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RÉSUMÉ 

La réduction des émissions de gaz à effet de serre constitue un enjeu majeur pour 
l’industrie maritime. Parmi les solutions envisagées, les techniques de navigation 
écoénergétiques, comme l’optimisation de la vitesse et des trajets, permettent de diminuer la 
consommation de carburant avec un minimum d’investissement. L’efficacité de ces solutions 
dépend toutefois de la disponibilité de données fiables en temps réel sur la consommation de 
carburant des moteurs diesels. La méthode traditionnelle pour obtenir la consommation de 
carburant repose sur l’utilisation d’un débitmètre pour mesurer directement le débit de 
carburant. Bien que précise, cette solution est relativement coûteuse, invasive et peu 
attrayante pour les armateurs en raison des modifications nécessaires sur le circuit 
d’alimentation en carburant pour l’installation d’un débitmètre. 

Ce mémoire par articles explore une alternative moins intrusive qui consiste à estimer 
la consommation de carburant uniquement à partir des mesures de couple et de vitesse à 
l’arbre du moteur, obtenues via un capteur peu invasif, et d’un modèle mathématique guidé 
par les données. Pour ce faire, deux approches sont explorées. La première 
approche (CHAPITRE 1) consiste à identifier et à écarter les données aberrantes autour d’une 
fonction de régression tridimensionnelle de type spline, puis à monter un tableau de 
correspondance en deux dimensions (2D) à l’aide d’une méthode de moyennage local. Face 
à certaines limitations de la première approche, notamment concernant la nécessité de 
l’intervention humaine pour le nettoyage des données, l’hypothèse implicite de linéarité sur 
un court intervalle dans l’espace des données et la faible garantie de généralisation, une 
seconde méthode (CHAPITRE 2) est proposée. Cette méthode repose sur un modèle de 
régression polynomiale du second ordre intégrant cinq (5) termes combinant le couple et la 
vitesse. Les coefficients de ce modèle sont ajustés par une méthode d’apprentissage robuste 
en distribution, qui utilise la distance de Wasserstein pour optimiser les performances du 
modèle dans des conditions hors distribution qui ne seraient pas capturées par les données 
recueillies, ce qui maximise sa généralisation à d’autres navires. 

Des tests sont réalisés sur une flotte de sept (7) remorqueurs similaires. Au total, ces 
navires ont généré environ 80 millions de points de données représentant un total de plus de 
22 000 heures d’opération commerciale sur des remorqueurs en activité dans les eaux nord-
américaines durant les cinq (5) dernières années. Le modèle issu de la seconde approche est 
entraîné sur un (1) navire où les données de couple, de vitesse et de débit réel de carburant 
sont utilisées puis testé sur les six (6) autres où les données de couple et de vitesse sont 
utilisées pour estimer le débit. En évaluant l’erreur quadratique moyenne (Root Mean Square 
Error, RMSE) sur l’estimation du débit de carburant sur toute la durée de plusieurs mois des 
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séries temporelles utilisées pour les tests, on obtient des résultats variants entre 3 % et 10 %, 
avec une majorité des cas situés autour de 5 %. Ces résultats démontrent la validité et la 
robustesse de l’approche proposée pour un déploiement en pratique sur une flotte de navires 
similaires. Un tel déploiement se fera en trois (3) étapes, soit 1) collecter des données 
opératoires d’un navire type équipé d’un capteur de couple et de vitesse ainsi que d’un 
débitmètre, 2) entraîner le modèle à l’aide de l’approche proposée, et 3) déployer le modèle 
sur le reste de la flotte de navires équipés seulement d’un capteur de couple et de vitesse. 

L’approche proposée constitue une avenue réaliste, économique et peu invasive pour 
l’estimation en temps réel de la consommation de carburant des navires. Elle contribue à 
réduire les risques et les coûts associés à l’installation de débitmètre sur une flotte de navires 
entière ce qui favorisera la mise en œuvre de pratiques de navigation écoénergétiques par les 
armateurs. 

 Mots clés : consommation de carburant des navires, estimation en temps réel, 
régression robuste en distribution, modèle basé sur les données, couple et vitesse, débitmètre, 
distance de Wasserstein. 

 

 

  



 

 

ABSTRACT 

The reduction of greenhouse gas emissions is a major challenge for the maritime 
industry. Among the solutions considered, eco-efficient navigation techniques, such as speed 
and route planning optimization, make it possible to reduce fuel consumption with minimal 
investment. The effectiveness of these solutions, however, depends on the availability of 
reliable real-time data on the fuel consumption of diesel engines. 

The traditional method relies on the use of a flowmeter to directly measure fuel flow. 
Although accurate, this solution is relatively costly, invasive, and unattractive to shipowners 
due to the modifications required to the fuel supply circuit required to install a flowmeter. 

This article-based master’s thesis explores a less intrusive alternative that consists in 
estimating fuel consumption solely from torque and shaft speed measurements obtained via 
a minimally invasive sensor and a data-driven mathematical model. To this end, two 
approaches are investigated. The first approach (CHAPITRE 1) consists in identifying and 
removing outliers around a three-dimensional spline regression function and then 
constructing a two-dimensional lookup table using a local averaging method. Faced with 
certain limitations of the first approach, notably the need for human intervention in data 
cleaning, the implicit assumption of linearity over a short interval, and the weak guarantee 
of generalization over a larger sample, a second method (CHAPITRE 2) is proposed. This 
method relies on a second-order polynomial regression model incorporating five (5) terms 
combining torque and speed. The coefficients of this model are fitted using a distributionally 
robust learning method, which employs the Wasserstein distance to optimize model 
performance under out-of-distribution conditions which may not be covered by the available 
data, thereby maximizing its generalization to other vessels. 

Tests were carried out on a fleet of seven (7) similar tugboats. In total, these vessels 
generated approximately 80 million data points, representing more than 22,000 hours of 
commercial operation on tugboats active in North American waters over the past five (5) 
years. The model derived from the second approach is trained on one (1) vessel, where 
torque, speed, and actual fuel flow data are used, then tested on the other six (6), where torque 
and speed data are used to estimate fuel flow. By evaluating the Root Mean Square Error 
(RMSE) of the fuel flow estimation on out of sample data over the entire duration of several 
months of time series used for testing, results range from 3% to 10%, with most cases around 
5%. These results demonstrate the validity and robustness of the proposed approach for 
practical deployment on a fleet of similar vessels. Such deployment would proceed in three 
(3) steps: 1) collecting operational data from a reference vessel equipped with a torque and 
speed sensor as well as a flowmeter, 2) training the model using the proposed approach, and 
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3) deploying the model across the rest of the fleet of vessels equipped only with a torque and 
speed sensor. 

The proposed approach constitutes a realistic, economical, and minimally invasive 
avenue for real-time estimation of fuel consumption. It helps reduce the risks and costs 
associated with installing flowmeters on an entire fleet of vessels, which will foster the 
implementation of eco-efficient navigation practices by shipowners. 

Keywords: ship’s fuel consumption, real-time estimation, distributionally robust 
regression, data-driven model, vessels, torque and speed, flowmeter, Wasserstein distance. 
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INTRODUCTION GÉNÉRALE 

MISE EN CONTEXTE 

Le Canada s’est engagé à réduire ses émissions de gaz à effet de serre de 40 % sous les 

niveaux de 2005 et à atteindre la carboneutralité d’ici 2050 [1]. Cet engagement nécessitera 

une transition énergétique majeure qui comprend l’industrie maritime canadienne qui 

s’engage de plus en plus dans des programmes environnementaux comme celui de l’Alliance 

verte [2], [3]. Plus particulièrement, au Québec, la Société de développement économique du 

Saint-Laurent (Sodes) a récemment mandaté une firme externe pour réaliser un plan 

d’actions pour la réduction des émissions du secteur maritime québécois [3]. Ce plan a pour 

objectif principal d’harmoniser les efforts provinciaux avec les cibles de décarbonation 

définies par l’Organisation maritime internationale (OMI) [4].  

Les solutions de décarbonation disponibles sont multiples. Cependant, elles diffèrent 

grandement en termes de complexité d’implémentation, de coûts et de bénéfices sur la 

réduction des émissions [5]. Parmi ces solutions, l’utilisation de techniques de navigation 

écoénergétique comme l’optimisation de la vitesse des navires [6], [7] et l’optimisation des 

voyages en mer [8], permet aux armateurs de réduire de façon significative leur 

consommation en carburant fossile à court terme tout en minimisant les investissements 

initiaux et les changements à effectuer sur leurs navires. 

PROBLÉMATIQUE 

L’évaluation de l’efficacité des techniques de navigation écoénergétiques est cependant 

ralentie par le manque de données quant à la consommation réelle de carburant par les 

moteurs à combustion interne dans différentes conditions d’opération. Les armateurs 
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souhaitent donc instrumenter leurs navires afin d’évaluer l’efficacité des mesures 

opérationnelles mises en place. Cette volonté est cependant freinée par la complexité et les 

coûts élevés des systèmes actuels de surveillance des émissions qui sont très souvent invasifs 

et demandent des modifications aux systèmes de carburant et d’échappement des navires. 

Dans cette foulée, le partenaire du projet, l’entreprise OpDAQ Systèmes Inc., a mis au 

point un système d’acquisition de données, appelé OpHMI (Figure 1(a)), qui permet aux 

armateurs de mesurer en temps réel leur consommation de carburant à l’aide d’un 

débitmètre [9] et de déduire l’efficacité des moteurs à l’aide d’un capteur de couple et de 

vitesse de rotation installé sur l’arbre de sortie des moteurs [11]. Toutefois, même si la mesure 

directe du carburant à l’aide d’un débitmètre est une solution très commune dans l’industrie 

et la littérature, celle-ci nécessite des modifications importantes au niveau de la conduite 

d’entrée en carburant des moteurs, ce qui tend à réduire sa fiabilité et freine son adoption par 

les armateurs.  

Pour résoudre ce problème, OpDAQ a récemment intégré un module de calcul appelé 

OpGhost dans son système d’acquisition OpHMI, qui permet d’estimer la consommation de 

carburant des navires en utilisant uniquement les mesures du couple et de la vitesse à l’arbre 

des moteurs [13]. La version actuelle du module OpGhost consiste en un débitmètre virtuel 

qui compare la mesure de la puissance mécanique (déduite à l’aide de la mesure du couple et 

de la vitesse à l’arbre) à un modèle virtuel de moteur à combustion interne pour estimer sa 

consommation de carburant (Figure 1(b)). Le modèle interne est basé uniquement sur la 

courbe de consommation fournie par le manufacturier du moteur et est ajusté avec un facteur 

de correction à chacun des navires à l’aide de différents essais réalisés en mer. Toutefois, 

malgré son excellente précision pour évaluer la consommation de carburant annuelle des 

navires, les résultats d’essais en mer ont démontré que l’algorithme n’est pas suffisamment 

précis pour évaluer sa consommation en temps réel et dans certaines conditions d’opération. 

Ce système demeure ainsi limité pour permettre aux armateurs d’estimer avec suffisamment 

de précision l’efficacité des mesures de navigation écoénergétique mises en place.  
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(a) Système OpHMI avec débitmètre et couplemètre 

 

 

(b) Système actuel OpHMI avec OpGhost 1D (sans débitmètre) 

 

 

(c) Système OpHMI proposé avec la nouvelle génération OpGhost 2D (sans débitmètre) 

Figure 1. Représentation simplifiée de l’évolution du système OpHMI 
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Une analyse plus fine des performances des moteurs a permis de déterminer que 

l’imprécision de cette méthode vient du fait qu’elle ne prend pas en compte l’effet individuel 

du couple et de la vitesse sur l’efficacité du moteur. Ce phénomène est expliqué à l’aide de 

la Figure 2 qui montre les relations entre la consommation en carburant, le couple, la vitesse 

et la puissance de sortie d’un moteur diesel typique pour cette étude. Sur la Figure 2(a), on 

note que la consommation en carburant est une fonction non linéaire du couple et de la 

vitesse. Pour une puissance de sortie constante (ligne rouge), on remarque qu’il existe plus 

d’une solution pour la consommation en carburant. L’algorithme OpGhost actuel renvoie 

alors la valeur moyenne pour simplifier le problème. Sur la Figure 2(b), en comparant la 

valeur moyenne (en pointillée [--]) avec la consommation réelle (ligne pleine [–]) on 

remarque toutefois que l’utilisation de la valeur moyenne peut surestimer ou sous-estimer de 

manière significative la consommation en carburant pour une même puissance de sortie. 

 

 

 

(a) Consommation de carburant en fonction 
du couple et de la vitesse de rotation 

(b) Consommation de carburant en fonction 
du ratio vitesse sur le couple à puissance 
constante 

Figure 2. Analyse de la consommation en carburant d’un moteur diesel typique de navire 

OBJECTIFS 

L’objectif principal de cette recherche est de développer un modèle d’estimation de 

consommation de carburant basé sur les données qui utilise uniquement les mesures de 
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couple et de vitesse de rotation à l’arbre des moteurs de navires pour estimer leur débit de 

carburant (Figure 1(c)). L’objectif principal est divisé en trois (3) objectifs spécifiques : 

O1. Décoder et analyser les données fournies par le partenaire OpDAQ ; 

O2. Développer un premier modèle d’estimation de carburant pour évaluer la 

faisabilité d’une estimation basée entièrement sur les données ; 

O3. Développer un second modèle offrant une grande généralisabilité à différents 

navires d’une même flotte et une robustesse accrue face aux données aberrantes et au 

variations entre les navires. 

MÉTHODOLOGIE 

La démarche de réalisation du projet se déroule en trois (3) étapes principales qui sont 

associées chacune à un objectif spécifique du mémoire : 

Étape 1 – Prise en main et décodage des données fournies par OpDAQ (O1) 

La première étape du projet consiste à recevoir, décoder et s’approprier les données 

collectées par OpDAQ. Le segment de données utilisées provient de sept (7) remorqueurs 

similaires qui ont généré environ 80 millions de points de données représentant un total de 

plus de 22 000 heures d’opération commerciale dans les eaux nord-américaines durant les 

cinq (5) dernières années. Un script Python est développé pour décoder le format binaire 

propriétaire reçus et le sauvegarder sous la forme d’une base de données SQL pour le premier 

article (CHAPITRE 1) et en format CSV pour le deuxième article (CHAPITRE 2). À cette étape, 

un premier nettoyage des données est effectué pour retirer les points qui ne contiennent pas 

d’information utile tels que les points enregistrés lorsque le navire est inactif ou les valeurs 

négatives de débit qui sont le résultat d’une erreur de communication avec les capteurs de 

débit. Ce processus génère un ensemble de données brutes prêt à l’emploi. Cette étape est 

effectuée à la fois sur les ensembles de données d’entraînement et ceux de validation. 
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Étape 2 – Élaboration d’un premier modèle et analyse de la faisabilité d’une approche 

basée sur les données (O2) 

À la suite de l’étape 1, le jeu de données est mis à profit pour développer une première 

version d’un modèle d’estimation de consommation de carburant. Ce modèle est développé 

en suivant trois (3) sous étapes principales [9].  

2.1 – Détection et suppression des données aberrantes : Cette étape vise à supprimer les 

valeurs aberrantes, aussi dites extrêmes, qui affectent négativement le processus 

d’apprentissage. Un espace euclidien en trois dimensions (3D) est premièrement construit 

avec les mesures de débit, de couple et de vitesse issues de l’ensemble de données 

d’apprentissage. Une sélection de splines est ensuite ajustée au nuage de points en utilisant 

les méthodes akima [12] et Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [14] 

dans l’espace de données. L’erreur quadratique moyenne (Root Mean Square Error, RMSE) 

et le critère de Pearson (R2) sont ensuite évalués pour chacune des splines. Les splines les 

plus prometteuses sont ensuite tracées dans l’espace 3D avec le nuage de points et la spline 

qui représente le mieux la forme du nuage de points des données de l’échantillon 

d’entraînement est ensuite sélectionnée manuellement. La distance entre chaque point de 

données et la spline précédemment sélectionnée est ensuite calculée et stockée. Les points de 

données du 5e percentile le plus éloigné sont considérés comme des données aberrantes et 

sont supprimés de l’ensemble de données d’apprentissage. D’autres algorithmes non 

supervisés de détection de données aberrantes comme Isolation Forest [15], Nearest 

Neighbours [16] et Local Outlier Factor [17] ont été testés à cette étape, mais ils ont tous 

présenté une capacité moindre à rejeter les données hors de la masse principale de points. 

2.2 – Génération d’un tableau de correspondance (lookup table) : Les données nettoyées 

sont ensuite divisées selon une grille de dimensions n par m le long des axes de vitesse et de 

couple et la valeur moyenne du débit est calculée pour chaque segment rectangulaire de la 

grille résultante. Ce processus génère un tableau dans lequel une valeur de débit 
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correspondante peut être interpolée pour chaque binôme de coordonnées de couple et de 

vitesse de rotation. 

2.3 – Validation de l’approche : Le modèle d’estimation est ajusté et validé à l’aide d’un 

jeu de données, qui comprend des mesures de consommation de carburant, de couple et de 

vitesse à une fréquence d’échantillonnage d’une donnée par seconde, pour un peu plus de 

450 heures de mesures en mer sur deux (2) remorqueurs. Le tableau de correspondance 

obtenu à la sous-étape 2.2 est utilisé pour estimer le débit de carburant en temps réel avec les 

mesures de vitesse et de couple d’entrée provenant de l’ensemble de données de validation. 

Le débit estimé est ensuite comparé au débit réel mesuré dans cet ensemble de données avec 

deux métriques de calcul d’erreur, soit l’erreur absolue moyenne et le RMSE. La fenêtre de 

temps pour le calcul de l’erreur a aussi été variée pour visualiser l’impact de la largeur de la 

fenêtre sur l’erreur. 

Afin d’analyser le potentiel de généralisation de la méthode, nous avons effectué deux types 

de validation : moteur à moteur et navire à navire. La validation moteur à moteur est effectuée 

pour étudier la pertinence de la méthode proposée pour estimer la consommation de carburant 

d’un moteur à l’aide de données recueillies à partir d’un autre moteur similaire sur le même 

navire (note : les remorqueurs ont typiquement deux moteurs à bord). En pratique, cela 

permettrait à un armateur de n’installer qu’un seul débitmètre sur son navire. La validation 

navire à navire vise à étudier les performances de la méthode proposée pour estimer la 

consommation de carburant d’un navire à l’aide de données recueillies à partir d’un autre 

navire ayant des caractéristiques similaires. En pratique, cela permettrait à un armateur de 

n’installer qu’un seul débitmètre sur un navire de sa flotte. 

Les limites de l’approche proposée : L’analyse des résultats a permis de constater le 

potentiel d’une approche basée entièrement sur les données. Toutefois, nous avons identifié 

trois (3) limites importantes à surmonter pour permettre son déploiement à plus grande 

échelle.  
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 Limite 1 : La méthodologie nécessite l’intervention humaine pour le nettoyage des 

données (2.1), ce qui empêche son automatisation et introduit un biais de sélection 

dans le processus. 

 Limite 2 : La méthode de moyennage utilisée pour la définition du tableau de 

correspondance (2.2) est limitée par la simplification des informations, la dépendance 

à la définition des dimensions de la grille et l’hypothèse implicite sur la linéarité due 

à l’utilisation d’une méthode d’interpolation linéaire. Cette méthode semble aussi 

sensible aux données aberrantes. 

 Limite 3 : La méthode a été validée sur seulement deux (2) remorqueurs très 

similaires (2.3) et des validations supplémentaires non présentées dans le mémoire 

ont confirmés que la méthode est peu généralisable pour l’estimation navire à navire.  

Étape 3 – Élaboration d’un second modèle robuste et généralisable (O3) 

L’étape 3 vise à améliorer les sous étapes 2.1 à 2.3 de la chaîne de traitement de 

données pour surmonter les trois limites identifiées. Une version améliorée a été mise au 

point. Cette nouvelle version permet de systématiser et d’automatiser le plus possible le 

processus selon certains points importants. Deux améliorations principales ont été proposées. 

Amélioration 1 : Le tableau de correspondance (2.2) est remplacé par une relation 

polynomiale du second degré. Ceci règle les limites associées aux discontinuités aux points 

de la table, rend le modèle moins sensible à la densité de distribution des points de mesure et 

se rapproche plus de la nature continue du système modélisé. 

Amélioration 2 : L’étape de détection et de suppression des données aberrantes (2.1) est 

complètement supprimée et l’intégration d’un algorithme de régression linéaire robuste en 

distribution gère maintenant leur influence. Cet algorithme utilise une forme minimax afin 

de minimiser l’erreur dans le cas le moins avantageux de l’ensemble de données pour obtenir 

un modèle final qui est robuste en distribution et donc plus résistant au bruit de mesure et aux 
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légères variations du système réel. La distance de Wasserstein est utilisée pour définir 

l’ensemble d’ambiguïté du problème minimax. 

Le nouveau modèle est développé en suivant les trois (3) sous étapes suivantes : 

3.1 – Réglage de l’hyperparamètre ϵ : L’ajout du composant robuste de la régression 

introduit également l’hyperparamètre ϵ qui règle l’intensité de la régularisation du modèle. 

Celui-ci doit être ajusté à l’aide d’au moins deux (2) navires de validation pour réduire au 

maximum l’erreur sur l’ensemble des scénarios possibles. Pour ce faire, le modèle suit les 

sous étapes suivantes : 

3.1.1 – Régression des coefficients : L’algorithme débute avec une supposition de 

valeur ϵ et procède à la régression d’un modèle pour chaque navire disponible à l’aide 

du solveur mathématique intégré à scikit-learn [18]. Les valeurs de tous les 

moteurs de propulsion d’un même navire sont combinées pour cette étape. 

3.1.2 – Validation croisée avec les autres navires : Une fois les coefficients obtenus 

par régression, le modèle est utilisé pour estimer la consommation de carburant de 

chacun des navires individuellement. Le RMSE est par la suite évalué pour chacune 

des combinaisons de modèles et navires. 

3.1.3 – Suggestion d’un nouveau ϵ : Les résultats de la sous-étape 3.1.2 sont utilisés 

pour évaluer la performance de l’hyperparamètre ϵ suggéré et une nouvelle valeur est 

suggérée avant de relancer une nouvelle itération à partir de l’étape 3.1.1. La suggestion 

de valeurs de ϵ et le processus itératif pour sa sélection est géré avec la librairie Optuna 

pour l’optimisation automatique des hyperparamètres [19]. 

3.2 – Entraînement du modèle sur un navire spécifique : Avec la valeur optimale de ϵ, il 

est maintenant possible d’obtenir les coefficients par régression pour un seul navire et ainsi 

établir un modèle d’estimation de carburant robuste en distribution et spécifique pour un 

navire particulier. 
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3.3 – Évaluation de la performance finale du modèle : Une fois le modèle final entrainé, 

sa performance est évaluée à l’aide du calcul du RMSE sur l’ensemble du jeu de données 

distincts de l’ensemble d’entrainement. Ceci donne une attente quant à sa performance future 

quand il sera déployé sur d’autres navires dépourvus d’un débitmètre. 

CONTRIBUTIONS 

Ce mémoire propose une nouvelle approche d’estimation en temps réel de la consommation 

de carburant peu intrusive qui présente plusieurs avantages. 

Intégration non intrusive : le capteur de couple et de vitesse à fixation externe peut être 

installé aisément, sans nécessiter de modifications des composants existants du moteur ; 

Estimation en temps réel : l’approche permet une évaluation précise instantanée de la 

consommation de carburant durant l’opération grâce aux mesures continues fournies par les 

capteurs étant donné que le modèle est optimisé sur une base de temps de l’ordre de la 

seconde ; 

Indépendance de l’environnement : l’utilisation d’un capteur mesurant directement 

l’impact des conditions extérieures sur le fonctionnement du moteur rend superflu le recours 

à des données environnementales externes comme l’état de la mer ou des courants ; 

Simplification de la modélisation : le caractère fondé sur les données du modèle évite le 

recours à des modèles thermodynamiques, hydrodynamiques et aérodynamiques complexes ; 

Généralisable : l’intégration d’une régression robuste en distribution améliore la 

transférabilité du modèle malgré des conditions d’exploitation variées et incertaines. 
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STRUCTURE DU MÉMOIRE 

La structure de ce mémoire est orientée de manière à s’harmoniser avec les deux 

articles (un publié et un en soumission) qui représente le cœur du mémoire. Le CHAPITRE 1 

présente le premier article de conférence (publié) qui porte sur le modèle basé sur un tableau 

de correspondance. Le CHAPITRE 2 présente le second article (en soumission) qui porte sur le 

modèle polynomial robuste en distribution. La CONCLUSION GÉNÉRALE résume le mémoire et 

propose finalement des pistes d’améliorations pour la suite du projet. 
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VERS UNE NAVIGATION ÉCOÉNERGÉTIQUE : UNE APPROCHE BASÉE 

SUR LES DONNÉES POUR L’ESTIMATION EN TEMPS RÉEL DE LA 

CONSOMMATION DE CARBURANT DES MOTEURS DE NAVIRES 

SANS DÉBITMÈTRE 

RÉSUMÉ EN FRANÇAIS DU PREMIER ARTICLE 

Cet article propose une nouvelle méthode peu invasive pour estimer en temps réel la 

consommation de carburant des moteurs de navires sans recourir à des débitmètres. 

Traditionnellement, les débitmètres fournissent une mesure directe et précise, mais leur 

installation exige des modifications coûteuses et contraignantes des conduites de carburant, ce 

qui limite leur adoption par les armateurs. 

La méthode présentée repose uniquement sur les mesures du couple et de la vitesse de 

rotation des arbres des moteurs. Un modèle de régression est développé et validé à partir d’un 

vaste ensemble de données réelles (environ 464 heures de navigation sur des remorqueurs en 

activités dans les eaux nord-américaines), comprenant les valeurs mesurées à la seconde du 

débit de carburant, du couple et de la vitesse de rotation à l’arbre des moteurs. Le traitement 

comporte plusieurs étapes : décodage et stockage des données, ajustement de splines 3D, 

élimination des valeurs aberrantes, puis construction d’un tableau de correspondance (lookup 

table) reliant couple, vitesse et consommation (débit). 

La validation est effectuée selon deux approches : moteur à moteur (d’un moteur à l’autre 

sur un même navire) et navire à navire (d’un navire à un autre d’une même flotte). Les résultats 

montrent une précision moyenne de l’ordre de 5 à 10 % pour une estimation temps réel à 

l’échelle de quelques secondes, et une précision améliorée à moins de 1–2 % lorsqu’on 

considère des fenêtres de moyennage de plusieurs heures. 
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Malgré certaines limitations observées au niveau de la robustesse et de la généralisation, 

l’article démontre le potentiel d’un modèle basé entièrement sur les données et que l’usage 

d’une table de correspondance permet de capturer les relations non-linéaires non connues ou 

trop complexes pour être modélisées. Ce modèle constitue une première alternative 

économique et fiable au débitmètre, permettant aux armateurs d’évaluer l’efficacité 

énergétique de leurs pratiques opérationnelles et de mieux gérer la consommation de carburant 

de leur flotte. 

En tant que premier auteur, j’ai développé l’intégralité du modèle, monté les scripts 

Python pour le tester et rédigé la vaste majorité de l’article. Le professeur Maxime Berger (2e 

auteur) a supervisé la démarche scientifique lors du développement et révisé la rédaction de 

l’article. En tant que superviseurs des travaux chez le partenaire (OpDAQ Systèmes Inc.), Tomy 

Pineau (3e auteur) et Charles Massicotte (4e auteur) ont fourni le jeu de données et révisé 

l’article pour approuver sa diffusion en tout respect de la propriété intellectuelle de OpDAQ. 

L’article a été présenté le 23 septembre 2024 à la conférence OCEANS 2024 – Halifax, 

et publié plus tard sur IEEE Xplore le 25 novembre 2024. La référence complète est donnée 

ci-dessous : 

V. St-Pierre, M. Berger, T. Pineau, and C. Massicotte, “Toward Energy-Efficient Navigation: 
A Data-Driven Approach for Flowmeterless Estimation of Ship’s Engine Fuel Consumption 
in Real-Time”, OCEANS 2024, Halifax, NS, Canada, 2024, pp. 1–5. 
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Abstract—Reducing greenhouse gas emissions from ships is a significant challenge facing 

the maritime industry. In particular, energy-efficient navigation techniques allow shipowners 

to adapt their itineraries to minimize fuel consumption. However, the evaluation of the 

effectiveness of these techniques is slowed down by lack of data on the actual consumption of 

the engines. Direct measurement of fuel using a flowmeter seems an ideal solution to this 

problem. However, many shipowners do not adopt it since it requires significant modifications 

to the fuel inlet piping, reducing ships reliability and requiring significant initial investments. 

This paper proposes a new, less invasive, data-driven approach to estimating the real-time fuel 

consumption of engines without using a flowmeter on each ship or each engine of a fleet. The 

strategy is based on a lookup table fitted in a three-dimensional space composed of torque, 

rotational speed, and flow measurements gathered on real ships. The model is trained and 

validated with approximately 464 hours of actual measurements on tugboats operating in North 

American waters over the last five years. The developed model enables shipowners to evaluate 

at a low cost the effectiveness of operational measures to reduce their fuel consumption. 

Keywords— Energy-efficient navigation techniques, tugboats, fuel estimation, regression



 

 

I. INTRODUCTION 

Reducing greenhouse gas emissions from ships is an important issue the maritime 

industry faces. Available solutions differ greatly regarding their implementation complexity, 

costs, and emissions reduction benefits [1]. Among these solutions, the use of energy-

efficient navigation techniques, such as optimizing ship speed [2], [3] and optimizing sea 

voyages [4], are known to permit shipowners to reduce their fuel consumption while 

minimizing initial investments and vessel modifications. However, implementing energy-

efficient navigation techniques and evaluating their effectiveness require accurate real-time 

data on the fuel consumption of ship engines under different operating conditions.  

The OpDAQ OpHMI system [5] allows shipowners to measure their fuel consumption 

in real time using a flowmeter and to deduce the efficiency of the engine using a torque and 

speed sensor installed on the output shaft of the engine [6] (Fig. 1 (a)). Even if the direct 

measurement of fuel using a flowmeter is the most accurate solution to measure fuel 

consumption, significant modifications to the engine’s fuel inlet pipe are required, which 

increase installation time and cost and reduce the overall system’s reliability, thus slowing 

its adoption by shipowners. A less invasive solution consists of estimating the fuel 

consumption using only the engine’s output torque and shaft speed measurements [7]. 

However, its practical implementation requires an accurate mathematical model to estimate 

the engine’s efficiency in real time under different operating conditions [8], [9]. The analysis 

of consumption data on tugboats obtained using the OpHMI system showed that the model 

must consider the highly nonlinear effect of both torque and speed on the engine’s 

efficiency (Fig. 2).  

A physics-based approach to estimating an engine’s efficiency requires complex and 

computationally expensive mathematical modelling and the knowledge of the engine’s exact 

physical and environmental parameters, which are rarely available to shipowners. To 

overcome the limitations of a physics-based approach, this paper proposes a data-driven 

approach permitting the real-time estimation of ship fuel consumption using only shaft torque 

and speed measurements, thus providing a flowmeterless OpHMI solution to 
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shipowners (Fig. 1(b)). The core of the proposed estimation model is a multi-step process. 

The first step comprises a 3D spline regression used for data cleaning with Euclidean distance 

rejection. The second step relies on a 2D data partitioning followed by a local average 

computation. The estimation model is fitted and validated using an extensive dataset, which 

includes fuel consumption, torque, and speed measurements at a sampling rate of 1 sample 

per second for hundreds of hours of sea operation on tugboat ships operating in North 

American waters over the last five years.  

The paper is organized as follows. Section II presents an overview of the dataset for 

training and validating the estimation model. Section III presents the proposed methodology 

for automated data cleaning, developing and validating the flowmeterless model. In 

section IV, the accuracy of the proposed method is validated and analyzed over various 

averaging time windows. Engine-to-engine and ship-to-ship validation results are provided 

to demonstrate the flexibility of the proposed method. 

II. DATASET 

OpDAQ possesses an extensive dataset comprising over 100,000 hours of commercial 

operation across 19 different vessels. In this paper, the analysis is limited to two comparably 

sized tugboats, referred to as ship 1 and ship 2. The dataset for ship 1 encompasses 646,530 

data points over approximately 179 hours, while the dataset for ship 2 includes 1,026,757 

data points spanning around 285 hours. Nevertheless, results presented in this paper showed 

that the dataset is large enough to validate the methodology and enabling its use on a larger 

scale. Each vessel under investigation has two main engines (engine 1 and engine 2), and 

around 50 measurements are logged each second across all sensors on the ship. For training 

and validation, only the input flowrate, output torque, and shaft rotational speed are used 

from those measurements.  
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Fig. 1: Evolution of the OpHMI acquisition system 
(a) flowmeter enabled. (b) flowmeterless. 



 

19 

 
Fig. 2: Variability of flow over similar speed and torque range showcasing the highly nonlinear 

character of the engine/propeller system. 

Engine-to-engine validation is performed to investigate the suitability of the proposed 

method to estimate the fuel consumption of one engine with data gathered from another 

similar engine on the same ship. For such validation, measured data from engine 1 are used 

to train the model, and measured data from engine 2 are used for validation. Ship-to-ship 

validation aims to investigate the performance of the proposed method to estimate the fuel 

consumption of one ship with data gathered from another ship with similar characteristics. 

In this case, the fitted model from engine 1 on ship 1 is first used to estimate the fuel 

consumption of engine 2 on ship 2. The other way around is also validated, i.e. the fitted 

model from engine 1 on ship 2 is also used to estimate the fuel consumption of engine 2 on 

ship 1. 

III. METHODOLOGY 

A. Data decoding  

The first step in processing the measured data is to convert it from the raw binaries 

produced by the logging infrastructure aboard to a format that is readily usable. An 

importation tool is developed to this effect which, after decoding the data, saves it to a 

PostgreSQL database for further processing. This process generates a raw dataset ready for 

use, as shown in Fig. 3(a). This step is performed on both the training and the validation 

datasets. 
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B. Spline regression and selection 

Next, a 3D Euclidean space is constructed with the flowrate, the torque and the 

rotational speed measures from the training dataset. A selection of splines are then fitted to 

the resulting scatter plot using both akima [10] and Piecewise Cubic Hermite Interpolating 

Polynomial (PCHIP) [11] methods over 2 to 10 points in the data space. These two regression 

methods are selected for their ability to generate smooth continuous curves. The Root Mean 

Square Error (RMSE) and Pearson’s Criterion (R2) are then evaluated for each of the 18 

splines (9 akima and 9 PCHIP). The most promising splines are then plotted in the 3D space 

with the scatter plot (Fig. 3(b)). The spline that best represents the sample training data scatter 

plot shape is then selected for the next processing step. 

C. Outliers removal 

The outlier removal step removes extreme data that negatively affects the averaging 

process performed in the next processing step. To do so, the distance between each data point 

and the previously selected spline is then computed and stored. The data points in the 5th 

farthest percentile are considered as outlier data and are removed from the training dataset. 

The result of this step is a cleaned dataset as represented in Fig. 3(c). 

D. Flow lookup table generation  

The cleaned data is then split following a n by m grid along the rotational speed and 

torque axes and the mean flowrate value is calculated for every rectangular segment of the 

resulting grid. This process generates a table where a corresponding flowrate value can be 

interpolated for every torque and rotational speed couple coordinates. This process is shown 

in Fig. 3(d). In this paper, n=m=30 is selected as it showed the best overall results. 

E. Validation  

The generated lookup table is then validated using two different approaches. First, the 

original scatter plot and the resulting lookup table are plotted in the same space to validate 

the quality of the fit as shown in Fig. 3(e). Second, the lookup table is used to estimate the 
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real-time fuel flowrate with the speed and torque measurements input from the validation 

dataset. The estimated flowrate is then compared with the real measured flowrate in this 

dataset, and the absolute error is calculated sample by sample as shown in Fig. 3(f). The mean 

error and RMSE are then computed from this sample-wise absolute error. A rolling window 

average is also applied to both the measured and estimated flow data for different window 

size (Fig. 4). The error between the averaged measured and estimated flow data is then 

calculated sample by sample and the mean error and RMSE are calculated. In this paper, the 

window size has been varied from 2 seconds to 16 hours to show the impact of averaging 

window width on the mean error and the RMSE. This analysis is performed to evaluate the 

impact of temporal averaging on flow estimation error and temporal fidelity. 

 
Fig. 3: 2D simplification of the data treatment and model fitting process. (a) The data is first decoded 
from the raw binaries. (b) Then, a multitude of splines with varying parameters is fitted to the scatter 
plot. (c) The best-fitting spline is kept, and all the 5th percentile farthest away data from this spline 
is removed as outlier data. (d) The sample is split into segments, and the mean flowrate value is 
calculated for each segment. (e) The lookup table generated is used to estimate flowrate from torque 
and speed data. (f) The lookup table generated from another dataset is used and validated against 
measured flowrate. 
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Fig. 4: Effect of increasing the rolling average window sampling width (size) on both the measured 
and estimated flow samples. Comparing the original measured values (solid blue line) with the 
averaged measured sample (solid red line) permits noticing the loss of temporal fidelity and the time 
delay induced by a larger averaging window. However, for each window size (1 and 20), the 
comparison of the averaged measured values (solid lines) with their respective averaged estimated 
values (dashed lines) also allows to visually notice that the error with respect to its respective averaged 
measured data is reduced as the window size increases. 

IV. RESULTS AND ANALYSIS 

The results obtained by applying the second validation approach for engine-to-engine 

and ship-to-ship comparisons are summarized in Table I. 

The results in Fig. 5 show engine-to-engine validation on ship 1, and the results in 

Fig. 6 present engine-to-engine validation on ship 2. The results in Fig. 5 show that the 

procedure yields commendable outcomes, as the mean error is approximately 8% and the 

RMSE is roughly 20% for a 2 s averaging window. Those values steadily decrease as the 

averaging window width increases, down to a mean error of 4% and a RMSE of about 5% 

for a 16 h averaging window. A comparable pattern is observed for ship 2 as depicted in 

Fig. 6. Specifically, the mean error initiates at approximately 5% and diminishes to roughly 

under 1%, while the RMSE begins at about 25% and reduces to approximately 1%.  
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The validation procedure also demonstrates the robustness of the proposed approach 

when one lookup table that is fitted on one ship is used to estimate the fuel consumption on 

another ship. In the first case, when ship 2 lookup table is used to estimate fuel consumption 

of ship 1, the mean error stays relatively constant between 8% and 11% across varying 

averaging window size while the RMSE decreases from 21% to 11% as demonstrated in 

Fig. 7. Doing the opposite, i.e. using ship 1 lookup table to estimate fuel consumption of 

ship 2, yields even better results as demonstrated in Fig. 8 where the RMSE starts at 31% but 

quickly decreases to 2%, and the mean error starts at 7% and ends as low as 2%.  

An analysis of these results along with the explanation in Fig. 4 also permits concluding 

that the final choice of averaging window width is a trade-off between flow estimation error 

and temporal fidelity. It is possible to strike a compromise by using a relatively small 

window (up to 10 samples) for real-time flow assessment where the gain in RMSE accuracy 

is maximal and a relatively large window when only assessing total fuel quantity burned. The 

averaging window can be as large as the desired assessment period to minimize error between 

the averaged measured and estimated values. In all cases, the mean error value is also always 

lower than the RMSE because an overestimation error can be compensated by an 

underestimation error in the same averaging window. The RMSE keeps information on the 

absolute error value and is, therefore, intrinsically higher. 

  
Fig. 5: Results for engine-to-engine validation 
on ship 1. 

Fig. 6: Results for engine-to-engine validation 
on ship 2. 
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Fig. 7: Results for ship-to-ship validation on 
ship 1 (fuel estimation of ship 1 with ship 2 
lookup table). 

Fig. 8: Results for ship-to-ship validation on 
ship 2 (fuel estimation of ship 2 with ship 1 
lookup table). 

TABLE I: VALIDATION RESULTS SUMMARY 

  
Validation 

dataset 
Lookup 

table 
Mean error RMSE 

2s 16h 2s 16h 

Fig. 5 ship 1; eng. 1 ship 1; eng. 2 8% 4% 20% 5% 

Fig. 6 ship 2; eng. 1 ship 2; eng. 2 5% <1% 25% 1% 

Fig. 7 ship 1; eng. 1 ship 1; eng. 2 10% 10% 21% 11% 

Fig. 8 ship 2; eng. 1 ship 2; eng. 2 7% 2% 31% 2% 

V. CONCLUSION 

This paper presented a data-driven approach to evaluating the fuel-saving capability of 

energy-efficient navigation techniques. The method is minimally invasive as it only requires 

the installation of a flowmeter on a single ship or engine. The data gathered on this ship or 

engine can be used to predict the fuel consumption of another engine or ship having similar 

characteristics. This method has been tested on 2 similarly sized ships for a total of 4 engines 

with mean fuel estimation accuracy from 5% error rate for a real-time 2 seconds averaging 

window and down to less than 1% over a 16 hours window for total fuel quantity estimation. 

The cross-ship capability is also tested by using the flow lookup table from one ship to 

evaluate the fuel consumption of the other ship. This approach yields a similar result with 

mean accuracy ranging between 7% for a real-time 2 second assessment period down to 2% 

for a 16 hours averaging window. 
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ESTIMATION DE LA CONSOMMATION DE CARBURANT SANS 

DÉBITMÈTRE POUR L’ESTIMATION EN TEMPS RÉEL DE LA 

CONSOMMATION DES MOTEURS DIESEL MARINS 

RÉSUMÉ EN FRANÇAIS DU DEUXIÈME ARTICLE 

Un suivi précis de la consommation de carburant est essentiel pour optimiser 

l’efficacité énergétique des opérations maritimes. Toutefois, les méthodes traditionnelles 

telles que les débitmètres installés en ligne avec les conduites de carburant sont invasives, 

coûteuses et présentent des risques en matière de fiabilité. 

Cet article propose une nouvelle approche non invasive pour l’estimation en temps réel 

du débit de carburant, reposant uniquement sur les mesures de couple et de vitesse de rotation 

de l’arbre de sortie du moteur. La méthode remplace les débitmètres physiques par un modèle 

fondé sur les données. Le modèle est entraîné à l’aide d’une régression linéaire robuste en 

distribution, garantissant ainsi une résilience face au bruit des capteurs et à l’incertitude du 

modèle. L’aspect robuste en distribution repose sur la minimisation de l’erreur entre 

l’ensemble de probabilité des valeurs estimées par le modèle par rapport aux mesures réelles. 

Comme il s’agit d’ensembles de probabilité et non de points précis, la distance euclidienne 

ne peut pas être utilisée pour calculer l’erreur, elle est donc remplacée par la distance de 

Wasserstein de 1er ordre. Une procédure de déploiement étape par étape est également 

proposée afin de permettre le transfert du modèle entre des navires similaires d’une même 

flotte, à partir d’un seul navire de référence équipé d’un débitmètre. 

Le modèle est validé sur un jeu de données réelles comprenant 80 millions de points 

collectés à chaque seconde sur sept (7) remorqueurs, avec une erreur quadratique 

moyenne (Root Mean Square Error, RMSE) de 5,2 % en moyenne et une erreur maximale 
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inférieure à 10 % lors de la validation croisée. Ces résultats démontrent la pertinence de la 

méthode en tant qu’alternative économique, précise et évolutive pour l’estimation de la 

consommation de carburant dans les applications maritimes. 

En tant que premier auteur, j’ai développé la grande majorité de l’algorithme, monté 

l’intégralité de la programmation Python et rédigé la vaste majorité de l’article. Le professeur 

Maxime Berger (2e auteur) a dirigé le projet de recherche depuis le début et révisé l’article. 

Le professeur Antoine Lesage-Landry (3e auteur) a contribué à l’enrichissement du 

fondement mathématique du modèle notamment quant à la définition de la régression linéaire 

robuste en distribution et a révisé l’article. 

L’article sera soumis simultanément à l’évaluation de ce mémoire au journal « IEEE 

Journal of Oceanic Engineering ». 
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Abstract— Accurate fuel consumption monitoring is critical for optimizing energy 

efficiency in maritime operations. Yet traditional methods—such as inline flowmeters—are 

invasive, costly, and yield potential reliability risks. This paper presents a novel non-invasive 

approach to estimating real-time fuel consumption using only torque and rotational speed 

measurements from the engine’s output shaft. The method replaces physical flowmeters with 

a data-driven model trained via distributionally robust linear regression, ensuring resilience 

to sensor noise and model uncertainty. A deployment workflow is proposed to enable model 

transferability across similar vessels within a fleet using a single flowmeter-equipped 

reference ship. The model is validated using a real-world dataset comprising 80 million data 

points collected at a sampling frequency of 1 Hz from 7 tugboats, yielding an average root 

mean square error (RMSE) of 0.052 and a maximum error under 0.100 in cross-validation. 

These results demonstrate the method’s practicality as a low-cost, accurate, and scalable 

alternative for fuel consumption estimation in maritime applications. 

Keywords — Distributionally robust optimization, fuel consumption estimation, marine 
propulsion, non-invasive sensing, linear regression, real-time monitoring, ship energy 
efficiency. 
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I. INTRODUCTION 

Spanning trade, energy, and environmental stewardship, the maritime industry serves 

as a lifeline for modern civilization. The shipping industry, in particular, is the backbone of 

the contemporary global economy, handling more than 80 percent of the volume of goods 

transported worldwide [1]. While contributing to only 3% of global greenhouse gas 

emissions, the sector remains a heavily targeted area for the International Maritime 

Organization’s (IMO) net-zero emissions by 2050 initiative [2], [3]. While mid-to-long-term 

solutions include the transition to alternative fuels, the complete electrification of propulsion 

systems [4] or the integration of advanced shore power connections [5], short-term solutions 

mainly focus on energy efficiency and eco-navigation initiatives like path or speed 

optimization to reduce fuel consumption [6], [7]. These methods require high resolution and 

reliable operational data to fine-tune and evaluate their efficiency, especially for 

maneuvering when engine regime and load vary significantly on the second timescale. 

Ideally, a real-time fuel consumption measurement would provide direct information on the 

ship’s fuel efficiency with varying operating regimes and conditions. Currently, two 

approaches are widely used to obtain fuel consumption: via CAN bus in the case of an 

electronically controlled engine [8] or via a dedicated inline flowmeter in the case of a purely 

mechanical engine [9]. However, the deployment of an inline flowmeter introduces new 

issues; the installation of additional hardware inherently adds to the financial burden and 

complexifies the measurement system, and flowmeter obstruction can lead to fuel starvation 

of the engine, thereby diminishing the reliability of the vessel’s propulsion system. In this 

paper, we propose an alternative, data-driven fuel assessment method based on flow 

estimation from engine output torque and speed, which are readily available measurements. 

A. Related work 

Many studies on operational ship fuel consumption reduction focus on path or speed 

planning [6], [10], [11]. In the case of [12], weather data is fed into a hydrodynamic model 

to evaluate the power needed to accomplish a certain amount of work, and the manufacturer’s 

specific fuel consumption (SFC) is then used to estimate the fuel consumption from the 
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power measurement. The model is then validated by comparing the fuel estimation against 

the measured fuel consumption data recorded in the daily ship reports. Although the study 

demonstrates promising results, its implementation requires an accurate SFC curve for the 

engine, which can be challenging to acquire, especially on older or smaller vessels [13]. 

Additionally, as the model is only validated daily, its temporal precision over shorter time 

intervals remains uncertain. 

Reference [14] highlights similar concerns regarding these limitations and addresses 

them by implementing an automated direct fuel flow measurement method at 15-minute 

intervals. The study focuses on a single 349-meter container carrier operating at a speed 

between 10 and 30 knots. While this range includes most cargo transit operations, it does not 

account for other operational types, such as towing or trolling. For example, tugboats 

consume most of their fuel at speeds below 10 knots, which falls outside the scope of this 

study. Specifically, [14] uses an artificial neural network to model and then predict fuel 

consumption for a specific vessel. However, model generalization from one ship to another 

and robustness to noisy measurements are not discussed [15]–[17]. 

Our initial work [18] uses 1 Hz torque and speed measurements of the engine’s output 

shaft as input features for the model to estimate fuel consumption. The model relies on the 

use of an outlier detection method and on the development of a two-dimensional lookup table 

resulting from locally averaged fuel flow for torque-speed couples coordinates sector. This 

approach yields limited performance, with an RMSE as high as 25% of full scale, when 

transferring the model from one ship to another. 

Contribution 

This paper proposes a new real-time fuel estimation approach based on a non-invasive 

sensor system. It leverages a combined torque and speed sensor designed to be a clamp-on 

addition to the engine’s output shaft. The proposed fuel estimation method uses the torque 

and speed measurements from this sensor to estimate the fuel consumption in real-time via 

distributionally robust linear regression (DRLR). This method offers the following benefits: 
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 Non-invasive integration: The clamp-on torque and speed sensor can be easily 

installed without modifying existing engine components; 

 Real-time estimation: Enables accurate instantaneous assessment of fuel 

consumption during operation thanks to continuous measurements provided by 

the sensors, given that the model is optimized on a second-wise time scale; 

 Environment-independent: Eliminates the need for external environmental 

data such as wave or current conditions, given that the torque and speed sensor 

directly measures the impact on engine operation; 

 Simplified modelling: The data-driven nature of the model removes the 

requirement for complex thermodynamic, hydrodynamic and aerodynamic 

models; 

 Model generalizability: The use of distributionally robust linear regression 

improves the model’s ability to generalize across varying and uncertain 

operating conditions; 

II. FLOWMETERLESS FUEL ESTIMATION MODEL 

This section presents the proposed approach for estimating fuel consumption without 

relying on a physical flowmeter. 

A. Flowmeterless system 

The data acquisition system used for this study comprises sensors distributed across a 

vessel, which communicate with a centralized data logging interface using the Modbus 

protocol. Currently, the most common configuration for evaluating fuel efficiency involves 

the installation of at least one sensor capable of measuring both torque and rotational speed 

on each engine output shaft, in addition to a flowmeter for each engine. This is illustrated in 

Fig. 1(a). 
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To minimize the invasiveness of the current system, in this study, we replace the 

physical flowmeter from Fig. 1(a) with a virtual one. The virtual flowmeter estimates the fuel 

consumption using the torque and rotational speed measured from the torque sensors, as 

shown in Fig. 1(b). 

Given the recurrent case of shipowners having multiple very similar ships in their fleet, 

a new workflow is proposed where only one of those ships is equipped with the invasive 

flowmeter. Data is then collected from this single ship before being used to train a model that 

estimates real-time fuel flow from the torque and speed measurements from the engine output 

shaft. This model is finally validated with the data from the flowmeter-equipped ship to be 

later deployed to the rest of the fleet, as illustrated in Fig. 2. 

 
Fig. 1. Comparison between (a) the current acquisition with a physical flowmeter and (b) the 

proposed new sensor architecture with virtual model-based flowmeter. 

 
 

Fig. 2. Step-by-step deployment process on a fleet using a single sample ship and a known ϵ. 
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Fig. 3. Visualization of the dataset where the points in 3D space. Axes Q , τ and ω are projected on 

3 orthogonal planes. 
 
 

B. Fuel estimation model 

Let Q ,  , and   denote the fuel flow, torque, and rotational speed of the engine, 

respectively. In this work, we seek to estimate the fuel flow based on measurements of the 

torque and rotational speed. To guide the model design, the dataset 1{ , , ,}
 T

t t t tQ   , 

where the subscript t  denotes the tht  measurement and T  is the number of observations, 

is projected against its three possible planes, producing the plots in Fig. 3. From this, we 

discern a general low-order polynomial pattern. Combined with empirical validation, this 

motivates the choice of a second-order polynomial linear regression defined as:  

 2 2
1 2 3 4 5

ˆ ,     Q            (1) 

where ̂Q  is the estimated fuel flow. Defining 1 2 5( , ,..., )      and 

2 2 ,( , , , , )     x  we re-express (1) in vector form as  

 . ̂ Q x   (2) 

We define the optimal coefficients of (2),   , in the expected least absolute 

deviation (LAD) sense, yielding: 

 
5

ˆmin [| |] [| |], 


  


  Q Q Q x


   (3) 
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where the expectation is taken with respect to ℙ, the probability distribution of x. Here, the 

LAD objective is chosen over alternative models due to its robustness against large residuals 

generated from outlier data points [19]. Motivated by our goal to find a generalizable model 

that is robust to real-world measurement errors of the specific dataset, (3) is reformulated as 

a distributionally robust optimization (DRO) problem. To this end, we first need to introduce 

further notation. Let  5( )T   be the empirical probability distribution of x consisting of 

T samples: 

 
1

1
( ),



T

T t
tT
x x  (4) 

where 
t

x  is the Dirac function used to set a unit probability mass to i . We denote the 

-order  Wasserstein distance with respect to some norm || ||  between distributions 

5, ( )   

 

1

5 5 1 2 1 2, ( , ) 
( , ) inf d ( , ) , 

  

   
 W


 

z z z z
  

 ‖‖ ‖ ‖  (5) 

where  ( , )    denotes the set of all joint probability distributions over 5 5   whose 

marginals are   and  . The distributionally robust optimization problem for flow 

estimation is: 

 inf sup [  | |],


Q x





  (6) 

where letting   > 0, the ambiguity set Ω is defined as: 

  , 5
,( ) { ( ) : ( , ) }     s

T TsW
     

using the Wasserstein distance metric. The loss function in (6) is minimized with respect to 

the worst-case distribution within an  -Wassertein centred at the empirical distribution of 
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our observation. Because (6) is intractable, we reformulate it as a convex optimization 

problem using [19]. Using the 1-order Wasserstein distance with respect to the 1 -norm leads 

to: 

 
1

min .
1

 
 

 
    


T

t t
t

Q Nx


   (7) 

The resulting problem now comprises both the LAD loss and an  -regularization term and 

represents a distributionally robust model for a given  . From this, we obtain the new 

hyperparameter   that must be tuned to achieve the best estimation performance across a 

fleet. To this end, we propose a workflow comprising the subsequent steps for a given  : 

W.1 Collect multiple datasets 1 2, , , n    from n  different ships; 

W.2 Train separate models , 1, 2, , , j j n   on each unique dataset j ; 

W.3 Evaluate the error ( )ijE   for each model j   on every dataset , 1,2, , i i n ; 

W.4 Evaluate the overall loss value across all trials  ,i j  for a given   defined as: 

 2

1 1

1
( ) [ ( )] ,

 


 
n m

ij
i j

E
n m

    (8) 

where ( )ijE   denotes the RMSE for a specific test with model    over a dataset i  and a 

given  . This workflow is employed to obtain adequate performance when a model is to be 

deployed across a complete fleet. The workflow W.1-W.4 can be used to tune   using 

Optuna [20]. Finally, a trained model can be deployed with the following process (Fig. 2): 

D.1 Collect a single dataset   from a fleet sample ship; 

D.2 Evaluate    using the tuned  ; 

D.3 Deploy model to the rest of the fleet using   ; 
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III. CASE STUDY 

A. Dataset 

The dataset used to train and validate the model and deployment workflow is provided 

by OpDAQ Systems [21]. Their dataset is developed over a five-year period of operations of 

their OpHMI acquisition system by anonymously collecting operational data from their 

clients with their explicit prior consent. To date, it includes over 100,000 hours of continuous 

real-world operation across 19 different vessels of varying sizes and functions, ranging from 

30 meters tugboats to 80 meters icebreakers. 

For this study, the scope is limited from the 19 ships down to 7 tugboats around 30 

meters in length. The dataset from these tugboats comprises 80 million unique data points 

sampled at 1 Hz. 

B. Results 

The procedure described in Section 2 is run over this dataset using scikit-learn [22] to 

solve (7) during workflow step W.2 and deployment step D.2. Optuna [20] is used to tune ϵ 

with (8) as loss function when iterating through steps W.2 to W.4. The hyperparameter 

optimization is run 50 rounds using a dedicated validation data subset in step W.3, resulting 

in the value ϵ⋆ = 0.0997.  

We set ϵ to the tuned value and retrain the model. Then, the models are cross-tested 

using an out-of-sample test subset. The results are presented in Fig. 4 where each vertical 

line represents a scenario in which a different ship is used for training and then the remaining 

ships are used to assess its performance. Fig. 5 shows the test error distribution for all model 

and dataset pairing. The numerical results for the 49 cross-tests are summarized in the 

Table I.  

In this case study, the ship owner would be subjected to a RMSE error of 0.0519 from 

the model when deployed using the proposed non-invasive flowmeterless fuel consumption 
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estimation method. Fig. 6(a) showcases a sample comparison between real flow and 

estimated flow for a 33-minute span (2000 s) for a model resulting from Ship C’s data, and 

shows the quality of the fit. Fig. 6(b) zooms on a finer timescale to further showcase the 

estimation fit over a small timescale. Fig. 7 illustrates a case where the fit is comparatively 

less accurate, with Fig. 7(b) providing a zoomed-in view to better visualize the local 

discrepancies between the two curves. We can observe that the oscillations in the estimated 

flow are of much greater amplitude than the real flow and that there is a constant offset in the 

estimated value. The predominant hypothesis suggests that vibrations originating from the 

engine are the primary source of error in this case, potentially inducing deviations in the 

sensor readings and, subsequently, the estimated flow values. Fig. 8 illustrates the noise in 

the sensor measurements. It is expected that applying appropriate signal filtering techniques 

could mitigate the effects of engine-induced vibrations and further improve the quality of the 

estimated flow. In sum, Ship C’s model leads to a RMSE of 0.057 when deployed aboard the 

same ship with local RMSEs indicated in Figs 6 and 7 captions. 



 

39 

 
Fig. 4. Results of the cross-validation process 

 

 
Fig. 5. RMSE distribution during the cross-validation process 

 
  

TABLE I: CROSS-TESTING ERRORS RELATIVE TO FLOWMETER MESUREMENTS 
 

Mean Median Std Deviation Min Max Range 
0.0519 0.0500 0.0117 0.0301 0.0998 0.0697 
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(a) Timespan = 2000 (s) : Local RMSE = 0.0082 (b) Timespan = 90 (s) : Local RMSE = 0.0065 

Fig. 6. Sample comparison between real flow and estimated flow from the model 
 
 

  
(a) Timespan = 2000 (s) : Local RMSE = 0.0525 (b) Timespan = 200 (s) : Local RMSE = 0.0861 
Fig. 7. Validation time series affected by engine-induced vibrations: (a) less accurate fit and (b) 

detailed view showing localized deviations between estimated and measured flow. 
 
 

IV. CONCLUSION 

This paper introduces a flowmeterless, real-time fuel estimation method based on 

torque and speed measurements from a non-invasive sensor installed on a ship’s engine 

output shaft. By employing a distributionally robust linear regression framework, the 

approach provides reliable fuel flow estimates without requiring environmental inputs or 

intrusive hardware. The model’s design explicitly accounts for sensor variability and dataset 

uncertainty, ensuring robustness and transferability across similar vessels within a fleet. A 

case study involving 7 tugboats and over 80 million real-world data points confirmed the 

method’s effectiveness, yielding a cross-tested RMSE between 0.030 and 0.100, with most 

predictions clustered around 0.05. This illustrates the potential for wide deployment in 

operational environments where reducing sensor footprint is essential. Future work will 
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explore generalization to other vessel classes and reduction of time-varying error dynamics 

with signal filtering to further refine and extend the method’s applicability. 

 
(a) Measurements corresponding to Fig. 6(b) (b) Measurements corresponding to Fig. 7(b) 

Fig. 8. Torque and speed measurements used for flow estimation 
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CONCLUSION GÉNÉRALE 

Les travaux présentés dans ce mémoire démontrent la faisabilité et la pertinence d’une 

approche basée entièrement sur les données pour l’estimation en temps réel de la 

consommation de carburant des navires, sans recourir à des débitmètres intrusifs. L’ensemble 

des résultats met en lumière une progression méthodologique claire : d’une première version 

exploratoire fondée sur des tables de correspondance vers un modèle polynomial robuste en 

distribution, mieux adapté aux conditions variées de l’opération maritime. Cette trajectoire 

illustre non seulement l’évolution technique de la recherche mais aussi le renforcement de sa 

validité opérationnelle et de son niveau de maturité technologique en vue d’un déploiement 

sur le terrain. 

Le premier modèle développé a permis de confirmer la faisabilité de l’approche. En 

s’appuyant sur des données réelles recueillies auprès de navires comparables, un modèle basé 

sur un tableau de correspondance reliant couple, vitesse et consommation a été mis au point. 

Cette méthode, bien que simple, a démontré qu’une approche entièrement basée sur les 

données est viable avec des erreurs de l’ordre de 5 à 31 % sur des fenêtres de temps courtes 

de deux (2) secondes et une amélioration notable de l’ordre de 1 à 11 % lors d’agrégations 

sur des horizons plus longs allant jusqu’à 16 heures. Elle a ainsi constitué une preuve de 

concept fonctionnelle, tout en révélant ses limites : dépendance à une étape manuelle de 

nettoyage des données, sensibilité aux valeurs aberrantes et manque de généralisabilité 

lorsque le modèle était transféré d’un navire à un autre. 

Ces constats ont conduit au développement d’un modèle polynomial de second ordre 

intégré dans un cadre de régression robuste en distribution. Ce raffinement méthodologique 

a permis d’automatiser le traitement des données, de réduire la dépendance à l’intervention 

humaine et de mieux prendre en compte la non-linéarité intrinsèque entre le couple, la vitesse 

et la consommation. Surtout, l’introduction de la robustesse en distribution a doté le modèle 

d’une capacité de généralisation accrue, validée sur une flotte de sept (7) navires distincts. 

Les résultats obtenus, avec des erreurs centrées autour de 5 %, montrent que l’approche n’est 
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pas seulement applicable dans un contexte expérimental restreint, mais peut être envisagée 

comme une solution viable et transférable sur le terrain. 

Certaines limites demeurent néanmoins. Le modèle a été principalement validé sur des 

remorqueurs, ce qui restreint encore son extension à d’autres types de navires. De plus, bien 

que les marges d’erreur se situent dans un intervalle acceptable (3 à 10 %), elles peuvent 

varier selon les conditions particulières d’opération, ce qui incite à poursuivre l’analyse de la 

dynamique temporelle de l’erreur. Enfin, l’approche repose sur la disponibilité de jeux de 

données représentatifs, condition indispensable à l’efficacité du modèle. 

La prochaine étape du projet serait d’étendre la validation du modèle sur une plus 

grande variété de types de navires et d’opérations tels que le transit océanique ou le chalutage. 

De plus, il pourrait être avantageux de tester d’autres méthodes d’apprentissage qui mettent 

à profit les relations temporelles tels que les réseaux de neurones récurrents. 

Pour conclure, ce travail aura contribué à l’effort collectif visant à réduire l’empreinte 

environnementale du transport maritime et à soutenir la transition vers une navigation plus 

écoénergétique en facilitant l’évaluation de la consommation de carburant des navires.
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