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A B S T R A C T

Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to 
aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more 
vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem. This study addressed 
knowledge gaps by analyzing microplastics in the gastrointestinal tracts (GIT) and gills of Channel Catfish 
(Ictalurus punctatus) and Atlantic Tomcod (Microgadus tomcod) in the SLRE. Forty-two fish from ten stations were 
examined using KOH digestion, density separation, wet-peroxidation, and spectroscopy. Results indicated an 
average abundance of 3.0 ± 0.4 (mean ± SE) microplastic particles per individual fish. Most detected particles 
were small microplastics (<809 μm) and fibers, with blue and transparent colors. Major polymers identified 
included polyethylene terephthalate and polyethylene. While catfish showed higher microplastic abundances per 
individual than tomcod, data based on GIT weight do not support microplastic biomagnification in this predator- 
prey relationship. Catfish from downstream of Québec City showed elevated levels of microplastics and more 
variations in their characteristics compared to average abundance found from a site located 50 km upstream. 
Urban activity may increase microplastic accumulation in downstream benthic fish and others. This highlights 
the need for further studies on the migratory capacities of fish species. Ecological risk assessment revealed 
medium to high-risks for the catfish stations close to the Québec City due to the prevalence of smaller micro-
plastics <809 μm and highly toxic polymers (polymethyl methacrylate, polyvinylchloride, polyurethane, acry-
lonitrile butadiene styrene). This study provides a baseline for monitoring plastic pollution in the SLRE fish and 
assessing ecological risks.

1. Introduction

Microplastics, tiny plastic particles ranging from 1 to 5000 μm, 
constitute a pervasive pollution impacting aquatic environments 
worldwide, either in their original or after undergoing degradation 
(Auta et al., 2017; Bergmann et al., 2017). In aquatic environments, 
microplastics can travel long distances, accumulate in water and sedi-
ments, and be ingested by various organisms (e.g., zooplankton, bi-
valves, shrimp, fish, etc.) (Ribeiro et al., 2019; Gao et al., 2023). With 
varying sizes, chemical compositions, densities, shapes, and colors, 
microplastics are persistent, bio-accumulative, toxic, and transport 
hazardous contaminants (e.g., pathogens, organic pollutants, metals) in 

the environment (Osman et al., 2023; Miller et al., 2020; Rochman et al., 
2019). Consequently, microplastics poses a significant and growing 
threat to aquatic life.

Microplastics have been found in different fish organs (e.g., liver, 
muscles, brain, and gonads) in various aquatic systems (Ding et al., 
2018; Su et al., 2019; Solomando et al., 2022), with the GIT and gills 
receiving the most attention due to their importance in elucidating 
exposure pathways (e.g., ingestion and entanglement) and risks through 
passive or active ingestion (Zazouli et al., 2022; Lin et al., 2023; Roch 
et al., 2020). Ingested microplastics can temporarily reside in the GIT 
and translocate within body through intestine systems, contributing to 
the prolongation of tissue exposure to microplastics and associated 
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contaminants in the fish body (Ma et al., 2020; McIlwraith et al., 2021). 
Additionally, gills can provide another pathway of exposure to micro-
plastics (Zhang et al., 2021). Batel et al. (2018) found that plastics of 
1–20 μm were consistently filtered through zebrafish (Danio rerio) gills, 
adhering superficially to fish filaments. Studies also found that micro-
plastics could lead to various adverse physiological effects in fish, 
including digestive tract blockage (Wright et al., 2013); neurotoxicity, 
oxidative damage and energy-related changes (Barboza et al., 2018); 
decreased feeding, gills impairment, weakened immunity, and reduced 
reproduction (Ma et al., 2020; Mallik et al., 2021). Moreover, micro-
plastics associated toxic substance (e.g., additives, adsorbed contami-
nants) can impact feeding behavior, growth, and mortality rate of fish 
(Ma et al., 2020; Jovanović, 2017). Since the toxicological risks of 
microplastics in fish depend on exposure and accumulation, it is 
essential to understand the occurrence, distribution, and fate of micro-
plastics in fish organs such as the GIT and gills.

Benthic aquatic environments, located at the bottom of water bodies, 
serve as critical sinks for contaminants such as microplastics and 
persistent organic pollutants (Lenaker et al., 2021; Krasnobaev et al., 
2020). These environments are also ecologically critical as they support 
diverse species, including fish. Benthic species are potentially more 
vulnerable to microplastics contamination than pelagic species due to 
their close interaction with both sediment beds and the water column 
(Keerthika et al., 2023; Merga et al., 2020; Bellasi et al., 2020; Bessa 
et al., 2018). However, there is still a lack of comprehensive under-
standing regarding the occurrence, distribution, and fate of micro-
plastics in benthic fish within freshwater and estuarine environments. 
The environmental behavior of microplastics is influenced by factors 
such as particle polymer type & density, shape, size, fluid density, 
environmental and hydrodynamic processes such as biofouling, aggre-
gation, current, tides, waves etc. These properties influence the migra-
tion, settling, resuspension, and dispersion of microplastics within the 
water column and sediment layers (Chubarenko et al., 2016, 2018; Kooi 
et al., 2018; Kowalski et al., 2016). For instance, high-density particles 
(>1.0 g cm− 3) tend to sink and accumulate at the bottom of aquatic 
systems quickly (Chubarenko et al., 2016), potentially impacting their 
interactions with various species. Measuring the occurrence of micro-
plastics in benthic freshwater and estuarine species can provide insights 
into what types of microplastics and compositional characteristics have 
the largest potential impacts on benthic ecosystems and their associated 
biota. This knowledge can in turn inform on the risks of microplastic 
contamination and facilitate the development of policies to address 
these challenges.

The St. Lawrence River and Estuary (SLRE) in Canada, originating 
from the Laurentian Great Lakes, sustains diverse ecosystems crucial for 
millions of Canadians. The St. Lawrence Estuary is one of the largest 
estuaries in North America and a highly dynamic part of the SLRE, 
stretching from west to east for 655 km, from the St. Lawrence River 
(Lake Saint-Pierre) to the Gulf of St. Lawrence (Pointe des Monts) in 
Québec, Canada. The circulation of the estuary is driven by strong tidal 
currents due to a large volume of water flowing through a narrow sec-
tion (Simons et al., 2010). Microplastics have recently been detected in 
the water and sediment in the SLRE, raising concerns about the potential 
exposure of benthic aquatic species to microplastics (Rowenczyk et al., 
2022; Crew et al., 2020; Castañeda et al., 2014). However, little is 
known about microplastic contamination in benthic species in this 
highly dynamic and energetic part (i.e., the St. Lawrence Estuary) of the 
SLRE. Addressing this knowledge gap is vital for a comprehensive un-
derstanding of the microplastic contamination and risk assessment in 
the SLRE as well as informing policy decisions.

The channel catfish (Ictalurus punctatus) (hereafter catfish) is a 
crucial benthic predator in the SLRE, consuming a variety of prey like 
insects, snails, aquatic plants, and small fish (Page and Burr, 1991; 
Wellborn, 1988). It is globally significant for fishing and aquaculture, 
driving the catfish farming industry in North America. In 2022, catfish 
contributed 57.61 million Canadian dollars in freshwater fish imports to 

Canada (Fisheries and Oceans Canada, 2023) and is the most targeted 
catfish species in the U.S. by 8 million anglers annually, leading to rapid 
aquaculture expansion (Carlander, 1969; USDA, 2024). Another 
important benthic fish in the SLRE is the Atlantic tomcod (Microgadus 
tomcod) (hereafter tomcod), a prey species for the catfish. Native to the 
western Atlantic Ocean, from the Gulf of St. Lawrence to the Hudson 
River, tomcod is notable for its adaptability to a wide range of salinities 
and genetic resilience to toxic pollutants such as polychlorinated bi-
phenyls and 2,3,7,8-tetrachlorodibenzodioxin, making it a crucial bio-
indicator in pollution research (Wirgin et al., 2023, 2011). Overall, both 
catfish and tomcod are ecologically and economically significant, 
important for human consumption across the Atlantic Ocean and North 
America. However, uncertainties about microplastic contamination in 
these two species persist.

Fish species ingest a wide range of microplastics with various char-
acteristics, such as shapes, sizes, and polymer types, in aquatic envi-
ronments (Parker et al., 2020), posing ecological risks. Recent studies 
utilize metrics like the Pollution Load Index (PLI) (Tomlinson et al., 
1980), Polymeric Hazard Index (PHI) (Lithner et al., 2011), and 
Ecological Risk Index (ERI) (Hakanson, 1980) to evaluate microplastic 
ecological risks (Pan et al., 2021; Peng et al., 2018; Pandey et al., 2023). 
These models identify which plastics are highly toxic and at what 
abundances microplastics become low to highly hazardous (Pan et al., 
2021; Peng et al., 2018). They can also link toxic plastics to specific land- 
use sources, helping to determine which land-use sources could impact 
certain ecosystem parts. This information could aid in understanding 
and managing microplastic pollution and risks. Furthermore, while the 
shape and size of microplastic particles significantly influences their 
risks (e.g., smaller microplastics and fibers are more prone to be ingested 
by aquatic life), current ecological risk assessment models often exclude 
microplastic particle size as a risk factor, which could lead to incomplete 
evaluations of ecological risks. Incorporating particle size into the risk 
models could advance the understanding of ecological risks, as well as 
inform policy decisions and management.

The objectives of this study were to (1) investigate the profiles of 
microplastic contamination in two benthic fish species (catfish and 
tomcod) from the SLRE, focusing on their occurrence, distribution, and 
land-use-related sources; and (2) assess the ecological risks of micro-
plastics to the benthic environment across the study area using catfish 
and tomcod as indicators using modified risk indices. We hypothesized 
that (1) microplastic contamination profiles differ between the gills and 
GIT of benthic fish due to varied exposure pathways, (2) urban activities 
increase microplastic accumulation abundance and diversity in down-
stream benthic fish, and (3) microplastic size is a significant factor 
influencing ecological risk modeling results, with smaller microplastics 
posing higher ecological risks. To our knowledge, this is the first study 
on microplastic contamination in fish from the SLRE and on ecological 
risk assessment in this region.

2. Materials and methods

2.1. Sampling

Catfish (n = 26) and the forage species tomcod (n = 16) were 
collected from the SLRE, close to Québec City, aboard the R/V Lampsilis 
between 22 September and 4 October 2022. We selected study sites near 
Québec City, including upstream, downstream, and distant locations, to 
examine whether varying levels of land use (e.g., urban) activity affect 
microplastic contamination profiles. For catfish, samples were captured 
from Cap-Santé (CC1, n = 10), Québec City (CC2, n = 1; CC3, n = 2; CC4, 
n = 4), and east of ̂Ile d’Orléans, (CC5, n = 5; CC6, n = 3; CC7, n = 1) 
(Fig. 1). Tomcod samples were collected at Pointe-au-Pic (AT1, n = 5 
and AT2, n = 10) and Rivière-du-Loup (AT3, n = 1) (Fig. 1). Fish were 
caught using a bottom trawl (depth: 10–50 m from the water surface), 
transported to the laboratory after landing, wrapped in aluminum foil 
and refrigerated immediately at − 20 ◦C.
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2.2. Materials and chemicals

Zinc chloride (ZnCl2, anhydrous, reagent grade, ≥98 %), potassium 
hydroxide (KOH, ACS reagent, ≥85 %, pellets), hydrogen peroxide (30 
% w/w, stabilized reagent grade), sulfuric acid (H2SO4, ACS reagent, 
95.0–98.0 %), iron (II) sulphate heptahydrate (FeSO4.7H2O, ≥99 %), 
polytetrafluoroethylene (PTFE, 5.0 μm pore size, Omnipore, filter diam. 
47 mm) and mixed cellulose ester (MCE, 1.2 μm pore size, MF-Milli-
pore™, filter diam. 47 mm, hydrophilic) membrane filter papers were 
purchased from Sigma-Aldrich Canada (Oakville, Ontario, Canada). 
Standard Brass Sieves (aperture size of 20 μm) with steel cloth were 
purchased from Fisher Scientific (Ottawa, Ontario, Canada).

2.3. Sample preparation

Each fish was thawed for 12–24 h and cleaned using nanopure water 
to eliminate any externally attached materials on the fish body (Lusher 
et al., 2016). The body length (cm) and weight (g) of the fish were 
recorded (Table 1). The fish was dissected on an aluminum tray using 
scissors, scalpels, and forceps. The GIT and gills were carefully removed, 
transferred to a 500 mL clean glass beaker, weighed (g) (Table 1), and 

covered with aluminum foil to prevent external contamination. The GITs 
and gills were then prepared for the extraction of microplastic candi-
dates (Section 2.4). All gills per fish were analyzed together and the 
results were thus based on the total gills per fish.

2.4. Microplastics extraction

The GIT and gill samples underwent KOH digestion, wet peroxida-
tion (WPO), and density separation to extract the microplastic candidate 
particles. In brief, the GITs and gills were digested in 10 % KOH at 40 ◦C 
over 72 h. After complete digestion, the liquid was filtered through a 
stainless-steel sieve (aperture size: 20 μm) and all the remaining solids 
were transferred to a clean beaker. Then, 100 mL of ZnCl2 solution with 
a density of 1.5 g cm− 3 (972 g ZnCl2 per liter of H2O) were poured into 
the beaker (Coppock et al., 2017), and the solids were allowed to settle 
for at least 24 h. The solids from the supernatant were collected onto a 5- 
μm PTFE filter. Organics in the collected solids were removed by sub-
jecting the solids to WPO at 65 ◦C in a mixture of 20 mL of FeSO4⋅7H2O 
solution and 20 mL of 30 % H2O2 (Masura et al., 2015). The WPO 
process was repeated, if needed, in a smaller volume of the mixture of 
the FeSO4⋅7H2O solution (10 mL) and 30 % H2O2 (10 mL) until the 

Fig. 1. Sampling stations of channel catfish and Atlantic tomcod in the St. Lawrence River and Estuary, Québec, Canada. CC and AT represent the sampling stations 
for the channel catfish and Atlantic tomcod, respectively.

Table 1 
Information on studied fish species and their corresponding levels of microplastics ingestion.

Sample 
(n)

Length Range 
[Mean (cm) ±
SE]

Weight Range 
[Mean (g) ± SE]

GIT Weight 
[Mean (g) ± SE]

Gills Weight 
[Mean (g) ± SE]

Mean 
Microplastics/g 
BW

Mean 
Microplastics/g 
GIT

Mean 
Microplastics/g 
Gills

Atlantic 
Tomcod

16 11–25 (20.3 ±
0.8)

19.7–115 (80.1 ±
5.2)

1.07–18 (10.3 ±
1.0)

0.6–6.5 (2.6 ±
0.3)

0.03 ± 0.01 0.21 ± 0.06 0.71 ± 0.52

Channel 
Catfish

26 24–59 (40.31 ±
2.4)

170–1950 (768.46 
± 93.7)

5.68–140 (56.21 
± 8.01)

30.1 ± 3.89 0.01 ± 0.001 0.07 ± 0.01 0.07 ± 0.02
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organics are visually eliminated. The candidate microplastic particles in 
the WPO-treated liquid were collected onto a 1.2-μm MCE membrane 
filter. All steps of sample preparation and microplastics extraction were 
completed under a controlled biological and chemical fume hood with 
stainless-steel surface.

2.5. Microscopic observation, identification, and characterization

The extracted particles were observed using a microscope (BX 53, 
Olympus, Japan) equipped with a camera (DP71, Olympus, Japan) and 
operated with Stream Essential 2.5 version software. The isolated 
microplastic candidate particles were examined and/or quantified for 
shapes, sizes, and colors. Five size classes (26–809 μm, − 1102 μm, 
− 1395 μm, − 1688 μm, and − 5000 μm) were used to conduct size-based 
ecological risks assessment, in accordance with Yuan et al., 2022. Sub-
sequently, the particles underwent micro-Fourier transform infrared 
spectroscopy (μ-FTIR, Perkin Elmer 200i Spotlight) and Thermo DXR 
Raman Microscope (μ-Raman) analysis to confirm the identities of 
microplastics and their polymer composition through chemical imaging. 
Before each μ-FTIR run, the instrument was filled with liquid nitrogen 
and allowed to stabilize for 30 min. Background signals were acquired 
using a blank sample for each measurement. Spectra were generated at a 
resolution of 8 cm− 1 with 32 background scans, and infrared wave-
numbers ranged from 4000 to 700 cm− 1. After μ-FTIR analysis for each 
particle, spectrum data were collected using Perkin Elmer’s Quant v.2.0 
software. The gathered spectra were then compared to the spectral 
reference. μ-Raman spectra were acquired using the 532 nm laser line. 
Standard parameters included a green line, 25 & 50 μm aperture, 10 mm 
focal length, 10 mW laser power, and 10-50× microscopic objects. Laser 
power was adjusted to prevent sample damage or particle degradation. 
Exposure time and repetitions, and objects were optimized for noise-to- 
signal ratios. Spectra were processed with OMNIC for background 
removal and identified using OMNIC polymer library.

2.6. Quality assurance and quality control (QA/QC)

Nanopure water was employed to rinse fish dissecting materials (e.g., 
aluminum tray, scissors, and forceps) thoroughly before, during, and 
after use. Cotton-made laboratory coats, masks, and nitrile gloves were 
used. The ZnCl2, KOH and FeSO4.7H2O solutions were passed through a 
5-μm PTFE membrane filter before each use. The extracted microplastic 
particles were stored in glass Petri dishes and/or glass vials, covered 
with aluminum foil to prevent external contamination.

Different control samples were prepared to examine background 
contamination of Microplastics. Laboratory blanks (n = 8) were ob-
tained with MCE filter papers exposed to the air in the fume hood. 
Procedural blanks (n = 8) were acquired using Nanopure water (250 
mL/sample) as clean samples to detect contamination during analytical 
procedures. Field blanks (n = 9) were collected by exposing aluminum 
sheets to open air during sample collection and handling of fish samples. 
To measure the field blanks, each aluminum foil was opened under the 
fume hood, rinsed with Nanopure water, and processed through filtra-
tion (MCE, 1.2 μm pore size, MF-Millipore™, filter diam. 47 mm, hy-
drophilic). All laboratory, procedural and field blank samples 
underwent the filtration and WPO described earlier to extract the po-
tential microplastic particles. Only synthetic plastic particles were 
considered in the total microplastic particle count. Non-microplastic 
particles (e.g., cellulose, rayon, azlon and others) were identified and 
subtracted from the particle count. Spike-recovery test (n = 3) was 
performed by digesting fragments, films, and fibers of high-density 
polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene 
terephthalate (PET), and polypropylene (PP) polymers with sizes be-
tween 100 and 5000 μm and colors of transparent, red, white and green, 
yellow with fish soft tissue in a 10 % KOH solution over 72 h to measure 
digestion efficiency and recovery, following Karami et al. (2017)
guidelines.

2.7. Biomagnification factor (BMF)

BMF was determined by dividing the concentration of microplastics 
within the GIT of the predator catfish i.e., number of microplastic par-
ticles per kilogram fish body weight (n/kg) and tissue weight (n/kg) 
within the GIT of the prey tomcod multiplied by the trophic level dif-
ference between the predator and the prey. The BMF formula can be 
expressed as: 

BMF = Ci
/
Cj⋅

(
TLi − TLj

)
(1) 

where Ci signifies the microplastic concentration in the predator, Cj the 
microplastic concentration in the prey, TLi the trophic level of the 
predator, and TLj the trophic level of the prey. As the trophic level data 
for the SLRE is unavailable, values were sourced from https://fishbase. 
mnhn.fr/. A BMF value >1 indicates likely biomagnification, signifying 
an elevation in microplastic concentration at higher trophic levels, as 
exemplified by the catfish in this investigation.

2.8. Microplastic contamination ecological risk assessment

In this study, we improved ecological risk models by incorporating 
size-based risk factors (SRI) alongside microplastic abundance, PLI, PHI, 
and ERI (Table 2). We applied these models to assess microplastic 
contamination ecological risks in the benthic areas of the SLRE, using 
catfish and tomcod as indicator species. This approach provides broader 
insights into the ecological risks of microplastic contamination.

2.9. Data analysis

Statistical analyses were conducted using Microsoft Excel (Version: 
16.82, 2,402,116), and PAleontological STatistics (PAST) software 
(Version 4.16) (Hammer et al., 2001). Descriptive analysis included 
calculation of maximum, minimum, median, mean, and standard error 
(SE) values. Because residuals did not distribute normally, a non- 
parametric Kruskal-Wallis H test was employed to identify significant 
differences in microplastic abundance. To explore relationships, a non- 
parametric Spearman correlation test was applied to assess the associ-
ations. The significance threshold (p) for all statistical tests was set at 
0.05. The reporting unit for microplastics abundances was expressed as 
‘n’ where ‘n’ signifies the number of microplastic particles per individual 
fish (n/fish) or GIT (n/GIT) or gill (n/gill).

3. Results

3.1. QA/QC results

QA/QC testing assessed spike-recovery performance and background 
contamination across the laboratory (fume hood), analytical procedures, 
and field sampling. The KOH digestion of fish soft tissues over 72 h 
achieved a digestion efficiency of 99.0 ± 0.00 % (n = 3), based on pre- 
and post-digestion tissue weight differences. Recovery tests yielded 97.4 
± 0.02 % (n = 3) particle recovery for HDPE, LDPE, PET, and PP 
polymers, aligning with acceptable limits (Karami et al., 2017).

A total of 18 particles were detected in fume hood, procedural, and 
field blanks, of which 14 (77.8 %) were non-microplastic particles (e.g., 
cellulose, rayon, azlon), and 4 (22.2 %) were microplastics, specifically 
PET (n = 3) and PE (n = 1). The fume hood filter paper blanks (n = 8; 1 
blank per batch experiment) contained only one PET particle, averaging 
0.13 ± 0.1 particles per 47 mm diameter filter paper, indicating minimal 
laboratory-derived microplastic contamination. Similarly, procedural 
blanks (n = 8) showed negligible procedural contamination, with one 
PET particle, averaging 0.13 ± 0.1 particles per 250 mL sample. Field 
blanks (n = 9) demonstrated minimal environmental contamination, 
with an average of 0.2 ± 0.15 microplastic particles per aluminum sheet 
(1 PE and 1 PET particle in total). Blank analysis results are summarized 
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in Fig. 2A.
Notably, PTFE particles were absent from all fish samples, confirm-

ing that the PTFE membranes used in the experiments did not contribute 
microplastics. Microplastics in all blanks represented 3.1 % of the total 
microplastic particles detected in fish samples, well below the recom-
mended threshold of <10 % (Dimitrijevic et al., 2019). Corrections for 
microplastic contamination in controls were made by subtracting blank 
results from total plastic particle counts based on shape, color, and 
polymer. Overall, the control results indicated a negligible presence of 
the background contamination of microplastics, suggesting that the 
microplastic abundance in fish samples significantly exceeded that in 
controls (Kruskal-Wallis H Test, p-value = 0.0001, df = 9).

3.2. Microplastic abundance, spatial and tissue distributions, and 
biomagnification factor in the benthic fish from the SLRE

In total, 125 microplastic particles were extracted from the GIT and 
gills of the catfish and tomcod, with 91 % of fish containing at least one 
microplastic particle. Microplastic abundances varied from 0 to 11 n/ 
fish (GIT and gills are considered together; mean ± SE: 3.0 ± 0.4 n/fish), 
with a median of 2.0 n/fish across all sites and species. The highest 
microplastic abundance (11 n/fish) was found in the catfish at the sta-
tion CC7, while tomcod showed the lowest abundance (1.6 ± 0.8 n/fish) 

at the station AT2. Although no statistically significant difference was 
observed (Kruskal-Wallis H Test, p-value = 0.146, df = 41), catfish 
showed a trend of higher microplastic abundances (3.6 ± 0.6 n/fish) 
compared to tomcod (1.9 ± 0.3 n/fish).

The microplastic distribution results in fish revealed an average 
microplastic abundance of 1.4 ± 0.27 n/GIT in tomcod, which was 
significantly higher than in their gills (0.50 ± 0.16 n/gills) (Kruskal- 
Wallis H Test, p-value = 0.01 < 0.05, df = 31). On the other hand, the 
microplastics abundance was not significantly different between the GIT 
(1.8 ± 0.24 n/GIT) and gills (1.9 ± 0.47 n/gills) of catfish (Kruskal- 
Wallis H Test, p-value = 0.3 > 0.05, df = 51). There was no significant 
difference in microplastic abundance in GIT (Kruskal-Wallis H Test, p- 
value = 0.36 > 0.05, df = 41) or gills (Kruskal-Wallis H Test, p-value =
0.09 > 0.05, df = 31) between catfish and tomcod, implying a similar 
level of ingestion of microplastics by the GIT or gills between the two 
species.

Microplastic distribution based on body weight (BW), or tissue 
weight showed that tomcod had a higher abundance (0.03 ± 0.01 n/g 
fish BW) than catfish (0.01 ± 0.00 n/g fish BW). Also, the occurrence 
and uptake of microplastics by GIT and gills differed between the spe-
cies. Tomcod had higher microplastic abundances in both their GIT 
(0.21 ± 0.06 n/g GIT) and gills (0.71 ± 0.52 n/g gills) compared to 
catfish (0.06 ± 0.01 n/g GIT and 0.07 ± 0.02 n/g gills), on a tissue 

Table 2 
Risk indices, their limit values, and levels used to assess microplastic contamination risk in the benthic areas from the SLRE, Canada.

Indices and Equations Explanations Limit Values and 
level

Score Reference (s)

Contamination Factor (CF) and Pollution Load 
Index (PLI)

   

CFi = Ci/Co  

PLIs =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PLI1 × PLI2 × PLI3⋯⋅⋅⋯PLInn

√

CFi is the contamination factor at the individual fish i; 
Ci is the abundance of MP particles at the individual fish i; 
Co is the minimum mean background abundance baseline 
concentration (Co = 0.7 MPs/marine bivalve was taken from 
Rowenczyk et al. 2022 due to its similarity to the species and same 
ecosystems);  
PLIs (Pollution Load Index) is the pollution load index at the station s;

< 1 Low


Tomlinson et al., 
1980; Hakanson, 
1980

>1 Contaminated
1 – 3 Medium
3 – 6 High

>6 Very High

Risk Factor 1 (RF 1): Particle Size & Abundance    

SRIi =
∑m

j=1

{(
Sji/Ci

)
× Rj

}

SRIi = SRIi × PLIi   

SRIs =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SRI1 × SRI2 × SRI3……….× SRInn

√

Sji is the number (m) of particles for each single size range (j) identified 
at the fish individual i;  
Rj is the hazard score for each size range type.  
SRFi represent the size risk index at the fish individual i;  
SRFs represent the size risk index at the station s

Size (μm) 

This study following 

Yuan et al., 2022

> 26 – <809 Very 
High 5

>809 – <1102 
High

4

>1102 – <1395 
Moderate

3

>1395 – <1688 
Low 2

>1688 – <5000 
very Low 1

Risk Factor 2 (RF 2): Polymer Toxicity & Abundance
Polymeric hazard Index (PHI)

PHIi =
∑m

j=1

{(
Pji/Ci

)
× Sj

}

PHIs =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
PHI1 × PHI2 × PHI3………..× PHInn

√

Pji is the number (m) of particles for each single polymer (j) identified 
at station i;  
Sj is the hazard score for each polymer type; 
PHIs (Polymeric Hazard Index) represent the polymeric hazard index 
at the station s

< 10 Very Low 1

Lithner et al., 2011

10 – 100 Low 2
101 – 1000 
Medium 3

1001 – 10,000 
High 4

>10,000 Very 
High

5

Contamination Risk Index (CRI)

CRIi = PHIi × PLIi  

ERIi=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CRI1 × CRI2 × CRI3……….× CRInn

√

ERIs=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CRI1 × CRI2 × CRI3……….× CRInn

√

ERIi is the MP ecological risk index at the fish individual i;  
ERIs (Ecological Risk Index) is the risk index at station s

<150 Very Low 1
Kabir et al., 2022; 
Pan et al., 2021; 

Peng et al., 2018; 
Hakanson, 1980

150 – 300 Low 2
300 – 600 
Medium 3

600 – 1200 High 4
>1200 Very High 5

Cumulative Contamination Risk (CCR)    

CCRs =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RF1 × RF2 × ……….× RFn

n
√

CCRs (Cumulative Contamination Risk) represents the cumulative 
contamination risk at the station s

Very Low 1 
Low 2 
Medium 3 
High 4 
Very High 5 
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weight basis (Table 1).
Considering both species together, our analysis revealed a positive 

correlation between biological variables and the abundance of micro-
plastics among analyzed fish. Specifically, we found positive correla-
tions between microplastic abundances and fish body weight (Spearman 
Rho correlation, r = 0.33, p-value = 0.02 < 0.05, df = 41), length 
(Spearman Rho correlation, r = 0.34, p-value = 0.03 < 0.05, df = 41), 
and gills weight (Spearman Rho correlation, r = 0.33, p-value = 0.03 <
0.05, df = 41) (Fig. 3A–D), thus influencing microplastic accumulation 
in fish. Therefore, although not statistically significant (catfish gills vs. 
tomcod gills: Kruskal-Wallis H Test, p-value = 0.09 > 0.05, df = 31) in 
this study, catfish with larger gills might accumulate a higher number of 
microplastics (1.9 ± 0.47 particles/gills) compared to tomcod (0.50 ±
0.16 particles/gills) with smaller gill.

Spatially, for catfish, the samples from the downstream sites (CC2–7) 
of Québec City showed significantly higher microplastic abundance 
(4.75 ± 0.79 n/fish) than those from 50 km upstream (CC1) (1.9 ± 0.38 
n/fish) (Kruskal-Wallis H Test, p-value = 0.02 < 0.05, df = 25) (Fig. 1, 
Fig. 2A). No significant spatial variations were found among three 
sampling sites for tomcod (Fig. 2A).

Predator-prey BMF analysis revealed fish BW based BMF value = 0.5 
< 1 (GIT weight based BMF value = 0.57 < 1; gill weight based BMF 
value = 0.38 < 1) between the catfish and tomcod in the SLRE.

3.3. Microplastic characteristics: Shape-size-color-polymers

3.3.1. Shape
Analysis of extracted microplastic particles revealed three distinct 

shapes: fragments, films, and fibers. Fibers emerged as the predominant 
shape in both the GIT and gills of catfish and tomcod, constituting 66.4 
% of the total microplastics, followed by films at 17.6 %, and fragments 
at 16.0 %. Spatial distribution showed that the catfish from the upstream 
counterpart CC1 were exclusively contaminated with fibers, whereas 
downstream CC2–7 fish samples showed contamination by fragments 
(28 %) and films (31 %) in addition to fibers (41 %). Regarding the 
tomcod, station AT1 indicated primary contamination with microplastic 

fibers, accompanied by a few films, while AT2-AT3 samples were solely 
contaminated with fibers. The shape-based results are summarized in 
Fig. 4A.

3.3.2. Size
Smaller microplastics, particularly in the range of 26–809 μm, 

dominated, constituting >40 % of all microplastics, followed by 
809–1102 μm (20 %), 1102–1395 μm (14 %), 1395–1688 μm (11 %), 
and 1688–5000 μm (15 %) when considering all fish GIT and gills 
together. The prevalence of smaller microplastics (26–809 μm) was 
consistent in the GIT of both catfish (48 % of total microplastics in GIT) 
and tomcod (43 %), indicating similar size-based occurrence of micro-
plastics in the GIT of these species. However, in gills, particles >809 μm 
dominated in the tomcod (38 %), while particles <809 μm were prev-
alent in the gills of catfish and consistent with the GIT (Fig. 4B). The 
across-sites size distribution of microplastics showed a predominance of 
smaller microplastics of 26–809 μm in the catfish over all sites from CC1 
to CC7 (42–100 %), exhibiting the higher abundance of smaller particles 
from 26 to 809 μm. Remarkably, all the particles from the CC2 were 
smaller (26–809 μm) microplastics. In contrast, tomcod exhibited 
distinct distribution based on size across sites, with AT1 showing a 
prevalence of smaller particles <809 μm, whereas AT2 and AT3 showed 
most microplastics ranging from 809 to 1102 μm and 1688 to 5000 μm, 
respectively (Fig. 4B).

3.3.3. Color
The microplastic particles extracted from the catfish and tomcod 

samples exhibited a diverse range of colors, with blue (50 %) and 
transparent (19 %) emerging as the major colors, followed by white (8 
%), red (6 %), black (6 %), violet (6 %), yellow (2 %), green (2 %), and 
grey (1 %) (Fig. 4C). For each fish species, at least seven distinct colors of 
microplastics were found, with blue being the sole color present across 
all samples and species. A comparative analysis of fish species showed a 
higher prevalence of transparent and white particles in the gills 
compared to the GIT (Fig. 4C).

The color-based distribution of microplastic particles revealed 

Fig. 2. Distribution of microplastics in the (A) fish from different study sites and in the (B) channel catfish (CC) and Atlantic tomcod (AT) tissues. Boxplots are 
defined as follows: center line, median; boxplot edges, 25th and 75th percentiles; whiskers, 5th and 95th percentiles. LBL, PBL, and FBL represent laboratory, 
procedural, and field blanks, respectively.
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notable disparities among the sampled stations. Predominantly blue, 
transparent, and white particles were observed in catfish across the 
various stations. A comparative analysis between the upstream coun-
terpart CC1 and downstream stations highlighted differences, with blue 
particles being dominant in CC1, whereas transparent, white, and blue 
particles were major in CC2–4. CC5–7 exhibited contamination pri-
marily by blue and transparent particles. In tomcod, blue and black 
particles were predominant.

3.3.4. Polymer
The μ-FTIR and μ-Raman analyses uncovered the presence of 11 

distinct polymers in the catfish and tomcod (Fig. 4D; Fig. S1). Although 
PET (42 %) and PE (20 %) were the dominant polymers in the tissues of 
both species, polymer compositions in fish tissues were different, with 
more variations in catfish than in tomcod. Microplastics in catfish gills 
showed more polymer types than their GIT and both tissues of tomcod 
(Fig. 4D). For example, acrylonitrile butadiene styrene (ABS), poly-
urethane (PUR), ethylene-vinyl acetate (EVA), and polyamide (PA) were 
only found in catfish gills among all tissues analyzed. In contrast, 

Fig. 3. Relationships between microplastic levels and fish metrics including, (A) body weight, (B) height, (C) gastrointestinal tract (GIT) weight, and (D) gills weight. 
The ellipses represent 95 % confidence intervals around the centroid of each data cluster. ‘MP’ stands for ‘microplastic’.
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polymethyl methacrylate (PMMA) and polycaprolactone (PCL) were 
only found in catfish GIT but not in their gills. In addition, polystyrene 
(PS), and polyvinyl chloride (PVC) were only found in catfish but not in 
any tissue of tomcod, while tomcod accumulated more polypropylene 
(PP) than catfish in both GIT and gills (Fig. 4D). However, only the PET 
fibers correlated with the total microplastic abundances across all the 
studying sites (all fish tissues considered together), and thus could be 
identified as a potential marker of microplastic contamination 
(Spearman Rho correlation, r = 0.53, p-value = 0.0003) in the benthic 
fish of the SLRE (Fig. 5A).

A correlational analysis between polymer density (g cm− 3) and 

microplastic particle abundance across all sites, considering all fish 
combined, revealed no significant relationship (Spearman’s Rho: r =
0.05, p-value = 0.88) (Fig. 5B).

A comparative analysis of polymer distribution along the catfish 
(CC1–7) and tomcod (AT1–3) study areas within the SLRE revealed 
notable variations in polymer diversity. In catfish sampling sites, PET 
(63 %) and PE (26 %) were dominant in the samples from the upstream 
of Québec City (CC1). However, downstream samples exhibited differ-
ences: CC2–4 showed a prevalence of PS and PET, along with PUR, EVA, 
and PA. A diverse array of polymers, including PMMA, ABS, and PCL 
along with the PE, PET, PUR, EVA, were detected in catfish from CC5–7. 

Fig. 4. Compositions of microplastic (A) shapes, (B) sizes, (C) colors, and (D) polymers along the sampling sites as well as in the channel catfish (CC) and Atlantic 
tomcod (AT) tissues. All the size measurements in (B) were in ‘μm’.
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Overall, downstream catfish displayed a diverse array of polymer types 
than those from the upstream. In contrast, tomcod samples at different 
sites generally presented less diverse polymers, though still detectable, 
with PE, PET, and PP being major constituents (Fig. 4D).

3.4. Microplastic contamination ecological risk assessment

3.4.1. Risk factor 1 (RF1): microplastic size and abundance-based risk 
assessment

Microplastic size and abundance-based risk assessment revealed that 
smaller particles (<809 μm) were the major contributors to ecological 
risks in the SLRE benthic environment (Table 4; Fig. S3).

3.4.2. Risk factor 2 (RF2): abundance and polymeric toxicity-based risk 
assessment (PLI, PHI, and ERI)

The PLI results indicated that all study sites were contaminated with 
microplastics, with PLI values exceeding 1 per fish at certain locations. 
Stations CC2, CC6, and CC7 showed very high contamination levels, 
while CC4 and CC5 exhibited medium levels, and CC1 and CC3 dis-
played low levels. Tomcod stations exhibited an overall medium level of 
contamination. Stations near Québec City (CC2, CC4, CC6, and CC7) 
demonstrated higher PLI values compared to other stations, reflecting 
increased microplastic contamination in those urban land-use affected 
areas (Fig. 1; Table 4).

PHI analysis showed site-dependent variations in polymeric hazards, 
with heightened hazard levels at CC2, CC4, and CC5 due to the presence 
of specific polymer types. The ERI, which integrates microplastic 
abundance and polymeric hazard levels, indicated elevated contami-
nation risks at CC2, CC4, CC5, CC6, and CC7 (Fig. 1; Table 4). Positive 
correlations were observed between PHI and ERI (p = 0.00002; r = 0.95; 
df = 41) and between PLI and ERI (p = 0.01; r = 0.54; df = 41).

3.4.3. Cumulative contamination risk (CCR) and land-use
CCR assessments which includes microplastic particle size, abun-

dance and polymeric hazard scores, identified benthic catfish study sites 
as medium-high risk areas for microplastic contamination, while tomcod 
study areas were deemed lower risk (Table 4). Stations near Québec City 
(CC2, CC4, CC5, CC6, and CC7) were classified as higher risk, reflecting 
increased microplastic abundances and the presence of highly toxic 
polymers (Fig. 1; Table 4).

4. Discussion

4.1. Limitations and uncertainties

This study provides valuable insights and establishes a baseline for 
the occurrence, spatial distribution, and ecological risk assessment of 
microplastic contamination in benthic species within the SLRE. How-
ever, several limitations should be noted. Due to logistical sampling 
constraints and low observed benthic fish abundance at sampling sta-
tions in the SLRE, we captured a low number of individual fish during a 
limited period. For this reason, we decided to focus our analysis only on 
the two most abundant species encountered in the study area, instead of 
the full benthic fish assemblage. Moreover, the absence of a PHI score for 
polycaprolactone and shape factor-based limit values most likely 
affected the certainty of ecological risk assessment. To build on the 
baseline provided in the present study and reveal causal relationships 
between microplastic contamination and urban activity, further in-
vestigations should rely on a more comprehensive spatio-temporal 
sampling effort within the SLRE, including a parallel analysis of 
microplastic concentration in bottom water and sediment. Also, future 
research involving a broader range of benthic species is needed to 
conclusively determine microplastics’ presence across trophic levels and 
better reflect the condition of SLRE benthic ecosystems.

4.2. Microplastic abundance, spatial and tissue distributions in SLRE 
benthic fish

Microplastic contamination in benthic fish highlights its pervasive-
ness in the SLRE and the vulnerability of benthic species. The overall 
abundance of microplastics varied widely between species, with results 
suggesting that catfish accumulate microplastics at higher rates than 
tomcod (Fig. 2A). This difference may stem from variations in feeding 
behavior, habitat, physiology, and exposure routes (Zazouli et al., 2022; 
Lin et al., 2023; Roch et al., 2020). In this study, the differences in 
microplastic accumulation between catfish and tomcod, and their GIT 
and gills tissues highlight species-specific exposure routes and accu-
mulation patterns. For instance, tomcod exhibited significantly higher 
microplastic abundances in their GIT compared to gills (Fig. 2B), sug-
gesting that mouth intake is the primary exposure route for this species. 
This observation aligns with previous studies from other regions such as 

Fig. 5. Relationships among microplastic abundance, polymer abundance, and polymer density (g cm− 3) in the two benthic fish. (A) Microplastic and PET polymer 
abundance in the two fish species across all study sites. (B) Microplastic abundance across sites, considering all fish combined, plotted against the density of all 
detected polymers. Ellipses indicate 95 % confidence intervals around the centroid of each data cluster. ‘MPs’ refers to microplastics.
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Caspian Sea (Northern Iran) (Rasta et al., 2023) and Guangdong (South 
China) (Pan et al., 2021). In contrast, catfish showed no significant 
difference in microplastic abundance between their GIT and gills, indi-
cating that both oral ingestion and gill filtration may contribute equally 
to their exposure. These findings support the idea that the relative 
contributions of GIT and gill-based microplastic uptake can vary across 
species. In addition, there was no significant difference in microplastic 
abundance in GIT or gills between catfish and tomcod, implying a 
similar level of ingestion of microplastics by the GIT or uptake by gills 
between the two species. However, tomcod’s higher microplastic 
abundance per unit of body or tissue weight likely stems from bio- 
dilution effects, as their smaller, lighter bodies, GITs, and gills accu-
mulate more microplastics per unit weight due to lower overall body/ 
tissue weight (Table 1). This aligns with McIlwraith et al. (2021), which 
found that smaller fish exhibit higher microplastic abundances per gram 
of tissue wet weight than larger and heavier fish. This indicates that 
body size, weight, and feeding behavior influence microplastic expo-
sure, accumulation and distribution in fish species.

Further to that, a positive correlation between microplastic abun-
dance and biological variables such as fish body weight & length, and 
GIT & gill weight, highlighted the influence of fish size and anatomical 
features on microplastic accumulation. The findings suggest that larger 
catfish, with heavier GITs and gills, tend to accumulate greater quanti-
ties of microplastics, whereas smaller tomcod accumulate fewer. This 
aligns with previous studies on benthic fish from the Thames River (UK) 
(Horton et al., 2018), Spain (Alomar et al., 2017), Lake Ontario (Canada) 
(Munno et al., 2022), and the Han River (Republic of Korea) (Park et al., 
2022). Regarding gills, microplastic accumulation may be linked to the 
greater surface area and filtering efficiency of larger individuals. Larger 
gills provide more surface area for microplastic adherence and enhance 
the capacity to entangle and retain particles from flowing water, as 
suggested by earlier studies (Collard et al., 2017; Vasanthi et al., 2021; 
Gregory, 2009; Kolandhasamy et al., 2018). Although the difference in 
gill microplastic accumulation between catfish and tomcod was not 
statistically significant, the observed trend of higher microplastic 
quantities in catfish gills supported our hypothesis that microplastic 
accumulation differs between gills and GITs. Additionally, larger fish, 
which consume more food overall, may face higher contamination risks 
due to increased ingestion rates and trophic exposure, making them 
more likely to ingest microplastics through prey. This strengthens the 
connection between fish size and microplastic accumulation (Alomar 
et al., 2017; Munno et al., 2022; Park et al., 2022). These findings un-
derscore the importance of considering anatomical features, such as fish 
size and tissue weight, when evaluating microplastic exposure and 
retention in fish and assessing the ecological risks of microplastic 
pollution. Further research is needed to clarify the mechanisms behind 
these interspecies differences in microplastic accumulation and to 
examine the long-term ecological consequences, particularly in larger 
benthic species, to better understand the potential risks to ecosystems 
and food webs.

A key finding from the spatial analysis of microplastic abundance 
was the significant variation between downstream and upstream sites. 
Catfish collected from the downstream stations near Québec City 
(CC2–7) showed significantly higher microplastic abundances (Fig. 1, 
Fig. 2A). This spatial difference likely reflects the influence of urban 
land-use on microplastic contamination, as downstream sites near 
Québec City are more affected by industrial and urban activities, could 
increase the influx of microplastics into the SLRE, supported by the 
previous study in the SLRE by Crew et al., 2020. Crew et al. (2020) found 
higher levels of microplastic particles from the sediment in the down-
stream of Québec City (site 26 in that study representing 76.3 % urban 
land-use which is close to CC2–4 in the present study) compared to the 
less urbanized upstream area (site 23 in Crew et al. (2020) representing 
10.0 % urban land-use which is close to CC1 in this study) in the SLRE. 
The consistency between the microplastic contamination results from 
the SLRE sediments by Crew et al. (2020) and our catfish samples 

suggests that the Québec City urban land-use likely contributes to 
increased microplastic input into the aquatic ecosystem, affecting sedi-
ment and biota, and underscores the habitat’s role in microplastic up-
take by the benthic catfish in the SLRE. However, it is worth noting that 
catfish’s migratory activity may also affect their exposure to micro-
plastics, although the present study could not track such affecting fac-
tors. Even though they are generally considered sedentary, catfish can 
migrate over 150 km in the SLR (Scott and Crossman, 1973), potentially 
encountering microplastic other than the sampling areas during their 
migration. This should be validated by further studies focusing on 
tracking how migration of catfish in SLRE affect their exposure and 
accumulation of microplastics. In contrast to catfish, no significant 
spatial variations were found among three sampling sites for tomcod 
(Fig. 2A), possibly due to the consistency of land-use around the sam-
pling areas of AT1–AT3. Future research should aim to expand on these 
findings by including a broader range of species, temporal data, and 
sediment and water quality analyses to fully assess the ecological risks 
posed by microplastic contamination in the SLRE and similar 
ecosystems.

The predator-prey BMF analysis in this study revealed no significant 
biomagnification of microplastics between catfish and tomcod in the 
SLRE. The calculated BMF values based on fish body weight (0.5 < 1.0), 
GIT weight (0.57 < 1.0), and gill weight (0.38 < 1.0) all suggested no 
evidence of microplastic biomagnification. This aligns with similar 
findings from McIlwraith et al. (2021), which showed no definitive 
biomagnification in seven fish species from Lake Simcoe, Ontario. 
Additionally, a study by Covernton et al. (2022) found that large-sized 
microplastics (>100 μm) did not biomagnify across different trophic 
levels in bivalves, crabs, echinoderms, and fish from southern Vancou-
ver Island (British Columbia, Canada), which is consistent with our 
findings. This could happen as most of the microplastics detected in this 
study were > 100 μm. However, given that this analysis was confined to 
just two species, further research involving a broader range of species is 
necessary to conclusively determine whether biomagnification of 
microplastics occurs across trophic levels in the SLRE ecosystems.

4.3. Microplastic characteristics: shape-size-color-polymers

4.3.1. Shape
The analysis of microplastic shapes revealed significant variations in 

particle types, highlighting fibers as the predominant shape across all 
samples, followed by films and fragments. This finding aligns with 
global studies on benthic fish, which consistently report fibers as the 
most common microplastic shape ingested by benthic fish species 
(Table 3). The dominance of fibers may be attributed to their widespread 
presence in aquatic environments, originating from textile fibers, fishing 
gear, and industrial discharges (GESAMP, 2016).

Differences in microplastic shape contamination were also observed 
between species and tissues. Catfish showed contamination by all three 
shapes, fibers, films, and fragments, in both GITs and gills, whereas 
tomcod were primarily contaminated by fibers, with only a few films 
detected in the GIT and no fragments in any samples (Fig. 4A). These 
differences may reflect the anatomical and behavioral characteristics of 
the species. The larger mouths and gills of catfish, compared to tomcod, 
likely increase their exposure to a broader range of microplastic shapes, 
consistent with Siddique et al., 2024. This finding highlights the 
importance of considering species-specific traits when evaluating 
microplastic exposure risks.

Spatial variation in microplastic shapes across sampling sites high-
lights the influence of local environmental factors on contamination 
patterns. Upstream locations (e.g., CC1) showed exclusively fiber 
contamination in catfish, whereas downstream sites (CC2–7) exhibited 
contamination by all three shapes: fibers, fragments, and films. A com-
parison with Crew et al. (2020) revealed similar trends, where increased 
abundances of fibers were recorded upstream (site 23 in Crew et al. 
(2020), close to CC1 in the present study) and higher numbers of 
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fragments and films were observed downstream (site 26 in Crew et al. 
(2020), near CC2–4 in this study) of Québec City. The findings in this 
study mirrored this trend, with catfish from CC1 solely contaminated 
with fibers, while those from CC2–7 were contaminated by fibers, 
fragments, and films. These results suggest that Québec City’s urban 
land-use practices may contribute to the prevalence of fragments at 
downstream sites and influence the uptake of various microplastic 
shapes by benthic species in the SLRE. Similarly, for tomcod, fibers were 
the dominant shape at all sites, with films occasionally detected at 
specific locations. These spatial differences likely result from variations 
in land-use practices and urbanization in the SLRE, which contribute 
distinct shapes of microplastic pollution.

Overall, the predominance of fibers, coupled with spatial and 
species-specific variations in microplastic shapes, provides valuable in-
sights into the ecological impacts of microplastic pollution. Future 
research should aim to identify the sources, transport mechanisms, and 
degradation pathways of different microplastic shapes to better evaluate 
their ecological risks. Understanding these dynamics is essential for 
developing targeted mitigation strategies to address microplastic 
pollution in aquatic ecosystems.

4.3.2. Size
This study highlights the predominance of smaller microplastics 

26–809 μm (small microplastics defined as <1 mm, while larger 
microplastics range from 1 to 5 mm; Naji et al., 2019; Piehl et al., 2019) 
in the GITs and gills of benthic fish from the SLRE. The observed size 
distribution aligns with previous research, which consistently reports 
that microplastics smaller than 1 mm dominate in benthic species 
(Table 3; Ryan, 2016; Roch et al., 2021; Lin et al., 2023). The consistent 
detection of microplastics ranging from 26 to 809 μm in the GITs of both 
catfish and tomcod suggests these particles are highly ingestible by these 
two benthic species. This can be attributed to several factors: (1) the 
potential high environmental prevalence of particles between 26 and 
809 μm in the SLRE, which suggests prioritizing the analysis of sur-
rounding water and sediment in future studies; (2) this size range closely 
resembles natural food sources, or their prey items, such as zooplankton, 
phytoplankton (Ory et al., 2017), and their secondary ingestion through 
prey contaminated with microplastics increasing their likelihood of 
mixing with food and being preferentially ingested (Koongolla et al., 
2020); (3) mechanical actions, such as chewing and ingestion, may 
break larger microplastics into smaller fragments, further amplifying 
their abundance (Zhang et al., 2021). Additionally, smaller micro-
plastics tend to have longer retention times in fish GITs, further 
explaining their higher prevalence (Roch et al., 2021). Interestingly, the 
size distribution in gills varied between species. Tomcod showed a 
dominance of larger particles (>809 μm) in gills, which could be 

Table 3 
A comparison of microplastic contamination in the benthic fish with previous studies around the world.

Benthic Species Study Area Abundance (Mean ± SD) Characteristics References

n/GIT n/ 
gills

n/ 
Fish

Shape Size Color Polymer

Microgadus tomcod SLRE, Canada 1.4 ± 0.27
0.5 
±

0.16

1.9 ±
0.3 Fiber <809 Blue, Black PET, PE This study

Ictalurus punctatu SLRE, Canada 1.8 ± 0.34
1.9 
±

0.47

3.6 ±
0.6

Fiber <809 Blue, Black PET, PE This study

C. lyra NW Iberian shelf, Spain 2.53 ± 1.88 Fiber
Filgueiras 
et al., 2020

M. surmuletus (Predator) NW Iberian shelf, Spain 1.56 ± 0.53 Filgueiras 
et al., 2020

Leiognathus brevirostris Thoothukudi, Tamil 
Nadu, India

0.58 ± 0.24 Keerthika 
et al., 2023

Siganus canaliculatus
Thoothukudi, Tamil 
Nadu, India 1.88 ± 1.27

Keerthika 
et al., 2023

Ammodytes personatus and 
Gobiidae Jiaozhou Bay, China

3.68 
±

0.79
Fiber

<

1000 Black, Blue PE, PET,
Zhang et al., 
2023

Mullus barbatus Adriatic Sea, Tyrrhenian 
Sea, and Sardinia, Italy

0.14 ± 0.04 Fiber <1000 Black, Blue PET/ 
Polyester

Valente 
et al., 2022

Misgurnus anguillicaudatus and 
Johnius belangerii

Yangtze River estuary 
(near Chongming Island 
and offshore area), China

Fiber <1000 PET, PE Li et al., 
2022

Clarias gariepinus) and 
benthopelagic (Cyprinus 
carpio and Carassius 
Carassius

Lake Ziway, Ethiopia 4.4 ± 3.6 Fragment, 
Fiber

< 200 Transparent 
white, Blue

PE, PP, PET Merga et al., 
2020

Gobiidae,
Haizhou Bay, Yellow Sea, 
China 2.54 ± 0.89 Fiber

<

1000 Blue PET
Zhang et al., 
2022

Cleisthenes herzensteini South Yellow Sea, China Fiber < 500
Transparent, 
Black, Blue

PP, PET, 
PAM, PS

Wang et al., 
2019

Trigla lyra, Boops boops, 
Trachurus picturatus, 
Scyliorhinus canicular, and 
Merluccius merluccius

Portuguese coast, 
Portugal

0.03 ±
0.18–0.67 ±
0.58

Fiber
PP, PE, PET, 
Acrylic, 
PAM

Neves et al., 
2015

Mastacembelus armatus 
Cirrhinus reba Glossogobius 
giuris

River Old Brahmaputra, 
Bangladesh

2.33 ±
0.57–10.31 ±
0.75

Fiber <1000
Black, Blue, 
Transparent, 
Red

PE, PAM Ferdous 
et al., 2023

Platichthys flesus
River Thames and River 
Stour, UK 1.98 ± 3.50 PP

Horton 
et al., 2024

Solea solea Adriatic Sea, Italy
1.73 ±
0.05–1.64 ±
0.1

Fragment, 
Fiber <500

PVC, PP, PE, 
PET, and 
PAM

Pellini et al., 
2018
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attributed to species-specific differences in respiratory filtration 
mechanisms.

The prevalence of smaller particles highlights the pervasive nature of 
microplastics in the SLRE, driven by processes such as breakdown, 
degradation, transportation, and dispersion across benthic habitats 
(Katija et al., 2017; Roch et al., 2021; Lin et al., 2023). However, the 
variability observed between the catfish and tomcod stations reflects 
site-specific factors, including localized microplastic sources, hydrody-
namic sorting, and differences in feeding behaviors, physiology, and 
anatomy (Roch et al., 2021). These findings underscore the ecological 
significance of smaller microplastics in aquatic ecosystems. The elevated 
ingestion of smaller microplastic particles by benthic fish is particularly 
concerning due to their increased potential for bioaccumulation, bio-
logical transport, and prolonged retention in tissues (Lei et al., 2018; 
Katija et al., 2017; Zheng et al., 2020; Roch et al., 2021). These char-
acteristics render smaller particles more toxic and impactful in benthic 
ecosystems, which not only threatens benthic fish but also poses risks to 
the broader food web in the SLRE. Therefore, this study highlights the 
need for targeted mitigation strategies to reduce the input of smaller 
microplastics into aquatic environments, considering their persistence 
and disproportionate impact on aquatic biota. Future research should 
prioritize understanding the mechanisms driving size-selective ingestion 
of microplastics across species and their physiological and ecological 
consequences. Additionally, investigating the sources and pathways of 
smaller microplastics, particularly in high-contamination areas of the 
SLRE, will be crucial for informing effective pollution management 
strategies.

4.3.3. Color
The diverse color spectrum of microplastic particles extracted from 

catfish and tomcod underscores the complexity of microplastic 
contamination in the SLRE’s benthic ecosystem. Blue particles emerged 
as the predominant color across all samples, followed by transparent and 
white particles, while other colors such as red, black, violet, yellow, 
green, and grey were also present, albeit in smaller proportions. This 
pattern aligns with findings from previous studies, which have identified 
blue, and transparent microplastic as the major ones ingested by benthic 
fish (Table 3). The consistent dominance of blue-colored microplastic 
across all stations and species in this study may indicate a potential link 
to their resemblance to natural prey items or food-like stimuli (Ory et al., 
2017; Roch et al., 2020; Boerger et al., 2010). For example, research has 
shown that foraging fish are more likely to ingest microplastic with 
colors resembling those of their prey or direct ingestion from prey 
already contaminated with microplastics, such as algae, insects, aquatic 
plants, phytoplankton, zooplankton, etc. (Merga et al., 2020; Roch et al., 
2020). This ingestion could explain the widespread presence of blue 
microplastic in both catfish and tomcod (Boerger et al., 2010). 
Furthermore, alongside the prevalence of blue particles, the color dis-
tribution of microplastic in this study aligns with findings from other 
research, with red, black, and transparent being the other major colors 
(Bellas et al., 2016; Table 3). Additionally, transparent and white par-
ticles were prevalent in the gills compared to the GIT. The differences in 
the color of microplastics between the GIT and gills, for instance the 
higher prevalence of blue microplastics in the GIT, indicated varied 
exposure pathways. We thought that blue microplastics, resembling 
natural aquatic particles, are predominantly ingested orally, making 
them more abundant in the GIT, while transparent and white particles 
might be entangled or retained from the surrounding environment by 
the gills in respiratory filtration mechanism, given their higher abun-
dances in the gills. These indicated that differences in microplastic color 
distribution between the GIT and gill tissues potentially highlight vari-
ations in exposure, uptake and accumulation mechanisms in benthic fish 
bodies.

Spatially, blue particles were predominant across all sites, differ-
ences were noted between upstream (CC1) and downstream stations 
(CC2–7). Upstream samples primarily contained blue particles, whereas 

downstream locations exhibited more diverse contamination, including 
transparent and white microplastic. This variation could reflect differ-
ences in microplastic sources, transport pathways, or degradation pro-
cesses, as downstream areas are more likely to accumulate microplastic 
from multiple sources, including urban runoff and industrial discharges. 
For tomcod, the predominance of blue and black particles across stations 
further suggests species-specific interactions with microplastics, poten-
tially influenced by their habitat preferences and feeding behaviors. The 
absence of sediment microplastic color data from the study region (Crew 
et al., 2020) limits direct comparisons but emphasizes the importance of 
characterizing sediment microplastics in future research to establish 
potential links between environmental microplastics and those ingested 
by fish. Overall, the color distribution of microplastics provides insights 
into the interactions between aquatic organisms and microplastics in 
their environment. The prevalence of specific colors, particularly blue, 
underscores the need for further studies on how visual cues influence 
microplastic ingestion in the benthic species form the SLRE. Under-
standing these dynamics can inform mitigation strategies aimed at 
reducing the prevalence of high-risk microplastic particles in aquatic 
ecosystems.

4.3.4. Polymer
This study underscores the complexity of microplastic contamination 

in benthic fish, highlighting the diversity of polymer types and their 
spatial variability across the SLRE. The identification of 11 distinct 
polymer types in catfish and tomcod reflects the pervasive nature of 
microplastic pollution and its diverse sources in the SLRE’s benthic 
ecosystem.

The predominance of PET and PE in benthic fish, alongside other 
major polymers such as PP and PS, aligns with global trends (Table 3). 
However, the detection of less commonly reported polymers in fish like 
PCL, PMMA, PVC, ABS, PUR, and PA is distinct for the benthic fish in the 
SLRE, particularly in catfish. Notably, some polymers, such as EVA, 
PUR, and PA, were exclusively found in catfish gills, suggesting species- 
specific exposure pathways. These results are consistent with prior 
findings by Rowenczyk et al. (2022), which reported a diverse array of 
microplastic polymers, including PET, PP, PS, PE, PUR, EVA, and PVC, 
in SLRE surface waters and PET, PS, PE, PP and EVA in benthic bivalves. 
The study areas of Rowenczyk et al. (2022) were similar to the down-
stream of the catfish and tomcod sampling sites in this study. This 
suggests that benthic species may encounter microplastics primarily 
from the SLRE’s surrounding water-sediment habitat.

Further discussion on the diversity and distinct occurrence of 
microplastic polymers considered two key aspects: (1) the environ-
mental behavior of microplastic polymers and (2) the localized exposure 
of benthic fish to specific microplastic sources in the SLRE.

Firstly, the settling behavior of microplastic particles is influenced by 
their density (Chubarenko et al., 2016; Kooi et al., 2018; Kowalski et al., 
2016; Morét-Ferguson et al., 2010; Cózar et al., 2014; Zettler et al., 
2013). The high-density PET (1.37—1.45 g cm− 3) was the predominant 
type of microplastic found in the two benthic fish species (all fish GIT 
and gills considered together), and abundances significantly correlated 
with the total microplastic abundances across all study sites (Fig. 5A). 
Other high-density polymers (>1 g cm− 3), such as PCL (1.15 g cm− 3), 
PMMA (1.17–1.20 g cm− 3), PVC (1.16–1.58 g cm− 3), ABS (1.05 g cm− 3), 
PUR (1.2 g cm− 3), and PA (1.02–1.05 g cm− 3), were abundant (Fig. 4D), 
and largely contributed to the total microplastic load in the two benthic 
fish. When comparing the total abundance of all polymers in the fish, 
polymers with densities >1 g cm− 3 accounted for 89 out of 125 total 
microplastic particles (71.2 %), whereas polymers with densities <1 g 
cm− 3 accounted for 36 particles (28.8 %). This finding underscores the 
critical role of high-density polymers in the composition of microplastics 
ingested by benthic fish. To further explore this relationship, although 
the correlation analysis between polymer density and microplastic 
abundance did not reveal a statistically significant correlation (Fig. 5B), 
we thought that polymer density plays an indirect but important role in 
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microplastic accumulation in benthic fish. Factors such as rapid sedi-
mentation of high-density polymers to the bottom aquatic environments 
could amplify the exposure of bottom-dwelling fish to high-density 
microplastics (Chubarenko et al., 2016; Kooi et al., 2018; Kowalski 
et al., 2016; Morét-Ferguson et al., 2010; Cózar et al., 2014; Zettler et al., 
2013), whereas low-density polymers (<1 g cm− 3), such as PE, PP, PS, 
and EVA, typically require biofouling, the attachment of organic and 
inorganic matter, or that of organic aggregates to alter their buoyancy 
and allow them to reach the sediment. Thus, the elevated presence of 
high-density polymers in SLRE benthic fish indicates that the benthic 
habitat likely plays a role in fish uptake from their surroundings, high-
lighting sediment and water column deposition as critical pathways for 
microplastic exposure in benthic species and understanding the habitat- 
specific contamination pathways. Future studies incorporating hydro-
dynamic modeling and dietary analyses could provide deeper insights 
into the mechanisms driving microplastic accumulation in benthic 
ecosystems.

Secondly, the polymers PE, PP, PET, and PS, widely referred to as 
‘single-use plastics,’ are extensively utilized across various sectors, 
including commercial, industrial, household, food packaging, and 
agriculture. These materials are consumed on a massive scale globally, 
have a short useful life, and quickly enter waste streams, contributing 
significantly to microplastic emissions and environmental pollution 
(UNEP, 2018; GESAMP, 2016; Plastics Europe, 2020). Other detected 
polymers have more specialized origins; for example, PMMA may derive 
from medical applications, while PVC is associated with building ma-
terials, water distribution pipes, floor coverings, cable insulation, and 
packaging. Similarly, PUR is linked to the production of leather goods, 
sports equipment, car seats, tires, and biomedical devices, while ABS is 
used in automotive components, toys, household goods, and 3D print-
ing. PA is primarily used in textiles, packaging, engineering, and agri-
culture, and EVA is commonly found in footwear, automobiles, toys, and 
packaging (Plastics Europe, 2020) (detailed descriptions of these poly-
mers are provided in Table S1). Therefore, the findings in this study 
highlight the pervasive impact of single-use plastic pollution, with PE, 
PP, PET, and PS comprising the majority of detected microplastics in the 
benthic fish from the SLRE. The presence of distinct polymers such as 
PUR, ABS, and EVA further underscores the variety of contamination 
sources, from urban runoff to industrial discharges. Spatially, catfish 
samples from downstream areas (CC3–7) displayed greater polymer 
diversity compared to upstream sites (CC1), reflecting the impact of 
urban land-use, particularly around Québec City. The presence of 
polymers such as ABS, PUR, and PA in these areas suggests inputs from 
urban and industrial activities, including construction, automotive 
manufacturing, and textile production. In contrast, tomcod showed less 
polymer diversity across sites, with PE, PET, and PP dominating at all 
locations. This interspecies difference likely reflects variations in habitat 
preferences, feeding behaviors, or proximity to microplastic sources. 
Notably, the strong correlation between PET fibers and total micro-
plastic abundance suggests that PET could serve as a reliable marker for 
microplastic pollution in the SLRE, providing a valuable tool for future 
monitoring of microplastic in the SLRE.

Overall, the study underscores the diverse land-based, both point and 
non-point, contributions to microplastic pollution in the SLRE, which 
could significantly influence the spatial distribution and fate of micro-
plastics. Targeted management strategies are needed to mitigate 
microplastic contamination, focusing on urban land-use practices and 
waste management. Future research should prioritize exploring the 
pathways and mechanisms driving polymer-specific microplastic accu-
mulation in aquatic organisms, particularly under varying environ-
mental conditions. Enhanced understanding of these dynamics will 
enable the development of effective policies to reduce the ecological and 
environmental impacts of microplastic pollution.

4.3.5. Potential ecotoxicological threats of microplastics in benthic fish in 
the SLRE

Small microplastics pose significant hazards due to their increased 
likelihood of ingestion, translocation within tissues, and biological 
transport by aquatic organisms (Katija et al., 2017; Lei et al., 2018; 
Zheng et al., 2020). Microplastic fibers are linked to respiratory and 
reproductive issues (Hu et al., 2020). For example, PET fiber ingestion 
can trigger inflammatory responses and oxidative stress, with fibers 
proving more toxic than fragments by disrupting oxidative processes, 
immune function, and hematopoiesis in fish (Choi et al., 2022; Liang 
et al., 2023; Ziajahromi et al., 2017). Fibers and fragments may also 
cause physical damage, including intestinal blockages, internal abra-
sions (de Sa et al., 2018; Wright et al., 2013). Various polymers such as 
PE, PP, PS and PET can cause neurotoxicity, reproductive and growth 
impairments, and oxidative stress (de Sa et al., 2018; Avio et al., 2015; 
Barboza et al., 2018), while others, like PS, PMMA, PVC, ABS, PUR, and 
PAN, carry additional risks with carcinogenic, mutagenic, and 
endocrine-disrupting effects (Lithner et al., 2011; Gallo et al., 2018). 
Human exposure concerns arise from fish consumption, impacting 
fisheries-dependent communities (Rist et al., 2018). Thus, the micro-
plastics observed in this study may pose ecotoxicological threats to fish 
in the SLRE, warrants for targeted research to assess ecotoxicity at these 
realistic exposure levels. Such studies would clarify risks to fish pop-
ulations and aid fisheries management and aquatic wildlife conservation 
in the region.

4.4. Microplastic contamination ecological risk assessment

The ecological risk assessment of microplastic contamination in the 
SLRE highlights the complexity and variability of risks associated with 
microplastic size, abundance, and polymeric toxicity. Smaller micro-
plastic particles (<809 μm) emerged as significant contributors to 
heightened ecological risks along the SLRE benthic environments and 
supported our hypothesis (Table 4; Fig. S3). Their elevated ingestion by 
benthic fish is particularly concerning, as smaller particles are more 
prone to pose unique ecotoxicological challenges such as bio-
accumulation, biological transport, and prolonged retention in tissues 
like the GIT (Lei et al., 2018; Katija et al., 2017; Zheng et al., 2020; Roch 
et al., 2021). Therefore, this size-based ecological risk assessment 
highlights the critical role of size distribution in understanding micro-
plastic contamination risks, especially in benthic habitats. Further, the 
microplastic contamination ecological risk assessment also highlights 
the significant role of polymeric composition in influencing contami-
nation risks. Elevated PHI values in downstream stations near Québec 
City point to the presence of highly toxic polymers, such as PVC, PMMA, 
ABS, and PUR, which contributed to increased PHI and ERI values; thus, 
these highly toxic polymers, despite their relatively low abundance, 
emerged as key drivers of ecological risks. The correlations observed 
between PLI, PHI, and ERI further emphasized the interplay between 
microplastic abundance and polymeric hazards levels in shaping 
ecological risk levels (Lithner et al., 2011). Additionally, the elevated 
ecological risks in downstream stations near Québec City underscore the 
impact of urban land-use activities, which not only contribute to the 
release of highly toxic polymers but also increase microplastic abun-
dance and diversity in these areas within the SLRE ecosystems. Overall, 
the cumulative contamination risk (CCR) assessment, integrating size, 
abundance, and polymeric hazard scores, identified downstream catfish 
study sites as medium- to high-risk areas in the SLRE for microplastic 
contamination (Table 4). Conversely, tomcod study sites exhibited lower 
risks, consistent with their reduced exposure to urban land-use impacts. 
Stations near Québec City (downstream CC2, CC4–7), classified as 
higher risk, which could attribute to higher microplastic abundances 
and the presence of highly toxic polymers (Fig. 1 and Table 4). This 
suggests that urban land-use could elevate ecological risks by increasing 
microplastic abundances and releasing diverse, potentially highly toxic 
polymers into SLRE systems, impacting benthic fish species. Effective 
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management of microplastic contamination must address both the 
quantity of microplastics and their toxicological profiles to mitigate 
potential risks to aquatic ecosystems and human health.

This study enhanced the ecological risk assessment framework by 
incorporating a size-based model to address size-dependent ecological 
risks, offering a more comprehensive approach to microplastic 
contamination. Overall, by linking abundance, size, and polymeric 
hazard levels with land-use sources, the framework identified Québec 
City’s urban areas as significant contributors of highly toxic polymers in 
the SLRE. It enabled the mapping of microplastic risk zones, provided 
predictive insights into contamination trends under varying environ-
mental and land-use scenarios, and supported targeted risk management 
strategies within the SLRE. This approach contributes to guiding efforts 
to mitigate microplastic pollution and safeguard aquatic ecosystems. 
Future refinements, such as integrating additional microplastic charac-
teristics like shape, could further enhance the precision and effective-
ness of ecological risk assessments.

5. Conclusion

This study provides a comprehensive baseline for understanding 
microplastic contamination in benthic fish species from the SLRE, 
highlighting the occurrence, spatial distribution, and associated 
ecological risks. The findings revealed species-specific accumulation 
patterns, with catfish exhibiting higher microplastic loads than tomcod, 
influenced by differences in feeding behaviors, anatomical features 
(size, weight, and length of the fish bodies and tissues), and exposure 
pathways. Tomcod were primarily exposed to microplastics via oral 
ingestion, while catfish were exposed through both GIT and gill uptake. 
Spatially, downstream sites near Québec City exhibited heightened 
contamination levels, reflecting urban land-use impacts. No evidence of 
microplastic biomagnification was observed between the predator-prey 
pair (catfish and tomcod), suggesting that consuming tomcod was not a 
significant factor affecting the accumulation of microplastics in catfish. 
Fibers dominated the detected microplastic shapes, with small-sized 
particles (<809 μm) and colors such as blue, red, and black being 
most prevalent. PET and PE were the most common polymers, alongside 
a diverse range of types, including PMMA, PUR, PVC, ABS, and PS, 
implying diverse point and non-point sources of different polymers in 
this area. Fragment-shaped microplastics appeared to be linked to urban 
activities, while the presence of high-density polymers (e.g., PVC, 
PMMA, PUR, ABS, PS) likely resulted from sediment deposition. Smaller 
particles (<809 μm) and highly toxic polymers (e.g., PVC, PUR, PMMA, 
ABS) as the primary contributors to elevated ecological risks. Elevated 
contamination and ecological risks at downstream sites near Québec 

City underscore the urgent need for targeted management strategies to 
mitigate microplastic pollution in the SLRE. Future research should 
address existing knowledge gaps by analyzing sediment and water in 
addition to biota, expanding the spatial and temporal scope of in-
vestigations, including hydrodynamic understanding of microplastic 
advection, and examining the long-term impacts of microplastics on fish 
health, food webs, and ecosystem dynamics. These efforts are vital for 
informing policies aimed at protecting aquatic biodiversity and sus-
taining ecosystem services in the SLRE and similar environments 
worldwide.
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