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constant. Vous avez rendu les moments de doute plus légers et les succès
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son soutien technique qui ont été cruciaux pour l’avancement de mon projet.
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RÉSUMÉ

Cette recherche présente les premières étapes du développement d’un système de fau-
teuil roulant robotisé semi-autonome contrôlé par des signaux EEG, offrant une solution de
mobilité innovante pour les personnes souffrant de handicaps moteurs sévères. Les fauteuils
roulants motorisés traditionnels reposent généralement sur des joysticks ou des commandes
vocales, qui peuvent ne pas être accessibles aux utilisateurs ayant des capacités motrices li-
mitées. Cette limitation nécessite l’exploration de mécanismes de contrôle alternatifs, condui-
sant à une investigation des systèmes d’Interface Cerveau-Ordinateur (BCI) capables d’in-
terpréter les signaux électroencéphalographiques (EEG).
L’étude a été réalisée en plusieurs phases, en commençant par le développement d’un système
fiable de détection des clignements oculaires. À l’aide du jeu de données meBaL, un modèle
sophistiqué de détection a été conçu, combinant GoogLeNet et Naı̈ve Bayes Gaussien, opti-
misé par un vote majoritaire. Cette approche a atteint une précision remarquable de 95,15%
pour la détection des clignements des deux yeux, établissant ainsi une base solide pour le
mécanisme de contrôle du système. Fort de ce succès, la phase suivante a consisté à créer un
jeu de données plus complet en utilisant le casque Neurosky MindWave. En suivant un pro-
tocole de collecte rigoureux, des données provenant de 11 participants ont été recueillies afin
de développer des algorithmes de classification capables de distinguer trois types de cligne-
ments : œil gauche, œil droit et les deux yeux simultanément. Cette capacité élargie a permis
d’atteindre une précision globale de classification de 86,33%, démontrant ainsi la capacité du
système à interpréter des commandes de contrôle plus complexes. Les signaux de clignement
classifiés sont prévus pour être intégrés dans un système de fauteuil roulant robotisé mis en
œuvre à l’aide du Robot Operating System (ROS) dans des travaux futurs. Afin d’améliorer
la sécurité et la facilité d’utilisation, le système intégrera des fonctionnalités de navigation
semi-autonome, y compris la détection d’obstacles basée sur LiDAR. Cette combinaison de
contrôle basé sur l’EEG et de fonctionnalités autonomes de sécurité crée un système robuste
pouvant efficacement assister les utilisateurs à mobilité réduite dans leurs déplacements quo-
tidiens.
Bien que l’évaluation expérimentale ait confirmé l’efficacité de la détection des clignements
oculaires basée sur l’EEG comme méthode de contrôle mains libres pour les technologies
d’assistance, plusieurs défis ont été identifiés au cours du développement. Ceux-ci incluent la
difficulté à différencier les clignements volontaires et involontaires, la gestion du bruit des si-
gnaux EEG et la prise en charge des contraintes de traitement en temps réel. Ces défis mettent
en évidence des axes importants d’amélioration et de recherche future.
L’étude propose plusieurs améliorations potentielles afin d’optimiser l’utilisabilité et la fiabi-
lité du système :
— Mise en œuvre de techniques avancées de traitement du signal
— Intégration des capacités de reconnaissance des commandes mentales
— Extension des tests à un échantillon de participants plus large
— Développement de systèmes de contrôle hybrides combinant EEG et commandes vocales



iii

Ces résultats soulignent le potentiel significatif des signaux EEG dans les applications
de technologies d’assistance, en particulier pour le contrôle des fauteuils roulants dans la
vie quotidienne. Le développement réussi de ce système constitue une contribution impor-
tante dans le domaine de la robotique d’assistance, offrant une perspective prometteuse pour
accroı̂tre l’autonomie et la qualité de vie des personnes à mobilité réduite.

Mots-clés : Interface cerveau-ordinateur (BCI), EEG, robotisation des fauteuils
roulants, mobilité réduite, Neurosky Mindwave, différenciation des clignements
des yeux.



ABSTRACT

This research presents the initial steps in the development of a semi-autonomous robo-
tic wheelchair system controlled by EEG signals, offering an innovative mobility solution for
individuals with severe motor impairments. Traditional powered wheelchairs typically rely
on joysticks or voice commands, which may not be accessible for users with limited mo-
tor functions. This limitation necessitates the exploration of alternative control mechanisms,
leading to an investigation of Brain-Computer Interface (BCI) systems that interpret elec-
troencephalography (EEG) signals.
The study was conducted in multiple phases, beginning with the development of a reliable
eye-blink detection system. Using the meBaL dataset, a sophisticated detection model was
designed, combining GoogLeNet and Gaussian Naı̈ve Bayes, optimized through majority vo-
ting. This approach achieved an impressive accuracy of 95.15% in detecting blinks from both
eyes, establishing a solid foundation for the system’s control mechanism. Building on this
success, the next phase involved creating a more comprehensive dataset using the Neurosky
MindWave headset. Following a rigorous collection protocol, data from 11 participants was
gathered to develop classification algorithms capable of distinguishing between three distinct
types of blinks : left eye, right eye, and both eyes simultaneously. This expanded capability
resulted in an overall classification accuracy of 86.33%, demonstrating the system’s ability to
interpret more complex control commands.
The classified blink signals are planned to be integrated into a robotic wheelchair system
implemented using the Robot Operating System (ROS) in future work. To enhance safety
and usability, the system will incorporate semi-autonomous navigation features, including
LiDAR-based obstacle detection. This combination of EEG-based control and autonomous
safety features creates a robust system that can effectively assist users with mobility impair-
ments in their daily navigation needs.
While the experimental evaluation confirmed the effectiveness of EEG-based blink detection
as a hands-free control method for assistive technologies, several challenges were identified
during the development process. These include the difficulty in differentiating between volun-
tary and involuntary blinks, managing EEG signal noise, and addressing real-time processing
constraints. These challenges highlight important areas for future improvement and research.
The study suggests several potential enhancements to further refine the system’s usability and
reliability :

— Implementation of advanced signal processing techniques
— Integration of mental command recognition capabilities
— Expansion of testing to include a larger sample size
— Development of hybrid control systems that combine EEG with voice inputs

These results underscore the significant potential of EEG signals in assistive technology ap-
plications, particularly for wheelchair control in everyday life. The successful development
of this system represents a meaningful contribution to the field of assistive robotics, offering
a promising pathway toward increasing independence and quality of life for individuals with
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mobility impairments.

Keywords : Brain-computer interface (BCI), EEG, Wheelchair robotization, Low
mobility, Neurosky Mindwave, Eye blinks differentiation
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REMERCIEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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2 Le système proposé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 L’anatomie du cerveau humain . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Le système international 10-20 de placement des électrodes EEG . . . . . . 10
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Imaging - fMRI) : Technique d’imagerie permettant d’observer l’activité cérébrale en

mesurant les variations du flux sanguin.

SMT Stimulation Magnétique Transcrânienne (Transcranial Magnetic Stimulation) : Forme
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non invasive de stimulation cérébrale qui utilise un champ magnétique pour stimuler

les cellules nerveuses du cerveau.

STCC Stimulation Transcrânienne à Courant Continu (Transcranial Direct Current Stimula-

tion) : Une forme de neurostimulation qui utilise un courant faible et constant délivré à

la zone cérébrale concernée par des électrodes placées sur le cuir chevelu.

BLE Bluetooth Low Energy : Technologie de réseau personnel sans fil conçue et commer-

cialisée par le Bluetooth Special Interest Group et destinée à de nouvelles applications

dans les secteurs de la santé, du fitness, des balises, de la sécurité et du divertissement

à domicile.

USA United States of America : États-Unis d’Amérique.

FFT Transformée de Fourier Rapide (Fast Fourier Transform) : Algorithme permettant de

calculer efficacement la Transformée de Fourier Discrète (DFT) d’un signal.

DFT Transformée de Fourier Discrète (Discrete Fourier Transform) : Outil mathématique

utilisé pour transformer un signal du domaine temporel au domaine fréquentiel.

HYPOT Hypothèse (Hypothesis) : En science et en statistique, une supposition ou une pro-

position testable servant de base à une investigation.

ADL Activités de la Vie Quotidienne (Activities of Daily Living) : Tâches quotidiennes de

base comme s’habiller, manger, se déplacer, souvent utilisées pour évaluer l’autonomie

des personnes âgées ou handicapées.

IoT Internet des Objets (Internet of Things) : Réseau d’objets physiques connectés qui col-

lectent et échangent des données via Internet.

API Interface de Programmation d’Application (Application Programming Interface) : En-

semble de fonctions et de protocoles permettant à des logiciels de communiquer entre

eux.

BWAP Bandwidth Allocation Protocol : Protocole permettant d’allouer dynamiquement la

bande passante dans un réseau.

TCP/IP Transmission Control Protocol / Internet Protocol : Ensemble de protocoles fonda-

mentaux permettant la communication sur Internet.
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Wi-Fi Wireless Fidelity : Technologie de communication sans fil permettant l’accès à Inter-

net via un réseau local.

MATLAB Matrix Laboratory : Environnement et langage de programmation spécialisé dans

le calcul numérique et le traitement des données scientifiques.

CSV Valeurs Séparées par des Virgules (Comma-Separated Values) : Format de fichier per-

mettant de stocker des données tabulaires sous forme de texte.

MSR Microsoft Research : Division de recherche de Microsoft spécialisée dans l’innovation

technologique et scientifique.

USB Universal Serial Bus : Standard de connexion permettant de relier divers périphériques

à un ordinateur.

UART Universal Asynchronous Receiver-Transmitter : Protocole matériel de communica-

tion série utilisé pour la transmission de données entre microcontrôleurs et autres périphériques.

UDP User Datagram Protocol : Protocole de communication permettant l’envoi rapide de

paquets de données sans connexion préalable.

SDK Kit de Développement Logiciel (Software Development Kit) : Ensemble d’outils per-

mettant aux développeurs de créer des applications pour une plateforme spécifique.

NIR Proche Infrarouge (Near Infrared) : Partie du spectre électromagnétique utilisée en ima-

gerie et en spectroscopie.

RGB Rouge, Vert, Bleu (Red, Green, Blue) : Modèle de couleurs utilisé en informatique et

en affichage numérique.

TGAM ThinkGear ASIC Module : Circuit intégré développé par NeuroSky, utilisé dans les

casques EEG pour analyser les signaux cérébraux.
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dt : Élément infinitésimal de temps

f : Fréquence (Hz)

fL, fH : Bornes de la plage de fréquence du filtre passe-bande

λ : Longueur d’onde (m)

µV : Microvolt (unité de potentiel électrique)

σ : Écart-type

X(k) : Transformée de Fourier discrète

X( f ) : Transformée de Fourier continue

ω0 : Fréquence de l’encoche dans un filtre

Q : Facteur de qualité du filtre à encoche

s : Variable de la transformée de Laplace

logb(x) : Fonction logarithmique en base b

hypot(x, y) : Distance euclidienne entre x et y

Hz : Hertz (Unité de fréquence)

V : Volt (Unité de tension électrique)

mV : Millivolt (Unité de potentiel électrique)

dB : Décibel (Unité logarithmique de mesure)

j : Unité imaginaire ( j2 = −1)

π : Constante mathématique ≈ 3.1416
∫

: Opérateur d’intégration
∑

: Opérateur de sommation

e− j2π f t : Fonction exponentielle complexe utilisée dans la transformée de Fourier



INTRODUCTION GÉNÉRALE

0.1 Contexte et motivation

Un handicap physique peut résulter de défauts congénitaux, de blessures, de maladies

chroniques ou dégénératives, comme l’infirmité motrice cérébrale (IMC), qui est l’un des

handicaps physiques les plus communs et affecte le mouvement et la coordination muscu-

laire [1]. Selon l’Organisation mondiale de la santé, le handicap est une restriction des capa-

cités à réaliser une activité normale en raison d’une déficience, pouvant être temporaire ou

permanente [2]. Actuellement, environ 1,3 milliard de personnes, soit 16% de la population

mondiale, vivent avec un handicap significatif [3]. Avec le vieillissement de la population,

le nombre de personnes atteintes de handicaps physiques est susceptible d’augmenter, no-

tamment en raison des conditions liées à l’âge comme l’arthrite et l’ostéoporose [4]. Les

données de l’Enquête canadienne sur le handicap montrent une augmentation des incapa-

cités physiques, notamment chez les jeunes et les adultes, et des disparités entre les sexes,

les femmes étant plus souvent affectées [5, 6]. Les personnes avec des handicaps physiques

rencontrent des obstacles significatifs sur le marché du travail, avec un taux d’emploi nette-

ment inférieur à celui des personnes sans handicap, ce qui a poussé le gouvernement canadien

à mettre en œuvre des mesures pour améliorer l’accessibilité et l’inclusion sociale [7]. Les

handicaps physiques peuvent aussi conduire à l’isolement social et à une discrimination ac-

crue, nécessitant des interventions ciblées pour améliorer l’accès aux services et réduire les

inégalités [8].

0.2 Définition et objectifs du projet de recherche

Malgré les avancées technologiques dans la robotisation des chaises roulantes, celles-ci

ne répondent pas encore aux besoins spécifiques des personnes à mobilité réduite ayant des
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membres atrophiés. Un des principaux défis est que la plupart des chaises robotisées actuelles

ne prennent pas en compte les différentes formes de déficience lors de leur conception. Ce

projet propose une nouvelle technologie reposant sur l’électroencéphalographie (EEG), en-

core largement sous-exploitée. L’objectif est de développer un système de contrôle simple et

intuitif, permettant de manœuvrer la chaise roulante par le biais de clignements des yeux : à

gauche, à droite, ou simultanément.

La Figure 1 montre une représentation schématique du système envisagé, illustrant la concep-

tion et l’organisation opérationnelle proposées dans notre étude. Le système se comporte de

Figure 1 – Le système global proposé

plusieurs parties :

— Partie commande et opérationnelle (Numéro 1 dans la Figure 1) : Comprend les

moteurs, la carte embarquée, et les dispositifs d’alimentation.

— Partie de la commande semi-automatique (Numéro 2 dans la Figure 1) : Permet

à l’utilisateur de commander la chaise à travers les signaux cérébraux et le cligno-

tement des yeux.

— Partie de la commande automatique (Numéro 3 dans la Figure 1) : Offre la possi-
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bilité de commander la chaise roulante via des commandes vocales et équipé aussi

d’un capteur LiDAR pour la navigation autonome .

Le projet de recherche tente donc de répondre à la question suivante :

Comment concevoir un système de contrôle utilisant

l’électroencéphalographie (EEG) qui s’adapte aux besoins des personnes à

mobilité réduite avec des membres atrophiés, en permettant la manœuvre

d’une chaise roulante par le biais de clignements des yeux?

De cette question de recherche découlent les objectifs spécifiques suivants :

1. Comment peut-on développer un modèle de détection des clignements des yeux pour

atteindre une précision maximale en utilisant uniquement des signaux EEG?

2. Comment utiliser le casque Neurosky MindWave pour collecter des données qui différencient

les clignements d’yeux à gauche, à droite et simultanés, et développer des algorithmes

de classification pour contrôler précisément une chaise roulante?

0.2.1 Contributions originales

Ce projet de recherche vise à démontrer l’efficacité de la détection des clignements des

yeux à l’aide de signaux EEG collectés via le casque Neurosky MindWave. L’hypothèse a été

validée dans une première publication, où une approche novatrice a été développée, alliant

GoogLeNet et Gaussian Naive Bayes, optimisée par un mécanisme de vote majoritaire.

Cette étude a prouvé qu’il était possible d’interpréter efficacement des signaux complexes de

clignement, même avec des configurations matérielles minimales, pour des commandes dans

les technologies d’assistance. Suite à ce travail fondamental, une étude préliminaire a été

réalisée pour montrer que le casque Neurosky MindWave pouvait détecter des clignements

distincts.
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Le deuxième article a introduit une méthode innovante utilisant ce casque EEG à une seule

électrode pour classer avec précision les clignements en trois catégories : gauche, droite et si-

multanés. En simplifiant la technologie et en améliorant son accessibilité, cette recherche

représente une avancée significative dans l’application pratique des interfaces basées sur

l’EEG pour les technologies d’assistance. Elle propose ainsi une solution efficace pour les

personnes à mobilité réduite, facilitant la gestion de leurs interactions quotidiennes et renforçant

leur indépendance.

L’architecture du système est présenté dans la Figure 2

1. Sketch du
clignement 

2. Casque
Neurosky
Mindwave

3. Moniteur EEG
en temps réel

4. Collecte des
données

5. Algorithmes de
classification par

apprentissage automatique

6. Intégration des
algorithmes dans

ROS

8. Déploiement
d'applications dans le

monde réel

7. Commander un robot à
trois roues dans un gazebo

Travaux futurs

Figure 2 – Le système proposé

0.2.2 Méthodologie

Le contexte global de cette mémoire est la commande d’une chaise roulante à tra-

vers les signaux EEG et le clignotement des yeux. Par conséquant, l’objectif principal est

le développement d’un système efficace et facile à utiliser déstiné aux personnes à mobilité

réduite. Comme décrit précedemment, un système de commande réside principalement sur

la détéction des clignotements des yeux et la commande simple de la chaise à partir des si-

gnaux captés. La contribution principale de ce travail se manifeste dans la démonstration que

les signaux EEG peuvent permettre la détection précise des clignements des yeux. Ainsi, la

conduite d’une étude préliminaire menant au développement d’une base de données mini-
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male et suffisante pour prouver l’efficacité du casque à un seul électrode dans la détéction des

clignotement distincs des yeux.

En premier lieu, la recherche d’une base de données valide et accrédité pour ce travail a mené

à travailler avec la base meBaL [9]. Une base de données multimodale contenant essentielle-

ment des données EEG valable pour le déroulement de ce travail. Malgré que les essais avec

les données numériques, la conversion de ces données en spectrogrammes et l’utilisation de

réseau de neuronnes convolutionnel n’ont pas mené à une performance idéale, la migration

vers les spectrogrammes combinés avec le GoogleNet et le Naive Bayes renforcés par la vote

majoritaire ont résulté à une précision de 95.15%. Avec cette précision, l’efficacité des si-

gnaux EEG dans la détéction des clignotements des yeux a été prouvé.

Après avoir confirmé l’efficacité des signaux EEG dans la détection des clignotements des

yeux, l’étape suivante était de se focaliser sur le développement d’un système de commande

efficace et facile à utiliser en facilitant les méthodes utilisés précedemment. Au cœur de ce

système se trouve le casque NeuroSky MindWave, qui utilise des techniques avancées de trai-

tement du signal pour distinguer les différents types de clignement.

Le développement d’une base de données propre à ce projet était quelque chose à ne pas

échapper, vu que l’approche du détection des clignotements distincts en utilisant seulement

les données EEG n’était pas réalisée dans les travaux antérieures. La collecte de la base était

conduite à travers le casque Neurosky Mindwave en combinant les données de 11 utilisateurs.

En suite, les algorithmes d’apprentissage automatique ont été testés pour faire la classifica-

tion distinctes des signaux, ce qui a mené à une précision de 86.33%.

Les performances de notre système ont été rigoureusement évaluées en laboratoire, en utili-

sant les indicateurs de performance tels que la précision et la matrice de confusion. Des tests

en situation réelle et des vérifications supplémentaires sont prévus pour les travaux futurs afin

de s’assurer que ce système fonctionne de manière efficace dans la vie quotidienne des utilisa-

teurs, en mettant l’accent sur la sécurité, la fiabilité et la facilité d’utilisation. Cette recherche

vise à améliorer la qualité de vie des personnes à mobilité réduite en leur fournissant une so-

lution technologique innovante, on souhaite renforcer leur indépendance et leur autonomie,
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ouvrant ainsi la voie à une ère de mobilité assistée plus inclusive et plus responsabilisante.

0.2.3 Plan du document

Durant la conduite de ce projet de recherche, plusieurs aspects du la détection et de la

classification des clignements des yeux ont été abordés. Le chapitre 1 est consacré à l’état de

l’art et explique l’anatomie du cerveau et ses principaux lobes. Les principaux signaux EEG

et les lobes qui en sont responsables sont en outre mentionnés. Le protocole de collecte in-

ternational est également évoqué et le casque Neurosky utilisé dans ce projet est détaillé. En

plus, la revue de la littérature traitant des systèmes BCI développés et de leurs applications,

ainsi que les ensembles de données collectées dans les travaux de recherche précédents sont

cités .

Le chapitre 2 commence par tester la possibilité de détecter les clignements des yeux en

utilisant uniquement les données brutes de l’EEG. Dans cette étude, l’ensemble de données

meBaL est utilisé et a resulté à l’obtention d’une précision de 95,5%, ce qui prouve l’effica-

cité des données EEG dans la détection des clignements des yeux.

Dans le chapitre 3, cette recherche est plus approfondie. Un algorithme pour classifier les

clignements des yeux en trois catégories : gauche, droite et les deux yeux ensembles était

développé. La capacité du casque Neurosky à détecter la différence entre ces trois catégories

a présenté une doute, car il s’agit d’un casque EEG à une seule électrode. C’est pourquoi une

étude préliminaire était mené pour tester la capacité de développer un algorithme capable de

différencier ces trois classes à l’aide d’un casque à une seule électrode. Le résultat obtenu est

prometteur avec une précision de classification globale de 86.33% et le choix du casque était

assuré et a prouvé qu’elle peut être utilisée pour détecter des clignements des yeux distincts.

Le chapitre 4 est un article de conférence déduit du chapitre précédent afin de mettre davan-

tage en valeur le travail réalisé par rapport aux autres travaux récents sur cette problématique.

Enfin, la conclusion générale ( voir section Conclusion ) revient sur l’ensemble des contri-

butions apportées par cette recherche, en les situant dans le contexte plus large des systèmes
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BCI et des applications potentielles. Elle propose également des pistes de réflexion pour des

travaux futurs, en identifiant les limites de l’étude et les défis à relever pour améliorer la

détection et la classification des clignements des yeux à l’aide de dispositifs EEG.



CHAPITRE 1

ETAT DE L’ART

1.1 Introduction

Le chapitre explore l’état actuel des technologies du BCI en mettant l’accent sur la

compréhension anatomique et fonctionnelle du cerveau humain en ce qui concerne l’acquisition

et l’interprétation des signaux EEG. Cette étude se concentre sur les différentes régions du

cerveau impliquées dans des processus tels que la méditation, l’attention et le clignement des

yeux, permettant ainsi de comprendre comment ces régions contribuent au contrôle et à la

fonctionnalité des BCIs. En outre, le chapitre passe en revue les avancées technologiques

dans les protocoles de collecte de données EEG, en particulier le système 10-20 et discute

des applications de ces technologies dans les contextes cliniques et de recherche. Grâce à

une analyse détaillée de la littérature, ce chapitre vise à résumer les progrés et les recherches

en cours dans ce domaine, en préparant le terrain pour les futures innovations technologiques

dans le domaine des interfaces neuronales.

1.2 Les Fondamenteaux

Cette partie commence par la présentation des bases du fonctionnement du cerveau

humain, afin de comprendre comment sont générés et mesurés les signaux EEG. Ensuite,

une description du casque utilisé pour capter ces signaux, en détaillant ses caractéristiques

techniques et son mode de fonctionnement est évoqué. Pour enfin clôturer avec la revue

des travaux antérieurs qui se sont intéressés à l’utilisation de ce type de casque, en mettant

particulièrement l’accent sur l’exploitation des signaux EEG pour différentes applications.
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1.2.1 Anatomie du cerveau humain

Le cortex du cerveau humain, comme montré dans la Figure 3 [10], est organisé en

quatre lobes principaux : le lobe frontal, le lobe pariétal, le lobe temporal et le lobe occipital.

Chacun de ces lobes joue un rôle distinct dans les fonctions cognitives et le traitement des

informations sensorielles. Le lobe occipital, situé à l’arrière du cerveau, est principalement

responsable du traitement et de l’interprétation visuels [11]. En revanche, le lobe temporal,

Figure 3 – L’anatomie du cerveau humain

situé sur les côtés du cerveau, est essentiel pour des fonctions telles que le langage, la percep-

tion auditive, la mémoire à long terme et les émotions [12]. Le lobe frontal, situé à l’avant

du cerveau, est associé aux fonctions cognitives supérieures telles que la prise de décision,

la résolution de problèmes et le comportement social. Le lobe pariétal, situé vers le haut du

cerveau, joue un rôle clé dans le traitement des informations sensorielles et la perception de

l’espace [11].

Aussi, certains travaux de recherches ont étudié la connectivité fonctionnelle et la topogra-

phie de différentes régions du cerveau, révélant des relations complexes entre le cervelet et

le cortex cérébral [13]. Les analyses de neuro-imagerie fonctionnelle ont permis de mieux

comprendre la segmentation du cortex cérébelleux en fonction de ses caractéristiques fonc-

tionnelles et de son implication dans des tâches cognitives spécifiques [13]. De plus, des
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études ont exploré la parcellisation de l’hippocampe, une structure vitale pour la mémoire

et la navigation spatiale, en regroupant des données d’IRMf à l’état de repos, mettant ainsi

en lumière ses subdivisions fonctionnelles [14]. Ces recherches sur l’organisation fonction-

nelle des régions cérébrales contribuent à une meilleure compréhension de la manière dont

les différentes zones du cerveau interagissent et soutiennent divers processus cognitifs.

1.2.2 Protocoles de collecte de données EEG

Le système international 10-20 (Figure 4 [15]) est une méthode standardisée pour le

placement des électrodes sur le cuir chevelu lors des enregistrements EEG [16]. Il garantit

une disposition cohérente des électrodes en fonction des zones corticales sous-jacentes, fa-

cilitant les comparaisons entre études [17]. Ce système est largement utilisé en médecine et

neurosciences pour sa fiabilité [18], avec des distances entre les points de 10% ou 20% du

crâne.

Figure 4 – Le système international 10-20 de placement des électrodes EEG
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Le système 10-20 est crucial pour assurer la précision des placements dans des études

EEG ou des techniques de stimulation cérébrale comme la SMT ou la STCC [19]. En clin-

ique, il est utilisé pour surveiller l’activité cérébrale chez les patients, notamment après un

arrêt cardiaque [20] et dans les troubles de la conscience [21].

Des dispositifs EEG portables, conformes aux normes du système 10-20, ont rendu l’EEG

plus accessible, en permettant une surveillance pratique et non invasive [22]. Ces tech-

nologies sont utilisées pour la classification des troubles cognitifs et neurologiques [23] et

l’intégration avec d’autres techniques comme l’IRMf offre une vue globale des fonctions

cérébrales [24].

L’EEG non invasif joue un rôle majeur dans le développement des BCIs pour le contrôle

d’appareils et la gestion des maladies neurologiques [25]. Ces dispositifs apportent des soins

personnalisés basés sur l’activité cérébrale, ouvrant de nouvelles voies en neurosciences [26].

Cette standardisation des enregistrements EEG, notamment à travers le système international

10-20, facilite l’utilisation de technologies avancées comme le casque NeuroSky.

1.2.3 Casque Neurosky Mindwave

Le casque Neurosky Mindwave, Figure 5 [27] développé par Neurosky Inc. est un

appareil EEG utilisé pour surveiller et détecter les signaux électriques générés par l’activité

neuronale dans le cerveau [28]. D’un prix d’environ 99 dollars, le MindWave est conçu pour

capter les ondes cérébrales par le biais d’une seule électrode sèche, ce qui en fait une op-

tion économique pour la collecte de données EEG [28]. Ce casque EEG monocanal à bas

prix est capable de transmettre sans fil des signaux EEG via Bluetooth Low Energy (BLE)

ou Bluetooth classique, ce qui offre une grande souplesse et une grande facilité d’utilisation

dans diverses applications [29].

Le casque Neurosky Mindwave détecte les ondes cérébrales émises par l’utilisateur et trans-

met ces signaux à un appareil récepteur pour traitement et analyse [30]. Le casque capte

généralement l’activité électrique du lobe frontal, une région associée aux fonctions cogni-
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tives telles que l’attention et la prise de décision [31]. En plaçant le casque MindWave sur le

cuir chevelu de l’utilisateur, l’appareil peut capter les signaux neuronaux liés à l’attention, à

la relaxation et au clignement des yeux, ainsi que les signaux Alpha, Beta, Theta, Gamma et

Delta présentés dans le Tableau 1 [32][33], ce qui permet un suivi et un retour d’information

en temps réel [34].

Figure 5 – Position des électrodes du casque Mindwave avec le système international 10-20
EEG
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Type d’onde cérébrale Plage de fréquence États associés Zones de génération

principales

Fonctions clés Références Année

Alpha 8-12 Hz Détendu, éveillé, alerte

calme

Lobe occipital Relaxation, pont entre le

conscient et le subcon-

scient

[33] 2021

Bêta 12-30 Hz Pensée active, concentra-

tion

Lobe frontal Traitement actif,

résolution de problèmes,

prise de décisions

[33] 2021

Gamma Plus de 30 Hz Fonctionnement cognitif

élevé, mémoire

Lobes frontal et pariétal Traitement de

l’information, apprentis-

sage, consolidation de la

mémoire

[32] 2021

Thêta 4-8 Hz Relaxation profonde,

créativité, méditation

Lobes temporal et pariétal Créativité, méditation,

intuition, rappel de

mémoire

[32] 2021

Delta Moins de 4 Hz Sommeil profond, états

restaurateurs

Lobes frontal et occipital Guérison, sommeil pro-

fond, activité de l’esprit

inconscient

[32] 2021

Table 1 – Types d’ondes cérébrales et leurs caractéristiques



14

Après avoir exploré les caractéristiques et les utilisations du casque NeuroSky, il est im-

portant de se concentrer sur la micropuce ThinkGear , un composant clé qui permet l’analyse

précise des signaux cérébraux.

1.2.4 La micropuce ThinkGear

La puce ThinkGear présentée dans la Figure 6 [35] est un composant essentiel intégré

dans les casques EEG, tels que le dispositif Neurosky Mindwave, pour traiter les signaux

cérébraux et améliorer l’interaction homme-machine par le biais d’interfaces cerveau-machine.

Développée par Neurosky à San Jose, CA, USA, cette puce est essentielle pour le prétraitement

de l’EEG, la transformation temps-fréquence et le calcul des spectres de puissance numérisés

[36]. En utilisant la puce ThinkGear, les appareils EEG peuvent filtrer efficacement les bruits

électriques indésirables, ce qui garantit la précision et la fiabilité des données EEG collectées

[37].

(a) Diagramme PIN de la puce TGAM (b) Configuration de la puce TGAM

Figure 6 – TGAM Microchip structure

Les formules mathématiques qui sous-entendent la fonctionnalité de la puce ThinkGear

dans les casques EEG sont cruciales pour traiter et interpréter les signaux cérébraux avec

précision. Les algorithmes exacts utilisés par Neurosky dans la puce ThinkGear ne sont pas
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révélés au public, donc les formules de traitement des données EEG en général cité dans [38]

:

1. Filtre Passe-Bande : Un filtre passe-bande permet de laisser passer les signaux dans

une plage de fréquences spécifique tout en atténuant les fréquences en dehors de cette

plage :

H( f ) =



1 si fL ≤ f ≤ fH

0 sinon
(1.1)

2. Transformée de Fourier Rapide (FFT) : L’algorithme FFT calcule efficacement la

transformée de Fourier discrète (DFT) d’une séquence :

X(k) =
N−1∑

n=0

x(n)e− j 2π
N kn (1.2)

3. Filtre à encoche : Le filtre à encoche élimine des fréquences spécifiques indésirables,

telles que les interférences de la ligne électrique de 50/60 Hz :

H( f ) =
s2 + ω2

0

s2 + ω0
Q s + ω2

0

(1.3)

Où ω0 est la fréquence de l’encoche et Q est le facteur de qualité.

4. Fonction Logarithmique pour la Normalisation : Les fonctions logarithmiques sont

appliquées pour compresser la gamme dynamique des signaux :

y = logb(x) (1.4)

5. Calcul de l’Hypoténuse : La fonction hypoténuse est utilisée pour calculer la distance

euclidienne dans les processus d’extraction de caractéristiques :

hypot(x, y) =
√

x2 + y2 (1.5)
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6. Transformée de Fourier : La transformée de Fourier est utilisée pour convertir des

signaux du domaine temporel en signaux du domaine fréquentiel :

X( f ) =
∫ ∞

−∞
x(t)e− j2π f t dt (1.6)

Ceci aide à identifier les différents composants fréquentiels présents dans les signaux

EEG.

1.3 Revue de littérature

Les technologies robotiques d’assistance ont été développées pour aider les personnes

à mobilité réduite, offrant une gamme de solutions pour améliorer leur indépendance et leur

qualité de vie. Ces technologies englobent divers systèmes robotiques conçus pour soutenir

les personnes ayant des déficiences de mobilité dans leurs activités quotidiennes. Un do-

maine important dans ce champ est le développement de robots mobiles qui peuvent assister

les personnes à mobilité réduite dans diverses tâches [39]. Ces robots sont conçus pour fa-

ciliter les activités de la vie quotidienne (ADL) et fournir un soutien aux personnes ayant des

limitations de mobilité, telles que les personnes âgées ou celles en situation d’handicap [40].

Le Tableau 2 résume les technologie robotique développés pour assister les personnes à mo-

bilité réduite.
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Table 2 – Résumé des technologies robotiques d’assistance pour les personnes à mobilité réduite.

Sujet Description Références Année

Robotique pour la

mobilité

Développement de systèmes robotiques pour aider les in-

dividus à mobilité réduite, englobant diverses technologies

pour soutenir les activités quotidiennes.

[39] 2019

Robots pour le sou-

tien quotidien

Conception de robots pour faciliter les activités quoti-

diennes et la rééducation, en particulier pour les mem-

bres inférieurs avec des dispositifs portables et des ex-

osquelettes.

[40] 2019

Systèmes

d’assistance au

chevet

Intégration de lits robotiques et manipulateurs mobiles pour

aider les individus avec des limitations motrices.

[41] 2020

Manipulateurs mo-

biles autonomes

Développement de manipulateurs autonomes pour

l’assistance en milieu hospitalier, améliorant l’autonomie

et le bien-être des patients à mobilité réduite.

[42] 2021

Classification des

robots d’assistance

Catégorisation des robots en fonction de leurs applications

: aide à la mobilité, service des repas et soutien dans les

routines quotidiennes.

[43] 2021
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Table 2 (suite): Résumé des technologies robotiques d’assistance pour les personnes à mobilité réduite.

Sujet Description Références Année

Aides à la marche

intelligentes

Développement de dispositifs intelligents comme les

déambulateurs et fauteuils roulants assistés pour une aide

à la mobilité accrue et cognitive.

[44] 2022

Systèmes robo-

tiques modulaires

Création de plateformes robotiques modulaires, telles que

des exosquelettes pour fauteuils roulants, pour améliorer

l’indépendance des personnes handicapées.

[45] 2023

IoT et intelligence

ambiante

Intégration des technologies IoT pour une interaction effi-

cace des robots avec leur environnement et adaptation aux

changements.

[46] 2023

Dispositifs de mo-

bilité urbaine

Mise en place de dispositifs robotiques urbains autonomes

pour soutenir la locomotion et la navigation des personnes

âgées en milieu urbain.

[47] 2021

Assistance robo-

tique proactive

Implémentation de systèmes de contrôle innovants

et d’interfaces de réalité augmentée pour améliorer

l’autonomie et la qualité de vie.

[48] 2022
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Table 2 (suite): Résumé des technologies robotiques d’assistance pour les personnes à mobilité réduite.

Sujet Description Références Année

Robotique

d’assistance à

domicile

Utilisation de la robotique collaborative pour l’assistance

à domicile, visant à améliorer la qualité de vie et la

récupération des patients.

[49] 2023
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Les fauteuils roulants, le centre d’interêt de cette mémoire de maı̂trise, ont connu

un progrés assez important au fil des années. La Figure 7 résume les grandes phases de

l’évolution des fauteuils roulants, montrant comment la technologie a transformé ces disposi-

tifs pour améliorer l’autonomie des utilisateurs.

Figure 7 – Chronologie de l’évolution des fauteuils roulants

La transformation des fauteuils roulants, depuis les modèles de base jusqu’aux systèmes

robotiques avancés, y compris les fauteuils roulants robotisés contrôlés par EEG, témoigne

d’avancées technologiques remarquables et d’une compréhension plus profonde des besoins

des utilisateurs. Au départ, les fauteuils roulants étaient simplistes, souvent rudimentaires

et peu ergonomiques. Au fil du temps, sous l’impulsion de la demande des utilisateurs,
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les fauteuils roulants ont évolué de manière significative, conduisant au développement de

modèles ultralégers dans les années 1980, adaptés à la fois à la fonctionnalité et au confort de

l’utilisateur, ce qui s’est avéré particulièrement bénéfique dans le contexte sportif [50]. Ces

changements ont considérablement amélioré l’indépendance et la mobilité des utilisateurs.

L’introduction des fauteuils roulants électriques commandés par joystick a permis de dimin-

uer l’effort physique nécessaire pour commander les chaises roulantes et a garanti plus d’autonomie

pour les utilisateur, ce que rends cette technologie la plus utilisée par les personnes à mobilité

réduite [51].

Bien que ces recherches ont touché la majorité des personnes handicapées dans le monde, il

est impératif que le développement technologique continue à répondre aux besoins des per-

sonnes vivant avec une paralysie ou une amputation et à leur donner la priorité.[52] [53].

Pour cette raison, la technologie EEG a été introduite comme une solution innovante pour

ces besoins[54]. Malgré ces avancées réalisées dans le contrôle EEG des chaises roulantes,

quelques aspects restent à améliorer comme la navigation dans les milieux complexes [55],

les difficultés de manoeuvrer ce type de technologie [56], ainsi que le prix affordable qui

permettera de généraliser ce type de technologie [57].

Dans des études récentes, les clignements des yeux ont prouvé leur efficacité pour com-

mander des robots. En surveillant les clignements des yeux, R.Avudaiammal et al [58] ont

développé un système robotique pour aider les personnes à mobilité réduite en se basant sur

la méditation et les niveaux d’attention. Le robot peut aider les utilisateurs à se déplacer et

à changer de direction, tandis que les clignements des yeux sont utilisés pour contrôler les

appareils domestiques tels que les ventilateurs et les lumières. L’interface de programmation

d’applications (API) contient deux modes, le premier étant le mode fauteuil, qui est le mode

de navigation permettant d’avancer, de reculer, de se déplacer à gauche et à droite. Le sec-

ond mode est celui de la lumière. Lorsqu’il est sélectionné, une LED clignotante s’allume

sur l’appareil. Une icône de commutation passe d’un mode à l’autre toutes les 0,5 secondes

jusqu’à ce que l’utilisateur sélectionne l’un des deux en clignant des yeux. Si le mode chaise

est sélectionné, l’icône passe d’une flèche à l’autre toutes les 0,5 secondes jusqu’à ce que
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l’une d’entre elles soit sélectionnée. La carte de commnande reçoit alors la commande par

l’intermédiaire du dispositif Bluetooth et commence l’exécution. Si le capteur à ultrasons

détecte un obstacle pendant le déplacement, le robot s’arrête et la commande revient à l’étape

de sélection du mode. Le protocole a été testé avec succès sur 40 personnes avec un jeton de

temps pour compléter la sélection était d’environ 3 à 4 secondes.

De même, l’objectif de Ravirahul B M et al.[59] est de développer un BCI facile à utiliser

et ne nécessitant aucune connaissance préalable. L’utilisateur porte un casque EEG pour

capter les signaux cérébraux, qui sont ensuite traités pour éliminer le bruit de fond. Des car-

actéristiques sont ensuite extraites, classées par des algorithmes d’apprentissage automatique

et utilisées pour contrôler les robots. Une caméra vidéo est utilisée pour donner à l’utilisateur

un retour d’information visuel.

Dans la même veine, P. Dinesh Anton Raja et al.[60] ont mené des recherches sur l’utilisation

des signaux EEG pour la domotique basée sur la méditation et les états d’attention. Les

données acquises auprès de 20 personnes différentes sont ensuite analysées à l’aide d’un cal-

culateur embarqué pour contrôler un ventilateur en fonction du niveau d’attention et contrôler

la lumière en fonction du niveau de méditation. L’automatisation et l’anomalie des ondes

cérébrales (BWAP) sont utilisées pour réaliser ces commandes. Les clignements doubles et

continus des yeux sont responsables de l’activation et de la désactivation de l’automatisation.

Un état d’anomalie est détecté lorsque le niveau de bêta élevé varie considérablement. Une

analyse approfondie montre qu’une activité anormale peut être liée à des crises cardiaques,

des problèmes respiratoires ou des accidents vasculaires cérébraux. Les résultats sont promet-

teurs car, comme le montre l’article, tous les participants ont pu commander le ventilateur en

utilisant un niveau d’attention atteint en se concentrant sur une image. Le temps moyen

nécessaire pour la majorité des utilisateurs pour y parvenir est de 59 secondes. Les partici-

pants ont également réussi à allumer la lumière en utilisant le niveau de méditation avec un

temps moyen d’environ 53 secondes. La détection d’anomalies a également été réalisée à

l’aide de variations soudaines de High Beta et a permis de détecter des anomalies telles que

l’essoufflement et l’irritation des yeux.
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Dans une autre étude, Wang Zhi-Hao et al. [61] ont mené des recherches pour comman-

der un robot à courant continu par le biais de clignements des yeux acquis à l’aide d’un

casque Neurosky Mindwave et les clignements ont été envoyés à l’ordinateur en utilisant la

communication Bluetooth. Puis, par Wifi, ils ont été envoyés à un calculateur embarqué en

utilisant le protocole de communication TCP/IP, connu pour ses pertes de paquets minimales.

L’utilisation de de l’environnement Labview a permis de faire du système un système en

temps réel avec une latence de l’ordre de 50 à 300 ms entre la détection d’un clignement

et l’exécution de la commande. Le calculateur embarqué commandera le moteur à courant

continu qui est utilisé comme actionneur pour simuler le contrôle de sortie du clignement des

yeux. L’article cite les erreurs qui peuvent se produire dans le processus, comme la mastica-

tion ou les mouvements de la tête, de sorte que pour réduire le bruit, les sujets ont été invités

à minimiser leurs mouvements autant que possible. Grâce à la collecte de données sur une

durée de 30 secondes, le système a pu commander le moteur à courant continu en utilisant

les clignements des yeux. Si un double clignement des yeux est détecté, le moteur à courant

continu s’active et s’il s’agit d’un triple clignement des yeux, il s’éteint.

Dans le cadre d’autres recherches, Quan K. Pham et al.[62] ont mis au point un système

permettant de contrôler un bras robotique humanoı̈de à l’aide de la voix, de gestes et, es-

sentiellement, de signaux cérébraux. Deux mouvements ont été effectués à l’aide du casque

Mindwave de Neurosky pour contrôler le bras robotique : L’étirement de la main ouverte et la

saisie du poing fermé, déclenchés par le niveau d’attention et de méditation. Les signaux des

ondes cérébrales sont envoyés à l’unité de contrôle via Bluetooth. Dès que le microcontrôleur

reçoit le signal, des algorithmes de partitionnement des données et de filtrage du signal sont

appliqués pour extraire les niveaux d’attention et de méditation. La partie contrôle des on-

des cérébrales a montré des résultats prometteurs, atteignant une précision de 80% pour la

plupart des utilisateurs, mais toujours en rapport avec le temps d’acquisition qui devrait être

supérieur à 3,5 secondes.

Dans une exploration similaire, O A Rus, anu et al. [63] ont développé un système qui aide à

commander un robot dans différentes directions en utilisant plusieurs clignements des yeux
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volontaires. L’acquisition du signal de force de clignotement a été réalisée à l’aide d’un

casque Mindwave de Neurosky et envoyée sans fil à un calculateur embarqué qui traite les

données reçues et transmet ensuite les commandes vers un robot mobile commandé en util-

isant la force de clignotement des yeux. La séquence de commande est la suivante : Un

clignement d’œil pour s’arrêter, deux clignements d’œil pour avancer, trois pour reculer, qua-

tre clignements d’œil pour tourner à gauche et cinq clignements d’œil pour tourner à droite.

Par ailleurs, Arif Wibisono et al.[64] ont contribué au domaine des manœuvres robotiques à

l’aide de données EEG en concevant un système de navigation d’un robot à roues à l’aide

d’un casque Mindwave de Neurosky. Le signal EEG est acquis à l’aide du Neurosky, puis

envoyé par communication Bluetooth à l’application mobile IoT Blynk qui convertit ces sig-

naux en commandes analogiques afin qu’ils puissent être traités par le programme. La carte

de commande reçoit ces commandes par l’intermédiaire du module Bluetooth et exécute

l’ordre adéquat pour contrôler les moteurs à courant continu du robot à roues. Si l’utilisateur

cligne deux fois les yeux et que le niveau d’attention est supérieur à 50, le robot commence

à bouger. Les résultats du protocole de validation ont montré une réussite moyenne de 85%

dans un environnement idéal et de 40% dans un environnement avec des obstacles.

De même, B M Ravirahul et al.[65] ont contribué au domaine de la commande de robots

à l’aide de signaux EEG en développant un système de contrôle BCI basé sur l’EEG pour

guider les mouvements d’un robot à l’aide d’ondes bêta associées à des performances men-

tales telles que la résolution de problèmes. Le casque Mindwave de Neurosky recueille les

données EEG et les envoie par une connexion Bluetooth à l’ordinateur pour un traitement

dans un environnement MATLAB. Le robot est alors guidé et un retour visuel est fourni à

l’utilisateur à l’aide d’une caméra fixée sur le robot. L’exécution réalisée par l’auteur prouve

que le système a un grand potentiel pour aider les personnes à mobilité réduite à se déplacer

librement.

Dans une autre recherche, G. N. Keshava Murthy et al.[66] ont développé un système robo-

tique pour faciliter l’expression des personnes à mobilité réduite en fournissant un système

robotique combinant un bras prothétique intelligent contrôlé par EEG et une main robo-
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tique intelligente. Les auteurs ont essayé 4 méthodes, la première utilisant Matlab pour faire

l’acquisition du signal à partir du casque Neurosky Mindwave, cette méthode n’a pas donné

de bons résultats en raison de l’incapacité à trouver une valeur seuil. Dans la deuxième

méthode, les auteurs ont utilisé un programme python pour l’acquisition des signaux et

ont utilisé les niveaux d’attention et de motivation pour commander l’ouverture et la fer-

meture des doigts. Le résultat n’a pas été satisfaisant parce que les niveaux de méditation

et d’attention variaient trop et qu’il n’y avait pas de valeur exacte à utiliser. La troisième

méthode se concentre sur les signaux d’ondes cérébrales Alpha, Beta, Gamma et Delta, avec

une analyse manuelle des signaux. Mais malgré les efforts des auteurs, le robot n’a pas été

commandé correctement. Dans la quatrième méthode, les auteurs ont stocké les signaux

d’ondes cérébrales dans un fichier CSV et ont exécuté des algorithmes de classification pour

classer les signaux en 0 (pour la flexion des doigts) et 1 pour l’extension des doigts. Plusieurs

algorithmes de classification ont été testés et l’arbre de décision a obtenu la plus grande

précision (92 %), ce qui a été considéré comme la méthode la plus efficace par les auteurs.

Passant à un autre aspect, G. Shobana et al.[67] ont développé un système simple et peu

coûteux pour acquérir des signaux EEG et actionner un bras robotique capable de soulever

des objets légers à l’aide de commandes reçues du casque Mindwave de Neurosky. Après

l’acquisition des signaux EEG, ceux-ci sont envoyés sans fil à une carte de commande par

l’intermédiaire du module Bluetooth. Le microcontrôleur commande ensuite les trois servo-

moteurs qui constituent le bras robotique en fonction du niveau d’attention de l’utilisateur.

S’il est supérieur à 60, le bras se déplace vers le haut avec un angle de 90◦. Si le niveau de

méditation est supérieur à 60, le bras se déplace vers la gauche et la droite et si l’utilisateur

cligne les yeux, le mouvement de saisie est effectué. Le protocole de validation réalisé sur

5 personnes a montré que pour contrôler efficacement le bras, l’utilisateur devait faire deux

essais ou plus, ce qui confirme la nécessité d’une formation pour que les utilisateurs puissent

utiliser le système

M. Rashid et al.[68] ont également développé un système BCI basé sur un casque Neurosky

Mindwave pour contrôler un robot dans trois directions : gauche, droite et avant. 6 sujets
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âgés de 19 à 25 ans ont participé à l’expérience. Les données ont été collectées à l’aide d’une

application Android appelée eeg ID couplée au casque. La recherche a principalement porté

sur trois activités : La relaxation, la résolution rapide de problèmes mathématiques et les

jeux. Ensuite, après l’extraction des caractéristiques, une classification a été effectuée pour

commander le robot. Si l’esprit est dans un état de relaxation, le robot ira de l’avant, à droite

pour la résolution rapide de problèmes mathématiques et à gauche pour les jeux. Les auteurs

ont obtenu une précision de classification élevée de 94% avec 16, 17 et 17 vrais positifs sur

18 échantillons pour les 3 classes dans la matrice de confusion et le robot complet a été testé

avec succès.

Dans une autre étude, M.H. Hasbulah et al.[69] ont développé un système BCI pour associer

les signaux EEG à la configuration du robot Dtto modulaire auto-reconfigurable (MSR) .

L’étude utilise un casque Mindwave de Neurosky qui se connecte au logiciel OpenVibe pour

traiter et traduire les signaux EEG en commandes de contrôle du robot. Des études ont été

menées pour évaluer l’efficacité du système. Les utilisateurs ont dirigé le robot en utilisant

l’imagerie motrice liée à différents mouvements du corps. Malgré la résolution limitée du

signal du casque Neurosky, les travaux ont démontré le potentiel du BCI dans le contrôle

robotique.

Dans le même domaine, J. Katona et al.[70] ont mis en œuvre et testé un système d’interface

cerveau-ordinateur pour contrôler la vitesse du robot Robotino fabriqué par Festo Didactic.

L’acquisition du signal a été réalisée à l’aide des appareils Neurosky Mindwave et Mindflex

par le biais de connexions TCP/IP et USB UART, il est envoyé à un ordinateur pour effectuer

le traitement et la visualisation des ondes cérébrales. Ensuite, par le biais du protocole UDP

(User Datagram Protocol), il est envoyé à l’unité de contrôle du robot Robotino. Ensuite, par

le biais d’une connexion TCP/IP, l’accélération du robot est contrôlée par le niveau d’attention

de l’utilisateur. Le protocole de validation de l’utilisateur a prouvé que pour contrôler effi-

cacement la vitesse du robot Robotino, les utilisateurs devaient bénéficier d’un tutorat pour

apprendre à mieux contrôler leurs pensées et à gérer plus efficacement la manipulation du

niveau d’attention. La recherche a été menée pendant le projet de l’étudiant et a présenté des
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résultats très prometteurs de convivialité de 3,86 sur une échelle de 1 à 5 et un écart-type

moyen de 27,14 ± 8,29 cm pour les tests effectués sur 7 utilisateurs. Les développements et

les améliorations de la précision de ce BCI peuvent conduire à une utilisation plus répandue

de ces technologies.

Dans un autre aspect, Jeevareha et al.[71] ont utilisé le casque Neursoky pour développer

un système complet de fauteuil roulant capable de naviguer et équipé d’options domotiques

telles que l’activation du ventilateur, de la télévision et de la lampe. L’acquisition du sig-

nal se fait par l’intermédiaire du casque et le traitement est effectué à l’aide de Matlab. Les

clignements des yeux activent les applications logicielles telles que le système Blink Talk, qui

présente à l’utilisateur un clavier à l’écran qui surligne les touches une à une. Si l’utilisateur

cligne les yeux, la touche est sélectionnée et lorsque la phrase est formulée et que l’utilisateur

sélectionne la touche Speak, la phrase est prononcée à haute voix par le haut-parleur. Pour

les appareils domotiques, l’utilisateur sélectionne également sur l’interface en face de lui le

mode qu’il souhaite sélectionner en clignant les yeux. Lorsque le mode de navigation est

sélectionné, le fauteuil commence à avancer et l’interface contrôlée par les clignements des

yeux est présentée à l’utilisateur pour qu’il puisse changer de direction. Le fauteuil est équipé

d’un capteur à ultrasons pour éviter les murs et les obstacles et le fauteuil change de direction

vers la gauche ou la droite lorsqu’il en détecte un.

V. Kartsch et al.[72] ont également utilisé les casques EEG dans des recherches cliniques

en réalisant une étude comparative entre les casques Biowolf, Noraxon Dis et eeg TM my-

lab pour l’acquisition de signaux EEG et EMG. L’étude comprenait essentiellement des tests

électriques et des tests de biosignaux. Le casque bioWolf a prouvé son efficacité et son rapport

qualité/prix élevé. Cet article a été cité pour proposer des alternatives au casque NeuroSky

MindWave si celui-ci ne convient pas aux besoins de la recherche.

Dans une autre étude, N Sahat et al.[73] ont étudié l’effet de la différence de sexe et d’âge sur

les signaux d’ondes cérébrales et en particulier sur le niveau d’attention. Le casque Neurosky

Mindwave a été utilisé pour l’acquisition du signal qui est transmis via un réseau sans fil à

une carte de commande qui commandera le mouvement d’un servomoteur. Le mouvement
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du robot est contrôlé par le niveau d’attention et les directions sont changées en utilisant

les clignements des yeux. Pour se déplacer vers l’arrière, l’utilisateur doit lever son sourcil

gauche. Les auteurs ont démontré que l’âge et le sexe influencent significativement les sig-

naux d’ondes cérébrales en EEG. Selon eux, les hommes présentent des niveaux d’attention

plus élevés que les femmes, et les adolescents possèdent le niveau d’attention le plus haut

parmi tous les groupes d’âge. Ces éléments devraient être considérés dans les recherches

futures, notamment lors de la collecte de données plus étendues pour le projet détaillé par ce

mémoire.

Les autres alternatives au Neurosky Mindwave devaient être préparées au cas où celui-ci ne

répondrait pas aux besoins des projets. Parmi ces alternatives, le casque EMOTIV EPOC+,

un casque d’EEG sec à douze canaux qui représente un casque performant pour les ondes

cérébrales EEG. Le groupe de recherche VieCubeLab [74] a utilisé cet instrument dans son

article pour mener un projet visant à garantir à l’utilisateur un contrôle total sur une tablette

avec différents types d’applications. L’expérience a été menée sur 5 hommes âgés de 26 à

30 ans. L’acquisition du signal a été réalisée à l’aide du casque EMOTIV et envoyée sans fil

à l’appareil Android. Le traitement du signal a été effectué à l’aide du SDK EMOTIV dans

le but de développer deux applications : La première est une souris visuelle qui conduit le

curseur en utilisant les mouvements de la tête et la seconde est un détecteur de clignotement

pour simuler un clic. Le prototype a obtenu une précision globale de 63,82%.

La recherche menée par J.N. Pires et al.[75] explore un autre type de BCI, le dispositif de

réalité mixte dans l’utilisation robotique de l’industrie 4.0 . L’article présente deux ap-

plications prêtes à l’emploi développées par l’équipe de recherche, la première permet à

l’utilisateur de visualiser les trajectoires pré-planifiées pour la cellule robotisée et d’identifier

ses problèmes. La seconde application permet à l’utilisateur de créer et d’ajuster des chemins

pour les robots. Cet article présente un bon champ de recherche à explorer pour amener le

système BCI à un niveau supérieur.
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1.3.1 Bases de donées existantes

— Base de données BLINK (Georgia Tech) [76]

Cette base de données a été collectée à l’aide des casques OpenBCI et Muse, qui

sont largement utilisés dans la recherche en neurosciences pour leur capacité à en-

registrer des signaux EEG avec une bonne précision et un coût relativement faible.

La base contient plus de 2300 clignements des yeux, ce qui en fait un ensemble

de données précieux pour l’étude des signaux liés aux mouvements oculaires. En

plus de la collecte des données, les auteurs ont développé un algorithme perme-

ttant de détecter et de classer les clignements en deux catégories : volontaires et

involontaires. Cette distinction est essentielle pour de nombreuses applications, no-

tamment dans les interfaces cerveau-machine (BCI) et les dispositifs d’assistance

pour les personnes à mobilité réduite.

— Base de données meBaL [9]

Cette base de données est particulièrement intéressante car elle ne se limite pas

à l’EEG : elle intègre également des capteurs NIR (Near Infrared) et RGB, per-

mettant ainsi une analyse plus complète des activités cognitives et des interactions

avec l’environnement. L’objectif principal de cette base est d’explorer la relation

entre l’apprentissage en ligne et les processus cérébraux sous-jacents, ce qui en

fait une ressource précieuse pour la recherche en neuroéducation et en sciences

cognitives. Dans le cadre de cette recherche, la base de données meBaL a été

utilisée pour concevoir et entraı̂ner un algorithme de détection des clignements des

yeux, atteignant une précision remarquable de 95,15% [77]. Ce niveau de précision

démontre la qualité des données collectées et leur pertinence pour le développement

d’applications basées sur l’EEG.

— OpenBCI dataset pour EOG et mouvements des yeux [78]

OpenBCI, une plateforme open-source largement adoptée par la communauté scien-

tifique, a collecté cet ensemble de données en utilisant les dispositifs Cyton et Muse.
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Contrairement aux bases de données purement EEG, cet ensemble se concentre sur

les signaux EOG (électro-oculographiques), qui sont particulièrement adaptés au

suivi des mouvements des yeux et à la détection des clignements. L’avantage des

signaux EOG est qu’ils permettent une détection plus robuste et plus directe des

mouvements oculaires par rapport aux signaux EEG, qui peuvent être influencés par

d’autres activités cérébrales. Ce jeu de données est donc un excellent complément

aux bases EEG pour la recherche en reconnaissance des mouvements oculaires et

en contrôle d’interfaces par le regard.

1.4 Bilan et Discussion

Dans la revue de littérature, plusieurs articles relatifs aux interfaces cerveau-ordinateur

(EEG et EOG comme méthodes d’entrée pour les appareils, contrôlés par les clignements

des yeux ou les signaux d’ondes cérébrales) ont été analysés. Bien que ces études aient déjà

innové et montré la puissance de BCI dans une variété d’applications, deux limitations ma-

jeures sont toujours apparues : les niveaux d’attention/méditation assez élevés requis de la

part des utilisateurs, l’impact sur les taux de détection des clignements des yeux, étant donné

que la plupart des travaux ne se sont pas concentrés uniquement sur ce point.

De nombreuses études s’appuient sur le niveau d’attention et de méditation, qui, bien qu’efficaces

dans les recherches et donnant des résultats optimistes, peuvent être difficiles pour l’utilisateur

dans le cadre d’une utilisation quotidienne. En effet, l’utilisateur doit apprendre à contrôler

ses niveaux de méditation et d’attention et à les maintenir en permanence à un niveau élevé,

ce qui est épuisant. Se concentrer uniquement sur la méditation et le niveau d’attention peut

être un défi pour les personnes à mobilité réduite.

De nombreuses études traitent les clignements des yeux de manière générique, soit en détectant

la présence des deux clignements des yeux, soit le nombre d’occurrences des deux cligne-

ments. Cela pose également un problème aux personnes à mobilité réduite qui souhaitent

commander un robot en utilisant uniquement les clignements des yeux, car il leur sera de-
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mandé de cligner plusieurs fois pour tourner ou s’arrêter, ce qui n’est pas vraiment pratique

dans l’utilisation quotidienne.

La littérature existante démontre des progrés significatifs dans la technologie BCI, mais

elle met également en évidence une lacune dans l’application spécifique des commandes

différenciées par le clignement des yeux pour le contrôle de la robotique. Les études intègrent

souvent des configurations complexes impliquant de multiples étapes de traitement du signal

et des mécanismes de contrôle qui, bien que robustes, ne donnent pas la priorité à la facilité

d’utilisation ou aux besoins spécifiques des utilisateurs à mobilité réduite.

L’approche adoptée dans ce mémoire de recherche vise à développer une méthode facile

à utiliser avec un système peu coûteux afin de commander les fauteuils roulants robotisés.

L’étude se concentre essentiellement sur la collecte d’un mini ensemble de données et le

développement d’algorithmes de classification pour différencier les clignements d’oeil gauche,

droit et des deux yeux ensembles. Cette méthode est prometteuse et facile à utiliser pour les

personnes à mobilité réduite. Avec l’algorithme développé, il suffit de cligner de l’œil gauche

pour se déplacer vers la gauche, de l’œil droit pour se déplacer vers la droite et des deux yeux

pour se déplacer vers l’avant.

1.5 Conclusion

En guise de conclusion, ce chapitre a fourni un examen détaillé des interfaces cerveau-

ordinateur les plus récentes, en soulignant les avancées significatives et en identifiant les do-

maines nécessitant une exploration plus poussée. Les discussions sur les structures anatomiques

du cerveau et leurs fonctions en relation avec les technologies EEG soulignent la complexité

et le potentiel des BCI. D’autre part, l’examen des protocoles de collecte de données EEG

existants et l’exploration d’appareils tels que le Neurosky Mindwave illustrent les applica-

tions pratiques et les défis auxquels sont confrontés les chercheurs et les spécialistes dans ce

domaine. Alors que le domaine continue d’évoluer, il est impératif de se concentrer sur le

développement de systèmes BCI plus accessibles et fonctionnels qui peuvent être intégrés
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de manière simple dans des applications quotidiennes pour des individus ayant des besoins

variés.
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DÉTECTION DES CLIGNEMENTS DES YEUX DANS L’EEG À PARTIR DE

SCALOGRAMMES AVEC GOOGLENET, NAÏVE BAYÉSIENNE GAUSSIENNE ET
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Résumé - Cet article explore l’amélioration de la mobilité chez les individus à travers une

nouvelle méthode de détection des clignements d’yeux via des données EEG. Il présente une

approche hybride utilisant la classification Naı̈ve Bayésienne Gaussienne et GoogLeNet pour

l’extraction de caractéristiques et l’entraı̂nement des modèles, avec un système de vote ma-

joritaire pour la décision finale, atteignant une précision de 95,15%. Testée sur l’ensemble

de données meBaL, cette méthode bénéficie d’une base solide en EEG et révise les études

antérieures qui ont influencé la méthodologie. L’article détaille aussi l’architecture du système,

les techniques de traitement et d’apprentissage automatique employées, et les performances

des modèles, notant la supériorité des scalogrammes pour détecter les clignements rapides.

En conclusion, il envisage l’amélioration des technologies d’assistance, comme les fauteuils

roulants robotisés, potentiellement transformative pour les personnes handicapées.
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Abstract—Low mobility is a significant global issue, affecting
over 16% of the world’s population, or one in every six persons.
It impacts the quality of life and daily routines of those affected.
To address this issue, we initiated a project to command a robotic
wheelchair using the NeuroSky MindWave headset. The first
step was to develop an eye-blink detection algorithm using the
meBaL open dataset which is widely used to analyze eye-blink
behavior and measure the user’s level of attention. However,
the main challenge in using only EEG data is distinguishing
between blink and non-blink states. Accurate detection of blink
behavior in EEG data is crucial for understanding how the
brain reacts to different situations. This understanding can
provide valuable insights for developing assistive technologies
that adapt to the user’s cognitive state, improving their quality
of life. This paper proposes a hybrid approach for recognizing
eye blinks in EEG data. In this study we utilized EEG signal
scalograms—a time-frequency representation, combined with
Gaussian Naive Bayes for classification with majority voting
and GoogLeNet for feature extraction, achieving an impressive
accuracy of 95.15%. This research aims to contribute to the
growing field of neurophysiological studies and pave the way for
future innovations, particularly assistive technologies for people
with limited mobility.

Index Terms—Low mobility, Eye blink detection, EEG data,
GoogLeNet, Gaussian Naive Bayes, Majority Voting

I. INTRODUCTION

Electroencephalography (EEG) is an indispensable tool for
investigating brain activity and is essential in understanding
eye blinks. Despite their seemingly simplistic nature, eye
blinks can provide valuable information on various neuro-
physiological conditions. It is crucial to analyze EEG artifacts,
such as those caused by eye blinks, to diagnose and identify
specific disorders [1]. For example, the co-registration of
eye movements and event-related potentials (ERPs) has been
instrumental in exploring the neural correlates of language
processing during reading [2].
Furthermore utilizing EEG to detect eye blinks has appli-
cations, across industries. In settings like assembly lines or
conveyor systems monitoring eye blinks can boost safety and
operational efficiency [3]. By incorporating EEG-based eye
blink detection into these systems we can monitor the fatigue

levels of workers potentially averting accidents caused by lack
of focus or tiredness [4].
The use of EEG-based systems has revolutionized the field
of assistive technology, especially in the development of
monitoring devices that significantly enhance the quality of
life for individuals with mobility impairments [5]. Robotic
wheelchairs, empowered by EEG technology, stand out as
a remarkable advancement. These systems translate neural
signals directly into commands that control the wheelchair,
enabling users to navigate their environment through simple
thoughts or eye movements.
When EEG and eye-tracking technologies are combined, re-
searchers can gain insights into the cognitive and neural bases
of online language processing. This is vital for advancing our
comprehension of brain function during complex tasks, such
as reading [2].
These artifacts can obscure the true underlying EEG sig-
nals, making it challenging to obtain clean data for research
purposes. Researchers have developed various methods to
control these artifacts, such as combining source localization
with independent components analysis (ICA) to adjust for
the effects of eye movements on the EEG waveform [2].
However, despite these advancements, the classification of
blinking states remains a complex task that requires sophisti-
cated techniques and algorithms.
Improving the accuracy of blink detection in EEG data is
of great significance for neurophysiological research. Recent
studies have utilized EEG to detect cognitive load in real-
life situations, such as driving, by monitoring eye blinks. This
approach leverages the high temporal resolution of EEG to
explore human information processing and cognitive func-
tioning without the need for additional equipment, offering
a non-intrusive and straightforward method for identifying
significant events. The ability to detect blinks accurately in
EEG data can lead to a better understanding of how the brain
responds to different conditions and task difficulty levels, as
evidenced by variations in blink-related event-related poten-
tials (ERPs). These advancements in blink detection through



EEG are crucial for advancing our understanding of the
brain’s sensory visual perception and attentional requirements
in various scenarios, thereby contributing to a broader range
of neurophysiological studies [6].
Our study employs a hybrid approach that combines
GoogLeNet for feature extraction and Gaussian Naive Bayes
for classification to enhance eye blink detection in EEG
data. This endeavor not only demonstrates the capabilities
of modern computational techniques in refining EEG signal
analysis but also paves the way for future innovations in
the field, particularly in developing assistive technologies for
individuals with mobility challenges.
This work is divided into five sections. Fundamentals and
related works are briefly outlined in section II and III. The
proposed system, its various aspects, data processing steps,
and algorithms are detailed in section IV. V is devoted to the
results obtained in this work. The machine learning algorithms
used are also detailed with an evaluation of the performance of
our model. Finally, general conclusion, perspectives and future
works are evoked in VI.

II. FUNDAMENTALS

Electroencephalography (EEG) is a technique used to
understand brain behavior. It is beneficial in diagnosing condi-
tions such as epilepsy and sleep-related disorders. With tech-
nological advancements, EEG data analysis has evolved from
simple observation of wave patterns to a detailed investigation
of the signal’s time-based and spatial aspects. Nowadays, EEG
is highly regarded for its ability to capture the dynamics
of brain function in real-time, mainly because it can track
neuronal activity on a sub-second scale [7]. EEG frequencies
are divided into several bands, represented in the Fig 1, each
of which is linked to different states of brain activity:

• Delta Waves (0.5-4 Hz): Predominant in the deeper stage
3 of adult sleep, they represent the restorative processes
of the brain. This is the slowest frequency in EEG [8].

• Theta Waves (4-7 Hz): Theta waves occur in the fre-
quency range of 4–7 Hz and are linked with relaxation,
deep meditation, and daydreaming [9]

• Alpha Waves (8-13 Hz): Brain waves in this frequency are
characteristic of the relaxed wakeful state, especially with
closed eyes, during which alpha activity is usually said
to be indicative of relaxed mental coordination. Likely
originating from the synchronous and coherent electrical
activity of thalamic pacemaker cells in humans. [10]

• Beta Waves (13-30 Hz): Beta waves are related to con-
sciousness in the awakened state, alertness and active
thinking [11]

• Gamma Waves (30 Hz and above): This is the fastest
among all the EEG waves. Gamma activity is associated
with cognitive functions such as perception, attention, and
memory [12].

III. RELATED WORKS

Numerous research studies have made significant contri-
butions to the development of techniques for detecting eye

Fig. 1: Brainwave signals waveforms [13]

blinks through the analysis of EEG data. Amanda Ferrari
Iaquinta et al. [14] conducted a study demonstrating the
effectiveness of using a convolutional neural network (CNN)
to detect eye blinks in EEG data. Their research achieved an
average accuracy of 98.733% across different validation sets,
indicating the potential of CNNs in accurately classifying eye
blink events in EEG signals.

Also, Y.-J. Han et al. [15] proposed a hybrid method
combining Support Vector Machine (SVM) and CNN to detect
eye blinking on smartphone platforms.

Similarly, Noman et al. [16] developed a system to detect
eye blinks using the pattern of eye aspect ratio values. Their
Support Vector Machine (SVM) classifier approach achieved
a 90% accuracy rate. Moreover, Pauly et al. [17] utilized
a combination of Histogram of Oriented Gradient (HOG)
features and an SVM classifier to detect eye blinks.

Additionally, Anja Witte et al [18] proposed a system that
detects eye blinking in real-time. The face in video sequences
is tracked by the system using the median flow tracker and the
Viola-Jones algorithm for face detection. Face dimensions are
employed to implement eye detection and template matching
is used to identify blinks.

Scalogram-based analysis of ECG data has been highlighted
in studies focused on diagnosing heart diseases. Ajjey S. B
et al. [19] proposed a hybrid model combining a Convolu-
tional Neural Network (CNN) and a Naive Bayes classifier
to classify Normal Sinus Rhythm, Abnormal Arrhythmia,
and Congestive Heart Failure from the MIT-BIH arrhythmia
database. ECG signals are converted to scalogram images



using continuous wavelet transform, eliminating the need for
noise filtering and traditional feature extraction steps. The
model uses GoogLeNet for feature extraction combined with
Naive Bayes classification.

Regarding the use of the meBaL dataset for eye blink
detection, Roberto Daza et al. [20] described the creation
and application of this multimodal database, highlighting its
utility in monitoring cognitive and eye blink activities through
a comprehensive set of sensors and methodologies.

Roberto Daza et al. [21] also utilized the meBaL dataset
to examine the feasibility of estimating attention levels based
on eye blink detection in an e-learning environment. They
employed CNNs trained on the dataset to identify eye blinks
and correlate them with attention levels.

IV. PROPOSED SYSTEM

Our system is composed of a succession of elementary steps
to finally attend blink detection as shown in Fig. 2.

A. Dataset description
In our study, we used the meBaL dataset, a compre-

hensive multimodal collection designed for researching eye
blink patterns and attention level measurements. The dataset
includes data from 38 participants and provides a balanced
compilation of 3,000 instances each of eye blinks and non-
blinks, resulting in a total of 6,000 samples. Data collection
employed Near-Infrared (NIR) and RGB cameras to document
facial expressions and an EEG band, the Neursoky Mindwave
headset, to monitor participants’ cognitive activities and eye
blinks. Each sample comprises 21 frames, accounting for a
total of 756,000 images.

The meBaL dataset stands out for its large scale and the in-
tegration of multiple data types, providing a valuable resource
for developing and evaluating algorithms in the domains of eye
blink detection and attention level analysis. The EEG band
captures five channels of EEG signals (alpha, beta, gamma,
delta, and theta waves) at a sampling rate of 1 Hz, which
are crucial for understanding the cognitive activity associated
with eye blinks. This multimodal approach, combining facial
gesture capture with cognitive signals, makes the dataset eight
times larger than existing eye blink databases.

The dataset includes various e-learning tasks with different
levels of difficulty to simulate realistic scenarios, thus enhanc-
ing its applicability in research on attention levels, cognitive
states, and their correlation with eye blink frequency. Data was
collected in controlled conditions but designed to mimic real-
world settings, including considerations for user position and
changes in illumination. The dataset also captures 3,000 no-
blink samples, ensuring a balanced representation for analysis.

This extensive and diverse dataset offers significant
potential for advancing studies in eye blink detection
and related fields. Its robust design allows for a detailed
examination of the relationship between eye blinks and
cognitive activities, supporting applications in areas such as
neurodegenerative disease analysis, driver fatigue detection,
and lie detection [20].

B. Pre-processing

For the purposes of this research, we used the EEG data
of 11 students. We were interested only in EEG recordings
measured using the Neurosky Mindwave headset.

The main problem with the raw EEG data was that it was
stored across several CSV files in different formats, creating
challenges for direct comparison and analysis. Specifically,
blinking events were recorded as frame numbers, whereas
EEG signals were timestamped with precise times. This dis-
crepancy in formats prevented straightforward analysis, neces-
sitating several preprocessing steps to harmonize the data.

The mapping from frame numbers to timestamps was essen-
tial to synchronize blinking events with EEG data accurately.
This was because the blink data, recorded as frame numbers,
needed to be converted into exact timestamps to align with the
EEG signals’ temporal information. The Time.csv dataset
facilitated this conversion, providing a link between the frame-
based blink data and the timestamped EEG signals. The
mapping allowed us to accurately determine when blinks occur
in the EEG recordings.

EEG data are precisely timestamped, representing snapshots
rather than a continuous sequence. However, brain activity
during blinks is dynamic, evolving over time. To capture this
evolution, it is necessary to interpolate data points that model
the EEG signal throughout the blink. The pre-processing script
generates these synthetic EEG data by adding random varia-
tions between -0.1 and 0.1 to the original signal values for each
blink segment, thus simulating the natural slight fluctuations
in brain activity. This method maintains the continuity of
the EEG signal, enhancing the realism of the modeled data.
The Fig 3. represents the waveform of Alpha raw data in
comparison with the synthetic data.

C. Methodological Approach

1) Initial Use of Spectrograms: Spectrograms are a funda-
mental tool in signal analysis, particularly useful for examining
the frequency content of signals as they vary over time.
They represent a visual method to analyze the spectrum of
frequencies in a signal, which is essential for identifying
patterns related to different physiological or cognitive states.

The mathematical foundation of a spectrogram is based
on the Short-Time Fourier Transform (STFT), defined by the
Equation 1:

STFT{x(t)}(f, τ) =
∫ ∞

−∞
x(t)w(t− τ)e−j2πftdt (1)

where x(t) is the signal, w(t−τ) is the window function cen-
tered around time τ , and f is the frequency. The spectrogram
is then the squared magnitude of the STFT like shown in the
Equation 2:

S(f, τ) = |STFT{x(t)}(f, τ)|2 (2)

This visualization tool was chosen for its ability to provide
insights into the time-varying frequency content of EEG sig-
nals, which is critical for detecting events like eye blinks. By



Fig. 2: Overview of the proposed Blink Detection system.
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Fig. 3: Comparison of original and expanded Alpha
EEG signals

displaying how the power of the frequency components varies
with time, spectrograms can help identify distinct patterns
associated with blinking and non-blinking states.

However, our analysis, as detailed in the RESULTS AND
DISCUSSIONS section, revealed limitations with this ap-
proach. The fixed resolution of the spectrogram across all
frequencies, a consequence of the Fourier transform, proved
insufficient for capturing the transient, high-frequency compo-
nents associated with rapid eye blinks. This led to difficulties
in differentiating subtle signal variations, which are crucial for

accurate blink detection.
2) Transition to Scalograms: Given the shortcomings ob-

served with spectrograms, our research transitioned to using
scalograms. Unlike spectrograms, scalograms use the Continu-
ous Wavelet Transform (CWT) which offers a time-frequency
representation with variable resolution, adapting better to the
nature of non-stationary signals like EEG. This method allows
for more precise localization of signal features at different
frequencies, providing a deeper understanding of the dynamic
changes within the EEG signals associated with eye blinks.

D. Dynamic scalogram generation

Wavelet Transform [22] is an analytical method used for
dissecting signals, especially when they exhibit variability
over time, such as EEG signals. It excels in delineating
frequency components with variable resolutions, utilizing a
multi-resolution analysis technique. This approach efficiently
addresses the challenge of high-dimensional data by reducing
the number of required features for signal analysis. It operates
by decomposing a signal into a series of functions derived
from a single ’mother wavelet’ function. The decomposition
process involves analyzing the signal across different scales
and positions, facilitated by scaling and shifting operations.
Due to their wavelet-based nature, scalograms are better suited
to EEG analysis, as they can adapt to non-stationary signal
characteristics. This adaptability is crucial for accurately iden-
tifying and analyzing transient events in EEG signals, which
are common in neurological studies. As shown in Equation 3,
the wavelet transform is defined as

F (x, y) =
1√
x

∫
ψ

(
t− y

x

)
dt (3)

F (x, y) symbolizes the wavelet transform result, with x
and y representing the scale and shift parameters respectively.
The function ψ(t) is the mother wavelet function, which
is integral to the transform process, and denotes the time
variable. This formulation encapsulates how the wavelet
transform scrutinizes the signal’s characteristics across
various scales and translations, providing a comprehensive
analysis of its frequency and temporal structures [23].
The dynamic sliding window technique, as shown in the
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Fig. 4: Dynamic sliding window technique

Fig 4 is employed to analyze EEG signals for the purpose
of detecting eye blinks. This technique operates by moving
across the EEG data sequence and selecting segments based
on the blink state—identified as 1s (indicating a blink event)
and 0s (indicating no blink event).
The process begins at the first occurrence of a designated

state, either 1 or 0. The window then encompasses all
subsequent data points sharing the same state. For instance,
if the window starts at a point where the blink state is 1, it
will include all following 1s in the segment it captures. This
continues until a change in state is detected; that is, when
the sequence switches from 1 to 0 or vice versa. At the point
of this transition, the current window is closed, and a new
window is initiated at the next data point, capturing the new
homogeneous sequence of either all 0s or all 1s.
The resulting segments, or windows, each containing either
blink events or non-blink events, are then used to generate
scalograms. These scalograms serve as a visual and analytical
tool to examine the frequency and temporal dynamics
associated with the eye blinks within the EEG signals.

E. Machine learning algorithms

A model has been developed for each Electroencephalogram
(EEG) signal, resulting in five models that utilize GoogleNet
and Gaussian Naive Bayes. The Majority Voting method was
employed to extract the final prediction.

1) GoogleNet: It’s an advanced convolutional neural net-
work framework that achieved top performance in the
2014 ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC14). This architecture stands out for its strategic use
of computational resources, which is accomplished through a
design that enhances the network’s depth and width without
increasing computational demand. The design principles were
inspired by the concept of Hebbian learning and the notion
of processing at multiple scales. The network, which includes
22 layers, is noted for its efficiency and accuracy in image
classification and detection tasks [24].

2) Naı̈ve Bayes: It’s a classification technique based on
applying Bayes’ theorem while assuming that features are

independent of each other within the class. It determines
the likelihood of an instance being in a specific class by
calculating the product of individual feature probabilities for
that class. The formula for Naive Bayes classification 4 is
expressed as:

P (c|x) = P (c)
∏m

i=1 P (ai|c)
P (x)

(4)

Where P (c|x) represents the postulated probability of class c
given feature set x, P (c) denotes the prior probability of class
c, P (ai|c) signifies the probability of feature ai occurring in
class c and P (c) is the prior probability of the feature set [25]
The steps of learning are:

Preprocessing and Data Augmentation: Using Tensor-
Flow’s ImageDataGenerator, we rescaled and augmented the
EEG signal images to ensure a standardized input size of
224×224 pixels, suitable for InceptionV3, and to increase the
diversity of our training dataset, thus reducing overfitting.

Feature Extraction with InceptionV3: We employed
the InceptionV3 architecture, pre-trained on ImageNet, as a
feature extractor. By discarding the top layer and appending
a Global Average Pooling layer, we transformed the high-
level features into a condensed form suitable for classification.
This step is crucial for capturing the complex patterns within
EEG signals without training a full deep learning model from
scratch.

Training the Naive Bayes Classifier: Instead of fine-
tuning the InceptionV3 model for end-to-end learning, we used
the extracted features as input for a Gaussian Naive Bayes
classifier. Then the training of each model was executed. The
Table I outlines the performance of each model:

TABLE I: EEG Signal Classification Accuracy
Model Accuracy Precision F1-score Recall
Alpha 90.34% 85.81% 90.91% 96.65%
Beta 90.20% 95.00% 89.64% 84.86%
Delta 93.93% 93.68% 93.95% 94.21%
Theta 92.36% 95.30% 92.10% 89.11%
Gamma 86.64% 93.90% 85.43% 78.37%

Majority Voting for Final Prediction: Given the proba-
bilistic outputs from Naive Bayes classifiers trained on differ-
ent EEG signal types (e.g., Alpha, Beta, Theta), we applied a
majority voting mechanism. This ensemble strategy combines
the individual model predictions to form a final decision,
thereby enhancing the overall classification robustness by
mitigating individual model biases.

V. RESULTS AND DISCUSSIONS

A. Evaluation of Spectrograms

As part of our exploration of blink detection methods, we
also experimented with spectrograms. However, as shown in
the Table II below, this approach did not present satisfactory
results. Spectrograms, while useful for visualizing frequencies
over a wide temporal range, proved less effective in identifying
rapid blink events in our EEG data. This difference is attributed



Fig. 5: Scalograms of (a) Beta, (b) Delta, (c) Gamma
and (d) Theta signals

to the lower temporal resolution of spectrograms compared
with scalograms, which is crucial for capturing the variations
in EEG signals associated with blinks.

TABLE II: Classification results for models using spectro-
grams

Model Accuracy Precision F1-score Recall
Alpha 46.10% 50.69% 50.78% 50.87%
Beta 54.67% 54.67% 70.69% 100.00%
Delta 47.81% 52.26% 52.26% 52.26%
Theta 51.33% 55.40% 55.40% 55.40%
Gamma 49.43% 53.66% 53.66% 53.66%

B. Scalograms generation

The dynamic scalogram generation algorithm allowed us
to generate 7170 blink-zero scalograms and 7175 blink-one
scalograms. Fig 5 shows the scalograms of the Beta, Delta,
Gamma, and Theta signals when the blink equals 1. The
dimensions of the images are 224 × 224 pixels; they were
modified while generating the scalograms to ensure compati-
bility with the GoogleNet architecture.

C. Evaluation metrics

In this study, our model demonstrated strong performance
across various metrics. Specifically, the model achieved a
precision of 93.95%, indicating a high ratio of true positive
identifications in comparison to false positives. The model’s
recall was 96.51%, showing its effectiveness in identifying
relevant instances. Furthermore, the F1 Score, which is the
harmonic mean of precision and recall, was 95.22%, suggest-
ing a balanced classification performance between precision
and recall.

The confusion matrix provides further insight into the
classification accuracy across the different categories:

TABLE III: Confusion Matrix in pourcentage

Actual \Predicted No Blink Blink
No Blink 93.79% 6.21%

Blink 3.49% 96.51%

In the matrix, the diagonal elements represent the
percentages of true positive and true negative predictions,
respectively, whereas the off-diagonal elements correspond
to the percentages of false positives and false negatives.
These values underscore the model’s high level of predictive
accuracy.

Table IV represents a comparison between our study and
the other approaches.

VI. CONCLUDING REMARKS

This paper proposes a hybrid approach for identifying
eye blink events in electroencephalogram (EEG) data.
The proposed method employs Gaussian Naive Bayes
classification, majority voting, and GoogLeNet feature
extraction to detect eye blinks in EEG signals. The model
has been evaluated for its ability to accurately differentiate
between blink and non-blink states using short segments
of single EEG signal scalograms, ranging from one to two
seconds, encompassing alpha, beta, gamma, theta, and delta
frequency bands. The developed model records an accuracy
of 95.15%, indicating its high precision and reliability.

In the future, the proposed approach will be extended
to developing an artificial intelligence model capable of
classifying blinks into three categories based on a portion
of the collected dataset. The categories are left blink, right
blink, and both eye blinks, which is a significant step
towards controlling a robot through eye blinks using the
Neurosky headset. The ultimate goal is to command a robotic
wheelchair using EEG signals and eye blinks, which could
be a breakthrough for individuals with mobility issues.
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efficient algorithm for detection and elimination of eye blink from short
segments of single eeg channel,” IEEE transactions on neural systems
and rehabilitation engineering: a publication of the IEEE Engineering
in Medicine and Biology Society, vol. 29, pp. 408 – 417, 03 2021.

[5] X. Zhang, J. Li, R. Zhang, and T. Liu, “A brain-controlled and user-
centered intelligent wheelchair: A feasibility study,” Sensors, vol. 24,
no. 10, 2024.

[6] E. Alyan, S. Arnau, J. Reiser, S. Getzmann, M. Karthaus, and
E. Wascher, “Blink-related eeg activity measures cognitive load during
proactive and reactive driving,” Scientific Reports, vol. 13, no. 1, p.
19379, 2023.

[7] H. Zhang, Q. Zhou, H. Chen et al., “The applied principles of eeg
analysis methods in neuroscience and clinical neurology,” Military
Medical Research, vol. 10, p. 67, 2023.

[8] E. Niedermeyer, “Alpha rhythms as physiological and abnormal
phenomena,” International Journal of Psychophysiology, vol. 26, no. 1,
pp. 31–49, 1997. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S016787609700754X

[9] A. Brancaccio, D. Tabarelli, M. Bigica, and D. Baldauf, “Cortical source
localization of sleep-stage specific oscillatory activity,” Sci Rep, vol. 10,
no. 1, p. 6976, 2020, erratum in: Sci Rep. 2020 May 20;10(1):8636.

[10] J. Foster, D. Sutterer, J. Serences, E. Vogel, and E. Awh, “Alpha-band
oscillations enable spatially and temporally resolved tracking of covert
spatial attention,” Psychol Sci, vol. 28, no. 7, pp. 929–941, 2017.
[Online]. Available: https://doi.org/10.1177/0956797617699167

[11] Muse, “A deep dive into brainwaves: Brainwave fre-
quencies explained,” https://choosemuse.com/blogs/news/
a-deep-dive-into-brainwaves-brainwave-frequencies-explained-2,
2022, accessed: [17/02/2024].

[12] S. S. Dalal, J. R. Vidal, C. M. Hamamé, T. Ossandón, O. Bertrand,
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les clignements de l’œil gauche, droit et des deux yeux simultanément, afin de piloter un robot
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Pilot study on EEG-based classification of direc-
tional eye blinks using single-channel EEG head-
set: Methodology and initial findings
Mohamed Amine Mhadhbi, Raef Cherif, Yacine
Yaddaden

This paper introduces the first step in a novel method for control-
ling a robot using Electroencephalogram (EEG) signals from eye
blinks. Unlike previous approaches that relied on datasets cap-
turing both-eye blinks, our process focuses on distinguishing be-
tween left, right, and both eyes blinking to command a robot. The
paper outlines developing a machine-learning model to classify
eye blink signals collected from a Neurosky headset into Left,
Right, and Both categories. It provides detailed information on
the data collection protocol, results, data processing steps, and
machine learning algorithms with model performances. The pro-
posed system is intended to assist individuals with mobility im-
pairments by enabling them to command robot movements using
EEG signals, with plans for further development in future works.
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Research Highlights

• Initiated a novel method to control robotic wheelchairs through EEG signals.

• Uses EEG signals from Neurosky Mindwave headset.

• Collected an original dataset

• Protocol adheres to ethical guidelines.

• Developed model classifies blinks: left, right, both.

• Random Forest classifier achieves an accuracy of 80.5%.
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ABSTRACT

This research introduces a novel method for robotic control by classifying directional eye blinks, uti-
lizing electroencephalogram (EEG) signals obtained from a single-channel Neurosky headset. Com-
pared to conventional methods that mainly distinguish between blink and non-blink phases, our study
specifically categorizes left, right, and simultaneous eye blinks, facilitating refined user commands for
robotic systems. We created a comprehensive machine-learning model, outlining the data collected
from 11 participants, data processing techniques, and algorithmic efficacy. The results indicate a high
level of accuracy in categorizing the three types of blinks, suggesting beneficial prospects for improv-
ing mobility and independence in those with physical limitations. This study enhances the capabilities
of non-invasive EEG technology and offers a viable response to the urgent demand for accessible as-
sistive technologies.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Assistive technology is crucial in enhancing the quality of
life for individuals with mobility issues by promoting indepen-
dence, improving functionality, and facilitating social interac-
tion. Devices such as powered wheelchairs and mobility aids
have been shown to significantly enhance mobility and partic-
ipation in daily activities for users with physical disabilities
[1][2][3]. These technologies assist in bodily movement and
contribute to psychological well-being by fostering social con-
nections and reducing feelings of isolation [4].
The evolution of assistive technologies for mobility has pro-
gressed significantly from traditional wheelchairs to advanced
robotic systems. Initially, manual and powered wheelchairs
provided basic mobility solutions for individuals with physi-
cal disabilities, enhancing their independence and participation
in daily activities [5][6]. However, these devices often require
assistance for navigation, particularly for users with cognitive
impairments [5].
Therefore, robotic wheelchairs represent a significant advance-
ment in assistive mobility technology, integrating sensors, arti-
ficial intelligence (AI), and robotics to enhance user autonomy

∗∗Corresponding author: Tel.: +1-367-321-1979;
e-mail: mham0002@uqar.ca (Mohamed Amine Mhadhbi)

and safety. Unlike conventional wheelchairs, which primar-
ily rely on manual or powered propulsion, robotic wheelchairs
have advanced navigation systems that allow for autonomous
movement. These systems utilize sensors to detect obstacles
and navigate complex environments, enabling users to travel
more safely and independently [7][8].
Current robotic wheelchair technologies face several challenges
and limitations, primarily cost, complexity and accessibility.
The high cost of robotic wheelchairs remains a significant bar-
rier, limiting their availability to many users who could ben-
efit from them. Advanced features such as autonomous nav-
igation and AI integration require sophisticated technology,
which often translates to higher prices compared to conven-
tional wheelchairs [9][10].
EEG systems have emerged as a promising technology to aid
paralyzed individuals in controlling robotic devices, such as ex-
oskeletons and robotic arms, through brain-computer interfaces
(BCIs). These systems allow users to command robots using
their brain signals, effectively enabling them to interact with
their environment without physical movement [11][12]. The in-
troduction of EEG-based BCIs has provided a new avenue for
rehabilitation and assistance, particularly for individuals with
neuromuscular disorders like stroke or amyotrophic lateral scle-
rosis [12][13].
However, controlling these robotic systems can be complex and
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challenging. Users often rely on mental states such as medita-
tion and attention to generate the necessary brain signals for
control. This reliance can lead to difficulties, as maintaining a
focused mental state is not always feasible, especially for indi-
viduals with cognitive impairments [14][15]. Additionally, the
use of multiple eye blinks as a control mechanism can introduce
variability and inconsistency in signal interpretation, complicat-
ing the user experience [16].
These challenges highlight the need for further research and de-
velopment to enhance the usability and effectiveness of EEG-
based control systems for robotic devices. To face these
problems, we initiated this project to develop an easy-to-use,
cost-effective, and effective EEG system to command robotic
wheelchairs. This research aims to make EEG-controlled
wheelchairs accessible to a wider range of people with mobility
issues.
This paper is divided into several key sections to provide a thor-
ough exploration of our methodology and findings. After the
initial introduction, the ’Related Works’ 2 reviews pertinent lit-
erature and existing methodologies in the field. The ’Proposed
Approach’ 3 details the design and implementation of our ex-
perimental setup. Following this, ’Data Collection Protocol’
4 and ’Data Processing’ 5 describe the steps taken to gather
and prepare the data for analysis. The core of our research is
elaborated in ’Machine Learning Algorithms for Blink Cate-
gorization’ 6 , where we discuss the algorithms used and their
performance. ’Results and Discussions’ 7 presents a detailed
analysis of the outcomes, highlighting the significance of our
findings. The paper concludes with ’Concluding Remarks’ 8
that summarize the study’s implications and suggest future re-
search directions.

2. Related Works

In recent studies, eye blinks proved their efficiency in com-
manding robots. By monitoring eye blinks, R.Avudaiammal et
al [17] developed a robotic system to assist people with low
mobility based on meditation and attention levels. The robot
can assist users with movements and changing directions while
eye blinks are used to control home appliances like fans and
lights. The Application Programming Interface (API) contains
two modes, the first one is the chair mode which is the navi-
gation mode that allows one to move forward and backward,
left and right. The second mode is light, when selected a blink
LED glows on the device. A switcher icon is shifting back and
forth between these two modes every 0.5 seconds until the user
selects one of them by blinking the eyes. If the Chair Mode
is selected the icon moves to switch between arrows with the
same timestamps of 0.5s until one of them is selected. Then the
Arduino receives the command through the HC-05 Bluetooth
device and begins the execution. If the ultrasonic sensor detects
an obstacle while moving, the robot stops and the control goes
back to the mode selection stage. The protocol was successfully
tested on 40 persons with a time token to complete the selection
was about 3 to 4 seconds.
Similarly, the goal of Ravirahul B M et al.[18] is to develop a
BCI that is easy to use and doesn’t require any prior knowledge.

The user wears an EEG headset to capture brain signals, which
are then processed to eliminate background noise. Features are
then extracted, classified by machine-learning algorithms and
used to control the robots. A video camera is used to give the
user visual feedback.
Following a similar theme, P. Dinesh Anton Raja et al.[19] con-
ducted research on using EEG signals for home automation
based on meditation and attention states. The data acquired
from 20 different people is then analyzed using Raspberry Pi
to control a fan with attention level and control light with med-
itation level. The Brain Wave Automation/Anomaly ( BWAP)
is used to achieve these orders. The double and continuous eye
blinks are responsible for turning the automation on and off. An
Anomaly state is detected when the High Beta varies consider-
ably, with deep analysis, abnormal activity can be related to
heart attacks, respiratory problems, or strokes. The results were
promising because as shown in the paper all the participants
were able to command the fan using an attention level that was
achieved by focusing on a concentration image. The average
time taken for all users to do so is 59 seconds. Participants also
succeeded in turning on the light using meditation level with
an average time of about 53 seconds. Anomaly detection was
also detected using sudden variations of High Beta and led to
the detection of abnormalities like shortness of breath and eye
irritation.
In another study, Wang Zhi-Hao et al. [20] conducted research
to command a DC robot through eye blinks acquired using a
Neurosky Mindwave headset and the blinks were sent to the
computer using Bluetooth communication. Then, through Wifi
sent to MyRio embedded device using TCP/IP communication
protocol, known for minimalistic packet loss. The use of Lab-
view helped make the system a real-time system. The MyRio
will command the DC motor which is used as an actuator to
simulate output control of eye blinking. The paper cited the
errors that can occur in the process like chewing or head move-
ments, so to reduce the noise, subjects were asked to minimize
their movements as much as possible. Through data collection
of 30 seconds time duration, the system was able to command
the DC motor using eye blinks, if a double eye blink is detected
the DC motor will activate, and with a triple eye blink it turns
off.
In a similar exploration, O A Rus, anu et al. [21] developed a
system that helps command a robot in different directions using
multiple voluntary eye blinks. The acquisition of blink strength
signal was done using a Neurosky Mindwave headset and sent
wirelessly to a computer and through a Labview program run-
ning on NI MyRio a mobile robot is commanded using eye
blinking strength. The commanding sequence is the following:
One eye blink to stop, two eye blinks to go forward, three to
go backward, turning left is done using four eye blinks and five
blinks to turn right.
In yet another development, Arif Wibisono et al.[22] con-
tributed to the robotic maneuver domain using EEG data by
designing a system to navigate a wheeled robot using a Neu-
rosky Mindwave headset. The EEG signal is acquired using
the Neurosky and then sent through Bluetooth communication
to the IoT Blynk mobile application that converts these signals
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to analog commands so it can be processed with the program.
Arduino card receives these commands through HC-06 Blue-
tooth module and executes the adequate order to monitor the
DC motors of the wheeled robot. If the user blinks twice and
the attention level is greater than 50 then the robot will begin
to move. Results of the validation protocol showed an average
success of 85% when tested in an ideal environment and 40%
success in an environment with obstacles.
In further research, Quan K. Pham et al.[23] developed a sys-
tem to control a humanoid robotic arm using voice, gesture, and
essentially through brain signals. Two motions were conducted
using the Neurosky Mindwave headset to control the robotic
arm: Stretch the hand open and grab the fist closed, triggered by
attention and meditation level. Brainwave signals are sent to the
control unit via Bluetooth using the HC-05 module. As soon as
the microcontroller receives the signal, algorithms to partition
the data and filter the signal are applied to extract Attention and
meditation levels. The Brainwave control part showed promis-
ing results attaining an accuracy of 80% for most users but still
related to acquisition time that should be greater than 3.5 sec-
onds.
Similarly, B M Ravirahul et al.[24] contributed to the field of
commanding robots using EEG signals by developing an EEG-
based BCI control system to guide the motions of a robot using
Beta Waves associated with mental performances like problem-
solving. Neurosky Mindwave headset collects the EEG data
and sends them using a Bluetooth connection to the computer
where the signal processing is executed through a Matlab pro-
gram. The robot is then guided and visual feedback is provided
to the user using a camera fixed on the robot. The execution
done by the author proves that the system has great potential to
assist individuals with low mobility to navigate freely.
Moving on to a different aspect, Mrs. G. Shobana et al.[25]
developed a simple and minimal-cost system to acquire EEG
signals and actuate a robotic arm able to lift lightweight objects
using commands received from the Neurosky Mindwave head-
set. After obtaining the EEG signals, they are sent wirelessly to
an Arduino board through the HC-05 Bluetooth module. Then
the microcontroller commands the 3 servo motors that consti-
tute the robotic arm based on the attention level of the user. If
it’s above 60 the arm moves up with a 90◦ angle. If the medi-
tation level is above 60 the arm moves left and right, and if the
user blinks the grabbing motion is performed. The validation
protocol performed on 5 people showed that to control the arm
efficiently the user had to do 2 or more tries which confirms the
need for training for users to be able to use the system.
In another study, Muhammad Haziq Hasbulah et al.[26] devel-
oped a BCI system to associate EEG signals with Modular Self-
Reconfigurable (MSR) Dtto robot configuration. The study uti-
lizes a Neurosky Mindwave headset that connects to OpenVibe
software to process and translate EEG signals into robot con-
trol commands. Real-time experiments were conducted to test
the system’s effectiveness where users directed the robot using
motor imagery related to different body movements. Despite
the limited signal resolution of the Neurosky headset, the work
demonstrated the potential of BCI in robotic control.
In the same topic, Jozsef Katona et al.[27] implemented and

tested a brain-computer interface system to control the speed of
the Robotino robot manufactured by Festo Didactic. The sig-
nal acquisition was performed using the Neurosky Mindwave
and Mindflex through TCP/IP and USB UART connections, it’s
sent to a computer to perform the processing and visualization
of brainwaves. Then through UDP (User Datagram Protocol)
to the control unit of the Robotino robot. Then through TCP/IP
connection, the robot’s acceleration is controlled by the atten-
tion level of the robot of the user. The user validation pro-
tocol proved that to control the speed of the Robotino robot
efficiently, users had to be tutored to learn more about control-
ling their thoughts and deal more effectively with attention level
manipulation. The research was conducted during the student’s
project and presented very promising results of usability of 3.86
on a scale from 1 to 5 and an average standard deviation of
27.14 ± 8.29 cm for tests done on 7 users. The developments
and ameliorations on the accuracy of this BCI can lead to wider
spread use of these technologies.
Also, Mamunur Rashid et al.[28] developed a BCI system based
on a Neurosky Mindwave headset to control a robot in three di-
rections left, right, and forward. 6 subjects between 19 and 25
years old participated in the experiment. Data was collected us-
ing an Android application called eeg ID paired with the head-
set. The research mainly conducted three activities: Relaxing,
quick math solving, and playing games. Then, after feature ex-
traction, classification was performed to command the robot. If
the mind is relaxed, the robot will go forward, right for quick
math solving and left for playing games. The authors achieved
a high classification accuracy of 94% with 16; 17 and 17 of
true positives for the 3 classes over 18 samples in the confusion
matrix and the complete robot was successfully tested.

3. Proposed Approach

Building upon our previous successes [29], this section de-
tails the methodology for developing our EEG-based blink de-
tection dataset and system. The process involves several key
stages, outlined below:

1. Blinking Sketch: Participants follow visual cues on a
monitor that prompt specific eye blinks (left, right, or both)
to standardize data collection.

2. Neurosky Mindwave Headset: Presented in Figure 1,
this non-invasive EEG headset captures brainwave signals
and transmits them to a computer for analysis.

3. EEG Monitoring and Data Collection: Real-time mon-
itoring software displays EEG data stored in CSV format
for processing.

4. Machine Learning Classification: Algorithms classify
the blink types from EEG signals, crucial for translating
these into robotic commands.

5. ROS Integration and Gazebo Simulation: The classi-
fied signals are implemented in ROS and tested in the
Gazebo simulation environment, preparing for real-world
application.

6. Real World Deployment: The system will ultimately
control a physical robot based on the EEG-detected blink
commands, intended for assistive applications.
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The first five points are discussed in this paper, focusing on
the current state of our research and system development. Fu-
ture work will expand on the integration with ROS, simula-
tions, and deployment in practical settings. This streamlined
approach ensures each development phase is robustly tested,
paving the way for deploying effective EEG-based assistive
technologies.

Fig. 1: Neurosky Mindwave electrode position

The general system components are detailed above. Our pro-
posed approach detailed in this paper, is presented in Figure 2

4. Data Collection Protocol

Eye blink detection and classification are fundamental in var-
ious fields, such as neurological research and BCI development.
Several existing datasets provide valuable resources for study-
ing blink patterns. Still, they cannot often distinguish between
different types of blinks, limiting their utility in precise blink
classification tasks. Table 1 summarizes these datasets’ key fea-
tures and limitations.

Table 1: Summary of Existing Eye Blink Datasets

Dataset Modality Limitations
BLINK Dataset
(Georgia Tech) [30]

EEG Limited by not distin-
guishing between blink
types, impacting its utility
in BCI applications requir-
ing precise classification.

mEBAL Dataset [31] EEG, NIR,
RGB

Too complex for simple
blink classification; not
ideal for primary EEG-
based analysis.

EOG and Eye Move-
ment Dataset [32]

EOG Focuses on eye move-
ments rather than brain-
wave patterns, less suit-
able for neurological stud-
ies.

EEG Multipurpose
Eye Blink Detector
Dataset

EEG Lacks detail for differen-
tiating blink types, limit-
ing advanced BCI applica-
tions.

Acknowledging these limitations, we collected a specialized
EEG dataset to address the unmet need to distinguish between
different eye blink types.

4.1. Ethical Considerations and Consent Process
Supervised by Principal Investigator Mohamed Amine

Mhadhbi, our study adhered to high ethical standards. All par-
ticipants provided informed consent, fully understanding the
study’s procedures, associated risks, and their rights, including
the option to withdraw at any time without any consequences.

4.2. Data Privacy and Use

Data was handled with utmost confidentiality, used exclu-
sively for this research, and was shared only with the consent
of the participants.

4.3. Experiment Setup and Procedures

Participants were equipped with a Neurosky EEG headset for
a controlled task designed to simulate the real-time use of EEG
signals for operating a robotic wheelchair. The setup involved:

1. EEG Headset Configuration: The headset was carefully
fitted to each participant to ensure optimal signal acquisi-
tion with minimal noise interference and maximum com-
fort.

2. Visual Cues and Tasks: Participants watched a standard-
ized video depicting blinking actions, as shown in Figure
3, instructed to blink unilaterally or bilaterally in response
to specific cues, imitating real case scenario of robot con-
trol.

4.4. Participant Details

• Participants: The study included eleven volunteers, pre-
dominantly aged between 20 and 30.

• Comfort Measures: Each experimental session lasted
three minutes, interspersed with two-minute breaks to
minimize fatigue and ensure participant comfort.

The structured design of the sessions, including short task
durations and regular breaks, was critical in maintaining ethi-
cal standards and data integrity while also ensuring participant
comfort throughout the experiment.

4.5. Python Program for EEG Data Acquisition

A Python program automates EEG data collection through
the Neurosky headset during blink tasks. It ensures minimal er-
ror and high data integrity by capturing brainwave responses to
visual stimuli directly. The core steps of the process are sum-
marized in the Algorithm 1

Algorithm 1 EEG Data Collection and Storage

Require: None
Ensure: data eeg.csv file with EEG data

1: Initialize data structures

2: if data eeg.csv does not exist then
3: Create file

4: end if
5: Connect to MindWave, set data format to JSON

6: while elapsed time < 180 seconds do
7: Read and parse MindWave data

8: end while
9: Save data to data eeg.csv

10: Close connection

This streamlined approach ensures efficient and error-
minimized EEG data collection, capturing the participants’
brainwave responses in a structured manner.



5

Choosing the most performing algorithms

Classification algorithms

- Random Forest

- Multi-layer Perceptron (MLP)

Data Processing

- Data processing algorithms

Classification algorithms

Testing the algorithms

- LazyPredict
Training set

Test set

Data collection
- 11 participants
- Python program

INPUT

Data Split Prediction
- Blink 0 or Blink 1

- Accuracy
- Precision
- Recall
- F1- Score

OUTPUT

Validation

- Confustion Matrix
- Cross Validation

Evaluation

Fig. 2: Overview of the proposed system.

Fig. 3: The blinking sketch used as visual stimuli in the experiment.

5. Data processing

To ensure the dataset was suitable for machine learning, ex-
tensive preprocessing was necessary to anonymize and remove
sensitive and irrelevant information, such as participant names
and experiment times. The dataset, initially formatted as un-
structured lists of lists with inconsistent row lengths, underwent
significant restructuring. The preprocess pd series() function
adjusted entries for consistent formatting, comma separation,
and standardized data list lengths, crucial for cleaning the data
and setting categorical labels based on EEG signal features like
’attention’ and ’blinkStrength’. Furthermore, another algorithm
streamlined the collection and processing of data from various
categories (left, right, and both eye blinks), ensuring that the
dataset was correctly formatted and labeled for effective anal-
ysis and classification in machine learning models. This ap-
proach ensured robust data integrity and prepared the data for
efficient processing.

6. Machine Learning Algorithms for Blink Categorization

The primary goal of this project is to leverage the collected
dataset to develop robust machine learning models capable of
accurately categorizing and predicting eye blink signals. Ini-
tially, to quickly evaluate and compare the baseline perfor-
mances of various algorithms, we employed LazyPredict—a
tool that automates the process of fitting numerous models to
a dataset. This approach provided a broad overview of their po-
tential effectiveness. The results from LazyPredict highlighted

that the RandomForestClassifier was the most promising, with
an accuracy, precision, recall, and F1 score all at 0.87, and a
computational time of 4.54 seconds. Motivated by these re-
sults, we chose to proceed with Random Forest for further de-
velopment and optimization. Additionally, a Multi-layer Per-
ceptron (MLP) was also selected for its unique strengths. Each
of these methods was meticulously evaluated using several met-
rics, including the f1-score (the harmonic mean of precision and
recall), which considers both precision and recall, providing a
balanced measure of model accuracy.

6.1. Random Forest
Random Forest is an ensemble learning method for classifi-

cation, regression, and other tasks that operates by constructing
a multitude of decision trees at training time and outputting the
class that is the mode of the classes (classification) or mean pre-
diction (regression) of the individual trees.

Random Forest function: f (x) =
1
N

N∑

i=1

fi(x) (1)

where N is the number of trees and fi(x) is the prediction of the
i-th tree.

6.2. Multi-layer Perceptron (MLP)
Multi-layer Perceptron (MLP) is a class of feedforward arti-

ficial neural network. An MLP consists of at least three layers
of nodes: an input layer, a hidden layer, and an output layer.
Except for the input nodes, each node is a neuron that uses a
nonlinear activation function.

MLP function:

f (x) = σ(WT x + b) (2)

where σ is the activation function, W is the weight matrix, x is
the input vector, and b is the bias vector.

7. Results and Discussions

Throughout the study, we were able to gather a substantial
amount of data, with a total of 11464 records collected. This
dataset was split into 70% for training and 30% for testing pur-
poses.
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7.1. Evaluation metrics

The comparison of the two models’ performance, Random
Forest and MLP is shown in the Table 2 based on the f1-score, a
measure of test accuracy that considers both precision and recall
in its calculation. This metric provides a more balanced mea-
sure of a model’s performance, particularly in situations where
the data may be imbalanced.

Table 2: f1-score of Each Model by Class

Classes Random Forest MLP
Both 0.87 0.31
Left 0.87 0.52

Right 0.84 0.01

The Random Forest model performed effectively across a va-
riety of measures. The model attained an average precision of
86.33%, suggesting a high ratio of true positive identifications
over false positives. The model’s recall was 86.33 percent, indi-
cating its efficacy in finding important situations. Furthermore,
the f1-score was 86.33%, indicating a balanced categorization
performance between precision and recall. Additional informa-
tion about the classification accuracy across the various cate-
gories may be found in the confusion matrix in the Table 3

Table 3: Confusion Matrix for Blink Detection

Actual \Predicted Left Right Both
Left 87.7% 2.2% 7.6%

Right 5.0% 76.8% 8.3%
Both 7.0% 3.9% 76.7%

Table 4 presents the detailed cross-validation scores for the
Random Forest model applied to our dataset. Each fold rep-
resents a segment of the data used in the validation process,
ensuring a comprehensive evaluation of the model’s perfor-
mance. The scores highlight the model’s robustness and con-
sistency across different subsets, with the average score offer-
ing a summary measure of the model’s overall accuracy. This
approach underscores the effectiveness of the model in general-
izing across unseen data, an essential aspect of predictive mod-
eling.

Table 4: Cross-Validation Results for Random Forest Model

Fold Score
1 0.8676
2 0.8746
3 0.8811
4 0.8702
5 0.8866

Average 0.8760

As part of our evaluation, we compared the performance of
our proposed method using a Random Forest classifier with sev-
eral established EEG-based classification methods reported in
recent studies. The Table 5 summarizes the comparative results
in terms of accuracy, precision, recall, and f1-score, illustrating

the effectiveness of each method in classifying eye blink sig-
nals. This comparison is crucial for highlighting our method’s
advancements in the field, particularly in classification accuracy
and robustness against diverse datasets.

8. Concluding Remarks

The research findings detailed in this article are a testament
to the effectiveness of the employed experimental protocol. We
were able to collect useful pieces of information because this
process was carefully planned and carried out. This information
was beneficial in building a strong machine-learning model.
The model was built using the Random Forest algorithm, a
popular and powerful machine-learning technique known for
its accuracy and versatility.
The model was trained to perform a classifying eye-blinks
task. More specifically, it was designed to distinguish between
left, right, and simultaneous blinks of both eyes. The data used
to train this model was derived from EEG signals that were
collected during our research. The model demonstrated a high
degree of effectiveness in performing this classification task,
thereby validating the efficacy of our experimental protocol
and the potential of our approach.
We learned from the experience that it might be difficult for
many people to actively blink one eye, whether it is the right or
left. The ultimate objective is to control a robotic wheelchair by
eye blinking, therefore in order to effectively utilize the device,
certain face exercise programs [33] or facial neuromuscular
retraining [34] may be necessary.
With the validation of the pilot study, we are now in a position
to scale up our research. Our next step is to collect a full
dataset. This larger dataset will allow us to refine and improve
the performance of our models. The additional data will
provide a more comprehensive representation of eye blink
patterns, thereby enabling our models to learn more nuanced
and complex patterns. This, in turn, will enhance the accuracy
and reliability of our blink categorization and prediction
system.
In future works, we will use the created machine learning
algorithm and Neurosky Mindwave headset to drive a three-
wheeled robot in ROS through the Gazebo environment. A
modelization and simulation step before the implementation of
the algorithm in an ESP32 to command a real three-wheeled
robot that will be designed to replicate the same behavior as the
robotic wheelchair. This will allow us to test the effectiveness
of our approach in a controlled environment before we move
on to real-world applications.
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CLASSIFICATION DES CLIGNEMENTS DES YEUX DIRECTIONNELS À L’AIDE

D’UN CASQUE EEG À CANAL UNIQUE

Titre:
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Résumé - L’article explore une avancée technique et méthodologique dans l’utilisation des

signaux EEG pour le contrôle direct des systèmes robotiques, offrant des avantages promet-

teurs pour les personnes à mobilité réduite. Il présente une méthode novatrice où les signaux

EEG, captés lors de clignements des yeux, sont utilisés pour piloter un robot via un casque

Neurosky. L’étude vise à différencier les clignements de l’œil gauche, droit, et des deux yeux

simultanément, en développant un modèle de machine learning pour classifier ces cligne-

ments en trois catégories distinctes.

Les aspects fondamentaux abordés incluent la constitution d’une base de données es-

sentielle, l’élaboration du modèle de machine learning, ainsi que la présentation détaillée du

protocole de collecte des données, des procédures de traitement, et des algorithmes employés.

En combinant des méthodes scientifiques précises avec une orientation pratique, l’article rap-

proche la recherche théorique de ses applications concrètes, et est perçu comme une percée

majeure pour l’assistance aux personnes à mobilité réduite. Il envisage l’intégration future

de commandes basées sur les signaux EEG aux fonctionnalités robotiques, marquant un pas

significatif vers l’amélioration de la qualité de vie de ces individus.
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Abstract—Reduced mobility is a global issue affecting one in
six persons worldwide. Many studies have been conducted to
address this problem, primarily by adapting robotic technologies
to assist individuals with limited mobility, and our project is
dedicated to this purpose. This paper describes an innovative
approach to robot control using electroencephalogram (EEG)
signals derived from eye blinks. While previous works have
utilized datasets primarily capturing eye blinks, our approach
distinguishes between left, right, and both eye blinks to command
a robot. Additionally, this article outlines the development of a
machine learning model to classify eye blink signals collected
using a NeuroSky headset into three categories: Left, Right,
and Both. The data collection protocol and the results obtained
will be detailed. Furthermore, this paper describes the data
processing steps and machine learning algorithms, along with
the models’ performances. The proposed system will be effective
in aiding individuals with mobility issues once it is integrated with
commands for robot movements using EEG signals, as planned
in future works.

Index Terms—Machine learning, Neurosky, EEG signals, Mo-
bility issues, Robot movements.

I. INTRODUCTION

In our evolving world, the drive for inclusivity and auton-
omy for individuals with physical disabilities is increasingly
becoming a priority. Over 1.5 billion of the world’s population,
suffer from some form of disability [1]. Within Canada alone,
2.7% of canadians aged 15 years and older have a mobility
disability and about 20% of them consider themselves house-
bound [2]. These disabilities can arise from causes such as
conditions, accidents or health issues greatly restricting their
freedom of movement and leaving them dependent on others
for daily living.
This not only poses logistical challenges but also has profound
psychological implications [3] because human well-being is
deeply linked to the need for independence as well as the
ability to perform daily tasks [4], robotic wheelchairs promise
to restore this autonomy by merging artificial intelligence with
automated systems.
Neuroscience, particularly Brain Machine Interfaces (BCI) and
technologies like Electroencephalogram (EEG), have revolu-
tionized this field. EEG translates brain waves into commands,
allowing even those with severe disabilities to control devices
by thought. Steady-State Visually Evoked Potentials (SSVEP)
is another method using visual stimuli to produce brain re-

sponses for commanding robots [5] .
However, a challenge arises from the unique brain wave
patterns among individuals. There’s a need for diverse data
to refine the precision of robotic systems.
Addressing this gap, the author has initiated a project to
gather a unique data-set, exploring the integration of EEG and
SSVEP with robotic wheelchairs. The forthcoming sections
discuss the data collection process, insights, and implications
for the future of robotic wheelchairs, advocating for universal
mobility rights.

This work is divided into four sections. Fundamentals and
related works are briefly outlined in section II. The data
collection protocol, its various aspects as well as data pro-
cessing steps and algorithms are detailed in section III. IV is
devoted to the results and the data visualisation. The machine
learning algorithms used are also detailed with an evaluation
of their performance. Finally, general conclusion, perspectives
and future works are evoked in V.

II. BACKGROUND

A. Fundamentals

1) Electroencephalogram (EEG): Electroencephalography
(EEG) is a non-invasive neurodiagnostic process that detects
and records electrical activity from neurons in the brain [6].
The EEG monitors voltage variations caused by ionic current
flows inside brain circuitry by inserting electrodes on the
scalp. This approach gives real-time information on brain
activity and is useful for studying brain processes, detecting
neurological illnesses, and developing brain-computer
interfaces.

The human brain generates various electrical signals, of-
ten categorized into distinct frequency bands: alpha, beta,
theta, gamma, and delta waves. Each band is associated with
specific cognitive states and processes, and understanding
these associations is crucial for both neuroscience and clinical
applications.
-Alpha Waves (8-12 Hz) are typically observed in relaxed
states, such as when a person is awake but resting with closed
eyes. These waves signify a state of relaxed alertness and are
associated with the inhibition of irrelevant stimuli, enabling
focused attention on specific tasks [7]. Alpha activity is mainly



observed in the occipital lobe and is thought to be involved
in visual processing and maintaining a calm mental state
[8]. Studies suggest that alpha waves can be influenced by
cognitive tasks, highlighting their role in attentional processes
and cognitive workload [7][8].
- Beta Waves (12-30 Hz) are linked with active thinking,
problem-solving, and concentration. They commonly occur
during states of alertness and engagement with the environ-
ment. Beta activity is related to information processing and
motor function execution [7]. Increased beta activity has been
noted during tasks requiring focused attention and cognitive
effort, such as complex problem-solving [8]. Beta waves are
also related to anxiety and stress responses, with elevated beta
levels indicating higher arousal [7][8].
- Theta Waves (4-8 Hz) are mainly associated with light sleep,
relaxation, and meditative states, and are prominent during
memory retrieval and creative tasks [9]. Significant in the hip-
pocampus, theta waves support memory encoding and retrieval
[9][10]. The interaction between theta and gamma rhythms is
critical for memory and navigation, suggesting a synergistic
role in enhancing cognitive functions [10][11]. Disruptions in
theta activity are linked to cognitive impairments, underscoring
their importance in cognitive health [10].
- Gamma Waves (30-100 Hz), the fastest brain waves, are
associated with high-level cognitive functions such as per-
ception, attention, and consciousness. Gamma activity reflects
the synchronous firing of neurons essential for information
processing and integration across brain regions [7][12]. It plays
a key role in binding sensory information, allowing the brain
to form coherent perceptions from disparate stimuli [12][13].
Furthermore, gamma waves are involved in complex cognitive
functions like problem-solving and memory consolidation,
especially in emotional memory contexts [12][14].
- Delta Waves (0.5-4 Hz), the slowest brain waves, are
primarily observed during deep sleep. They are vital for
restorative sleep processes and are linked to the body’s healing
and regeneration mechanisms [7][8]. Delta activity is crucial
for maintaining homeostasis and is associated with the release
of growth hormones during sleep [7]. Disruptions in delta wave
activity can lead to sleep disorders and are associated with
cognitive deficits, particularly affecting memory and learning
[7][8]

2) Brain Computer Interface (BCI): The term ”Brain-
Computer Interface” (BCI) describes a direct line of
communication set up between a person’s brain and an
external system or device with no interference of body parts
[15]. A BCI uses signal processing techniques to collect,
decode, and translate brain signals, which are frequently
obtained through EEG or other neuro-imaging techniques,
into instructions that may operate external hardware or
software programs. Such interfaces have the potential to
revolutionise a variety of fields, including helping people with
mobility issues, improving cognitive function, and promoting
new human-machine relationships.

3) Multilayer Perceptron (MLP): Multilayer Perceptron
(MLP) is a type of feed-forward and the most common neural
network [16]. Comprising of multiple layers of interconnected
nodes or neurons, MLP processes information using a system
of weights, biases, and activation functions. It is trained using
back-propagation and can model non-linear relationships.

4) Random Forest: Random Forest is an ensemble machine
learning approach that builds a large number of decision trees
during training and creates an output by aggregating each
individual tree’s predictions [17]. This aggregation usually
involves taking the mode (for classification tasks) or mean
(for regression tasks) of the predictions. When compared to
individual decision trees, the technique improves accuracy,
resilience, and control over over-fitting.

5) F1-Score: The F1 Score is a statistic for classification
systems that combines precision and recall to offer a measure
of accuracy, particularly in circumstances when class distribu-
tion is unequal. With values ranging from 0 to 1, a higher
F1 Score indicates better classification performance, taking
into account both positives and false negatives. The F1-score
formula is :

F1 = 2×precision×recall
precision+recall

6) Confusion Matrix: A Confusion Matrix is a tabular
representation used in classification to understand an
algorithm’s performance.” For a binary classification task,
it displays the number of true positive, true negative, false
positive, and false negative predictions.

7) Principal Component Analysis (PCA): In order
to reduce the complexity of high-dimensional datasets
while preserving as much variation as feasible, Principal
Component Analysis (PCA) is frequently employed for
visualisation [18].It decreases the number of data dimensions
to two or three, which may then be represented graphically
with scatter plots or other techniques. In mathematical terms,
the objective of principal component analysis (PCA) is to
identify vectors in a dataset that account for the majority of
the variation.

B. Related Works

By monitoring eye blinks, R.Avudaiammal et al [19] have
utilised the Neurosky Mindwave headset to drive an Arduino
robot. The HC-06 Bluetooth module transmits the acquired
data wirelessly to an Android application, which then extracts
it for the Arduino microcontroller to be used in controlling the
robot. An interface with two parts and a primary portion with
four arrows is shown to the participant. The participant selects
which highlighted arrow to click by blinking at the 0.5-second
intervals where each arrow is highlighted.

The goal of Ravirahul B M et al.[20] is to develop a BCI
that is easy to use and doesn’t require any prior knowledge.
An EEG headset is worn by the user to capture brain signals,



which are then processed to eliminate background noise.
Features are then extracted, classified by machine-learning
algorithms and used to control the robots. A video camera
is used to give the user visual feedback.

The purpose of the article by Chandra Babu et al. [21] is
to propose a Brain Computer Interface (BCI) based Arduino
Home Automation System for physically challenged individ-
uals. The system is designed to help paralyzed and disabled
persons to operate home appliances easily and efficiently. The
article aims to highlight the importance of automation in smart
homes and the use of IoT technology to control devices. The
authors also aim to address the limitations of existing voice-
operated systems and propose a more effective solution using
BCI technology.

III. MATERIALS AND METHODS

A. Data collection Protocol

Understanding the importance of ethical standards in
research, we crafted a consent agreement, adhering to
the highest principles of research ethics. This document
clearly outlines the study’s objectives, the nature of the data
collected, and the duration of participation. Most importantly,
it emphasizes each participant’s right to withdraw from the
study at any time without any consequences, ensuring their
comfort and autonomy throughout the process.
Before any data collection began, we took the time to engage
with each participant, encouraging them to fully review the
consent form and address any queries they might have. This
step was essential to ensure that everyone involved felt valued
and informed.
The study did not restrict participants based on age, gender,
ethnicity, or health condition. The only condition was that
participants understood the study’s goals and could provide
their informed consent freely. This inclusive approach helps
us develop a robotic wheelchair controlled by EEG signals,
designed to assist anyone in need of mobility support. By
collecting data from a diverse demographic, we aim to ensure
that our system is adaptable and beneficial for a broad
spectrum of potential users.
Confidentiality is essential in our study. Each participant
decided whether their data could be shared with the scientific
community, reinforcing our commitment to respecting and
protecting individual privacy.

1) Step 1: Participants were asked to wear a Neurosky EEG
headset and watch a video of a sketch of a woman blinking
(see Fig 1). They were instructed to blink when the sketch
flashed: if the sketch flashed with the right eye, the participant
was required to blink with the left eye, and vice versa. If the
sketch blinks with both eyes, he should do the same. The
experiment revealed no physical risks or discomforts related
to participation in the study. It consisted of three sessions of
3 minutes each, with 2-minute breaks between each session.

2) Step 2: While the participant is following the sketch
with the blink actions, a Python program acquires the signals
collected by the Neurosky headset and saves them into a

Fig. 1. The sketch of the woman blinking which the participants were asked
to follow.

START

Check & Prepare
data_eeg.csv

Collect & Store
EEG Data

User Input & Save
Updated Data 

Check & Prepare
data_eeg.csv

FINISH

Fig. 2. Data collection flowchart

dataset. The flowchart in Figure2 provides a summary that
clarifies how the program works:

After data collection, it was essential to use data processing
and machine learning algorithms to build a model that could
classify blink signals into three categories: right, left, and both.

B. Data processing

Machine learning methods could not be directly applied to
the dataset. It contained information that was necessary for
data collection but not for learning, such as the participant’s
name (which should be removed because it must remain
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Fig. 3. Preprocess Pandas Series Flowchart

confidential) or the experiment’s start time. The database that
was obtained was a list of lists as well, and it has to be
changed. The application did not execute data separation, and
some elements had spaces beside the data value. The rows
weren’t all the same length, either. If the learning process was
to be carried out properly, this issue needed to be rectified. The
following algorithms presented in Figure and Figure show the
two primary processing functions:

The dataframe supplied on a single line is expanded across
many lines by the preprocess pd series() function. We’ll
create lists out of all the values from each data item that aren’t
separated by commas and may also contain spaces. The length
will then be uniform by shortening the longest listings.

In Algorithm 3 presented in Figure 4, we collect data from
the left, right and both databases. We’ll extract the dataframes
and extract the columns we need (’attention’, ’blinkStrength’,
’delta’, ’highAlpha’, ’highBeta’, ’highGamma’, ’lowAlpha’,
’lowBeta’, ’lowGamma’, ’meditation’, ’theta’ ) . Then, using
the preprocess pd series() function, we obtain an exploded
dataframe with several rows and add the Label column to
annotate our data; 0 for both, 1 for left and 2 for right.

IV. RESULTS AND DISCUSSION

A. Preprocessed data

Ten volunteers from varied backgrounds participated in
the study. About 90% of the participants were between the
ages of 20 and 30. A total of 11464 data records were gathered.

A piece of the data visualised by the PCA method is shown
in Figure 6. The red points denote both blinks, the blue points
the left blink, and the green dots the right blink.

START

Initialize data list 

For each folder in
data_path

For each subfolder
in folder_path

Read and filter CSV

FINISH

 Preprocess
DataFrame

Add label column 

Append to data list

Fig. 4. Data Collection from Folders Flowchart

Fig. 5. Both, Left and Right blink data combined and visualized through
PCA algorithm

B. Machine learning algorithms

The purpose of this project is to use the dataset to generate
reliable models for blink categorization and prediction. Two
algorithms were applied to achieve this: Random Forest, a ma-
chine learning technique, and Multi-layer Perceptron (MLP)
which is a neural network approach. Figure 3 compares the
findings for the two models based on the f1-score, a test
precision metric that accounts for both accuracy and recall
when determining the score.

Among the methods used, the Random Forest approach pro-
duced the best results for data categorization. Below is shown



Fig. 6. F1-Score of each model[22]

the confusion matrix for the Random Forest classification:

TABLE I
CONFUSION MATRIX FOR BLINK DETECTION

Actual \Predicted Left Blink Right Blink Both Blinks
Left Blink 87.7% 2.2% 7.6%
Right Blink 5.0% 76.8% 8.3%
Both Blinks 7.0% 3.9% 76.7%

V. CONCLUDING REMARKS

The results presented in this article show that the
experimental protocol used allowed us to get useful data
that helped to develop a robust machine learning model
using Random Forest that demonstrated its effectiveness in
classifying left, right, and both eyes blinks based on the EEG
signals collected.

We learned from the experience that it might be difficult
for many people to actively blink one eye, whether it is the
right or left. The ultimate objective is to control a robotic
wheelchair by eye blinking , therefore in order to effectively
utilise the device, certain face exercise programs [23] or
facial neuromuscular retraining [24] may be necessary.
In future works, we will use the created machine learning
algorithm and Neurosky Mindwave headset to drive a three-
wheeled robot in the Robot Operating System (ROS) through
the gazebo environment. A modelisation and simulation step
before the implementation of the algorithm in an ESP32 to
command a real three-wheeled robot that replicates the same
behaviour as the robotic wheelchair.
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CONCLUSION GÉNÉRALE

4.1 Synthèse des Contributions Principales et Objectifs Accomplis

Cette thèse s’inscrit dans le cadre de l’amélioration des systèmes d’assistance pour les

personnes à mobilité réduite grâce à l’exploitation des signaux EEG et des interfaces cerveau-

ordinateur (BCI). L’objectif principal de cette recherche était de concevoir un système effi-

cace permettant la commande semi-autonome d’un fauteuil roulant en utilisant l’analyse des

clignements des yeux. Les principales réalisations de cette étude sont les suivantes :

— Développement d’un modèle de détection des clignements oculaires avec une

précision de 95,15 %, basé sur l’analyse des scalogrammes EEG et l’utilisation de

l’architecture GoogLeNet associée à un classifieur Naı̈ve Bayes et en utilisant la

base de données meBaL.

— Collecte d’une base de données minimale pour tester l’efficacité d’un casque à un

seul électrode à detecter le clignement distinct des yeux.

— Classification des types de clignements (gauche, droit, simultané) avec une précision

globale de 86,33 %, ouvrant ainsi la voie à des commandes plus diversifiées et per-

sonnalisables.

— Proposition d’une architecture BCI intégrable dans un système robotisé, démontrant

la faisabilité technique et l’intérêt d’une telle approche pour améliorer l’autonomie

des utilisateurs.

Ces résultats attestent de l’efficacité des méthodes proposées et constituent une avancée

significative dans l’intégration des signaux EEG pour la commande des dispositifs d’assis-

tance.
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4.2 Limitations et Contraintes Identifiées

Malgré les performances encourageantes du système développé, plusieurs limitations

ont été identifiées au cours de cette étude :

— Personnalisation nécessaire pour chaque utilisateur : L’efficacité du modèle re-

pose sur un calibrage spécifique à chaque individu, ce qui peut restreindre son

déploiement à grande échelle.

— Variabilité des signaux EEG : Les signaux enregistrés peuvent être influencés

par des facteurs externes tels que la fatigue, l’état émotionnel ou les interférences

environnementales, nécessitant des algorithmes de compensation plus robustes.

— Ergonomie des interfaces BCI actuelles : Les dispositifs EEG commerciaux,

comme le casque MindWave de NeuroSky, bien que pratiques, peuvent manquer

de précision et de confort pour un usage prolongé.

— Intégration matérielle et latence : La transition du modèle vers une application en

temps réel pose des défis en termes d’optimisation du traitement des données et de

réduction du délai de réponse.

Ces contraintes soulignent la nécessité d’une amélioration continue du système afin

d’assurer une interaction plus intuitive et universelle avec les utilisateurs.

4.3 Perspectives de Recherche et Améliorations Futures

Pour dépasser ces limitations, plusieurs axes d’amélioration sont envisagés :

1. Amélioration des Algorithmes de Traitement des Signaux EEG

— Développement de modèles d’apprentissage plus avancés (réseaux de neurones

récurrents, transformers) pour améliorer la robustesse et la généralisation du système.

— Intégration de techniques de traitement du signal en temps réel pour compenser les

variations des signaux EEG et minimiser les erreurs de classification.
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2. Optimisation de l’Ergonomie et de l’Expérience Utilisateur

— Exploration de nouveaux capteurs EEG plus précis et confortables, permettant une

meilleure adhésion des utilisateurs.

— Réduction de la nécessité de calibrage individuel via des modèles adaptatifs ca-

pables d’apprendre de nouveaux profils d’utilisateurs.

3. Déploiement du Système dans un Environnement Robotique Réel

— Tests de l’algorithme de classification des clignements sur un robot mobile à trois

roues dans un environnement simulé sous ROS et GAZEBO.

— Intégration du système dans un fauteuil roulant robotisé, permettant une valida-

tion en conditions réelles avant une possible industrialisation.

— Collaboration avec des spécialistes en rééducation pour adapter le système aux be-

soins spécifiques des personnes à mobilité réduite.

Ces travaux futurs permettront d’affiner le modèle actuel et de garantir une solution plus

fiable, efficace et accessible pour les utilisateurs finaux.

4.4 Conclusion Personnelle

En conclusion, cette recherche représente une avancée significative vers la mise en

place de solutions de mobilité plus autonomes et intelligentes pour les personnes en situation

de handicap. L’exploitation des signaux EEG, couplée aux progrès en intelligence artificielle

et en robotique, offre des perspectives prometteuses pour le développement de systèmes d’as-

sistance plus naturels et intuitifs. À long terme, ces technologies pourraient non seulement

améliorer la qualité de vie des utilisateurs, mais également ouvrir la voie à des dispositifs

entièrement autonomes, capables d’interpréter en temps réel les intentions de leurs utilisa-

teurs. Ce travail pose ainsi les bases d’une nouvelle génération de technologies BCI adaptées

aux besoins réels des personnes à mobilité réduite, transformant les aides à la mobilité en

véritables extensions des capacités humaines.
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réalisé par Amna Smaoui et Mohamed Amine Mhadhbi



Annexe A : Simulation et Modélisation du Comportement Vibratoire
d’une Chaise Roulante Robotisée

Ce projet a abordé la simulation et la modélisation du comportement vibratoire d’une chaise
roulante robotisée, avec un accent particulier sur l’amélioration du confort et de la fonctionnalité
pour les personnes à mobilité réduite. Les objectifs principaux étaient de comprendre et de minimiser
les vibrations générées par le moteur et les irrégularités du terrain, et d’accroître l’adaptabilité de
la chaise grâce à des technologies avancées. Les analyses modales ont révélé des fréquences natu-
relles et des modes de vibration significatifs, mettant en évidence des mouvements rigides à basse
fréquence et des vibrations plus complexes à des fréquences plus élevées. La modélisation effectuée
avec SolidWorks a permis d’identifier les zones de contrainte et de déformation, essentielles pour
l’optimisation de la conception. En se basant sur ces résultats, plusieurs recommandations ont été
proposées, incluant l’augmentation du diamètre des vis pour une meilleure rigidité, l’utilisation de
matériaux plus robustes pour une durabilité accrue, et l’intégration de systèmes d’amortissement
pour atténuer les vibrations. Ces recommandations visent à améliorer la durabilité et le confort de
l’utilisateur, offrant ainsi une base solide pour de futures améliorations dans la conception des chaises
roulantes robotisées.



1 Introduction

L’histoire des chaises roulantes remonte à des siècles, avec des évolutions marquantes qui reflètent
les progrès technologiques et les changements dans la perception sociale du handicap. Initialement,
les chaises roulantes étaient de simples dispositifs conçus pour assurer la mobilité de base. Cepen-
dant, avec le temps, elles sont devenues plus sophistiquées, intégrant des matériaux plus légers, des
designs ergonomiques, et des technologies avancées pour améliorer le confort et l’indépendance des
utilisateurs.
La robotique, en tant que domaine d’innovation rapide, a commencé à jouer un rôle crucial dans la
transformation des chaises roulantes. Les développements récents dans ce domaine ont ouvert des
voies inédites pour une mobilité accrue et une autonomie améliorée. Les chaises roulantes robotisées
d’aujourd’hui intègrent des technologies telles que le contrôle vocal, la navigation autonome, et les
systèmes d’assistance intelligents, offrant ainsi une liberté sans précédent aux personnes à mobilité
réduite.
En parallèle, l’impact social de ces avancées est significatif. Les chaises roulantes robotisées ne sont
pas seulement des outils de mobilité ; elles représentent un moyen d’inclusion sociale, permettant à
leurs utilisateurs de participer plus activement à la vie communautaire et professionnelle. De plus,
elles témoignent de l’évolution des attitudes sociétales envers le handicap, marquant un passage
d’une vision assistancielle à une approche valorisant l’autonomie et l’indépendance.
Les défis spécifiques rencontrés par les personnes à mobilité réduite, tels que la navigation dans des
espaces restreints ou sur des terrains inégaux, sont progressivement abordés par ces innovations.
La capacité des chaises roulantes robotisées à s’adapter à divers environnements et à répondre aux
besoins individuels souligne leur rôle crucial dans l’amélioration de la qualité de vie.
En conclusion, les chaises roulantes robotisées ne sont pas seulement le produit de l’ingénierie et de
l’innovation technologique ; elles sont également le reflet d’un engagement sociétal envers l’inclusion
et l’accessibilité. En examinant leur évolution et leur impact, on reconnaît non seulement les progrès
techniques, mais aussi un changement plus profond dans notre manière de concevoir la mobilité et
l’autonomie pour tous.
Notre projet incarne cette innovation, en se concentrant sur une chaise roulante robotisée conçue
pour allier confort, fonctionnalité et adaptabilité. À l’aide de SolidWorks, un logiciel de CAO/FAO
leader dans l’industrie, Nous avons entrepris une simulation complète de la chaise pour évaluer sa
performance structurelle et fonctionnelle.
En effet, l’analyse modale joue un rôle clé dans cette évaluation, en identifiant les fréquences natu-
relles de la structure qui pourraient résonner avec les forces extérieures, telles que les irrégularités
du sol ou les vibrations du moteur, potentiellement nuisibles au confort de l’utilisateur.

L’analyse de réponse forcée ensuite permet de simuler le comportement dynamique de la chaise
face à ces excitations extérieures, en fournissant des informations précieuses sur la manière dont les
différentes parties de la chaise réagissent à des fréquences spécifiques. Ces données sont indispen-
sables pour l’optimisation de la conception, où des ajustements peuvent être effectués pour améliorer
l’isolation vibratoire et renforcer la stabilité de la chaise. L’objectif est d’atteindre un équilibre où
performance mécanique et confort utilisateur coexistent sans compromis, garantissant que la chaise
roulante ne se contente pas de déplacer l’utilisateur, mais lui offre une expérience de déplacement
sûre, confortable et agréable.
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Figure 1 – Chaise Roulante Robotisée

2 Modélisation de la Chaise Roulante

2.1 Spécifications Techniques et Dimensionnelles

— Poids Maximum Supporté : 120 kg.
— Vitesse maximale : 6 Km/h.
— Batterie :

— Marque : PowerTech Systems
— Type : Lithium-ion
— Tension Nominale : 48V
— Capacité : 20Ah
— Autonomie Approximative : Jusqu’à 30 km
— Temps de Charge : 4-6 heures
— Poids : Environ 10 kg
— Dimensions : 300 x 150 x 100 mm
— Référence : PowerTech PT48020

— Systèmes de contrôle :
— Les commandes vocales.
— Les signaux cérebraux.
— Joystick.

Les plans de conception
— Structure : Cadre en acier ASTM AC36.
— Assise :Mousse à mémoire de forme

— Largeur de l’assise : 44 cm (pour assurer le confort).
— Profondeur de l’assise : 42.03 cm.
— Hauteur du dossier : 38.07cm.
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— Repose pièds :
— Longueur : 14.5cm.
— Largeur : 9.35 cm (pour permettre le passage dans les portes standard).
— Epaisseur : 2 cm.

— Moteurs : Moteur DC à Courant Continu 250W
— Marque : Maxon Motor
— Type : Moteur DC Brushless
— Puissance : 250W
— Couple : 15 Nm
— Tension Nominale : 48V
— Vitesse Maximale : 3000-4000 rpm
— Poids : Environ 3 kg
— Dimensions : Diamètre 50 mm, Longueur 100 mm
— Référence : Maxon EC-4pole 250

— Roues :
— Marque : TerrainMaster Tires
— Roues avant : Diamétre 16cm, pivotantes.
— Roues arrière : Diamétre 20cm, motorisées.
— Largeur de la Roue : 5 cm (2 pouces)
— Bande de Roulement : Conception agressive tout-terrain pour une traction maximale.
— Matériau : Caoutchouc de haute qualité résistant à l’usure.
— Compatibilité : Universelle avec la plupart des chaises roulantes et scooters électriques.
— Charge Maximale : Jusqu’à 100 kg par roue.

2.2 Dimensions précises :

— Longueur totale : 75.52 cm
— Largeur totale : 63.14 cm (pour permettre le passage dans les portes standard).
— Hauteur totale : 103.2 cm.

3 Analyse Modale

1. Les deux premiers modes, montré dans la figure 1 , ont une fréquence de 0 Hz, ce qui indique
qu’il s’agit de modes rigides dans lesquels la structure ne se déforme pas mais se translate
ou tourne dans son ensemble. Cela est dû à des contraintes insuffisantes ou à des degrés de
liberté non restreints dans le modèle de simulation. Il est courant que le mode initial ait
une fréquence de 0 Hz, ce qui indique que le modèle peut se déplacer dans l’espace sans être
soumis à des forces de rappel.

2. Le troisième mode, montré dans la figure 2, a une fréquence très basse de valeur ≈ 0.0001682Hz,
ce qui indique que la vibration est flexible. Ce mode présente une déformation plus complexe,
avec différents composants de la chaise se déplaçant dans des directions opposées. Il s’agit
d’un état d’énergie plus élevé, et la forme du mode peut indiquer où un renforcement est
nécessaire et où les matériaux peuvent être ajustés pour de meilleures performances.

3. Ce mode est lié à un modèle de vibration dans lequel la structure oscille naturellement
lorsqu’elle est déclenchée à une fréquence de 10,654 Hz. Il s’agit d’un état d’énergie plus
élevé, et la forme du mode suggère les zones qui necessitent un renforcement et les matériaux
qui peuvent être ajustés pour améliorer les performances. Les endroits représentés en rouge
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(a) (b)

Figure 2 – (a). Mode 1, (b).Mode 2

Figure 3 – Mode 3

sont ceux qui se déplacent le plus, tandis que les endroits représentés en bleu sont ceux qui se
déplacent le moins. Ce mode présente une déformation plus complexe, les différents éléments
de la chaise se déplaçant dans des directions opposées.

4. Le mode 5, comme le montre la figure 4, a une fréquence propre ≈12,92 Hz. Dans ce mode,
les différentes parties de la chaise se déplacent avec des amplitudes et des phases différentes
lorsque la structure est excitée à cette fréquence. La forme du mode, représentée par le
gradient de couleur sur la chaise, indique comment les différentes parties de la chaise se
déforment. Le repose-pieds subit la plus grande déformation, tandis que le reste de la chaise,
représenté en bleu, est essentiellement constitué de points nodaux où la déformation est
minimale, presque inexistante.
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Figure 4 – Mode 4

Figure 5 – Mode 5

4 Caractérisation des Vibrations

4.1 Les sources potentielles de vibrations dans la chaise roulante

Dans une chaise roulante robotisée, les vibrations peuvent provenir de plusieurs sources, affectant
le confort et la sécurité de l’utilisateur. L’analyse modale effectuée révèle les fréquences naturelles de
la chaise roulante robotisée et les modes de vibration associés. Les sources potentielles de vibrations
sont identifiées en examinant les zones de la chaise qui présentent les plus grandes déformations dans
chaque mode.

1. Moteurs (Maxon Motor) :
— Vibrations dues à la vitesse de rotation (3000-4000 rpm).
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— Transmission des vibrations à travers les systèmes de transmission.

2. Systèmes de transmission et de fixation :
— Vibrations induites par des désalignements ou des imperfections dans les engrenages ou

les courroies.

3. Roues (TerrainMaster Tires) :
— Vibrations causées par des roues déséquilibrées ou endommagées.
— Transmission de vibrations dues à des surfaces de roulement irrégulières.

4. Cadre de la chaise : (acier ASTM AC36) :
— Vibrations au niveau des points de fixation et de support du siège et des repose-pieds.

5. Assise en mousse à mémoire de forme :
— Transmission de vibrations à travers le matériau de l’assise.

6. Repose-pieds :
— Vibrations aux points de pivotement.

7. Repose-tête :
— Vibrations perceptibles au niveau de la tête et du cou de l’utilisateur à des fréquences

supérieures.

4.2 Les données de caractérisation des vibrations pour chaque source :

L’étude modale approfondie du chaise roulante robotisé a fournit les informations cruciales sur
les sources de vibrations susceptibles d’affecter l’expérience de l’utilisateur. Tout d’abord, comme
indiqué dans les modes 3 et 5, les moteurs électriques Maxon, qui tournent à une vitesse de 3 000
à 4 000 tr/min, vont provoquer des vibrations dans les systèmes d’entraînement et les structures de
support. Ces vibrations peuvent alors résonner à des fréquences telles que 10,1682 Hz et 12,92 Hz.
Ces fréquences sont particulièrement importantes car elles se situent dans la plage où les vibrations
commencent à nuire au confort humain. La rigidité et les qualités de suspension du châssis en acier
ASTM AC36 peuvent amplifier les vibrations causées par les roues, dont les bandes de roulement
sont conçues pour une traction optimale. Cela est particulièrement vrai lorsque le fauteuil se déplace
sur un terrain accidenté.

Des amplitudes plus élevées dans le mode 4 indiquent des vibrations au niveau des points de
fixation et d’appui, qui sont portés par le châssis de la chaise avec l’assise en mousse à mémoire de
forme et les repose-pieds, qui ont été dimensionnés avec précision pour le confort et l’accessibilité.
Cela signifie qu’il convient d’accorder une attention particulière à la disposition et à la fixation de
ces éléments afin d’améliorer la rigidité et l’absorption des vibrations. En outre, l’appui-tête est
une source potentielle de vibrations notable en raison de sa position élevée et de sa proximité avec
l’utilisateur, ce qui accroît sa sensibilité aux fréquences élevées de vibrations susceptibles d’être
transmises directement à la tête de l’utilisateur, comme le montre le mode 5.

5 Modélisation des Vibrations

Pour l’analyse vibratoire du chaise roulante, une charge répartie de 1200 N a été appliquée à la
zone d’assise dans SolidWorks pour simuler le poids maximal d’un utilisateur, soit environ 120 kg,
comme montré dans la figure 5. Cette approche fournit une représentation réaliste de la répartition
de la charge lors d’une utilisation réelle. SolidWorks a été choisi pour ses capacités de simulation
robustes. Les roues ont été définies comme des conditions limites fixes pour imiter l’état statique
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du chaise roulante, et une gamme de fréquences vibratoires de 1 Hz à 100 Hz a été appliquée au
modèle. Cette plage englobe les fréquences susceptibles d’être rencontrées dans des scénarios réels,
depuis les chocs à basse fréquence liés au franchissement d’un seuil jusqu’aux fréquences plus élevées
susceptibles d’être rencontrées sur des terrains accidentés. Les outils de simulation de SolidWorks ont
permis d’examiner en détail la réponse du chaise roulante à ces vibrations, en mettant en évidence
les zones de contrainte et de déformation potentielles susceptibles d’affecter la durabilité et le confort
de l’utilisateur.

Figure 6 – Charge répartie

6 Analyse des Vibrations :

L’analyse de réponse forcée, combinée avec l’analyse modale, permet de prédire les réponses
vibratoires de la chaise à des excitations spécifiques, telles que les surfaces de route, le fonctionnement
du moteur ou d’autres sources dynamiques externes. Cela aide à identifier les fréquences auxquelles
des mesures d’atténuation des vibrations doivent être appliquées pour assurer le confort et la sécurité.

— Modes de basse fréquence (Modes 1 à 3) : ces modes affichent des fréquences proches
de 0 Hz, donc se sont des modes statiques ou des mouvements de corps rigides, associés à des
translations ou rotations globales de la structure.

— Modes de fréquence intermédiaire (Modes 7 à 9) : Ces modes leurs fréquences varient
de 15,427 Hz à 49,645 Hz. À ces fréquences, les vibrations peuvent devenir potentiellement
inconfortables pour l’utilisateur. Ces modes sont importants à étudier pour la durabilité de
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Figure 7 – Réponse forcée

la chaise et le confort vibratoire.
— Modes de haute fréquence (Modes 10 à 15) : Ces fréquences, qui varient de 50,478 Hz

à 96,571 Hz, sont au-delà de la plage de fréquence la plus sensible pour le confort humain,
mais elles sont cruciales pour l’intégrité structurelle. À ces niveaux, les composants internes,
les fixations et les interfaces électroniques peuvent être affectés par des vibrations à haute
fréquence.

La figure 7 montre comment les vibrations affectent une chaise roulante. Les vis sont la partie
la plus faible de l’ensemble. Même si elles sont petites, les vis supportent beaucoup de tension.
C’est parce qu’elles assurent la solidité du chaise roulante. L’objectif de cette figure est de montrer
l’importance des écrous pour l’équilibre du chaise roulante. Cela montre à quel point il est important
de choisir des objets solides et des méthodes de construction pour fabriquer une chaise roulante. Il
faudra utiliser un métal plus résistant pour les vis ou intégrer des éléments en caoutchouc dans la
conception du fauteuil pour éviter les problèmes de vibrations.

7 Optimisation de la Conception :

Après avoir effectué une analyse de réponse forcée combinée à une analyse modale, il a été observé
que les vis étaient particulièrement sensibles à la déformation due aux vibrations. Pour améliorer
ces résultats, on pourrait envisager de modifier le diamètre des vis. L’augmentation du diamètre
augmenterait leur rigidité, réduisant ainsi l’amplitude des vibrations qu’elles subissent sous l’effet de
la charge. Pour ce faire, on pourrait choisir des vis d’un diamètre nominal plus grand, qui répartiraient
mieux les contraintes et pourraient supporter des charges plus élevées sans se déformer.
En outre, d’autres mesures pourraient inclure l’utilisation de vis fabriquées dans des matériaux
plus résistants à la traction, l’utilisation d’un plus grand nombre de vis pour répartir la charge plus
uniformément, ou même la modification de la conception des joints pour réduire la concentration des
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(a) (b)

Figure 8 – (a). La roue, (b).Les vis

contraintes sur les vis individuelles. Il est également essentiel de prendre en compte les implications
de ces changements sur la conception globale, telles que l’impact sur le poids, la fabricabilité et le
coût.
Dans notre cas, on a choisis de changer le diametre nominale des vis de 4mm à 6mm, la réponse
vibratoire est montré par la figure 8.

Figure 9 – Solution proposée

Sur le plan pratique, il faut vérifier et serrer les vis régulièrement pour assurer la sécurité des
personnes qui l’utilisent et pour que l’objet dure longtemps.
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8 Conclusion Générale

Les aspects vibratoires de la chaise roulante ont été rigoureusement analysés dans ce rapport.
Lorsqu’on examine l’analyse modale, on peut observer l’identification des fréquences naturelles ainsi
que les modes de vibration. Cette identification permet de révéler les mouvements rigides à basses
fréquences et aussi les vibrations particulières par fréquences hautes. Après cela, une analyse ap-
profondie des vibrations a révélé leurs causes principales, à savoir : le fonctionnement du moteur
ainsi que le mouvement rotatif des roues. Cette observation met bien en avant comment leur posi-
tionnement peut influencer significativement tant sur la stabilité du système que sur son aptitude à
absorber ces phénomènes vibratoires. Pour réaliser la modélisation précise des vibrations, nous avons
fait appel à SolidWorks, qui a simulé le poids réel d’un utilisateur. Cette étape a été cruciale car
elle nous a permis de localiser avec précision les zones sujettes aux contraintes et aux déformations.
L’étude a bénéficié d’une analyse poussée des vibrations, ce qui nous a permis de prévoir précisément
la réponse du système aux différents types d’excitations. Ces résultats ont été cruciaux dans la dé-
cision de quelles fréquences doivent être atténuées. Les analyses effectuées ont permis d’optimiser la
conception en proposant différentes modifications pour accroître sa rigidité. Parmi ces ajustements
figurent notamment l’augmentation du diamètre des vis ainsi que l’utilisation de matériaux plus ro-
bustes. En cherchant à améliorer la durabilité et le confort de l’utilisateur, ces ajustements reflètent
une approche intégrée visant à surmonter les défis posés par les vibrations dans cette chaise roulante
robotisée.
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ANNEXE II

POSTER DE PARTICIPATION AU FORUM INNOVATION, INGÉNIERIE,

INFORMATIQUE ET ENTREPRENEURIAT (FI3E) EN 2023

Le poster intitulé ”Systèmes robotiques pour chaises roulantes : autonomie accrue pour

personnes à mobilité réduite” présente le projet de recherche visant à améliorer la mobilité

des personnes en situation de handicap à l’aide de technologies avancées. Il met en avant

l’intégration de l’interface cerveau-ordinateur (BCI) et de la commande vocale pour per-

mettre aux utilisateurs de contrôler leur fauteuil roulant de manière plus intuitive et auto-

nome. Le projet inclut également la connectivité avec l’Internet des objets (IoT) afin d’op-

timiser l’interaction avec l’environnement. La méthodologie suivie comprend le choix des

technologies adaptées, le développement d’algorithmes de navigation et de reconnaissance

vocale, ainsi que la validation expérimentale à l’aide d’un prototype. Un casque NeuroSky a

été sélectionné pour capter les signaux cérébraux et permettre le contrôle du fauteuil roulant.

Les résultats attendus visent à améliorer la qualité de vie des personnes à mobilité réduite en

facilitant leurs déplacements tout en garantissant leur sécurité et leur autonomie.
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Mise en contexte et Problématique

✗1 adulte sur 3 de plus de 70 ans souffre de dé-
mence ou de déficience cognitive modérée.
✗Les fauteuils roulants robotisés autonomes aident
les personnes à mobilité réduite, notamment les per-
sonnes âgées avec des problèmes de mouvement
[1, 2].

FIGURE 1 – Fauteuil roulant manuel avec dispositif de propulsion par moteur

✗ Il est crucial de rendre ces fauteuils roulants ro-
botisés disponibles pour la majorité des personnes
à mobilité réduite, y compris celles ayant des
membres amputés, des problèmes de surdité

Objectifs

L’objectif principal est d’integrer les dispositifs d’in-
teraction Homme-Robot tel que l’interface cerveau-
ordinateur (BCI) et la commande vocale, ainsi que la
technologie IoT (Internet of Things) dans le système
à convecoir.

FIGURE 2 – Architecture d’un système mécatronique pour chaise roulante robotisée

Plus spécifiquement :

✗Concevoir et programmer un système mécatro-
nique pour robotiser les chaises roulantes ordi-
naires tout en assurant la sécurité et l’indépen-
dance des personnes à mobilité réduite.

✗Commander le robot à travers les signaux cére-
braux et la commande vocale et integrer la tech-
nologie IoT (Internet of Things) dans le système.

Méthodologie à suivre

Realisation du
prototype de
simulation

Choisir le BCI
convenable

Developper les
algorithmes du

BCI

Developper les
algorithmes du

commande vocale
Validation

par simulation
Realisation
du prototypeTests et validation

Planification
du projet

FIGURE 3 – Schéma explicatif des démarches à suivre.

Les principales démarches sont les suivantes :

✓Choisir l’interface cerveau-ordinateur (BCI) [3] la
plus adéquate et développer les algorithmes néces-
saires pour côntroler la chaise.

✓Développer les algorithmes de la commande vocale
pour assurer la navigation autonome du robot.

✓Assurer la connexion du système au réseau d’Inter-
net des objets.

✓Tester et valider les performances du système en
termes de précision de commande, de fiabilité et de
robustesse
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Protocole de validation

➞Le choix s’est porté sur un casque NeuroSky, un
dispositif portable qui mesure l’activité électrique
du cerveau, également appelée électroencéphalo-
gramme (EEG), pour contrôler un robot Arduino à
trois roues [4].

FIGURE 4 – Architecture du système proposé

➞L’utilisation d’un dispositif portable rend cette in-
terface facilement accessible et transportable, of-
frant ainsi des possibilités d’utilisation dans différents
contextes et environnements.

Prototype de simulation

Le prototype choisi pour valider les algorithmes de
navigation manuelle et autonome [5] sur le système
Robot Operating System (ROS).

FIGURE 5 – Prototype de la simulation du systeme robotisé

Conclusion

✓Ce projet présente un grand potentiel pour amé-
liorer la qualité de vie des personnes à mobilité
réduite en combinant des technologies de pointe
avec des applications concrètes.

✓Vu que les chaises roulantes actuelles peuvent
être difficiles à manœuvrer pour certaines
personnes, l’utilisation des interfaces cerveau-
ordinateur (BCI) et de la commande vocale est
une approche prometteuse pour faciliter la com-
mande de la chaise roulante et améliorer la mo-
bilité des personnes ayant des limitations phy-
siques.
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