (thin 

dashed line) (Ohman et al. , 2002); (3) 

mortality in egg-N3 (megg-N3) dependent 

to the abundance of female and 

phytoplankton biomass (bold line) 

(our study) ; (4) megg-N3 dependent to 

the abundance of female and 

phytoplankton biomass adjusted to 

variations in temperature with a QlO 

(bold dashed line, our study). 
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15.5 Impacts of mortality formulations on modeled population dynamics 

Mortality formulations in early stages profoundly affected the modeled 

population dynamics (Fig. N-9). First, constant daily mortality in early stages (Fig. 

N-9A, D) combined to the seasonal cycle in temperature resulted in a generally 

dome-shaped pattern in survival from egg to N3 (Fig. IV-9B-E). Second, the 

inclusion of density-dependence based on data from Georges Bank (Ohm an et al. , 

2002) generated temporal changes in daily mortality rate more or less similar to the 

pattern in female abundance, but a less variable seasonal pattern in survival and 

recruitment because its effect mainly occurred at low temperature when survival 

was already really low (Fig. IV-9D-E). However, mortality pressure was generally 

lower th an in the 'constant mortality' scenario, leading to much higher abundance 

of N4-6 (Fig. IV-9D-F). The density- and chlorophyll a- dependent rnortality rates in 

the LSLE were generally higher than in previous scenarios with a slightly different 

seasonal pattern, resulting in sorne differences in the patterns of survival and 

recruitment to N4-6 (Fig. N-9D-F). Survival and recruitment was hindered early 

during the high fernale abundance prior to the spring bloom and resulted in a 

delayed and rnuch lower peak in abundance of N4-6. The addition of temperature-

adjusted mortality with our QlO rnodified the seasonality in daily mortality and 

survival (%) relative to the LSLE set-up with a greater survival (depressed 
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mortality) in spring under cold conditions and greater mortality (lower survival) in 

summer during the maximum in temperature (Fig. IV-9B-E). This change in 

seasonal pattern resulted in an earlier peak in abundance of N4-6 (Fig. IV-9F). 

FinaHy, aH formulations resulted in a secondary peak in abundance of N4-6 in 

Autumn during a period of relatively low PopEpr that was compensated by low 

number of females, high phytoplankton biomass, and relatively high tempe rature 

(Fig. IV-9B-F) . 

16 Discussion 

Our results clearly illustrated the importance of mortality and survival in early 

stages in the control of C. finmarchicus recruitment. In the following sections, we 

compared our mortality estima tes in early stages of C. finmarchicus in the St. 

Lawrence system to similar data from other regions in the North Atlantic. We then 

interpreted our results in the context of how environmental conditions control 

mortality and survival, and how these parameters affect recruitment and population 

dynamics. Finally, implications of our results and the importance of using dynamic 

functions describing mortality in modeling population dynamics of C. finmarchicus 

are discussed. 
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16.1 Comparison of mortality in early stages in the Gulf of St. Lawrence with other 

regwns 

Daily mortality in early stages egg-N3 (megg-N3, seasonal) and egg-N6 (megg-N6, 

spatial) of C. finmarchicus in the LSLE and GSL appeared greater than in other 

regions across the North Atlantic. The most robust comparison could be done with 

daily megg-N3 observed during a multi-year program on Georges Bank (Ohman et al. , 

2008). In this region, the overall averaged daily megg-N3 was c.a. 004 dol (based on 

Fig. IV-2B in Ohman et al., 2008) in comparison to an average of 0.659 ± 0.317 dol 

in the LSLE (Fig. IV-4A). Similarly, the averaged daily mEgg-N6 in the LSLE-GSL in 

summer 2006 (0.566 ± 0.320 d-\ Fig. IV-6D) could have been somewhat greater 

than megg-N3 observed on Georges Bank because including N4-N5 would likely 

diminish the 'averaged' mortality. Although these comparisons are somewhat 

qualitative, it does suggest a potential for a greater 'mortality losses' in early stages 

in the LSLE-GSL. A comparison with mortality in early stages of C. finmarchicus 

observed in other are as in the North Atlantic is difficult because of different stage 

resolutions and approaches used to estimate mortality (VLT or HLT) (Ohman et al. , 

2004; Heath et al. , 2008). However, it does suggest that mortality rates estimated 

in our study were in the same range th an those observed in deep oceanic regions 

(Norwegian Sea, Irminger Sea) and could be greater than in the North Sea and in 

two Norwegian fjords (Ohman et al. , 2004; Heath et al., 2008). The comparison 
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among regions would be reinforced by the use of similar mortality indexes 

estimated using the same approach. 

16.2 Pro cesses controlling mortality and survival 

Temperature is an important factor in the control of marine copepod 

metabolism, affecting egg production, development, growth and mortality (Huntley 

and Lopez, 1992; Hirst and Bunker, 2003; Bunker and Hirst, 2004). Temperature 

influences daily mortality in C. finmarchicus (Ohman et al. , 2002), and certainly 

represent an underlying factor controlling the seasonal and spatial patterns in daily 

mortality rate in early stages. However, temperature alone should not be an 

important factor in the control of the seasonal and spatial patterns in proportion 

surviving within the 'optimal' temperature range of C. finmarchicus. Survival is the 

integration of the effect of daily mortality rate during the development from egg to 

N3 or N6 and represents the key variable to consider when relating processes such 

as EPR and daily mortality to stage abundance (recruitment) . Theorical 

considerations indicate that temperature would scale both mortality and 

development rates, which should result in relatively constant survival. 
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Figure N-IO. Impacts of temperature-adjusted constant mortality on survival III 

early stages of C. finmarchicus. MortaHty in early stages CA) and survival C%) from 

egg to N3 CB). Lines: constant daily mortality rate in egg, Nl-2, and N3; thin dashed 

Hnes: constant daily mortality rate in egg, Nl -2, and N3 adjusted to temperature 

with QlO; bold dashed line: daily mortality in egg-N3 dependent to the abundance of 

female and phytoplankton biomass adjusted to variations in temperature with QlO. 
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Results from our model best illustrated this phenomenon: our scenario of 

constant daily mortality rates weighted for the seasonal change in temperature with 

a QlO function yielded a relatively constant survival in comparison to mortality 

formulations with constant mortality or inc1uding effects from density-dependent 

process and phytoplankton biomass (Fig. N-IO). Patterns in mortality and survival 

observed in early stages of C. finmarchicus in the LSLE and in C. helgolandicus in the 

English Channel considerably deviated from the seasonal cycle in temperature (Fig. 

N-2, 4; Hirst et al., 2007), resulting in highly significant relationships but with a 

considerable variability (low r2
) (Fig. N-8B, Ohman et al.; 2002, Hirst et al., 2007). 

Based on this body of evidences, we suggest that patterns in survival would be 

governed by factors other than temperature that would change the equilibrium 

between temperature-driven mortality and development rates such as density-

dependent processes (cannibalism), phytoplankton biomass, and predation. 

Our study supports previous findings suggesting density-dependent processes 

as important factors controlling mortality in early stages of C. finmarchicus, 

especially during periods of low phytoplankton biomass as suggested by our results 

(see bellow) . Density-dependent mortality was only observed at relatively high 

abundance of adult females. Mortality was significantly related to female 

abundance in the LSLE but not in the GSL in summer 2006 owing to their relatively 

low numbers in the latest, with only a few observations above 2500 ind.m-2 (Fig. N-
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8A). Interestingly, a similar abundance threshold of 2000 ind.m-2 for the occurrence 

of density-dependent mortality in C. finmarchicus was evidenced by Ohman et al. 

(2002) and Ohman et al. (2004). The Type II relationship in the LSLE indicates that 

constant mortality would occur at female abundance greater than c.a. 8000 ind m-2, 

which would be somewhat similar to the relationship shown for megg-N3 on Georges 

Bank (Ohman et al., 2002). Other evidences of density-dependent mortality in C. 

finmarchicus showed linear relationships with a slope on Georges Bank (7.9 X 10-5) 

considerably weaker th an in the Norwegian Sea (2.5 X 10-4) (Ohman et al., 2004). 

These differences are not surprising because different stages were considered in the 

mortality estimates (egg-N3, egg-N2, egg) and could partly arise from the use of 

VLT or HLT (Ohman et al., 2004). Moreover, such relationships are only a crude 

proxy of the underlying mechanism hypothesized to mediate density-dependence in 

C. finmarchicus (and copepods), i.e. cannibalism by late development stages on eggs 

and early naupliar stages (Landry, 1981; Basedow and Tande, 2006). The good 

correspondence between estimated daily egg loss in C. finmarchicus and daily 

predation by potential predators (including C. finmarchicus C4-6) illustrates the 

benefit of refining our approach (Ohman et al., 2008). 

Phytoplankton biomass depressed mortality in early stages of C. finmarchicus 

in presence or absence of density-dependent processes. Because megg-N3 in the LSLE 

mostly included non-feeding stages, this detrimental effect of chlorophyll a biomass 
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on mortality suggest that high level of phytoplankton biomass would diminish 

cannibalism pressure on early stages by late copepodid stages, supporting our initial 

hypothesis that density-dependent processes would be promoted at low ambient 

phytoplankton biomass. Although evidences are scarce, Calanus species showed 

their ability to ingest their own eggs in presence of algal food and exhibited 

potentially different feeding mode such as prey switching (c. pacificus : Landry, 

1981) or an independent feeding mode (c. finmarchicus : Basedow and Tande, 

2006). We argue that both feeding modes would result in a lower ingestion of eggs 

and early nauplii at high phytoplankton biomass either because females switch to 

algal preys when phytoplankton is disproportionally more abundant or attain satiety 

more quickly (feed less time) when the overall food concentration is greater. The 

level of phytoplankton biomass could also have affected our results because of food 

limitation in naupliar stages. Food limited growth and survival would likely play a 

bigger role in the estimate of megg-N6 from our spatial survey in 2006 than in the m egg-

N3 in the LSLE (more feeding stages involved in the estimate) . Nauplii growth and 

development rates are limited bellow a chlorophyll a biomass of 1. 75 mg m-3 (using 

a chI a / C ratio of 40 as in Heath et al., 2008; Campbell et al. , 2001) , while a food 

concentration above 0.6 mg chI a m-3 appears necessary for Calanus nauplii to 

survive (Lopez, 1996; Irigoien et al. , 2003). In the Irminger Sea, mortality in the 

first feeding stages N3-4 was 2-4 times greater at chlorophyll a concentrations lower 

th an 0.6 mg m-3 dominated by flagellates, suggesting that starvation was a major 
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cause of mortality in these stage (Irigoien et al., 2003; Heath et al. , 2008). This 

situation is no stranger to the St. Lawrence system where algal biomass limiting for 

nauplii growth «1.75 mg chI a m-3) and survival «0.6 mg chI a m-3) accounted for 

50-55% of the observations inc1uded in our multiple regression models_ Low 

phytoplankton biomass « 1 mg chI a m-3) dominated by flagellates are common 

features during post-bloom conditions in large areas of the GSL (Ohman and Runge, 

1994; Runge and Plourde 1996). 

Our study targeted density-dependent processes driven by C finmarch icus 

females but predation by other filter-feeding copepods could represent another 

important source of mortality in early stages of C finmarchicus in the LSLE and GSL. 

Several other copepod species had shown their ability to ingest copepod eggs and 

naupliar stages but very little is known about their feeding behavior and, 

consequently, their predation impact (Sell et al., 2001 ; Ohman et al. , 2008). 

Copepodid C4-5 of C finmarchicus have been inc1uded in the assessment of the 

density-dependent mortality in other studies (Ohman and Hirche, 2001; Heath et 

al., 2008; Ohman et al. , 2008)_ We did not inc1ude them in our analysis because our 

sampling scheme did not allow discriminating between the 'active' and 

overwintering components of the population. However, the presence of high 

abundance of copepodid C4-5 in the surface layer in late July and August in the 

LSLE and northwest GSL suggests that these stages could contribute to the high 
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mortality, low survival and low recruitment during this period (Fig. IV-6) (Plourde 

et al., 2001). Additionally, late stages of C. hyperboreus, C. glacialis and M. Longa are 

very abundant in the surface layer at the onset of C. finmarchicus reproduction in 

May and June, and could constitute an additional cause of the high mortality/ low 

survival in early stages during this period (Fig. IV-4) (Plourde et al. , 2002; Plourde 

et al., 2003). Predation on C. finmarchicus eggs by these copepod species has been 

observed (Plourde, unpublished data) and could provide them with an adaptive 

advantage in exploiting the early stage of the phytoplankton bloom, an ecological 

strategy called intraguild predation believed to be of primary importance in shaping 

communities (Polis et al., 1989). In future studies, we do need to distinguish 

between the active and overwintering components of Calanus species to include an 

potential predators. Clearly, more knowledge on the feeding behavior and ecology 

in filter-feeding copepods is required in order to understand the effect of 

cannibalism and predation on mortality and survival in eggs and early naupliar 

stages of C. finmarchicus. 

Predation regime has been mentioned as the most probable factor explaining 

regional differences in mortality patterns on Georges Bank and in the Irminger Sea 

(Heath et al., 2008; Ohman et al., 2008). The copepod community differs markedly 

between the LSLE and Georges Bank with a much greater contribution from large-

bodied copepods such as C. finmarchicus, C. hyperboreus, C. glacialis and Metridia 
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longa in the LSLE relative to a community dominated by small-bodied Centropages 

spp, Pseudocalanus spp and Temora longicornis on Georges Bank (Davis, 1984; 

Plourde et al., 2002). C. hyperboreus and C. glacialis differ from C. finmarchicus in 

their life cycle strategy as they occur in the surface layer early in the season during 

the onset of reproduction of the c. finmarchicus population (Conover, 1988; Plourde 

et al., 2003; Plourde et al., 2001), on the contrary to Georges Bank where predators 

are mostly abundant later in the season relative to C. finmarchicus dynamics 

(Ohman et al., 2008). Similar regional differences in the composition of the 

copepod community are also observed between the shallow southern GSL and 

deeper areas of the LSLE and northern GSL (Harvey et al., 2005). Such differences 

in predator composition and phenology would likely be of primary importance in 

defining region-specifie differences in level and patterns in mortality in C. 

finmarchicus in the GSL. 

16.3 Processes controlling recruitment 

Daily recruitment rate estimated from the PopEpr and survival was the main 

factor controlling C. finmarchicus late naupliar and early copepodid abundance . A 

peak in daily recruitment to N3 or N6 (and in abundance of subsequent stages) only 

occurred during periods or in regions of elevated survival (Fig. IV-S, 6). 
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Alternatively, periods or regions of high PopEpr did not necessarily result in high 

recruitment rate, although significant PopEpr (reproductive output) had to occur in 

conjunction with good survival to generate a peak in early stages (Fig. IV-7). 

Therefore, high survival in early stages was a prerequisite for high recruitment in C. 

finmarchicus. Our indexes of daily recruitment allowed a clear illustration of 

opposite forces exerted by reproduction (bottom-up process) and mortality/ survival 

(top-down process) in the control of population dynamics in C. fi nmarchicus 

(Twombly et al., 2007). This interplay between bottom-up and top-down processes 

and its effect on population dynamics was implicitly considered only in a few 

studies on Calanus spp. and Pseudocalanus spp. (Ohman and Wood, 1996; Pierson 

et al., 2007; Hirst et al., 2007; Heath et al., 2008). More exhaustive description of 

the effect of these processes on population dynamics were do ne on small neretic 

copepod species (Liang et al. , 1994; Peterson and Kimmerer, 1994; Liang and Uye, 

1996a, b). Our study clearly identified the importance of considering multiple 

environmental parameters in order to get a glimpse at the complex nature of the 

control of recruitment and population dynamics in copepods (Twombly et al. , 

2007) . 
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16.4 Mortality estimates: limitations and assumptions 

The use of the VLT implies theoretical assumptions and conditions of 

applications that are sometimes difficult ta meet on the field (Aksnes and Ohm an, 

1996). We believe that the restriction of our study ta early stages and our general 

approach would have minimized potential violations of the conditions of application 

of the method. We first explored if temporal changes in C. finmarchicus PopEpr 

would significantly affect our mortality estimates as it has been demonstrated that 

VLT is sensitive to trends in recruitment (Aksnes and Ohman, 1996). We found that 

daily change in the PopEpr represented on average 8% of the daily rate of change in 

megg-N3, meaning it would not significantly bias our results (Hirst et aL, 2007). 

Secondly, the fact that our study was limited to the mortality from egg to N3 should 

minimize the potential problems caused by variations in development time or 

successive development stages not being at short term equilibrium (recruitment-

mortality) over the time considered in our estimates (D from egg to N3; Aksnes and 

Ohman, 1996; Ohman et al., 2002). Thirdly, temperature is certainly a good 

predictor of development time as stages included in our estimates were mostly non-

feeding stages egg, NI and N2 although food limitation cou Id delay development in 

N3 of C. finmarchicus (Campbell et al., 2001). However, the VLT is relatively robust 

to variations in stage development by a factor of two (Aksnes and Ohman, 1996; 
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Hirst et al., 2007). Finally, we excluded data that could have been affected by the 

combined effect of the station location in the LSLE and losses due to advection in 

spring (see Methods section), hence likely minimizing the bias caused by 

differential transport in successive stages (Aksnes and Ohman, 1996; Ohman et al. , 

2002). 

Hirst et al. (2007) described mortality patterns in early stages of C. 

helgolandicus during two consecutive years and used smoothed values of mortality 

estimates in their relationships with environmental parameters. They were 

motivated by the fact that mortality estimates from the VLT are more robust when 

averaged over 5-7 values (Aksnes and Ohman, 1996; Hirst et al., 2007). We applied 

the same approach to our data using LOWESS fits and obtained very similar results 

in our statistical analysis (not shown). However, our time-dependent smoothed 

values actually represented means of data from several years (seasonal climatology 

based on several years), which markedly differed from Hirst et al. objectives (Hirst 

et al. , 2007). We therefore concluded that using dis crete data of both mortality 

estimates and environmental parameters was more appropriate in the context of our 

study. We argue that the significant relationships obtained with this approach 

indicate that the underlying effect of independent variables would dominate over 

the inherent uncertainties of individual mortality estimates with the VL T (Aksnes 

and Ohman, 1996). 
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16.5 Mortality formulations and modeling population dynamics ln Calanus 

finmarchicus 

Simulations with our stage-based model of C. finmarchicus demonstrated that 

differences in mortality formulations generate important variations in population 

dynamics (Fig. IV-9). Historically, mortality has been used in biological models of 

zooplankton as a closure term with imposed stage-specifie mortality that could be 

'manipulated' ta fit modeled results to observations (Heath et al., 1997; Lynch et al. , 

1998; Miller et al. , 1998). Contrary to bottom-up processes sueh as egg production, 

development and growth for which the use of meehanistic formulations is 

widespread, only in a few instance mortality was 'adjusted' from environmental 

parameters sueh as temperature or food (Bryant et al. , 1997; Zakardjian et al. , 

2003; Runge et al. , 2004; Speirs et al., 2006). The different mortality formulations 

used in our study depieted either a deterministic stage-specifie mortality sehedule 

representative of the overall values found in the literature (see Fig. IV-9A) or the 

addition of a dynamic component to this schedule by the inclusion of density-

dependent mortality in early stages. This density-dependent mortality was for egg-

N2 from Georges Bank (Ohman et al., 2002) or for egg-N3, weighted for 

phytoplankton biomass and temperature from LSLE (our study) . These different 

formulations resulted in distinct seasonal pattern in daily mortality rate, survival, 

and signifieant alterations to the seasonal pattern and absolute level of reeruitment 
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to late nauplii stages N4-6 (Fig. IV-9) , illustrating the sensitivity of population 

model to mortality and the importance of using region-specifie mortality patterns. 

Mortality is one of the greatest challenges in zooplankton modeling and the ability 

to 'apply' representative region-specifie mortality patterns would be a significant 

improvement to the current situation (Runge et al., 2004). 

Giving the importance of mortality in the control of population dynamics, 

mechanistic mortality functions constitute a prerequisite for simulating seasonal, 

inter-annual and spatial variations in population dynamics of zooplankton (Runge 

et al., 2004). To our knowledge, our 'multivariate' formulation of mortality in early 

stages egg-N3 based on female abundance (density-dependent process) , 

phytoplankton biomass and temperature (QlO for seasonal forcing) represents the 

first attempt at integrating multiple effects from environmental and population-

related (density-dependent) parameters on mortality and survival into a dynamic 

function in modeling of C. finmarchicus , and in zooplankton in general. Accurate 

formulations of processes regulating production, mortality, survival and recruitment 

in early development stages of copepods appear critical owing to the elevated losses 

experienced by early stages relative to older ones (Ohman et al., 2008; Heath et al., 

2008). However, our formulation is based on empirical relationships between 

mortality and environmental parameters rather than representing the 'true' 

mechanism involved (example: feeding rate of female on their eggs and early 
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nauplii stages). It nevertheless provides a set-up that would introduce non-linearity 

in population response to variations in environmental forcing and the capability of 

biological models to simulate temporal and spatial patterns in population dynamics 

of C. finmarchicus (Ohman et al. , 2002; Runge et al. , 2004; Speirs et al. , 2006). 



CHAPITRE V 

CONCLUSION GÉNÉRALE 

"The choice of the biological model [ ... ] should be determined by the question 

being asked, and the data available - not driven by the fact that more complicated 

models exist" (Franks, 2002). Au cours de ce travail de doctorat, différents modèles 

numériques de populations de Calanus finmarchicus ont été développés et validés 

grâce à d'abondantes données de qualité. L'emploi pertinent de la modélisation 

numérique a permis de mieux comprendre et quantifier le couplage entre la 

variabilité des processus physiques et certains aspects critiques de la dynamique des 

populations de C. finmarchicus dans le système de l'estuaire et du golfe du St 

Laurent (ESL-GSL) . 

C. finmarchicus domine les communautés zooplanctoniques de l'Atlantique au 

nord du Gulf Stream (Barnard et al., 2004). Cette espèce ubiquiste se retrouve en 

abondance du Mid-Atlantic Bight (Kane, 2005) à l'Océan Arctique (Hirche et 

Kosobokova, 2007), et du cœur des basins océaniques aux plateaux continentaux. 
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Cependant, la présence de C. finmarchicus dans les zones côtières aux marges de 

son aire de distribution habituelle est le plus souvent saisonnière et fortement 

dépendante de la circulation océanique (par ex. Speirs et al. , 2006). Le second 

chapitre de cette thèse confirme ainsi le caractère exceptionnel du golfe du St 

Laurent qui héberge une population de C. finmarchicus résidente et auto-suffisante. 

Notre étude identifie pour la première fois les principaux patrons de distribution et 

d'abondance de la population de C. finmarchicus dans le système très dynamique de 

l'ESL-GSL, pour une année spécifique et sur une échelle spatiale s'étalant du rayon 

de déformation de Rossby à la région. D'après notre modèle, la présence pérenne de 

C. finmarchicus repose essentiellement sur le comportement de migration verticale 

des stades de développement, et en particulier sur l'adoption de migrations 

nycthémérales chez les derniers stades copépodites et les femelles adultes. 

L'intégration des migrations verticales journalières et ontogéniques à un modèle 3-D 

couplé Cycle de vie - Circulation a permis de révéler le rôle crucial qu'occupe la 

résonance entre les échelles spatio-temporelles impliquées dans ces migrations et 

dans les divers patrons de circulation au cœur de la stratégie de cycle de vie de C. 

finmarchicus. C'est une étape importante vers le développement d'explications 

robustes au « circuit Calanus » formé par des structures hydrodynamiques distinctes 

dans l'espace et le temps, mais reliées par le cycle de vie de C. fi nmarchicus. 

En effet, certains courants sont transitoires et ne s'étendent que sur quelques 
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kilomètres, alors que d'autre structures récurrentes impliquent des mouvements de 

quelques dizaines à quelques centaines de kilomètres, telles la circulation 

estuarienne résiduelle ou encore les tourbillons et méandres à méso-échelle . Tout 

l'art du zooplancton est d'être parvenu à adapter à travers les temps géologiques ses 

comportements de nage journalier et ontogénique face aux courants qui le 

maintiennent perpétuellement en mouvement (voir Fiksen et al. , 2007) . C. 

finmarchicus se révèle particulièrement efficace dans ce contexte, grâce à son 

comportement de migration lors de sa phase productive en surface qui peut 

répondre en quelques heures à la variabilité environnementale (e.g. Basedow et al., 

2008) , ainsi qu'à un comportement saisonnier plus prévisible impliquant de plus 

grandes échelles de temps et d'espace lors de la période de diapause en profondeur. 

Le processus de diapause est une adaptation fondamentale à un environnement 

subissant une forte variabilité saisonnière, c'est à dire récurrente, périodique et 

semblable d'une année à l'autre (Alekseev et Starobogatov, 1996). Cependant les 

processus qui contrôlent l'entrée, la sortie et la durée même de la diapause 

demeurent encore largement méconnus, bien que le métabolisme des lipides en 

apparaisse depuis quelques année comme un élément central (Johnson et al., 2008; 

Tarrant et al., 2008). Ainsi, nous avons présenté dans le troisième chapitre de cette 

thèse le premier modèle de population de C. finmarchicus dont le mécanisme de 

contrôle de la diapause est basé sur la quantité de réserves lipides accumulée 

pendant le stade copépodite 5. Ce modèle simple permet dans le contexte 
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environnemental du GSL de reproduire la phénologie observée au sein de la 

population de C. ftnmarcicus, ainsi que la saisonnalité de la masse corporelle des 

copépodites 5 et de leurs réserves lipidiques sur deux années consécutives. Il 

autorise également la présence simultanée de copépodites 5 actifs et en diapause, 

du fait de l'apparition de la dia pause plusieurs mois avant que les conditions 

environnementales ne soient défavorables à C. ftnmarchicus en termes de croissance 

et de mortalité. Cette dernière caractéristique représente en fait la clé du succès 

d'une telle stratégie de vie (Norrbin, 1996). Toutefois, des événements 

exceptionnels en regard de la climatologie et de la périodicité des variables 

environnementales peuvent nuire à l'efficacité du cycle de vie d'une espèce adapté à 

la saisonnalité de son milieu (Mackas et al. , 2007) . Dans un environnement aussi 

saisonnier que l'ESL-GSL, il apparaît donc fondamental de bien distinguer et 

comprendre les conséquences diverses des forçages physiques à haute fréquence 

agissant à l'échelle du développement des stades, de ceux opérants à l'échelle 

saisonnière pendant laquelle apparaissent les générations successives. 

Le second chapitre de cette thèse illustre le fait que le cadre physique constitué 

par la topographie et la circulation détermine l'environnement physique 

(température) mais aussi biologique (production primaire) au sein duquel est 

distribuée la population de C. ftnmarchicus. Le troisième chapitre met quant à lui en 

lumière le processus de diapause, qui dans cet environnement variable permet à 
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l'espèce d'éviter pendant l'hiver les conditions les plus défavorable en terme de 

production et de mortalité. Pendant le reste de l'année cependant, les patrons de 

mortalité des stades qui se développent activement en surface vont déterminer le 

succès du recrutement d'individus en diapause, qui produiront la population active 

de l'année suivante. Le quatrième chapitre de cette thèse s'attache ainsi à 

comprendre la réponse face à la variabilité environnementale des patrons de 

mortalité des premiers stades de développement de C. finmarchicus, en raison des 

pertes élevées subies par ces stades comparativement aux suivants. Nos résultats 

démontrent que les périodes et les zones de recrutement important de C. 

finmarchicus correspondent systématiquement à de faibles taux de mortalité (forts 

taux de survie) des œufs et des premiers stades nauplii, et non pas seulement à de 

forts taux de production d'œufs, souvent observés dans le système ESL-GSL. La 

température, l'abondance de nourriture et l'abondance de femelles C. fin marchicus 

influent sur les taux de mortalité des jeunes stades. La mortalité augmente avec la 

température, mais la réduction simultanée du temps de développement conduit à 

des taux de survie relativement constant, en conformité avec les hypothèses 

concernant la pression évolutive exercée par la mortalité (Myers et Runge, 1983). 

Les influences opposées de l'abondance des femelles (positive) et de la nourriture 

(négative) indiquent un contrôle densité-dépendant des taux de mortalité par 

cannibalisme lorsque la densité de femelle est élevée mais la nourriture peu 

abondante. En venant modifier l'équilibre établi entre les taux de mortalité et de 
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développement dépendants de la température, le cannibalisme ou la prédation 

seraient les principaux contrôles des patrons de survie des premiers stades de 

développement. La mortalité est un important terme de fermeture dans les modèles 

de populations zooplanctoniques. Elle est souvent paramétrée de façon à faire 

correspondre au mieux les résultats avec les observations (Heath et al., 1997; Miller 

et al., 1998), et non formulé en tant que fonction des variables environnementales, 

contrairement aux autres processus démographiques tels que la production d'œufs, 

le développement et la croissance des individus (Bryant et al. , 1997; Zakardjian et 

al., 2003; Speirs et al. , 2006). Notre tentative d'intégrer de façon cohérente les 

effets divers du cannibalisme par les femelles, de l'abondance de nourriture et de la 

température dans une fonction de mortalité au sein d'un modèle de cycle de vie C. 

finmarchicus représente une avancée nécessaire pour une représentation réaliste de 

la variabilité spatiale, saisonnière et inter-annuelle de la dynamique des populations 

de C. finmarchicus. 

L'ensemble des travaux entrepris au long de ce doctorat visent à améliorer la 

description mécaniste des processus fondamentaux du cycle de vie de C. 

finmarchicus. Depuis les travaux fondateurs de Wroblewski, qui fut le premier à 

aborder de façon moderne au moyen de la modélisation numérique les interactions 

complexes entre l'environnement physique dynamique et les populations 

planctoniques (O'Brien et Wroblewski, 1973; Wroblewski et O'Brien, 1981; 
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Wroblewski, 1982), jamais la recherche océanographique n'a été aussi proche de 

développer de réelles capacités de prédiction de l'évolution temporelle des 

écosystèmes dans un environnement en continuel changement. Saucier et al. 

(2009) ont par exemple démontré pour le GSL que des variations réalistes des 

forçages de vent ou de débit d'eau douce peuvent modifier considérablement 

l'hydrodynamisme du GSL, ainsi que les échanges avec les masses d'eau du Labrador 

et de l'Atlantique nord-ouest à travers les détroits de Cabot et de Belle-Isle. Or dans 

le contexte des changements climatiques appréhendés (Denman et al., 2007) les 

forçages atmosphériques et hydrologiques du GSL vont sans aucun doute subir 

d'importantes modifications, dont l'amplitude et la tendance restent toutefois 

encore incertaines. Ainsi, l'hydrodynamisme au sein du système complexe de l'ESL-

GSL va en être affecté, et par voie de conséquence les espèces planctoniques telles 

que C. finmarchicus dont la présence pérenne repose sur des patrons de circulation, 

de température, de production primaire et de mortalité relativement prévisibles et 

récurrents. Les résultats présentés dans cette thèse permettront d'identifier les zones 

optimales, sub-optimales et néfastes de variation des variables environnementales 

pour C. finmarchicus . Intégrés de façon adéquate dans des modèles numériques de 

dynamique des populations de C. finmarchicus, ils peuvent aussi aider à comprendre 

la vitesse des changements induits (tolérés) et le caractère stochastique de ces 

derniers. 
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