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RESUME

La réduction des émissions de gaz a effet de serre constitue un enjeu majeur pour
I’industrie maritime. Parmi les solutions envisagées, les techniques de navigation
écoénergétiques, comme I’optimisation de la vitesse et des trajets, permettent de diminuer la
consommation de carburant avec un minimum d’investissement. L’efficacité de ces solutions
dépend toutefois de la disponibilité de données fiables en temps réel sur la consommation de
carburant des moteurs diesels. La méthode traditionnelle pour obtenir la consommation de
carburant repose sur ’utilisation d’un débitmetre pour mesurer directement le débit de
carburant. Bien que précise, cette solution est relativement coliteuse, invasive et peu
attrayante pour les armateurs en raison des modifications nécessaires sur le circuit
d’alimentation en carburant pour I’installation d’un débitmetre.

Ce mémoire par articles explore une alternative moins intrusive qui consiste a estimer
la consommation de carburant uniquement a partir des mesures de couple et de vitesse a
I’arbre du moteur, obtenues via un capteur peu invasif, et d’un modele mathématique guidé
par les données. Pour ce faire, deux approches sont explorées. La premicre
approche (CHAPITRE 1) consiste a identifier et a écarter les données aberrantes autour d’une
fonction de régression tridimensionnelle de type spline, puis a monter un tableau de
correspondance en deux dimensions (2D) a 1’aide d’une méthode de moyennage local. Face
a certaines limitations de la premicre approche, notamment concernant la nécessité de
I’intervention humaine pour le nettoyage des données, I’hypothese implicite de linéarité sur
un court intervalle dans 1’espace des données et la faible garantie de généralisation, une
seconde méthode (CHAPITRE 2) est proposée. Cette méthode repose sur un modele de
régression polynomiale du second ordre intégrant cinq (5) termes combinant le couple et la
vitesse. Les coefficients de ce modele sont ajustés par une méthode d’apprentissage robuste
en distribution, qui utilise la distance de Wasserstein pour optimiser les performances du
modele dans des conditions hors distribution qui ne seraient pas capturées par les données
recueillies, ce qui maximise sa généralisation a d’autres navires.

Des tests sont réalisés sur une flotte de sept (7) remorqueurs similaires. Au total, ces
navires ont généré environ 80 millions de points de données représentant un total de plus de
22 000 heures d’opération commerciale sur des remorqueurs en activité dans les eaux nord-
américaines durant les cinq (5) derniéres années. Le modele issu de la seconde approche est
entrainé sur un (1) navire ou les données de couple, de vitesse et de débit réel de carburant
sont utilisées puis testé sur les six (6) autres ou les données de couple et de vitesse sont
utilisées pour estimer le débit. En évaluant I’erreur quadratique moyenne (Root Mean Square
Error, RMSE) sur I’estimation du débit de carburant sur toute la durée de plusieurs mois des



séries temporelles utilisées pour les tests, on obtient des résultats variants entre 3 % et 10 %,
avec une majorité des cas situés autour de 5 %. Ces résultats démontrent la validité et la
robustesse de I’approche proposée pour un déploiement en pratique sur une flotte de navires
similaires. Un tel déploiement se fera en trois (3) étapes, soit 1) collecter des données
opératoires d’un navire type équipé d’un capteur de couple et de vitesse ainsi que d’un
débitmetre, 2) entrainer le modéle a I’aide de 1’approche proposée, et 3) déployer le modéle
sur le reste de la flotte de navires équipés seulement d’un capteur de couple et de vitesse.

L’ approche proposée constitue une avenue réaliste, économique et peu invasive pour
I’estimation en temps réel de la consommation de carburant des navires. Elle contribue a
réduire les risques et les cofts associés a I’installation de débitmétre sur une flotte de navires
entieére ce qui favorisera la mise en ceuvre de pratiques de navigation écoénergétiques par les
armateurs.

Mots clés : consommation de carburant des navires, estimation en temps réel,
régression robuste en distribution, modele basé sur les données, couple et vitesse, débitmetre,
distance de Wasserstein.



ABSTRACT

The reduction of greenhouse gas emissions is a major challenge for the maritime
industry. Among the solutions considered, eco-efficient navigation techniques, such as speed
and route planning optimization, make it possible to reduce fuel consumption with minimal
investment. The effectiveness of these solutions, however, depends on the availability of
reliable real-time data on the fuel consumption of diesel engines.

The traditional method relies on the use of a flowmeter to directly measure fuel flow.
Although accurate, this solution is relatively costly, invasive, and unattractive to shipowners
due to the modifications required to the fuel supply circuit required to install a flowmeter.

This article-based master’s thesis explores a less intrusive alternative that consists in
estimating fuel consumption solely from torque and shaft speed measurements obtained via
a minimally invasive sensor and a data-driven mathematical model. To this end, two
approaches are investigated. The first approach (CHAPITRE 1) consists in identifying and
removing outliers around a three-dimensional spline regression function and then
constructing a two-dimensional lookup table using a local averaging method. Faced with
certain limitations of the first approach, notably the need for human intervention in data
cleaning, the implicit assumption of linearity over a short interval, and the weak guarantee
of generalization over a larger sample, a second method (CHAPITRE 2) is proposed. This
method relies on a second-order polynomial regression model incorporating five (5) terms
combining torque and speed. The coefficients of this model are fitted using a distributionally
robust learning method, which employs the Wasserstein distance to optimize model
performance under out-of-distribution conditions which may not be covered by the available
data, thereby maximizing its generalization to other vessels.

Tests were carried out on a fleet of seven (7) similar tugboats. In total, these vessels
generated approximately 80 million data points, representing more than 22,000 hours of
commercial operation on tugboats active in North American waters over the past five (5)
years. The model derived from the second approach is trained on one (1) vessel, where
torque, speed, and actual fuel flow data are used, then tested on the other six (6), where torque
and speed data are used to estimate fuel flow. By evaluating the Root Mean Square Error
(RMSE) of the fuel flow estimation on out of sample data over the entire duration of several
months of time series used for testing, results range from 3% to 10%, with most cases around
5%. These results demonstrate the validity and robustness of the proposed approach for
practical deployment on a fleet of similar vessels. Such deployment would proceed in three
(3) steps: 1) collecting operational data from a reference vessel equipped with a torque and
speed sensor as well as a flowmeter, 2) training the model using the proposed approach, and



3) deploying the model across the rest of the fleet of vessels equipped only with a torque and
speed sensor.

The proposed approach constitutes a realistic, economical, and minimally invasive
avenue for real-time estimation of fuel consumption. It helps reduce the risks and costs
associated with installing flowmeters on an entire fleet of vessels, which will foster the
implementation of eco-efficient navigation practices by shipowners.

Keywords: ship’s fuel consumption, real-time estimation, distributionally robust
regression, data-driven model, vessels, torque and speed, flowmeter, Wasserstein distance.
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INTRODUCTION GENERALE

MISE EN CONTEXTE

Le Canada s’est engagé a réduire ses émissions de gaz a effet de serre de 40 % sous les
niveaux de 2005 et a atteindre la carboneutralité d’ici 2050 [1]. Cet engagement nécessitera
une transition énergétique majeure qui comprend I’industrie maritime canadienne qui
s’engage de plus en plus dans des programmes environnementaux comme celui de 1’ Alliance
verte [2], [3]. Plus particuliérement, au Québec, la Société de développement économique du
Saint-Laurent (Sodes) a récemment mandaté une firme externe pour réaliser un plan
d’actions pour la réduction des émissions du secteur maritime québécois [3]. Ce plan a pour
objectif principal d’harmoniser les efforts provinciaux avec les cibles de décarbonation

définies par 1’Organisation maritime internationale (OMI) [4].

Les solutions de décarbonation disponibles sont multiples. Cependant, elles different
grandement en termes de complexité d’implémentation, de colts et de bénéfices sur la
réduction des émissions [5]. Parmi ces solutions, ’utilisation de techniques de navigation
écoénergétique comme 1’optimisation de la vitesse des navires [6], [7] et ’optimisation des
voyages en mer [8], permet aux armateurs de réduire de facon significative leur
consommation en carburant fossile a court terme tout en minimisant les investissements

initiaux et les changements a effectuer sur leurs navires.

PROBLEMATIQUE

L’évaluation de I’efficacité des techniques de navigation écoénergétiques est cependant
ralentie par le manque de données quant a la consommation réelle de carburant par les

moteurs & combustion interne dans différentes conditions d’opération. Les armateurs



souhaitent donc instrumenter leurs navires afin d’évaluer 1’efficacit¢é des mesures
opérationnelles mises en place. Cette volonté est cependant freinée par la complexité et les
cotts ¢levés des systémes actuels de surveillance des émissions qui sont trés souvent invasifs

et demandent des modifications aux systémes de carburant et d’échappement des navires.

Dans cette foulée, le partenaire du projet, ’entreprise OpDAQ Systemes Inc., a mis au
point un systéme d’acquisition de données, appelé OpHMI (Figure 1(a)), qui permet aux
armateurs de mesurer en temps réel leur consommation de carburant a l’aide d’un
débitmetre [9] et de déduire I’efficacité des moteurs a 1’aide d’un capteur de couple et de
vitesse de rotation installé sur I’arbre de sortie des moteurs [11]. Toutefois, méme si la mesure
directe du carburant a 1’aide d’un débitmeétre est une solution trés commune dans 1’industrie
et la littérature, celle-ci nécessite des modifications importantes au niveau de la conduite
d’entrée en carburant des moteurs, ce qui tend a réduire sa fiabilité et freine son adoption par

les armateurs.

Pour résoudre ce probleme, OpDAQ a récemment intégré un module de calcul appelé
OpGhost dans son systeme d’acquisition OpHM]I, qui permet d’estimer la consommation de
carburant des navires en utilisant uniquement les mesures du couple et de la vitesse a 1’arbre
des moteurs [13]. La version actuelle du module OpGhost consiste en un débitmeétre virtuel
qui compare la mesure de la puissance mécanique (déduite a 1I’aide de la mesure du couple et
de la vitesse a I’arbre) & un modéele virtuel de moteur a combustion interne pour estimer sa
consommation de carburant (Figure 1(b)). Le mod¢le interne est basé uniquement sur la
courbe de consommation fournie par le manufacturier du moteur et est ajusté avec un facteur
de correction a chacun des navires a 1’aide de différents essais réalisés en mer. Toutefois,
malgré son excellente précision pour évaluer la consommation de carburant annuelle des
navires, les résultats d’essais en mer ont démontré que ’algorithme n’est pas suffisamment
précis pour évaluer sa consommation en temps réel et dans certaines conditions d’opération.
Ce systéme demeure ainsi limité pour permettre aux armateurs d’estimer avec suffisamment

de précision I’efficacité des mesures de navigation écoénergétique mises en place.
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(c) Systeme OpHMI proposé avec la nouvelle génération OpGhost 2D (sans débitmetre)
Figure 1. Représentation simplifiée de 1’évolution du systeme OpHMI



Une analyse plus fine des performances des moteurs a permis de déterminer que
I’imprécision de cette méthode vient du fait qu’elle ne prend pas en compte I’effet individuel
du couple et de la vitesse sur I’efficacité du moteur. Ce phénomene est expliqué a 1’aide de
la Figure 2 qui montre les relations entre la consommation en carburant, le couple, la vitesse
et la puissance de sortie d’un moteur diesel typique pour cette étude. Sur la Figure 2(a), on
note que la consommation en carburant est une fonction non linéaire du couple et de la
vitesse. Pour une puissance de sortie constante (ligne rouge), on remarque qu’il existe plus
d’une solution pour la consommation en carburant. L’algorithme OpGhost actuel renvoie
alors la valeur moyenne pour simplifier le probléme. Sur la Figure 2(b), en comparant la
valeur moyenne (en pointillée [--]) avec la consommation réelle (ligne pleine [-]) on
remarque toutefois que 1’utilisation de la valeur moyenne peut surestimer ou sous-estimer de

maniere significative la consommation en carburant pour une méme puissance de sortie.
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Figure 2. Analyse de la consommation en carburant d’un moteur diesel typique de navire

OBJECTIFS

L’objectif principal de cette recherche est de développer un modele d’estimation de

consommation de carburant basé sur les données qui utilise uniquement les mesures de



couple et de vitesse de rotation a I’arbre des moteurs de navires pour estimer leur débit de

carburant (Figure 1(c)). L’objectif principal est divisé en trois (3) objectifs spécifiques :
O1. Décoder et analyser les données fournies par le partenaire OpDAQ ;

02. Développer un premier modéle d’estimation de carburant pour évaluer la

faisabilité d’une estimation basée entiérement sur les données ;

03. Développer un second modele offrant une grande généralisabilité a différents
navires d’une méme flotte et une robustesse accrue face aux données aberrantes et au

variations entre les navires.

METHODOLOGIE

La démarche de réalisation du projet se déroule en trois (3) étapes principales qui sont

associées chacune a un objectif spécifique du mémoire :
Etape 1 — Prise en main et décodage des données fournies par OpDAQ (O1)

La premiére étape du projet consiste a recevoir, décoder et s’approprier les données
collectées par OpDAQ. Le segment de données utilisées provient de sept (7) remorqueurs
similaires qui ont généré environ 80 millions de points de données représentant un total de
plus de 22 000 heures d’opération commerciale dans les eaux nord-américaines durant les
cinq (5) dernieres années. Un script Python est développé pour décoder le format binaire
propriétaire regus et le sauvegarder sous la forme d’une base de données SQL pour le premier
article (CHAPITRE 1) et en format CSV pour le deuxiéme article (CHAPITRE 2). A cette étape,
un premier nettoyage des données est effectué pour retirer les points qui ne contiennent pas
d’information utile tels que les points enregistrés lorsque le navire est inactif ou les valeurs
négatives de débit qui sont le résultat d’une erreur de communication avec les capteurs de
débit. Ce processus génére un ensemble de données brutes prét a ’emploi. Cette étape est

effectuée a la fois sur les ensembles de données d’entrainement et ceux de validation.



Etape 2 — Elaboration d’un premier modéle et analyse de la faisabilité d’une approche

basée sur les données (02)

A la suite de I’étape 1, le jeu de données est mis a profit pour développer une premiére
version d’un modele d’estimation de consommation de carburant. Ce modéle est développé

en suivant trois (3) sous €tapes principales [9].

2.1 — Détection et suppression des données aberrantes : Cette étape vise a supprimer les
valeurs aberrantes, aussi dites extrémes, qui affectent négativement le processus
d’apprentissage. Un espace euclidien en trois dimensions (3D) est premiérement construit
avec les mesures de débit, de couple et de vitesse issues de 1’ensemble de données
d’apprentissage. Une sélection de splines est ensuite ajustée au nuage de points en utilisant
les méthodes akima [12] et Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [14]
dans I’espace de données. L’ erreur quadratique moyenne (Root Mean Square Error, RMSE)
et le critére de Pearson (R?) sont ensuite évalués pour chacune des splines. Les splines les
plus prometteuses sont ensuite tracées dans 1’espace 3D avec le nuage de points et la spline
qui représente le mieux la forme du nuage de points des données de 1’échantillon
d’entrainement est ensuite sélectionnée manuellement. La distance entre chaque point de
données et la spline précédemment sélectionnée est ensuite calculée et stockée. Les points de
données du 5° percentile le plus éloigné sont considérés comme des données aberrantes et
sont supprimés de I’ensemble de données d’apprentissage. D’autres algorithmes non
supervisés de détection de données aberrantes comme Isolation Forest [15], Nearest
Neighbours [16] et Local Outlier Factor [17] ont été testés a cette étape, mais ils ont tous

présenté une capacité moindre a rejeter les données hors de la masse principale de points.

2.2 — Génération d’un tableau de correspondance (lookup table) : Les données nettoyées
sont ensuite divisées selon une grille de dimensions n par m le long des axes de vitesse et de
couple et la valeur moyenne du débit est calculée pour chaque segment rectangulaire de la

grille résultante. Ce processus génére un tableau dans lequel une valeur de débit



correspondante peut étre interpolée pour chaque bindome de coordonnées de couple et de

vitesse de rotation.

2.3 — Validation de I’approche : Le modé¢le d’estimation est ajusté et validé a I’aide d’un
jeu de données, qui comprend des mesures de consommation de carburant, de couple et de
vitesse a une fréquence d’échantillonnage d’une donnée par seconde, pour un peu plus de
450 heures de mesures en mer sur deux (2) remorqueurs. Le tableau de correspondance
obtenu a la sous-étape 2.2 est utilisé pour estimer le débit de carburant en temps réel avec les
mesures de vitesse et de couple d’entrée provenant de I’ensemble de données de validation.
Le débit estimé est ensuite comparé au débit réel mesuré dans cet ensemble de données avec
deux métriques de calcul d’erreur, soit I’erreur absolue moyenne et le RMSE. La fenétre de
temps pour le calcul de I’erreur a aussi été variée pour visualiser I’'impact de la largeur de la

fenétre sur ’erreur.

Afin d’analyser le potentiel de généralisation de la méthode, nous avons effectué¢ deux types
de validation : moteur a moteur et navire a navire. La validation moteur a moteur est effectuée
pour étudier la pertinence de la méthode proposée pour estimer la consommation de carburant
d’un moteur a I’aide de données recueillies a partir d’un autre moteur similaire sur le méme
navire (note : les remorqueurs ont typiquement deux moteurs a bord). En pratique, cela
permettrait a un armateur de n’installer qu’un seul débitmetre sur son navire. La validation
navire a navire vise a étudier les performances de la méthode proposée pour estimer la
consommation de carburant d’un navire a I’aide de données recueillies a partir d’un autre
navire ayant des caractéristiques similaires. En pratique, cela permettrait a un armateur de

n’installer qu’un seul débitmetre sur un navire de sa flotte.

Les limites de ’approche proposée : L’analyse des résultats a permis de constater le
potentiel d’une approche basée entierement sur les données. Toutefois, nous avons identifi¢
trois (3) limites importantes a surmonter pour permettre son déploiement a plus grande

échelle.



» Limite 1 : La méthodologie nécessite 1’intervention humaine pour le nettoyage des
données (2.1), ce qui empéche son automatisation et introduit un biais de sélection

dans le processus.

» Limite 2 : La méthode de moyennage utilisée pour la définition du tableau de
correspondance (2.2) est limitée par la simplification des informations, la dépendance
a la définition des dimensions de la grille et I’hypothese implicite sur la linéarité due
a l'utilisation d’une méthode d’interpolation linéaire. Cette méthode semble aussi

sensible aux données aberrantes.

* Limite3:La méthode a été validée sur seulement deux (2) remorqueurs tres
similaires (2.3) et des validations supplémentaires non présentées dans le mémoire

ont confirmés que la méthode est peu généralisable pour 1’estimation navire a navire.
Etape 3 — Elaboration d’un second modéle robuste et généralisable (O3)

L’¢étape 3 vise a améliorer les sous étapes 2.1 a 2.3 de la chaine de traitement de
données pour surmonter les trois limites identifiées. Une version améliorée a été mise au
point. Cette nouvelle version permet de systématiser et d’automatiser le plus possible le

processus selon certains points importants. Deux améliorations principales ont été proposées.

Amélioration 1 : Le tableau de correspondance (2.2) est remplacé par une relation
polynomiale du second degré. Ceci regle les limites associées aux discontinuités aux points
de la table, rend le modéle moins sensible a la densité de distribution des points de mesure et

se rapproche plus de la nature continue du systéme modélisé.

Amélioration 2 : L’étape de détection et de suppression des données aberrantes (2.1) est
complétement supprimée et I’intégration d’un algorithme de régression linéaire robuste en
distribution geére maintenant leur influence. Cet algorithme utilise une forme minimax afin
de minimiser I’erreur dans le cas le moins avantageux de I’ensemble de données pour obtenir

un modele final qui est robuste en distribution et donc plus résistant au bruit de mesure et aux



légeéres variations du systeme réel. La distance de Wasserstein est utilisée pour définir

I’ensemble d’ambiguité du probléme minimax.
Le nouveau modéele est développé en suivant les trois (3) sous étapes suivantes :

3.1 — Réglage de I’hyperparamétre € : L’ajout du composant robuste de la régression
introduit également I’hyperparamétre € qui régle I’intensité de la régularisation du modeéle.
Celui-ci doit étre ajusté a I’aide d’au moins deux (2) navires de validation pour réduire au
maximum ’erreur sur ’ensemble des scénarios possibles. Pour ce faire, le modele suit les

sous étapes suivantes :

3.1.1 — Régression des coefficients : [’algorithme débute avec une supposition de
valeur € et procede a la régression d’un modele pour chaque navire disponible a I’aide
du solveur mathématique intégré a scikit-learn [18]. Les valeurs de tous les

moteurs de propulsion d’un méme navire sont combinées pour cette étape.

3.1.2 — Validation croisée avec les autres navires : Une fois les coefficients obtenus
par régression, le modele est utilisé pour estimer la consommation de carburant de
chacun des navires individuellement. Le RMSE est par la suite évalué pour chacune

des combinaisons de modéles et navires.

3.1.3 — Suggestion d’un nouveau € : Les résultats de la sous-étape 3.1.2 sont utilisés
pour évaluer la performance de I’hyperparamétre € suggéré et une nouvelle valeur est
suggérée avant de relancer une nouvelle itération a partir de 1’étape 3.1.1. La suggestion
de valeurs de € et le processus itératif pour sa sélection est géré avec la librairie Optuna

pour I’optimisation automatique des hyperparameétres [19].

3.2 — Entrainement du modéle sur un navire spécifique : Avec la valeur optimale de €, il
est maintenant possible d’obtenir les coefficients par régression pour un seul navire et ainsi
¢tablir un modele d’estimation de carburant robuste en distribution et spécifique pour un

navire particulier.



3.3 — Evaluation de la performance finale du modéle : Une fois le modéle final entrainé,
sa performance est évaluée a 1’aide du calcul du RMSE sur I’ensemble du jeu de données
distincts de I’ensemble d’entrainement. Ceci donne une attente quant a sa performance future

quand il sera déployé sur d’autres navires dépourvus d’un débitmeétre.

CONTRIBUTIONS

Ce mémoire propose une nouvelle approche d’estimation en temps réel de la consommation

de carburant peu intrusive qui présente plusieurs avantages.

Intégration non intrusive : le capteur de couple et de vitesse a fixation externe peut étre

installé aisément, sans nécessiter de modifications des composants existants du moteur ;

Estimation en temps réel : ’approche permet une évaluation précise instantanée de la
consommation de carburant durant 1’opération grace aux mesures continues fournies par les
capteurs étant donné que le modele est optimisé sur une base de temps de 1’ordre de la

seconde ;

Indépendance de I’environnement : [’utilisation d’un capteur mesurant directement
I’impact des conditions extérieures sur le fonctionnement du moteur rend superflu le recours

a des données environnementales externes comme 1’état de la mer ou des courants ;

Simplification de la modélisation : le caractere fondé sur les données du modele évite le

recours a des mod¢les thermodynamiques, hydrodynamiques et aérodynamiques complexes ;

Généralisable : D’intégration d’une régression robuste en distribution améliore la

transférabilité du modele malgré des conditions d’exploitation variées et incertaines.
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STRUCTURE DU MEMOIRE

La structure de ce mémoire est orientée de maniere a s’harmoniser avec les deux
articles (un publié¢ et un en soumission) qui représente le cceur du mémoire. Le CHAPITRE 1
présente le premier article de conférence (publi€¢) qui porte sur le modele basé sur un tableau
de correspondance. Le CHAPITRE 2 présente le second article (en soumission) qui porte sur le
modele polynomial robuste en distribution. La CONCLUSION GENERALE résume le mémoire et

propose finalement des pistes d’améliorations pour la suite du projet.
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CHAPITRE 1
VERS UNE NAVIGATION ECOENERGETIQUE : UNE APPROCHE BASEE
SUR LES DONNEES POUR L’ESTIMATION EN TEMPS REEL DE LA
CONSOMMATION DE CARBURANT DES MOTEURS DE NAVIRES
SANS DEBITMETRE

RESUME EN FRANCAIS DU PREMIER ARTICLE

Cet article propose une nouvelle méthode peu invasive pour estimer en temps réel la
consommation de carburant des moteurs de navires sans recourir a des débitmetres.
Traditionnellement, les débitmétres fournissent une mesure directe et précise, mais leur
installation exige des modifications cotliteuses et contraignantes des conduites de carburant, ce

qui limite leur adoption par les armateurs.

La méthode présentée repose uniquement sur les mesures du couple et de la vitesse de
rotation des arbres des moteurs. Un modele de régression est développé et validé a partir d’un
vaste ensemble de données réelles (environ 464 heures de navigation sur des remorqueurs en
activités dans les eaux nord-américaines), comprenant les valeurs mesurées a la seconde du
débit de carburant, du couple et de la vitesse de rotation a I’arbre des moteurs. Le traitement
comporte plusieurs étapes : décodage et stockage des données, ajustement de splines 3D,
¢limination des valeurs aberrantes, puis construction d’un tableau de correspondance (lookup

table) reliant couple, vitesse et consommation (débit).

La validation est effectuée selon deux approches : moteur a moteur (d’un moteur a I’autre
sur un méme navire) et navire a navire (d’un navire a un autre d’une méme flotte). Les résultats
montrent une précision moyenne de ’ordre de 5 a 10 % pour une estimation temps réel a
I’échelle de quelques secondes, et une précision améliorée a moins de 1-2 % lorsqu’on

considére des fenétres de moyennage de plusieurs heures.



Malgreé certaines limitations observées au niveau de la robustesse et de la généralisation,
I’article démontre le potentiel d’'un modele basé entierement sur les données et que 1'usage
d’une table de correspondance permet de capturer les relations non-linéaires non connues ou
trop complexes pour étre modélisées. Ce modele constitue une premicre alternative
¢conomique et fiable au débitmetre, permettant aux armateurs d’évaluer 1’efficacité
énergétique de leurs pratiques opérationnelles et de mieux gérer la consommation de carburant

de leur flotte.

En tant que premier auteur, j’ai développé I’intégralité du modele, monté les scripts
Python pour le tester et rédigé la vaste majorité de I’article. Le professeur Maxime Berger (2°¢
auteur) a supervisé la démarche scientifique lors du développement et révisé la rédaction de
I’article. En tant que superviseurs des travaux chez le partenaire (OpDAQ Systéemes Inc.), Tomy
Pineau (3¢ auteur) et Charles Massicotte (4° auteur) ont fourni le jeu de données et révisé

I’article pour approuver sa diffusion en tout respect de la propriété intellectuelle de OpDAQ.

L’article a été présenté le 23 septembre 2024 a la conférence OCEANS 2024 — Halifax,
et publié plus tard sur /[EEE Xplore le 25 novembre 2024. La référence compléte est donnée

ci-dessous :
V. St-Pierre, M. Berger, T. Pineau, and C. Massicotte, “Toward Energy-Efficient Navigation:

A Data-Driven Approach for Flowmeterless Estimation of Ship’s Engine Fuel Consumption
in Real-Time”, OCEANS 2024, Halifax, NS, Canada, 2024, pp. 1-5.
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Abstract—Reducing greenhouse gas emissions from ships is a significant challenge facing
the maritime industry. In particular, energy-efficient navigation techniques allow shipowners
to adapt their itineraries to minimize fuel consumption. However, the evaluation of the
effectiveness of these techniques is slowed down by lack of data on the actual consumption of
the engines. Direct measurement of fuel using a flowmeter seems an ideal solution to this
problem. However, many shipowners do not adopt it since it requires significant modifications
to the fuel inlet piping, reducing ships reliability and requiring significant initial investments.
This paper proposes a new, less invasive, data-driven approach to estimating the real-time fuel
consumption of engines without using a flowmeter on each ship or each engine of a fleet. The
strategy is based on a lookup table fitted in a three-dimensional space composed of torque,
rotational speed, and flow measurements gathered on real ships. The model is trained and
validated with approximately 464 hours of actual measurements on tugboats operating in North
American waters over the last five years. The developed model enables shipowners to evaluate

at a low cost the effectiveness of operational measures to reduce their fuel consumption.

Keywords— Energy-efficient navigation techniques, tugboats, fuel estimation, regression
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I. INTRODUCTION

Reducing greenhouse gas emissions from ships is an important issue the maritime
industry faces. Available solutions differ greatly regarding their implementation complexity,
costs, and emissions reduction benefits [1]. Among these solutions, the use of energy-
efficient navigation techniques, such as optimizing ship speed [2], [3] and optimizing sea
voyages [4], are known to permit shipowners to reduce their fuel consumption while
minimizing initial investments and vessel modifications. However, implementing energy-
efficient navigation techniques and evaluating their effectiveness require accurate real-time

data on the fuel consumption of ship engines under different operating conditions.

The OpDAQ OpHMI system [5] allows shipowners to measure their fuel consumption
in real time using a flowmeter and to deduce the efficiency of the engine using a torque and
speed sensor installed on the output shaft of the engine [6] (Fig. 1 (a)). Even if the direct
measurement of fuel using a flowmeter is the most accurate solution to measure fuel
consumption, significant modifications to the engine’s fuel inlet pipe are required, which
increase installation time and cost and reduce the overall system’s reliability, thus slowing
its adoption by shipowners. A less invasive solution consists of estimating the fuel
consumption using only the engine’s output torque and shaft speed measurements [7].
However, its practical implementation requires an accurate mathematical model to estimate
the engine’s efficiency in real time under different operating conditions [8], [9]. The analysis
of consumption data on tugboats obtained using the OpHMI system showed that the model
must consider the highly nonlinear effect of both torque and speed on the engine’s

efficiency (Fig. 2).

A physics-based approach to estimating an engine’s efficiency requires complex and
computationally expensive mathematical modelling and the knowledge of the engine’s exact
physical and environmental parameters, which are rarely available to shipowners. To
overcome the limitations of a physics-based approach, this paper proposes a data-driven
approach permitting the real-time estimation of ship fuel consumption using only shaft torque

and speed measurements, thus providing a flowmeterless OpHMI solution to



shipowners (Fig. 1(b)). The core of the proposed estimation model is a multi-step process.
The first step comprises a 3D spline regression used for data cleaning with Euclidean distance
rejection. The second step relies on a 2D data partitioning followed by a local average
computation. The estimation model is fitted and validated using an extensive dataset, which
includes fuel consumption, torque, and speed measurements at a sampling rate of 1 sample
per second for hundreds of hours of sea operation on tugboat ships operating in North

American waters over the last five years.

The paper is organized as follows. Section II presents an overview of the dataset for
training and validating the estimation model. Section III presents the proposed methodology
for automated data cleaning, developing and validating the flowmeterless model. In
section IV, the accuracy of the proposed method is validated and analyzed over various
averaging time windows. Engine-to-engine and ship-to-ship validation results are provided

to demonstrate the flexibility of the proposed method.

II. DATASET

OpDAQ possesses an extensive dataset comprising over 100,000 hours of commercial
operation across 19 different vessels. In this paper, the analysis is limited to two comparably
sized tugboats, referred to as ship 1 and ship 2. The dataset for ship 1 encompasses 646,530
data points over approximately 179 hours, while the dataset for ship 2 includes 1,026,757
data points spanning around 285 hours. Nevertheless, results presented in this paper showed
that the dataset is large enough to validate the methodology and enabling its use on a larger
scale. Each vessel under investigation has two main engines (engine 1 and engine 2), and
around 50 measurements are logged each second across all sensors on the ship. For training
and validation, only the input flowrate, output torque, and shaft rotational speed are used

from those measurements.
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Fig. 1: Evolution of the OpHMI acquisition system
(a) flowmeter enabled. (b) flowmeterless.
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Fig. 2: Variability of flow over similar speed and torque range showcasing the highly nonlinear
character of the engine/propeller system.

Engine-to-engine validation is performed to investigate the suitability of the proposed
method to estimate the fuel consumption of one engine with data gathered from another
similar engine on the same ship. For such validation, measured data from engine 1 are used
to train the model, and measured data from engine 2 are used for validation. Ship-to-ship
validation aims to investigate the performance of the proposed method to estimate the fuel
consumption of one ship with data gathered from another ship with similar characteristics.
In this case, the fitted model from engine I on ship 1 is first used to estimate the fuel
consumption of engine 2 on ship 2. The other way around is also validated, i.e. the fitted
model from engine 1 on ship 2 is also used to estimate the fuel consumption of engine 2 on

ship 1.

III. METHODOLOGY

A. Data decoding

The first step in processing the measured data is to convert it from the raw binaries
produced by the logging infrastructure aboard to a format that is readily usable. An
importation tool is developed to this effect which, after decoding the data, saves it to a
PostgreSQL database for further processing. This process generates a raw dataset ready for
use, as shown in Fig. 3(a). This step is performed on both the training and the validation

datasets.
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B. Spline regression and selection

Next, a 3D Euclidean space is constructed with the flowrate, the torque and the
rotational speed measures from the training dataset. A selection of splines are then fitted to
the resulting scatter plot using both akima [10] and Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) [11] methods over 2 to 10 points in the data space. These two regression
methods are selected for their ability to generate smooth continuous curves. The Root Mean
Square Error (RMSE) and Pearson’s Criterion (R*) are then evaluated for each of the 18
splines (9 akima and 9 PCHIP). The most promising splines are then plotted in the 3D space
with the scatter plot (Fig. 3(b)). The spline that best represents the sample training data scatter

plot shape is then selected for the next processing step.
C. Outliers removal

The outlier removal step removes extreme data that negatively affects the averaging
process performed in the next processing step. To do so, the distance between each data point
and the previously selected spline is then computed and stored. The data points in the 5th
farthest percentile are considered as outlier data and are removed from the training dataset.

The result of this step is a cleaned dataset as represented in Fig. 3(c).

D. Flow lookup table generation

The cleaned data is then split following a n by m grid along the rotational speed and
torque axes and the mean flowrate value is calculated for every rectangular segment of the
resulting grid. This process generates a table where a corresponding flowrate value can be
interpolated for every torque and rotational speed couple coordinates. This process is shown

in Fig. 3(d). In this paper, n=m=30 is selected as it showed the best overall results.

E. Validation

The generated lookup table is then validated using two different approaches. First, the
original scatter plot and the resulting lookup table are plotted in the same space to validate

the quality of the fit as shown in Fig. 3(e). Second, the lookup table is used to estimate the
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real-time fuel flowrate with the speed and torque measurements input from the validation
dataset. The estimated flowrate is then compared with the real measured flowrate in this
dataset, and the absolute error is calculated sample by sample as shown in Fig. 3(f). The mean
error and RMSE are then computed from this sample-wise absolute error. A rolling window
average is also applied to both the measured and estimated flow data for different window
size (Fig. 4). The error between the averaged measured and estimated flow data is then
calculated sample by sample and the mean error and RMSE are calculated. In this paper, the
window size has been varied from 2 seconds to 16 hours to show the impact of averaging
window width on the mean error and the RMSE. This analysis is performed to evaluate the

impact of temporal averaging on flow estimation error and temporal fidelity.

Raw Data (a) Spline Fit (b) Outlier Removal (c)

Flowrate
Flowrate
Flowrate

Torque or Speed Torque or Speed Torque or Speed
Lookup Table Calculation (d) Flow Interpolation (e) Validation (f)
2
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Fig. 3: 2D simplification of the data treatment and model fitting process. (a) The data is first decoded
from the raw binaries. (b) Then, a multitude of splines with varying parameters is fitted to the scatter
plot. (¢) The best-fitting spline is kept, and all the 5th percentile farthest away data from this spline
is removed as outlier data. (d) The sample is split into segments, and the mean flowrate value is
calculated for each segment. (e) The lookup table generated is used to estimate flowrate from torque
and speed data. (f) The lookup table generated from another dataset is used and validated against
measured flowrate.
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Fig. 4: Effect of increasing the rolling average window sampling width (size) on both the measured
and estimated flow samples. Comparing the original measured values (solid blue line) with the
averaged measured sample (solid red line) permits noticing the loss of temporal fidelity and the time
delay induced by a larger averaging window. However, for each window size (1 and 20), the
comparison of the averaged measured values (solid lines) with their respective averaged estimated
values (dashed lines) also allows to visually notice that the error with respect to its respective averaged
measured data is reduced as the window size increases.

IV. RESULTS AND ANALYSIS

The results obtained by applying the second validation approach for engine-to-engine

and ship-to-ship comparisons are summarized in Table I.

The results in Fig. 5 show engine-to-engine validation on ship 1, and the results in
Fig. 6 present engine-to-engine validation on ship 2. The results in Fig. 5 show that the
procedure yields commendable outcomes, as the mean error is approximately 8% and the
RMSE is roughly 20% for a 2 s averaging window. Those values steadily decrease as the
averaging window width increases, down to a mean error of 4% and a RMSE of about 5%
for a 16 h averaging window. A comparable pattern is observed for ship 2 as depicted in
Fig. 6. Specifically, the mean error initiates at approximately 5% and diminishes to roughly

under 1%, while the RMSE begins at about 25% and reduces to approximately 1%.
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The validation procedure also demonstrates the robustness of the proposed approach
when one lookup table that is fitted on one ship is used to estimate the fuel consumption on
another ship. In the first case, when ship 2 lookup table is used to estimate fuel consumption
of ship 1, the mean error stays relatively constant between 8% and 11% across varying
averaging window size while the RMSE decreases from 21% to 11% as demonstrated in
Fig. 7. Doing the opposite, i.e. using ship 1 lookup table to estimate fuel consumption of
ship 2, yields even better results as demonstrated in Fig. 8 where the RMSE starts at 31% but

quickly decreases to 2%, and the mean error starts at 7% and ends as low as 2%.

An analysis of these results along with the explanation in Fig. 4 also permits concluding
that the final choice of averaging window width is a trade-off between flow estimation error
and temporal fidelity. It is possible to strike a compromise by using a relatively small
window (up to 10 samples) for real-time flow assessment where the gain in RMSE accuracy
i1s maximal and a relatively large window when only assessing total fuel quantity burned. The
averaging window can be as large as the desired assessment period to minimize error between
the averaged measured and estimated values. In all cases, the mean error value is also always
lower than the RMSE because an overestimation error can be compensated by an
underestimation error in the same averaging window. The RMSE keeps information on the

absolute error value and is, therefore, intrinsically higher.
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Fig. 5: Results for engine-to-engine validation Fig. 6: Results for engine-to-engine validation
on ship 1. on ship 2.
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TABLE I: VALIDATION RESULTS SUMMARY

Validation Lookup Mean error RMSE
dataset table 2s 16h 2s 16h
Fig.5 | ship 1;eng. 1 | ship 1; eng. 2 8% 4% 20% 5%
Fig. 6 | ship 2;eng. 1 | ship 2; eng. 2 5% <1% 25% 1%
Fig.7 | ship 1; eng. 1 | ship I; eng. 2 10% 10% 21% 11%
Fig. 8 | ship 2;eng. 1 | ship 2; eng. 2 7% 2% 31% 2%

V. CONCLUSION

This paper presented a data-driven approach to evaluating the fuel-saving capability of
energy-efficient navigation techniques. The method is minimally invasive as it only requires
the installation of a flowmeter on a single ship or engine. The data gathered on this ship or
engine can be used to predict the fuel consumption of another engine or ship having similar
characteristics. This method has been tested on 2 similarly sized ships for a total of 4 engines
with mean fuel estimation accuracy from 5% error rate for a real-time 2 seconds averaging
window and down to less than 1% over a 16 hours window for total fuel quantity estimation.
The cross-ship capability is also tested by using the flow lookup table from one ship to
evaluate the fuel consumption of the other ship. This approach yields a similar result with
mean accuracy ranging between 7% for a real-time 2 second assessment period down to 2%

for a 16 hours averaging window.
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CHAPITRE 2
ESTIMATION DE LA CONSOMMATION DE CARBURANT SANS
DEBITMETRE POUR L’ESTIMATION EN TEMPS REEL DE LA
CONSOMMATION DES MOTEURS DIESEL MARINS

RESUME EN FRANCAIS DU DEUXIEME ARTICLE

Un suivi précis de la consommation de carburant est essentiel pour optimiser
I’efficacité énergétique des opérations maritimes. Toutefois, les méthodes traditionnelles
telles que les débitmetres installés en ligne avec les conduites de carburant sont invasives,

coliteuses et présentent des risques en matiere de fiabilité.

Cet article propose une nouvelle approche non invasive pour 1’estimation en temps réel
du débit de carburant, reposant uniquement sur les mesures de couple et de vitesse de rotation
de I’arbre de sortie du moteur. La méthode remplace les débitmetres physiques par un modéle
fondé sur les données. Le modele est entrainé a 1’aide d’une régression linéaire robuste en
distribution, garantissant ainsi une résilience face au bruit des capteurs et a I’incertitude du
modele. L’aspect robuste en distribution repose sur la minimisation de l’erreur entre
I’ensemble de probabilité des valeurs estimées par le modéle par rapport aux mesures réelles.
Comme il s’agit d’ensembles de probabilité et non de points précis, la distance euclidienne
ne peut pas €tre utilisée pour calculer 1’erreur, elle est donc remplacée par la distance de
Wasserstein de 1° ordre. Une procédure de déploiement étape par étape est également
proposée afin de permettre le transfert du modele entre des navires similaires d’une méme

flotte, a partir d’un seul navire de référence équipé d’un débitmetre.

Le mod¢le est validé sur un jeu de données réelles comprenant 80 millions de points
collectés a chaque seconde sur sept (7) remorqueurs, avec une erreur quadratique

moyenne (Root Mean Square Error, RMSE) de 5,2 % en moyenne et une erreur maximale



inférieure a 10 % lors de la validation croisée. Ces résultats démontrent la pertinence de la
méthode en tant qu’alternative économique, précise et évolutive pour 1’estimation de la

consommation de carburant dans les applications maritimes.

En tant que premier auteur, j’ai développé la grande majorité de 1I’algorithme, monté
I’intégralité de la programmation Python et rédigé la vaste majorité de 1’article. Le professeur
Maxime Berger (2° auteur) a dirigé le projet de recherche depuis le début et révisé 1’article.
Le professeur Antoine Lesage-Landry (3° auteur) a contribué a 1’enrichissement du
fondement mathématique du modele notamment quant a la définition de la régression linéaire

robuste en distribution et a révisé 1’article.

L’article sera soumis simultanément a I’évaluation de ce mémoire au journal « /EEE

Journal of Oceanic Engineering ».
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Abstract— Accurate fuel consumption monitoring is critical for optimizing energy
efficiency in maritime operations. Yet traditional methods—such as inline flowmeters—are
invasive, costly, and yield potential reliability risks. This paper presents a novel non-invasive
approach to estimating real-time fuel consumption using only torque and rotational speed
measurements from the engine’s output shaft. The method replaces physical flowmeters with
a data-driven model trained via distributionally robust linear regression, ensuring resilience
to sensor noise and model uncertainty. A deployment workflow is proposed to enable model
transferability across similar vessels within a fleet using a single flowmeter-equipped
reference ship. The model is validated using a real-world dataset comprising 80 million data
points collected at a sampling frequency of 1 Hz from 7 tugboats, yielding an average root
mean square error (RMSE) of 0.052 and a maximum error under 0.100 in cross-validation.
These results demonstrate the method’s practicality as a low-cost, accurate, and scalable

alternative for fuel consumption estimation in maritime applications.

Keywords — Distributionally robust optimization, fuel consumption estimation, marine
propulsion, non-invasive sensing, linear regression, real-time monitoring, ship energy

efficiency.
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I. INTRODUCTION

Spanning trade, energy, and environmental stewardship, the maritime industry serves
as a lifeline for modern civilization. The shipping industry, in particular, is the backbone of
the contemporary global economy, handling more than 80 percent of the volume of goods
transported worldwide [1]. While contributing to only 3% of global greenhouse gas
emissions, the sector remains a heavily targeted area for the International Maritime
Organization’s (IMO) net-zero emissions by 2050 initiative [2], [3]. While mid-to-long-term
solutions include the transition to alternative fuels, the complete electrification of propulsion
systems [4] or the integration of advanced shore power connections [5], short-term solutions
mainly focus on energy efficiency and eco-navigation initiatives like path or speed
optimization to reduce fuel consumption [6], [7]. These methods require high resolution and
reliable operational data to fine-tune and evaluate their efficiency, especially for
maneuvering when engine regime and load vary significantly on the second timescale.
Ideally, a real-time fuel consumption measurement would provide direct information on the
ship’s fuel efficiency with varying operating regimes and conditions. Currently, two
approaches are widely used to obtain fuel consumption: via CAN bus in the case of an
electronically controlled engine [8] or via a dedicated inline flowmeter in the case of a purely
mechanical engine [9]. However, the deployment of an inline flowmeter introduces new
issues; the installation of additional hardware inherently adds to the financial burden and
complexifies the measurement system, and flowmeter obstruction can lead to fuel starvation
of the engine, thereby diminishing the reliability of the vessel’s propulsion system. In this
paper, we propose an alternative, data-driven fuel assessment method based on flow

estimation from engine output torque and speed, which are readily available measurements.

A. Related work

Many studies on operational ship fuel consumption reduction focus on path or speed
planning [6], [10], [11]. In the case of [12], weather data is fed into a hydrodynamic model
to evaluate the power needed to accomplish a certain amount of work, and the manufacturer’s

specific fuel consumption (SFC) is then used to estimate the fuel consumption from the
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power measurement. The model is then validated by comparing the fuel estimation against
the measured fuel consumption data recorded in the daily ship reports. Although the study
demonstrates promising results, its implementation requires an accurate SFC curve for the
engine, which can be challenging to acquire, especially on older or smaller vessels [13].
Additionally, as the model is only validated daily, its temporal precision over shorter time

intervals remains uncertain.

Reference [14] highlights similar concerns regarding these limitations and addresses
them by implementing an automated direct fuel flow measurement method at 15-minute
intervals. The study focuses on a single 349-meter container carrier operating at a speed
between 10 and 30 knots. While this range includes most cargo transit operations, it does not
account for other operational types, such as towing or trolling. For example, tugboats
consume most of their fuel at speeds below 10 knots, which falls outside the scope of this
study. Specifically, [14] uses an artificial neural network to model and then predict fuel
consumption for a specific vessel. However, model generalization from one ship to another

and robustness to noisy measurements are not discussed [15]-[17].

Our initial work [18] uses 1 Hz torque and speed measurements of the engine’s output
shaft as input features for the model to estimate fuel consumption. The model relies on the
use of an outlier detection method and on the development of a two-dimensional lookup table
resulting from locally averaged fuel flow for torque-speed couples coordinates sector. This
approach yields limited performance, with an RMSE as high as 25% of full scale, when

transferring the model from one ship to another.
Contribution

This paper proposes a new real-time fuel estimation approach based on a non-invasive
sensor system. It leverages a combined torque and speed sensor designed to be a clamp-on
addition to the engine’s output shaft. The proposed fuel estimation method uses the torque
and speed measurements from this sensor to estimate the fuel consumption in real-time via

distributionally robust linear regression (DRLR). This method offers the following benefits:
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e Non-invasive integration: The clamp-on torque and speed sensor can be easily

installed without modifying existing engine components;

o Real-time estimation: Enables accurate instantaneous assessment of fuel
consumption during operation thanks to continuous measurements provided by

the sensors, given that the model is optimized on a second-wise time scale;

¢ Environment-independent: Eliminates the need for external environmental
data such as wave or current conditions, given that the torque and speed sensor

directly measures the impact on engine operation;

e Simplified modelling: The data-driven nature of the model removes the
requirement for complex thermodynamic, hydrodynamic and aerodynamic

models;

e Model generalizability: The use of distributionally robust linear regression
improves the model’s ability to generalize across varying and uncertain

operating conditions;

II. FLOWMETERLESS FUEL ESTIMATION MODEL

This section presents the proposed approach for estimating fuel consumption without

relying on a physical flowmeter.

A. Flowmeterless system

The data acquisition system used for this study comprises sensors distributed across a
vessel, which communicate with a centralized data logging interface using the Modbus
protocol. Currently, the most common configuration for evaluating fuel efficiency involves
the installation of at least one sensor capable of measuring both torque and rotational speed
on each engine output shaft, in addition to a flowmeter for each engine. This is illustrated in

Fig. 1(a).
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To minimize the invasiveness of the current system, in this study, we replace the
physical flowmeter from Fig. 1(a) with a virtual one. The virtual flowmeter estimates the fuel
consumption using the torque and rotational speed measured from the torque sensors, as

shown in Fig. 1(b).

Given the recurrent case of shipowners having multiple very similar ships in their fleet,
a new workflow is proposed where only one of those ships is equipped with the invasive
flowmeter. Data is then collected from this single ship before being used to train a model that
estimates real-time fuel flow from the torque and speed measurements from the engine output
shaft. This model is finally validated with the data from the flowmeter-equipped ship to be
later deployed to the rest of the fleet, as illustrated in Fig. 2.
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Fig. 1. Comparison between (a) the current acqulsltlon with a physical flowmeter and (b) the
proposed new sensor architecture with virtual model-based flowmeter.
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Fig. 2. Step-by-step deployment process on a fleet using a single sample ship and a known €.
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3 orthogonal planes.

B. Fuel estimation model

Let Q, 7, and @ denote the fuel flow, torque, and rotational speed of the engine,
respectively. In this work, we seek to estimate the fuel flow based on measurements of the
torque and rotational speed. To guide the model design, the dataset D = {Q't,rt,a)t,}thl,
where the subscript ¢ denotes the ™ measurement and T e N is the number of observations,
is projected against its three possible planes, producing the plots in Fig. 3. From this, we
discern a general low-order polynomial pattern. Combined with empirical validation, this

motivates the choice of a second-order polynomial linear regression defined as:

O = Br+ Byt + Py + Py + Pston, (1)

A

where O is the estimated fuel flow. Defining B =(f,5,,.-- ,6’5)T and

2

x=(r,0,7 ,coz,ra))T,we re-express (1) in vector form as

0= p"x )

We define the optimal coefficients of (2), B*, in the expected least absolute

deviation (LAD) sense, yielding:

min B[] 0—0[1= ]| 0 B} ©
PR
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where the expectation is taken with respect to P, the probability distribution of x. Here, the
LAD objective is chosen over alternative models due to its robustness against large residuals
generated from outlier data points [19]. Motivated by our goal to find a generalizable model
that is robust to real-world measurement errors of the specific dataset, (3) is reformulated as
a distributionally robust optimization (DRO) problem. To this end, we first need to introduce
further notation. Let Pr e P(R®) be the empirical probability distribution of x consisting of

T samples:

~ 1
IIEDT = _Zé‘xt (X)9 (4)
r'’3

where Sy, is the Dirac function used to set a unit probability mass to xi. We denote the

p-order Wasserstein distance with respect to some norm ||-|| between distributions
U,V e P(R’)
1
1441 (U, V): lnf J. 5 5||Z1—22||pdﬂ'(zl,Z2) p, (5)
”'”,,0 7eJ (U, V)R xR

where J(U, V) denotes the set of all joint probability distributions over R>xR> whose
marginals are U and V. The distributionally robust optimization problem for flow

estimation is:

inf sup B[O - B7x|], (6)
DeQ

where letting € > 0, the ambiguity set Q is defined as:

Q=08 (Pr)2{ De PR’): W, p(D,Pr)<e}

using the Wasserstein distance metric. The loss function in (6) is minimized with respect to

the worst-case distribution within an e-Wassertein centred at the empirical distribution of
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our observation. Because (6) is intractable, we reformulate it as a convex optimization

problem using [19]. Using the 1-order Wasserstein distance with respect to the ¢, -norm leads

5

The resulting problem now comprises both the LAD loss and an /_ -regularization term and

to:

Qt - ﬂTxt + Ne

T
min B Z (7
t=1

o0

represents a distributionally robust model for a given €. From this, we obtain the new
hyperparameter € that must be tuned to achieve the best estimation performance across a

fleet. To this end, we propose a workflow comprising the subsequent steps for a given €:
W.1 Collect multiple datasets Dy, D,,...,D, from n different ships;

W.2 Train separate models ﬂ; ,j=1,2,...,n, on each unique dataset D s

W.3 Evaluate the error E; (¢) for each model ﬂ; on every dataset D;,i=1,2,...,n;
W.4 Evaluate the overall loss value across all trials (i, j) for a given € defined as:

£ =——3 S[E, P ®)

Moy =1

where Ej;(e) denotes the RMSE for a specific test with model B” over a dataset D, and a
given €. This workflow is employed to obtain adequate performance when a model is to be
deployed across a complete fleet. The workflow W.1-W.4 can be used to tune € using

Optuna [20]. Finally, a trained model can be deployed with the following process (Fig. 2):

D.1 Collect a single dataset D from a fleet sample ship;

D.2 Evaluate B* using the tuned ¢;

D.3 Deploy model to the rest of the fleet using #*;

36



III. CASE STUDY

A. Dataset

The dataset used to train and validate the model and deployment workflow is provided
by OpDAQ Systems [21]. Their dataset is developed over a five-year period of operations of
their OpHMI acquisition system by anonymously collecting operational data from their
clients with their explicit prior consent. To date, it includes over 100,000 hours of continuous
real-world operation across 19 different vessels of varying sizes and functions, ranging from

30 meters tugboats to 80 meters icebreakers.

For this study, the scope is limited from the 19 ships down to 7 tugboats around 30
meters in length. The dataset from these tugboats comprises 80 million unique data points

sampled at 1 Hz.

B. Results

The procedure described in Section 2 is run over this dataset using scikit-learn [22] to
solve (7) during workflow step W.2 and deployment step D.2. Optuna [20] is used to tune €
with (8) as loss function when iterating through steps W.2 to W.4. The hyperparameter
optimization is run 50 rounds using a dedicated validation data subset in step W.3, resulting

in the value €* = 0.0997.

We set € to the tuned value and retrain the model. Then, the models are cross-tested
using an out-of-sample test subset. The results are presented in Fig. 4 where each vertical
line represents a scenario in which a different ship is used for training and then the remaining
ships are used to assess its performance. Fig. 5 shows the test error distribution for all model
and dataset pairing. The numerical results for the 49 cross-tests are summarized in the

Table I.

In this case study, the ship owner would be subjected to a RMSE error of 0.0519 from

the model when deployed using the proposed non-invasive flowmeterless fuel consumption
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estimation method. Fig. 6(a) showcases a sample comparison between real flow and
estimated flow for a 33-minute span (2000 s) for a model resulting from Ship C’s data, and
shows the quality of the fit. Fig. 6(b) zooms on a finer timescale to further showcase the
estimation fit over a small timescale. Fig. 7 illustrates a case where the fit is comparatively
less accurate, with Fig. 7(b) providing a zoomed-in view to better visualize the local
discrepancies between the two curves. We can observe that the oscillations in the estimated
flow are of much greater amplitude than the real flow and that there is a constant offset in the
estimated value. The predominant hypothesis suggests that vibrations originating from the
engine are the primary source of error in this case, potentially inducing deviations in the
sensor readings and, subsequently, the estimated flow values. Fig. 8 illustrates the noise in
the sensor measurements. It is expected that applying appropriate signal filtering techniques
could mitigate the effects of engine-induced vibrations and further improve the quality of the
estimated flow. In sum, Ship C’s model leads to a RMSE of 0.057 when deployed aboard the
same ship with local RMSEs indicated in Figs 6 and 7 captions.
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TABLE I: CROSS-TESTING ERRORS RELATIVE TO FLOWMETER MESUREMENTS

Mean Median Std Deviation Min Max Range

0.0519 0.0500 0.0117 0.0301 0.0998 0.0697
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IV. CONCLUSION

This paper introduces a flowmeterless, real-time fuel estimation method based on
torque and speed measurements from a non-invasive sensor installed on a ship’s engine
output shaft. By employing a distributionally robust linear regression framework, the
approach provides reliable fuel flow estimates without requiring environmental inputs or
intrusive hardware. The model’s design explicitly accounts for sensor variability and dataset
uncertainty, ensuring robustness and transferability across similar vessels within a fleet. A
case study involving 7 tugboats and over 80 million real-world data points confirmed the
method’s effectiveness, yielding a cross-tested RMSE between 0.030 and 0.100, with most
predictions clustered around 0.05. This illustrates the potential for wide deployment in

operational environments where reducing sensor footprint is essential. Future work will

40



explore generalization to other vessel classes and reduction of time-varying error dynamics

with signal filtering to further refine and extend the method’s applicability.
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Fig. 8. Torque and speed measurements used for flow estimation
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CONCLUSION GENERALE

Les travaux présentés dans ce mémoire démontrent la faisabilité et la pertinence d’une
approche basée enticrement sur les données pour I’estimation en temps réel de la
consommation de carburant des navires, sans recourir a des débitmétres intrusifs. L’ensemble
des résultats met en lumiére une progression méthodologique claire : d’une premiére version
exploratoire fondée sur des tables de correspondance vers un modele polynomial robuste en
distribution, mieux adapté aux conditions variées de I’opération maritime. Cette trajectoire
illustre non seulement 1’évolution technique de la recherche mais aussi le renforcement de sa
validité opérationnelle et de son niveau de maturité technologique en vue d’un déploiement

sur le terrain.

Le premier modéle développé a permis de confirmer la faisabilité de 1’approche. En
s’appuyant sur des données réelles recueillies aupres de navires comparables, un modele basé
sur un tableau de correspondance reliant couple, vitesse et consommation a été€ mis au point.
Cette méthode, bien que simple, a démontré qu’une approche entieérement basée sur les
données est viable avec des erreurs de 1’ordre de 5 a 31 % sur des fenétres de temps courtes
de deux (2) secondes et une amélioration notable de I’ordre de 1 a 11 % lors d’agrégations
sur des horizons plus longs allant jusqu’a 16 heures. Elle a ainsi constitué une preuve de
concept fonctionnelle, tout en révélant ses limites : dépendance a une étape manuelle de
nettoyage des données, sensibilité aux valeurs aberrantes et manque de généralisabilité

lorsque le mod¢le était transféré d’un navire a un autre.

Ces constats ont conduit au développement d’un modele polynomial de second ordre
intégré dans un cadre de régression robuste en distribution. Ce raffinement méthodologique
a permis d’automatiser le traitement des données, de réduire la dépendance a 1’intervention
humaine et de mieux prendre en compte la non-linéarité intrinséque entre le couple, la vitesse
et la consommation. Surtout, I’introduction de la robustesse en distribution a doté le modéle
d’une capacité de généralisation accrue, validée sur une flotte de sept (7) navires distincts.

Les résultats obtenus, avec des erreurs centrées autour de 5 %, montrent que I’approche n’est
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pas seulement applicable dans un contexte expérimental restreint, mais peut étre envisagée

comme une solution viable et transférable sur le terrain.

Certaines limites demeurent néanmoins. Le mod¢le a été principalement validé sur des
remorqueurs, ce qui restreint encore son extension a d’autres types de navires. De plus, bien
que les marges d’erreur se situent dans un intervalle acceptable (3 a 10 %), elles peuvent
varier selon les conditions particulieres d’opération, ce qui incite a poursuivre 1’analyse de la
dynamique temporelle de 1’erreur. Enfin, 1’approche repose sur la disponibilité de jeux de

données représentatifs, condition indispensable a I’efficacité du modeéle.

La prochaine étape du projet serait d’étendre la validation du modéle sur une plus
grande variété de types de navires et d’opérations tels que le transit océanique ou le chalutage.
De plus, il pourrait étre avantageux de tester d’autres méthodes d’apprentissage qui mettent

a profit les relations temporelles tels que les réseaux de neurones récurrents.

Pour conclure, ce travail aura contribué a 1’effort collectif visant a réduire I’empreinte
environnementale du transport maritime et a soutenir la transition vers une navigation plus

écoénergétique en facilitant I’évaluation de la consommation de carburant des navires.
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