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RÉSUMÉ 

Ce mémoire s’inscrit dans le contexte du recyclage de l’aluminium, tel que mis en 

œuvre par l’entreprise Lefebvre Industri-Al à travers son procédé industriel de Recyclage 

d’Aluminium en Mode Écoresponsable R.A.M.E. L’objectif est d’optimiser à la fois la 

qualité et la quantité d’aluminium recyclé dans le four à induction de notre partenaire 

industriel, en réduisant les pertes par oxydation et en améliorant le contrôle du processus de 

fusion. 

Pour ce faire, deux volets complémentaires ont été développés. Le premier vise à 

réduire l’oxydation du bain de fusion par l’injection d’un gaz inerte. Dans ce cadre, une 

modélisation numérique 3D du procédé d’injection d’argon a été réalisée à l’aide de 

COMSOL Multiphysics®, en considérant des mélanges binaires air–argon dans des 

conditions industrielles. Le modèle simule le four à induction, initialement rempli d’air 

chaud. Il intègre le modèle de turbulence k-ε, le transfert thermique des fluides et le transport 

des espèces concentrées. L’objectif est d’évaluer la répartition de l’argon dans le four et 

d’identifier les paramètres influençant l’efficacité de l’inertage.  

Les résultats montrent que la position d’injecteur a peu d’effet sur la répartition du gaz, 

alors que le débit d’injection influence fortement la concentration en argon obtenue. Par 

exemple, après une heure d’injection, une fraction massique de 83 % est atteinte avec un 

débit de 40 L/min, contre 60 % à 20 L/min. Le niveau de remplissage du four joue également 

un rôle clé : un four plus rempli contient moins d’air à remplacer, ce qui permet une 

inertisation plus rapide, même à débit plus modéré. Suite aux simulations réalisées, des 

recommandations pratiques ont été formulées pour adapter le procédé aux différentes 

conditions de fonctionnement. Lors d’un remplissage partiel du four (tiers ou moitié), un 

débit d’injection de 40 L/min est recommandé afin d’assurer une substitution rapide de l’air 

par l’argon. En revanche, lorsque le four est entièrement rempli, le volume d’air à remplacer 

étant réduit, un débit plus modéré de 20 L/min permet d’atteindre une bonne inertisation sans 

surconsommation de gaz. Par ailleurs, l’utilisation de trois ou quatre injecteurs, avec un débit 

total constant réparti équitablement entre eux, améliore la répartition de l’argon dans le four 

et assure une meilleure couverture de la surface du bain, notamment dans les zones critiques 

exposées à l’oxydation. Malgré certaines hypothèses simplificatrices (sortie entièrement 

ouverte, fréquence d’ouverture non prise en compte), les résultats constituent une base solide 

pour une future application industrielle. 

Le second volet s’appuie sur le développement d’un modèle statistique prédictif, réalisé 

à l’aide du logiciel Minitab®, visant à estimer la température du bain de fusion dans un 

contexte où la mesure en continu n’est pas possible en conditions industrielles. Le modèle a 

été élaboré à partir de trois années de données collectées en environnement de production. 

Un travail de validation, de nettoyage et de structuration des données a été effectué en amont 

pour garantir leur fiabilité. L’approche utilisée repose sur le principe que la température 

atteinte par le bain est directement influencée par l’énergie électrique consommée lors de la 
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refonte, en lien avec des paramètres clés présentant une forte corrélation avec cette 

consommation. Après avoir identifié ces variables et testé plusieurs configurations, le modèle 

retenu présente une erreur moyenne de 3,7 %, jugée satisfaisante dans le contexte de notre 

application industrielle. Ce modèle établit une relation entre l’énergie électrique consommée 

et la composition massique du bain de fusion, en particulier les masses d’aluminium, 

d’oxydes et de cryolithe. Ces paramètres étant mesurables en continu et en temps réel, le 

modèle permet de suivre l’évolution de la température du bain de manière fiable tout au long 

du processus. Il constitue ainsi un outil concret d’aide à la décision, permettant aux opérateurs 

d’anticiper avec précision le moment optimal pour procéder à la coulée de l’aluminium, 

lorsque la température cible de 750 °C est atteinte. 

Mots clés : Aluminium recyclé, four à induction, injection d’argon, mélange binaire 

air-argon, COMSOL Multiphysics®, Modèle statistique, Minitab®. 



xi 

ABSTRACT 

This thesis falls within the context of aluminum recycling, as implemented by the 

company Lefebvre Industri-Al through its industrial process known as the Eco-Responsible 

Aluminum Recycling Method R.A.M.E. The objective is to optimize both the quality and 

quantity of recycled aluminum produced in the induction furnace of our industrial partner, 

by reducing oxidation losses and improving control over the melting process. 

To achieve this, two complementary approaches were developed. The first focuses on 

reducing oxidation in the molten bath through the injection of inert gas. In this context, a 3D 

numerical model of the argon injection process was developed using COMSOL 

Multiphysics®, considering binary air–argon mixtures under industrial conditions. The model 

simulates an induction furnace initially filled with hot air and incorporates the k-ε turbulence 

model, thermal fluid transfer, and concentrated species transport. The goal was to evaluate 

the distribution of argon within the furnace and to identify the key parameters influencing 

the effectiveness of inerting.  

  Results show that the position of the injectors has little effect on gas distribution, 

whereas the injection flow rate strongly influences the resulting argon concentration. For 

example, after one hour of injection, a mass fraction of 83% is achieved at a flow rate of 

40 L/min, compared to 60% at 20 L/min. The furnace filling level also plays a critical role: a 

more fully filled furnace contains less air to be replaced, allowing for faster inerting even at 

a lower flow rate. Based on the simulation results, practical recommendations were proposed 

to adapt the process to different operational conditions. For partial fillings (one-third or half 

full), an injection flow rate of 40 L/min is recommended to ensure rapid air substitution. In 

contrast, for a fully filled furnace, a reduced flow rate of 20 L/min is sufficient to achieve 

proper inerting without excessive gas consumption. Furthermore, using three or four injectors 

with the total flow rate evenly distributed among them improves argon dispersion in the 

furnace and ensures better surface coverage of the molten bath, particularly in oxidation-

prone zones. Despite some simplifying assumptions (such as a fully open outlet and the 

absence of modeled lid opening frequency), the results provide a solid basis for future 

industrial application. 

The second approach involves the development of a predictive statistical model using 

Minitab® to estimate the bath temperature, addressing the limitation of continuous 

temperature measurement under industrial conditions. The model was built using three years 

of data collected from the production environment. A rigorous process of data validation, 

cleaning, and structuring was carried out beforehand to ensure data quality. The approach is 

based on the principle that the bath temperature is directly influenced by the electrical energy 

consumed during melting, in relation to key process parameters that show strong correlation 

with energy input. After identifying the relevant variables and testing multiple 

configurations, the selected model achieved an average error of 3,7%, which is considered 

satisfactory for industrial use. The model establishes a relationship between electrical energy 
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consumption and the mass composition of the molten bath specifically the masses of 

aluminum, oxides, and cryolite. Since these variables are measurable continuously and in 

real time during production, the model enables reliable temperature tracking throughout the 

melting process. It serves as a practical decision-support tool, allowing operators to 

accurately anticipate the optimal moment to initiate aluminum casting when the target 

temperature of 750 °C is reached. 

Keywords: Recycled aluminum, induction furnace, argon injection, binary air–argon 

mixture, COMSOL Multiphysics®, statistical model, Minitab®.  
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INTRODUCTION GÉNÉRALE 

Mise en contexte 

        L'aluminium est largement utilisé dans l'industrie moderne en raison de ses propriétés 

spécifiques telles que sa légèreté, sa résistance, sa conductivité thermique et électrique, ainsi 

que sa capacité de recyclage illimitée [1].  Ces caractéristiques en font un matériau essentiel 

dans divers domaines tels que l'industrie automobile, l'aéronautique et le secteur de la 

construction [2].  Devant la diminution graduelle des stocks mondiaux de bauxite, matière 

première essentielle à la fabrication de l'aluminium, le recyclage émerge comme une 

alternative essentielle, pour satisfaire la demande croissante tout en atténuant les 

conséquences environnementales associées à l'exploitation minière. Par conséquent, le 

recyclage de l'aluminium apparaît comme une alternative durable de l'exploitation minière. 

En réalité, le processus de recyclage de l'aluminium contribue à diminuer la nécessité 

d'utiliser des matières premières vierges, tout en réduisant les conséquences 

environnementales liées à leur extraction et leur traitement. Il englobe non seulement les 

déchets provenant des produits en fin de vie, mais également ceux produits tout au long des 

diverses étapes de la production primaire [3], [4]. 

         Dans ce contexte, ce mémoire s'inscrit dans une collaboration étroite avec un partenaire 

industriel, Lefebvre Industri-Al, une entreprise polyvalente fondée en 2019, spécialisée dans 

la gestion des éléments d’alliage et le recyclage de résidus issus de la production d’aluminium 

située à Baie-Comeau. L'entreprise utilise un four à induction pour le Recyclage de 

l'Aluminium en Mode Écoresponsable (R.A.M.E.) qui permet de réduire l'impact 

environnemental tout en valorisant les déchets industriels. Ce procédé se distingue par 

l'absence d'utilisation de sels, la récupération efficace des résidus d'aluminium sans 
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enfouissement et l'absence d'émissions de gaz à effet de serre. Ce projet vise à optimiser 

certains aspects essentiels de ce processus de recyclage, en offrant une référence technique 

et directement applicable dans le contexte industriel, allant au-delà d'un simple travail 

académique. Ce travail vise à renforcer les pratiques durables de l'entreprise tout en 

améliorant l'efficacité et la performance de son procédé de recyclage. 

Problématiques 

Le processus actuellement utilisé par l'industrie est confronté à deux défis majeurs, tous 

deux associés à la réduction de l'oxydation de l'aluminium pendant la phase de refonte. Le 

premier défi porte sur l'interaction de l'aluminium fondu avec l'atmosphère environnante lors 

de l’opération de fusion, une interaction favorisée par les contraintes du procédé actuel. 

Malgré l'utilisation par Lefebvre Industri-Al de la technologie R.A.M.E. qui implique 

l'emploi d'un couvert d'argon pour préserver le métal fondu, il demeure possible que 

l'oxygène présent dans l'environnement entre en contact avec l'aluminium, en particulier lors 

de l'ouverture du couvercle du four ou lors de l'introduction manuelle d'argon. Ce contact 

provoque l'oxydation de l'aluminium, ce qui conduit à la formation de scories métallurgiques 

(ou laitiers métallurgiques) à la surface du métal liquide [5]. Ces résidus, constitués 

essentiellement d'oxydes tels que Al₂O₃, SiO₂, CaO, FeO et MgO, proviennent des alliages 

d’aluminium requièrent un processus de seconde électrolyse afin d'être convertis en 

aluminium exploitable [6]. Refaire le processus d’électrolyse pour les convertir en aluminium 

exploitable s'avère très énergivore, consommant 95 % plus d'énergie que le recyclage, ce qui 

entraîne une hausse des coûts de production et une empreinte environnementale accrue. 

Le deuxième défi concerne la régulation de la température de fusion. La fusion de 

l'aluminium nécessite une température précise de 750 °C pour garantir une qualité optimale 

du métal et maximiser le taux de récupération.  La détection précise de cette température 

optimale est rendue complexe par l’impossibilité de mesurer en continu la température du 

bain de fusion, attribuable à l'utilisation d'un thermocouple manuel et à l'ajout des sous-

produits à fondre tout au long du processus. Un excès de chaleur, dépassant la température 
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de fusion idéale, entraîne une augmentation de l'oxydation du métal en fusion ainsi que la 

création de scories, ce qui contribue à accroître les pertes de métal et d'énergie [7].  

Ces deux problématiques, bien qu'ayant des manifestations distinctes, convergent vers 

le même axe d’amélioration : limiter le phénomène d'oxydation de l'aluminium afin 

d'optimiser le rendement, assurer la qualité du produit final et diminuer les coûts énergétiques 

associés. 

Objectifs 

Dans le cadre de cette étude, deux objectifs principaux ont été établis, en relation 

directe avec les problèmes rencontrés dans le processus industriel. Le premier objectif a pour 

but d'améliorer la protection du bain de fusion afin de réduire l'oxydation de l'aluminium 

fondu, tandis que le second objectif se focalise sur l'amélioration du contrôle de la 

température de fusion pour assurer une efficacité énergétique maximale. Dans ce qui suit, les 

objectifs seront présentés plus en détail 

Objectif général 1 : Réduire l’oxydation dans le procédé R.A.M.E. à travers 

l’amélioration de l’injection d’argon 

Ce premier objectif vise à minimiser l'oxydation de l'aluminium en fusion en 

améliorant la répartition et l'efficacité de l'injection d'argon dans le four industriel. Cela 

nécessite une meilleure compréhension des phénomènes thermofluides, incluant le transfert 

de chaleur, l’écoulement des fluides et le transport de masse ainsi qu'une optimisation des 

paramètres essentiels d’injection. 

Objectifs spécifiques 

- Concevoir un modèle numérique 3D thermofluides du four industriel afin d'étudier 

les écoulements d'argon et leur influence sur le bain de fusion. 

- Modéliser un mélange binaire air-argon pour analyser le comportement des gaz 

injectés dans les conditions réalistes d'un environnement chauffé contenant de l'air. 
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- Améliorer la couverture et la protection du bain par l’étude de l’effet de paramètres 

d'injection d'argon tels que la position d’injecteur, le débit d’injection et le nombre 

d'injecteurs. 

Objectif général 2 :  Prédire le moment optimal pour couler en fonction de la masse de 

matière et de l’énergie électrique fournie au four à induction 

Le deuxième objectif vise à mesurer et à estimer l’énergie nécessaire pour que la 

température du bain de fusion atteigne la température idéale de coulée afin de prévenir les 

risques de surchauffe de métal et de minimiser la consommation d’énergie lors du processus 

de refonte. 

Objectifs spécifiques  

- Identifier les paramètres qui exercent une influence sur la consommation d’énergie 

électrique, le temps de fusion, l'ordre de fusion et la masse introduite dans le creuset. 

- Développer un modèle statistique qui établit une corrélation entre la consommation 

d'énergie, les facteurs influents cette consommation et la température du bain de fusion, afin 

de prédire de manière précise le moment optimal pour réaliser la coulée. 

- Intégrer le modèle statistique élaboré dans les systèmes de l'entreprise afin de 

permettre à l’équipe de production de disposer d'une source fiable et continue pour 

déterminer le moment optimal de la coulée. 

Méthodologie de travail 

La méthodologie mise en œuvre dans cette étude a été conçue afin de répondre aux 

objectifs définis. Cette section présente de façon générale les étapes suivies, les outils utilisés, 

ainsi que les méthodes spécifiques appliquées. Elle décrit également les étapes d’élaboration 

d'un modèle numérique pour l'injection de gaz inerte et l’approche de développement d'un 

modèle statistique permettant de prédire de manière précise le moment optimal de la coulée. 

Ces deux approches complémentaires visent à proposer des solutions concrètes et adaptées 

aux besoins industriels identifiés. 
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La méthodologie adoptée pour le développement d’un modèle numérique d’injection 

d’argon dans le procédé R.A.M.E. 

La phase initiale de cette partie a été consacrée à la création d'un modèle 

tridimensionnel (3D) du four industriel, en se basant sur les dimensions réelles du four. Cette 

approche s’est appuyée sur une analyse bibliographique approfondie, menées dans le but 

d’identifier les modèles mathématiques pertinents à inclure dans les simulations. Cette 

analyse vise à choisir les équations qui décrivent les phénomènes thermofluides, en tenant 

compte des interactions complexes entre les gaz injectés et l'environnement chauffé du four. 

Afin de faciliter la modélisation, les hypothèses simplificatrices suivantes ont été adoptées : 

l’absence de croûtes de scories métallurgiques à la surface du bain, l’introduction des gaz à 

travers le couvercle du four, et le maintien de ce dernier fermé pendant toute la durée du 

processus. 

Par la suite, des simulations exploratoires ont été réalisées pour déterminer les 

paramètres qui influent le plus sur l'efficacité de l'injection de gaz inerte. Ces simulations ont 

été initiées par une modélisation simplifiée décrivant l'introduction d'air froid dans un 

environnement d'air chaud. Cette démarche exploratoire a été considérée comme une étape 

préliminaire essentielle afin d'approfondir la compréhension des dynamiques gazeuses et de 

déterminer les paramètres essentiels qui impactent la répartition du gaz injecté dans un 

contexte réaliste, tel qu'un four industriel contenant du gaz chaud. 

La méthodologie a par la suite été développée pour modéliser un mélange binaire air-

argon, dans le but d'analyser le comportement de l'argon en présence d'air résiduel dans le 

four. Cette phase permet d'évaluer le mélange des deux gaz dans un environnement réaliste 

et chauffé, reproduisant fidèlement les conditions opérationnelles du four. 

Après avoir effectué ces modèles, une étape visant à la détermination des paramètres 

d'injection les plus influençants a été initiée. Les variables examinées comprennent le débit 

d'injection, le calibre des injecteurs, leur emplacement dans le four, ainsi que le nombre 

d'injecteurs utilisés. Le but a été d'expérimenter diverses configurations et de déterminer celle 
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qui garantit pour un débit d’argon donné la meilleure couverture du bain de fusion. Cette 

configuration optimale aura pour effet de réduire au minimum le contact entre l'aluminium 

en fusion et l'air environnant, ce qui permettra de limiter l'oxydation et les pertes métalliques 

associées. 

La méthodologie adoptée pour la prédiction du moment de coulée via l’évolution de la 

puissance du four à induction 

La démarche pour élaborer le modèle statistique débute par l'acquisition des données 

nécessaires, incluant celles recueillies sur site lors des stages effectués au sein de l'industrie, 

ainsi que celles provenant des documents détaillés par les opérateurs durant la phase de 

refonte. Ces données, qui intègrent à la fois des observations directes et des enregistrements 

opérationnels, servent à l'élaboration et à la validation du modèle statistique. Une étape 

essentielle du processus est la validation des données collectées pour garantir leur fiabilité. 

La validation des données collectées est une étape cruciale du processus visant à assurer leur 

fiabilité. Ceci englobe la surveillance directe des processus de mesure, tels que la prise de 

température de la coulée. De surcroît, une attention particulière est accordée à la vérification 

et au contrôle de qualité des données saisies par les opérateurs, dans le but de prévenir toute 

incohérence ou erreur présente dans les fichiers. 

Une fois que les données ont été validées, elles sont utilisées et soumises à un 

prétraitement afin de les rendre conformes à la modélisation. Les données, provenant de 

fichiers Excel non normalisés, ont été extraites à l'aide d'un algorithme Python personnalisé 

conçu pour gérer de manière rapide et efficace de larges quantités d'informations. Le 

processus de prétraitement englobe également la détection et l'élimination des valeurs 

aberrantes pour garantir la cohérence et l'intégrité des données avant toute analyse statistique. 

La dernière étape implique la réalisation d’une analyse itérative à l'aide du logiciel 

Minitab® afin de déterminer les facteurs ayant le plus d'influence sur le processus. Après 

avoir identifié ces facteurs, un modèle empirique est développé afin de mettre en évidence 

une corrélation précise entre la consommation d'énergie, les facteurs influents, et la 
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température cible, laquelle constitue un indicateur clé pour déterminer le moment optimal de 

la coulée. 

Après avoir choisi le modèle optimal, il est mis à l'épreuve en utilisant les fichiers 

opérationnels de l'industrie afin d'évaluer ses performances. Cette validation a eu pour 

objectif de s'assurer du bon fonctionnement du modèle dans des conditions réelles et de sa 

capacité à fournir aux opérateurs une indication fiable du moment optimal pour réaliser la 

coulée, ce qui permet d'assurer l'efficacité énergétique du processus. 

Contribution du mémoire 

          Ce mémoire a pour objectif de fournir une référence scientifique et technique afin 

d'assister Lefebvre Industri-Al dans ses démarches d'amélioration continue.  Il propose des 

solutions pratiques pour améliorer le processus de recyclage de l’aluminium, en se basant sur 

deux contributions majeures.  La première consiste en une modélisation de l'injection de gaz 

inerte dans un four à induction, un domaine encore peu exploré dans la recherche actuelle, 

visant à réduire l'oxydation et à optimiser l'efficacité du procédé.  La deuxième contribution 

consiste en l’élaboration d’un modèle statistique permettant de contrôler avec précision la 

température, afin de compenser l’incapacité d’utiliser des instruments de mesure directs, tout 

en restant facilement exploitable par l’industrie.  Ces travaux proposent des outils concrets 

et opérationnels visant à améliorer la performance et le contrôle du procédé. 

Structure du mémoire 

Ce mémoire est divisé en trois chapitres principaux, chacun abordant un aspect 

essentiel du projet, et rédigé dans le but de devenir une référence technique pour l'industrie 

partenaire et permettant d'optimiser son processus de recyclage. 

Le premier chapitre présente une vue d'ensemble de l'industrie de l'aluminium, en 

mettant l'accent notamment sur le contexte canadien et québécois. Il expose les techniques 

actuelles de recyclage de l'aluminium, ainsi que la méthode spécifique employée par notre 

partenaire industriel. Ce chapitre souligne également les défis rencontrés dans le processus 
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de recyclage de l'aluminium, en particulier ceux liés à l'oxydation du métal pendant la phase 

de refonte. 

Le deuxième chapitre est dédié à l'étude du projet qui vise à minimiser l'oxydation de 

l'aluminium en fusion en améliorant le processus d'injection de gaz inerte. Ce chapitre débute 

par une analyse bibliographique approfondie afin d'identifier les équations mathématiques 

pertinentes à inclure dans le modèle élaboré. Ensuite, la conception et la mise en œuvre du 

modèle sont détaillées, suivies de l’analyse des résultats de simulation et des conclusions qui 

en découlent. Cette étude, qui peut être applicable au contexte industriel, offre des 

suggestions visant à améliorer l'efficacité du procédé R.A.M.E.  

Le troisième chapitre détaille le développement d'un modèle statistique visant à prédire 

le moment idéal pour effectuer la coulée. Ce chapitre expose de manière complète la 

méthodologie employée pour la collecte et l'analyse des données, le développement des 

modèles statistiques, ainsi que leur évaluation en termes de performance. 

En dernier lieu, le mémoire présente une synthèse des principaux résultats des deux 

volets du projet. Des suggestions pour des recherches ultérieures sont également proposées 

en vue d'approfondir et de finaliser les travaux menés. 
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CHAPITRE 1 

PRINCIPES FONDAMENTAUX DE LA PRODUCTION DE 

L’ALUMINIUM ET TECHNIQUES DE VALORISATION 

1.1  INTRODUCTION 

Ce chapitre présente un aperçu du secteur de l’aluminium au Québec, mettant en 

lumière sa contribution économique et environnementale significative. Il établit également 

les fondements nécessaires à la compréhension de l'importance de cette recherche, en 

soulignant les défis et les opportunités de développement durable propres aux alumineries 

secondaires qui se consacrent au recyclage des déchets d’aluminium. 

1.2  L’ALUMINIUM 

1.2.1  Les caractéristiques de l’aluminium 

On peut s’interroger sur les raisons pour lesquelles l’utilisation de l’aluminium devient 

de plus en plus importante, et la réponse est claire. L’aluminium (Al) est considéré comme 

un matériau exceptionnel grâce à ses nombreux avantages. Ce dernier possède une masse 

volumique (2,7 g/cm³) d’environ le tiers de celle de l’acier non allié (7,86 g/cm³). Cette 

légèreté présente une solution alternative pour réduire la masse des structures. 

Conséquemment, environ 36 % d’aluminium produit est utilisé dans le développement des 

systèmes de transport en Amérique du Nord [1]. Ainsi, certains alliages d’aluminium sont 

plus résistants et possèdent une limite d’élasticité plus grande que les aciers commerciaux. 

Néanmoins son module de Young est trois fois plus petit que celui l’acier. En outre, dans des 

conditions normales de température et d'air ambiant, l'aluminium forme naturellement une 

couche protectrice d'alumine (Al2O3) de 5 à 10 nm d'épaisseur, limitant ainsi sa corrosion. 
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Cette stabilité chimique fait de l’aluminium un métal adéquat pour la construction (ex. : 

toiture, fenêtres, portes, etc.) et la formation des conservateurs d’aliments (ex. : canettes, 

boites, barquettes alimentaires, etc.). D’autres caractéristiques et fonctionnalités permettent 

aux produits en aluminium de répondre à des exigences plus spécifiques : sa conductivité 

électrique pour la fabrication des fils et des câbles conducteurs, sa conductivité thermique 

pour la conception des échangeurs de chaleurs, sa haute réflectivité pour les applications 

solaire ainsi que sa haute imperméabilité faisant de sorte que 22 % de la production de ce 

métal sert à la fabrication d’emballages [2].  

En plus de toutes les caractéristiques physiques et chimiques illustrées dans le 

paragraphe ci-dessus, l’avantage majeur de ce métal est sa recyclabilité. En effet, le matériau 

peut être réutilisé entièrement et à l’infini, en n'utilisant seulement 5 % de l'énergie utilisée 

pour produire le métal primaire, ce qui diminue davantage l’émission des gaz à effet de serre 

(CO2) [3]. Selon des données récentes, environ 30 % de l’aluminium actuellement produit 

provient du recyclage, et près de 75 % de l’aluminium fabriqué depuis le début de la 

production industrielle en 1888 est encore en usage [3]. 

1.2.2  Contribution du Québec dans la production mondiale 

Le Canada occupe la 4ème place mondiale des producteurs d'aluminium, dont 90 % de 

la production est assurée par la province du Québec, avec des exportations de 7,4 milliards 

de dollars en 2020 [4]. La production d’aluminium est le deuxième secteur économique le 

plus important au Québec, avec 10 % des exportations provinciales et 5 % des produits 

manufacturés. Le territoire québécois abrite huit alumineries d'importance, dont celles 

d’Alcoa, Rio Tinto et Alouette. Ces trois entreprises figurent parmi les plus grandes 

entreprises mondiales de production d’aluminium. Ces alumineries constituent ensemble 60 

% de la production d'aluminium en Amérique du Nord. Bien que massive, la production 

d’aluminium au Québec est reconnue comme l’une des plus respectueuses de 

l’environnement à l’échelle mondiale, grâce à une énergie électrique à 99 % issue de sources 

renouvelables, principalement hydroélectriques [5]. À titre comparatif, la production de 
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l'aluminium primaire du Québec produit 67 % à 76 % moins de gaz à effet de serre que celui 

produit au Moyen-Orient ou en Chine [6]. 

1.2.3  Processus de la production primaire d’aluminium 

La première étape du procédé de fabrication de l’aluminium est l’extraction de la 

bauxite dans des mines à ciel ouvert. Il s’agit d’une roche riche en alumine (Al2O3) et en 

oxyde de fer (Fe2O3). La bauxite broyée est raffinée en alumine par divers procédés 

chimiques, parmi lesquels le procédé Bayer est le plus largement adopté. Cette 

transformation s’effectue à travers les réactions chimiques suivantes [7] : 

Al2O3 + 2NaOH → 2 NaAlO2 + H2O (1.1) 

Al2O3. (H2O)3 → Al2O3 à 150 °C (1.2)  

Ces réactions décrivent d’abord la formation de l’aluminate de sodium (NaAlO2) en 

solution aqueuse à partir de Al2O3 et de l’hydroxyde de sodium (NaOH), ensuite, par dilution 

et abaissement du pH, l’aluminate de sodium subit une hydrolyse, précipitant ainsi l’hydrate 

d’alumine (Al2O3. (H2O)3). Enfin, ce dernier est chauffé à 150 °C pour être déshydraté et 

donner de l’alumine pure.   

Par la suite, l'alumine est soumise à un processus d’électrolyse, qui constitue l'étape clé 

de la production de l'aluminium. Dans un électrolyte, l'alumine est dissoute et électrolysée 

par un courant continu à une température d'environ 960°C. La réaction globale simplifiée, 

qui illustre la résultante de l’ensemble des réactions électrochimiques complexes se 

produisant dans la cuve d’électrolyse, peut être représentée comme suit : 

2Al2O3(dissoute) + 3C(solide) → 4 Al(liquide) + 3 CO2 (gaz) à 960 °C (1.3) 

Ce procédé s'effectue au sein de récipients particuliers nommés cuves, contenant un 

mélange de cryolite Na3(AlF6), de fluorure d’aluminium AlF3, de fluorure de calcium CaF2 

et d’alumine. Un courant électrique de forte intensité est utilisé pour induire la décomposition 
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de l'alumine en aluminium et en CO2 [7], [8]. Le métal en fusion, à savoir l'aluminium liquide, 

s'accumule au fond du récipient, puis est extrait par pompage pour être acheminé vers d'autres 

installations où il sera transformé en lingots ou en billettes. Cette phase de production 

nécessite une quantité d'énergie électrique particulièrement importante, ce qui place la 

production d'aluminium parmi les industries les plus consommatrices d'énergie. 

1.2.4  Répercussions environnementales des alumineries 

Comme discuté auparavant, la fabrication de l'aluminium requiert une quantité 

considérable d'énergie, principalement au cours de l’étape de l'électrolyse de l'alumine, ce 

qui représente un défi environnemental majeur en raison des émissions significatives de gaz 

à effet de serre liées à l'utilisation d'électricité conventionnelle. En outre, tout au long du 

processus de production, de la purification de l'alumine à la création d'alliages et de produits 

semi-finis, une variété de déchets est générée. Parmi eux, les boues rouges issues du raffinage 

de la bauxite sont particulièrement toxiques et posent des risques pour l’écosystème [9]. 

D'autres déchets, provenant des processus d'électrolyse et de la fabrication des alliages, 

contiennent d'importantes quantités d'aluminium récupérable. 

1.3  RECYCLAGE DES RÉSIDUS D’ALUMINERIES  

1.3.1 Catégories des déchets d’aluminium issus de la première fusion  

En Amérique du Nord, la production de scories qui sont des résidus solides formés lors 

de la fusion d’aluminium, composés principalement d’oxydes et d’impuretés, représente 

actuellement 12 % de la production mondiale et est prévue de croître à un rythme annuel de 

3 à 4 % [10]. La production et la composition des déchets industriels générés sont étroitement 

liées à la quantité de production annuelle de l'industrie ainsi qu'à la nature du produit final. 

Les déchets provenant de la production d'aluminium sont triés en fonction de leur 

concentration en aluminium. Trois principales catégories de contaminants sont identifiées : 

l'écume blanche, l'écume noire et les gâteaux de sel, comme illustré dans le tableau 1. Ces 
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impuretés sont issues à la fois de sources primaires, telles que les lingots d'aluminium, et de 

sources secondaires, telles que les alliages d'aluminium recyclés ou les ferrailles [11]. 

Tableau 1 

 Classes des déchets d'aluminium 

 

1.3.2 Contribution économique et environnementale du processus de récupération  

La récupération et la valorisation des déchets présentés dans le tableau 1 offrent 

plusieurs opportunités et avantages comme illustrés dans la figure 1. La récupération de 

l’aluminium permet de réduire la dépendance aux matières premières vierges et de minimiser 

l'impact environnemental de sa production. À titre indicatif, recycler seulement 1 kg de ces 

déchets permet d'économiser environ 4 kg de bauxite, 2 kg de produits chimiques, et 7,5 kWh 

d’électricité. Ces chiffres illustrent l'importance d'intégrer le recyclage pour une gestion plus 

durable et efficace des ressources [12] - [14]. 

 

Déchets Teneur en aluminium (%) 

Écume blanche 50-70 

Écume noire 30-50 

Gâteaux de sel 5-10 
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       Figure 1. Les avantages de recyclage des déchets d'aluminerie primaire [16] 

 

En Amérique du Nord, il faut environ 138 GJ pour produire une tonne d'aluminium 

primaire, dont plus de 50 % proviennent de sources d'énergie non renouvelables [15]. Le 

recyclage de l’aluminium, quant à lui, ne consomme que 5 % de l’énergie initiale. Le 

processus permet d'économiser 95 % de l'énergie nécessaire à la production primaire tout en 

réduisant les déchets et en préservant les ressources naturelles limitées. Ces avantages font 

du recyclage de l’aluminium un pilier important dans la transition vers une économie 

circulaire et durable. 

À l’origine, les alumineries se contentaient de décharger les sous-produits de la 

production primaire, une pratique désormais considérée comme dangereuse compte tenu des 

exigences de durabilité. Consciente de ces préoccupations environnementales, l'industrie de 

la production d'aluminium s'oriente désormais vers le traitement et le recyclage de chaque 

sous-produit en développant des technologies adaptées aux caractéristiques spécifiques de 

ces déchets. L'évolution des normes environnementales et des objectifs de développement 

durable dans l'industrie de l'aluminium devrait favoriser des avancées technologiques dans la 

gestion des scories et des résidus. 
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 1.3.3 Les technologies de recyclage d’aluminium 

Le recyclage des déchets solides provenant des fonderies d'aluminium primaire a 

entraîné l'émergence de différentes technologies visant à gérer et à réutiliser de manière 

efficiente ces matériaux. Cette procédure, communément appelée production secondaire 

d'aluminium, peut être effectuée selon diverses méthodes. Les méthodes de recyclage 

pyrométallurgiques et hydrométallurgiques offrent toutes deux un taux de récupération élevé 

des matériaux. Cependant, les procédés pyrométallurgiques se distinguent par leur efficacité 

accrue dans la récupération des métaux. Lorsque la teneur en métaux dans les résidus est 

réduite, les techniques hydrométallurgiques et hydrothermales sont généralement préférées, 

car elles offrent la possibilité de convertir les déchets en produits précieux. Néanmoins, en 

raison de la variété des méthodes disponibles, cette partie se concentrera sur quelques 

procédés pyrométallurgiques particulières [17].  Il y a principalement deux méthodes de 

pyrométallurgies utilisées pour le recyclage des déchets d'aluminium : le four à sel rotatif 

(RSF) et la technologie sans sel (SFT). 

1.3.3.1 Four à Sel Rotatif (RSF) 

Les fours rotatifs à sel opèrent en incorporant des fondants à base de sel, comme le 

chlorure de sodium (NaCl) et le chlorure de potassium (KCl), qui sont mélangés aux scories 

et aux déchets d'aluminium afin de favoriser l'extraction du métal [11]. Ces agents protecteurs 

sont utilisés pour prévenir l'oxydation du métal, favoriser l'agglomération métallique et, par 

conséquent, accroître le taux de récupération [17]. Néanmoins, l'incorporation de sel 

comporte des désavantages, tels qu'une augmentation des coûts et des répercussions 

environnementales défavorables liées aux ions comme les chlorures et les fluorures contenus 

dans les scories produites [18]. En outre, l'augmentation de la viscosité des scories peut 

entraîner la capture de particules fines d'aluminium, ce qui a pour conséquence de diminuer 

l'efficacité du processus [19]. En réponse à ces défis, des technologies exemptes de sel ont 

été mises au point afin de réduire la perte de métal et la formation de sous-produits, ce qui 

rend le processus plus économique et plus respectueux de l’environnement. 
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1.3.3.2 Technologies sans sel 

Les technologies contemporaines de traitement des résidus d'aluminium sans 

l'adjonction de sel, comme le procédé traitement des scories dans un four à arc rotatif 

DROSCAR d’Hydro-Québec, le procédé de recyclage d’aluminium ALUREC et le procédé 

économique de traitement des scories ECOCENT, ont été conçues dans le but d'optimiser le 

taux de récupération du métal tout en réduisant au maximum l'empreinte environnementale. 

Le processus DROSCAR repose sur l'utilisation d'un four rotatif chauffé par un arc électrique 

généré entre deux électrodes en graphite, ce qui favorise une récupération optimale du métal 

grâce à une haute température et à un mouvement de mélange mécanique [15]-[20]. Le 

procédé ALUREC, quant à lui, emploie un brûleur à oxymazout afin de chauffer rapidement 

le four, ce qui permet de minimiser l'oxydation de l'aluminium sans recourir à des flux de sel 

[15]-[20]. En dernier lieu, il convient de noter que le procédé ECOCENT se caractérise par 

le recours à la centrifugation afin d'opérer une séparation rapide de l'aluminium et des 

impuretés à la suite de la fusion, ce qui permet d'éviter les pertes de chaleur [20]. Ces 

technologies, malgré leur consommation énergétique plus élevée par rapport aux fours à sel 

rotatif (RSF), présentent des avantages notables tels qu'un taux élevé de récupération de 

métal, une diminution des émissions de gaz à effet de serre et la génération de coproduits non 

métalliques respectueux de l'environnement. Par conséquent, les technologies sans sel (SFT) 

sont nettement plus rentables que les technologies à résidu de sel (RSF). 

1.3.3.3  Le procédé de Recyclage d’Aluminium en Mode Écoresponsable 

(R.A.M.E.) 

Dans le contexte du développement de technologies de recyclage efficientes et à faible 

impact environnemental, Lefebvre Industri-Al, une entreprise de Baie-Comeau spécialisée 

dans la récupération de sous-produits d’aluminium, a mis au point une nouvelle technologie 

appelée R.A.M.E. (Recyclage d'Aluminium en Mode Écoresponsable). Cette technologie 

innovante utilise un four à induction pour séparer l’aluminium des oxydes et autres 

impuretés, sans recourir à des combustibles fossiles et sans ajouter de sels contaminants au 

processus [21]. Contrairement à d’autres méthodes de récupération des sous-produits 

d’aluminium dans l’industrie, la technologie R.A.M.E. se distingue par son approche 
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écoresponsable, minimisant ainsi l’impact environnemental tout en maximisant l'efficacité 

de la récupération [21]. 

a. DESCRIPTION DU PROCÉDÉ 

La gestion des déchets d'alliages et d'aluminerie primaire chez Lefebvre Industri-Al par 

le procédé R.A.M.E. est organisée en trois étapes consécutives. La phase initiale, dédiée à la 

sélection, classe les matériaux en fonction de leur composition et de leur taille. Les morceaux 

de grande taille sont diminués à une dimension appropriée à l'aide d'appareils spécialisés, 

puis un processus de tamisage en plusieurs étapes est réalisé. Certains résidus non 

recyclables, notamment ceux contenant une forte teneur en carbone, sont restitués 

directement au client après la phase de tri, tandis que d'autres sont acheminés vers les étapes 

suivantes du processus. La phase suivante, le préchauffage, vise à éliminer toute humidité 

restante des matériaux en les soumettant à une température contrôlée de 100 °C, surveillée 

par des thermocouples, puis en les laissant reposer thermiquement. Cette phase revêt une 

importance capitale afin de prévenir tout risque d'éclaboussures ou d'explosions lors du 

processus de fusion. La phase de fusion, quant à elle, est effectuée au sein d'un four à 

induction, dans une atmosphère d'argon, en veillant à ce que les opérateurs contrôlent 

rigoureusement les paramètres de fonctionnement. À la suite de sa fusion, l'aluminium 

liquide est versé dans des lingots qui sont ensuite refroidis et transporté à l'usine d'aluminium 

primaire. 

b. DÉFIS LIÉS AU PROCÉDÉ R.A.M.E. 

Le four à induction requiert des améliorations de ses conditions opérationnelles afin 

d'assurer une efficacité optimale du procédé de recyclage des sous-produits. L'un des 

principaux défis de l'industrie réside dans le phénomène d'oxydation de l'aluminium à des 

températures élevées (plus de 700 °C), provoquant la production d'alumine qui doit ensuite 

subir un processus de réduction par électrolyse afin d'être régénérée en aluminium. Cette 

réaction d'oxydation, qui se produit pendant le processus de fusion des sous-produits, 

constitue un enjeu majeur en termes de préservation du bain d'aluminium. Afin de restreindre 

ce phénomène d'oxydation, deux approches préventives sont fréquemment mises en œuvre : 
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(1) le contrôle précis de la température du métal en fusion et (2) l'introduction de gaz inertes 

pour minimiser l'exposition à l'oxygène. Néanmoins, au sein de l'entreprise Lefebvre 

Industri-Al, la mise en œuvre de ces approches pour leur récent processus respectueux de 

l'environnement requiert certaines améliorations, telles que le développement d’un outil 

généralisé pour mesurer la température en continu dans le four et la détermination des 

paramètres d’injection de gaz assurant une couverture maximale du bain de fusion. 

1.4  L’OXYDATION D’ALUMINIUM 

Il s'agit d'un phénomène naturel qui survient lors de l'exposition de l'aluminium à l'air, 

entraînant la formation d'une couche d'oxyde à sa surface. Cette réaction d’oxydation pourrait 

potentiellement influencer les caractéristiques et la qualité de l’aluminium, ce qui est en fait 

un sujet important dans le domaine de la métallurgie. Cette section est dédiée à la présentation 

des éléments fondamentaux de l'oxydation de l'aluminium et de ses impacts dans le domaine 

industriel. 

1.4.1 Le phénomène d’oxydation 

L'oxydation de l'aluminium est un phénomène complexe qui est soumis à l'influence 

de la température et de l'exposition à l'oxygène atmosphérique. Même à la température 

ambiante, en présence d'air, l'aluminium pur réagit quasi instantanément pour former une 

couche d'oxyde d'aluminium (Al2O3) par cette réaction exothermique [20] : 

Cette couche formée initialement joue le rôle d'une barrière protectrice contre la 

corrosion. Cependant, l'étendue et les propriétés de l'oxydation connaissent des changements 

significatifs en fonction des variations de température [22]. 

 À température ambiante, cette couche est essentiellement constituée d'oxyde amorphe, 

présentant un faible degré d'oxydation. Ce faible taux de réaction s'explique par un 

2Al +
3

2
O2(𝑔𝑎𝑧) → Al2 O3 (𝑠𝑜𝑙𝑖𝑑𝑒) + Q     (1.4) 



 

20 

mécanisme contrôlé par diffusion, dans lequel la vitesse de réaction est restreinte par la 

capacité de diffusion de l'oxygène à travers la couche d'oxyde pour interagir avec l'aluminium 

sous-jacent.  Lorsqu'il y a une augmentation de la température, notamment lors des opérations 

métallurgiques, la composition de cette couche d'oxyde subit des modifications importantes. 

La transformation de la couche d'oxyde se produit de manière progressive, passant d'une 

structure amorphe à une structure gamma, pour finalement aboutir à la formation d'alumine 

alpha avec l'augmentation de la température comme le montre la figure 2. Chaque 

modification s'accompagne d'une augmentation de la densité d’oxyde produit, ce qui peut 

provoquer l'apparition de fissures dans la couche d'oxyde. Ces fissures favorisent 

l'augmentation du taux d'oxydation en facilitant la diffusion accrue de l'oxygène à travers la 

surface de l'aluminium [23]. 

 La compréhension de ces mécanismes permet d'anticiper et de gérer de manière plus 

efficace l'oxydation de l'aluminium lors de sa refonte, ce qui permet de réduire les pertes de 

métaux et d'améliorer l'efficacité des processus de recyclage. Dans cette optique, il est 

essentiel de contrôler la température de coulée, comme le vise l’étude statistique, afin d’éviter 

le surchauffage responsable de l’oxydatio, et de réduire le contact du métal liquide avec l’air, 

ce qui est pris en compte dans le modèle numérique d’injection d’argon développé dans cette 

étude. 

 

 

 

 

 

 

Figure 2. Évolution de l’oxyde d’aluminium pur [23] 
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1.4.2 Les facteurs influençant l’oxydation d’aluminium  

Même si la température joue un rôle prépondérant dans le processus d'oxydation, 

d'autres facteurs tels que la qualité du métal, la surface de contact, la présence d'impuretés et 

la durée d'exposition exercent également une influence significative sur l'ampleur et la vitesse 

de ce phénomène. L'augmentation de la température de fusion semble favoriser le processus 

d'oxydation, comme le démontrent les recherches de Hinton [24] et Bahk [25], mettant en 

évidence une augmentation notable de l'épaisseur de la couche d'oxyde à des températures 

dépassant 700 °C. Il est observé que l'aluminium de haute pureté présente une moindre 

sensibilité à l'oxydation, ce qui laisse supposer que les impuretés présentes dans le métal 

pourraient jouer un rôle de catalyseur dans le processus d'oxydation. Par ailleurs, il convient 

de souligner l'importance de la surface de contact avec l'air, car une plus grande surface 

expose le métal à une plus grande quantité d'oxygène, favorisant ainsi le processus 

d'oxydation. Finalement, la période d'exposition de l'aluminium à l'air joue un rôle clé : une 

exposition prolongée favorise le développement de l'oxydation [23]. Il est impératif de 

prendre en considération ces facteurs afin d'optimiser le processus de traitement et de 

recyclage des déchets d'aluminium, ce qui permettrait de minimiser les pertes de métal et 

d'améliorer l'efficacité des opérations industrielles. 

1.4.3 Les techniques de prévention et de contrôle d’oxydation   

Pour préserver la qualité de l'aluminium fondu, il est nécessaire de mettre en œuvre 

différentes techniques spécifiques visant à lutter contre son oxydation. L'une des approches 

les plus couramment utilisées consiste à recourir à des flux de sels de couverture, tels que des 

mélanges de NaCl et KCl auxquels de faibles quantités de fluorures sont ajoutées. Ces sels, 

une fois incorporés pendant la fusion, se positionnent à la surface de l'aluminium en fusion 

en raison de leur moindre densité, créant ainsi une couche protectrice efficace contre 

l'oxydation. Afin de prévenir les réactions chimiques non désirables entre le métal et le sel, 

seuls les chlorures plus stables que le chlorure d'aluminium (AlCl3), tels que le chlorure de 

sodium (NaCl), le chlorure de potassium (KCl), le chlorure de calcium (CaCl2) et le chlorure 
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de magnésium (MgCl2), sont employés. Cette solution se distingue par son efficacité et son 

caractère économique, ce qui en fait une option privilégiée dans le secteur industriel [26]. 

De plus, l'emploi de gaz inertes constitue une méthode efficace afin de limiter 

l'oxydation de l'aluminium en fusion [27]. Cette méthode engendre une atmosphère inerte 

qui limite la réaction de l'oxygène de l'air avec l'aluminium, assurant ainsi une protection 

significative contre l'oxydation sans recourir à une quantité excessive de sels. Par ailleurs, un 

contrôle précis de la température représente une méthode essentielle afin d'optimiser le 

procédé de fusion à grande échelle dans le domaine industriel. L'étude réalisée par Apparat., 

M. et al [28] a démontré de quelle manière la prédiction précise de la température dans les 

fours à arc électrique peut considérablement optimiser l'efficacité du processus de fusion et 

réduire les pertes de métal causées par l’oxydation [28]. Ces deux approches, bien qu'elles 

soient différentes, contribuent toutes les deux à améliorer la gestion et l'efficacité des 

opérations de fusion de l'aluminium. 

1.5 SYNTHÈSE DU CHAPITRE 

En résumé, ce chapitre a présenté un aperçu général du domaine du recyclage de 

l’aluminium ainsi que du procédé actuellement mis en œuvre par notre partenaire industriel. 

Il a également exposé le cadre global de ce recyclage et mis en évidence les principaux défis 

liés à l’amélioration du processus R.A.M.E., notamment la protection du bain métallique 

contre l’oxydation par injection de gaz inerte et le contrôle précis de la température de fusion. 

L’analyse de ces aspects contribue à une meilleure compréhension des enjeux technologiques 

et industriels qui orientent les améliorations proposées dans les chapitres suivants. 
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CHAPITRE 2                                                                              

RÉDUCTION DE L’OXYDATION DANS LE PROCÉDÉ R.A.M.E. : 

AMÉLIORATION DU PROCESSUS D’INJECTION D’ARGON 

2.1 INTRODUCTION 

Dans le cadre d’amélioration du procédé R.A.M.E., la réduction de l'oxydation 

représente un enjeu majeur pour améliorer la qualité du matériau récupéré et réduire les pertes 

métalliques. L'une des stratégies mises en œuvre par Industri-Al consiste en l’injection de 

l'argon, un gaz inerte, dans le but de générer une atmosphère protectrice au sein du four qui 

était initialement rempli d'air. Ce chapitre propose une analyse détaillée réalisée dans le but 

d'optimiser ce procédé, en examinant divers paramètres susceptibles d'influencer l'efficacité 

de la couverture gazeuse. 

Dans un premier temps, une analyse approfondie de la littérature a été effectuée dans 

le but d'identifier les phénomènes physiques impliqués lors de l'injection d'argon dans un 

four industriel. Cette analyse a permis de développer le modèle mathématique approprié pour 

simuler le comportement thermofluides du gaz injecté ainsi que son interaction avec l'air 

initialement contenu dans le four. En conséquence, un modèle numérique 3D représentatif 

de cette interaction entre les deux gaz dans une géométrie simplifiée du four industriel a été 

élaboré. Ce modèle a permis d'analyser l'impact de divers paramètres, tels que la position et 

le nombre d'injecteurs d’argon, ainsi que le débit d'injection, sur l'efficacité de la couverture 

protectrice assurée par ce gaz.  

Avec une série de simulations numériques, différentes configurations du four industriel 

ont été examinées en ayant comme objectif de maximiser la couverture de protection contre 

l'oxydation. L'objectif final consistait à identifier la meilleure configuration garantissant une 
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répartition homogène et saturée en argon tout en minimisant les zones où l'air reste en contact 

avec le bain métallique. Les résultats obtenus ont souligné les conditions optimales 

d'injection susceptibles d'améliorer de manière significative l'efficacité du procédé R.A.M.E., 

tout en ouvrant la voie à des avancées industrielles en matière de contrôle de l'atmosphère de 

fusion et de diminution des pertes métalliques. 

2.2 REVUE DE LITTÉRATURE  

2.2.1 Objectifs 

            La modélisation d’un mélange binaire gazeux dans un four à induction, comme 

l’injection d’argon dans un four contenant de l’air, a été peu abordée dans la littérature. Cela 

a conduit à la réalisation d’une revue de littérature approfondie portant sur des systèmes de 

mélanges gazeux destinés à d’autres types d’applications. Cette revue a permis de reprendre 

les bases théoriques sur la diffusion et la convection dans les mélanges gazeux, afin de 

développer un modèle mathématique permettant de décrire les phénomènes de transport lors 

de l’injection de l’argon dans le four industriel initialement rempli en air. 

2.2.2  Pertinences de modélisations des mélanges gazeux 

Dans de nombreux procédés métallurgiques, la protection par des gaz inertes, comme 

l'argon, est essentielle afin d'éviter l'oxydation, d'améliorer la qualité des matériaux à 

récupérer et de diminuer les pertes de métal. Ces gaz sont introduits dans le but de neutraliser 

l'atmosphère réactive, en limitant le contact entre le métal fondu et l'air, ce qui permet 

l'élimination de l'oxygène résiduel. Ainsi, la modélisation des mélanges gazeux s’avère un 

élément essentiel dans le processus de fusion de l'aluminium dans un four à induction, car 

elle permet de mieux comprendre la dynamique de déplacement de l'air par l'argon. Ce type 

de modélisation est utile pour identifier les paramètres clés liés à l'injection de l’argon, tels 

que la position et le nombre d’injecteurs, le débit, la durée et la température d'injection, dans 

le but de maximiser l'efficacité de la protection contre l’oxydation. Cela permet d'identifier 
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les paramètres optimaux assurant une couverture maximale du métal en fusion, tout en 

optimisant la consommation d'argon. 

2.2.3 Revue des travaux antérieurs 

Dans cette section, les différents modèles mathématiques ayant été utilisés dans des 

études antérieures pour analyser des mélanges gazeux seront présentés. Les approches 

méthodologiques adoptées dans des travaux similaires à notre étude seront examinées, en 

mettant en lumière les avantages ainsi que les limites propres à chaque modèle. Cette analyse 

permettra d’établir une base théorique rigoureuse sur laquelle pourra être fondée la 

méthodologie du présent travail, tout en mettant en évidence les leviers d’optimisation 

possibles du modèle développé. 

2.2.3.1  Cas des gaz multicomposants à haute température 

Dans le cadre des mélanges gazeux à haute température, les modèles de Fick classiques 

sont souvent jugés insuffisants pour décrire avec précision les phénomènes de diffusion, 

notamment en raison de leur incapacité à garantir la conservation autoconsistant de la masse 

dans des systèmes complexes [1]. Pour pallier ces limites, des modèles plus avancés ont été 

développés, tels que le modèle de diffusion binaire effectif autoconsistant (SCEBD) et le 

modèle de Stefan-Maxwell [2], [3]. Ces derniers sont particulièrement recommandés dans 

les cas où les gradients de température et les interactions moléculaires sont significatifs, 

comme dans les milieux à haute température. Le modèle SCEBD permet de respecter la 

condition de conservation de la masse en considérant les interactions de collisions entre 

espèces, tandis que le modèle de Stefan-Maxwell est reconnu pour sa précision dans la 

description des flux molaires dans les mélanges multicomposants. Ces deux approches, bien 

que plus exigeantes en ressources computationnelles, permettent d’obtenir des prédictions 

fiables dans des environnements complexes [2], [3]. Par exemple, Tian et al [2] ont démontré 

que le modèle SCEBD était plus approprié que la loi de Fick pour des gaz monoatomiques 

comme l’argon, notamment à cause de l’absence d’énergie vibratoire dans ces atomes.  
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2.2.3.2 Cas de mélanges de trois gaz dans un processus de dépôt chimique en phase 

vapeur 

Pour les mélanges ternaires, des approches numériques ont été utilisées afin de simuler 

la dynamique des espèces dans des environnements industriels. Castellanos et al. [4] ont 

modélisé la synthèse de nanofibres de carbone par dépôt chimique en phase vapeur (CVD), 

impliquant un mélange de trois gaz : l’éthylène (C2H4), l’azote (N2) et l’hydrogène (H2). Leur 

étude repose sur l’utilisation du logiciel COMSOL Multiphysics®, où l’équation complète de 

Navier-Stokes a été résolue dans un cadre 2D. Le transport des espèces a été traité à l’aide 

de la loi de Fick. Bien que cette approche ait permis de visualiser la distribution des 

concentrations et les variations thermodynamiques dans le réacteur, elle a reposé sur 

l’hypothèse d’un milieu isotrope et de comportements moléculaires idéaux. Or, dans les 

systèmes industriels, ces hypothèses sont souvent invalidées par la présence d’interactions 

chimiques complexes et d’anisotropies du milieu. Ainsi, bien que les résultats aient démontré 

l’impact de la composition du mélange sur ses propriétés, l’utilisation exclusive de la loi de 

Fick dans ces conditions a limité la précision du modèle.  

2.2.3.3 Cas des gaz lourds (Ar–CO₂) dans un mélange gazeux tétracomposant 

Fedorenko et al. [5] ont étudié un mélange tétracomposant comprenant l’argon et le 

dioxyde de carbone, en combinant l’équation complète de Navier-Stokes avec le modèle de 

turbulence k-ε. Cette approche a permis de modéliser les phénomènes de diffusion 

moléculaire, de convection, ainsi que de diffusion turbulente, dans le cadre de transferts de 

masse à haute température. Les simulations ont été réalisées via le module Flow Simulation 

de SolidWorks. Toutefois, la complexité computationnelle de ce type de modélisation, 

ajoutée à la sensibilité du modèle aux paramètres initiaux, a représenté un défi majeur, car 

elle nécessite un maillage fin, des ressources de calcul importantes, et une précision élevée 

dans la définition des conditions aux limites. 
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 2.2.3.4 Cas des mélanges binaires  

Les recherches antérieures sur les mélanges binaires de gaz se sont majoritairement 

focalisées sur des régimes dits raréfiés, dans lesquels le nombre de Knudsen qui compare la 

distance moyenne entre deux collisions de molécules à la taille du système est élevé. Cela 

signifie que la distance moyenne entre deux collisions moléculaires est comparable, voire 

supérieure, à la taille du système, rendant les hypothèses de continuité des équations de 

Navier-Stokes inapplicables. Dans ce contexte, des modèles cinétiques, comme l’équation de 

Boltzmann ou la méthode de simulation Monte-Carlo directe (DSMC), sont préférés. Ces 

modèles permettent de simuler le comportement individuel des particules, et donc de capturer 

les effets liés à l’absence d’équilibre thermodynamique. Des études ont démontré l’efficacité 

de ces approches pour modéliser, par exemple, l’écoulement de mélanges gazeux à travers 

des orifices en milieu sous vide [6]-[8]. 

2.2.4 Synthèse de la revue  

Les travaux examinés ont montré que la modélisation des mélanges gazeux dépend 

fortement des phénomènes physiques présents dans le système. Pour les mélanges dilués en 

régime statique, les modèles de diffusion les plus simples, comme la loi de Fick, sont 

généralement suffisants. En revanche, lorsque les interactions interespèces deviennent 

significatives, notamment dans les mélanges multicomposants, des modèles plus complexes 

tels que ceux de Maxwell-Stefan ou SCEBD s’avèrent nécessaires. En présence de 

convection forcée, le transport du fluide impose le couplage de ces modèles avec l’équation 

de quantité de mouvement afin de représenter fidèlement le comportement global du 

mélange. Lorsqu’un gradient de température est également présent, on entre dans le cadre 

d’un écoulement non isotherme, où le transfert de chaleur devient non négligeable. Dans ce 

cas, l’intégration de l’équation d’énergie est indispensable pour modéliser correctement les 

effets thermiques sur la dynamique du système. 
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2.3 DÉVELOPPEMENT ET MISE EN ŒUVRE DU MODÈLE CFD 

2.3.1 Introduction 

Cette section présente la modélisation de la dynamique d’un mélange binaire de gaz, en 

l’occurrence l’air et l’argon, dans un four industriel semi-fermé et soumis à de hautes 

températures. Ce travail vise à mieux comprendre le comportement de l’argon, injecté comme 

gaz inerte, lorsqu’il se propage dans un environnement rempli d’air chaud. L’objectif principal 

est d’optimiser les paramètres d’injection, notamment le débit, la position et le nombre 

d’injecteurs afin d’assurer une protection homogène et efficace du bain de métal en fusion, et 

ainsi limiter l’oxydation provoquée par la présence d’oxygène dans l’air. 

Pour modéliser ce phénomène, trois processus physiques étroitement liés sont pris en 

compte : l’écoulement du fluide, qui décrit le mouvement du mélange gazeux sous l’effet de la 

convection ; le transfert de chaleur, influencé par les hautes températures dans le four ; et le 

transport de masse, qui permet de suivre la diffusion des deux gaz et leurs interactions. 

L’intégration conjointe de ces phénomènes permet une représentation réaliste de la dynamique 

du mélange air–argon. 

Afin d’atteindre cet objectif, la version 6.2 du logiciel COMSOL Multiphysics®, basé sur 

la méthode des éléments finis (FEM), a été utilisée. Ce logiciel permet la modélisation de 

phénomènes couplés dans des systèmes complexes. Le couplage entre les trois phénomènes 

physiques mentionnés a ainsi pu être établi. La modélisation s’appuie sur une représentation 

simplifiée, mais fidèle des paramètres industriels, incluant les dimensions du four, la 

température interne, la température du gaz injecté, ainsi que les interactions entre l’air et l’argon. 

Dans un premier temps, des simulations préliminaires ont été réalisées pour ajuster les 

paramètres numériques et mieux comprendre les phénomènes dominants. Ces simulations ont 

porté sur l’introduction d’un jet d’air froid dans un four rempli d’air chaud. Bien que le mélange 

air–argon ne soit pas encore pris en compte à ce stade, les phénomènes physiques restent 

similaires à ceux observés en situation réelle. La littérature en transfert de chaleur indique que 

les propriétés thermophysiques des gaz nobles et de l’air évoluent de manière comparable avec 
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la température [9]. Comme le montre le tableau 2, à 750 °C par exemple, l’air et l’argon 

présentent des propriétés du même ordre de grandeur, avec des écarts devenant négligeables. 

Tableau 2 

 Propriétés thermophysiques de l'air et de l'argon en fonction à 750 °C et 1 atm [10] 

 

L’étude exploratoire simplifiée qui a été réalisée en amont de l'intégration du mélange air-

argon a permis de combiner les modèles d'écoulement et de transfert de chaleur et d’analyser 

l'effet de divers paramètres tels que la densité du maillage, les conditions aux limites, la vitesse 

d'injection, le diamètre de l'injecteur, le débit, la position et le nombre d'injecteurs. Cette 

première approche avec un modèle simplifié et des temps de calcul réduits a donné l’occasion 

d'identifier les paramètres les plus critiques. Après cette première étape, le transport d'espèces 

concentrées a été inclus dans le modèle afin d'analyser la couverture du bain de fusion lors de 

l’injection d’argon dans le four initialement rempli d’air chaud. Cette deuxième phase a permis 

d’optimiser les paramètres d'injection, assurant ainsi une répartition homogène et performante 

du gaz à l'intérieur du four, et de produire des résultats exploitables pour de futures applications 

industrielles. Le diagramme de la figure 3 récapitule la méthodologie adoptée dans cette étude : 

 

Propriété Argon Air 

Densité (kg/m³) 0,58 0,35 

Conductivité thermique (W/m. K) 0,045 0,036 

Viscosité dynamique (Pa.s) 3,3×10-5 3,6×10-5 

Diffusivité thermique (m²/s) 2,6×10-5 2,8×10-5 

Chaleur spécifique (J/kg. K) 520 1030 
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Contrairement à la plupart des recherches antérieures qui se sont concentrées sur les 

mélanges à composants multiples ou les gaz rares [2]-[5], le problème étudié dans le cadre de 

ce projet de recherche a porté sur un mélange binaire air-argon dans le cadre d’une application 

industrielle où le four à induction n’est pas initialement sous vide, mais rempli d’air chaud, un 

domaine encore peu exploré. Afin de confirmer les résultats obtenus, une démarche basée sur la 

modélisation numérique a été mise en place en complément des simulations numériques. La 

présente étude détaillée et méthodique représente une contribution importante pour la 

compréhension des mécanismes des mélanges gazeux dans les fours industriels semi-fermés et 

fournit un support fiable pour l'amélioration des processus d'injection de gaz inerte. 

2.3.2 Géométrie et paramètres opérationnels 

La prise en compte de la géométrie et des conditions opérationnelles est fondamentale 

dans l'élaboration d'un modèle numérique précis et fidèle à la réalité des environnements 

industriels. Pour cette étude et dans le but d'assurer une modélisation précise et représentative, 

la géométrie du four a été déterminée en se basant sur ses dimensions et sa configuration 

industrielle actuelle. Les paramètres opérationnels, tels que la température interne du four, la 

température et le débit du gaz injecté, ont été soigneusement recueillis lors de visites 

industrielles réalisées. Ces données ont été validées et mesurées à l’aide de thermocouples 

Figure 3. Synthèse des simulations réalisées 
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étalonnés, en choisissant soigneusement le moment et la position de la prise de température, 

ainsi qu’à l’aide d’un débitmètre calibré, afin de garantir une représentation fidèle des conditions 

réelles du système étudié. 

2.3.2.1 Géométrie du four LIA 

Le four industriel considéré se compose de quatre composants principaux : la section 

supérieure qui constitue le couvercle, l'injecteur installé dans le couvercle, le bec assurant 

l'évacuation du métal fondu à la fin du processus de refonte et le creuset servant à l'introduction 

et à la fusion de la matière, comme illustré dans les figures 4 à 6. 

 

 

 

 

               

 

 

 

 

Figure 5. Couvercle du four et injecteur d’argon Figure 4. Bec pour la récupération du 

métal fondu 

Figure 4. Creuset du four 
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Les dimensions précises du four, telles qu'illustrées dans l’Annexe A, englobent celles de 

l'ensemble des éléments principaux. Néanmoins, les dimensions précises et l'emplacement de 

l'injecteur n'étaient pas détaillés dans les documents industriels accessibles. En conséquence, la 

position et les dimensions de l'injecteur ont été mesurées sur site. Ces paramètres, collectés et 

validés avec soin, ont assuré une représentation précise de la géométrie du four. 

À partir de ces données, le four a été modélisé en ajustant les paramètres spécifiés dans 

l’Annexe A. Le creuset utilisé pour la fusion a une forme cylindrique avec un diamètre de 1,34 

m et une hauteur de 2,8 m, ce qui équivaut à un volume total de 3,95 m³. La partie du bec par 

laquelle le métal est extrait se présente sous une forme cylindrique, avec un diamètre de 0,17 m 

et une longueur de 0,02 m. L'injecteur est un cylindre de diamètre 0,0175 m, situé à une distance 

de 0,2 m de la sortie du métal et aligné sur l'axe du bec. Les dimensions des différentes 

composantes du four sont regroupées dans le tableau 3. 

Tableau 3 

Dimensions géométriques des composants du four 

 

 

 

 

 

La conception du four a mis en évidence une symétrie par rapport au plan (x-z) comme le 

montre la figure 7, ce qui a permis de faciliter la tâche de modélisation numérique. Cette 

symétrie a permis de modéliser en 3D uniquement la moitié du four, comme illustré dans la 

figure 8. Cette simplification de la géométrie entraîne une réduction des ressources de calcul 

Dimensions Valeur (m) 

Rayon du creuset 0,60 

Hauteur du creuset 2,80 

Rayon du bec 0,17 

Hauteur du bec  0,02 

Rayon d’injecteur 0,017 

Hauteur d’injecteur  0,02 
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requises, notamment le temps de résolution et mémoire de l’ordinateur pour le stockage des 

données numériques, tout en maintenant la précision des résultats. 

 

 

 

 

 

 

 

2.3.2.2      Scénario d’injection de l’argon dans le four LIA 

Le contexte industriel étudié correspond à un cycle typique de refonte dans un four LIA, 

d’une durée comprise entre 1h30 et 2h30. Tout au long de ce processus, des charges successives 

de métal sont introduites dans le four, ce qui implique l’ouverture régulière du couvercle afin 

de permettre l’alimentation en matière première. Après qu’environ un tiers du volume total a 

été introduit, le couvercle est temporairement fermé pour initier la formation d’un premier bain 

de fusion. Le remplissage se poursuit ensuite jusqu’à atteindre la masse totale souhaitée, à l’issue 

de laquelle le four est entièrement fermé pour permettre la fusion complète du métal. 

L’injection d’argon intervient exclusivement lorsque le couvercle est fermé, dans le but 

de limiter l’oxydation du bain de métal en créant une atmosphère protectrice. Le gaz est injecté 

de manière continue à travers un orifice situé sur le couvercle. La zone du bec de coulée peut 

quant à elle être ouverte ou fermée, mais sans garantir une fermeture étanche. 

2.3.2.3  Les paramètres opérationnels  

La fusion de l'aluminium se déroule dans un environnement maintenu à une température 

optimale de 750 °C, équivalant à 1023,15 K, en accord avec les données habituellement citées 

dans la littérature scientifique. Cette température, fréquemment employée dans le secteur 

Figure 6. Plan de symétrie du four (xz) Figure 5. Coupe du four selon le plan 

de symétrie (xz) 
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industriel afin de garantir une fusion efficace et uniforme, a été sélectionnée comme paramètre 

opérationnel fondamental pour cette recherche. 

La température du gaz injecté a été directement mesurée in situ à la sortie d’une lance 

d’argon à l'aide d'un thermocouple de type K. Les mesures effectuées ont révélé que le gaz 

atteignait en moyenne une température de 46 °C, ce qui correspond à la température ambiante 

de l'usine.  

Le débit d’injection de 20 L/min a été précisément évalué en utilisant un débitmètre à 

flotteur positionné au sein de l'installation dédiée au passage de l'argon comme le montre la 

figure 9. En associant cette mesure de débit aux dimensions précises de l'injecteur, en particulier 

son diamètre, la vitesse d'injection a été calculée de manière théorique en utilisant cette formule 

𝑄 =  𝐴 ⋅ 𝑣 (2.1) 

Avec Q est le débit volumique en (m³/s), A est la section d’écoulement en (m²) et 𝑣 est la vitesse 

d’écoulement en (m/s). 

 

 

 

 

 

 

 

 

 

 

Débitmètre 

Figure 7. Emplacement du débitmètre dans le système d'approvisionnement 

en argon 
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2.3.3 Présentation du modèle mathématique  

Afin de reproduire numériquement les phénomènes physiques associés à l’injection d’un 

gaz inerte dans un four industriel contenant de l’air, un modèle mathématique a été développé. 

Ce modèle repose sur un ensemble d’équations de transport décrivant l’écoulement, le transfert 

thermique et, dans un second temps, le mélange binaire air–argon. Les propriétés des fluides 

considérés, les hypothèses formulées, les équations gouvernantes, ainsi que les conditions 

initiales et aux limites appliquées sont présentées dans cette section. 

2.3.3.1 Propriétés thermophysiques des fluides  

Avant d’établir les hypothèses de l’étude, il est nécessaire de s’appuyer sur les propriétés 

thermophysiques des deux gaz impliqués dans le mélange étudié : l’air et l’argon. Comme 

indiqué dans la section 2.3.2.3, les températures caractéristiques du système sont de 750 °C pour 

la température interne du four, et de 46 °C pour la température du gaz injecté. Les propriétés 

physiques des deux fluides ont donc été évaluées à ces deux températures, comme présenté dans 

le tableau 4. 

Tableau 4 

Propriétés thermophysiques d’air et d’argon à 1 atm à T= 46 °C 

Propriétés Air à 46 °C Argon à 46 °C Air à 750 °C Argon à 750 °C 

Densité (kg/m³) 1,112 1,640 0,305 0,400 

Viscosité dynamique 

(Pa·s) 
1,93 × 10⁻⁵ 2,20 × 10⁻⁵ 4,00 × 10⁻⁵ 4,42 × 10⁻⁵ 

Conductivité 

thermique (W/m·K) 
0,0272 0,0176 0,076 0,045 

Capacité thermique 

(J/kg·K) 
1010 520 1200 520 
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2.3.3.2        Hypothèses de l’étude  

 La modélisation numérique élaborée dans le cadre de cette étude s'appuie sur un 

ensemble d'hypothèses simplificatrices, lesquelles permettent de représenter de manière réaliste, 

tout en restant mathématiquement gérable, le comportement du mélange air-argon injecté dans 

un four industriel semi-fermé. Ces hypothèses concernent le type d'écoulement, la 

compressibilité du fluide, ainsi que les mécanismes de transfert de chaleur pris en compte. 

a. TYPE D’ÉCOULEMENT  

Dans le contexte de notre étude, le régime d'écoulement est contrôlé à la fois par la 

convection forcée au niveau de l’injecteur, résultant d'un débit d'injection d’argon de 20 L/min, 

et par la convection naturelle, qui résulte de la différence de température entre l’air initialement 

contenu dans le four à 750 °C et le gaz injecté à 46 °C. 

La présence d'un gradient thermique notable entre la température initiale du four et la 

température de gaz injecté engendre une convection naturelle, susceptible de modifier le régime 

d'écoulement. Dans le but de quantifier cette influence, une évaluation de nombre de Richardson 

a été réalisée en premier lieu. Ce dernier est un nombre adimensionnel utilisé pour comparer 

l'importance relative de la convection naturelle (forces de flottabilité) par rapport à la convection 

forcée (forces d'inertie) dans un écoulement [12]. Il est calculé comme suit : 

𝑅𝑖 =
𝑔 β Δ𝑇 𝐿ref

𝑈0
2                                                                                                                       (2.2) 

avec g est l'accélération gravitationnelle en m/s2, 𝛽 est le coefficient de dilatation thermique 

1/Tmoyenne en K-1, Δ𝑇 est la différence de température entre le four et le gaz injecté en K, 𝐿ref est 

la longueur caractéristique de la zone de circulation de gaz en m et U0 est la vitesse d’injection 

d’argon en m/s. Dans notre cas les valeurs utilisées sont les suivantes : la température du four 

Tfour est de 750 °C et celle du gaz injecté Tgaz est de 46 °C ce qui donne un écart de température  

Δ𝑇 de 704 °C. La température moyenne Tmoyenne = (750+46) /2 =398 °C soit 671,15 K donc β = 

1/Tmoyenne = 0,0015 K-1. La longueur de référence utilisée 𝐿ref = 1,97 m et la vitesse initiale du 

gaz injectée est U0 = 0,34 m/s.  
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La valeur obtenue, égale à 177 est largement supérieure à 1, seuil couramment utilisé pour 

distinguer la dominance de la convection naturelle par rapport à la convection forcée, ce qui 

confirme que le régime d’écoulement est dominé par la convection naturelle. 

Puisque la convection naturelle domine dans notre cas d’étude (comme le confirme le 

nombre de Richardson), le nombre de Grashof (Gr) a été utilisé comme indicateur du régime 

d’écoulement [9]. 

Les propriétés thermophysiques de l’air et de l’argon utilisées dans les équations de transport 

ont été évaluées à 750 °C, correspondant à la température dominante dans la zone de mélange. 

Cette température a donc été retenue comme température de référence pour le calcul du nombre 

de Grashof pour chaque gaz séparément. 

À titre d’exemple, dans le cas de l’air, le nombre de Grashof défini par l’équation 2.3, a été 

calculé pour des valeurs du coefficient d’expansion thermique 𝛽 égale à 1/671,15 K, un écart de 

température Δ𝑇 de 704 K, une viscosité cinématique 𝜈 de 1,13 10-4 m²/s, et une longueur 

caractéristique 𝐿 de 1,97 m, respectivement, résultant en une valeur de 6,3×109. 

𝐺𝑟 =
𝑔⋅β⋅Δ𝑇⋅𝐿3

ν2                                                                                                                                                                    (2.3) 

La valeur obtenue pour le nombre de Gr dépasse le seuil critique de 109 associé à la transition 

entre régimes laminaire et turbulent en convection naturelle. Ce résultat indique clairement que 

l’écoulement se développe en régime turbulent. 

b. COMPRESSIBILITÉ DE FLUIDE 

Afin de déterminer si l'écoulement est compressible ou incompressible, le nombre de Mach 

a été évalué en prenant en considération la vitesse moyenne d’écoulement de 0,34 m/s et la 

vitesse du son à Δ𝑇 de 704 K selon cette formule : 

𝑀 =
𝑈

𝑎
                    (2.4) 

𝑎 = √𝛾 ⋅ 𝑅 ⋅ 𝑇 (2.5) 



 

41 

Où U est la vitesse de l’écoulement en (m/s), a est la célérité du son dans le fluide en (m/s), 𝛾 

est le rapport des capacités calorifiques et R est la constante des gaz parfait en (J/kg. K). Pour 

l’air avec 𝛾 est 1,4, et on obtient un nombre de Mach de 6,39 × 10−4. 

En raison de la faible vitesse d'injection, le nombre de Mach calculé est très bas (M ≪ 0,3), 

ce qui suggère un écoulement généralement incompressible. Toutefois, dans notre situation, la 

variation de la densité est principalement liée à la variation significative de température entre le 

gaz injecté (46 °C) et le four (750 °C), et non à la pression, laquelle demeure pratiquement 

constante en raison de la faible vitesse. Par conséquent, malgré l'indication d'un écoulement 

incompressible par le nombre de Mach, la densité va forcément subir des variations en raison 

des gradients thermiques, ce qui rend cette hypothèse invalide. On se trouve ainsi dans le cadre 

typique d’un écoulement compressible à faible nombre de Mach, où les variations de densité 

sont essentiellement d’origine thermique, bien que la pression reste presque uniforme dans le 

domaine. Ce type de régime nécessite une prise en compte explicite de la dépendance des 

propriétés thermophysiques de la température. 

2.3.3.3 Équations de transport de masse : Cas d’un seul gaz 

Dans le cadre de l'étude préliminaire, qui modélise l'injection d'air froid dans un four 

contenant de l'air chaud, le comportement du gaz est analysé à partir des équations de transport 

fondamentales, adaptées à un écoulement turbulent à densité variable.  Dans le but de considérer 

les effets de la turbulence sur la dynamique des fluides ainsi que sur les transferts thermiques, 

les équations de Navier-Stokes et de l’énergie sont employées sous leur forme moyennée 

(RANS), avec l'incorporation de termes effectifs relatifs à la viscosité et à la conductivité 

thermique, intégrant ainsi les contributions tant moléculaires que turbulentes. 

a. ÉQUATION DE CONSERVATION DE MASSE 

 L'équation de conservation de masse également nommée équation de continuité permet de 

maintenir la masse d'un fluide constante dans un volume donné, sauf si de la matière est ajoutée 

ou retirée. Elle est utilisée pour étudier les écoulements et les interactions entre les phases d'un 

fluide en mécanique [12]. Le terme 
𝜕𝜌

𝜕𝑡
 de l’équation (2.6) représente la variation de la densité 

dans le temps. Le terme ∇ ⋅ (𝜌𝑣⃗)  représente le flux de masse qui entre ou sort d’un volume. 𝜌 

Est la densité du fluide en (kg/m³) et 𝑢 est la vitesse en (m/s). 
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𝜕𝜌

𝜕𝑡
  +  ∇ ⋅ (𝜌𝑣⃗)  =  0                                                                                                             (2.6) 

b. QUANTITÉ DE MOUVEMENT : ÉQUATIONS DE NAVIER-STOKES MOYENNÉES (RANS) 

En régime turbulent, la conservation de la quantité de mouvement s’écrit sous forme 

moyennée [13] : 

ρ
∂𝑣

∂𝑡
+ ρ(𝑣 ⋅ ∇)𝑣 = ∇ ⋅ [−𝑝𝐼 + κ] + ρg 

κ = (μ + μ𝑡)(∇𝑣 + (∇𝑣)𝑇) −
2

3
(μ + μ𝑡)(∇ ⋅ 𝑣)𝐼 −

2

3
ρ𝑘𝐼                                                       (2.7) 

ρ
∂𝑘

∂𝑡
+ ρ(𝑣 ⋅ ∇)𝑘 = ∇ ⋅ [(μ +

μ𝑡

σ𝑘
) ∇𝑘] + 𝑃𝑘 − ρε  

ρ
∂ε

∂𝑡
+ ρ(𝑣 ⋅ ∇)ε = ∇ ⋅ [(μ +

μ𝑡

σε
) ∇ε] + 𝐶ε1

ε

𝑘
𝑃𝑘 − 𝐶ε2ρ

ε2

𝑘
                                                       

Le système d’équations regroupé ci-dessous constitue le modèle de turbulence k–ε, utilisé 

pour simuler l’écoulement d’un fluide compressible en régime turbulent. La première 

expression représente l’équation de la quantité de mouvement, issue des équations de Navier–

Stokes, qui exprime l’équilibre entre l’accélération locale ρ
∂𝑣

∂𝑡
 , l’accélération convective 

ρ(𝑣 ⋅ ∇)𝑣, et les forces internes exercées sur le fluide à travers le gradient de pression et les 

contraintes visqueuses, représentés par ∇ ⋅ [−𝑝𝐼 + κ] et la force de gravité ρg. La deuxième 

relation donne la définition du tenseur des contraintes visqueuses κ, qui combine les effets de la 

viscosité dynamique moléculaire μ et de la viscosité turbulente μ𝑡, en tenant compte à la fois du 

gradient de vitesse symétrisé, de la divergence de l’écoulement, et de l’énergie cinétique 

turbulente k. La troisième expression est celle du transport de l’énergie cinétique turbulente k, 

modélisant sa production 𝑃𝑘, sa diffusion turbulente, et sa dissipation via le terme ρε.  

Enfin, la dernière équation décrit le transport du taux de dissipation ε, qui dépend de la 

production proportionnelle à  
ε

𝑘
𝑃𝑘, d’une diffusion turbulente similaire à celle de k, et d’un terme 

de destruction proportionnel à 
ε2

𝑘
, ajusté par les constantes empiriques 𝐶ε1 et 𝐶 ε2. 
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c. ÉQUATION DE CONSERVATION DE L’ÉNERGIE  

Malgré les températures élevées mises en jeu, seul le transfert thermique par convection et 

par conduction a été pris en compte dans le présent modèle. Ce choix repose sur la nature même 

de l’étude, qui vise à analyser le comportement fluidique du mélange air–argon injecté dans un 

four fermé, et non à simuler en détail le processus de fusion du métal. Le rayonnement thermique 

a été négligé, car l’air est déjà chaud dans la condition initiale et ni l’argon ni les principaux 

constituants de l’air (N2, O2) n’absorbent significativement dans l’infrarouge. En effet, la partie 

supérieure du bain (zone de contact avec le gaz) présente une composition complexe et mal 

caractérisée, rendant difficile la définition de propriétés radiatives fiables. Par ailleurs, l’objectif 

principal est de caractériser la distribution spatiale du gaz inerte et son interaction avec l’air 

chaud environnant, ce qui justifie l’approche centrée sur les mécanismes conductifs et 

convectifs. L’équation d’énergie est la suivante [14] : 

ρ𝑐𝑝
∂𝑇

∂𝑡
+ ∇ ⋅ (ρ𝑐𝑝𝑣⃗𝑇) = ∇ ⋅ (𝑘eff∇𝑇)                                                                                         (2.8) 

Où 𝑐𝑝 est la chaleur spécifique à pression constante, 𝜌 est la densité, 𝑘eff est la conductivité 

thermique effective, le terme (𝜌𝑐𝑝𝑣⃗𝑇) représente la chaleur transportée par le mouvement de 

fluide (convection thermique) et ∇ ⋅ (𝑘eff∇𝑇) est la chaleur qui diffuse par conduction thermique. 

2.3.3.4  Équations de transport de masse : Cas de mélange air-argon   

Pour le mélange air–argon, les mêmes équations présentées ci-haut ont été utilisées. 

Deux principales modifications ont été apportées : l'ajout de l'équation de transport des espèces, 

et l'adaptation des propriétés thermophysiques, qui ont été évaluées en tenant compte du 

comportement du mélange binaire plutôt que d'un seul gaz. 

a. ÉQUATION DE TRANSPORT DES ESPÈCES  

Dans le but de modéliser l'évolution de la concentration de chaque gaz au sein du mélange 

air-argon, l'équation de transport de l'espèce massique a été intégrée.  Elle prend en considération 

tant le transport convectif résultant de l'écoulement que la diffusion moléculaire au sein du 

mélange, et s'exprime comme suit [15] : 

∂(ρ𝑌𝑖)

∂𝑡
+ ∇ ⋅ (ρ𝑣⃗𝑌𝑖) = ∇ ⋅ (ρ𝐷𝑖∇𝑌𝑖)                                                                                          (2.9) 
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Où 𝑌𝑖 est la fraction massique de l’espèce i (air ou argon), 𝜌 est la densité de mélange, 𝑣⃗ est le 

vecteur vitesse du mélange gazeux et 𝐷𝑖 est le coefficient de diffusion massique de l’espèce i 

dans le mélange. 

b. PROPRIÉTÉS THERMOPHYSIQUES D’UN MÉLANGE  

La viscosité d'un mélange a été déterminée en utilisant la formule de Wilke : 

𝜇mix = ∑
𝑥𝑖μ𝑖

∑ 𝑥𝑗Φ𝑖𝑗𝑗
𝑖

 
                                               (2.10) 

Dans laquelle le facteur d'interaction entre les gaz 𝑖 et 𝑗 est représenté par 𝜙𝑖𝑗, et 𝑥𝑖 et 𝑥𝑗 

représentent les fractions molaires [16]. En cas de mélange idéal, où les molécules des différents 

composants sont pratiquement distinctes, ce terme peut être négligé. L'expression se simplifie 

alors à une moyenne pondérée comme le montre l'équation suivante : 

μmix = ∑ 𝑥𝑖μ𝑖

𝑖

 (2.11) 

La conductivité thermique d'un mélange gazeux repose sur le même principe que celui utilisé 

pour la viscosité [17], tel qu'illustré par l'équation suivante : 

𝑘mix = ∑
𝑥𝑖𝑘𝑖

∑ 𝑥𝑗Φ𝑖𝑗𝑗
𝑖

 (2.12) 

En conséquence, pour un mélange idéal, la conductivité thermique peut être aussi estimée 

par une moyenne pondérée des conductivités thermiques des différents composants du 

mélange : 

𝑘mix = ∑ 𝑥𝑖𝑘𝑖

𝑖

 (2.13) 

La capacité calorifique 𝐶𝑝,𝑖 est exprimée en [J/kg·K]. En adoptant la même approche, il est 

possible de déterminer la capacité calorifique d'un mélange en fonction des fractions massiques 

𝑌𝑖 des différents composants [18], conformément à l'équation suivante : 
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𝐶𝑝,mix = ∑ 𝑦𝑖𝐶𝑝,𝑖

𝑖

 (2.14) 

En ce qui concerne la densité du mélange, et en se basant sur l’hypothèse que l’air et l’argon 

se comportent comme des gaz parfaits, elle est exprimée par la relation suivante [19] : 

ρ =
𝑝 ⋅ 𝑀mix

𝑅 ⋅ 𝑇
 (2.15) 

avec 𝑀mix est la masse molaire moyenne du mélange en (kg/mol) et p est la pression du gaz en 

(Pa). 

2.3.3.5 Conditions initiales et conditions aux limites   

Le tableau 5 présente les valeurs initiales et les conditions aux limites utilisées pour la 

modélisation de l'écoulement non isotherme de l'air à l'intérieur du four industriel. La vitesse 

d’injection a été calculée à partir de l’équation (2.1), en considérant un débit de 20 L/min et un 

diamètre d’injecteur de 3.5 cm. La frontière du métal correspond à la surface entre le niveau 

d’aluminium et la zone de circulation du fluide gazeux et elle est maintenue à température 

constante de 750 °C. 

Tableau 5 

Les conditions initiales et les conditions aux limites pour modéliser l'écoulement non 

isotherme de l'air 

Domaine Paramètre Condition 

Valeurs initiales 

dans le four 

Vitesse 𝑣 = 0 m/s 

Pression 𝑝 = 1 atm 

Température initiale 𝑇In= 750 °C 

Entrée du four/ 

Injecteur 

Vitesse 𝑣 = 0,34 m/s 

Température de gaz injecté 𝑇 = 46 °C 

Sortie du four/ Bec 
Pression 𝑝 = 1 atm 

Gradient thermique 𝑞 = 0 (hypothèse de flux non imposé à la sortie) 

Parois 
Vitesse 𝑣 = 0 m/s (Condition de non-glissement) 

Isolation thermique 𝑞 = 0 (pas de flux thermique à travers les parois) 

Frontière de métal Température 
𝑇 = 750 °C (température de l’aluminium 

fusionné) 



 

46 

Le modèle binaire air–argon est basé sur les mêmes équations de transport développées 

pour l'air seul, avec l'ajout de l'équation de transport des espèces. Les conditions aux limites et 

les paramètres initiaux correspondants sont présentés dans le tableau 6. 

De faibles traces d’argon sont présentes à l’entrée du four en raison de l’injection 

effectuée par les opérateurs à l’aide d’une lance au début du processus. La quantité ainsi 

introduite étant très faible, cela justifie la valeur initiale de 0,01 attribuée à la fraction massique 

de l’argon dans le tableau 6. 

Tableau 6 

Conditions initiales et conditions aux limites pour le modèle considérant le transport des 

espèces 

Domaine Paramètre Condition 

Valeurs 

initiales 

Fraction 

molaire 

d’argon 

𝑌𝑎𝑟𝑔𝑜𝑛 = 0,01 

Entrée 

Fraction 

molaire 

d’argon 

𝑌𝑎𝑟𝑔𝑜𝑛 = 0,99 

Sortie 
Flux diffusif 

normal 

−𝑛 ⋅ ρ𝐷𝑖
𝑚∇𝑌𝑖  = 0 

(ρ est la densité de mélange , 𝐷𝑖
𝑚 est le coefficient de 

diffusion massique de l′espèce i dans le mélange) 

 

Parois Flux total 𝑛 ⋅ 𝑁𝑖 = 0 (𝑁𝑖 est le flux massique de l’espèce i) 

 

2.3.4 Résolution numérique de modèle mathématique   

La modélisation numérique constitue aujourd’hui un outil incontournable pour l’analyse 

des phénomènes thermofluidiques complexes dans les procédés métallurgiques. Dans cette 

étude, le logiciel COMSOL Multiphysics® a été utilisé en raison de sa capacité à coupler le 

transfert de chaleur, l’écoulement du gaz et le transport des espèces concentrées au sein d’un 

même environnement de calcul. Ce couplage permet d’étudier de manière intégrée les échanges 

thermiques et la dynamique de l’injection d’argon dans un four de fusion d’aluminium. 
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L’objectif est de comprendre la répartition du gaz protecteur, d’évaluer son interaction avec l’air 

chaud du four et d’identifier les conditions favorables à la réduction de l’oxydation du bain. 

2.3.4.1 Implémentation des équations dans COMSOL Multiphysics®   

a. MODÈLE À UN SEUL GAZ  

Un modèle à un seul gaz a été utilisé afin de simuler l'injection d'air froid dans un four 

préalablement rempli d'air chaud.  L'objectif principal consistait à examiner la répartition du gaz 

injecté ainsi que son interaction avec l'air chaud présent dans l'enceinte, tout en prenant en 

considération les effets thermiques et dynamiques du mélange.  Ce modèle s'appuie sur 

l'approche RANS (Navier-Stokes moyennées selon Reynolds) pour la modélisation de 

l'écoulement turbulent, conformément à l’équation (2.7), associée à un module de transfert de 

chaleur entre les fluides représenté par l’équation (2.8). Grâce à cette modélisation, il est 

possible d'évaluer l'impact des mécanismes de convection forcée et naturelle sur le régime 

d'écoulement, ainsi que d'analyser la manière dont le gaz froid se propage et se mélange au sein 

du four. 

• Choix de modèle de turbulence  

Après avoir déterminé que l’écoulement est turbulent dans la partie a de la section 2.3.3.2, le 

modèle de turbulence k-ε a été sélectionné en raison de sa robustesse et de sa large application 

dans le domaine industriel, tout en présentant un équilibre satisfaisant entre précision et coût 

computationnel. La littérature scientifique atteste que ce modèle de turbulence est 

particulièrement approprié pour la simulation d'écoulements complexes au sein de géométries 

de grande dimension, tel est le cas de notre four [22]-[24].  

• Configuration de la compressibilité de fluide  

Dans notre étude, comme démontré dans la partie b de la section 2.3.3.2, l'écoulement présente 

un faible nombre de Mach, ce qui implique que les variations de pression sont négligeables. 

Dans la version 6.2 de COMSOL Multiphysics® 

, trois approches de modélisation des écoulements sont disponibles : incompressible (densité 

constante), faiblement compressible et pleinement compressible. En raison des caractéristiques 

spécifiques de notre configuration, le modèle faiblement compressible a été retenu. Ce choix est 
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justifié par la similitude des équations utilisées pour les écoulements faiblement compressibles 

et compressibles, la principale différence résidant dans la manière dont la densité est traitée : 

elle est évaluée à partir d'une pression de référence et peut varier en fonction d'autres paramètres, 

notamment la température. Ce modèle est particulièrement adapté à des situations comme la 

nôtre, où les variations de densité sont dominées par des gradients thermiques plutôt que par des 

fluctuations de pression [25]. L'utilisation du modèle faiblement compressible permet ainsi 

d'intégrer avec précision les effets thermiques tout en simplifiant la modélisation de la densité. 

Par ailleurs, des simulations préliminaires ont été réalisées afin de vérifier la validité des 

hypothèses théoriques, d'assurer la convergence du modèle numérique et de confirmer 

l'adéquation de la configuration de l'écoulement sélectionnée. 

• Modélisation de transfert de chaleur 

L'équation (2.8) de conservation de l'énergie, qui gouverne le transfert de chaleur dans les 

fluides, a été modélisée à l'aide du module "Transfert de chaleur dans les fluides" de COMSOL 

Multiphysics®. Ce module permet la prise en compte des phénomènes de conduction et de 

convection thermique. 

• Modélisation de la convection naturelle induite thermiquement dans le système 

étudié 

Afin de modéliser la convection naturelle dans le système étudié, un couplage entre les 

équations de l’écoulement turbulent (k–ε) et celles du transfert de chaleur dans les fluides 

a été mis en place dans COMSOL Multiphysics®. Ce couplage permet de représenter un flux 

non isotherme, dans lequel les propriétés du fluide, telles que la densité et la viscosité, dépendent 

de la température, influençant ainsi le comportement de l'écoulement. Le champ de vitesse, 

obtenu à partir de la résolution des équations du modèle turbulent k–ε, est ensuite utilisé comme 

entrée dans l’équation de conservation de l’énergie. 

Deux méthodes sont proposées par COMSOL® pour réaliser ce couplage : la première consiste 

à utiliser manuellement le champ de vitesse extrait de l’équation d’écoulement turbulent comme 

entrée dans l’équation thermique ; la seconde repose sur l’activation d’une fonctionnalité 

multiphysique dédiée, qui automatise la liaison entre les deux équations. Les deux approches 

conduisent à des résultats équivalents. 
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b. MÉLANGE BINAIRE AIR-ARGON  

Afin de modéliser l’évolution des concentrations d’air et d’argon dans le système, les 

équations de transport des espèces ont été ajoutées et couplées aux équations de 

conservation de la quantité de mouvement (modèle turbulent k–ε) et à celles du transfert de 

chaleur. Ce couplage permet de prendre en compte les interactions entre l’écoulement, les 

transferts thermiques et les phénomènes de diffusion.  

Ce choix est justifié par la nature du processus : de l'argon est injecté en continu pendant 

toute la durée de la fusion, soit environ 2h30 à 3h, à un débit de 20 L/min. Compte tenu du 

volume total du four, il est estimé qu’après environ 2 heures, plus de 60 % du volume sera 

occupé par l'argon. Ainsi, les deux gaz (air et argon) se retrouveront à des concentrations du 

même ordre de grandeur, ce qui correspond aux conditions d'application du modèle « Transport 

des Espèces Concentrées TCS », conçu pour les mélanges sans solvant dominant. 

L'ajout de l’équation de transport à partir de ce module permet donc de modéliser avec 

précision le comportement dynamique des concentrations des deux espèces tout au long du 

procédé.  

• Configuration de module Transport des espèces concentrées (TCS) 

Dans notre configuration, l'argon est injecté en continu dans un environnement initialement 

composé d'air, créant progressivement un mélange binaire avec des proportions comparables. 

Selon les principes de la diffusion binaire, le coefficient de diffusion de l'argon dans l'air est 

égal à celui de l'air dans l'argon, ce qui garantit que les mécanismes de diffusion entre les deux 

espèces sont équivalents dans notre système. 

Dans ce contexte, l’approche de mélange moyenné a été choisie. Cette méthode simplifie la 

modélisation en considérant que chaque espèce diffuse indépendamment dans un mélange 

moyen, sans nécessiter la résolution d'un système d'équations couplées comme dans le modèle 

de Maxwell-Stefan, réservé aux mélanges multicomposants complexes [26]. 

Le flux molaire d'une espèce 𝑖 est alors décrit par la relation suivante : 

𝑁𝑖 = −𝐷mix,𝑖∇𝑐𝑖 + 𝑐𝑖𝑣                                                                                                        (2.16) 
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Avec 𝑁𝑖 est le flux molaire de l'espèce 𝑖 (mol/m²/s), 𝐷mix,𝑖 est le coefficient de diffusion moyen 

dans le mélange (Dair-argon =Dargon-air), 𝑐𝑖 est la concentration molaire de l’espèce 𝑖 et 𝑣 est la 

vitesse moyenne du fluide (m/s). 

• Configuration des propriétés des mélanges pour la résolution des modèles numériques 

Les propriétés thermophysiques de l’air et de l’argon ont ensuite été modifiées en intégrant 

directement les formules présentées dans la section 2.3.3.2 dans les champs appropriés des 

équations, via les interfaces des modules choisis, comme illustré par les figures B.10 à B.17 de 

l’annexe B. Ces formules permettent de calculer avec précision les propriétés thermophysiques 

de chaque espèce au sein du mélange.  

Dans COMSOL®, pour le calcul de la densité du mélange, la fonction "Mélange idéal" a été 

activée. Avec cette option, le logiciel utilise par défaut l'équation (2.15) pour évaluer la densité, 

en considérant que le mélange se comporte comme un gaz parfait. 

• Couplage des modules physiques pour la simulation du mélange air-argon 

Afin d'assurer un couplage efficace entre les trois modules, le module de transfert de chaleur a 

été relié au module d’écoulement à l’aide de la fonctionnalité "Écoulement non isotherme" de 

COMSOL Multiphysics®. La convection au sein du module de Transport des Espèces 

Concentrées (TCS) a été intégrée en s’appuyant sur le couplage avec le module d’écoulement 

turbulent (SPF) ainsi qu’avec le module de transfert thermique (HT), comme illustré dans la 

figure B.18 de l’annexe B. 

Par ailleurs, la densité utilisée dans les calculs du module de transfert de chaleur a été 

directement issue des données générées par le module TCS, garantissant ainsi la cohérence entre 

les propriétés thermophysiques du mélange et les phénomènes d'écoulement, comme présenté à 

la figure B.19 de l’annexe B. 

Cette configuration multiphysique assure une intégration optimale des trois modules, permettant 

une modélisation fidèle des interactions complexes entre convection, diffusion thermique et 

transport d'espèces. 
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2.3.4.2 Création de maillage  

Dans les travaux antérieurs portant sur les écoulements de fluides, le maillage 

hexaédrique a souvent été utilisé en raison de ses bonnes performances numériques [27]. 

Cependant, son application reste généralement limitée à des géométries simples. À l’inverse, 

plusieurs études ont montré que le maillage tétraédrique, lorsqu’il est associé à des techniques 

de raffinement adaptatif, permet d’obtenir des résultats satisfaisants dans des géométries 3D 

complexes [28] - [29]. Dans notre cas, la configuration étudiée présente une géométrie 

relativement complexe, notamment en raison de l’intégration prévue d’injecteurs 

supplémentaires. C’est pourquoi un maillage tétraédrique libre, plus souple et facilement 

adaptable, a été privilégié. Afin d’améliorer la précision dans les zones proches des parois, des 

couches limites ont été ajoutées sur l’ensemble des frontières, notamment celles du creuset du 

four, du bec de sortie et des injecteurs. Cinq couches ont été appliquées avec un facteur 

d’étirement de 1,2 et leur épaisseur a été ajustée automatiquement à l’aide d’un facteur 

d’ajustement de 1. Enfin, la calibration du maillage a été assurée en activant l’option dédiée à 

la dynamique des fluides dans COMSOL Multiphysics®. La figure 10 illustre clairement la 

disposition de ces couches limites ainsi que la structure du maillage tétraédrique libre appliqué 

à la géométrie étudiée. 

 

 

 

 

 

 

 

 

 

Figure 8. Maillage tétraédrique appliqué aux différentes zones du four : (a) creuset, (b) injecteur 

et (c) bec 
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2.3.4.3. Solveur et environnement de calcul  

Les simulations ont été effectuées en employant un solveur temporel direct avec un pas 

de temps de 1 seconde, à la suite de l'exploration des intervalles de 0,1 s et 5 s.  Les résultats ont 

montré que la diminution de pas de calcul avait un impact significatif sur le temps de calcul sans 

entraîner d'amélioration notable de la précision des résultats, tandis qu'une durée de 5 s 

provoquait des instabilités numériques.  Par conséquent, il a été conclu qu’un pas de temps d’une 

seconde est la valeur optimale offrant un équilibre entre la précision de la solution numérique 

et le temps de résolution du modèle mathématique dans COMSOL®. Il est à noter que les calculs 

ont été effectués sur un ordinateur Dell Précision 3660 équipé d’un processeur Intel Core i7-

13700K (13ᵉ génération, 16 cœurs, 24 threads) cadencé à 3,4 GHz, ainsi que de 32 Go de 

mémoire RAM. 

2.3.5 Étude de sensibilité de maillage    

 Après avoir créé le maillage tel que présenté dans la section 2.3.4.2, une analyse de 

sensibilité au maillage a été réalisée dans le cadre de l'étude exploratoire centrée sur la 

modélisation de l'injection d'air froid dans le four LIA initialement contenant de l’air chaud. 

Quatre types de maillage ont été évalués dans le but de calibrer la précision et l’efficacité des 

simulations comme le montre le tableau 7. La figure C.2 de l’annexe C illustre la structure 

respective de chaque maillage. 

Tableau 7  

Les différents maillages testés 

 

 

Maillage 
Nombre 

d’éléments 
Durée (s) Temps de calcul 

Grossier 28237 1800 14 minutes, 49 secondes 

Normal 81988  1800 33 minutes, 48 secondes 

Fin 158971 1800 1 heure, 47 minutes, 53 secondes 

Plus fin 447676 1800 4 heures, 1 minute, 40 secondes 
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(a) (b) (c) 

 

Afin d’évaluer la convergence du maillage, la température a été sélectionnée comme 

paramètre indicateur clé. Plusieurs sondes ont été placées en des points stratégiques du four afin 

de capturer les variations de la température. Ces sondes ont été réparties le long de trois lignes 

distinctes : L’une située dans la partie droite du four, une autre dans la partie gauche, et une 

troisième alignée avec l’injecteur. Cette distribution des sondes, illustrée dans les trois 

configurations du four dans la figure 11, a permis de couvrir l’ensemble du domaine et d’assurer 

une analyse représentative des variations thermiques à travers le système. 

 

 

 

 

 

 

L’analyse a été réalisée en prenant en compte l’ensemble des points instrumentés par 

des sondes de température. Toutefois, afin d’alléger la présentation, seuls trois points ont été 

sélectionnés pour illustrer l’évolution temporelle de la température, comme présenté dans les 

figures 12 à 14. Il convient de souligner que l’ensemble des points a également été pris en 

compte dans l’analyse globale. En comparant les variations de température obtenues pour les 

différents niveaux de raffinement de maillage, il apparaît que les courbes correspondant aux 

maillages normal, fin et très fin sont pratiquement superposées, avec une différence maximale 

inférieure à 3 °C (voir figure 12). Ces résultats traduisent une bonne convergence ainsi qu’une 

stabilité numérique satisfaisante à partir du maillage normal. 

 

 

 

Figure 9. Points de collecte de la température utilisés pour l’étude de convergence du 

maillage : (a) sur la ligne d’injection, (b) proche de la sortie, (c) côté opposé de la sortie 
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Figure 10. Variation de la température au point 2 pour différents types de 

maillage 

Figure 11.  Variation de la température au point 5 pour différents types de maillage 

Figure 12. Variation de la température au point 12 pour différents types de maillage 
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Dans le but de renforcer l’interprétation visuelle des courbes, un calcul a été effectué 

afin de quantifier les différences entre les maillages en termes de pourcentage. Les simulations 

préliminaires ont révélé que le régime permanent s'établit après 1500 secondes ; cet instant a 

donc été retenu comme référence pour la réalisation de ces calculs. Le maillage le plus fin a été 

adopté en tant que maillage de référence, tandis que la température a été retenue comme 

paramètre indicateur clé. Les résultats obtenus pour tous les points sont exposés dans le 

tableau 8. 

Tableau 8 

Écart de température en pourcentage après 1500 s 

Point 
Maillage grossier vs 

maillage plus fins 

Maillage normal vs 

maillage plus fins 

Maillage fin vs 

maillage plus fins 

1 0,6 0,19 0,23 

2 0,9 0,41 0,12 

3 2,94 2,06 0,21 

4 16,48 14,14 4,04 

5 0,06 0,1 0,13 

6 0,06 0,08 0,09 

7 0,01 0,07 0,14 

8 0,08 0,02 0,11 

9 0,79 0,18 0,93 

10 0,92 0,24 1,1 

11 1,73 0,35 2,97 

12 4,46 0,03 0,15 

Différence moyenne (%) 2,42 1,49 0,85 

 

D'après ces résultats, la différence moyenne observée entre un maillage très fin et un 

maillage normal pour l'ensemble des points analysés s'élève à 1,49 %. Cette légère différence 

suggère qu'un maillage normal est adéquat pour capturer avec précision les variations de 

température au sein du système analysé. De surcroît, l'emploi du maillage normal offre 

l'avantage d'être plus performant en ce qui concerne le temps de calcul et le stockage des 
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données numériques, tout en préservant un niveau de précision approprié. Ainsi, il sera utilisé 

pour le restant de notre étude. 

2.4 RÉSULTATS ET DISCUSSIONS 

Ce chapitre présente les résultats des simulations numériques réalisées dans le but 

d’optimiser l’injection de gaz protecteur dans un four contenant un bain d’aluminium en fusion. 

L’objectif est d’identifier les configurations les plus efficaces pour limiter l’oxydation et 

améliorer la protection du bain. Pour cela, l’influence de plusieurs paramètres d’injection a été 

étudiée : diamètre d’injection, position d’injecteur, nombre d’injecteurs, débit d’injection et 

niveau de remplissage du four. 

Les simulations préliminaires du modèle d’injection d’air froid dans un four rempli d’air 

chaud ont pour objectif d’évaluer la capacité des différentes configurations à induire un 

refroidissement significatif de l’environnement interne du four. Dans cette phase, la température 

est utilisée comme indicateur principal, car sa variation permet d’évaluer la pénétration du gaz 

froid injecté dans le four LIA. Les simulations sont menées sur une durée de 30 minutes, avec 

un suivi de l’évolution thermique à plusieurs hauteurs du creuset et au niveau du bec de sortie 

(voir les figures 15 et 16). Afin de garantir une analyse ciblée, seuls les résultats obtenus au 

niveau 1, situé à proximité du bain métallique, sont présentés en détail. Ce choix repose sur 

l’importance stratégique de cette zone, qui constitue la principale zone de contact entre le gaz 

injecté et le métal en fusion. Toutefois, en cas de variations notables détectées dans d’autres 

régions du four, une analyse complémentaire est également réalisée. 

 

 

 

 

 

 

Figure 13. Hauteurs des surfaces et domaines de la sortie analysés au niveau du four 
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Par la suite, des simulations du modèle binaire air-argon ont été réalisées, modélisant 

l’injection d’argon dans un four contenant initialement de l’air chaud. Cette étape vise à 

quantifier la distribution réelle du gaz protecteur dans les différentes zones du four. Les 

simulations ont été effectuées sur une durée de 60 minutes, en maintenant les mêmes zones 

d’évaluation que dans l’étude préliminaire portant sur un système air froid-air chaud. Le critère 

retenu dans cette phase est la fraction massique moyenne d’argon, qui permet de quantifier 

précisément la fraction de gaz protecteur dans le four et d’identifier les configurations offrant la 

meilleure répartition de ce dernier. 

2.4.1 Étude préliminaire : injection d'air froid dans un four rempli d'air chaud 

Cette section présente les résultats des simulations effectuées afin d'analyser l'impact de 

l'injection d'air froid dans un four contenant de l'air chaud. Les résultats présentent l'influence 

de chaque paramètre analysé. 

2.4.1.1       Effet de la variation du diamètre de l'injecteur 

Comme indiqué dans la section 2.3.2.3, le débit actuellement utilisé dans l’industrie pour 

l’injection d’argon est de 20 L/min. Afin d’évaluer l’impact de la variation du diamètre 

d’injection à débit constant, ce qui est l’équivalent d’une variation de la vitesse d’injection, des 

simulations ont été réalisées sur un four contenant un tiers de son volume en aluminium, tout en 

conservant les mêmes paramètres opérationnels que ceux appliqués en conditions industrielles. 

Figure 14. Domaine de la sortie du four analysé 
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Cela inclut notamment la même position de l’injecteur (voir figure 17) ainsi que le même débit 

d’injection. Trois diamètres différents ont été testés, comme présenté dans le tableau 9. Le 

diamètre du Cas 1 correspond à celui de l’injecteur actuellement utilisé dans l’industrie. 

 

Tableau 9 

Diamètres d’injection testés 

 

La représentation 2D des profils de vitesse pour les trois cas, extraite après 1800 

secondes de simulation, une fois le régime permanent atteint, met en évidence des structures 

d’écoulement similaires, comme illustré à la figure 18. 

 

 

 Cas 1  Cas 2  Cas 3  

Diamètre (m) 0,035 0,04 0,07 

Surface (m²) 9,6×10-4 0,001 0,0039 

Vitesse (m/s) 0,34 0,26 0,08 

Figure 15.  Position de l’injecteur dans le four industriel 
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La figure 18 montre que l’injection d’air froid par la partie gauche génère un écoulement 

descendant, lié à la convection forcée. En revanche, dans la partie droite du four, l’existence 

d’un gradient de vitesse en l’absence de forçage indique une recirculation induite par la 

convection naturelle, due à la différence de densité entre le gaz froid injecté plus dense qui 

descend, et le gaz chaud moins dense qui remonte. 

La figure 19 présente l’évolution temporelle de la température moyenne au niveau 1 pour 

les trois diamètres d’injection testés. Un comportement similaire est observé où la température 

se stabilise autour de 685 °C après environ 1500 secondes et les trois courbes sont quasiment 

superposées. En effet, l’écart entre les températures minimales atteintes pour les différentes 

Figure 16.  Profils de vitesse (en m/s) pour : (a) le cas 1, (b) le cas 2 et (c) le cas 3 
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configurations ne dépasse pas 2 °C. Cela confirme l’absence d’impact significatif de la variation 

de vitesse associée au diamètre, tant que le débit reste constant.   

Ces résultats s’expliquent par la dominance de la convection naturelle par rapport à la 

convection forcée dans le four. Celle-ci est générée par la différence de température entre l’air 

chaud ambiant et le gaz froid injecté. D’après la section 2.3.3.2 (partie a), la convection naturelle 

reste prédominante lorsque le nombre de Richardson (Ri) est supérieur à 1. Cela signifie que les 

forces de flottabilité dominent les forces d’inertie. Pour que la convection forcée prenne le 

dessus, Ri doit être inférieur à 1. Cela nécessiterait une vitesse d’injection d’environ 6 m/s, soit 

un débit de près de 360 L/min. Ce débit dépasse largement les conditions industrielles actuelles. 

Par conséquent, une variation modérée du diamètre à débit constant n’est pas suffisante pour 

modifier la répartition du gaz froid dans le four. 

Cette analyse est appuyée visuellement par la figure 18, où les profils de vitesse révèlent 

une recirculation du fluide dans la partie droite du four, en l’absence de toute injection. 

 

 

 

 

Figure 17. Évolution de la température moyenne au niveau 1 pour différents diamètres 

d’injection 



 

61 

2.4.1.2    Effet de la variation de la position de l'injecteur 

Étant donné que la variation du diamètre de l’injecteur à débit constant n’a pas montré 

d’impact significatif sur la répartition de l’air froid dans le four, un second paramètre a été 

étudié : la position de l’injecteur. Cinq configurations différentes ont été testées, comme illustré 

dans la figure 20. 

 

 

 

 

 

 

 

          En modifiant la position de l’injecteur, la température moyenne au niveau 1 varie 

généralement entre 683 °C et 686 °C, comme illustré dans la figure 21. Une tendance similaire 

a été observée aux autres niveaux du four. Toutefois, pour la position 3, où l’injecteur est situé 

à proximité de la sortie, la courbe présentée dans la figure 22 montre une température minimale 

plus basse dans la zone du bec par rapport aux autres positions testées. Cette position, qui 

correspond à celle actuellement utilisée en industrie, indique une tendance à accroître 

l’évacuation du gaz froid dans cette zone. Dans le cas de l’argon, un échappement du gaz 

diminue l’efficacité du processus, nécessitant une injection supplémentaire pour compenser les 

pertes. 

 

 

 

 

Figure 18.  Différentes positions testées pour l’évaluation de la température moyenne 
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2.4.1.3       Effet de la variation du débit d’injection  

Deux analyses avec respectivement des débits d’injection de 20 L/min et 30 L/min ont 

été réalisées pour une configuration du four équipée d’un seul injecteur. Afin de conserver une 

intensité de turbulence équivalente dans l’équation de quantité de mouvement, l’augmentation 

du débit a été compensée par un accroissement du diamètre d’injection, fixé respectivement à 

0,035 m et 0,040 m, tout en conservant une vitesse d’injection constante de 0,34 m/s. Dès les 

premières secondes de simulation, les résultats présentés dans la figure 23 montrent qu’au 

niveau 1 du four, un débit de 30 L/min permet un refroidissement plus efficace, avec une 

réduction de la température d’environ 13 °C par rapport au cas à 20 L/min. Cette observation 

Figure 19. Évolution de la température moyenne au niveau 1 pour différentes positions 

Figure 20.  Évolution de la température moyenne au niveau du bec pour différentes 

positions d’injecteur 
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souligne l’influence directe du débit de gaz sur la répartition et la pénétration du gaz froid. 

L’analyse des niveaux 2 et 3 ainsi que de la zone de sortie a confirmé également qu’un débit 

plus élevé améliore significativement le refroidissement dans l’ensemble du four. Les résultats 

détaillés pour ces niveaux ne sont pas présentés ici afin de simplifier la lecture. 

 

 

 

 

 

 

 

 

2.4.1.4    Impact du nombre d’injecteurs 

        Dans le but d'évaluer l'influence du nombre d'injecteurs sur l'aptitude de l'air froid à 

atteindre le fond du four, une étude comparative a été réalisée, portant sur cinq configurations 

différentes consistant à varier le nombre d’injecteurs et leurs positions, comme illustré dans la 

figure 24.  L'objectif principal consistait à optimiser la distribution du gaz froid tout en réduisant 

au minimum la consommation d'air injecté. Pour cela, un débit de 20 L/min et un diamètre 

constant de 0,035 m ont été préservés, ce qui implique qu'une augmentation du nombre 

d'injecteurs entraîne une diminution de la vitesse d'injection.  

Figure 21. Évolution de la température moyenne au niveau 1 pour deux différents débits 
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Figure 22. Différentes configurations testées pour l’évaluation de la température moyenne

  

        La figure 25 présente les résultats numériques illustrant l'évolution temporelle de la 

température moyenne au niveau 1 en fonction du nombre d’injecteurs. Ces résultats indiquent 

que les configurations comportant trois injecteurs, qu'ils soient disposés de manière alignée ou 

non, ainsi que celle intégrant quatre injecteurs, permettent d'obtenir un refroidissement du four 

plus efficace après un temps d’injection de 6 minutes.  En effet, au cours des 6 premières 

minutes, la température diminue de manière similaire pour les cinq configurations, passant de 

750 °C à 710 °C.  Néanmoins, après cette période, les configurations comportant trois ou quatre 

injecteurs sont plus efficaces dans la réduction de la température.  En particulier, à l'issue de 

cette phase, la température moyenne minimale atteinte se révèle inférieure de 7 °C par rapport 

aux configurations avec un ou deux injecteurs. 
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La figure 26 présente l'évolution de la température moyenne au niveau du bec, dont la 

position est illustrée dans la figure 16, pour les différents nombres d’injecteurs. L'analyse de la 

température au niveau de la zone de sortie confirme que la configuration comportant quatre 

injecteurs entraîne une évacuation plus importante du gaz froid injecté.  Cette configuration 

engendre une diminution de la température de plus de 10 °C par rapport à celle comportant trois 

injecteurs lorsque le temps d’injection dépasse 6 minutes. La courbe représentant la variation 

de la température pour quatre injecteurs présente une allure différente, avec une diminution 

brusque de la température après 5 minutes. Cela pourrait être attribué à la complexité du modèle 

à quatre injecteurs, qui nécessite un maillage plus raffiné pour capturer correctement toutes les 

variations locales de température.  Pour cette raison, les deux configurations comportant trois 

injecteurs semblent offrir un compromis optimal entre l'efficacité du refroidissement et la 

réduction de la quantité de gaz injecté susceptible de s’échapper par le bec. 

Figure 23. Évolution de la température moyenne au niveau 1 pour différents nombres et 

positions d’injecteurs 
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2.4.1.5 Facteurs influents sur l’injection de gaz 

         À la suite de cette première analyse concernant le comportement du gaz froid injecté, les 

paramètres les plus déterminants pour la distribution de gaz froid dans le four sont le débit 

d’injection, le nombre d'injecteurs ainsi que leurs positions.  Dans le but d'approfondir l'analyse, 

une modélisation du mélange binaire air-argon et les résultats qui en découlent a fait l’objet de 

la section 2.4.3 afin d'évaluer l’impact de ces paramètres en conditions réelles du 

fonctionnement du four et d'optimiser l'injection du gaz protecteur du bain d’aluminium en 

fusion. 

2.4.2         La transition vers l’étude de mélange binaire  

        Avant de passer à l’analyse détaillée du mélange binaire, une évaluation a été réalisée sur 

les profils de vitesse ainsi que sur la variation de la température moyenne pour les deux modèles 

: air seul et air–argon. Les résultats, présentés dans la figure 27, montrent une similarité notable 

entre les deux configurations quant au profil de température. Afin de ne pas alourdir le rapport, 

Les sections suivantes, consacrées au mélange binaire, se concentreront uniquement sur 

l’évolution de la fraction massique moyenne d’argon à l’interface entre le mélange gazeux et le 

Figure 24. Évolution de la température moyenne au niveau du bec pour différents nombres et 

positions d’injecteurs 
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métal fondu., rappelant que l’objectif principal de cette étude est d’optimiser l’injection d’argon 

dans le four LIA, notamment en quantifiant sa concentration et sa répartition. 

 

 

 

 

 

 

 

 

 

2.4.3 Étude du mélange binaire air-argon 

        Les simulations du processus d’injection de l’argon et son mélange avec l’air chaud 

initialement présent dans le four ont d’abord été réalisées en reproduisant la configuration 

actuellement utilisée dans l'industrie, afin d'évaluer l'efficacité de leur système d'injection 

d'argon et de déterminer ses limites. 

 La figure 28 illustre l’évolution temporelle des fractions massiques moyennes d’air et d’argon 

au niveau 1 du four. Cette évolution met en évidence la substitution progressive de l'air par le 

gaz inerte introduit. Après 5 minutes d'injection, seulement 10 % de l'argon est détecté, laissant 

ainsi 90 % d'air résiduel, ce qui expose de manière significative le bain de fusion à l'oxydation.  

De façon progressive, la proportion d'argon augmente, atteignant 60 % après une heure, tout en 

maintenant 40 % d'air au niveau 1 du four, ce qui reste insuffisant pour assurer une protection 

optimale.   

 

Figure 25.  Variation de la température moyenne au niveau 1 en fonction du temps pour 

les deux études 
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Lors des opérations de chargement du four avec le métal à recycler, le procédé industriel 

actuellement en application nécessite des ouvertures successives du couvercle du four pour 

permettre l'introduction de la charge. Ces interventions entraînent une interruption de l'injection 

d'argon et favorisent l'entrée d'air ambiant. Cette contrainte réduit de façon significative 

l'efficacité de la couverture du bain de fusion (niveau 1) par le gaz inerte et souligne l'importance 

d'une optimisation du système d'injection. Dans des procédés industriels sensibles à l’oxydation, 

comme le soudage TIG ou MIG sur des métaux non ferreux (aluminium, titane), les normes NF 

EN ISO 14175 et NF EN 439 recommandent l’utilisation d’un environnement 100 % argon, 

exempt d’air. Par analogie, ces exigences soulignent l’importance, dans notre contexte, de 

maintenir une atmosphère inerte totale autour du métal fondu pour en limiter l’oxydation. Or, 

selon les résultats obtenus par le modèle numérique, la fraction massique d’air présente au 

niveau 1 du four, après une heure d’injection d’argon, dépasse encore 40 %. Ce constat met en 

évidence que la couverture actuelle du fond de four, utilisée par l’industrie, reste loin des 

conditions optimales nécessaires pour garantir une protection efficace contre l’oxydation. 

         Par conséquent, les paramètres présentés dans la section 2.4.1.5 ont été de nouveau 

analysés dans le cas d’un mélange binaire air-argon avec l’objectif d'optimiser le processus 

d'injection, en visant à augmenter le pourcentage d'argon à la surface la plus proche du métal 

(niveau 1 du four illustré dans la figure 15). 

Figure 26.  Évolution des fractions massiques moyennes d’air et d’argon au niveau 1 
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2.4.3.1  Effet de la variation de la position de l'injecteur 

           Afin d’analyser plus en détail la répartition d’argon dans le four, des coupes 2D ont été 

utilisées pour compléter l’étude. Ces derniers ont été élaborés selon deux plans : le plan (x-z), 

qui permet d'analyser la répartition du gaz dans l'intégralité du four, et le plan (x-y), qui se 

concentre sur la distribution du gaz au-dessus de métal en fusion, comme l’illustre la figure 29. 

 

 

 

 

 

 

 

Par ailleurs, en se basant sur la durée d'ouverture du couvercle observée lors des stages 

effectués au sein de l’industrie et en prenant en considération la durée moyenne des refontes, 

qui est de 2 heures, il apparaît que le couvercle s'ouvre toutes les 15 minutes.  En conséquence, 

les graphiques de la fraction moyenne ont été exposés après de 15 minutes de début d’injection 

afin de refléter cette périodicité. 

         L'impact de la position de l'injecteur sur la couverture en argon a été analysé en réalisant 

des tests sur les trois positions 1, 2 et 3 présentées dans la figure 20.  Les graphiques en 2D des 

figures 30 et 31 indiquent que les différences d'échelle de la fraction massique d’argon reflètent 

une variation dans la distribution de l'argon en fonction de la position de l'injecteur.  L'injection 

en position 3, située plus loin du bec, favorise une légère augmentation de la concentration 

d'argon. Dans les trois cas, la fraction massique maximale est systématiquement localisée sous 

Figure 27. Plans de coupe pour l’analyse 2D de la fraction massique d’argon : (a) Vue de 

face dans le plan (x-z) et (b) Plan de coupe horizontale (x-y) au niveau 1 
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l’injecteur, ce qui indique un effet d'injection localisé. Cette variation reste, inférieure à 2 %, ce 

qui indique une distribution globale homogène d'argon à cette surface. 
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Figure 28. Graphique 2D de la répartition de la fraction massique d’argon selon le plan (x-z) pour 

différentes positions de l’injecteur après 15 minutes d’injection : (a) position 1, (b) position 2 et (c) position 

3 illustrées dans la figure 16 

Figure 29. Graphique 2D de la répartition de la fraction massique d’argon au niveau 1 

du four (Coupe dans le plan (x-y)) après 15 minutes d’injection d’argon pour 

différentes positions de l’injecteur : (a) position 1, (b) position 2 et (c) position 3 
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Étant donné que l’analyse porte principalement sur la zone située à proximité immédiate 

du métal en fusion (niveau 1), l’évolution de la fraction massique moyenne d’argon dans cette 

région est présentée dans la figure 32. Les résultats montrent que la variation de cette fraction 

selon la position de l’injecteur reste marginale. Toutefois, lorsque l’injecteur est placé en 

position 2, une légère diminution est observée, avec une fraction massique inférieure d’environ 

2 % par rapport aux deux autres configurations. Cette tendance demeure cohérente avec les 

observations tirées des coupes 2D présentées dans les figures 30 et 31. 

 

 

2.4.3.2        Effet de la variation de débit d’injection  

         D’après l’étude exploratoire réalisée avec de l’air uniquement, il a été constaté que le débit 

a un impact significatif sur la variation de la température. Ainsi, trois débits ont été testés pour 

le cas du mélange air-argon : 20, 30 et 40 L/min.  Le débit a été changé de deux façons : d'abord, 

en changeant le diamètre de l’orifice d'injection avec une vitesse constante, ensuite, en gardant 

le même diamètre, mais en augmentant la vitesse. 

 

 

Figure 30.  Évolution de la fraction massique moyenne d’argon au niveau 1 pour différentes 

positions 
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a. VARIATION DU DÉBIT PAR CHANGEMENT DE DIAMÈTRE À VITESSE CONSTANTE 

Les trois diamètres utilisés pour modéliser les trois cas sont présentés dans le tableau 10. 

Tableau 10 

Diamètres choisis pour modéliser les trois débits d’injection. 

 

 

 

 

 

La figure 33 présente la répartition 2D de la fraction massique locale d’argon pour les 

trois débits testés. On y observe une distribution globalement homogène dans l’ensemble du 

four, avec une concentration maximale localisée juste au-dessous de l’injecteur. Bien que les 

cartes de concentration semblent visuellement similaires en termes de couleurs, il est important 

de noter que les plages de valeurs varient selon le débit. Pour un débit de 20 L/min, la fraction 

massique se situe entre 17,5 et 18 ; pour 30 L/min, elle est comprise entre 29 et 30 ; et pour 

40 L/min, elle varie entre 42 et 43. Cette distinction met en évidence une variation significative 

de la fraction massique moyenne d’argon en fonction du débit : celle-ci augmente clairement 

avec l’intensité du débit injecté. Cette observation est confirmée par l’évolution temporelle de 

la fraction massique moyenne de l’argon pour différents débits, comme illustré dans de la figure 

34. Il est clair qu’une augmentation du débit entraîne une augmentation notable de la 

concentration d’argon au fond du four. Ce comportement reflète bien l’effet attendu du débit sur 

la quantité de gaz injecté, et souligne son rôle déterminant dans le processus d’injection. En 

outre, le temps théorique nécessaire pour remplir le four en argon varie considérablement en 

fonction du débit. Il est estimé à 2 heures et 22 minutes pour un débit de 20 L/min, à 1 heure et 

47 minutes pour 30 L/min, et à seulement 1 heure et 10 minutes pour 40 L/min. 

         Par ailleurs, les résultats montrent qu’un débit de 40 L/min permet d’atteindre une 

concentration de 83 % d’argon au fond du four en une heure, contre respectivement 69 % et 60 

 Cas 1  Cas 2  Cas 3  

Débit (L/min) 20 30 40 

Diamètre (m) 0,035 0,04 0,05 

Vitesse (m/s) 0,34 
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% pour des débits de 30 L/min et 20 L/min. Ces observations confirment l’intérêt d’un débit 

élevé, qui permet non seulement d’augmenter la fraction d’argon, mais aussi d’accélérer de 

manière significative le processus global d’inertage. 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Graphique 2D de la répartition de la fraction massique locale d’argon au niveau 1 

pour différents débits après 15 minutes : (a) débit 20 L/min, (b) débit 30 L/min et (c) débit 40 

L/min 
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b. VARIATION DU DÉBIT PAR CHANGEMENT DE VITESSE À DIAMÈTRE CONSTANT 

Les différentes vitesses utilisées pour augmenter le débit d’injection en maintenant le 

diamètre d’injection constant sont illustrées dans le tableau 11. Les simulations du 

comportement du mélange binaire dans le four ont été réalisées en considérant que la vitesse 

d’injection d’argon augmente linéairement au cours des 10 premières secondes, comme 

l’illustrent les figures B.20 et B.21 de l’annexe B.  

Tableau 11 

Vitesses choisies pour modéliser les trois débits d’injection 

 

 

 

 

 

 

 Cas 1  Cas 2  Cas 3  

Débit (L/min) 20 30 40 

Diamètre (m) 0,035 

Vitesse (m/s)          0,34         0,51 0,68 

Figure 32. Évolution de la fraction massique moyenne d’argon au niveau 1 pour 

différents débits d’injection 
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L’examen des résultats présentés aux figures 35 et 36 met en évidence des tendances 

similaires à celles observées précédemment lors de la variation du diamètre d’injection (voir 

partie a de la section 2.4.3.2), avec seulement des différences marginales dans l’évolution de la 

fraction massique d’argon. Ces observations, mises en parallèle avec les résultats obtenus lors 

de l’augmentation du débit par accroissement du diamètre à vitesse constante, suggèrent que la 

dispersion de l’argon dépend avant tout du débit injecté, et non de la vitesse d’injection. En 

d’autres termes, à débit constant, la répartition du gaz reste comparable, que celui-ci soit injecté 

plus lentement par un orifice plus large ou plus rapidement par un orifice plus étroit. 
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Figure 33.Graphique 2D de la répartition de la fraction massique d’argon au niveau 1 pour différents 

débits après 15 minutes : (a) débit 20 L/min, (b) débit 30 L/min et (c) débit 40 L/min 

Figure 34. Évolution de la fraction massique moyenne d’argon au niveau 1 pour différents débits 
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2.4.3.3          Impact du nombre d’injecteurs 

Les mêmes configurations décrites dans la section 2.4.1.4 et présentant différents nombres 

et positions d’injecteurs ont été testées dans le cas d’un mélange binaire air-argon.   

La figure 37 présente la répartition de la fraction massique d’argon au fond du four après 

15 minutes d'injection. En examinant les graphiques 2D, on constate que la répartition de l’argon 

est globalement homogène au niveau 1, quelle que soit la configuration. Toutefois, les valeurs 

maximales de la fraction massique d’argon varient selon le nombre et la disposition des 

injecteurs. Après 15 minutes, la fraction maximale atteint 18 % avec un seul injecteur, 24,7 % 

avec deux injecteurs, 24,9 % avec trois injecteurs alignés, 26,1 % avec trois injecteurs non 

alignés, et 27,3 % avec quatre injecteurs. En croisant ces résultats avec ceux présentés dans la 

figure 38, qui illustre la variation temporelle de la fraction massique moyenne, on observe 

qu’après une heure d’injection, la configuration à quatre injecteurs atteint une fraction moyenne 

de 68 %, contre 64 % pour trois injecteurs non alignés, 63 % pour trois injecteurs alignés, 61 % 

pour deux injecteurs, et 60 % pour un seul injecteur. Ces résultats montrent clairement que 

l’augmentation du nombre d’injecteurs, tout en maintenant un débit total constant réparti entre 

eux, améliore la présence de gaz protecteur dans la zone la plus proche de la surface du métal. 

Ainsi, les configurations à quatre injecteurs ou à trois injecteurs non alignés offrent une 

couverture plus efficace, et s’avèrent plus adaptées pour assurer une inertisation optimale du 

four. 
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Figure 35. Graphique 2D de la répartition de la fraction massique d’argon au niveau 1 

pour différentes configurations après 15 minutes : (a) un seul injecteur, (b) deux 

injecteurs, (c) trois injecteurs alignés, (d) trois injecteurs non alignés et (e) quatre 

injecteurs 
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2.4.3.4 Influence du niveau de métal sur la répartition de l’argon dans le four 

         Les simulations antérieures ont été effectuées en prenant en compte que seulement un tiers 

du four était occupé par le matériau à recycler. Dans le but d'explorer divers scénarios et 

d'enrichir l'analyse, l'étude a été approfondie en examinant la variation de la fraction moyenne 

d'argon lorsque le four est rempli à moitié ainsi qu'au maximum de sa capacité. 

         Les figures 39 et 40 présentent la répartition de la fraction massique d’argon selon les 

plans (x-z) et (x-y) au niveau 1 pour différents niveaux de remplissage après 15 minutes 

d’injection d’argon. Les résultats montrent qu’une fraction massique plus élevée est observée 

lorsque le four est entièrement rempli, ce qui s’explique avec moins d’espace disponible pour 

la répartition des deux gaz, comparativement aux autres niveaux de remplissage. 

Figure 36. Évolution de la fraction massique moyenne d’argon au niveau 1 selon le 

nombre et la disposition des injecteurs 
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Figure 37. Graphiques 2D de la répartition de la fraction massique d’argon selon le plan 

(x-z) pour différents niveaux de remplissage après 15 minutes : (a) un tiers du four 

rempli, (b) la moitié du four remplie et (c) la totalité du four remplie 

Figure 38.  Graphique 2D de la répartition de la fraction massique d’argon selon le plan (x-

y) et au niveau 1 pour différents niveaux de remplissage du four après 15 minutes : (a) un 

tiers du four rempli, (b) la moitié du four remplie et (c) la totalité du four remplie 
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          Pour mieux interpréter les résultats présentés dans les figures 39 et 40, la figure 41 

présente une comparaison de l’évolution temporelle de la fraction massique moyenne de l’argon 

au niveau 1 pour les différents niveaux de remplissage du four.  L’analyse des résultats obtenus 

confirme que l’augmentation du niveau de remplissage du four contribue significativement à 

l’amélioration de la saturation en argon à la surface du métal en fusion. Lorsque le four est 

entièrement chargé, la fraction massique d’argon atteint 0,86 après une heure, contre 0,68 et 

0,60 pour des niveaux de remplissage de respectivement 1/2 et 1/3 de la hauteur totale du four. 

Cette tendance s’explique par la réduction du volume d’air initialement présent, facilitant ainsi 

son remplacement par l’argon. Par ailleurs, la dynamique d’injection suit une évolution 

asymptotique : dans le cas d’un four totalement rempli, la fraction en argon atteint 50 % en 

moins de 20 minutes, alors qu’elle ne dépasse pas 30 % pour un remplissage au tiers. Ces 

résultats soulignent l’efficacité accrue de l’injection d’argon lorsque le volume de remplissage 

est plus élevé. 

 

  

 

 

 

 

 

 

 

 

Figure 39.  Évolution de la fraction massique moyenne d’argon à la surface du métal 

fondu en fonction du temps pour différents niveaux de remplissage du four 
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2.4.3.5 Synthèse des résultats et suggestions pratiques 

a. SYNTHÈSE DES RÉSULTATS CLÉS  

L'analyse des paramètres affectant l'inertage du four a mis en évidence que le débit 

d'injection, le niveau de remplissage du four ainsi que le nombre d'injecteurs constituent les 

facteurs les plus déterminants afin d’assurer une bonne protection du bain de fusion.  Une 

augmentation du débit d'injection de l’argon contribue de manière significative à l'amélioration 

de la substitution de l'air par l'argon, ce qui accélère la saturation du four en gaz inerte et diminue 

l'exposition du bain de fusion à l'oxydation. De plus, un volume de métal élevé favorise la 

saturation en argon en diminuant le volume d'air à remplacer, ce qui permet une injection plus 

efficace. Parmi les configurations évaluées, la présence de quatre ou des trois injecteurs, qu'ils 

soient alignés ou non, contribue de manière significative à l'amélioration de l'efficacité du 

processus en garantissant une dispersion optimale du gaz dans l'environnement du four. En 

revanche, la position des injecteurs n’a pas révélé d’impact significatif sur l’efficacité du 

processus, ce qui justifie le maintien de la configuration actuelle sans nécessiter de modification.  

Ces résultats mettent en évidence que l'amélioration du procédé dépend essentiellement de 

l'optimisation du débit d'injection selon le niveau de remplissage et de l'ajustement du nombre 

d'injecteurs en gardant un débit total constant, tandis que la position de l’injecteur peut être 

maintenue tel quelle sans impacter de manière significative la performance de l'inertage. 

b. RECOMMANDATIONS PRATIQUES 

Afin de garantir une protection optimale du bain de fusion tout en maîtrisant la 

consommation d’argon, il est essentiel d’adapter les paramètres du procédé en fonction des 

conditions d’opération. Les résultats obtenus montrent qu’un débit d’injection élevé permet 

d’accélérer la substitution de l’air par l’argon, en particulier au début du processus. Ainsi, 

lorsque le four est rempli au tiers ou à la moitié, il est recommandé d’opter pour un débit de 40 

L/min afin d’assurer une couverture rapide et efficace de la surface métallique. 

En revanche, lorsque le four est entièrement rempli, le volume d’air à remplacer est 

naturellement réduit grâce à la présence du métal, ce qui permet d’obtenir une bonne saturation 

avec un débit plus modéré de 20 L/min.  
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Enfin, une alternative intéressante pour renforcer la protection sans augmenter la 

consommation d’argon consiste à augmenter le nombre d’injecteurs à trois ou quatre tout en 

conservant un débit total constant réparti entre eux. Les simulations ont en effet montré que 

cette stratégie permet une meilleure répartition de l’argon, notamment dans les zones proches 

de la surface du métal, et accélère l’augmentation de la fraction massique moyenne du gaz dans 

ces zones critiques. 

c. LIMITES DE L’ÉTUDE 

     Bien que cette étude ait permis d'identifier des méthodes d'optimisation du processus 

d'injection d'argon, il convient de prendre en considération certaines limites afin de préciser les 

conclusions et d'en améliorer l'applicabilité dans un contexte industriel. 

     Une première limitation réside dans le fait que le maillage a été optimisé pour le cas d'un 

seul gaz, ce qui pourrait avoir un impact sur la précision des résultats lors de l'analyse d'un 

mélange binaire et pourrait nécessiter une adaptation pour des études plus complexes. À ceci 

s’ajoute le fait que la modélisation du four a été effectuée dans le cas d'une sortie entièrement 

ouverte, alors qu'en réalité, celle-ci est partiellement fermée avec une étanchéité partielle. 

     Il est important de noter aussi que la fréquence d'ouverture du four n'a pas été prise en 

considération lors de l’étude numérique, alors qu'en milieu industriel, il est courant que le four 

soit ouvert toutes les 15 minutes. 

     Finalement, l’absence de validation du modèle s’explique par le manque d’études antérieures 

sur l’injection de gaz inerte dans un four à induction, ce qui empêche toute comparaison directe 

et limite ainsi la possibilité de valider le modèle utilisé dans cette étude. 

2.5 PERSPECTIVES  

Étant donné que les perturbations causées par les ouvertures successives du four n'ont pas 

été prises en compte dans la présente étude, cela constitue une piste d’amélioration qui pourrait 

permettre d’affiner les résultats. Par ailleurs, à notre connaissance, aucune étude antérieure n’a 

examiné l’introduction de gaz inerte dans un four à induction dans des conditions comparables, 

ce qui complique la validation du modèle utilisé. Pour la continuité du projet, une validation 

expérimentale sera nécessaire. Elle pourrait être réalisée, par exemple, en insérant quelques 
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thermocouples dans le creuset afin de comparer les résultats mesurés aux simulations 

numériques. Une approche complémentaire pour assurer la protection du bain de fusion 

consisterait à mener des expérimentations sur un mini-four à induction, afin de valider les 

recommandations issues de cette étude en mesurant, notamment, le taux d’oxydation en fonction 

des paramètres analysés. Une telle validation contribuerait à améliorer la fiabilité du modèle et 

à renforcer sa pertinence pour des applications industrielles.  

2.6 CONCLUSION 

L'analyse du processus d’injection d’argon dans un four à induction initialement rempli 

d’air chaud a permis d'identifier les facteurs clés influençant l'efficacité de cette technique 

d'injection et de formuler des recommandations visant à optimiser le processus. Bien que ces 

résultats soient prometteurs, une validation expérimentale est nécessaire pour confirmer leur 

applicabilité en milieu industriel. 
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CHAPITRE 3                                                                           

DÉVELOPPEMENT DU MODÈLE STATISTIQUE POUR LA 

PRÉDICTION DU MOMENT OPTIMAL DE COULÉE 

3.1  INTRODUCTION  

Le chapitre précédent a présenté une méthode basée sur la résolution numérique d’un 

modèle thermofluide, visant à protéger le bain de fusion contre l’oxydation en limitant le contact 

avec l’air ambiant grâce à l’injection d’un gaz inerte. Bien que cette stratégie contribue à la 

réduction de l’oxydation en surface, elle ne peut à elle seule garantir une qualité optimale et un 

taux de récupération élevé, si la température du bain en fusion n’est pas rigoureusement 

contrôlée. En effet, le contrôle précis de la température est essentiel pour éviter la surchauffe du 

métal, qui favorise la formation de couches épaisses d’oxyde réduisant la qualité et la quantité 

du produit final, ainsi que la sous-chauffe, qui compromet la fluidité et l’homogénéité du 

métal [1].  

Dans les procédés actuels, la température du bain de fusion est généralement mesurée à 

l'aide de thermocouples. Cette procédure nécessite l'ouverture du four afin de placer les capteurs, 

ce qui engendre l'exposition du métal en fusion à l'atmosphère environnante. Cette exposition 

renforce le processus d'oxydation et favorise la formation d'une croute à la surface du bain. Cette 

couche surfacique, outre son effet nuisible sur la qualité du métal et sur le taux de récupération, 

constitue également un obstacle supplémentaire limitant la mesure de température, que ce soit 

par des dispositifs de contact (thermocouples) ou sans contact (fibres optiques, capteurs 

infrarouges). Toutefois, dans les deux cas, la configuration du bain ne permet pas une mesure 

fiable. Les thermocouples ne peuvent pas rester en immersion prolongée en raison des 

conditions extrêmes, tandis que les dispositifs sans contact sont perturbés par la formation d’une 

croûte à la surface, qui empêche une lecture directe de la température du métal liquide. 

Pour remédier à ces limitations, un projet initial a été réalisé en partenariat avec Industri-

Al et deux étudiants de l’Université du Québec à Rimouski (UQAR). Ce projet avait pour 

objectif de développer un modèle statistique prédictif basé sur des données industrielles, telles 

que la consommation d'énergie, la durée de fusion et les quantités de métal ajoutées. Bien que 
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le modèle élaboré ait présenté des résultats bénéfiques, son applicabilité a été restreinte en raison 

d'une base de données limitée aux cycles de fusion estivaux, ce qui a diminué sa capacité à 

anticiper le moment optimal de coulée dans des conditions environnementales et industrielles 

diversifiées. 

Dans la continuité de ce projet, cette recherche a pour objectif d'améliorer et de généraliser 

le modèle initial en élargissant la base de données avec des cycles de fusion englobant diverses 

saisons, tout en incorporant des paramètres supplémentaires provenant de procédé industriel. 

L'objectif de cette approche est d'accroître la fiabilité du modèle dans divers environnements 

industriels, tout en améliorant ses capacités prédictives.  

En offrant une solution prédictive, ce modèle a pour objectif d'aider les opérateurs à 

déterminer avec précision le moment de coulée, tout en minimisant la consommation 

énergétique. Cette étude s'inscrit également dans une perspective visant à améliorer la sécurité 

et la santé au travail (SST) en réduisant les tâches manuelles de prise de mesure qui sont souvent 

contraignantes et risquées. 

 3.2    LA MODÉLISATION STATISTIQUE  

Cette section présente les concepts fondamentaux de la modélisation statistique, en 

examinant en détail les approches principales de la régression linéaire et non linéaire, ainsi que 

les critères utilisés pour évaluer la performance des modèles développés. Elle aborde également 

des logiciels actuels utilisés pour la mise en œuvre et l'optimisation de ces modèles dans un 

contexte industriel. 

3.2.1    Limites des modèles théoriques pour les applications industrielles 

Dans un cadre industriel, les procédés complexes comme le procédé R.A.M.E. ont une 

variabilité significative en raison des conditions opérationnelles et des interactions entre 

différents paramètres, notamment la composition chimique des matériaux et l'énergie 

consommée. Les modèles théoriques, qui sont utilisés pour prédire la consommation d'énergie, 

se basent généralement sur des bilans énergétiques issus de la thermodynamique. L'énergie 

théorique utile pour la fusion, notée 𝑄utile, peut être décomposée entre l'énergie sensible 𝑄sensible 

et de l'énergie latente 𝑄latente :  
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𝑄utile = 𝑄sensible + 𝑄latente (3.1) 

L'énergie sensible nécessaire pour élever la température du matériau de sa valeur initiale 

Tinit à sa température de fusion Tfusion est exprimée par : 

𝑄sensible = 𝑚 ⋅ 𝐶𝑝 ⋅ (𝑇fusion − 𝑇init)  (3.2) 

Avec m la masse du matériau (kg), Cp sa capacité calorifique spécifique à pression constante 

(J.kg-1. K-1). 

L'énergie latente, qui représente l'enthalpie de fusion absorbée lors de la transition de 

l'état solide à l'état liquide, est déterminée de la manière suivante : 

𝑄latente = 𝑚 ⋅ Δ𝐻𝑓  (3.3) 

Avec ΔHf  est l’enthalpie de fusion (J. kg-1). 

Ainsi, ces modèles demandent des données précises sur la composition chimique des 

matériaux, leurs propriétés thermophysiques (Cp, ΔHf) ainsi que les paramètres opérationnels 

du four [2]. 

Cependant, les modèles théoriques, bien précis dans des situations idéales, ne peuvent 

pas être appliqués directement en temps réel dans un environnement industriel. Leur dépendance 

à des données détaillées, tel que les propriétés thermophysiques précises des matériaux et les 

conditions exactes de fonctionnement du four, ainsi que leur incapacité à prendre en compte de 

manière dynamique les variations rapides des paramètres opérationnels, limitent leur 

applicabilité pratique. En outre, la complexité des calculs requis pour intégrer les pertes 

énergétiques effectives engendrées par la radiation sur les différentes surfaces, la conduction et 

d'autres phénomènes rend leur application complexe dans des environnements industriels sujets 

à des variations fréquentes. 

3.2.2    Modèles empiriques  

En raison des limitations des modèles énergétiques théoriques, lesquels nécessitent des 

données précises concernant les propriétés thermophysiques et supposent des conditions idéales 

souvent difficiles à assurer en temps réel, les modèles empiriques apparaissent comme 



 

91 

particulièrement appropriés pour satisfaire les exigences industrielles, notamment en ce qui 

concerne la prédiction du moment optimal de coulée. Ces modèles, fondés uniquement sur 

l’analyse des données réelles recueillies au cours des opérations, permettent d’établir des 

corrélations fiables entre l’énergie consommée et les paramètres influents du procédé. Plus 

particulièrement, ces approches sont employées pour prédire l'énergie atteinte au moment 

idéal pour réaliser la coulée, un aspect important pour optimiser la qualité du métal ainsi que 

l'efficacité énergétique [3]. 

Ces modèles se présentent généralement sous la forme suivante : 

Énergie consommée (kWh) = 𝑓(variables importantes, 𝑇bain)                                     (3.4) 

avec 𝑇bain représente la température mesurée avant de faire la coulée. 

Contrairement aux modèles théoriques, les modèles empiriques permettent de saisir la 

variabilité réelle des processus industriels, donnant ainsi des prédictions précises et adaptées 

aux fluctuations opérationnelles. Ils offrent aux opérateurs la possibilité d'évaluer de manière 

fiable la quantité d'énergie consommée au moment optimal de la coulée, ce qui permet 

d'optimiser le processus, de réduire les pertes énergétiques et de garantir la qualité du produit 

final. Afin d'établir ces relations empiriques, l'analyse de régression est utilisée pour formuler 

des équations décrivant les liens entre les variables clés des procédés industriels. 

3.2.3   Bases de l'analyse de régression 

La régression est une méthode statistique utilisée pour modéliser la relation entre une 

variable dépendante (de réponse) et une ou plusieurs variables indépendantes (explicatives). Son 

utilisation est destinée à la modélisation, à la prédiction et à l'analyse de l'impact des variables 

explicatives sur la variable de réponse. Lorsqu'une analyse de régression ne concerne qu'une 

seule variable dépendante, on parle de régression univariée, alors que la régression multivariée 

implique plusieurs variables dépendantes. Dans les systèmes industriels complexes, l'analyse de 

régression est un processus itératif au cours duquel les modèles sont ajustés, diagnostiqués et 

validés de manière successive. L'objectif de cette approche est d'améliorer la précision des 

prédictions et de s'assurer de leur pertinence en prenant en considération les variations 

spécifiques aux environnements industriels [3]. 
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3.2.3.1      Différents types de régressions 

a. RÉGRESSION LINÉAIRE SIMPLE 

La régression linéaire simple est une méthode permettant de représenter la relation entre une 

variable dépendante et une variable indépendante unique en utilisant une équation linéaire. Cette 

équation est formulée de la manière suivante :  

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀 (3.5) 

         Dans un modèle de régression linéaire, la variable dépendante 𝑌 est représentée en 

fonction de la variable explicative 𝑋, avec 𝛽0 étant l'ordonnée à l'origine et 𝛽1 étant le coefficient 

de régression mesurant l'impact de 𝑋 sur 𝑌. L'erreur résiduelle 𝜀 est introduite pour rendre 

compte des écarts entre les valeurs prédites et observées. Une formulation prédictive de cette 

équation est fournie par : 

𝑌̂ = 𝛽0̂ + 𝛽1̂𝑋 (3.6) 

où 𝑌̂ est la valeur ajustée ou prédite et 𝛽̂ sont des estimations des coefficients de régression.  

La distinction entre les valeurs ajustées et les valeurs prédites réside dans leur contexte : les 

valeurs ajustées sont calculées à partir des données utilisées pour le développement du modèle, 

tandis que les valeurs prédites sont appliquées à de nouvelles données [4]. 

b. RÉGRESSION LINÉAIRE MULTIPLE 

La régression linéaire multiple est une méthode statistique couramment utilisée pour 

modéliser la relation entre une variable dépendante et plusieurs variables indépendantes. 

𝑌 = β0 + β1𝑋1 + β2𝑋2 + ⋯ + β𝑝𝑋𝑝 + 𝜀 (3.7) 

où Y représente la variable réponse, tandis que X1, X2, ..., Xp désignent les variables prédictives, 

p étant le nombre total de variables. Les coefficients β1...βp représentent les coefficients de 

régression, tandis que ε désigne l'erreur résiduelle qui capture la différence entre les valeurs 

prédites et les valeurs observées. Après avoir ajusté le modèle en fonction des données 

disponibles, l'équation prédictive correspondante est donnée par : 

𝑌̂ = 𝛽0̂ + 𝛽1̂𝑋1 + 𝛽2̂𝑋2 + ⋯ + 𝛽𝑝̂𝑋𝑝 (3.8) 
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Avec 𝑌̂est la valeur prédite ou ajustée, tandis que 𝛽1̂, ..., 𝛽𝑝̂ représentent les coefficients estimés 

[5]. 

La méthode de régression linéaire multiple est spécialement recommandée pour modéliser 

des systèmes complexes dans lesquels plusieurs variables indépendantes agissent 

simultanément sur la variable dépendante. Cependant, il est essentiel de porter une attention 

particulière afin de prévenir les problèmes de colinéarité, qui se produisent lorsque les variables 

indépendantes sont fortement corrélées, ce qui complique l'interprétation des coefficients. 

Malgré ces défis, cette méthode demeure un outil puissant pour analyser et prédire des relations 

complexes [6]. 

c. RÉGRESSION NON LINÉAIRE  

Tout comme la régression linéaire, la régression non linéaire peut être appliquée à une seule 

ou plusieurs variables explicatives. Toutefois, à la différence de la régression linéaire, la relation 

entre la variable dépendante et les variables explicatives ne se réduit pas obligatoirement à une 

combinaison linéaire des coefficients de régression. La forme générale d'un modèle non linéaire 

peut être représentée par l'équation : 

𝑌 = 𝑓(𝑋, β) (3.9) 

        où 𝑓 est une fonction inconnue qui lie la variable de réponse Y aux variables prédictives 𝑋, 

et 𝛽  représente un ensemble de paramètres à estimer. Dans un cadre idéal, en l'absence de toute 

erreur de mesure liée aux observations, cette relation serait parfaitement exacte. Cependant, en 

cas d'incertitudes et d'erreurs de mesure, cette équation n'est valide qu'en moyenne, et le modèle 

est donc exprimé sous une forme ajustée :  

𝑌̂ = 𝑓(𝑋, 𝛽̂) (3.10) 

Avec 𝑌̂ la valeur estimée et 𝛽̂ les paramètres ajustés. 

À la différence de la régression linéaire qui repose sur une structure prédéfinie du modèle, 

la régression non linéaire exige la sélection d'une fonction appropriée en se basant sur les 

observations graphiques ou l'expertise de l'analyste. L'un des modèles couramment employés 

est la régression asymptotique, laquelle est définie par une équation (3.11) et est utilisée pour 
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modéliser des processus qui convergent vers un plateau, de même que le modèle de Michaelis-

Menten (3.12) souvent employé en biologie pour modéliser la cinétique enzymatique [7]. 

𝑓(𝑋, β1, β2, β3) = β1 + β2𝑒β3𝑋 (3.11) 

𝑓(𝑋, β1, β2) =
β1𝑋

𝑋 + β2
 

(3.12) 

3.2.3.2  Critères de performance des modèles de régression 

a. COEFFICIENT DE RÉGRESSION R² 

L'évaluation de la qualité de l'ajustement d'un modèle de régression repose principalement 

sur le coefficient de détermination R², qui quantifie la part de la variance totale de la variable 

dépendante expliquée par les variables indépendantes du modèle. Il est défini par la relation : 

𝑅2 = [Cor(𝑌, 𝑌̂)]
2

= 1 −
∑(𝑌𝑖 − 𝑌𝑖̂)

2

∑(𝑌𝑖 − 𝑌̅)2
 

   (3.13) 

où ∑(𝑌𝑖 − 𝑌𝑖̂)
2
 représente la somme des erreurs au carré (SSE) et ∑(𝑌𝑖 − 𝑌̅)2 représente la 

somme totale des carrés (SST) avec 𝑌𝑖 la valeur réelle observée, 𝑌𝑖̂ la valeur prédite et 𝑌̅ la 

moyenne des valeurs observées. Le coefficient R² varie de 0 à 1, avec une valeur élevée 

indiquant que le modèle explique une part significative de la variabilité des données [8]. 

Cependant, il convient de noter qu'un coefficient R² élevé ne suffit pas à assurer la pertinence 

du modèle, car une adaptation trop rigoureuse aux données d'apprentissage peut entraîner un 

surajustement. Il est donc crucial de compléter cette analyse en effectuant des tests de validation 

sur un ensemble de données indépendant. En contexte de régression linéaire multiple, il est 

recommandé d'utiliser le coefficient de détermination ajusté R²adj car il tient compte du nombre 

de variables explicatives, ce qui permet de corriger la tendance du R² à augmenter de manière 

artificielle lors de l'ajout de nouvelles variables. Ce coefficient est déterminé de la manière 

suivante : 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 

(3.14) 
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       Dans cette formule, n représente le nombre total d'observations et p correspond au nombre 

de variables explicatives du modèle. 

b. ERREUR QUADRATIQUE MOYENNE (RMSE) 

Un autre indicateur pertinent dans l'évaluation d'un modèle statistique est représenté par 

l'erreur quadratique moyenne (RMSE), laquelle quantifie la dispersion des erreurs par rapport 

aux valeurs prédites. Pour un modèle de régression simple, cette équation est formulée comme 

suit : 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 

(3.15) 

et pour une régression multiple, son expression est la suivante : 

𝑅𝑀𝑆𝐸 = √∑(𝑌𝑖 − 𝑌𝑖̂)
2

𝑛 − 𝑘
 

(3.16) 

La variable k représente le nombre de coefficients de régression incluant la constante soit (k 

= p+1). Un faible RMSE démontre un ajustement satisfaisant du modèle aux données, alors 

qu'une valeur élevée indique une dispersion significative des résidus, mettant ainsi en question 

la fiabilité du modèle [8]. 

c. ERREUR ABSOLUE MOYENNE EN POURCENTAGE MAPE 

La MAPE constitue une métrique d'évaluation fréquemment utilisée pour évaluer la 

précision des modèles de prévision et de régression. Elle représente l'erreur moyenne entre les 

valeurs réelles et celles prédites sous la forme d'un pourcentage des valeurs réelles, ce qui facilite 

une interprétation intuitive de la performance du modèle. Une valeur faible du MAPE indique 

une précision satisfaisante des prévisions, tandis qu'une valeur élevée met en évidence un écart 

considérable entre les valeurs observées et celles estimées.  
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L’équation de MAPE est donnée par : 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
|

𝑛

𝑖=1

× 100 
(3.17) 

Avec 𝑦𝑖 est la valeur réelle observée et 𝑦𝑖̂ est la valeur prédite. 

3.2.3.3  Outils et logiciels utilisés dans le cadre de l'analyse de régression 

Les analyses de régression, qu'elles soient de nature linéaire ou non linéaire, exigent 

l'utilisation d'outils spécialisés afin de procéder à l'ajustement des modèles, d'analyser les 

résultats et d'interpréter les coefficients. Parmi les logiciels largement utilisés dans ce domaine, 

on peut citer Minitab® [9], SPSS [10], SAS [11], SIMCA [12], STATISTICA [13], R [14], 

Python, STATGRAPHICS [15] et NCSS [16], qui proposent des fonctionnalités spécifiques 

répondant aux exigences des analystes. Par exemple, Minitab® est fréquemment employé dans 

les domaines de l'ingénierie et des sciences appliquées en raison de son interface intuitive et de 

ses fonctionnalités avancées en analyse statistique. Cet outil offre la possibilité de réaliser des 

régressions linéaires et non linéaires, d'évaluer la performance des modèles en utilisant le 

coefficient de régression R² et RMSE, et d'améliorer les ajustements en évaluant plusieurs 

combinaisons de variables explicatives. SPSS est largement utilisé dans le domaine des sciences 

sociales et pour l'analyse de données massives, tandis que SAS est réputé pour sa fiabilité dans 

les contextes professionnels exigeant une manipulation avancée des bases de données. Le 

logiciel R est un outil puissant pour les analyses statistiques avancées et personnalisées, en 

raison de ses bibliothèques spécialisées telles que lm () pour les régressions linéaires et nls () 

pour les ajustements non linéaires. 

3.3   MÉTHODOLOGIE DE DÉVELOPPEMENT DES MODÈLES EMPIRIQUES 

Cette partie présente la méthode de collecte, de validation et d'exploration des données 

provenant de l'industrie partenaire, nécessaires au développement du modèle prédictif. Elle 

décrit également la méthodologie adoptée pour élaborer le modèle empirique, en soulignant les 

approches utilisées pour choisir les variables significatives et formaliser les liens entre les 

paramètres du processus. 
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3.3.1  Collecte des données  

Le développement d'un modèle empirique puissant nécessite l'utilisation de larges 

bases de données minutieusement collectées, assurant ainsi la pertinence et la précision des 

prévisions. Cette étude repose essentiellement sur des données industrielles recueillies sur une 

période de trois ans (2022, 2023 et 2024) provenant du suivi des opérations de fusion. Toutes 

ces données sont regroupées dans un document Excel nommé "Rapport de coulée", organisé 

selon le format présenté dans l'Annexe D. 

Ce rapport contient trois catégories principales de données : les données recueillies par 

instrumentation, les données entrées manuellement et les données transformées. Les données 

instrumentées sont enregistrées de façon automatique et continue par des capteurs et des 

systèmes intégrés, ce qui permet un suivi permanent des paramètres du procédé. Les opérateurs 

collectent manuellement les données pour compléter les informations provenant des mesures 

automatisées. Les données transformées sont le résultat du traitement des données brutes, qui 

implique l'utilisation de calculs et d'algorithmes. 

Ces données présentent des fréquences de mesure variables, en fonction de leur type et 

de leur importance dans le suivi du processus. Certaines données sont acquises de manière 

continue pour permettre un suivi en temps réel, tandis que d'autres sont obtenues de façon 

discontinue, uniquement à des étapes clés du processus, nécessitant une intervention ou une 

validation spécifique. 

Le tableau 12 synthétise les diverses catégories de données ainsi que les méthodes 

d'acquisition et de mesure qui leur sont associées. 
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Tableau 12 

Types des données collectées 

 

Type Donnée Mode d’acquisition Fréquence de mesure 

Instrumentées 

Énergie consommée (kWh) 

Acquisition automatique Continue 

Masse de la charge (kg) 

Entrées 

manuellement 

Type de charge 

Saisie manuelle 

Continue 

Température initiale de chaque 

type de charge (°C) 
Au début du processus 

Ordre de coulée Au début du processus 

Moment d’introduction des 

charges 
En continu 

Température du métal au niveau 

du bec (°C) 

Au moment de coulée du 

métal 

Température du bain de fusion  À la fin de la refonte  

Transformées 

Humidité 

Formule de calcul  Continue 

Énergie utile (kWh) 

Pertes énergétiques (kWh) 

Énergie d’aluminium (kWh) 

Énergie de cryolite (kWh) 

Énergie d’oxyde (kWh) 
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3.3.2  Validation des données 

Pour s'assurer que les données collectées sont fiables, une étape de vérification a été ajoutée 

pendant les stages en entreprise. Deux approches complémentaires ont été employées : 

• Une observation des pratiques de saisie des rapports, dans le but de garantir la précision des 

données saisies manuellement par les opérateurs et de réduire les risques d'erreurs 

d'enregistrement qui pourraient compromettre leur utilisation lors des analyses futures. 

• L'analyse chimique des sous-produits recyclés pour vérifier les compositions des matériaux 

recyclés et pour améliorer la précision des calculs énergétiques liés au processus de fusion. 

3.3.2.1 Contrôle de la saisie manuelle et de la qualité des mesures 

Durant les périodes de stage en industrie, une surveillance rigoureuse de la 

documentation des données de chaque refonte a été réalisée pour garantir la fiabilité et 

l'exactitude des données saisies manuellement par les opérateurs. Les données instrumentées, 

bien que mesurées avec des capteurs, sont reportées manuellement par les opérateurs dans les 

rapports de coulée. Une saisie incorrecte de ces valeurs peut entraîner une altération des calculs 

des données transformées, notamment en ce qui concerne l'énergie utile et les pertes 

énergétiques associées au processus de fusion. 

En outre, il est essentiel de surveiller en permanence les données mesurées par les 

opérateurs, telles que la température du bain de fusion et la température du métal lors de la 

coulée, car elles représentent des paramètres clés pour le processus de fusion. 

Dans le but de réduire les risques d'erreurs lors de la saisie et des mesures, un document 

d'instructions détaillé a été élaboré et mis à la disposition des opérateurs (voir Annexe E). Il 

précise les meilleures pratiques de collecte de données, ainsi que les protocoles à respecter tout 

au long la refonte. 

3.3.2.2   Analyse chimique et validation de la composition des sous-produits recyclés  

Les charges introduites dans le four se composent de trois composants majeurs, 

l'aluminium, la cryolite (Na₃AlF₆) ainsi que les oxydes métalliques (Al₂O₃, CaO, SiO₂, MgO₂). 

Lorsqu’un sous-produit est introduit dans le four, sa masse totale se répartit entre ces trois 
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composants. La cryolite ainsi que les oxydes métalliques ensemble sont nommés résidus. La 

masse de chaque composant dans la refonte est établie en fonction de son pourcentage dans 

chaque type de sous-produit. Ces masses revêtent une importance pour l'estimation de la 

quantité d'aluminium récupérable, ce qui permet d'évaluer le rendement de la refonte effectuée. 

Elles ont également une influence directe sur la quantité d’énergie consommée, étant donné que 

chaque composant présente une température de fusion spécifique, ainsi qu’une capacité 

calorifique et une enthalpie de fusion spécifique, ce qui affecte directement l’énergie nécessaire 

pour les faire fondre.  

Étant donné que ces masses ont une grande importance dans le processus, et dans le but 

de valider les pourcentages actuellement utilisés par l'industrie tout en réduisant l'écart entre les 

pourcentages réels et théoriques, une analyse de la composition chimique a été effectuée pour 

chaque type de charge. Un microscope électronique à balayage (MEB) couplé à une 

spectroscopie à rayons X à dispersion d'énergie (EDS) a été employé pour cette analyse, 

facilitant ainsi la détermination précise de la composition élémentaire de chaque échantillon. 

L'analyse par microscopie électronique se concentre sur des surfaces de très petite 

échelle, de l'ordre du micromètre, ce qui impose la mise en place d'une stratégie 

d'échantillonnage rigoureuse afin de garantir une extraction représentative des données. Par 

conséquent, trois échantillons distincts ont été prélevés pour chaque sous-produit soumis à 

l’analyse (voir figure 42). 

Figure 40. Exemple d’échantillons analysés pour un sous-

produit 
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  Chaque échantillon a par la suite été analysé à trois emplacements distincts dans le but 

d'évaluer l'homogénéité de sa composition. Enfin, quatre points d'analyse ont été choisis pour 

chaque emplacement dans le but de capturer les variations locales de la composition chimique. 

Les résultats de l'analyse EDS relatifs à chaque sous-produit sont présentés sous forme tabulés, 

comme le démontre le tableau 13. 

Tableau 13 

Proportions massiques (%) de chaque élément chimique constitutif d’un échantillon de sous-

produit d’aluminium récupéré par le procédé LIA (AlLIA) 

Numéro 

d’échantillon 

Emplacement Point Al O C N F Na 

 

 

 

 

 

 

1 

 

 

1 

AlLIA M1 1  29,8 10,8 4,7 12,3 31,6 9,5 

AlLIA M1 2 16,5 1,3 3,8 1,2 51,9 24,8 

AlLIA M1 3 36,8 7,9 3,6 5,7 34,7 8,8 

AlLIA M1 4 54,5 14,7 5,5 16,2 5,2 2,0 

 

  

2 

AlLIA M1 1 40,8 46,5 6,4 4,7 1,1 0,3 

AlLIA M1 2 34,2 33,9 4,4 12,3 12,3 1,5 

AlLIA M1 3 46,7 45,7 4,9 1,5 0,4 0,3 

AlLIA M1 4 42,3 24,9 5,4 21,8 3,5 0,8 

 

 

3 

AlLIA M1 1 47,7 7,9 6,5 32,6 4,0 0,6 

AlLIA M1 2 53,5 6,4 5,6 24,8 6,0 2,1 

AlLIA M1 3 36,5 8,0 3,0 25,3 20,3 4,9 

AlLIA M1 4 23,6 2,1 5,5 5,0 41,8 21,1 

 

  La détermination des proportions massiques des divers composés présents dans 

l’échantillon a été effectuée en appliquant les principes des proportions stœchiométriques, tout 

en prenant en considération les pourcentages massiques des éléments obtenus par spectroscopie 

EDS. L'échantillon se compose de trois phases principales : l'aluminium pur (Al), la cryolite 

(Na₃AlF₆) et les oxydes. Il est donc impératif d'exprimer les masses de ces composés en fonction 

des pourcentages massiques des éléments qui les composent. 
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En ce qui concerne les oxydes, l'alumine (Al₂O₃) a été identifiée comme l'oxyde 

prédominant, étant donné que les éléments Si, Ca et Mg se retrouvent sous forme de traces dans 

la plupart des échantillons analysés, une hypothèse simplificatrice a été adoptée en considérant 

uniquement l'alumine comme l'oxyde principal. 

Afin de préciser la méthode de calcul, chaque molécule de Na₃AlF₆ renferme un atome 

d'Al, 3 atomes de Na ainsi que 6 atomes de F. Le Na et F sont exclusivement issus de la cryolite. 

De la même manière, pour Al₂O₃, la molécule se compose de 2 atomes d'Al et de 3 atomes d'O, 

l'oxygène étant exclusivement présent dans l'alumine. Ainsi, en disposant du pourcentage 

massique d'un unique élément, il devient possible de déduire le pourcentage du composé associé 

en utilisant les rapports molaires. Ces relations se traduisent alors par ces équations : 

%𝑁𝑎3𝐴𝑙𝐹6 =
%𝑁𝑎

fraction massique de Na dans 𝑁𝑎3𝐴𝑙𝐹6
 

%𝐴𝑙2𝑂3 =
%𝑂

fraction massique de Al dans 𝐴𝑙2𝑂3
 

avec  

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠𝑖𝑞𝑢𝑒 𝑑𝑒 𝑁𝑎 =
3 × 𝑀𝑁𝑎

𝑀𝑁𝑎3𝐴𝑙𝐹6

 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑠𝑠𝑖𝑞𝑢𝑒 𝑑𝑒 𝑂 =  
3 × 𝑀𝑂

𝑀𝐴𝑙2𝑂3

 

(3.18) 

(3.19) 

 

  (3.20) 

(3.21) 

 

Finalement, le pourcentage d'aluminium est établi par une simple soustraction à 100 % 

après avoir procédé au calcul des pourcentages des deux autres composants. Les résultats de 

l’analyse sont regroupés dans le tableau 14. 



 

103 

Tableau 14 

Composition massique des constituants de l’échantillon 

 

3.3.3   Extraction des données  

Les données présentées dans le tableau 12 revêtent une importance significative. 

Cependant, comme le montre l'annexe D, ces données sont collectées dans un rapport qui n'est 

pas entièrement standardisé et qui est difficilement exploitable.  

En conséquence, une extraction des données a été effectuée dans le but de les convertir 

en un fichier Excel, ce qui permet de faciliter leur exploitation. Étant donné que la base de 

données analysée était volumineuse, et dans le but de prévenir les erreurs de transfert tout en 

réduisant au minimum le temps requis pour cette étape, un algorithme en Python a été conçu 

pour automatiser l'extraction des données. 

Le programme Python a été développé et exécuté à l’aide de l’interface PyCharm (voir 

figure 43). Son objectif principal est d’extraire automatiquement les données contenues dans les 

cellules cibles des documents sources, tels que les rapports de coulée ou les fichiers 

d’acquisition, afin de les intégrer dans un tableau structuré. Ce travail visait à construire une 

base de données standardisée, directement exploitable dans Minitab®, et regroupant l’ensemble 

des paramètres pertinents du processus de fusion. Les algorithmes ont été conçus en tenant 

    Sous-produit   

       

Constituant 

Fonderie 

alliée 

 

Fond 

de 

gueuse 

Nettoyeur 

de creuset 

Aluminium 

récupéré 

LIA 

RBA Limaille 
Écume de 

carrousel 

Fond 

de 

cuve 

Aluminium 

pur 
50,64 58,46 63,78 24,46 24,76 91,58 90 28,51 

Oxyde 40,98 22,42 36,22 40,78 14,63 8,18 6,42 37,29 

Cryolite 8,47 19,11 0 34,76 60,62 0,24 3,58 34,20 
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compte de la structure propre à chaque document source à partir duquel les données sont 

extraites. Pour faciliter la compréhension et la réutilisation de cette démarche, l’annexe E 

présente un exemple d’algorithme documenté utilisé à cet effet. 

 

 

 

 

 

 

 

 

3.3.4  Méthodologie adoptée pour l’élaboration de modèle 

Après avoir validé la fiabilité des données à être utilisées dans cette étude et les avoir 

extraites sous forme d’une base structurée, directement exploitable dans Minitab®, la 

méthodologie présentée à la figure 44 a été mise en œuvre pour développer un modèle prédictif 

de la consommation énergétique du four à induction. L’objectif était d’établir une relation 

quantitative entre cette consommation, la température cible au moment optimal de la coulée, 

ainsi que d’autres variables opérationnelles influentes. 

La démarche a débuté par un prétraitement des données, incluant la suppression des 

valeurs aberrantes et la détection des anomalies. Une analyse exploratoire a ensuite été réalisée 

afin de mieux comprendre les distributions, d’identifier les corrélations entre variables et de 

sélectionner les facteurs explicatifs les plus pertinents en lien avec l’énergie électrique 

consommée. 

Par la suite, une régression linéaire multiple a été appliquée en utilisant une méthode 

itérative visant à modéliser la relation entre la consommation énergétique et les variables jugées 

Figure 41. Algorithme conçu pour l'extraction ciblée de données 
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influentes. Plusieurs itérations ont été menées pour tester différentes combinaisons de variables, 

dans le but d’identifier le modèle offrant la meilleure précision. 

La performance des modèles a été évaluée à l’aide d’indicateurs statistiques standards, 

notamment le coefficient de régression R², ainsi que l’erreur absolue moyenne en pourcentage 

(MAPE). Le modèle retenu est celui ayant offert le compromis optimal entre qualité 

d’ajustement et pertinence statistique des variables explicatives. 

 

 

 

 

 

 

 

 

3.3.4.1  Filtrage des données aberrantes  

Avant d'effectuer l'analyse à l'aide de Minitab®, un nettoyage des données a été réalisé 

dans le but de renforcer la fiabilité du modèle statistique. Cette étape a permis d'éliminer les 

valeurs aberrantes ainsi que les enregistrements non représentatifs du processus, en particulier 

les coulées présentant des explosions ou des perturbations anormales et aussi les valeurs 

extrêmes ont été détectées et filtrées. 

3.3.4.2  Sélection des variables influentes : Analyse de la variance (ANOVA) à un facteur 

Dans le but de développer un modèle de régression optimisé, la sélection des variables 

explicatives a été restreinte à un maximum de cinq variables. Cette restriction a pour objectif 

d'assurer une modélisation simplifiée, tout en prenant en compte les principaux facteurs qui 

influencent la consommation énergétique. Afin d'identifier ces variables clés, une analyse de 

Figure 42. Démarche adoptée pour développer les modèles statistiques 
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variance à un facteur (ANOVA) a été effectuée. Cette analyse a pour objectif d'évaluer 

l'influence de chaque variable sur la consommation énergétique en examinant l'ensemble des 

variables énoncées dans le tableau 12. 

La significativité des variables a été déterminée en s'appuyant sur les résultats de 

l'analyse de la variance (ANOVA) et en examinant la valeur p associée à chaque facteur. Une 

valeur de p inférieure à 0,05 a été considérée comme un critère de sélection, indiquant que le 

facteur exerce une influence statistiquement significative sur la consommation énergétique. Les 

variables affichant un p-value élevée, indiquant une influence minimale, ont été exclues dans le 

but de simplifier la modélisation et d'optimiser la précision des résultats. 

3.3.4.3 Méthode itérative pour l'optimisation du choix des variables 

Après avoir identifié les facteurs potentiellement influents, une approche itérative a été 

adoptée afin d’affiner la sélection des variables les plus influençantes à inclure dans le modèle. 

Dans un premier temps, l’analyse a été réalisée à partir de cinq variables initiales, dont la 

température du métal à la sortie. À partir de ces premiers résultats, le modèle a été 

progressivement ajusté en testant différentes combinaisons de variables pour évaluer leur 

contribution à la performance prédictive. L’objectif de cette démarche était de déterminer la 

combinaison la plus pertinente de variables, conduisant à un coefficient de régression (R²) 

maximal et, par conséquent, à une meilleure corrélation avec l’énergie consommée. 

3.3.4.4  Développement et validation du modèle 

Une fois l'équation de régression établie, la température du métal sera fixée à une valeur 

cible, ce qui permettra d'évaluer la quantité d'énergie nécessaire pour atteindre cette température 

optimale. Ce modèle émettra également une notification afin d'effectuer la coulée au moment 

idéal. 

Dans le but d'assurer la fiabilité du modèle avant son intégration dans les rapports 

industriels, le modèle a été soumis à une phase de validation. Cette validation a été effectuée en 

s'appuyant sur l'erreur absolue moyenne en pourcentage MAPE, ce qui permet d'évaluer la 

précision des prévisions et de garantir la fonctionnalité du modèle dans un environnement 

industriel. 
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3.4   ANALYSE ET DISCUSSION DES RÉSULTATS  

Dans cette section, les résultats des différentes modélisations réalisées sont présentés en 

suivant l’ordre des analyses définies dans la méthodologie (section 3.3.4). L’étude progresse par 

étapes, en commençant par l’identification des variables les plus influentes, suivie de l’analyse 

des relations entre les paramètres étudiés et la température de coulée. On décrit ensuite les 

ajustements successifs apportés au modèle afin d’aboutir à une version généralisée et optimisée 

pour la prédiction. Enfin, une comparaison sera effectuée entre le modèle actuel utilisé et le 

nouveau modèle développé, afin d’évaluer leurs performances respectives et de mettre en 

évidence les éventuels gains en précision et en efficacité. 

3.4.1  Sélection des paramètres influents 

L’analyse de la variance à un facteur (ANOVA) permet d'évaluer l'impact de chaque 

paramètre sur la consommation énergétique du processus en se basant sur la valeur p (p-value) 

et sur R² en tant qu'indicateurs. Dans le cadre de notre analyse, un seuil de confiance de 5% (𝛼 

= 0,05) a été établi, ce qui implique que si la valeur p d'un paramètre est inférieure à 0,05, ce 

dernier est considéré comme ayant un effet significatif sur la consommation d'énergie [17]. 

Les résultats de cette analyse sont synthétisés dans le tableau ci-dessous. Dans la ligne 

représentant les relations, un "+" indique une relation significative, ce qui signifie que le 

paramètre a une influence sur l’énergie consommée. À l’inverse, un "-" indique l’absence de 

relation significative entre le paramètre et la consommation énergétique du processus. 
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    Tableau 15 

 Analyse de l'influence des paramètres sur la consommation d'énergie 

 

 

 

 

R² 

p 

                

Ordre 

Masse 

totale 

(kg) 

Masse 

FDG 

(kg) 

Tini 

FDG 

(°C) 

Masse 

Écumes 

Carrousel 

(kg) 

Tini 

Écumes 

Carrousel 

(°C) 

Masse 

Écumes 

Fonderie 

(kg) 

Tini 

Écumes 

Fonderie 

(°C) 

Masse 

Écume 

de four 

LIA 

(kg) 

p 0,001 0,001 0,282 0,127 0,3 0,169 0,001 0,002 0,637 

R² (%) 39,94 91 1,48 2,96 1,37 2,41 18,87 15,36 0,29 

Relation + + - - - - + + - 

R² 

            p 

Tini 

Écume 

de 

four 

LIA 

Masse 

Gueuse 

recup 

(kg) 

Tini 

Gueuse 

recup 

(°C) 

Masse 

Alu 

Brique 

(kg) 

Masse 

Nett, 

Creuset 

(kg) 

Tini 

Nett, 

Creuset 

(°C) 

Masse 

RBA 

(kg) 

Tini 

RBA 

(°C) 

Masse 

Limaille 

(kg) 

Tini 

Limaille 

(°C) 

p 0,235 0,865 0,877 0,91 0,421 0,071 0,913 0,913 0,088 0,168 

R² (%) 1,8 0,04 0,03 0,02 0,83 4,11 0,02 0,02 3,68 2,42 

Relation - - - - - - - - - - 

R² 

       p 

Masse 

Alu 

LIA 

(kg) 

Tini 

Alu 

LIA 

(°C) 

Masse 

Alumi-

nium 

(kg) 

Éner

- 

gie 

Alum

iniu

m 

(kg) 

Masse 

Oxyde 

(kg) 

Énergie 

Oxyde 

(kg) 

Masse 

Cryoli-

the 

(kg) 

Énergie 

Cryoli- 

the (kg) 

Éner- 

gie 

Enthal

pie 

(kWh ) 

 

Tem

pé-

ratur

e du 

bec 

(°C) 

Tem

pé-

ratu

re du 

bain 

(°C) 

p 0,623 0,339 0,001 0,001 0,001 0,001 0,289 0,29 0,001 0,180 0,827 

R² (%) 0,31 1,17 87,93 39,08 36,13 50,36 1,44 1,44 87,93 66,99 0,07 

Relation - - + + + + - - +      + - 
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Les énergies présentées dans le tableau 15 (énergie massique, pertes d’énergie, énergie 

utile et énergie enthalpie) révèlent une corrélation significative, ce qui est attendu, étant donné 

qu'elles sont déterminées à partir de l'énergie consommée. Bien qu'il existe de fortes corrélations 

entre les masses de certains sous-produits, ces variables ne peuvent être intégrées parmi les 

paramètres de prédiction, en raison de l'absence de recettes qui se répètent de manière 

systématique. En conséquence, le tableau 16 qui suit présente les paramètres sélectionnés en 

vue de réaliser l'étude itérative comme cela a été décrit dans la section (3.3.4.3). 

Tableau 16 

Paramètres sélectionnés pour l'étude itérative 

 

R² 

 

           p 

Énergie utile 

(kWh) 

Énergie 

massique utile 

(kWh/kg) 

Pertes 

d'énergie 

(kWh) 

Tini moyenne 

(°C) 
Masse de résidu 

p 0,001 0,001 0,001 0,002 0,001 

R² (%) 45,98 16,8 69,85 15,54 54,49 

Relation + + + + + 

R²   

            p 

Masse 

totale 

(kg) 

Masse 

Aluminium 

(kg) 

Énergie 

Aluminium 

(kg) 

Masse 

Oxyde 

(kg) 

Énergie 

Oxyde 

(kg) 

Tini 

moyenne 

(°C) 

Température 

du bec 

(°C) 

Masse 

de 

résidu 

p 0,001 0,001 0,001 0,001 0,001 0,002 0,180 0,001 

R² (%) 91 87,93 39,08 36,13 50,36 15,54 66,99 54,49 

Relation + + + + + + + + 
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3.4.2   Étude itérative et optimisation des régressions 

À la suite de l'étude itérative basée sur les paramètres sélectionnés, il a été déterminé 

que la combinaison intégrant l'ordre de coulée, la masse d'aluminium, la masse totale, la masse 

d'oxyde ainsi que la température du métal mesurée au moment de la coulée (Tbec) permet 

d'atteindre le coefficient de régression le plus élevé. Les énergies de l’aluminium, de l’oxyde et 

de la cryolite ont été écartées afin d’éviter toute colinéarité, puisqu’elles sont directement 

dérivées de l’énergie consommée. 

L'équation résultante, présentant un coefficient de régression R² ajusté de 56,6 et une 

erreur quadratique moyenne de 3,7 % se formule comme suit : 

𝐸consommée = −371 + 1,470 × 𝑇bec − 54,89 × Ordre − 0,4594 ×

Masse Aluminium + 0,8208 × (Masse Aluminium + Masse Oxyde +

Masse Cryolite) − 0,6153 × Masse Oxyde       

           (3.21) 

               En prenant en considération que la température choisie pour couler l’aluminium (Tbec) 

s'élève à 750°C, et en intégrant cette valeur optimale dans l'équation établie, il est possible 

d’élaborer un modèle de prédiction qui permet d'évaluer la quantité totale d'énergie nécessaire 

pour atteindre cette température. L'équation peut alors être reformulée de la manière suivante : 

𝐸consommée = −371 + 1,470 × 𝟕𝟓𝟎 − 54,89 × Ordre − 0,4594 ×

Masse Aluminium + 0,8208 × (Masse Aluminium + Masse Oxyde +

Masse Cryolite) − 0,6153 × Masse Oxyde                                                                         

          (3.22) 

                                                                                                  

La figure 45 présente une comparaison entre les valeurs de l'énergie prédite par le 

modèle et l'énergie réellement consommée, ce qui permet d'évaluer la précision de la régression. 

La tendance générale est bien capturée, et la faible MAPE 3,7 % signifie la fiabilité du modèle. 

Bien qu'une dispersion des points autour de la droite de régression soit constatée, celle-ci 

demeure dans des limites acceptables, comme l'illustrent les intervalles de prédiction à 95 %. 

Par ailleurs, la majorité des valeurs prédictives se trouvent à l'intérieur de ces limites, ce qui 

reflète la fiabilité des estimations. 
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3.4.3 Amélioration du modèle prédictif développé 

Les conditions environnementales, telles que la température et l'humidité, varient en 

fonction des saisons et peuvent influencer les besoins énergétiques. En conséquence, des 

analyses supplémentaires ont été réalisées afin d'évaluer la variation saisonnière de la 

consommation énergétique. L'analyse de variance (ANOVA) a montré une différence 

statistiquement significative (p = 0,025), confirmant que la consommation d'énergie varie en 

fonction des saisons. La figure 46 présente le graphique des intervalles de confiance et montre 

que la consommation par unité de masse atteint son niveau maximal durant la période estivale, 

tandis que le printemps enregistre les valeurs les plus faibles. L’objectif principal de cette 

analyse était de vérifier la présence d’une variation saisonnière de la consommation énergétique 

et de justifier l’intégration de la saison comme variable catégorielle dans le modèle. 

 

 

Figure 43. Régression entre l’énergie consommée et prédite 
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Dans le but d'accroître la précision des prédictions, une deuxième approche a été testée. 

Cette approche consiste à intégrer un prédicteur de catégorie, à savoir la saison, dans le but 

d'élaborer un modèle saisonnier.  Dans ce cas, la saison a été ajoutée comme simple variable 

catégorielle, sans lien physique direct avec les paramètres énergétiques. Les coefficients obtenus 

doivent donc être interprétés comme des ajustements statistiques propres au modèle, et non 

comme des relations physiques réelles. Par conséquent, quatre modèles distincts ont été 

élaborés, chacun étant spécifiquement conçu pour une saison comme l’illustre le tableau 17. 

  

Figure 44.  Variation moyenne de l'énergie consommée par unité de masse en fonction 

des saisons 
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Tableau 17 

Modèles de prédiction de l'énergie consommée en fonction des saisons 

Saison Hiver Printemps 

Variables de 

prédiction 
Ordre, masse aluminium, masse totale et masse oxyde 

 

 

Modèle 

Énergie consommée (kWh)
= 358
− 0,615
× Masse Aluminium (kg)
− 0,760 × Masse Oxyde (kg)
− 41,12 × Ordre
+ 0,213 × Température Bec
+ 1,007 × Masse totale (kg) 

Énergie consommée (kWh)
= 3035
− 0,188 × Masse Aluminium (kg)
− 0,383 × Masse Oxyde (kg)
− 77,3 × Ordre
+ 0,270 × Température Bec
+ 0,113 × Masse totale (kg) 

Régression (R²) 63,44 42,43 

MAPE (%) 4,28 3,11 

 

Saison Été Automne 

Variables de 

prédiction 
Ordre, masse aluminium, masse totale et masse oxyde 

 

 

Modèle 

Énergie consommée (kWh)
= 567
− 0,266
× Masse Aluminium (kg)
− 0,710 × Masse Oxyde (kg)
− 69,9 × Ordre
+ 1,62 × Température Bec
+ 0,491 × Masse totale (kg) 

Énergie consommée (kWh)
= 472
− 0,474 × Masse Aluminium (kg)
− 0,584 × Masse Oxyde (kg)
− 69,9 × Ordre
+ 1,784 × Température Bec
+ 0,811 × Masse totale (kg) 

Régression (R²) 41,66 64,21 

MAPE (%) 4,33 3,47 
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Les résultats montrent que l'ajout de la saison en tant que variable prédictive de catégorie 

entraîne une amélioration du coefficient de régression pour l’hiver et l’automne seulement. 

Néanmoins, en ce qui concerne MAPE, cette amélioration demeure marginale, se situant dans 

le même intervalle de 3 à 4 %, ce qui ne justifie pas le développement de modèles distincts pour 

chaque saison. 

Dans ce contexte, l'adoption d'un modèle généralisé apparaît comme étant plus adéquate, 

car elle permet d'éviter la complexité associée à l'utilisation de multiples modèles saisonniers. 

En effet, un modèle adapté à chaque saison impliquerait des ajustements réguliers ainsi que des 

modifications continues des rapports employés dans le secteur. Ainsi, le modèle sélectionné sera 

directement intégré dans les rapports de coulée dans le but d'assister les opérateurs dans la 

détermination du moment idéal pour la coulée. Un modèle unique assure une application plus 

facile, cohérente et efficace. 

3.4.4  Comparaison entre le modèle développé et le modèle actuel adopté par 

l’industrie  

Dans le but d'évaluer les avantages provenant du développement de ce nouveau modèle, 

une étude comparative a été effectuée entre le modèle actuel, établi sur les données de la période 

estivale, et le modèle prédictif suggéré. Comme il a été indiqué dans la section précédente, les 

critères d'évaluation retenus incluent le coefficient de régression (𝑅²). De plus, la MAPE est 

également utilisée, mesurant l'écart relatif entre l'énergie prédite et l'énergie effectivement 

consommée pour atteindre 750°C lors du processus de coulée de l'aluminium. 

Le modèle actuel utilise l’équation 3.23, tandis que le nouveau modèle est présenté dans 

l’équation 3.22. 

𝐸𝑐𝑜𝑛𝑠𝑜𝑚𝑚é𝑒 = −559 + 1,428 × 750 − 215,9 × Ordre − 0,294 × (Masse Oxyde +

Masse Cryolite) + 0,4936 × (Masse Aluminium + Masse Oxyde +

Masse Cryolite)                                                                                     

        (3.23) 
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3.4.4.1 Les intervalles de validation de chaque modèle  

Chaque modèle développé possède ses propres intervalles de validation, établis en 

fonction de la base de données employée pour l'étude. Les tableaux 18 et 19 présentent une 

illustration de ces intervalles pour chaque modèle. Les valeurs maximales et minimales des 

températures ainsi que des masses ont été extraites à partir des bases de données examinées. Les 

énergies associées ont par la suite été déterminées pour ces refontes spécifiques, représentant 

respectivement les masses maximales et minimales fondues. Cette méthode garantit que le 

modèle est validé sur un éventail de valeurs réalistes et représentatives des conditions 

industrielles. 

Tableau 18 

 
Intervalle de validation de modèle actuel 

Modèle Empirique 

Énergie minimum (kWh) 1785,76 

Énergie maximum (kWh) 1191,4 

Masse minimum (kg) 5166 

Masse maximum (kg) 6330 

Température minimale (°C) 24 

Température maximale (°C) 55 

 

Tableau 19 

Intervalle de validation du nouveau modèle 

Modèle Empirique 

Énergie minimum (kWh) 1863 

Énergie maximum (kWh) 1205,74 

Masse minimum (kg) 4500 

Masse maximum (kg) 6330 

Température minimale (°C) 10 

Température maximale (°C) 130 
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3.4.4.2  Comparaison des deux modèles  

Le tableau 20 offre une synthèse de la comparaison effectuée afin d'évaluer l'efficacité 

des deux modèles. Bien que l'analyse de régression révèle que le modèle fondé sur la période 

estivale présente un coefficient de régression supérieur de 4,28 %, il convient de noter que la 

valeur du MAPE, calculée sur l’ensemble des données, est significativement plus faible pour le 

nouveau modèle (3,7 %) comparativement au modèle actuel (8 %). Cette distinction souligne 

que le modèle élaboré représente de manière plus fidèle la réalité, en offrant des prévisions plus 

exactes et mieux ajustées aux fluctuations industrielles. 

Tableau 20 

Récapitulation des différences entre le modèle actuel et le nouveau modèle 

Modèle Modèle actuel Nouveau modèle 

Base de données Été 2022 3 ans (2022, 2023, 2024) 

Variables de prédiction 

Ordre, masse totale, masse 

de résidu, et température du 

bec 

Ordre, masse aluminium, 

masse totale, masse oxyde et 

température du bec 

Régression (R²) 61,40 56,58 

MAPE (%) 8,05 3,75 

Plage de température 

initiale (°C) 
24-55 10-130 

 

Le nouveau modèle se base entièrement sur des données réelles, en particulier en ce qui 

concerne les masses de refonte, ce qui renforce sa pertinence et sa fiabilité. Une MAPE de 3,75 

% se situe dans les limites de tolérance généralement acceptées au sein de l'industrie, ce qui 

confère à ce modèle une plus grande représentativité et une meilleure capacité d'exploitation 

opérationnelle. La MAPE constitue un indicateur de performance couramment employé dans 

les modèles de prévision, et une valeur inférieure à 5 % est fréquemment perçue comme preuve 

d'une excellente précision prédictive, notamment dans les secteurs industriels et énergétiques. 
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Cette analyse prouve que le modèle élaboré présente une précision supérieure ainsi qu'une 

robustesse accrue pour l'évaluation de la consommation énergétique, tout en étant davantage 

conforme aux conditions réelles du processus R.A.M.E. 

3.5  SYNTHÈSE DES RÉSULTATS 

  L'élargissement de la base de données a considérablement amélioré l'efficacité du 

modèle statistique développé, ce qui a permis d'établir un intervalle de validation plus large 

couvrant presque tous les scénarios opérationnels probables (tels que la saison, l'ordre, la 

température initiale des sous-produits et la masse totale fusionnée). Ce modèle est 

principalement basé sur des paramètres concrets, tels que la masse de la charge ajoutée pendant 

le processus.  Cette méthode permet de surveiller en temps réel la température de fusion avec 

une précision moyenne de 3,7 %, ce qui est considéré comme acceptable dans un contexte 

industriel. L'un des principaux progrès apportés par ce modèle réside dans sa capacité à 

compenser l'incapacité de mesurer en continu la température du bain de fusion. Il met à 

disposition des opérateurs de procédé de refonte chez Industri-Al un outil prédictif fiable qui 

leur permet de déterminer le moment optimal pour effectuer la coulée, c'est-à-dire lorsque la 

température du bain atteint 750°C.  

Le modèle a été testé dans les rapports de l'industrie et est maintenant prêt à fonctionner. 

Pour vérifier son efficacité en situation réelle, il faudra suivre la consommation d'électricité. Les 

résultats aideront à trouver si des ajustements sont nécessaires pour améliorer les performances 

du modèle. À cet effet, une étude complémentaire pourrait être menée, explorant l’utilisation de 

modèles non linéaires afin de maximiser le rendement du système en termes de qualité et de 

quantité de métal récupéré. Cette approche offrirait une flexibilité accrue pour améliorer 

continuellement la précision et l’efficacité du modèle en fonction des variations des conditions 

de production. 
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3.6  CONCLUSION  

Le modèle développé permet de prédire avec précision le moment optimal pour la coulée, 

améliorant ainsi le suivi du processus de refonte. Son application dans le contexte industriel 

d’Industri-Al a démontré son utilité et sa fiabilité. Des travaux futurs pourraient explorer des 

approches non linéaires afin d’optimiser davantage les performances du système. 
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CONCLUSION GÉNÉRALE 

La présente étude s’inscrit dans le cadre de l’amélioration du procédé industriel 

R.A.M.E. (Recyclage d’Aluminium en Mode Écoresponsable), tel que mis en œuvre par 

l’entreprise Lefebvre Industri-Al. Ce projet a porté sur l’optimisation de la qualité du métal 

recyclé et la maximisation de la quantité d’aluminium récupéré, tout en réduisant les pertes par 

oxydation dans un four à induction. La problématique traitée a permis de répondre à deux 

besoins majeurs : protéger efficacement le bain de fusion par l’injection d’un gaz inerte, et 

prédire avec fiabilité le moment optimal de la coulée sans capteurs thermiques directs, souvent 

inadaptés en milieu industriel. 

Dans cette optique, ce travail apporte plusieurs contributions concrètes : le 

développement d’un modèle numérique 3D appliqué à un cas industriel encore peu traité dans 

la littérature, la mise au point d’un modèle statistique prédictif simple, fiable et transférable, la 

structuration d’une base de données industrielle représentative et réutilisable, ainsi que la 

formulation de recommandations opérationnelles pour ajuster les paramètres du procédé selon 

les conditions de fonctionnement. Pour atteindre ces résultats, deux approches méthodologiques 

complémentaires ont été mises en œuvre. 

La première a consisté à développer, à l’aide du logiciel COMSOL Multiphysics®, un 

modèle numérique 3D basé sur la dynamique des fluides numérique (CFD), intégrant la 

turbulence (modèle 𝑘-𝜀), le transfert thermique et le transport d’espèces. Ce modèle a permis de 

quantifier la répartition de l’argon injecté dans divers scénarios industriels, montrant notamment 

que le débit d’injection et le niveau de remplissage influencent fortement l’efficacité de 

l’inertage, contrairement à la position des injecteurs. Par exemple, une concentration massique 

moyenne d’argon de 83 % est atteinte après une heure à 40 L/min, contre 60 % à 20 L/min. 

En parallèle, un modèle statistique prédictif a été développé avec Minitab® à partir de 

trois années de données industrielles représentatives (2022, 2023 et 2024), permettant d’estimer 

la température du bain de fusion à partir de variables mesurées comme l’énergie électrique 

consommée et les masses d’aluminium, d’oxydes et de cryolithe. Après validation, ce modèle a 

atteint une erreur moyenne de 3,7 %, le rendant fiable et directement exploitable pour la 

régulation du procédé. 
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En combinant modélisation numérique et approche statistique, ce mémoire propose des 

outils concrets, directement applicables en contexte industriel, qui participent à l’optimisation 

du procédé R.A.M.E. et à l’amélioration globale du contrôle des opérations de recyclage de 

l’aluminium. 

Limitations et perspectives  

 Malgré les avancées réalisées, certaines limitations du modèle numérique doivent être 

reconnues afin de mieux encadrer les résultats obtenus et d’en améliorer l’applicabilité dans un 

contexte industriel. Le maillage utilisé a été conçu pour la simulation d’un seul gaz, ce qui peut 

limiter la précision dans le cas de mélanges binaires comme l’air et l’argon. Une adaptation 

spécifique du maillage serait alors nécessaire pour des études plus complexes. De plus, la sortie 

du four a été modélisée comme entièrement ouverte, alors qu’en réalité elle est partiellement 

fermée avec une certaine étanchéité, ce qui peut influencer la dynamique des gaz. Enfin, 

l’absence de validation expérimentale s’explique par le manque de travaux antérieurs sur des 

cas similaires, rendant difficile toute comparaison directe ou calibration sur des données 

physiques réelles. 

Les perspectives liées au modèle numérique incluent l’intégration des perturbations 

thermiques dues aux ouvertures successives du four, afin de rendre le modèle plus représentatif 

des conditions industrielles réelles. Une validation expérimentale à l’échelle laboratoire pourrait 

également être envisagée, notamment à l’aide d’un mini-four à induction, en mesurant le taux 

d’oxydation en fonction des paramètres simulés. 

Dans le cadre des analyses de la composition chimique des sous-produits par MEB, le 

calcul d’un écart-type à partir des mesures répétées aurait permis de mieux illustrer la variabilité 

et les limites de la méthode. Cette approche sera à considérer dans la continuité du projet afin 

d’évaluer l’efficacité et la robustesse de la méthode employée. 

En ce qui concerne le modèle statistique, une régression linéaire multiple a été utilisée 

pour modéliser la consommation énergétique en fonction des variables jugées pertinentes. Ce 

choix a permis de construire un modèle simple, interprétable et facilement applicable. Toutefois, 
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cette approche présente certaines limites, notamment sa capacité restreinte à représenter des 

relations complexes ou non linéaires entre les paramètres. De plus, dans un contexte industriel 

en constante évolution, le modèle nécessite des ajustements réguliers afin de maintenir sa 

fiabilité, notamment en cas de modification de la nature ou de la quantité des produits recyclés 

traités. 

Pour surmonter ces limites, d’autres approches pourraient être envisagées. Les modèles 

additifs généralisés (GAM) offriraient une plus grande souplesse en intégrant des relations non 

linéaires, tout en conservant une bonne interprétabilité des résultats. L’intégration de techniques 

d’apprentissage automatique, telles que les forêts aléatoires, le gradient boosting ou les réseaux 

de neurones, pourrait également permettre de mieux modéliser des interactions complexes entre 

les variables, en s’adaptant plus efficacement aux variations du procédé industriel. 
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ANNEXE A 

Schéma technique en coupe du four LIA 

Cette figure montre la conception et les composants du four LIA, avec une vue en coupe pour 

illustrer les détails internes. 

 

 

Figure A.1. Four LIA 
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ANNEXE B 

Configuration des modules COMSOL® 

Cette annexe présente les plans de symétrie ainsi que les configurations des différents modules 

utilisés dans les modèles COMSOL®. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. Plan de symétrie du four (xz) Figure B.2. Coupe du four selon le plan de symétrie (xz) 

 
Figure B.4. Choix du régime et nature du flux 

d’écoulement 

Figure B.3. Configuration du modèle d'écoulement 

turbulent et des conditions aux limites 
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Figure B.5. Configuration de la vitesse d'entrée et de 

l'intensité de turbulence 

Figure B.6. Configuration du modèle de transfert de 

chaleur dans des fluides et des conditions aux limites 

Figure B.7. Configurations des propriétés du matériau 

pour le modèle à un seul gaz 

Figure B.8. Couplage multiphysique entre 

l'écoulement fluide et le transfert de chaleur 

Figure B.9. Configuration du modèle de transport des 

espèces concentrées et des conditions aux limites 

Figure B.10. Définition des propriétés 

thermophysiques des gaz 
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Figure B.11. Définition par morceaux de la viscosité dynamique d’argon en fonction de la température 

 

 

 

 

 

 

 

 

 

 

Figure B.12. Définition par morceaux de la capacité calorifique 

d’argon en fonction de la température 
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Figure B.14. Définition par morceaux de la viscosité dynamique d’air en 

fonction de la température 

 

Figure B.13. Définition par morceaux de la conductivité thermique d’argon en 

fonction de la température 



 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure B.15. Définition par morceaux de la 

capacité calorifique d’argon en fonction de la 

température 

 

Figure B.16. Définition par morceaux de la 

conductivité thermique d’argon en fonction de la 

température 

 

Figure B.17. Équation de la viscosité dynamique pour le mélange 

air-argon dans le module d’écoulement fluide 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.18. Propriétés de transport pour le mélange air-

argon dans le module de transport des espèces concentrées 

 

Figure B.19. Propriétés thermophysiques de mélange 

air-argon dans le module de transfert de chaleur 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.20. Fonction analytique de la vitesse d’entrée d’argon 

Figure B.21. Configuration de la condition d’entrée d’argon 

 



 

 

ANNEXE C 

Coupes représentatives des maillages testés 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

Maillage grossier Maillage Normal Maillage fin 

Maillage plus fin 

Figure C.1. Configuration de maillage 

Figure C.2. Différentes densités de maillage testées 



 

 

ANNEXE D 

Rapport de coulée 

 

 

 

 

 

 

 

 

 

 



 

 

ANNEXE E 

Algorithme python d’extraction des données 

Exemple d’algorithme développé pour extraire une cellule spécifique dans l’ensemble des 

feuilles d’un même classeur Excel 

from openpyxl import load_workbook 

import glob 

import os 

# use glob to get all the csv files 

# in the folder 

path = os.getcwd() 

csv_files = glob.glob(os.path.join(path, 
"*.xlsx")) 

# List all the sheets in the file. 

# loop over the list of csv files 

for f in csv_files: 

wb = load_workbook(f, data_only=True) 

for sheetname in wb.sheetnames: 

# Load one worksheet. 

ws = wb[sheetname] 

print(ws["H2"].value) 

 

 

 

 



 

 

Exemple d’algorithme développé pour extraire une feuille spécifique à partir de plusieurs 

classeurs Excel et rassembler ces feuilles dans un nouveau fichier Excel. 

import os 

import openpyxl 

# Créer un nouveau classeur Excel pour stocker 
les feuilles extraites 

new_workbook = openpyxl.Workbook() 

# Liste des feuilles à extraire 

sheets_to_extract = ['Données de calcul'] 

# Récupérer la liste des fichiers Excel dans le 
répertoire actuel et les trier 

excel_files = sorted([file for file in 
os.listdir('.') if file.endswith('.xlsx')]) 

# Boucle à travers chaque fichier Excel pour 
extraire les feuilles spécifiques 

for file_name in excel_files: 

    # Ouvrir le classeur Excel 

    workbook = openpyxl.load_workbook 
(file_name) 

    # boucle à travers chaque feuille dans le 
classeur 

    for sheet_name in workbook.sheetnames: 

        # Vérifier si la feuille dans la liste 
des feuilles à extraire 

        if sheet_name in sheets_to_extract: 

            # Obtenir la feuille à extraire 

            sheet = workbook[sheet_name] 

            # Copier la feuille dans le nouveau 
classeur Excel 



 

 

            new_sheet = 
new_workbook.create_sheet(title=sheet_name) 

            for row in sheet.iter_rows(): 

                for cell in row: 

               new_sheet[cell.coordinate].value = cell.value 

 

        # Enregistrer le nouveau classeur Excel 
avec les feuilles extraites 

        
new_workbook.save('feuilles_extraites.xlsx') 

 


