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RÉSUMÉ 

La gestion et la maintenance prédictives de l'infrastructure de transport reposent 
surl'application de techniques de contrôle non destructif et d'imagerie, qui s'avèrent 
crucialespour identifier les irrégularités sans causer de dommages, prévenant ainsi les 
accidents potentiels et les interruptions de service. Cette recherche utilise des modèles pré-
entraînés et intègre des concepts de d'apprentissage par transfert pour surmonter les 
contraintes de l'ensemble de données. Elle met en lumière l'inspection géométrique 
significative de ces modèles dans l'automatisation de la classification d'images pour la 
maintenance des systems ferroviaires. Cette étude vise à évaluer l'efficacité de divers 
modèles d'apprentissage automatique, notamment le Vision Transformer (ViT), le Data-
efficient Image Transformer (DeiT), VGG19, VGG16 et Resnet50, dans l'amélioration du 
contrôle non destructif dans les voies ferrées. ViT se démarque comme le meilleur performer 
en raison de son efficacité d'apprentissage supérieure et de sa capacité de généralisation, 
augmentée par un ajustement précis des hyperparamètres. DeiT, VGG19, VGG16 et le 
Resnet50 démontrent des capacités efficaces de détection de défauts, bénéficiant d'un 
ajustement minutieux des hyperparamètres.  

Mots clés : Détection des défauts ferroviaires, Apprentissage automatique, CNN, 
Transformateurs, Infrastructure de transport. 
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ABSTRACT 

The implementation of Non-Destructive Evaluation (NDE) imaging techniques plays 
a pivotal role in identifying infrastructure anomalies without causing damage, thereby 
preventing potential accidents and service disruptions. his study focuses on assessing the 
efficacy of various machine learning models in enhancing NDE within railway infrastructure. 
Such an evaluation is fundamental to ensuring operational safety and reliability in rail 
transport systems. Examined models include the Vision Transformer (ViT), Data-efficient 
Image Transformer (DeiT), VGG19, VGG16, and ResNet50. ViT emerges as the top 
performer due to its superior learning efficiency and generalization capability, augmented by 
precise hyperparameter tuning. DeiT, VGG19, VGG16, and the vanilla CNN demonstrates 
effective defect detection capabilities, benefiting from careful hyperparameter tuning. The 
findings highlight the potential of these models to aid automated image classification for 
railway maintenance applications, emphasizing the crucial role of hyperparameter tuning in 
optimizing performance. This research not only advances machine learning applications but 
also contributes to enhancing NDE methodologies in railway safety and maintenance. 

 

Keywords: Railway defect detection, Machine learning, CNN, Transformers, Transport 
infrastructure 
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INTRODUCTION GÉNÉRALE 

1. INTRODUCTION 

Industry 4.0, also known as the Fourth Industrial Revolution, marks the trend towards 

automation and data exchange in manufacturing technologies. It involves modern 

technologies like the Internet of Things (IoT), cloud computing, AI, and cyber-physical 

systems. Originating from a German government initiative, Industry 4.0 aims to digitalize 

manufacturing, particularly in defect detection and quality control [1]. Traditional manual 

inspections are being replaced by smart technologies such as machine learning algorithms, 

which enhance accuracy and reduce the time and cost associated with defect identification 

[2]. IoT and cloud computing integration allow real-time monitoring and analysis, optimizing 

production processes and enabling predictive maintenance to minimize downtime[3]. Cyber-

physical systems facilitate the interaction between physical and digital components, allowing 

real-time adjustments and enhancing manufacturing flexibility [4]. These technologies 

support the development of smart factories, which leverage big data analytics for efficient 

production management and customization[5]. HM is crucial in Industry 4.0 for maintaining 

infrastructure like bridges, buildings, and railways. Using sensors and data systems, SHM 

monitors structural health in real-time, enabling early detection of potential issues [6]. 

Integration with IoT provides real-time data transmission and remote monitoring, improving 

infrastructure management efficiency [7]. SHM aids disaster resilience by identifying 

structural weaknesses early, which is essential for the safety of railway operations [8, 9]. 

SHM, combined with cyber-physical systems, enhances infrastructure reliability and safety 

[10]. NDE techniques inspect materials and systems without causing damage, essential for 

quality control in Industry 4.0. Innovations in AI, machine learning, robotics, and sensor 

technology have advanced NDE methodologies, improving flaw detection and inspection 

efficiency [11]. These services enhance manufacturer productivity, compliance with 

international standards, and product quality [12]. 

 NDE methods are particularly notable for their ability to detect and characterize issues 

without damaging materials [13] and are used widely in the aerospace and manufacturing 

industries [14]. Rail transit is a vital mode of transportation, contributing significantly to 
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economic growth and connectivity [15]. However, aging infrastructure and inadequate 

investment pose challenges, highlighting the need for regular maintenance to ensure safety 

and functionality [16, 17]. Regular checks and upkeep are crucial to lessen hazards and avoid 

disruptions in the railway system [18]. Technologies like aerial and terrestrial imaging, 

optical and laser scanning, and robotic inspections have transformed quality control in 

railways [19,20]. These methods improve the efficiency and effectiveness of track 

maintenance, crucial for ensuring rail safety and reliability [21-24]. The creation and 

implementation of innovative techniques and strategies are crucial. Machine learning and AI 

are increasingly used to analyze vast data from modern monitoring equipment, aiming to 

improve system reliability and lower maintenance costs and risks [25]. AI systems can 

continuously track the condition of rail tracks, alerting maintenance teams about minor issues 

before they develop into larger problems, thereby increasing the overall safety and 

dependability of rail services [26, 27]. 

Geometric inspections detect track deviations and irregularities, ensuring track 

alignment and safety. Utilizing advanced technologies like 3D scanning, these automated 

systems inspect parts much faster and with greater accuracy, crucial for precision-critical 

industries [28]. Automated inspections, despite higher initial investments, prove more cost-

effective over time due to their efficiency and lower error rates [29]. Railway defect detection 

is critical for maintaining the safety and reliability of rail systems. NDE methods and 

advanced imaging technologies are essential for identifying flaws and defects in rail tracks, 

preventing accidents, and ensuring smooth operations [19, 30]. Machine learning and AI 

enhance defect detection by analyzing data from inspection technologies, allowing for 

preventive maintenance and real-time monitoring [26, 31]. This integration ensures that 

railway infrastructure remains safe, reliable, and efficient. 

2.  PROBLEMATIC 

While several studies have investigated the application of CNNs and transformers in 

railway defect detection, these methods often struggle to effectively detect missing 

fasteners—small components that appear in complex and cluttered environments—and to 
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demonstrate robust generalizability across different railway systems. Furthermore, many 

existing approaches rely on large annotated datasets—often unavailable in real-world 

scenarios—hindering their broad practical adoption. As a result, there remains a persistent 

lack of comparative analyses between these architectures, especially in addressing issues 

such as domain shifts across varying track conditions and the computational overhead of 

different models. Bai et al. [32] introduced an improved YOLOv4 method for the efficient 

detection of railway surface defects, utilizing MobileNetv3 and deep separable convolution. 

Similarly, Zheng et al. [33] employed CNNs to detect rail surface and fastener defects, 

employing an improved YOLOv5 framework for localization and Mask R-CNN for surface 

defect detection. Sresakoolcha et al. [34] track geometry data for the detection of rail switch, 

crossing, fastener, and rail joint defects, employing supervised machine learning techniques 

such as deep neural networks and CNNs, as well as unsupervised methods like K-means 

clustering and association rules. Additionally, Xu et al. [35] used deep learning to recognize 

railway subgrade defects from GPR data, improving the Faster R-CNN model. Pre-trained 

models, especially on PASCAL VOC2007 boosted performance. Wei et al. [15] applied 

transfer learning to improve their fastener detection model, utilizing a pre-trained model 

trained on ImageNet. Wang et al. [36] a method to detect defects in split pins of high-speed 

railway catenary devices, utilizing transfer learning and pre-trained models for accuracy. Wu 

et al. [37] used a pre-trained ResNet-101 model to initialize their fastener defect detection 

system, which was fine-tuned for detection. Lu [38]-tuned the pre-trained ResNet V2 and 

compared it to other models like Faster R-CNN, achieving higher accuracy in identifying 

defective joints. Li et al. [39] developed a method for rail defect detection using transfer 

learning and pre-trained models, outperforming single architectures like YOLOv5 and Faster 

R-CNN on an 8-class defect dataset. Jian et al. [40] an approach to railway defect detection 

utilizing transfer learning and multi-category defect detection. The emergence of 

transformer-based models, such as ViT and DeiT, has shown superior capabilities in various 

defect detection applications.  While these methods have shown promise, many are 

predominantly CNN-based and do not fully explore how transformer-based solutions might 

address the unique challenges of railway defect detection. 
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     Hutten et al. [41] conducted a systematic comparison, demonstrating that ViT can achieve 

performance equivalent to or better than CNNs, even with limited data. Additionally, recent 

studies by Alexakos et al. [42] An et al. [43] and Dang et al. [44] applied transformers to 

diverse defect detection tasks, further highlighting their efficacy. However, despite the 

potential of transformers, their utilization in railway defect detection remains unexplored. 

Furthermore, there is a noticeable gap in comparative studies between CNNs and 

transformers within this domain. Notably, transformer architectures offer interpretability 

benefits through their attention mechanisms, which could provide deeper insights into 

detection processes—advantages yet to be fully leveraged in railway applications. 

Additionally, due to the inherent scarcity of labeled data in railway defect detection, 

leveraging pre-trained models and transfer learning techniques becomes imperative to 

enhance model performance. Therefore, this study aims to address these gaps by 

investigating pretrained CNN and transformer models for missing fastener detection, 

incorporating transfer learning and hyperparameter tuning with Optuna [45], an open-source 

hyperparameter optimization framework that employs adaptive algorithms to automate the 

search for optimal hyperparameters and reduce manual trial-and-error. Through this 

approach, we seek to systematically optimize learning rates, batch sizes, and other critical 

parameters to improve accuracy and generalizability. In addition to measuring raw detection 

performance, we will evaluate the robustness and adaptability of these models under varied 

operational settings, paving the way for more reliable real-world deployment. By conducting 

a comparative analysis of both architectures and examining the efficacy of advanced 

optimization strategies, we seek to provide insights into the optimal approach for railway 

defect detection, contributing to safer and more efficient railway operations.  

 3.  OBJECTIVE 

This research aims to enhance railway track defect detection by leveraging transformer-

based models (ViT, DeiT) and Convolutional Neural Networks (CNNs) to improve the 

accuracy, efficiency, and generalization capabilities of defect identification systems. 

Specifically, we focus on detecting missing fasteners—critical yet often subtle defects that 
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can compromise track integrity and safety—across diverse and challenging railway 

environments. 

To achieve this, we systematically evaluate the performance of pretrained deep 

learning architectures, comparing the effectiveness of Vision Transformers (ViT, DeiT) and 

CNN-based models (ResNet50, VGG16, VGG19) in railway track defect classification. 

Given the limitations of conventional methods in detecting small-scale defects and adapting 

to varied conditions, our approach integrates transfer learning and advanced hyperparameter 

optimization (using Optuna) to refine model performance. This enables improved feature 

extraction, better adaptation to limited labeled data, and enhanced generalization across 

different railway conditions. 

Additionally, we employ Non-Destructive Evaluation (NDE) techniques to assess track 

conditions without causing structural damage and incorporate Structural Health Monitoring 

(SHM) methodologies for continuous surveillance of railway infrastructure. By integrating 

these approaches, we aim to establish a reliable defect detection system that provides early 

failure warnings, minimizes maintenance costs, and enhances railway safety. 

To ensure rigorous evaluation, we define clear performance metrics (accuracy, 

precision, recall, loss, and ROC AUC scores) to systematically compare model variations. 

Our research utilizes a publicly available Kaggle dataset of railway fastener images, divided 

into training, validation, and test sets using stratified sampling techniques to ensure balanced 

class representation. 

Through a comparative analysis of our optimized models against existing baseline 

approaches, this research aims to develop a state-of-the-art defect detection framework that 

meets the evolving demands of modern railway networks, improving operational efficiency 

and long-term infrastructure safety. 

 4. HYPOTHESIS 

Building on the gaps identified in the literature and our objectives, we propose four 

specific hypotheses regarding the detection of rail defects—particularly missing fasteners—
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using CNNs and Transformer-based models (ViT, DeiT). These hypotheses also reflect the 

use of pre-trained models and advanced hyperparameter tuning (Optuna) to address the data-

scarce context of railway defect detection. 

1. Model Performance Hypothesis 

• Which methods? We will compare CNN-based models (ResNet50, 

VGG16, VGG19) to Transformer-based models (ViT, DeiT). 

• Expected Outcome: We hypothesize that these advanced models, when 

trained on our Kaggle rail defect dataset (840 defective, 840 non-

defective), will significantly outperform simpler or unoptimized baselines 

in identifying missing fasteners. 

• By How Much? We anticipate at least a 1–2% improvement in accuracy, 

precision and recall over traditional baseline CNNs (e.g., a basic CNN 

architecture without transfer learning). 

2. Hyperparameter Optimization Hypothesis 

• Which settings? We will specifically tune learning rate, momentum, 

dropout rate, and weight decay using Optuna. We will also explore 

variations in batch size and number of epochs (within practical limits) to 

determine their impact on performance. 

• Expected Outcome: Systematic hyperparameter optimization will yield 

higher detection accuracy for small-scale defects (i.e., missing fasteners) 

and better generalization across various railway conditions. 

• By How Much? We expect a 1–2% improvement in precision and recall 

compared to default hyperparameter settings, owing to more effective 

regularization and optimal learning rates. 

3. Transfer Learning Hypothesis 
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• Which models? We will use pre-trained ResNet50, VGG16, VGG19 

(trained on ImageNet) and pre-trained Transformers (ViT, DeiT) to 

leverage previously acquired feature representations. 

• Expected Outcome: Incorporating transfer learning will enable the models 

to detect subtle rail defects (e.g., small or occluded fasteners) more 

effectively than training solely from scratch, particularly given the limited 

size of our labeled dataset. 

• By How Much? We estimate a 1–2% increase in recall—especially for 

missing fasteners—compared to non-pre-trained variants, due to the richer 

feature representations learned from large-scale image datasets. 

4. CNN vs. Transformer Hypothesis 

• Which methods? We will directly compare CNN architectures (ResNet50, 

VGG16, VGG19) with Transformer architectures (ViT, DeiT). 

• Expected Outcome: Owing to their global attention mechanisms, 

Transformer-based models may offer superior performance in complex 

backgrounds, whereas CNN-based models may excel in more localized 

feature extraction. 

• By How Much? We hypothesize that Transformers might achieve a 1–2% 

higher F1-score compared to CNNs under challenging conditions (e.g., 

cluttered environments, lower image quality), but possibly at the expense 

of longer training times. 

5. SIGNIFICANCE OF STUDY 

The study of applying the ViT, DeiT, ResNet50, and VGG16 and VGG19 models to a 

Kaggle dataset for rail defect detection is highly significant for several reasons. First, this 

approach can enhance accuracy in identifying defects on railway tracks.We can identify 
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which model works best for this specific task by applying different models and comparing 

their performance. We measure these improvements by evaluating key metrics—such as 

accuracy, precision, recall, and loss relative to simpler baseline models (e.g., basic CNNs 

without transfer learning) and default hyperparameter settings.This comparative analysis 

helps refine the detection process, leading to more reliable results. Secondly, studying these 

models helps in understanding their differences and nuances. Each model architecture has its 

strengths and weaknesses and exploring them on the dataset provides insights into which 

model is better suited for rail defect detection. Such understanding guides future model 

selection for similar tasks, ensuring optimal performance. Moreover, optimizing 

hyperparameters is crucial for maximizing a model's effectiveness. Researchers can find the 

optimal settings for each model by comparing different models with varied hyperparameters. 

We quantify the performance gains by comparing detection metrics against those achieved 

with untuned or default parameters, thereby demonstrating how hyperparameter tuning 

contributes to more accurate defect identification. This fine-tuning process enhances 

detection accuracy and optimizes the models in real-world scenarios. Additionally, 

leveraging pre-trained models like VGG19 and VGG16 through transfer learning is 

beneficial, especially in scenarios with limited data. These pre-trained models come with 

knowledge learned from large datasets, which can be transferred and fine-tuned on the rail 

defect dataset. This approach improves model performance even with a scarcity of training 

samples, making it particularly valuable when data is limited. Furthermore, comparing 

traditional CNNs to newer Transformer-based architectures like ViT and DeiT provides 

insights into the effectiveness of both approaches for rail defect detection.  Any observed 

performance improvements are assessed by these architectures against each other, offering a 

clear view of how each method enhances detection capabilities over existing baselines.This 

analysis helps understand the applicability of transformer models in computer vision tasks 

compared to CNNs, thus informing future model selection and development efforts.  

In our study, we focus on using image-based techniques for railway track defect 

detection. To address the specific defects we aim to detect, we include representative images 

of issues such as missing fasteners, and surface irregularities, providing a clear visual 

reference of the conditions our approach targets. This approach allows us to inspect railway 
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tracks without causing any damage, ensuring that the structural integrity is maintained while 

defects are detected. By utilizing images, we can continuously monitor the condition and 

performance of railway tracks, even in remote and hard-to-reach places. This helps identify 

potential issues early, preventing major problems and ensuring the safety and reliability of 

the railway system. By relying on image-based methods, we can develop a comprehensive 

and effective approach to railway track defect detection, ultimately enhancing the safety, 

reliability, and efficiency of railway networks. 

6. METHODOLOGY 

In our study, we focus on railway defect detection using machine learning, leveraging 

deep learning techniques to classify railway fasteners as defective or non-defective. We used 

a publicly available dataset from Kaggle, consisting of 700 defective and 700 non-defective 

images, representing real-world railway conditions. Our approach includes data 

preprocessing, training multiple models, hyperparameter tuning, and performance 

evaluation. We applied image transformations such as resizing, normalization, and data 

augmentation to enhance model generalization. To identify the most effective architecture, 

we tested various deep learning models, including Convolutional Neural Networks (CNNs) 

and Vision Transformers (ViT, DeiT). Transfer learning was employed using pre-trained 

models on ImageNet, replacing the classification layers with task-specific outputs. We also 

conducted hyperparameter tuning using Optuna, optimizing key parameters like learning 

rate, dropout rate, and batch size. Each model was evaluated using accuracy, precision, recall, 

and ROC-AUC, ensuring a robust assessment of their performance in railway defect 

detection. Below, we describe our steps for preparing the dataset, preprocessing data, 

selecting models, and tuning their parameters in detail. 
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6.1 DATASET 

 

Figure 1. Sample railway track images showing fasteners and rail joints, with red bounding boxes highlighting 

potential defects or missing components. 

In our research, we use a publicly available railway dataset from Kaggle, specifically 

designed for image classification in defect detection. This dataset consists of images labeled 

as either defective or non-defective, closely mirroring real-world railway maintenance 

challenges. Defective samples exhibit various types of fastener-related issues, such as 

broken, missing, loose, or corroded components, while non-defective samples represent 

properly secured fasteners. The dataset is balanced, containing an equal number of 700 

defective and 700 non-defective images. However, it does not include bounding boxes or 

segmentation labels to specify the exact defect locations. Instead, each image is categorized 

at a global level as either defective or non-defective, meaning that the defect may appear 

anywhere within the image and is not necessarily centered. 

Defects in this dataset involve issues with fastening components that secure railway 

tracks to the underlying infrastructure, including: 

• Bolts: Loose, broken, or missing 

• Clips : Deformed or incorrectly placed 

• Anchors: Rusted, damaged, or improperly fastened 
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• Plates : Corroded or misaligned 

Although we provide examples with bounding boxes in our study to illustrate defect 

regions, it is important to note that the original dataset does not contain these annotations. 

This means that models trained on this dataset do not explicitly learn defect localization but 

instead focus on a binary classification task (defective vs. non-defective). Due to the lack of 

localized defect annotations, our approach does not rely on object detection or segmentation 

methods. Instead, we train classification models that learn to differentiate between images 

containing any type of defect and those that do not, making it a global classification problem 

rather than a localized detection task. This distinction is crucial in determining the 

appropriate deep learning techniques for defect detection in railway infrastructure. 

6.2 DATA-PREPROCESSING 

Data preprocessing is a crucial stage in the machine learning (ML) process, focusing 

on transforming raw data into a format that is easier to understand and work with for 

subsequent analysis. In this study, we dealt with a dataset consisting of 1400 images, 

comprising 700 defective and 700 non-defective images. This step involves rectifying 

inconsistencies and integrating data from various sources to create a uniform dataset. With 

this balanced dataset, preprocessing included data transformation for normalization and 

aggregation, data reduction to minimize volume while preserving relevant results, and data 

discretization, which converts continuous attributes into categorical ones. The preprocessing 

phase was essential in ensuring that the dataset was well-structured and suitable for the 

specific needs of our ML models, providing a solid foundation for accurate and efficient 

analysis [46].  In our study, the emphasis on data preprocessing was key to enhancing the 

performance of deep learning models for defect detection. Data cleaning was essential to 

ensuring accuracy and relevance in the dataset. This step involved removing irrelevant 

information and correcting errors, which is crucial in defect detection where data precision 

directly impacts detection accuracy. Feature scaling and image augmentation, utilizing 

techniques like RandomResizedCrop and RandomHorizontalFlip, are employed to Enhance 

the model's learning process by introducing variations in the data. RandomResizedCrop 
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randomly crops the images to a size of 224x224 pixels.  This augmentation technique 

randomly selects a portion of the original image and resizes it to the specified size, Which 

helps the model learn from different parts of the image.  

RandomHorizontalFlip flips the images horizontally with a probability of 0.5. This 

augmentation technique horizontally flips the images, providing additional variations to the 

training data. Normalization, achieved by normalizing the pixel values of the images using 

mean [0.485, 0.456, 0.406] and standard deviation [0.229, 0.224, 0.225], standardizes the 

input data. This makes the optimization process more stable and efficient. For the validation 

and test datasets, the Resize and Centercorp technique is applied. It resizes the images to 

256x256 pixels and then center-crops them to 224x224 pixels. This ensures that the images 

are consistently sized and centered, facilitating better generalization during validation and 

testing [47], were also performed. Moreover, to illustrate these transformations, we generated 

sample outputs showing how an original rail-track image is reshaped, randomly cropped, 

flipped, and normalized. These examples help demonstrate exactly how images appear before 

and after each transformation step. The PyTorch transforms pipeline seamlessly applies this 

sequence of operations during data loading, ensuring consistency and reproducibility. In 

practice, the preprocessing phase is handled by PyTorch’s transforms within our code. This 

includes composing different transformation steps (e.g., resizing, cropping, flipping, and 

normalizing) into a pipeline applied to each image. We ensure that the training set gets the 

augmentations (RandomResizedCrop, RandomHorizontalFlip) while the validation and 

testing sets only receive resizing and cropping, preserving real-world data distribution for 

evaluation. Our rational for these specific transformations is threefold: (1) they help correct 

for minor inconsistencies in image composition (via cropping and flipping), (2) they address 

variations in scale and orientation (particularly relevant in detecting small fasteners in 

different positions), and (3) they standardize pixel values (normalization), making training 

more stable. Finally, splitting the dataset into training and validation sets enabled a 

comprehensive evaluation of the models. This approach ensured not only effective training 

but also validation of the model’s performance in real-world conditions—a critical aspect of 

defect detection. In our case, we used the 10-fold cross-validation strategy. By providing 

justifications and examples for each transformation (RandomResizedCrop, 
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RandomHorizontalFlip, Resize, CenterCrop, and Normalize), we make the preprocessing 

phase transparent and replicable, thereby reinforcing the reliability and clarity of our defect 

detection approach. We began with a balanced dataset of 1,400 images. To ensure a robust 

evaluation of the model, we divided these images into three subsets: training, validation, and 

testing. First, we reserved 15% of the dataset—210 images—as a final test set. This left 85% 

(1,190 images) for training and validation. Within that 85%, we employed a stratified 

approach to split the data into a training portion, which contains 980 images (70% of the 

original dataset) and a validation portion with 210 images (15% of the original dataset). The 

stratification process helped maintain consistent class proportions across each subset, 

preventing any inadvertent imbalance that might arise from purely random splitting.Using 

three distinct subsets is important because each one serves a different purpose. The training 

set is used to fit the model’s parameters, allowing the model to learn meaningful 

representations and patterns. The validation set is then used to monitor how well the model 

is performing during training and to tune hyperparameters, which helps avoid overfitting. 

Finally, the test set is kept separate until all model decisions and adjustments are complete; 

it provides an unbiased measure of performance on unseen data, offering a realistic sense of 

how the model will generalize in real-world scenarios. 

If only two subsets (training and testing) are used, there is a risk of overfitting 

hyperparameters to the test set due to the lack of a dedicated validation phase, as well as 

reduced feedback for adjusting the model effectively during training. Conversely, if one 

relies solely on training and validation subsets (without a separate test set), the validation 

data may inadvertently guide too many design decisions—such as hyperparameter choices—

leading to subtle overfitting. This can yield an overly optimistic assessment of model 

performance and reduce confidence in how well the model would generalize to real-world, 

unseen data. By employing three subsets—training, validation, and testing—we ensure that 

each serves a distinct purpose: the training set is used to learn model parameters, the 

validation set provides iterative feedback and hyperparameter tuning without compromising 

the final performance metric, and the test set remains untouched until all model decisions are 

finalized, providing an unbiased measure of true generalization performance. Table 1 shows 

the key data preprocessing steps applied in our study for railway defect detection. It 
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summarizes the techniques used, including data cleaning, augmentation, normalization, and 

dataset splitting, along with their purposes and the specific subsets they were applied to. 

These preprocessing steps ensure data consistency, enhance model generalization, and 

optimize performance for deep learning-based defect classification. 

Preprocessing 

Step 

Description Purpose Applied To 

Data Cleaning Removed irrelevant 

information and corrected 

errors in dataset. 

Ensures dataset accuracy and 

relevance. 

Entire dataset 

(1,400 images) 

Data 

Transformation 

Standardized dataset 

structure, ensuring uniform 

formatting. 

Improves consistency and model 

compatibility. 

Entire dataset 

Data 

Augmentation 

Applied 

RandomResizedCrop and 

RandomHorizontalFlip to 

increase variability. 

Enhances model robustness and 

prevents overfitting. 

Training dataset 

only 

Feature Scaling 

(Normalization) 

Normalized pixel values 

using mean [0.485, 0.456, 

0.406] and std [0.229, 0.224, 

0.225]. 

Standardizes pixel intensities for 

stable optimization. 

Entire dataset 

RandomResizedC

rop (224x224) 

Randomly crops and resizes 

images to 224x224 pixels. 

Helps model generalization by 

exposing it to different image 

regions. 

Training dataset 

only 

RandomHorizonta

lFlip (p=0.5) 

Flips images horizontally 

with a 50% probability. 

Adds variation to training data 

for better generalization. 

Training dataset 

only 

Resize & 

CenterCrop 

(224x224) 

Resized images to 256x256 

pixels, then center-cropped to 

224x224 pixels. 

Maintains consistency in image 

dimensions. 

image dimensions. 

Validation & Test 

datasets only 
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Dataset Splitting Stratified split into Training 

(70%), Validation (15%), and 

Test (15%) sets. 

Ensures balanced class 

representation and robust 

evaluation. 

Entire dataset 

Cross-Validation 

(10-Fold) 

Divided the training set into 

10 stratified folds for model 

evaluation. 

Provides iterative feedback and 

improves model reliability. 

Training & 

Validation sets 

Data Loader 

(PyTorch 

Transforms) 

Implemented preprocessing 

pipeline for seamless image 

transformations. 

Ensures reproducibility and 

automation during model 

training. 

Entire dataset 

Table 1. Summary of Data Preprocessing Steps for Railway Defect Detection 

 6.3 MODELS AND HYPERPARAMETERS 

We conducted a series of experiments using various models and configurations. The 

values for different parameters were chosen based on our experimental setup and the nature 

of the railway defect detection task. Here’s the explanation of how we determined these 

values and their relevance to our hypotheses: We hypothesized that different models would 

show varying levels of effectiveness in identifying rail defects. To test this, we trained the 

models including CNNs and ViT and compared their performance [48]. Additionally, tuning 

specific hyperparameters could enhance the performance of the models. We used Optuna for 

hyperparameter optimization, conducting multiple trials to find the best settings. conducting 

10 trials for hyperparameter optimization with Optuna provided a reasonable balance 

between computational expense and the ability to explore different configurations [45].  The 

choice of 7 epochs was made to avoid overfitting. Training for too many epochs can lead the 

model to learn the noise and details in the training data, which negatively impacts its 

performance on new, unseen data. By limiting the number of epochs, we ensure that the 

model generalizes better and performs more effectively when applied to real-world data [49]. 

A batch size of 32 was selected to balance computational efficiency and training stability, as 

commonly used in image processing tasks [50]. We used a weight decay of 0.01 to prevent 

overfitting by penalizing large weights, a standard practice in deep learning [51] our study, 

we utilized pre-trained models. These models, already trained on large datasets, provided a 
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strong starting point for our specific task. This approach was particularly useful given the 

limited amount of data available for railway defect detection [52]. We used 70% of the data 

for training, as this is a standard split ensuring enough data for effective model learning. Half 

of the remaining data after the training split was used for validation, a common practice for 

fine-tuning models without overfitting. The rest was used for testing to provide an objective 

evaluation of model performance [53]. In addition, the tuning of these hyperparameters was 

carried out on the separated training and validation portion (85% of the original dataset, i.e., 

1,190 images), where 17.6% (210 images, corresponding to 15% of the entire dataset) is used 

for validation and 82.4% (980 images, corresponding to 70% of the entire dataset) is used for 

training. Furthermore, we employed a Stratified K-Fold approach (with a specified number 

of folds) to ensure that each fold is representative of the overall class distribution, thus further 

enhancing the reliability of our hyperparameter selection process [54]. The hyperparameters 

we used in our study are shown in Table 2: 

Parameter Description Value 

Epochs Number of full passes through the training data 7 

Batch Size Number of samples processed before the model is 

updated 

32 

Train Size Percentage of data used for training 70% of dataset 

Validation Size Percentage of data used for validation Half of the remaining after 

training split 

Test Size Percentage of data used for testing Rest after training and 

validation splits 

Number of Folds (k) Number of folds used in Stratified K-Fold; applied 

on the separated training and validation portion 

(85% of the original dataset, i.e., 1,190 images). 

Within this subset, 17.6% (210 images, 

corresponding to 15% of the entire dataset) is used 

for validation, and 82.4% (980 images, 

corresponding to 70% of the entire dataset) is used 

for training. 

10 

Weight Decay adding a penalty to the loss function based on the 

magnitude of the weights. 

0.01 
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Number of Trials for 

Optuna 

Number of trials to perform in the hyperparameter 

optimization 

10 

Table 2. Key Hyperparameters in our study 

For tuning hyperparameters such as dropout rate, learning rate, and momentum, we 

utilized Optuna. Optuna optimizes hyperparameters by searching the parameter space using 

automated trial-and-error. Optuna’s approach involves defining a search space and then 

evaluating the model performance for each combination of hyperparameters iteratively. The 

values of the hyperparameters we used in our study, which were tuned using Optuna, are 

shown in the Table 3 for all models [45, 55]. Our work specifically focuses on tuning learning 

rate, momentum, and dropout rate [50, 56]. Additionally, we fix weight decay at 0.01 based 

on best practices in deep learning [51], In all models (ViT and Deit, ResNet50, VGG19, and 

VGG16) dropout is applied before the final classification layer. It helps prevent overfitting 

during training by randomly dropping out activations, enhancing the model’s generalization 

ability. Three hyperparameters are tuned using the Optuna framework during the training 

process in our study which are: 

a. Learning Rate (lr): This parameter controls the step size at each iteration while moving 

toward a minimum of a loss function. It's being tuned within a range from 1e−5 to 1e−1, 

using a logarithmic scale.  

b. Momentum: Momentum helps accelerate gradient vectors in the right directions, thus 

leading to faster converging. It's being tuned within a range from 0.5 to 0.99.  

c. Dropout Rate: This parameter is used in the dropout layers to prevent overfitting. The rate 

specifies the probability at which outputs of the layer drop out. It's being tuned within a range 

from 0.1 to 0.5.  The hyperparameters that were tuned are shown in 3: 

Model Learning Rate  Momentum Drop Out 

ViT_base_patch16_224 0.0020909 0.7720241 0.3515297 

DeiT_base_patch16_224 0.0026888 0.5789481 0.4131130 

VGG19 0.0002764 0.7956331 0.2895775 
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VGG16 0.0134802 0.7690707 0.2988300 

Resnet50 0.0071212 0.9045430 0.2345131 

Table 3. Hyperparameters tuned by Optuna 

 In our study, we used an optimizer and a scheduler to enhance model performance. 

The SGD optimizer updates neural network weights to minimize the loss function, using key 

hyperparameters like learning rate and momentum. The learning rate determines the step size 

towards the loss function's minimum, while momentum accelerates gradients in the right 

direction for faster convergence. We also used the ReduceLROnPlateau scheduler, which 

adjusts the learning rate when the validation loss plateaus. This fine-tuning helps avoid local 

minima and ensures effective optimization by reducing the learning rate when performance 

stops improving.  These components were integrated into a Stratified K-Fold cross-validation 

framework. This method splits the dataset into K folds, maintaining the class distribution in 

each fold. It allows for adaptive learning rate adjustments for each fold, enhancing model 

robustness and generalization [57, 58].  Key Components and The functionalities of our 

project are shown in Table 4: 

Phase Functionality Details 

Imports Importing necessary libraries

  

PyTorch, Timm, NumPy, Matplotlib, Sklearn, 

Optuna, etc 

Dataset Setup 
  

Setting paths, devices, 

transforms 

Path: Location of dataset- Device: CUDA if 

available, Transforms: Image preprocessing 

Data Loading 
  

Loading and splitting the 

dataset 

 Load images with labels, random_split: Split into 

train, validation, and test sets 

Model Definition  Creating and modifying the 

neural network 

Uses Timm for loading a pre-trained model- 

Modifies the model to fit the binary classification t 

Hyperparameter 

Tuning 

Hyperparameters tuning  using 

Optuna 

- Learning rate, momentum, dropout rate 

Training Setup 
  

Prepare data loaders and 

training environments 

- Data Loaders: For handling training and validation 

data 

Optuna 

Optimization  

Optimization of model 

parameters 

- Runs trials to maximize the recall metric on 

validation data 
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Stratified K-Fold 

Training   

Cross-validation training -Uses StratifiedKFold for splitting - Training and 

validation within each fold 

Learning Rate 

Adjustment  

Adjusts learning rate based on 

performance 

- ReduceLROnPlateau: Decreases learning rate 

when validation loss plateaus 

Results 

Visualization 

Visualizing training results - Plots for loss, accuracy, precision, recall, and ROC 

curves 

Final Parameters 
  

Output best parameters and 

retrain 

-Determines best hyperparameters from Optuna 

trials - Retrains model with these parameters 

Optuna Completion

  

Optuna study and extracts best 

trials 

- Optuna finds optimal model parameters through 

defined trials 

Table 4. Steps of our study 

7. CONTRIBUTION 

Our study aims to bridge existing gaps in railway defect detection research by 

systematically comparing Convolutional Neural Networks (CNNs) and transformer-based 

models. While prior research has explored CNNs and transformers separately, no 

comprehensive study directly compares their effectiveness for railway defect detection under 

the same experimental conditions. Our key contribution is the first in-depth comparative 

analysis of CNN and transformer-based approaches for railway fastener defect detection, 

which provides valuable insights into the relative advantages and trade-offs of these 

architectures. 

We build upon existing CNN-based methods and expand our research scope by 

incorporating transformer models such as Vision Transformer (ViT) and Data-Efficient 

Image Transformer (DeiT). These transformer models have demonstrated superior 

performance in various defect detection tasks, yet their potential in railway maintenance 

remains underexplored. By evaluating these models on a real-world railway fastener dataset 

from Kaggle, we validate their practical applicability and contribute to the growing body of 

research on deep learning-based railway inspection. 

A major limitation in railway defect detection is the scarcity of large, labeled datasets, 

which hinders model performance and generalization. To address this challenge, we 

emphasize the importance of transfer learning and pre-trained models in our study. By 
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leveraging pre-trained ImageNet models and fine-tuning them for railway defect detection, 

we demonstrate how transfer learning can significantly enhance performance even with 

limited labeled data. Furthermore, we systematically investigate the impact of transfer 

learning on both CNN and transformer models, providing a unique perspective on its 

effectiveness across different architectures. 

This research is significant for several reasons: 

• Comprehensive Model Comparison – By evaluating both CNN and 

transformer-based models under identical preprocessing conditions, transfer 

learning frameworks, and hyperparameter tuning strategies using Optuna, we 

ensure a fair and rigorous comparison. 

• Optimization of Model Performance – We fine-tune each model to maximize 

detection accuracy, recall, and robustness, ensuring that our findings contribute 

to real-world railway defect monitoring applications. 

• Integration of NDE and SHM Techniques – Our study aligns with Non-

Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) 

principles, ensuring that defect detection methods are practical, scalable, and 

cost-effective for railway maintenance operations. 

• Ensuring Generalizability – By maintaining a consistent data preprocessing 

pipeline and a uniform hyperparameter search space, we enhance the reliability 

and reproducibility of our results, making them applicable beyond our specific 

dataset. 

Ultimately, this research provides critical insights for the railway industry, highlighting 

the potential of deep learning models—particularly transformers—in defect detection. By 

advancing the understanding of CNN vs. transformer-based architectures in this domain, we 

contribute to the development of safer, more efficient, and automated railway maintenance 

solutions, thereby improving the safety, reliability, and operational efficiency of railway 

networks. 
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8. ORGANIZATION 

This thesis follows a manuscript-based format, meaning it includes a research paper as 

a key part of the study. The thesis is divided into four main sections to clearly present the 

research problem, methods, and results. The Introduction gives an overview of the research 

topic. It explains why early defect detection in railway tracks is important, defines the 

research problem, and presents the main hypotheses. It also describes the methods used to 

solve the problem and introduces the dataset used for testing and evaluation. Chapter 1 is the 

literature review. It explains past research on railway defect detection, how deep learning 

models like CNNs and Vision Transformers have been used in this field, and the current gaps 

in knowledge. This section helps show why this study is needed. Chapter 2 contains the 

research paper, titled "Toward Smart Railway Maintenance: AI-Enhanced Non-Destructive 

Evaluation Using Vision Transformers and CNNs for Fastener Defect Detection." The paper 

explains the methods used, the experiments conducted, and the results of testing different 

models. It provides the key findings of this study. The final section summarizes the findings 

and explains what they mean for railway maintenance. It also discusses the study’s 

limitations and suggests ways future research can improve defect detection methods. This 

structure ensures that the research is presented in a clear and logical way, making it easy to 

understand how the study was conducted and why it is important. 
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. REVIEW OF LITERATURE AND CONCEPTUAL FRAMEWORK 

1.  INDUSTRY 4.0 

Industry 4.0, often referred to as the fourth industrial revolution, signifies a 

transformative approach to industrial production characterized by the integration of advanced 

technologies such as the Internet of Things (IoT), AI, and big data analytics into 

manufacturing processes. This integration aims to create smart factories where systems can 

communicate, analyze data, and make decisions autonomously, leading to increased 

efficiency and productivity [59]. One of the foundational concepts of Industry 4.0 is 

interoperability, which allows machines, devices, sensors, and people to connect and 

communicate with each other via the Internet of Things (IoT) [60]. Information transparency 

is another critical principle, enabling systems to create a virtual copy of the physical world 

through sensor data to contextualize information [61]. Technical assistance refers to the 

ability of systems to support humans in decision-making and problem-solving and to assist 

in difficult or unsafe tasks [62]. Decentralized decisions in cyber-physical systems enable 

these systems to autonomously make decisions and perform tasks without centralized control. 

This capability enhances their flexibility, resilience, and adaptability. Autonomous decision-

making in cyber-physical systems is crucial for various applications, including smart 

manufacturing and logistics, where systems must react in real time to dynamic conditions 

and optimize operations independently. These systems integrate technologies like AI, the 

Internet of Things, and big data to support their decision-making processes [63]. The 

implementation of Industry 4.0 technologies can enhance manufacturing processes. For 

instance, predictive maintenance powered by AI and machine learning can reduce downtime 

and maintenance costs by predicting equipment failures before they occur [64]. 

 Moreover, advanced robotics and automation improve precision and efficiency in 

production lines, leading to higher quality product and reduced human error [65]. However, 

the transition to Industry 4.0 also presents challenges. One significant barrier is the high 

initial investment required for adopting these advanced technologies, which can be 

prohibitive for small and medium-sized enterprises (SMEs) [66]. Additionally, there is a need 

for a skilled workforce capable of managing and maintaining these sophisticated systems, 
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which necessitates substantial training and education  [67]. Cybersecurity is another critical 

concern, as the increased connectivity and data exchange between systems raise the risk of 

cyber-attacks [68]. Despite these challenges, the potential benefits of Industry 4.0 are 

substantial. Enhanced data analytics can lead to more informed decision-making and 

optimized operations, while improved flexibility and adaptability allow manufacturers to 

respond more quickly to market changes and customer demands [69]. 

Industry 5.0 represents the next phase in the evolution of industrial practices, 

emphasizing the synergy between human creativity and technological advancements to create 

more sustainable, resilient, and human‐centered systems. While Industry 4.0 focused 

primarily on interconnected smart factories, Industry 5.0 aims to bring humans back to the 

center of production, leveraging the power of AI, cognitive computing, and collaborative 

robotics to enhance—not replace—human capabilities [70]. In contrast to the fully 

autonomous decision‐making prevalent in Industry 4.0, Industry 5.0 promotes a co‐creative 

approach where artisanship and customization coexist with smart automation [71]. A sign of 

Industry 5.0 is the incorporation of personalization and mass customization at scale, driven 

by increasingly intelligent systems that respond swiftly to individual customer requirements 

[72]. This shift expands upon predictive maintenance and data analytics practices established 

in Industry 4.0 by introducing cognitive intelligence and human‐machine collaboration into 

the design process, enabling more nuanced decision‐making and enhancing overall flexibility 

[73]. Consequently, Industry 5.0 solutions often tackle sustainability and social responsibility 

by optimizing resource usage, reducing waste, and integrating feedback mechanisms that 

account for environmental and societal impacts [74]. Despite its promise, Industry 5.0 also 

faces challenges such as ensuring adequate cybersecurity in more deeply networked systems, 

overcoming the knowledge gap for workers who must collaborate with advanced robots, and 

navigating ethical considerations surrounding human‐machine cooperation [75]. 

Nonetheless, by merging human innovation with emergent technologies, Industry 5.0 aspires 

to transform manufacturing and service sectors into domains where efficiency, 

personalization, and sustainability coexist, ultimately delivering enhanced value and quality 
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of life. Figure 2 shows the evolution from Industry 4.0’s automation-focused paradigm to the 

human-centric emphasis of Industry 5.0. 

 

Figure 2. Transition from Industry 4.0’s automation focus to Industry 5.0’s human-centric approach. 

1.1 THE HISTORY OF DEEP LEARNING 

1943 Walter Pitts and Warren McCulloch introduced a mathematical representation of 

a biological neuron in their paper, "A Logical Calculus of the Ideas Immanent in Nervous 

Activity." Although the McCulloch-Pitts Neuron exhibited limited functionality and did not 

possess a learning mechanism, it still paved the way for the future development of artificial 

neural networks and deep learning [76]. Frank Rosenblatt, in 1957, in his paper “The 

Perceptron: A Perceiving and Recognizing Automaton,” demonstrated an enhanced version 

of the McCulloch-Pitts neuron. He introduced the 'Perceptron,' which boasted authentic 

learning capacities, allowing it to carry out binary classification independently. This 

breakthrough ignited a substantial research shift in the field of shallow neural networks [77]. 

In 1960, Henry J. Kelley introduced a new model called continuous backpropagation. Even 

though his idea was related to something called Control Theory, it set the stage for improving 

the model. This model would later be used in things called Artificial Neural Networks (ANN) 

as time went on [78]. Stuart Dreyfus, in 1962, introduced a new way to use backpropagation 

with a simple derivative chain rule, instead of using the old method of dynamic programming. 

This incremental advancement further solidified the forthcoming development of deep 
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learning [79]. In 1965, Alexey Grigoryevich Ivakhnenko and Valentin Grigorʹevich Lapa 

developed a hierarchical form of a neural network that employs a polynomial activation 

function and is trained to utilize the Group Method of Data Handling. This is widely regarded 

as the inaugural multi-layer perceptron, frequently accrediting Ivakhnenko with the title of 

the father of deep learning [80] . In 1969 Marvin Minsky and Seymour Papert released a 

book titled "Perceptrons," demonstrating the limitations of Rosenblatt's perceptron in solving 

complex functions, such as XOR. They showed that handling such functions would require 

placing perceptrons in multiple hidden layers, which undermined the perceptron learning 

algorithm [81].  In 1969, Kunihiko Fukushima introduced a seminal concept in the domain 

of neural networks with the advent of the ReLU (rectified linear unit) activation function [82, 

83]. This activation function, known as the rectifier, swiftly ascended to prominence, 

becoming the most widely adopted activation function for CNNs and deep neural networks 

more broadly [84].  

In 1970 Seppo Linnainmaa came up with a new way to automatically do 

backpropagation and made it work on computers. Even though there was a lot of research on 

backpropagation, it wasn't used in neural networks until the next decade [85].  Alexey 

Grigoryevich Ivakhnenko in 1971, persisted in his explorations within the domain of Neural 

Networks. He pioneered the development of an 8-layer Deep Neural Network, employing the 

Group Method of Data Handling (GMDH) as a strategic approach to its creation and 

functionality. This endeavor reflected a meticulous synthesis of layered neural structures, 

demonstrating a profound application of GMDH in the realm of deep learning and neural 

network sophistication [86].  In 1980, Kunihiko Fukushima introduced the Neocognitron, 

originating the first architecture of a CNN, which possessed the capability to identify visual 

patterns, notably those found in handwritten characters. This innovative network model 

became foundational in computer vision, particularly in the recognition and interpretation of 

visual data, demonstrating a proficient approach to identifying and managing intricate 

patterns in images. Neocognitron marked a significant step towards sophisticated image 

recognition by enabling the system to successfully discern handwritten characters, 

showcasing a new era in neural network design and its applications [87]. In 1982, John 

Hopfield developed the Hopfield Network, a kind of network that remembers patterns and 
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can recall them, helping to shape future models in deep learning and recurrent neural 

networks (RNNs). It was a big step towards networks that could manage memory well and 

influenced later technological developments in this field [88]. In 1985, Paul  Werbos, in his 

1982 Ph.D. thesis, introduced the idea of using Backpropagation to spread errors during the 

training of Neural Networks. His findings would later guide the neural network community 

to adopt backpropagation as a practical method, helping networks learn more efficiently and 

laying the groundwork for advancements in modern deep learning and neural network 

training approaches [89]. In 1985, David H. Ackley, Geoffrey Hinton, and Terrence 

Sejnowski developed the Boltzmann Machine, a type of neural network that works with 

probability and only has an input layer and a hidden layer, with no output layer. This network 

advanced the understanding of neural learning, sparking further research in machine learning 

and AI [90].  

In 1986, Terry Sejnowski developed NeTalk, a neural network designed to learn to 

pronounce English text. It was trained by being shown written text along with matching 

phonetic transcriptions to learn from. This innovative approach highlighted the potential of 

neural networks in language processing and speech synthesis [91, 92]. In 1986, Geoffrey 

Hinton, Rumelhart, and Williams introduced a successful method for implementing 

backpropagation in neural networks in their paper. This technique significantly eased the 

training of complex deep neural networks, solving major challenges faced in the early 

research stages and paving the way for advancements in the deep learning field [93]. In 1986, 

Paul Smolensky introduced a variant of the Boltzmann Machine, notably distinguished by 

the absence of intra-layer connections within the input and hidden layers, subsequently 

termed the Restricted Boltzmann Machine (RBM). This innovation was not immediately 

celebrated but, as years progressed, the RBM garnered substantial attention and acclaim, 

particularly for its efficacy in developing recommender systems, illustrating a gradual but 

impactful influence in the realm of machine learning and data handling, especially in the 

context of collaborative filtering and preference prediction [94].  

In 1989, Yann LeCun made a groundbreaking advancement in deep learning and 

computer vision by using backpropagation to train a CNN for recognizing handwritten 
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numerals. This achievement laid a strong foundation for modern computer vision and 

influenced many applications across various domains by demonstrating the potential of 

neural networks to process visual data [95, 96]. In the same year, George Cybenko 

contributed significantly to deep learning with his paper on the Universal Approximation 

Theorem. He showed that a feed-forward neural network with a single hidden layer and a 

finite number of neurons could approximate any continuous function. This insight 

highlighted the potential and utility of neural networks in diverse computational tasks, 

enhancing the credibility and applicability of deep learning in various scientific and 

technological fields [96]. 

In 1991, Sepp Hochreiter pointed out a big issue in deep learning called the vanishing 

gradient problem. This problem makes training deep networks very slow and hard. Because 

of this, many researchers worked to find solutions for years after he highlighted it [97]. In 

1997, Sepp Hochreiter and Jürgen Schmidhuber introduced a groundbreaking paper 

presenting the "Long Short-Term Memory" (LSTM) concept. This design, which is a 

variation of the recurrent neural network, would later play a pivotal role in advancing the 

field of deep learning in subsequent years [98]. In 2006, Geoffrey Hinton et al. presented a 

significant paper.  Within this work, they introduced the concept of Deep Belief Networks 

by layering multiple Restricted Boltzmann Machines (RBMs) on top of each other. Notably, 

this architecture made the training process considerably more efficient, especially when 

dealing with vast datasets [99]. In 2008, Andrew NG's team at Stanford University began 

advocating for utilizing Graphics Processing Units (GPUs) to significantly speed up the 

training of Deep Neural Networks. This approach enabled more practical and efficient 

handling of extensive data in the field of Deep Learning, paving the way for more advanced 

research and applications [100]. Obtaining labeled data has consistently been a tough task 

for the Deep Learning community. In 2009, Stanford professor Fei-Fei Li launched 

ImageNet, a massive database containing 14 million labeled images. This database became 

a crucial resource for deep learning researchers, providing a benchmark through its annual 

competition, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where 

researchers tested and compared their algorithms, sparking numerous advancements in the 

field [101].  
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In 2011, Yoshua Bengio, et al. introduced the ReLU activation function to fix the 

vanishing gradient problem in deep learning. This was important because, while GPUs had 

already helped train deep neural networks faster, the ReLU function provided another useful 

tool to make the training of these networks even more efficient and practical, aiding progress 

in the field [102]. In 2012, AlexNet, designed by Alex Krizhevsky and powered by GPU 

technology, won ImageNet's image classification contest by achieving an impressive 84% 

accuracy, significantly surpassing the previous 75% record. This victory didn’t just mark a 

milestone in accuracy but also sparked a global upswing in deep learning research and 

application, influencing various technological domains [103]. The development of the 

Generative Adversarial Neural Network (GAN) by Ian Goodfellow in 2014 ushered in a new 

era of deep learning applications across diverse fields such as fashion, art, and science. 

GANs, with their ability to create convincing, synthetic data, introduced a range of innovative 

possibilities in various domains, offering a powerful tool for generating realistic data for 

various experimental and creative pursuits. This revolutionary technology has not only 

enriched the machine-learning field but also catalyzed numerous novel applications and 

developments in both technological and artistic arenas [104].  

In 2017, the Google Brain team introduced the modern transformer. This architecture, 

known for its parallel multi-head attention mechanism, enhanced the handling and 

Understanding of sequences and contextual information, particularly in natural language 

processing tasks. The advent of the transformer marked a significant leap in machine-

learning, offering sophisticated and scalable solutions for various applications and 

influencing future AI research and development [105]. In 2018, Google introduced the 

Bidirectional Encoder Representations from Transformers (BERT) [106], signifying a 

breakthrough in the field of Natural Language Processing (NLP). According to a survey 

conducted in 2020, over 150 studies in the domain acknowledged its substantial impact [107] 

In 2018, OpenAI released an article where it presented the inaugural generative pre-trained 

transformer (GPT) system [108].  Subsequently, GPT-2 was introduced in 2019,  being pre-

trained on 40 GB of text, and 8 million documents, from 45 million web pages [109]. A year 

later, GPT-3 was released. While it bore similarities to GPT-2, modifications were made to 

enable larger scaling. It was trained using 499 billion tokens from various sources, including 
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CommonCrawl (570 GB), WebText, English Wikipedia, and two books [110]. GPT-3.5 is a 

subset of GPT-3 models developed by OpenAI in 2022. Subsequently, GPT-4 was developed 

as a multimodal large language model by the same organization IN 2023 [111]. In visual 

tasks, CNNs are often recognized as the core element [112]. However, the success of 

Transformer models in language tasks has encouraged their use in computer vision and other 

combined learning tasks. Recently, the Transformer architecture, originally designed for 

language tasks, is emerging as a promising substitute for CNNs in computer vision [113]. 

The foundational structure introduced by Dosovitskiy et al. in the 2020 paper utilizes 

Transformers to analyze the connections between input pairs, typically words in textual data. 

For images, the primary element under examination is the pixel. Directly mapping 

relationships between every pixel pair in standard-sized images would be too resource-

intensive.  To address this, the ViT strategy evaluates pixel associations within smaller 

segments of the image, such as 16x16 pixel blocks. These segments receive specific 

positional markers and are organized into sequences. During the learning process, these 

markers, which are essentially adjustable vectors, are optimized. These image segments are 

then sequentially organized and combined with an embedding matrix. Once the positional 

marker is incorporated, this combined data is directed through the Transformer's processing 

layers [48]. The transformative impact of Transformer architectures, along with their various 

modifications, has been noticeably evident across a wide spectrum of computer vision tasks. 

These architectures have shown remarkable proficiency in image recognition and a 

foundational task that lays the groundwork for many other vision applications [48, 114].  

Moreover, they have proven adept at detecting specific objects within images, a critical 

component in applications like autonomous vehicles and surveillance [115, 116]. When it 

comes to image segmentation, a task that involves demarcating specific regions or objects in 

an image, Transformers have also shown promise [117] . Their adaptability doesn't stop 

there; they've been employed for enhancing the quality of low-resolution images in super-

resolution tasks and have displayed competency in video understanding [118, 119].  
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1.2. HISTORY OF DEFECT DETECTION 

Since ancient times, craftsmen have been inspecting their work for defects. In many 

early industries, such as pottery or blacksmithing, craftsmen visually inspect each product 

for any imperfections [120]. The early 20th century saw the development of statistical 

methods for quality control. Walter A. Shewhart introduced the control chart in the 1920s, 

leading to the birth of statistical process control (SPC) [121]. This period marked the 

beginning of systematic approaches to detecting and managing defects in manufacturing. 

During and after World War II, there was a significant rise in non-destructive testing (NDT) 

methods, including X-ray, ultrasonic, and magnetic particle inspections [122]. These 

techniques allowed for the inspection of materials and products without causing damage, 

making them essential for industries like aerospace and military manufacturing.  With the 

rise of electronics manufacturing in the 1980s, automated optical inspection (AOI) systems 

were developed to inspect printed circuit boards (PCBs) for defects [123]. AOI systems use 

cameras and image processing algorithms to detect flaws such as missing components, 

misalignments, and soldering issues. Starting in the late 20th and early 21st centuries, 

machine learning techniques began to be applied to defect detection. These systems can be 

trained to recognize and classify defects in a wide variety of manufacturing contexts [124] . 

The use of neural networks, support vector machines, and other machine learning algorithms 

has improved the accuracy and speed of defect detection processes. The current trend of 

automation and data exchange in manufacturing technologies is called Industry 4.0. This 

includes the Internet of Things (IoT), cloud computing, and cognitive computing. Industry 

4.0 represents a new phase in the industrial revolution that focuses heavily on 

interconnectivity, automation, machine learning, and real-time data, all of which can be 

applied to defect detection [125]. Smart sensors and IoT devices can continuously monitor 

production processes and send data to cloud-based platforms where advanced analytics and 

machine learning algorithms can identify defects in real time [126]. 

NDE 4.0 is an extension of Industry 4.0 principles applied to non-destructive 

evaluation. It involves the integration of AI, machine learning, IoT, and big data analytics to 

improve inspections [127]. By leveraging these technologies, NDE 4.0 aims to create 
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intelligent inspection systems capable of performing real-time data analysis and decision-

making, thus enhancing defect detection and prevention capabilities [128]. Recent 

advancements in deep learning and computer vision have further revolutionized defect 

detection. ViTs and CNNs are now being used to enhance defect detection in complex 

industrial environments [129]. These models can analyze high-resolution images and identify 

subtle defects that might be missed by traditional inspection methods.  Additionally, the 

integration of digital twins—virtual replicas of physical systems—allows for the simulation 

and analysis of manufacturing processes in real time, providing a proactive approach to 

defect detection and prevention. This technology leverages big data and AI to predict 

potential defects before they occur, thus enhancing overall product quality and efficiency. 

The incorporation of advanced analytics and predictive maintenance strategies has further 

improved defect detection capabilities. By analyzing historical and real-time data, predictive 

maintenance models can forecast potential failures and schedule timely interventions [130].  

1.3. IOT 

The Internet of Things (IoT) refers to the network of physical devices embedded with 

sensors, software, and other technologies to connect and exchange data with other devices 

and systems over the Internet. IoT has the potential to transform various industries by 

enabling real-time monitoring, automation, and data-driven decision-making [131]. IoT 

devices are used in various applications, from smart homes and wearable devices to industrial 

automation and smart cities. In smart homes, IoT devices such as thermostats, lights, and 

security systems can be controlled remotely, providing convenience and energy savings 

[132]. In industrial settings, IoT enables the creation of smart factories where machines and 

equipment can communicate and coordinate with each other to optimize production 

processes. For instance, IoT sensors can monitor the condition of machinery in real time, 

predicting maintenance needs and preventing equipment failures [133].  

In agriculture, IoT devices can monitor soil moisture, weather conditions, and crop 

health, enabling precision farming and improving yield. Smart cities represent another 

significant application of IoT, where interconnected systems enhance urban living by 
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improving infrastructure, reducing energy consumption, and enhancing public services. For 

example, smart traffic management systems can analyze data from sensors and cameras to 

optimize traffic flow and reduce congestion [134]. IoT-enabled waste management systems 

can monitor the fill levels of waste bins and optimize collection routes, reducing costs and 

environmental impact [135, 136]. Interoperability is another challenge, as devices from 

different manufacturers need to communicate and work together seamlessly [137]. 

Additionally, the management and analysis of the large volumes of data generated by IoT 

devices require advanced analytics capabilities and significant computing resources [138]. 

IoT has the potential to revolutionize various industries by enabling real-time monitoring, 

automation, and data-driven decision-making.  As technology continues to advance, IoT will 

play an increasingly vital role in enhancing efficiency, productivity, and quality of life [131]. 

2.  NDE 4.0 

NDE 4.0 applies the principles of Industry 4.0 to nondestructive testing (NDT), 

enhancing the detection, characterization, and monitoring of material defects using advanced 

technologies. NDE 4.0 aims to transform traditional NDT methods through the integration 

of AI, machine learning, IoT, and big data analytics, thus improving the accuracy, reliability, 

and efficiency of inspections. The primary objective of NDE 4.0 is to create intelligent 

inspection systems that can perform real-time data analysis and decision-making. For 

instance, AI algorithms can be used to analyze large datasets from ultrasonic inspections, 

identifying patterns and anomalies that human inspectors might miss [139][140]. IoT plays 

a crucial role in NDE 4.0 by enabling the collection and transmission of inspection data from 

various sensors and devices to a central database. This interconnected network allows for 

remote monitoring and analysis, reducing the need for on-site inspections and enabling 

timely interventions [141]. Additionally, big data analytics can process vast amounts of 

inspection data, providing insights into material conditions and predicting potential failures 

[142]. Enhanced data accuracy and analysis capabilities lead to more reliable inspection 

results, while the automation of routine tasks increases efficiency and reduces human error 

[143]. Furthermore, the ability to monitor equipment in real-time allows for proactive 

maintenance, minimizing downtime and extending the lifespan of assets [144]. 
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However, the implementation of NDE 4.0 also presents challenges. The integration of 

advanced technologies requires significant investment in infrastructure and training, which 

can be a barrier for some organizations [145]. Additionally, the reliance on digital systems 

increases the risk of cyber threats, necessitating robust cybersecurity measures [146]. There 

is also a need for standardized protocols and guidelines to ensure consistency and reliability 

in inspections across different industries. Despite these challenges, the potential benefits of 

NDE 4.0 are substantial. By leveraging advanced technologies, NDE 4.0 can enhance the 

accuracy, reliability, and efficiency of nondestructive inspections, ultimately improving 

safety and performance in various industries [147].  

2.1. SMART DIGITAL TWINS 

Smart digital twins are virtual replicas of physical assets, systems, or processes that use 

real-time data and advanced simulations to mirror and predict the behavior of their real-world 

counterparts. These digital twins integrate data from IoT devices, AI, and machine learning 

algorithms to provide insights into the performance, maintenance needs, and optimization 

opportunities of physical systems [148].  The concept of digital twins originated in the 

aerospace industry but has since expanded to various sectors, including manufacturing, 

healthcare, and urban planning. By creating a digital Counter part of a physical asset, 

organizations can monitor its condition in real-time, simulate different scenarios, and predict 

potential issues before they occur [149-151].  This predictive capability is particularly 

valuable for maintenance and operational optimization, as it allows for proactive 

interventions that can prevent failures and reduce downtime [152]. AI and machine learning 

play a critical role in the functionality of smart digital twins. These technologies enable the 

analysis of vast amounts of data collected from sensors and IoT devices, identifying patterns 

and correlations that can inform decision-making [153]. For example, in a manufacturing 

context, a digital twin of a production line can analyze data from various stages of the process 

to identify bottlenecks, optimize resource allocation, and improve overall efficiency [154]. 

The integration of digital twins with IoT and big data analytics provides a comprehensive 

view of the asset's lifecycle. This holistic approach enables organizations to optimize the 

design, production, operation, and maintenance phases, leading to improved performance 
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and cost savings [61]. Furthermore, the ability to simulate different scenarios allows for better 

risk management and informed decision-making [155].  Smart digital twins represent a 

transformative technology with the potential to  revolutionize various industries by providing 

real-time insight and predictive capabilities. As technology continues to evolve, it will play 

a crucial role in enhancing the efficiency, reliability, and sustainability of physical systems 

[148]. 

2.2 STRUCTURAL HEALTH MONITORING (SHM) IN INDUSTRY 4.0 

 

Figure 3. Flow diagram illustrating how various camera/sensor inputs undergo data analysis procedures, 

generating actionable insights that inform critical decisions and outcomes. 

Figure 3 shows a SHM workflow, starting with various inputs (e.g., camera data, sensor 

readings on heat, stress, deformation, etc.), proceeding through data analysis steps (outlier 

identification, defect detection, model checks), and culminating in actionable outcomes such 

as temporary closure, component replacement, or traffic assessment [156]. SHM is an 

integral part of Industry 4.0, particularly in maintaining and ensuring the safety of 

infrastructure such as bridges, buildings, and railway tracks. SHM involves using various 

sensors and data acquisition systems to monitor the health and performance of structures in 

real-time. The integration of SHM with advanced analytics and machine learning allows for 

the continuous assessment of structural integrity, enabling early detection of potential issues 



 

41      
 

before they become critical [157].  This proactive approach not only enhances safety but also 

optimizes maintenance schedules and reduces operational costs [158]. SHM systems can also 

integrate with IoT technologies to provide real-time data transmission and remote monitoring 

capabilities, significantly improving the efficiency and accuracy of infrastructure 

management [129]. Additionally, SHM can aid in disaster resilience by providing early 

warnings of structural weaknesses that could lead to catastrophic failures [159]. The 

application of SHM in the Railway industry, for example, involves continuous monitoring of 

rail tracks and components, which is essential for preventing accidents and ensuring smooth 

operations [9]. Furthermore, SHM Facilitates the integration of cyber-physical systems with 

structural health monitoring, enhancing the reliability and safety of critical infrastructure 

[160]. 

 

Figure 4. Automated systems and geotechnical instruments that can be used for structural monitoring. 1. 
Gateway with Solar Panel 2. Water Level Meter 3. Tiltmeter 4. LaserTilt90    5. Vibrating Wire crackmeter 6. 
Single Channel Data Logger 7. Electrolevel Beam Sensors   8.  Vibration Monitor 9. Optical Survey Prism 10. 

Strain Gauges 11. Meteorological Station 12. Piezometer 13. Five Channel Data Logger 14. InSAR1 

Figure 4 shows a typical urban bridge integrated with an SHM (Structural Health 

Monitoring) system, highlighting various sensor placements (e.g., on the bridge deck, piers, 

and surrounding infrastructure) for real-time data gathering. These sensors monitor factors 

like deformation, vibration, and environmental conditions, helping assess the structure’s 

 
1 https://www.geomotion.com.au/structural-monitoring.html 
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integrity and ensure public safety. Reliable assessment methods for railways and other 

infrastructure components are critical for ensuring long-term safety and functionality [161]. 

The development of smart sensing technologies and their application in SHM represents a 

significant advancement in the field, offering new opportunities and challenges [162]. The 

use of machine learning in SHM is becoming increasingly important, offering enhanced 

capabilities for detecting and predicting structural issues [163]. SHM systems integrated with 

Industry 4.0 technologies can provide comprehensive and continuous monitoring, ensuring 

the safety and reliability of railway infrastructure [164]. 

3.  RAILWAY AND DEFECT DETECTION 

Over the past 20 years, rail transit has significantly advanced worldwide and has 

become a crucial mode of modern transportation. This fast-paced growth in rail systems has 

led to heightened demands for safety in transport. Ensuring the good condition of railway 

tracks is vital for the safe and reliable running of trains [165]. Transportation is essential in 

today's world, linking people and commerce and enabling the movement of goods and 

services. Railways stand out in this sector, offering a dependable and eco-friendly way of 

transporting people and goods, and are a crucial part of modern transport systems [166]. 

Railways drive economic growth, connect communities, support trade and tourism, and offer 

a sustainable option for long-distance travel and freight movement. They help ease urban 

congestion and are more environmentally friendly than many other transport modes, playing 

a vital role in reducing the transportation industry's environmental footprint. The global rail 

sector generates over a trillion dollars annually and employs over five Million individuals. 

Railways are a key economic force in numerous countries, contributing up to 3 percent of 

some nations' Gross Domestic Product (GDP). Besides their economic impact, railways are 

essential in linking communities and promoting trade and tourism. They offer a dependable 

and effective means of transportation for both long-distance Journeys and goods transport 

and can aid in alleviating traffic congestion and enhancing urban mobility [167]. In 

developing nations, railways play a vital role in linking remote and less-served regions with 

key economic hubs, thus promoting economic growth and enhancing the availability of 

markets and services. Despite its numerous advantages, the railway industry encounters 
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various obstacles. A lack of sufficient investment in railway infrastructure by many nations 

has resulted in outdated and inefficient systems [168]. Rails tend to wear down over time due 

to ongoing strain from frequent train travel, the rapid pace of trains on the railway network, 

the pressure of axle loads, and varying climatic factors [17]. 

 Rail track damage can cause train derailments, putting the safety of passengers and rail 

workers at risk. Over time and with frequent use, tracks, like any mechanical system, become 

vulnerable to defects and breakdowns. In the year 2009, track faults were responsible for 658 

out of the 1890 recorded railway accidents [169]. During the past decade, about one in every 

three train accidents in the United States has been due to issues related to the tracks [170]. 

The significant risks associated with rail track defects emphasize the need for diligent 

maintenance and repair of rail lines. Regular checks and upkeep are crucial to lessen hazards 

and avoid disruptions in the railway system [18].  

Innovative inspection technologies such as aerial and terrestrial imaging, optical and 

laser scanning, and robot-assisted inspection have revolutionized quality control in various 

sectors [171]. Aerial imaging, conducted with drones or aircraft, is particularly effective for 

inspecting large-scale infrastructures [172]. Terrestrial imaging, which uses ground-based 

cameras, is better suited for thorough inspections of easily accessible areas [172]. Optical 

and laser scanning techniques are used to create detailed 3D models and high-resolution 

surface mappings [173], whereas robotic inspections are employed to reach areas that are 

either hazardous or difficult to access [174]. Maintaining railway tracks is notably one of the 

most expensive aspects of railway engineering. In cases like the Netherlands, it's estimated 

that over fifty percent of the annual maintenance budget is dedicated solely to track upkeep. 

To lower the costs and risks related to rail track issues and to enhance both safety and 

maintenance effectiveness, the creation and implementation of innovative techniques and 

strategies are crucial [175].  Moreover, the railway industry is increasingly incorporating 

connected devices, sensors, and big data to upgrade maintenance practices. Machine 

learning, having already transformed areas like computer vision and speech recognition, is 

now being leveraged in railways. This is due to the vast data from modern monitoring 

equipment like sensor networks and HD cameras, aiming to improve system reliability and 
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lower maintenance costs and risks [176]. The impact of AI in safety monitoring for railway 

operations is significant. These AI systems are capable of continuously tracking the condition 

of rail tracks and alerting maintenance teams about minor issues before they develop into 

larger problems. This preventive approach is key in minimizing accident risks, thereby 

increasing the overall safety and dependability of rail services. With real-time data and alerts 

from AI, potential risks are addressed quickly, ensuring that railway operations consistently 

adhere to high safety standards [177, 178]. 

Geometric inspection of high-speed railway tracks specifically refers to the process of 

detecting vertical and lateral deviations, as well as irregularities of the track, especially when 

there is no load from trains. The results of this inspection are crucial as they form the primary 

basis for any necessary adjustments to the track. This inspection process involves calculating 

the center mileage of the railway line by measuring specific coordinates, which are crucial 

for ensuring the track's alignment and overall integrity. The accuracy and precision of 

geometric inspections are vital for maintaining the safety and efficiency of high-speed 

railway operations. Geometric inspection in manufacturing significantly outperforms manual 

methods in efficiency and precision. Utilizing advanced technologies like 3D scanning, these 

automated systems inspect parts much faster and with greater accuracy, a crucial factor in 

precision-critical industries [179].  From a cost perspective, automated inspections, despite 

higher initial investments, prove more cost-effective over time due to their efficiency and 

lower error rates. In contrast, Manual methods, while cheaper initially, may incur higher 

long-term costs due to less efficiency and higher error margins [180].  Railway defect 

detection is a critical aspect of maintaining the safety and reliability of rail systems. NDE 

methods are increasingly adopted in this field due to their ability to inspect materials and 

components without causing damage. These methods are essential for identifying flaws and 

defects in rail tracks, which can prevent accidents and ensure smooth operations. Innovative 

inspection technologies such as aerial and terrestrial imaging, optical and laser scanning, and 

robot-assisted inspection have revolutionized quality control in the railway sector [181]. 

Aerial imaging, conducted with drones or aircraft, is particularly effective for inspecting 

large-scale rail infrastructures. This method allows for rapid data collection over extensive 

areas, providing comprehensive overviews of track conditions [182]. 
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Terrestrial imaging, which uses ground-based cameras, is better suited for thorough 

inspections of easily accessible track sections. This approach enables detailed examination 

of specific track areas, identifying defects that might be missed by broader aerial surveys 

[183]. Optical and laser scanning techniques are used to create detailed 3D models and high-

resolution surface mappings of rail tracks. These technologies provide precise measurements 

of track geometry, allowing for the detection of even minor deviations and irregularities. The 

high-resolution data collected can be analyzed to identify cracks, and other defects that could 

compromise track integrity [184]. Robotic inspections are employed to reach areas that are 

either hazardous or difficult to access [185]. Robots equipped with advanced sensors can 

navigate complex track environments, performing detailed inspections in locations that 

would be unsafe or impractical for human inspectors. In railway defect detection, these 

imaging technologies are preferred for their ease of use, cost-effectiveness, comprehensive 

coverage, high-resolution details, flexibility, and data integration capabilities. The 

advantages of these methods, coupled with their non-destructive nature, make them ideal for 

ensuring railway safety and reliability. By allowing for thorough inspection and maintenance 

while preserving the integrity of the railway infrastructure, these technologies help maintain 

continuous and safe rail operations. Machine learning and AI further enhance railway defect 

detection by analyzing the vast amounts of data generated by these advanced inspection 

technologies. AI systems can continuously monitor the condition of rail tracks, identifying 

potential issues before they develop into significant problems. This preventive approach is 

crucial in minimizing accident risks, thereby increasing the overall safety and dependability 

of rail services. Real-time data and alerts from AI-driven systems enable maintenance teams 

to address potential risks promptly, ensuring that railway operations consistently adhere to 

high safety standards  [186]. In summary, the integration of NDE methods and advanced 

imaging technologies in railway defect detection represents a significant advancement in the 

field. These innovations provide a framework for maintaining rail infrastructure, ensuring 

that it remains safe, reliable, and efficient. Figure 5 shows railway inspection 

technologieswhich are using optical and laser scanning systems. 
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Figure 5. Advanced Railway Inspection Technologies: Utilizing Optical and Laser Scanning Systems2 

4. SMART COMPUTER VISION IN SHM 

In this section, we discuss several important concepts related to our study. These 

include transfer learning, CNNs, specific CNN architectures like ResNet50, VGG16, and 

VGG19, the ViT, and the DeiT. We will also cover K-fold cross-validation and key 

performance metrics such as accuracy, precision, recall, and loss. Additionally, we will 

outline the workflow of our machine-learning project. This information will provide a clear 

understanding of the techniques and methods used in our study. 

 4.1 TRANSFER LEARNING 

Transfer learning is a machine learning concept that involves leveraging knowledge 

gained from solving one problem and applying it to a different, but related, problem [187]. 

In traditional machine learning, models are typically trained from scratch for a specific task. 

However, transfer learning acknowledges that knowledge acquired from solving one task can 

be beneficial for solving a different, yet related, task [188]. For example, in image 

recognition, a model pre-trained on a vast dataset for object recognition can be fine-tuned for 

 
2 https://www.railway-technology.com/contractors/training/okondt-group/ 
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a specific task, such as facial recognition or detecting specific objects in medical images. 

Transfer learning facilitates faster convergence and often requires less annotated data for the 

target task [189-191] 

 

Figure 6. The idea of Transfer Learning3 

Pretrained models are neural networks that have been trained on massive datasets for a 

specific task, such as image classification, natural language processing, or speech 

recognition. These models, already equipped with learned features and representations, serve 

as powerful starting points for new tasks [190]. The idea behind pre-trained models is to 

capture general features and patterns in the data, which can then be fine-tuned or adapted for 

a specific task. These models serve as a starting point for transfer learning. Common pre-

trained models include architectures like VGG, ResNet, BERT, GPT, etc., which have been 

trained on large-scale datasets for tasks like image classification, object detection, natural 

language understanding, etc [191]. Figure 6 shows a typical transfer learning pipeline, where 

a large, labeled dataset (e.g., ImageNet) is used to train a source model. Knowledge gained 

from this source model is then transferred to a target model, which is fine-tuned using a much 

smaller labeled dataset. This approach leverages the previously learned features to improve 

 
3 https://www.slideshare.net/slideshow/transfer-learning-d2l4-insightdcu-machine-learning-workshop-
2017/75523347 
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performance on tasks with limited data.Transfer learning and pre-trained models offer a 

practical solution to the challenges of resource-intensive model training and data scarcity in 

machine learning. By reusing pre-trained models, these approaches significantly reduce the 

computational burden and time required for training new models, promoting efficiency [192]. 

Additionally, pre-trained models demonstrate data efficiency, excelling in tasks with limited 

labeled data. Their ability to capture high-level features and representations results in 

improved performance compared to models trained from scratch, particularly in scenarios 

with constrained training data. Transfer learning and pre-trained models serve as valuable 

tools, enhancing the overall efficiency and effectiveness of machine learning systems across 

diverse applications [193]. 

4.2 CONVOLUTIONAL NEURAL NETWORK (CNN) 

Based on Figure 7, which illustrates the architecture of a CNN, we can delve into a 

more detailed explanation of how CNNs function.  CNN is a class of deep neural networks, 

most applied to analyzing visual imagery. The architecture of CNN is designed to 

automatically learn spatial hierarchies of features from input images. Here's a step-by-step 

breakdown of the CNN process is explained below:  

a. Image Input: The process starts with an input image. This image is represented in 

the form of a matrix of pixel values. 

b. Convolutional Layers: The first stage of a CNN is a series of convolutional layers. 

These layers use filters or kernels to perform convolution operations that detect 

various features such as edges, corners, or other visual elements. The filters slide over 

the image and compute the dot product of the filter values and the original pixel values 

of the image. Each filter produces a different feature map. 

c. Pooling Layers: Following convolution, the network applies pooling layers, 

typically max pooling, to reduce the dimensionality of each feature map. Pooling 

helps to make the detection of features invariant to scale and orientation changes and 

also reduces the computational load for the network. 
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d. Fully Connected Layers:  After pooling, the network flattens the pooled feature 

maps and feeds them into a series of fully connected layers. These dense layers 

perform classification based on the features extracted in previous layers. Each neuron 

in a fully connected layer has full connections to all activations in the previous layer. 

e. Output: The final layer in a CNN is the output layer. In a classification task, this 

output layer will often consist of a SoftMax activation function that converts the 

outputs into probability scores for each class. The class with the highest probability 

is the network's prediction. 

The entire CNN consists of two parts: feature extraction (convolution and pooling) and 

classification (fully connected layers). The feature extraction part uses convolutional layers 

to automatically identify important patterns and features in the input images, followed by 

pooling layers to reduce the dimensionality of these features while preserving essential 

information. This process eliminates the need for manual feature selection. The classification 

part then takes the extracted features and uses fully connected layers to map them to the 

output classes, determining the probability that the input image belongs to each class. This 

automated approach of learning feature representations directly from images is one of the 

biggest advantages of CNNs, making them highly effective for tasks like image recognition, 

medical image analysis, and other areas of computer vision. [194- 195]. 
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Figure 7. Simple CNN architecture 

3.2.1 Resnet50: 

ResNet50, with 50 layers, is a deep CNN designed to solve the vanishing gradient 

problem that often occurs when training very deep networks. This problem arises when 

gradients become very small during backpropagation, making it difficult for the network to 

learn effectively as more layers are added. ResNet50 introduces a novel approach called 

residual learning to overcome this challenge. Residual learning uses shortcut connections, 

also known as skip connections, which allow gradients to flow more easily through the 

network. These shortcuts bypass one or more layers by connecting the output of a layer 

directly to the output of a deeper layer. This direct path helps to preserve the gradient during 

backpropagation, ensuring that the network can learn even as it becomes deeper. By 

facilitating the flow of gradients, these shortcut connections address the vanishing gradient 

problem, enabling the training of much deeper networks than was previously possible. 

The architecture of ResNet50 includes several key components. Convolutional layers 

apply filters to the input data to extract relevant features. Batch normalization layers 

normalize the output of the previous layers, stabilizing and accelerating the training process. 

Activation layers introduce non-linearity into the network, allowing it to Learn complex 

patterns. Pooling layers reduce the spatial dimensions of the data, making the network more 
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computationally efficient. Finally, fully connected layers perform the final classification 

based on the features extracted by the convolutional layers. ResNet50 is part of the broader 

ResNet family, which includes other variants like ResNet18, ResNet34, ResNet101, and 

ResNet152, each with different numbers of layers and complexity. ResNet50 has proven 

highly effective in various image recognition tasks and is widely used in both academic 

research and industry applications. It is known for its strong performance on benchmark 

datasets such as ImageNet, achieving state-of-the-art results. The ability of ResNet50 to train 

very deep networks without suffering from the vanishing gradient problem has made it a 

significant advancement in the field of deep learning and image recognition. [196- 97]. 

3.2.2 VGG6 and VGG19: 

VGG16 and VGG19 are deep CNN architectures developed by the VGG at the 

University of Oxford. These models have gained significant prominence due to their depth 

and capability in handling large-scale image recognition tasks, such as those seen in the 

ImageNet competition. VGG16, as the name suggests, is composed of 16 weight layers. 

These include 13 convolutional layers, which are tasked with extracting features from the 

input images. Each convolutional layer utilizes small 3x3 filters, an approach that helps 

capture fine details while keeping the number of parameters manageable. Following these 

convolutional layers are 3 fully connected layers. The first two fully connected layers have 

4096 nodes each, while the final layer has 1000 nodes, corresponding to the number of classes 

in the ImageNet dataset. This structure allows VGG16 to effectively learn and classify high-

dimensional data. On the other hand, VGG19 extends the architecture of VGG16 by adding 

three more convolutional layers, bringing the total to 19 weight layers. These additional 

convolutional layers enable VGG19 to capture more complex patterns and finer details within 

the images. While this added depth can lead to improved performance in recognizing intricate 

features, it also makes VGG19 more computationally intensive, requiring more resources for 

both training and inference. Despite the increased computational load, VGG19's enhanced 

capability to learn detailed features makes it a valuable tool for tasks demanding high 

accuracy. The primary distinction between VGG16 and VGG19 is the additional three 

convolutional layers in VGG19, which result in greater computational demands. However, 
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these extra layers also allow VGG19 to learn more complex features from the input data, 

which can be particularly advantageous in tasks requiring detailed image analysis. Both 

models have proven highly effective in large-scale image recognition challenges and have 

influenced the development of subsequent deep-learning architectures. The VGG 

architectures have not only excelled in their own but have also served as foundational models 

for further advancements in the field of computer vision. Their impact is evident in various 

applications, ranging from image recognition to medical image analysis, demonstrating their 

versatility and robustness in handling complex visual data [198].  

 4.3 VISION TRANSFORMER (VIT) 

The ViT represents a novel approach in computer vision, leveraging the transformer 

architecture, traditionally used in natural language processing. In the ViT framework, an 

image is treated similarly to a sequence of words or tokens. Typically, the following steps 

are performed. 

a. Linear Projection of Flattened Patches: The process begins with the division of an 

image into a grid of non-overlapping patches. Each patch is then "flattened", meaning 

its pixel values are unrolled into a single vector. These vectors are subsequently 

subjected to a linear projection to transform them into embeddings, making them 

compatible with processing by the transformer. 

b. Transformer Encoder: These patch embeddings are then fed into a transformer 

encoder. The encoder consists of multiple layers that feature multi-head attention 

mechanisms and feed-forward networks, interspersed with normalization layers. The 

strength of the transformer lies in its ability to capture long-range dependencies 

within the input. In the context of ViT, this means it can detect relationships between 

different patches of the image, which is crucial for tasks like image recognition. 

c. Class Token and MLP Head: A unique aspect of the ViT is the introduction of a 

'Class' token alongside the patch embeddings. This token gathers global contextual 

information about the image as it passes through the transformer layers. After the 
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encoder, the transformed representation of this class token is then passed through a 

Multi-Layer Perceptron (MLP) head. This final step is where the model makes its 

prediction, determining the category or class that the input image belongs to. This 

approach allows the Vision Transformer to effectively handle image recognition tasks 

by understanding both the local features of image patches and their global 

arrangement, thereby providing a comprehensive analysis of the image as a whole 

[199].  

3.3.1 ViT-base-patch16-224: 

 ViT-base-patch16-224 is a specific configuration of the ViT. The term "ViT-base" 

indicates that this is a medium-sized transformer model. In the context of transformer models, 

"base" denotes a particular architecture that includes 12 layers, also known as transformer 

blocks. Each layer contains 768 hidden units and 12 attention heads. This configuration 

strikes a balance between complexity and performance, making it suitable for many standard 

tasks without being as resource intensive as larger models. The "patch16" part of the name 

refers to how the model processes input images. Instead of analyzing entire images directly, 

the Vision Transformer divides each image into smaller patches. In this case, each patch is 

16x16 pixels in size. These patches are then treated as individual tokens, like how words are 

treated in natural language processing models. This approach allows the model to capture 

detailed information from various parts of the image, which is crucial for accurate image 

classification. Finally, the "224" in the model's name specifies the input image size. Before 

being fed into the model, images must be resized to 224x224 pixels. This standardization 

ensures consistency in the input data, which is essential for training and evaluating the model 

effectively. By using images of this specific size, the model can efficiently process and 

classify images, leveraging its transformer-based architecture. Overall, ViT-base-patch16-

224 is designed for standard image classification tasks and is particularly effective when 

large-scale datasets are available for training. As part of the broader Vision Transformer 

family, this model configuration aims to provide a balance between computational efficiency 

and predictive performance, making it a versatile choice for various image recognition 

applications [200-201]. 
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3.3.2 DeiT 

The DeiT is a specialized version of the ViT designed for image classification tasks. It 

is trained using a teacher-student strategy, where a "teacher" model, typically a more complex 

and well-trained network, guides a "student" model. This method incorporates a unique 

"distillation token" that interacts with the class and patch tokens through self-attention layers. 

The distillation token helps the student model focus and learn effectively from the teacher's 

knowledge, thereby improving its performance with less data and computational resources. 

DeiT Models are notable for their efficiency and effectiveness, achieving competitive 

accuracy on standard benchmarks like ImageNet without the need for extensive datasets or 

large-scale computational resources used by traditional transformers [114].  

4.4 K-FOLD CROSS-VALIDATION 

 The k-fold cross-validation strategy involves partitioning the dataset into K equal 

segments or folds. In each iteration of the training/validation process, one-fold is Used as the 

validation set while the remaining K-1 folds are combined to form the training set.  This cycle 

is repeated until each fold has been used once as the validation set, ensuring that every data 

point contributes to both the training and validation phases [202]. In our study, we used 10-

fold cross-validation to evaluate machine learning models for defect detection. We chose 

K=7 to balance bias and variance, offering a thorough assessment without overfitting. This 

setting is also computationally efficient compared to more folds.  

4.5 METRICS 

Metrics provide a quantitative measure of how well a model performs. Different 

metrics can be used to assess different aspects of a model's performance, such as its accuracy, 

precision, recall, and loss [201]. 

 Loss: In machine learning, the loss is a mathematical function that measures the difference 

between the predicted output and the actual output (or target). The loss function measures 

how closely the model's Predictions match the actual values. The goal during training is to 
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minimize this loss. Given that we are distinguishing between two classes - defective and non-

defective - we employ the binary loss formula as below. The binary loss formula effectively 

penalizes wrong predictions, especially those that are confidently incorrect. The use of 

logarithms in this formula amplifies the penalty for predictions that are far off from the actual 

value. The main objective in the model's training process is to minimize this loss value, thus 

enhancing the accuracy of the model's predictions. Here is the formula of loss:  

 

Confusion Matrix: A confusion matrix is a tool used in classification tasks to visualize the 

performance of an algorithm. As shown in Figure 8, the confusion matrix is a table that 

displays the number of correct and incorrect predictions, categorized by each class. Binary 

classification, like distinguishing between defective and non-defective items, consists of four 

parts: True Positives, True Negatives, False Positives, and False Negatives. This matrix helps 

in calculating key performance metrics such as accuracy}, precision, and recall, providing a 

clear picture of the model's strengths and weaknesses in predicting the two classes. 

Accuracy: When we wish to evaluate the effectiveness of a binary classifier, accuracy is the 

statistic that is often used. In our case, it represents the number of times a model has correctly 

predicted the class of an image divided by the total number of predictions made across the 

two classes (defective and non-defective). The formula for determining accuracy is the ratio 

between the number of true predictions (TP + TN) and the total number of predictions (TP + 

TN + FP + FN). Here is the formula for calculating accuracy: 
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                                          Figure 8. Confusion Matrix 

Precision and Recall: Confusion matrix is used to introduce the concepts of precision and 

recall. Precision is just the accuracy that is calculated only for positive predictions. It is also 

called specificity because it shows how sensitive an instrument is when it needs to recognize 

an output. The metric tells us the percentage of times we are right when we label a class as 

positive. Recall, on the other hand, helps us figure out the percentage of positive samples that 

were correctly identified. Here is the formula for calculating precision and recall:                                                                    

                            

 In an image classification project distinguishing between defective and non-defective 

items, choosing the right metrics is crucial. While the cross-entropy loss function guides 

learning, it doesn't fully reflect practical performance. Metrics like accuracy, recall, and 

precision are essential. Accuracy shows overall performance but can be misleading with 

imbalanced datasets, such as having more non-defective items. Recall measures the 

percentage of actual defects correctly identified and is crucial when missing defects is costly 

or dangerous, even if it flags some non-defective items as defective. Precision ensures that 

predicted defective items are indeed defective, minimizing unnecessary waste or costs. 

4.6 WORKFLOW OF MACHINE LEARNING PROJECT 

 Figure 9 outlines the machine learning workflow, starting with problem  intuition 

understanding the issue, and proceeding to data collection for gathering relevant data. The 

next steps involve data preprocessing to clean, normalize, and encode the data, followed by 

feature engineering to select, and transform features. After this, model selection involves 
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choosing the appropriate algorithm, and model training fits the data to this model. Once 

trained, the model is evaluated to assess its performance, and hyperparameter tuning 

optimizes this performance. The model is then tested on unseen data, followed by deployment 

into systems. Ongoing monitoring and maintenance ensure the model remains effective, and 

a feedback loop refines the model based on real-world feedback. 

                       

Figure 9. Workflow of Machine Learning Project  

 

 



 

 

 

  VERS UNE MAINTENANCE INTELLIGENTE DES VOIES FERRÉES : 

ÉVALUATION NON DÉSTRUCTIVE AMÉLIORÉE PAR L’IA AVEC DES 

TRANSFORMERS DE VISION ET DES CNNS POUR LA DÉTECTION DE DÉFAUTS 

DES ATTACHES  

1.  RÉSUMÉ EN FRANÇAIS DU PREMIER ARTICLE 

Cette recherche porte sur la maintenance prédictive des infrastructures ferroviaires en 

utilisant des techniques d’évaluation non destructive (NDE) et l’imagerie pour identifier les 

défauts des fixations de voies ferrées. En exploitant des modèles d’apprentissage 

automatique, y compris les réseaux de neurones convolutifs (CNNs) et les architectures 

basées sur les transformeurs, l’étude identifie Vision Transformer (ViT) et Data-efficient 

Image Transformer (DeiT) comme les modèles les plus performants en raison de leur 

excellente généralisation et efficacité d’apprentissage. L’intégration de l’IA, du machine 

learning et des technologies de l’Industrie 4.0 améliore la maintenance ferroviaire en 

automatisant la détection des défauts, augmentant ainsi la fiabilité et réduisant les coûts. 

L’étude passe en revue différentes techniques de détection des défauts, en commençant 

par les méthodes de traitement d’image traditionnelles, comme la détection des contours et 

les opérations morphologiques, qui sont limitées face aux motifs de défauts complexes. Elle 

explore ensuite les approches d’apprentissage automatique, notamment les méthodes 

supervisées (ex. : SVMs, Random Forests) et non supervisées (ex. : Clustering, 

Autoencodeurs), qui exploitent les données historiques mais nécessitent une ingénierie des 

caractéristiques poussée. L’adoption de modèles d’apprentissage profond, tels que ResNet, 

AlexNet, Inception et YOLO, a permis d’améliorer la classification des défauts en extrayant 

automatiquement les caractéristiques pertinentes. Les avancées les plus récentes se 

concentrent sur les modèles basés sur les transformeurs, y compris ViT, Swin Transformer, 

TransUNet, Rail-Former et TrackNet, qui surpassent les CNNs grâce à leur capacité à 

capturer à la fois des caractéristiques locales et globales grâce aux mécanismes d’auto-

attention. 
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Pour valider ces modèles, l’étude utilise un jeu de données public disponible sur 

Kaggle, comprenant 1400 images de voies ferrées (700 défectueuses, 700 non défectueuses), 

représentant des fixations telles que des boulons, des clips, des ancrages et des plaques. Le 

prétraitement des données inclut le redimensionnement des images (224x224 pour 

l’entraînement, 256x256 pour la validation/test), la normalisation, l’augmentation des 

données (recadrage aléatoire, retournement horizontal) et une validation croisée stratifiée à 

10 plis afin d’assurer un équilibre entre les classes. L’étude évalue des architectures CNN 

(ResNet50, VGG16, VGG19) aux côtés des modèles basés sur les transformeurs (ViT, DeiT). 

Alors que les CNNs sont fiables, ils peinent à capturer le contexte global des images, tandis 

que ViT et DeiT traitent les images sous forme de séquences de patches, améliorant 

considérablement la détection des défauts. L’étude applique l’apprentissage par transfert à 

l’aide de modèles pré-entraînés sur ImageNet et utilise Optuna pour l’optimisation des 

hyperparamètres, ajustant notamment le taux d’apprentissage, le taux de dropout, le 

momentum et la taille des lots. 

L’évaluation des performances repose sur des métriques clés, notamment la fonction 

de perte, l’exactitude, la précision, le rappel et l’aire sous la courbe ROC (AUC ROC). Les 

résultats montrent que ViT et DeiT obtiennent les meilleurs scores en AUC ROC (0.97 & 

0.98), exactitude (98 % & 95.7 %) et rappel (98.46 % & 98.62 %), ce qui en fait les modèles 

les plus performants. VGG16 et VGG19 affichent des performances modérées (~93 % 

d’exactitude), tandis que ResNet50 est moins efficace (~85 % d’exactitude, 0,89 AUC ROC). 

L’importance de l’optimisation des hyperparamètres est évidente, Optuna permettant 

d’améliorer significativement le rappel et l’exactitude, réduisant ainsi le risque de faux 

négatifs. Sur un jeu de test distinct de 210 images, ViT (98.09 % d’exactitude) et DeiT (95,71 

% d’exactitude) surpassent les modèles basés sur les CNNs, confirmant leur supériorité pour 

la classification des défauts. 

Cette étude conclut que les transformeurs de vision (ViT et DeiT) sont les modèles les 

plus efficaces pour la détection des défauts des fixations ferroviaires, surpassant les CNNs 

grâce à leur capacité à analyser globalement les images et à se focaliser sur plusieurs régions 

simultanément. Alors que les modèles VGG offrent des performances acceptables, ils sont 
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dépassés par les transformeurs en matière d’efficacité d’apprentissage et de précision, tandis 

que ResNet50 est le moins performant dans ce contexte. La recherche met également en avant 

le rôle crucial de l’optimisation des hyperparamètres, qui influence considérablement les 

performances des modèles et souligne la nécessité d’une optimisation systématique. 

Malgré ses points forts, l’étude reconnaît certaines limites, notamment le fait que la 

répartition équilibrée du jeu de données ne reflète pas nécessairement la répartition réelle des 

défauts et que le coût computationnel élevé des transformeurs peut limiter leur déploiement 

dans des environnements à ressources restreintes. Les recherches futures se concentreront sur 

l’extension des jeux de données, l’optimisation de l’efficacité computationnelle et le 

développement d’architectures hybrides CNN-Transformers afin d’équilibrer performance et 

efficacité. Ces résultats renforcent le rôle croissant des transformeurs de vision dans la 

détection des défauts ferroviaires, posant ainsi les bases pour de futures avancées dans la 

maintenance ferroviaire automatisée et l’analyse prédictive.      

       Mots-clés : Détection de défauts sur attaches ferroviaires, Apprentissage automatique, 

CNN, Transformers. 

 2. TOWARD SMART RAILWAY MAINTENANCE: AI-ENHANCED NON-
DESTRUCTIVE EVALUATION USING VISION TRANSFORMERS AND 

CNNS FOR FASTENER DEFECT DETECTION  
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CONCLUSION GÉNÉRALE  

In this section, we present a concise overview of the experimental results on the test 

set, which comprises 15% (210 samples) of the complete 1,400‐image dataset. This portion 

was separated from the dataset at the outset to ensure that the model would be evaluated on 

truly unseen data.This balanced distribution ensures that both categories are adequately 

represented during evaluation, allowing for a more reliable assessment of each model’s 

performance. Table 5 shows summary of each model’s performance on the test set of 210 

images, including loss, accuracy, precision, recall, F1‐score, and the confusion matrix. 

Model Loss Accuracy Precision Recall F1-Score Confusion Matrix 

DeiT 0.13507 0.95714 0.959338 0.957142 0.95717689 [
98 1
8 103

] 

ViT 0.05007 0.98095 0.981123 0.980952 0.9809489 [
101 3
1 105

] 

VGG19 0.18558 0.938095 0.938403 0.938095 0.9380572 [
94 8
5 103

] 

VGG16 0.11087 0.947619 0.947717 0.9476190 0.9476466 [
111 6
5 88

] 

ResNet50 0.39728 0.847619 0.854149 0.8476190 0.8481182 [
83 10
22 95

] 

Table 5. Summary of each model’s performance on the test set of 210 images, including loss, accuracy, 
precision, recall, F1‐score, and the confusion matrix 

Table 6 provides standard definitions of the four fundamental metrics—true positives, 

true negatives, false positives, and false negatives—used to evaluate classification 

performance. 

Metrics Explanations 

True Positive (TP) The actual label is Defective (1), and the model correctly predicts Defective (1). 

True Negative (TN): The actual label is Non-Defective (0), and the model correctly predicts Non-Defective 

(0). 
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False Positive (FP): The actual label is Non-Defective (0), but the model incorrectly predicts Defective (1). 

False Negative (FN): The actual label is Defective (1), but the model incorrectly predicts Non-Defective (0). 

Table 6. Definitions of confusion matrix metrics used in this study, detailing the various ways a model’s 
predictions can align—or misalign—with the actual labels. 

        Figure 10 presents the confusion matrices for each model—DeiT, ViT, VGG19, VGG16, 

and ResNet50—showing how many instances were correctly identified as defective (TP), 

mistakenly missed (FN), incorrectly flagged (FP), or correctly recognized as non‐defective 

(TN). 

 

Figure 10. Confusion matrices illustrating the distribution of True Positives (TP), False Negatives (FN), False 
Positives (FP), and True Negatives (TN) for each model: (a) DeiT, (b) ViT, (c) VGG19, (d) VGG16, and (e) 

ResNet50. 

In this application, we define a “positive” as a defective rail fastener (labeled as 1) 

and a “negative” as a non‐defective fastener (labeled as 0). Consequently, a false negative 

(FN) represents a missed defect—an outcome we especially want to avoid in safety‐critical 

scenarios—while a false positive (FP) is a case where a good fastener is incorrectly flagged 

as defective. Given this definition, recall (TP / [TP + FN]) takes center stage when the 

primary concern is ensuring that no defects slip by undetected. However, precision (TP / 

[TP + FP]) also matters if we want to reduce the unnecessary cost and downtime of 

investigating too many healthy fasteners. The F1 score, which harmonically balances recall 

and precision, is a useful single metric for comparing overall effectiveness across models. 
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Baed on Table 5 and Figure 10 and Turning to the individual models, ViT stands out 

as the top performer on almost every metric presented. Its extremely low loss and high 

accuracy (≈ 98%) coincide with the best reported precision (≈ 98%) and recall (≈ 98%). 

This means it flags very few good fasteners as defective (low FP) and misses only a 

handful of actual defects (low FN). Its confusion matrix reflects these strengths, showing 

minimal misclassifications overall. As a result, ViT achieves the highest F1 score, making 

it a superb choice if you need both strong detection of actual defects and minimal false 

alarms. Close behind is DeiT, which delivers approximately 96% recall and 96% precision. 

It shows a similarly strong ability to catch most defects and avoid too many incorrect flags, 

though it does fall slightly below ViT’s metrics. Practically, this means DeiT may let a few 

more defective fasteners go unnoticed compared to ViT, and its confusion matrix confirms 

slightly higher false negatives (missed defects). If you can handle that small trade‐off, DeiT 

remains a robust option, especially given its relatively high accuracy and balanced 

precision‐recall profile. 

For those favoring a CNN‐based approach, VGG16 and VGG19 offer decent 

performance in the mid‐90% range for recall and precision. While they do not match the 

top‐tier results of ViT and DeiT, their confusion matrices still indicate a respectable 

balance: missed defects are comparatively few, and false alarms remain manageable. The 

slight edge goes to VGG16 over VGG19, but both remain viable if the infrastructure or 

preference leans toward well‐established convolutional architectures. ResNet50, however, 

shows a notable drop in both recall and precision—around the mid‐80% range. In practical 

terms, this means it misses more defective fasteners (higher FN) and also flags more good 

ones (higher FP). Its higher loss aligns with these relatively weaker outcomes. Given the 

safety implications of missing defects in railway systems, ResNet50 would require further 

training, tuning, or architectural refinements before being considered for critical real‐world 

deployment. 

Overall, if catching every defect (minimizing FN) is most important, ViT is the 

strongest across the board—offering stellar recall without sacrificing precision. DeiT also 

delivers a well‐rounded performance, though with slightly lower recall. If you are 
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especially concerned about false positives (unnecessary maintenance checks), you might 

lean more toward ViT, as it has the highest precision and a superb F1 score. Meanwhile, 

VGG16 or VGG19 can serve as acceptable CNN‐based alternatives for those comfortable 

with a modest performance trade‐off. Finally, ResNet50 appears less suited for a high‐risk, 

zero‐tolerance environment unless significantly improved. 

This study aimed to enhance railway fastener defect detection by comparing the 

performance of various deep learning models, specifically transformer-based models (ViT 

and DeiT) and traditional CNNs (ResNet50, VGG16, and VGG19). The transformer-based 

models, ViT and DeiT, showed better performance across all evaluated metrics, including 

accuracy, precision, recall, and loss. These models achieved the highest accuracy and the 

lowest loss, with ROC AUC values indicating better classification capabilities. The advanced 

performance of transformer-based models might be attributed to their self-attention 

mechanisms, which could capture the global context more effectively than traditional CNNs. 

VGG models, especially VGG16, also performed well, showing stable training progress and 

consistent improvement. These models demonstrated reliable accuracy and precision, 

making them viable alternatives for fastener defect detection tasks. The performance of 

VGG16 might be due to its deep architecture, which allows for a detailed extraction of 

features from the input images. However, it did not reach the performance levels of ViT and 

DeiT, which could be due to the inherent differences in architecture and feature extraction 

methods. ResNet50 showed the lowest performance among the models tested, with more 

fluctuations in metrics and less stability during training. This could be due to its residual 

connections, which, while useful in many contexts, might not be as effective for the specific 

task of fastener defect detection in railway infrastructure. The instability during training and 

the higher loss values suggest that ResNet50 might not be as suitable for this application. 

The results of this study suggest that transformer-based models are more effective for 

fastener defect detection in railway maintenance, offering improved accuracy and reliability. 

This might be due to their advanced ability to capture global context through self-attention 

mechanisms, which could be more adept at identifying defects in the complex and varied 

visual environment of railway tracks. VGG models remain reliable alternatives, providing 
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stable and consistent performance, although they did not match the top performance of the 

transformer-based models in this study. Overall, the findings indicate that the choice of model 

could significantly impact the effectiveness of defect detection systems in railway 

maintenance. Transformer-based models might offer superior performance due to their 

ability to handle complex visual patterns and contextual information. Meanwhile, VGG 

models, with their proven track record and stability, could be a dependable choice where 

slightly lower performance is acceptable. ResNet50, despite its capabilities in other areas, 

might not be the best fit for this specific task due to its lower stability and higher loss during 

training. 

NDE allows for inspecting railway components without causing damage, which is 

especially useful for hard-to-reach or remote areas where traditional inspection methods 

might be difficult or unsafe. This capability is crucial for maintaining the integrity of railway 

infrastructure, as it enables thorough inspections without disrupting operations or causing 

further wear and tear. For instance, advanced NDE techniques, such as ultrasonic testing, 

electromagnetic testing, and laser scanning, can detect internal and surface defects that might 

not be visible through conventional methods. These methods ensure that even the most minor 

defects are identified early, thereby preventing potential failures and ensuring the longevity 

of the railway components. SHM methods enable continuous monitoring of railway tracks, 

helping to identify potential issues early and reduce maintenance costs. By integrating 

sensors and IoT devices, SHM systems provide real-time data on the condition of railway 

tracks, such as stress, strain, and temperature changes. This continuous flow of information 

allows for predictive maintenance, where maintenance activities are scheduled based on the 

actual condition of the infrastructure rather than fixed intervals. This approach not only 

reduces the risk of unexpected failures but also optimizes maintenance schedules, leading to 

significant cost savings.  

These techniques provide a practical approach to maintaining the safety and integrity 

of railway infrastructure. By leveraging NDE and SHM, railway operators can achieve a 

higher level of safety and efficiency. NDE ensures that inspections are comprehensive and 

non-invasive, preserving the condition of critical components. SHM, on the other hand, offers 
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a dynamic and proactive maintenance strategy, where potential problems are addressed 

before they escalate into major issues. Together, these methods represent a significant 

advancement in railway maintenance, combining thorough inspection capabilities with 

continuous monitoring to ensure the optimal performance of railway systems. In conclusion, 

the integration of NDE and SHM in railway maintenance practices might revolutionize how 

inspections and maintenance are conducted. These techniques could enhance the reliability 

of railway operations, minimize downtime, and ensure the safety of both the infrastructure 

and the passengers. As the railway industry continues to adopt these advanced methods, we 

might see a substantial improvement in the overall efficiency and safety of railway systems 

worldwide. 

However, there are several limitations to consider. The dataset used was balanced, but 

real-world distributions might vary, potentially affecting model performance. This could lead 

to a decrease in accuracy when the models are applied to different or more complex datasets. 

Additionally, the dataset size and diversity might not fully represent all possible defect types, 

which could limit the generalizability of the findings. The higher computational needs of 

transformer models could limit their use in resource-limited settings. These models require 

significant processing power and memory, which might not be available in all railway 

maintenance environments. This could make it challenging to deploy these models in field 

conditions, especially in remote or less developed areas. Another limitation is the potential 

for overfitting, where models perform well on training data but poorly on new, unseen data. 

Despite using techniques to mitigate this, it remains a concern, especially with complex 

models like transformers. Additionally, while transfer learning can help improve 

performance with limited data, it might not fully address the variability and uniqueness of 

different railway environments. These limitations suggest that while the study's findings are 

promising, they might not fully translate to real-world applications without further 

refinement. The variations in data distributions, the computational demands, and the risk of 

overfitting could all impact the effectiveness of these models in practical settings. Future 

research might need to focus on addressing these challenges to ensure that the models can be 

effectively used in diverse and resource-limited railway maintenance environments. 
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Future research should address these limitations by using more diverse datasets to 

improve generalization. It could also explore hybrid models that combine the strengths of 

CNNs and transformers for better performance and efficiency. Further tuning of model 

settings and experimenting with different architectures will be important to enhance the 

effectiveness of these models in real-world railway maintenance systems. Additionally, 

expanding the use of NDE and SHM techniques in conjunction with advanced deep-learning 

models could provide even more comprehensive solutions for railway defect detection and 

maintenance. This combined approach might offer a robust framework for ensuring the 

ongoing safety and efficiency of railway infrastructure, particularly in challenging 

environments where traditional methods fall short. Using a mix of NDE for thorough, non-

invasive inspections and SHM for continuous monitoring, combined with advanced models, 

could lead to a more proactive and effective maintenance strategy. In conclusion, this study 

highlights the potential of transformer-based models to improve the detection of railway 

fastener defects. This could lead to better safety, less downtime, and more efficient 

maintenance schedules in the railway industry. By leveraging the strengths of transformer-

based models and CNNs, the study contributes to the development of more reliable railway 

maintenance systems. Addressing the current limitations and refining these models further 

could significantly enhance their real-world application, ensuring they perform well across 

various environments and conditions. Future efforts might focus on creating more adaptable 

models, optimizing computational resources, and improving generalization to diverse 

datasets. This way, advanced deep learning models could be more widely deployed, even in 

resource-constrained settings, ultimately leading to safer and more efficient railway systems 

worldwide. 
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