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RÉSUMÉ 

Électrifier les régions éloignées qui n'ont pas accès au réseau électrique national dépend 

fortement des générateurs diesel. Cependant, un défi majeur se pose lorsque la demande en 

électricité est faible, ce qui nécessite que le moteur diesel fonctionne sous un faible régime. 

Une combustion inadéquate pendant cette phase entraîne une accumulation significative de 

polluants à l'intérieur du cylindre, ce qui peut affecter négativement le fonctionnement du 

moteur. 

L'objectif principal de cette recherche est d'optimiser le fonctionnement d'un groupe 

électrogène diesel en détectant et en prévenant son fonctionnement sous un faible régime 

grâce à la mise en œuvre d'un système de contrôle basé sur des Réseaux de Neurones 

Artificiels (RNA). Les expériences ont été réalisées sur un moteur à allumage par 

compression Caterpillar de 8,8 litres d'une puissance maximale de 300 kW et les données 

respectives sur les gaz d'échappement ont été collectées à l'aide d'un analyseur de gaz de 

combustion. 

Les données acquises ont été utilisées pour entraîner un réseau neuronal capable 

d'identifier les schémas lorsque le groupe électrogène diesel fonctionne en dessous de la 

charge de fonctionnement prescrite par le fabricant, soit dans notre cas, en dessous de 35 %.

À cette fin, différentes architectures de réseaux neuronaux ont été testées pour déterminer la 

structure la plus optimale adaptée à notre donnée d'entrée produisant la prédiction la plus 

précise de la charge de fonctionnement du GED. La charge de fonctionnement prédite est 

ensuite utilisée dans un système de contrôle pour déterminer la valeur de la résistance requise 

du banc de charge qui doit être chargée sur l'unité génératrice du GED. Cela permettrait de 

convertir l'énergie électrique en chaleur, améliorant ainsi l'état de fonctionnement du GED 

en atténuant les impacts négatifs de son fonctionnement à faible charge. 

Les résultats de simulation acquis de cette recherche démontrent que le système de 

contrôle développé détecte la sous-performance d’un GED avec une précision remarquable, 



x 

dont le coefficient de corrélation et la Racine de l'Erreur Quadratique Moyenne (REQM) sont 

proches de 0,007 et 0,03 pour les données d'entraînement et de test, respectivement. 

Mots clés : [faible charge; sous-performance; générateur diesel; moteur à combustion; 

production d'électricité autonome ; optimisation ; Réseau de Neurones Artificiels (RNA)] 
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ABSTRACT 

Electrifying remote regions lacking access to the national electricity grid relies heavily 

on diesel generators. However, a significant challenge arises when the electricity demand is 

low, necessitating the diesel engine to operate under a low-load regime. Inadequate 

combustion during this phase results in a significant accumulation of pollutants inside the 

cylinder, adversely affecting the engine's operation. 

The main objective of this research is to optimize the operation of a diesel generator by 

detecting and preventing its low-load operation by implementing a control system based on 

Artificial Neural Networks (ANN). The experiments were carried out on an 8.8-liter 

Caterpillar compression ignition engine with a maximum power of 300 kW, and the 

respective exhaust gas data were collected using a gas combustion analyzer. 

The acquired data was used to train a neural network capable of identifying patterns 

when the diesel generator set operates below the manufacturer's prescribed operating load, 

which, in our case, is below 35%. For this purpose, different neural network architectures 

were tested to determine the most optimal structure adapted to our input data, producing the 

most accurate prediction of the operating load of the diesel engine generator (DEG). The 

predicted DEG operating load is then used in a control system to determine the required load 

bank resistance value that should be loaded onto DEG's generator unit. This will convert 

electrical energy into heat, thereby improving the DEG's operating state by mitigating its 

low-load operation's negative impacts. 

The simulation results acquired from this research demonstrate that the developed control 

system detects the underperformance of a DEG with remarkable accuracy, whose correlation 

coefficient, and Root Mean Squared Error (RMSE) are close to 0.007 and 0.03 for training 

and testing data, respectively. 

Keywords: [low load; underperformance; diesel generator; combustion engine; stand-alone 

power generating; optimization; Artificial Neural Networks]
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND AND LITERATURE REVIEW 

The electrification of isolated regions has always been one of the significant challenges 

for both governments and utility companies. As stated by the World Bank, most of the 1.2 

billion people worldwide without access to electricity reside in Africa and Asia (Arriaga et 

al., 2014). Extending the power grid to isolated locations is expensive and technically 

complex (Akbas et al., 2022). Consequently, these regions predominantly rely on diesel 

generators for energy generation, owing to their excellent reliability, stability, extended 

service life, and ease of production (Issa et al., 2020). In Canada, over 280 communities, 

approximately 200,000 people, one-third of whom are situated in northern territories (Yukon, 

Nunavut, etc.), are not connected to the electrical grid. These remote regions primarily rely 

on diesel for electricity production, as depicted in Figure 1. This choice is driven by the 

reliability of this energy source and the fact that local utilities are better familiar with this 

energy generation technology, as well as the diesel’s high energy density and ease of storage. 

(McFarlan, 2018). On the other hand, diesel generators are relatively affordable, easy to 

install, and can be scaled up to meet the load profile of isolated regions (CER, 2018). That is 

why, as per the Remote Communities Energy Database of Natural Resources Canada, more 

than 70% of remote communities opt for diesel generators to be self-sufficient in their energy 

production. Diesel fuel remains the primary choice for remote and autonomous energy 

networks such as agricultural, farming, and fishing facilities, telecommunication towers, 

weather forecasting systems, as well as exploration and extraction mining sites which are not 

connected to the local or national distribution and transmission electricity network (Canada, 

2018; Rezkallah, 2016).  

Despite many advantages, diesel generators can cause various socioeconomic, 

technical, and environmental issues responsible for the emission of significant greenhouse 

gases (GHGs) worldwide. For this reason, governments plan to reduce reliance on off-grid 

power systems using petroleum products. One alternative for these remote regions is the 
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hybridization of Diesel engines with renewable energy sources because RESs are 

unpredictable, intermittent, and dependent on meteorological conditions, which makes them 

unreliable to be used alone for off-grid electricity generation (Djelailia et al., 2019). Diesel 

engines hybridized with other energy sources, such as wind turbines or photovoltaic farms, 

can reduce energy production costs in isolated regions and offset carbon emissions (Memon 

& Patel, 2021) 

 

Figure 1 Diesel use for electricity generation was studied in 213 isolated Canadian 
communities (Royer, 2011). 
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1.2 PROBLEM ANALYSIS 

The use of diesel engine generators (DEG) for electricity production in isolated regions, 

either used alone or in conjunction with Renewable Energy Sources (RES), poses various 

technical problems, the most important of which is the underperformance of diesel engine 

generator (DEG), which occurs when the generator operates bellow a certain threshold 

especially, for an extended period (over 30 min). This phenomenon can result in the 

degradation of the engine over time and its frequent maintenance, which would consequently 

increase energy production costs and reduce the network's reliability. According to 

Caterpillar experts, a DEG operating at any load under 30% of its nominal power is 

considered operating at a low-load operation (Jabeck, 2013). However, other research by Det 

Norske Veritas and Germanischer Lloyd (DNV-GL) indicates 40% of the maximum power 

as the threshold for DEG’s underperformance and the range between 40-80% as the normal 

and recommended operating power (Tufte, 2014). Table 1 provides the framework for the 

entire load range of a DEG. In the following section, we review and explain the origin of 

DEGs’ operational deterioration in detail. 

Table 1 Load levels represented as a percentage of the maximum power rating (Tufte, 
2014) 

Power percentage Load level 

0-25% Very low load 

26-39% Low load 

40-80% Regular load 

81-90% High load 

91-100% Very high load 
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1.2.1 Low-load operation 

One of the operational challenges concerning DEGs is their performance at a steady 

speed to produce reliable AC power with a constant voltage profile, which is then distributed 

to various consumers. However, electrical energy demand and energy production of 

renewable energy resources fluctuate instantaneously, making them unpredictable in 

demand-side management. In addition, in remote areas, diesel engine generators are designed 

larger than necessary to accommodate peak demand, which can be four or five times greater 

than the average electrical load (Mobarra et al., 2022). This would inevitably lead to the 

operation of diesel generators at reduced loads, especially for extended periods, causing the 

degradation of its technical parts and condensation of combustion residues on the cylinder 

walls. This would increase friction and fuel consumption in the DEG and decrease its 

efficiency, resulting in premature wear of the diesel generator (German-Galkin et al., 2020; 

Issa et al., 2020). DEGs also face the operational challenge of being predominantly fixed 

speed, resulting in extended periods of running in low loads, typically between 0-25% of 

their nominal power (as indicated in Table 1). This prolonged operation at low loads increases 

oil consumption. Subsequently, it leads to a more significant accumulation of carbonized oil 

or oil residue within the engine and in the intake and exhaust systems. (Issa et al., 2020). The 

presence of these residues adversely impacts the engine’s longevity and operational 

performance, thereby leading to an increase in its upkeep frequency (Jabeck, 2013).  

Moreover, when an engine operates at low loads, it experiences cooling, leading to 

incomplete fuel combustion and the emission of white smoke containing substantial 

hydrocarbons (Mustayen et al., 2021). Consequently, the low fuel temperature causes an 

increase in incomplete combustion within the oil. Insufficient dilation of the piston and its 

rings and the cylinder results in the oil level rising and leaking through the exhaust valves. 

As the diesel oil infiltrates the crankcase, it inevitably deteriorates the lubricants’ quality 

(Penny & Jacobs, 2016). Increased engine speed until the operating temperature is attained 

is one technique to address this issue and eliminate these deposits. Load banks are widely 

adopted within the industrial sector, particularly in the United States, to mitigate these 
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adverse consequences (German-Galkin et al., 2020). On the contrary, by integrating several 

small fixed-speed diesel-electric generators, with their combined power output matching that 

of a single large, fixed diesel-electric generator, it becomes possible to prevent the large 

engine from operating under low-load conditions (Ayodele et al., 2017).   

Table 2 provides a detailed account of how the performance of a fixed-speed diesel-

electric generator set is influenced by its underperformance, highlighting the resulting 

consequences. 

Table 2 Consequences of operating a fixed-speed diesel-electric generator at a low load 
(Issa et al., 2020; Mustayen et al., 2022) 

Phenomenon Indicator Causes and implications 
 

 

Wet stacking 

- A dark fluid resembling 

engine oil streaming from 

the exhaust pipe or 

turbocharge.  

- Moist black liquid near the 

exhaust manifold of the 

engine 

Due to the engine’s 

extended operation at low 

loads, the temperature falls 

short of the required value 

for achieving complete fuel 

combustion. 

 

 

Cylinder polishing 

 
 
 

- Increased oil consumption 

- Power reduction 

Mechanical friction is 

caused by carbon deposits 

surrounding the rings, 

which arise from 

incomplete fuel combustion 

of the engine operating at 

low loads. 

 

 

Cylinder glazing 

- Increased oil consumption 

- Power reduction 

- Engine emissions 

- Cold start of the 

engine 

- The frequent need 

for added oil  
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- Engine underload 

operation 

 

 

Consequences 

- Expenses: The frequent appearance of these 

phenomena diminishes the engine’s lifespan and 

primary components significantly. Moreover, they 

result in higher fuel consumption, leading to increased 

expenses. 

- Pollution: Elevated levels of engine emissions  

- Power: Decrease in the engine’s maximum power 

output compared to its rate power. 

- Upkeep: A fixed-speed engine encountering these 

issues needs more frequent maintenance than an 

engine working under the manufacturer’s prescribed 

load. 

 

1.3 RESEARCH OBJECTIVE 

 The primary goal of this project is to develop an artificial neural network-based 

algorithm by choosing the best configuration among different ANN models to analyze the 

exhaust emission data and fuel consumption for a diesel generator operating at an ambient 

temperature of 21°C in order to detect and avoid its underperforming operation in advance. 

For this purpose, a few specific objectives will be pursued in this research, including:  

- Data acquisition of exhaust emission gases, operating temperature, and fuel 

consumption of the DEG under different loading conditions. 

- Identifying the best input data to train the neural network, indicative of DEG 

underperformance, to train our neural network effectively. 
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- Identifying the optimal configuration for an ANN architecture capable of 

accurately predicting the underperformance of a DEG in a timely manner. 

- Developing a control system based on the developed ANN architecture that 

would add required resistive loads to the generator part of DEG to prevent its 

underperformance.  

1.4 RESEARCH METHODOLOGY 

This research experiment was performed under a consistent engine speed of 1800 

revolutions per minute. Ultra-low sulfur diesel fuel (ULSD) designed for off-road engines 

(such as locomotive and vessel diesel engines), which contains 15 parts per million (ppm) of 

sulfur and adheres to the prevailing standard set by Environment Canada for all engine diesel 

fuel, was utilized for the tests (Canada, 2006). The loads were adjusted within the 0 to 130 

kilowatts range, equivalent to 0-52% of the generator’s maximum capacity. This was done 

to replicate the electrical demand pattern in an isolated microgrid located in northern Quebec. 

All assessments were carried out under a consistent ambient temperature of 21°C. Readings 

were recorded for each load once the engine achieved a stable operational state. The 

subsequent experimental parameters were identified: 

• Exhaust emission attributes include the temperature of the emitted gas after 

combustion, SO2, CO2, NOx, O2, CO, and S. 

• The impact of Brake-Specific Fuel Consumption (BSFC) 

The measurements were repeated three times for very low load (0-25%), low load (26-

39%), and regular load (40-52%). The tests were conducted under the ISO 3046-1:2002 

standard, which involved adjusting the load power and fuel consumption results to standard 

conditions. Subsequently, each measured parameter is examined to ascertain its consistency 

under low-load conditions. This analysis aims to pinpoint the most relevant indicators of 

engine underperformance within our measurement process that can be used for training our 

neural network. Upon selecting the best input values for our neural network, the next step 
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involves preprocessing the data, which includes normalization through the min-max 

normalization equation. The next step involves dataset allocation ratio selection for train, 

test, and validation data and evaluating the model’s performance on different splits using 

appropriate metrics to find the best data split. Training the neural network is done through 

MATLAB software neural network fitting tool, and the achievement of the optimal 

topological structure is done through a heuristic approach by evaluation of the ANN model’s 

performance by considering the coefficient of determination (𝑅𝑅2) and mean squared error 

(MSE) as evaluative metrics. The network is then fine-tuned by changing its different 

hyperparameters, including its learning algorithm, activation functions, number of hidden 

layers, etc., to find the optimal network configuration that can later be used in our control 

system. 

1.5 THESIS STRUCTURE 

Following the introductory first chapter, which outlines the background, research 

objectives, and methodology, the structure of this thesis progresses as follows: 

Chapter 2 of this research features an article published in a peer-reviewed scientific 

journal titled "Experimental Underperformance Detection of a Fixed-Speed Diesel-Electric 

Generator Based on Exhaust Gas Emissions." This article delves into the initial two 

objectives established in Chapter 1, focusing on acquiring data related to exhaust emission 

gases and other attributes of the Diesel-Electric Generator (DEG). The subsequent step 

involves identifying the most pertinent input data for training our neural network. 

Chapter 3 delves into analyzing the commonly used Artificial Neural Network (ANN) 

models within industrial control systems. The aim is to assess and refine the selection 

process, ultimately pinpointing the most pertinent alternatives that align with this research's 

specific scope and objectives. 
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Chapter 4 of this research delves into an exploration of an algorithm built upon the 

selected ANN architectures outlined in Chapter 3. The focus is on configuring and fine-

tuning the hyperparameters of the network to develop the most accurate prediction algorithm. 

Chapter 5 centers on analyzing the obtained results and their practical implementation 

in the control system to avert engine underperformance. 

Chapter 6 serves as the concluding segment of this thesis; the emphasis is placed on 

summarizing the key findings of the research and exploring potential avenues for future 

work. 
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CHAPTER 2 

Article 

Experimental Underperformance Detection of a Fixed-Speed Diesel-Electric Generator 

Based on Exhaust Gas Emissions  

Published in Journal of Energies 2023, 16, 3537. 

https://doi.org/10.3390/en16083537 

Résumé 

Cet article se concentre sur l'analyse des performances et des émissions d’un moteur 

diesel multicylindre à vitesse fixe alimentant un générateur électrique de 300 kW, utilisant 

du diesel à très faible teneur en soufre (≤ 15 mg/kg), pour fournir de l’énergie dans une 

communauté canadienne isolée. Faire fonctionner un moteur diesel à faible charge (≤ 30 %) 

pose un défi important pour les générateurs électriques diesel à vitesse fixe. Une combustion 

incomplète dans cette phase entraîne une accumulation notable de contaminants dans le 

cylindre, entraînant divers problèmes chimiques et mécaniques pour le moteur diesel. Ces 

problèmes incluent la friction, une efficacité réduite, une consommation de carburant accrue 

et une panne prématurée du générateur, collectivement classés comme sous-performances, et 

divers signes sont attribués, notamment une diminution de la puissance de sortie, une 

consommation de carburant accrue et un bruit ou des vibrations anormaux du moteur. Par 

conséquent, la détection et la prévention rapides des sous-performances et la minimisation 

de leur fonctionnement prolongé sont des objectifs impératifs de cette étude. 

Cette étude vise à combler une lacune notable en matière de recherche liée à 

l’'identification des sous-performances basées sur les émissions de gaz, en particulier dans 

les générateurs diesel à vitesse fixe dans les communautés isolées qui n'ont pas accès à des 

carburants propres. La plupart des générateurs de ces communautés sont surdimensionnés et 

fonctionnent principalement à faible charge, ce qui entraîne une consommation accrue de 

pétrole et des gisements de pétrole carbonisés. 

https://doi.org/10.3390/en16083537
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Les tests de cette étude ont été réalisés à un régime moteur de 1 800 tr/min, avec du 

carburant diesel à très faible teneur en soufre conforme aux normes d'Environnement Canada. 

Les variations de charge de 0 à 156 kW reproduisaient le profil de charge électrique dans un 

micro-réseau isolé. Les paramètres expérimentaux, notamment les émissions d'échappement 

et la consommation de carburant spécifique aux freins (BSFC), ont été enregistrés dans des 

conditions de charge très faibles (0 à 25 %), faibles (26 à 39 %) et normales (40 à 52 %), 

conformément à la norme ISO. Norme 3046-1:2002 sous une température ambiante de 21°C. 

Les paramètres expérimentaux suivants ont été déterminés lors des tests : 

1. Caractéristiques des émissions d'échappement, notamment la température des gaz 

d'échappement, le SO2, le CO2, le NOx, l'O2, le CO et le S. 

2. L'effet de la consommation de carburant spécifique aux freins (BSFC) 

Cette étude montre que la température des gaz d'échappement est un indicateur de sous-

performance précieux, se stabilisant à 220°C sous 30 % de charge. La consommation de 

carburant spécifique aux freins (BSFC) peut également servir d'indice de sous-performance, 

montrant une consommation accrue lors de faibles charges prolongées (≤ 30 %). En ce qui 

concerne les émissions de gaz, le dioxyde de carbone, l'oxyde d'azote et le soufre présentaient 

des niveaux élevés lorsque le générateur fonctionnait en dessous de la moyenne, ce qui en 

faisait des indicateurs fiables de sous-performance. Cependant, le monoxyde de carbone et 

le dioxyde de soufre ne constituaient pas de très bons indicateurs, car leurs valeurs d'émission 

étaient similaires sous des charges faibles et normales. 
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CHAPTER 3: COMPARATIVE ANALYSIS OF ANN MODELS IN 

INDUSTRIAL CONTROL SYSTEMS 

Artificial neural networks (ANNs) are a sub-field of machine learning modeled after 

the composition and operation of biological neural networks. Due to their versatility and 

adaptability, artificial neural networks (ANNs) are practical computational tools 

characterized by non-linear operations and capabilities that find practical applications across 

diverse domains, including industrial control systems, where precision and efficiency are 

paramount. This chapter explores various ANN models, delving into their strengths and 

limitations within industrial settings. The main objective is to assess and narrow down the 

existing architectures to the most optimal alternatives for our case study.  

3.1 ANN JUSTIFICATION 

As a substitute for statistical forecasting methods like multiple regression, ANNs have 

gained popularity over the years. One of the main downsides of various regression models is 

the necessity of making several assumptions about the data, such as linearity, normality, 

homoscedasticity, and independence of errors. Without these assumptions, the model may 

not be valid, and the outcomes may not be trustworthy. Another drawback of the multiple 

regression model is multicollinearity. When two or more predictor variables are highly 

correlated, the regression model’s ability to predict outcomes may be undermined, resulting 

in unstable and unreliable estimates of the regression coefficients (Shams et al., 2021). In 

comparison, ANNs are not prone to any limitations and require fewer assumptions, 

eliminating the need to choose a model in advance. Some of the benefits of ANNs over 

statistical forecasting models like multiple regression include but are not limited to:  

- Capacity to manage non-linear relationships: ANNs can model non-linear 

relationships between input and output variables, while multiple regression can 

only handle linear correlations. 
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- Data handling: ANNS are more adept at handling missing or noisy data than 

multiple regression models.  

- High-dimensional data handling: While multiple regression may become 

cumbersome with numerous input factors, ANNs can handle massive datasets 

with many input variables and can extract meaningful features from the data. 

- Better generalization: ANNs perform better on unseen datasets because they 

have a higher generalization capacity than multiple regression. 

- Stability and flexibility: A neural network's stability and flexibility allow it to 

retain previously learned information while accepting new inputs without 

losing the previously acquired knowledge. 

Overall, ANNs can extract patterns and discover trends that are very difficult for people 

and computers to recognize because of their exceptional capacity to draw findings from 

complicated data. However, there are some inherent drawbacks of ANNs that researchers are 

trying to address. One of these difficulties is that the accuracy of the results of the neural 

networks depends on the size of the training set, and the future performance of the network 

cannot be predicted (Alexander, 2020). 

3.2 ANN CLASSIFICATION AND COMPARISON 

ANN models can generally be classified based on various factors, such as architecture, 

learning algorithms, and application. These elements significantly contribute to ANN 

functionalities in different problems investigated in this section to determine the most 

suitable one for our problem.  

3.2.1 Learning Algorithm 

The classification of ANN models based on learning paradigms refers to how an 

artificial neural network learns from its data input. Four main learning algorithms include 

fixed weight, supervised learning, unsupervised learning, and reinforcement learning.  
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1. Fixed weight: One of the ways to train Artificial neural networks (ANNs) is 

through fixed-weight training algorithms, in which the network’s weights are 

predetermined and maintained during the training process. This contrasts with other 

training methods, which update the weights depending on the error between the 

intended output and the forecasted output during training. Fixed-weight training 

applications are limited to pre-training and information optimization, simple feature 

extractions, and compression. As our problem in this research is related to function 

approximation, the ability of an ANN to adjust its weights during training is crucial 

for effectively capturing and representing complex relationships within data, which 

makes it an unsuitable choice for our study.   

2. Non-supervised training: In non-supervised training, ANN is trained without using 

labeled data, and its objective is to find patterns or structures in the data. Therefore, 

there is no optimum output to adjust the weights by comparing the network output 

with the error value. Instead, weights are updated only based on input pattern 

information. In non-supervised learning, the network is given a set of input data to 

find patterns or relationships between the data based on the clustering strategy 

without prior knowledge of what the clusters should look like. When the data is 

presented to the input layer, the learning algorithm operates based on a superior 

matching method, where the network connections are adjusted in a competition 

amongst the output layer nodes, and the node with the greatest value is chosen. Some 

applications of unsupervised learning include clustering, anomaly detection, 

association mining, and dimensionality reduction. Despite many unsupervised 

learning applications, determining the results' accuracy and the meaningfulness of the 

learnt models is difficult in the absence of labelled data. This phenomenon is often 

referred to as the “unsupervised learning paradox.” (Alloghani et al., 2020). Choosing 

the right evaluation metrics is another challenge of this training algorithm, as the 

quality of the results varies on the particular job and application, and they do not 

properly represent how the model performed on a certain task. Furthermore, the 

selection of hyperparameters, such as the number of clusters or the size of the reduced 
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model, might affect how unsupervised learning methods perform. Due to this 

sensitivity, the settings may need to be carefully adjusted, which can take time and 

be costly in computing (Dike et al., 2018).  

3. Supervised training: In supervised learning, the target variable is predicted based on 

the input data in a way that the associated outputs for each set of inputs are shown on 

the grid, and the weights are adjusted until the network output difference between the 

intended outputs and training outputs is within the permissible error range. The reason 

why this training algorithm is named “supervised” is because the algorithm is trained 

on a labeled data set. The objective of supervised learning is to develop a model that 

can correctly predict new, unforeseen data by training the data and then categorizing 

it by feeding it into input vectors that might or might not have previously been trained 

on the network. This characteristic of the supervised learning algorithm facilitates the 

neural network to learn a mapping from inputs to outputs, enabling it to make accurate 

predictions on new, unseen data (Alloghani et al., 2020). This makes this learning 

algorithm a suitable alternative for our research problem. The examples of ANN 

architectures using this learning method are Feedforward Neural Networks (FFNN), 

Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), and Recurrent 

Neural Networks (RNN). 

4. Reinforcement training: In this training model, no training patterns exist, and the 

algorithm learns from trial and error by receiving rewards for good actions and 

penalties for bad ones. Therefore, the system’s performance is gradually enhanced 

over time by the algorithm learning to make choices in each environment (a state 

between supervised and unsupervised learning)(Alexander, 2020). Reinforcement 

learning can address various issues and has already shown outstanding achievements 

in several fields. However, it has several drawbacks, including the complexity of 

establishing the reward function and the computational demands of many algorithms. 

The topic of reinforcement learning is still developing and has a lot of space for study 

and advancement (Sutton & Barto, 2018). 
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3.2.2 ANN Architecture 

Artificial Neural Network (ANN) models can be classified into two main categories 

based on the direction of information flow within the network: Feedforward Neural Networks 

(FFNN) and Recurrent Neural Networks (RNN) 

3.2.2.1 Feedforward Neural Network 

In a feedforward neural network, information travels unidirectionally, passing from the 

input layer through one or more hidden layers before reaching the output layer. Models such 

as Single Layer Perceptron, as well as Multilayer Perceptron (MLP), Convolutional Neural 

Network (CNN), and Radial Basis Function Networks (RBFN) fall under the feedforward 

category. Single-layer feedforward neural network (SLP) models comprise an input and an 

output layer. Due to their linear nature, these models can only learn linear decision 

boundaries, making them less effective for tasks that demand capturing non-linear 

relationships in the data. Consequently, they find more practical use in binary classification 

problems, where the task involves classifying input patterns into one of two classes. The 

inherent simplicity of SLPs limits their capacity to handle more intricate patterns or 

relationships commonly found in complex real-world datasets (Hoang et al., 2021). On the 

other hand, Multi-layer FFNN models consist of at least one hidden layer of neurons between 

the input and output layers, which helps them model and approximate non-linear functions 

more effectively. MLPs exhibit versatility and find application in various function 

approximation problems, encompassing regression tasks, time series prediction, and intricate 

mapping challenges. This versatility is a crucial factor driving the adoption of this neural 

network model in numerous studies within the field of industrial control systems. 

Specifically, when addressing topics like diesel engine generator performance and exhaust 

emission prediction, MLPs prove to be valuable tools for their ability to handle complex 

relationships and provide accurate approximations (Fang et al., 2021; Fang et al., 2022; 

Ganesan et al., 2015; Shirneshan et al., 2022). Radial Basis Function neural networks (RBF) 

are another form of FFNN that have a wide range of machine learning applications, such as 
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pattern recognition, function approximation, and time-series prediction. In an RBF neural 

network, the hidden layer contains a set of radial basis functions that transform the input data 

into a high-dimensional space. The radial basis functions are mathematically expressed as a 

function of the Euclidean distance between the input vector and a set of center vectors. In 

general, clustering methods like K-means produce the center vectors. The radial basis 

functions are often Gaussian functions, meaning they peak at their centroid and decrease in 

amplitude as the distance from the centroid increases. The mathematical expression of the 

Gaussian function is given by: 

𝜑𝜑(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−�|𝑥𝑥−𝑐𝑐|�2

2𝜎𝜎2
)    (3.1) 

Where 𝑥𝑥 is the input vector, 𝑐𝑐 is the center vector, 𝜎𝜎 is the width parameter, and ||.|| represents 

the Euclidean distance.  

The RBF network is typically trained in a supervised manner using a process called “training 

with centers.” In order to train the network, a collection of center vectors must be chosen 

from the input data. The difference between the network’s output and the target values for a 

given input is then minimized by adjusting the weights for each RBF function using a type 

of linear regression. This procedure can be repeated in an iterative manner by utilizing a 

training dataset consisting of input-output pairs until the network exhibits a satisfactory 

performance on a validation dataset. The selection of the RBF architecture in industrial 

control settings is usually because of a number of advantages compared to other network 

types such as its fast training and less complicated topology (Goga et al., 2023; Liao et al., 

2023). The primary drawback of RBF networks in comparison to MLP lies in the challenge 

of selecting the optimal number of radial basis functions. If this number is not chosen 

carefully, there is a risk of the network becoming susceptible to overfitting. Convolutional 

Neural Networks (CNN) are another architecture of FFNN, which is mostly used for tasks 

involving visual data such as image classification, object detection, face detection, etc. 

However, as these specific applications are not directly aligned with the scope of our research 

problem, they are not explored further in our study. 
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3.2.2.2 Recurrent Neural Networks (RNN) 

The second major categorization of neural networks is represented by Recurrent Neural 

Networks (RNN). In contrast to feedforward neural networks (FFNN), where data undergoes 

a one-time pass from input to output, RNNs feature looped connections that preserve 

information within the network. This inherent structure empowers RNNs to discern patterns 

in sequential data by retaining knowledge of past inputs. Consequently, RNNs prove 

advantageous in tasks where the temporal order of inputs holds significance, as seen in 

applications like Natural Language Processing (NLP), speech recognition, and time-series 

prediction. Notably, virtual assistants such as Siri and Cortana are examples of the practical 

application of this neural network architecture. While RNNs have many applications in 

sequential or time-series data, they are less commonly used for regression problems. One of 

the significant challenges attributed to RNNs is their vanishing gradient problem. This occurs 

when the gradient of loss function becomes very small, impeding the effective learning of 

long-term dependencies. As a result, RNNs may face difficulties in accurately capturing 

intricate patterns, particularly in regression problems. Training complexity of RNNs is 

another problem that arises when the dataset is fairly large, which makes this structure less 

practical for some regression problems (Hewamalage et al., 2021). 

A comprehensive analysis of various neural network architectures reveals that 

Multilayer Perceptron (MLP) and Radial Basis Function (RBF) neural networks stand out as 

the predominant choices in numerous studies related to predicting diverse attributes in diesel 

engines. These attributes span from exhaust gas predictions to the overall performance of the 

engine, all of which proved that the implemented FFNNs were very effective prediction 

methods with minimal error (Ganesan et al., 2015; Hoang et al., 2021; Kshirsagar & Anand, 

2017; Roy et al., 2014). The main rationale behind their selection for further exploration in 

the subsequent chapters of this research is the acknowledgment of the effectiveness 

demonstrated by these two architectures in prior studies. 
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 CHAPTER 4: DESIGN AND IMPLEMENTATION OF ANN ALGORITHMS 

FOR DIESEL GENERATOR OPTIMIZATION  

4.1 INTRODUCTION 

The utilization of Artificial Neural Networks (ANNs) for function approximation tasks 

encompasses a wide range of applications, such as image processing, voice recognition, and 

control systems. Function approximation refers to the problem of finding a mathematical 

function that maps input variables into output variables, and it is particularly useful when the 

target function is challenging to model directly because of its complexity or non-linearity, 

making it unclear how inputs and outputs are related. We can predict future inputs and 

outputs by approximating the target function and control the network’s behavior. In this 

study, to detect and prevent the underperformance of a diesel engine generator based on the 

selected operational parameters in Chapter 2, such as certain emission gases and operating 

temperature, we need a function that closely matches or approximates the operating load of 

the DEG. 

4.2 NEURAL NETWORK ARCHITECTURE SELECTION 

After identifying the best input values for our neural network, the next crucial step is 

selecting the best architecture that suits our requirements to leverage its capabilities 

effectively. The neural network’s structure typically hinges on factors such as the number of 

hidden layers, the activation functions utilized within each layer, and the number of neurons 

in each layer. These parameters heavily influence the neural network's performance, 

underscoring their critical significance. While specific parameters can be determined by the 

characteristics of the problem being investigated, other parameters require alternative 

methods such as trial and error. This research uses two of the most popular neural networks, 

MLP and RBF, commonly used for function approximation problems. 

Figure 2 illustrates a series of steps for implementing the neural network. Upon 

acquiring the dataset, the initial step involves preprocessing, wherein the data is normalized. 
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Subsequently, the dataset is appropriately allocated among the train, test, and validation sets, 

ensuring an optimal neural network training ratio. After the primary simulation of the ANN 

model, we examine the changes in the structure of each network and their impact on the 

output to fine-tune the network’s critical parameters.  

When investigating the optimal structure for each network, the data allocation for the 

test, train, and validation dataset remains the same as determined in the previous stage. In 

this phase, critical areas of consideration include selecting the suitable training algorithm, 

choosing the ideal arrangement of hidden layers, configuring neurons within each layer, and 

specifying the number of required training iterations. The network’s errors were then 

compared, and the lowest error was recorded.  The same process is also done for the RBF 

network by fine-tuning the spread coefficient and the number of intermediate layer neurons 

to register the lowest obtained error. In the final stage, the lowest errors obtained from the 

previous stage are compared while considering factors such as the network's response time 

and complexity to determine the optimal model for our problem. 

4.3 ANN MODELING 

Modeling an artificial neural network involves designing and training the network to 

predict outcomes based on input data. This typically involves selecting the appropriate 

architecture and parameters, feeding the network with relevant input data, defining the 

desired outputs, and training the network by iteratively adjusting the weights and biases of 

the network using techniques like backpropagation. This modeling process is discussed 

thoroughly in the following sections.  
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Figure 2 Neural Network Architecture selection procedure 
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4.3.1  Selection of input and output parameters 

The choice of input variables significantly impacts the performance of an Artificial 

Neural Network (ANN) model. The quality and relevance of the input values can 

considerably affect the model's accuracy. The model's success may be compromised if the 

input data fails to capture the necessary information correlated with the target data.  Out of 

all the measured data from the diesel engine generator in Chapter 2, the most pertinent ones 

were chosen for the input dataset of the ANN model to predict the diesel engine's operating 

load without overcomplicating our model. These input data include the exhaust gas 

temperature of the DEG, as well as certain emissions such as Sulfur (S), Carbon Monoxide 

(CO), Carbon dioxide (CO2), and Oxygen emission (O2). Therefore, the implemented FFNN 

includes five inputs and one output parameter, illustrated in Figure 3. This research uses 

MATLAB for every stage of model development, encompassing network training, testing, 

and validation. 

 

Figure 3 FFNN architecture used in this study 
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4.3.2 Data normalization 

Data normalization is the process of scaling and converting the input data to a 

standardized format, allowing the ANN model to train more efficiently and precisely. To 

clarify further, during artificial neural network (ANN) training, inputs with higher values can 

potentially overshadow the influence of smaller ones. Therefore, to ensure that the model 

learns from all the characteristics equally, without bias toward any particular features, data 

normalization aims to ensure that each input feature has the same size, range, and distribution. 

This can improve an ANN's performance and speed, accuracy, and stability. One of the most 

common data normalization techniques is min-max normalization equation 4.1, which is a 

good choice when the distribution of the data is not Gaussian as it can avoid shifting the 

distribution of the data: 

4.3.3 Statistical assessment of output parameters  

To make informed decisions regarding the artificial neural network (ANN) structure 

and the choice of training, testing, and validation datasets, it is crucial to establish the 

evaluation metrics that will assess the predictive performance of the suggested ANN model. 

Some commonly used evaluation metrics include Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE), which are standard methods for evaluating the performance of 

regression models and can be calculated using the equations below.  

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ (𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2𝑛𝑛
𝑖𝑖=1         4.2 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  �1
n
∑ (𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖)2n
i=1  

 4.3 

Where 𝑡𝑡𝑖𝑖 implies the experimental output, also known as the target value, and 𝑜𝑜𝑖𝑖 is the ANN 

forecasted value.  Many research works (Castresana et al., 2021; Pitchaiah et al., 2023; 

Sayyed et al., 2021) have utilized MSE and RMSE as the loss function to be minimized and 

𝑥𝑥𝑛𝑛 = (𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

    4.1 
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for evaluating their model's performance due to their desirable properties of convexity, 

symmetry, and differentiability. 

Another way to assess the prediction accuracy of the ANN model involves employing 

the coefficient of determination (𝑅𝑅2), which is, in fact, the absolute fraction of variance, and 

it can be calculated using Equation 4.4. These metrics can offer valuable insights, according 

to similar studies (Aydın et al., 2020; Castresana et al., 2022; Işcan, 2020) into the model's 

ability to fit the data. If 𝑅𝑅2 approaches unity, the RMSE value becomes smaller, indicating 

that the model is capable of effectively learning patterns within the data.  

 

𝑅𝑅2 =  1 − (∑ (𝑡𝑡𝑚𝑚−𝑜𝑜𝑚𝑚)2𝑚𝑚
𝑚𝑚=1
∑ (𝑜𝑜𝑚𝑚)2𝑚𝑚
𝑚𝑚=1

) 4.4 

  

4.3.4 Data Allocation Ratio Selection 

Before the implementation of the network, it is necessary to divide the data into train, 

test, and validation data. The training set is utilized for network training among these 

randomly selected datasets. In contrast, the test dataset is employed to assess the network's 

performance on unseen data, and the validation set is used to tune the hyperparameters of the 

network and prevent overfitting. Failing to pre-determine the percentage of data allocated to 

each set can lead to biased results and overfitting. The proportion of the allocated data for 

testing, training, and validation datasets depends on the specific problem, the dataset's size, 

and the modeling technique used in the neural network. Conferring to previous studies, a 

typical data partition involves allocating 70% for training, 15% for validation, and 15% for 

testing (Agarwal et al., 2013; Najafi et al., 2009). However, the best way to determine the 

percentage split is to experiment with different ratios and evaluate the model's performance 

on each split using appropriate metrics. This can help you choose the optimal split for your 

specific problem. In this regard, networks with random initial weights were selected, and 

different ratios were tested for them. Table 3 shows the result of this performance evaluation 

on different dataset splits for a multilayer perceptron network. This network has one hidden 

layer of 5 neurons using the Tansig transfer function. The performance metric used in this 
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regard is the Mean Squared Error (MSE), commonly used for regression problems, and a 

lower MSE indicates better performance of the model. As can be seen from Table 3, the 

lowest calculated error is when the model allocates 80% of the dataset for network training 

and evenly distributes the remaining 20% for testing and validation purposes. 

Table 3 Network's performance for different dataset ratio allocations in MLP neural network 

 
Network performance 

(MSE) 

 
Validation data 

(%) 

 
Test data 

(%) 

 
Train data 

(%) 

 
0.0021 

 
30 

 
30 

 
40 

 
0.0021 

 
25 

 
25 

 
50 

 
0.0010 

 
20 

 
20 

 
60 

 
8.02e-04 

 
15 

 
15 

 
70 

 
1.52e-04 

 
10 

 
10 

 
80 

 
1.70e-04 

 
5 

 
5 

 
90 

 

The performance of the radial basis function (RBF) neural network with ten hidden 

neurons and a radial basis function width of 1 was also evaluated on various dataset ratios. 

As seen from Table 4, the best ratio with the lowest MSE is when 70% of the dataset is 

allocated to the network's training, and the remaining 30% is equally divided for testing and 

validation purposes. The results of these two networks are presented in Figure 4. By 

comparing these results, we can see that the RBF network performs better than the MLP 

network. The best data split for the MLP and RBF networks is when 80% and 70% of the 

dataset are allocated for training, respectively, and the remaining is utilized equally to test 

and validate the network result. 
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Table 4 Network’s performance for different dataset ratio allocation in RBF neural network 

 
Network performance 

(MSE) 

 
Validation 
data (%) 

 
Test data 

(%) 

 
Train data 

(%) 

 
1.42e-4 
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50 

 
8.33e-05 

 
20 

 
20 

 
60 

 
7.94e-05 

 
15 

 
15 

 
70 

 
9.49e-05 

 
10 

 
10 

 
80 

 
2.18e-4 

 
5 

 
5 

 
90 

 

4.4 THE ANN ARCHITECTURE 

The architecture of a neural network encompasses the organization of the individual 

components that make up the network. It is crucial to select the optimal architecture for an 

artificial neural network to leverage its computational power and derive its maximum 

benefits. This research used the Multilayer Perceptron (MLP) and Radial Basis Function 

(RBF) neural networks to compare their performance and response time to determine the 

best-representing model among the various existing ANN approaches. 

Selecting a suitable architecture for a neural network varies depending on the type of network 

in question.  For a multilayer perceptron (MLP) network, the focus is on determining the 

arrangement of neurons into layers, selecting appropriate activation functions, and deciding 

on the optimal number of hidden neurons. On the contrary, the architecture selection of a 

radial basis function (RBF) neural network involves determining the appropriate number of 

hidden neurons, the spread or width of the RBFs, and the RBF activation function. 



45 
 

 

Figure 4 MSE comparison of the two neural networks for different training ratios 

Overall, the architecture selection process involves making trade-offs between model 

complexity and performance, and various techniques  can be used to determine the optimal 

architecture for a given problem. 

4.4.1 Execution of the MLP network model 

As previously mentioned, the neural network’s structure is typically determined by 

factors such as the number of hidden layers, the transfer functions within every layer, and the 

number of neurons, with all these elements significantly influencing the network's 

performance. To create this network in the MATLAB software environment, the neural 

network fitting tool is used (Figure 5), which uses an interactive way of developing neural 

networks by allowing the user to select the network architecture, data sets, and various 

network training options. There are no established guidelines for achieving the optimal 

topological structure in ANN, so a heuristic approach was employed during this stage. 

Following the design process, the ANN model’s performance was evaluated by considering 

the coefficient of determination (𝑅𝑅2) and mean squared error (MSE) as evaluative metrics.   
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Figure 5 MATLAB neural network fitting tools 

As seen in Figure 6, this network comprises a triple-layered structure: the input layer, 

hidden layer(s), and an output layer. The input layer has five neurons equal to the count of 

the best underperformance indicators determined in Chapter 3 and depicted in Figure 6. The 

output layer has one neuron, representing the engine's operating load. Regarding the number 

of hidden layers, Sözen and Arcaklioǧlu (Sözen & Arcaklioǧlu, 2005) recommended using 

two hidden layers. However, based on (Ismail et al., 2012; Najafi et al., 2009), a single hidden 

layer is also deemed enough for learning the data in regression problems. In general, a higher 

number of hidden layers may not improve performance as optimizing the network becomes 

more complex. If the dataset size is small, such as in our case, it would have no positive 

influence. Therefore, given the complexity and size of our dataset, a single hidden layer is 

used in this study as a rule of thumb, which is later adjusted in section 4.3.2 to evaluate its 

parametric effect on the network performance and to determine the optimal architecture. The 

activation function utilized for the hidden layer was 'Tansig', whereas 'Purelin' was employed 

for the output layer, as evident in Figure 6.  The Tanisg activation function finds widespread 

use in multilayer perceptron models because it is continuous, non-linear, and has bounded 

output values (Sharon et al., 2012). The dataset is utilized randomly for training, testing, and 

validating the network. 

Regarding the training algorithm, a backpropagation algorithm (BPA) is widely 

utilized to train a feedforward neural network (FFNN). Still, it can get trapped in local 

minima and cannot identify the global minimum of the error function. As an alternative, the 
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Levenberg-Marquardt (LM) algorithm is faster and has superior convergence properties, 

demonstrating its effectiveness in forecasting the pertinent parameters of the engine (Yang 

et al., 2022). This algorithm displays outstanding performance for networks with a limited 

number of weights, usually a few hundred or less, and is notably advantageous compared to 

alternative algorithms when precise training is required (Beale et al., 2010).  

 

Figure 6 The block diagram in an MLP network implemented by MATLAB 

Stopping criteria and practical considerations 

Stopping criteria play a crucial role in training all neural networks, including the MLP 

model, by determining when to terminate the process to prevent overfitting. The most widely 

used stopping criteria include the minimum error threshold, maximum number of iterations, 

and validation error threshold. The minimum error threshold stops the training process when 

the error rate reaches a certain level, indicating that the network has achieved the desired 

level of accuracy. The MSE value in our study is set to 0, which is our desired target. The 

maximum number of iterations determines the point at which the training process ends, 

regardless of the error value. The training process in this study is limited to a maximum of 

1000 iterations, meaning that the dataset will be presented 1000 times consecutively for the 

training process to take place, and if the number of iterations reaches 1000, the network 

operation will cease. The network has been configured to permit a maximum of 6 validation 

checks regarding the validation error threshold. The training process is halted once this limit 

is reached, and the neural network stops functioning. A validation test enables the neural 

network to withstand new data that could potentially increase network error.  

Figure 7 shows the implemented MLP neural network structure in the MATLAB 

software environment.  
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Figure 7 The structure of the implemented MLP neural network in MATLAB software. 

In the progress section of Figure 7, information about the training process of the neural 

network is provided. All the factors in this section have an initial value and a final value, and 

if the network reaches this absolute value, the process will be stopped. “Epoch” represents 

one complete pass of the training dataset through the neural network, and it is set at 1000 for 

this study. “Time” shows the training duration, which is not limited to any value in this 

research. “Performance” represents the precision of the network based on the chosen 

performance metrics. In this study, the mean squared error (MSE) is the metric to evaluate 

network precision and is set to an initial value of 0. A lower MSE indicates better neural 

network performance in predicting the output values. “Gradient” represents the error’s partial 

derivatives about every weight and bias within the neural network. It updates the weights and 

biases through gradient descent, minimizing network error. In our training process, the initial 

gradient is set to 1e-7. “Validation checks” is the maximum allowable number of failures 

before stopping the neural network training, which in this study is set at 6, and if exceeded, 

the training process is terminated. 
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4.4.2 Modification of the MLP Structure 

In this section, we will investigate the alterations to the MLP network structure and 

evaluate their influence on the output response to determine the optimal model. The tuned 

hyperparameters encompass the learning algorithm, the number of hidden layers, and the 

number of neurons within every hidden layer. As outlined in section 4.3.4, the optimal data 

split ratio for achieving the best network performance in the MLP model is to allocate 80% 

of the input data to the training process while evenly splitting the remaining 20% between 

the test and validation sets. As such, it is crucial to maintain this data split ratio unchanged 

when implementing any modifications to the network. 

Table 5 Training algorithms and their corresponding function in MATLAB 

Algorithms Training functions 

Levenberg–Marquardt backpropagation Trainlm 

Bayesian Regulation backpropagation 
 

Trainbr 

BFGS quasi-Newton backpropagation 
 

Trainbfg 

One step secant backpropagation. 
 

Trainoss 

Scaled conjugate gradient backpropagation. 
 

Trainscg 

Resilient backpropagation (Rprop) Trainrp 

Gradient descent with momentum backpropagation Traingdm 

Gradient descent backpropagation Traingd 

Gradient descent with momentum and adaptive learning 
backpropagation 

Traingdx 

Conjugate gradient backpropagation with Polak-Ribiere 
updates 

Traincgp 
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Training algorithms 

This study examined various training algorithms for our Feedforward Neural Network 

(FFNN). The output parameter was tested after being trained by all the functions listed in 

Table 5. This analysis aimed to evaluate the neural network’s performance and identify the 

most effective training algorithm for this specific application. 

The FFNN was trained using various training functions listed in Table 5 and evaluated 

on a network with one hidden layer containing 10 neurons. The assessment is based on factors 

such as the number of epochs needed, as well as the root mean square error (RMSE) and 

correlation coefficient (𝑅𝑅2). Table 6 shows the results of the network trained with various 

training functions using the same train, test, and validation input dataset.  

Table 6 MLP model Evaluation using different training functions. 

Training function 
Number of 

epochs 
RMSE (𝑹𝑹𝟐𝟐) 

Trainlm 32 3.50E-02 9.85E-01 

Trainbr 96 2.10E-02 9.94E-01 

Trainbfg 11 1.70E-01 6.38E-01 

Trainoss 26 2.00E-01 5.30E-01 

Trainscg 13 1.80E-01 5.70E-01 

Trainrp 21 1.90E-01 5.80E-01 

Traingdm 46 3.40E-01 1.00E-01 

Traingd 1000 2.00E-01 5.00E-01 

Traingdx 31 3.60E-01 1.00E-01 

Traincgp 12 1.60E-01 6.60E-01 
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Levenberg-Marquardt backpropagation and Bayesian Regulation backpropagation 

have demonstrated the best performance and highest correlation coefficient among various 

training functions. However, Levenberg-Marquardt, a second-order algorithm, utilizes the 

second derivative of the error function, unlike other algorithms, such as gradient descent, 

which uses only the first derivative. Despite the marginal superiority of the Bayesian 

Regulation backpropagation in performance, the ability of Levenberg-Marquardt 

backpropagation to converge faster to the minimum of the error function makes it a more 

suitable training algorithm for our neural network (Canakci et al., 2006; Mariani et al., 2014; 

Rezaei et al., 2015; Roy et al., 2014). 

Number of hidden layers and neurons 

In this section, experimentation was conducted to determine the best neural network 

configuration by assessing various numbers of neurons in its hidden layer. Typically, the 

power or capacity of a model can be enhanced by adding more hidden layers and neurons to 

the neural network. Nevertheless, selecting an excessive number of neurons in the hidden 

layer can pose practical difficulties. Aside from increasing the computational costs, an 

excessively high number of hidden neurons can potentially lead to model overfitting. 

Overfitting manifests when a model excels on the training data but yields inferior 

performance on new, previously unseen data, also known as test data (Goodfellow et al., 

2016). Considering the intricacy of our network and the count of input and output variables, 

one hidden layer was sufficient and resulted in favorable outcomes. The network was trained 

with the Levenberg-Marquardt algorithm, and the input data used for training the dataset 

remained the same throughout all the experiments. Based on Figure 8 and Table 7, it can be 

observed that using 5 neurons in the hidden layer results in the highest coefficient of 

correlation and the smallest RMSE, with values of 0.998 and 0.012, respectively. Table 8 

displays the details of the selected network with the best performance for our study.  
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Table 7 Network’s performance for different numbers of hidden neurons 

Learning 
algorithm 

Network 
Structure 

Training 
MSE 

Testing 
MSE 

Validation 
MSE 

All data 
MSE 

(𝑅𝑅2) 

LM 5-1-1 5.51E-03 7.43E-03 1.18E-03 5.24E-03 9.37E-01 

LM 5-2-1 1.25E-03 2.29E-03 2.20E-05 1.23E-03 9.91E-01 

LM 5-3-1 7.67E-04 6.21E-04 4.00E-05 6.70E-04 9.94E-01 

LM 5-4-1 3.06E-04 3.93E-04 3.80E-04 3.24E-04 9.96E-01 

LM 5-5-1 6.00E-05 9.49E-04 2.00E-06 1.52E-04 9.98E-01 

LM 5-6-1 5.68E-04 6.97E-04 3.99E-04 5.64E-04 9.95E-01 

LM 5-7-1 1.93E-04 4.91E-03 1.43E-03 8.55E-04 9.91E-01 

LM 5-8-1 3.21E-03 3.54E-03 2.70E-03 3.20E-03 9.65E-01 

LM 5-9-1 7.50E-05 2.33E-03 9.30E-05 3.29E-04 9.96E-01 

LM 5-10-1 3.80E-05 1.09E-02 9.60E-05 1.25E-03 9.85E-01 

 

4.4.3 Results of the MLP Network 

Using the empirical data, the MLP artificial neural network was constructed to forecast 

the operational load of the diesel engine generator. The input parameters of the network were 

Exhaust gas temperature, Sulfur (S), Carbon monoxide (CO), Carbon dioxide (CO2), and 

Oxygen(O2). The utilization of ANN for predicting the operational load of the DEG in the 

experimental engine demonstrated noteworthy performance metrics. This underscores the 

predictive capability of the developed network for the DEG's operational load. Figure 9 

illustrates the performance of the network over 15 epochs. The plot shows that the train mean 

squared error (MSE) steadily decreases throughout training. 
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Table 8 Network attributes generated on MATLAB 

MATLAB 

Topology 5 inputs, 1 output, 1 hidden layer with 5 hidden neurons (5-5-1) 

Data Training subset: 80% of the input data was selected randomly 

Test subset: 10% randomly selected input data 

Validation subset: 10% randomly selected input data 

Activation function Hyperbolic tangent sigmoid (Tansig) 

Training algorithm Levenberg–Marquardt 

Loss function Minimum MSE 

Stopping criteria Cease network training once the validation error begins to rise 

after 6 times. 

 

 

 

Figure 8 RMSE and coefficient of correlation for different numbers of neurons in MLP 
network. 

Similarly, the validation MSE decreases in the initial epochs but increases after the 

ninth iteration. Overall, the network achieved the best validation performance at the ninth 

epoch, with an MSE of 2.2973e-06. The training process terminates once the validation error 

rises after six consecutive iterations. 
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Figure 9 Performance plot of the MLP neural network 

 

Figure 10 depicts the selected network architecture's correlation coefficient 'R' for the 

training data and the entire dataset. This coefficient is dependent on the network’s 

performance and serves as a metric to evaluate it, with a value closer to 1 indicating a lower 

network error. The horizontal axis represents the target data for training the neural network, 

while the vertical axis represents the corresponding predictions the trained neural network 

generates. The graph should align closely with the T=Y line to ensure optimal network 

performance, which signifies that the output data closely matches the target value. This 

alignment indicates that the network accurately predicts the target values and performs its 

intended function. As can be seen from Figure 10, an acceptable level of correlation exists 

between the target output and the neural network output. This correlation signifies that the 

network has been trained well and can accurately predict the target values. The equation for 

the best linear fit that can accurately describe the output for both the training data and all data 

is equal to Equation (4.5) and (4.6) with the regression value of 0.99963 and 0.99916, 

respectively. 
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𝑂𝑂𝑂𝑂𝑡𝑡𝑒𝑒𝑂𝑂𝑡𝑡 ~ =  1 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑡𝑡 +  0.0031    (4.5) 

Output ~= 0.99*Target + 0.0092    (4.6) 

 

Figure 10 Regression plot of the ANN predicted operating load and the actual load value 
using MLP neural network. 

Figure 11 illustrates the training progress of the neural network across 15 epochs, with 

the vertical axis indicating the points at which the network failed during this process. As can 

be seen, the network did not encounter any failures until epoch 9 during the 15 training 

epochs. However, as the number of validation checks was set at 6, the network stopped the 

training process after 6 consecutive failures. 

4.4.4 Execution of the RBF network model 

In this section, we will discuss the implementation of the Radial Basis Function (RBF) 

network. The architecture of this network is determined by two key parameters: the count of 

neurons in the hidden layer and the width of the RBF, also known as the spread. These 

parameters play significant roles in the network’s performance and must be carefully tuned 

to achieve optimal results. This network was implemented in MATLAB using the 'newrb' 

command. The data split in this network is also random, meaning that the data is randomly 
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selected for training, testing, and validation of the network. The neural network underwent 

training via the Levenberg-Marquardt algorithm (trainlm), and the model's performance was 

evaluated using the mean squared error (MSE) metric.  

 

Figure 11 Training state of the MLP network 

4.4.4 Execution of the RBF network model 

In this section, we will discuss the implementation of the Radial Basis Function (RBF) 

network. The architecture of this network is determined by two key parameters: the count of 

neurons in the hidden layer and the width of the RBF, also known as the spread. These 

parameters play significant roles in the network’s performance and must be carefully tuned 

to achieve optimal results. This network was implemented in MATLAB using the 'newrb' 

command. The data split in this network is also random, meaning that the data is randomly 

selected for training, testing, and validation of the network. The neural network underwent 

training via the Levenberg-Marquardt algorithm (trainlm), and the model's performance was 

evaluated using the mean squared error (MSE) metric.  

Stopping criteria 

In this network architecture, the maximum number of training iterations was set to 1000 

epochs, meaning that the data was presented 1000 times consecutively during the training 

process. Initially, a set of weights is generated and then updated using the 'Trainlm' algorithm 

to minimize the network's mean squared error. If the number of iterations reaches 1000, the 
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training process is stopped. The maximum number of validation failures has been set to 6, 

meaning the network training process will terminate after 6 unsuccessful iterations.  

4.4.5. Modification of the RBF network 

This section will examine the modifications applied to the RBF network framework 

and assess their impact on the output response to identify the most effective model. The 

adjusted hyperparameters comprise the Spread coefficient and the number of hidden neurons. 

Spread coefficient  

In implementing the Radial Basis Function (RBF) network, the width of the Gaussian 

function, known as the Spread parameter, is first determined because it is a critical 

hyperparameter in an RBF neural network. In case the spread coefficient is too small, the 

basis functions will become too narrow, leading to a situation where the network won't be 

able to capture the complex relationships between the inputs and outputs. In contrast, if the 

spread coefficient is excessively large, the basis functions will overlap considerably, making 

the network excessively flexible and susceptible to overfitting. As a result, selecting the 

suitable spread coefficient becomes imperative to guarantee that the RBF network can 

generalize well to unseen data and produce precise predictions. The optimal value of this 

parameter is obtained through trial and error based on the input data. Table 9 presents the 

mean squared error (MSE) results of the radial basis function (RBF) network for different 

values of the spread coefficient. The train, test, and validation data remain the same across 

all tests, with a maximum of 20 hidden neurons. 

Based on the results presented in Table 9, the neural network model with a spread 

coefficient of 1 exhibits the lowest MSE of 1.51E-04, indicating superior performance among 

the evaluated models. Hence, this spread coefficient is chosen for our model. 
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Table 9 RBF network result with different spread coefficients 

Spread Coefficient Mean square error (MSE) 

0.1 1.90E-03 

0.3 9.00E-04 

0.5 6.59E-04 

0.7 2.25E-04 

1 1.51E-04 

1.2 0.000126 

 

Hidden neurons’ count 

The optimal quantity of hidden neurons can significantly impact an RBF network’s 

performance. The role of the hidden neurons is to transform the input domain into a higher-

dimensional domain. Data in this space can be better separated and classified by the output 

neuron. In the event of too few hidden neurons, the network cannot generalize sufficiently 

and would be prone to underfitting. On the contrary, with excessive hidden neurons, the 

network would become susceptible to overfitting, resulting in poor performance on unseen 

data. The changes in the root mean squared error (RMSE) and coefficient of correlation as a 

function of the number of hidden neurons are illustrated in Figure 12. Based on the results, 

the network achieves its best performance with an RMSE of 0.00918 and a correlation 

coefficient 0.998 when the number of hidden neurons is set to 12. Thus, our network 

architecture is configured with 12 hidden neurons. 

4.4.6 Results of the RBF network 

The RBF neural network has demonstrated excellent overall performance in predicting 

the operating load of the DEG based on the input parameters, and the network produced 
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highly accurate results with negligible error. The network's performance on the training data 

can be seen in Figure 13 as the number of neurons in the hidden layer increases. The mean 

squared error (MSE) decreases initially over the first 12 iterations, reaching an almost 

negligible value of 1.53E-27, which is very close to the network's objective of zero error. 

 

Figure 12 RMSE and coefficient of correlation for predicting the operating load in RBF 
network 

Figure 14 illustrates the correlation coefficient 'R' for both the training data and the 

entire dataset. As shown in the figure, there is a satisfactory level of correlation between the 

target output and the neural network output. This correlation indicates that the network has 

been successfully trained and can accurately predict target values. 

Figure 15 illustrates the training state of the network, where it can be observed that the 

network's performance on validation data declined for six consecutive iterations after 12 

epochs, ultimately leading to the termination of the network's training process. 
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Figure 13 RBF network performance in different iterations 

 

 

Figure 14 Regression plot of the ANN predicted operating load and the actual load value 
using RBF neural network. 
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Figure 15 Training state of the RBF network 
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CHAPTER 5: RESULTS AND DISCUSSIONS 

The results of the MLP and RBF predictions for our diesel engine generator's operating 

load are presented in Table 10. The results indicate that both networks have effectively 

learned the correlation between inputs and targets. Additionally, when comparing the neural 

network prediction and empirical data, it is evident that the ANN can accurately model the 

diesel engine's operating load with minimal training data. This proposed ANN approach can 

be employed to detect the underperformance of the diesel engine. While demonstrating nearly 

similar performance, the MLP network requires fewer neurons, generates less complex 

output equations, resulting in shorter processing times, and is consequently chosen for our 

optimization problem. 

Table 10 RMSE and 𝑅𝑅2 comparison between MLP and RBF for DEG operating load 
prediction 

 MLP RBF 

 Train data Test data All data Train data Test data All data 

R2 0.99 0.98 0.99 0.99 0.976 0.99 

RMSE 0.007 0.03 0.012 3.83E-14 0.023 0.012 

 

5.1 APPLICATION OF THE PROPOSED NETWORK FOR DEG OPTIMIZATION 

After choosing the best network architecture for our neural network, this network can 

now be implemented on our diesel engine generator to determine whether it is 

underperforming. As pictured in Figure 16, this is done by acquiring the emission data from 

the flue gas analyzer and similar to all function approximation problems, the developed MLP 

network can generalize from the provided input-output pairs to predict the operating load for 

new, unseen data inputs. In case of underperformance, a load bank is used to apply a load on 

the generator part of the DEG in addition to our demand side, thereby mitigating the negative 

impacts of operating at a low load by converting the excess electrical energy into heat.  
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Figure 16 Data acquisition for the neural network 

 
 

As per the manufacturer, Caterpillar, if the engine operates at a load below 30% of its 

nominal power, it is deemed to be underperforming (Jabeck, 2013). Consequently, as 

illustrated in Figure 17, should our DEG operate below 90 kW, the proportional control 

system in MATLAB/Simulink introduces resistive loads into our system to prevent the 

engine’s underperformance. The load banks can alternatively be switched manually by a 

supervisor once our neural network confirms the DEG underperformance.  

 
 

Figure 17 Resistive load bank control 
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The flow chart in Figure 18 illustrates the steps taken for the DEG optimization should 

it work below par, and its value is represented by 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 and Figure 19 shows the implemented 

schematic. 

 

 

Figure 18 Optimization flow chart for our diesel engine generator 

 

 

Figure 19 DEG Underperformance optimization schematic 
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In evaluating the underperformance optimization of the DEG, two scenarios are 

considered based on initially conducted experiments. This involves measuring exhaust gas 

temperature, along with emissions such as Sulfur (S), Carbon Monoxide (CO), Carbon 

Dioxide (CO2), and Oxygen (O2), which are then inputted to our developed neural network. 

If the neural network identifies that the DEG is performing below par, it will take corrective 

action through the control system by adding the necessary loads to the generator. The 

utilization of a load bank serves as a prevalent strategy to mitigate the adverse effects of 

underperformance, particularly in North America (Issa et al., 2020). Typically, a load bank 

operates as an automatically controlled resistor, applying a load to the generator unit of the 

DEG. This loading process converts electrical energy into heat energy, thereby improving 

the operational state of the diesel engine. This elevation in operating temperature prevents 

the formation of carbon deposits on injectors, valves, and the combustion chamber surface, 

along with addressing other associated problems like wet stacking. 

5.1.1 Scenario 1 

In our initial scenario, we utilized data collected from our Diesel Engine Generator 

(DEG) while operating at 24% of its designated load capacity, which is considered low load 

operation for our generator (Table 11). This acquired dataset was subsequently input into our 

neural network, and upon denormalizing the network's output, it revealed that the generator 

was operating at 25% of its nominal power, showcasing an impressively precise estimate 

with a minimal margin of error. 

After the neural network assesses the DEG's operation at 25% of nominal power, 

equivalent to 75kW in our generator, the control system introduces three 5kW loads from the 

load bank to prevent the generator’s underperformance. 
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Table 11 Exhaust gas data from DEG operating at 24% of nominal power capacity. 

 
Exhaust gas 
Temperature  

(°C) 

 
Sulfur (S) 

(ppm) 

 
Carbon 

monoxide 
(CO) (ppm) 

 
Carbon 
dioxide 

(CO2) (%) 

 
Oxygen  

(O2) (%) 

 

 
312 

 
0.1 

 
277 

 
196 

 
162 

     

 

5.1.2 Scenario 2  

In our second scenario, the acquired exhaust dataset was collected while the DEG was 

operating at 38% of its nominal power, a zone considered to fall within the normal operating 

range (Table 12). Similar to the first scenario, this data was fed into our neural network, 

revealing that the generator was operating at 38.32% of its nominal power, which is a very 

accurate prediction similar to the first scenario. As the generator operates at a normal 

operating zone, the control system does not add any load steps from the load bank.  

Table 12 Exhaust gas data from DEG operating at 38% of nominal power capacity 

 
Exhaust gas 
Temperature  

(°C) 

 
Sulfur (S) 

(ppm) 

 
Carbon 

monoxide 
(CO) (ppm) 

 
Carbon 
dioxide 

(CO2) (%) 

 
Oxygen  

(O2) (%) 

 

 
330 

 
0.1 

 
132 

 
150 

 
93 
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Overall, the utilization of Artificial Neural Network (ANN) models for predicting DEG 

attributes, including exhaust emissions, operational load, and performance, has been explored 

and contrasted with traditional statistical analyses such as regression models in many studies 

(Domínguez-Sáez et al., 2018; Tosun et al., 2016). These investigations consistently 

highlight the superior predictive capabilities of ANN models in understanding and 

forecasting the engine's behavior. Moreover, across multiple similar studies, it has been 

consistently noted that regression models fall short in accuracy compared to ANN models 

and they are a lot more time consuming (Tosun et al., 2017). The key observation is that 

achieving nearly acceptable results from regression models necessitates a substantial increase 

in the volume of data input to enhance prediction performance, which is not feasible in our 

study. On the other hand, among various studies that have used ANN models for predicting 

dynamic behavior of diesel engine generators, they were all centered on predicting attributes 

such as exhaust emissions, operating temperature, brake power, torque and overall engine 

performance. These predictions are mostly based on diverse input parameters including 

speed, fuel blend ratio, load, etc. (Fang et al., 2022; Ganesan et al., 2015; Ghobadian et al., 

2009). However, it is noteworthy that, in the reviewed studies, there was a conspicuous 

absence of ANN applications for the detection and prevention of underperformance in diesel 

engine generators, which was the main motive behind our research, and this makes a distinct 

contribution to the existing body of research, addressing a critical gap. Such an approach 

represents a substantial step forward in tackling operational challenges and advancing the 

state-of-the-art in this field. 
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CHAPTER 6: CONCLUSIONS 

6.1 SUMMARY AND CONCLUSIONS 

Diesel engine generators (DEGs) are pivotal in electrifying remote regions 

disconnected from the national electricity grid owing to their notable benefits, including 

simple operation, quick deployment, flexibility in handling varying demands, cost-

effectiveness, and durability and reliability. However, one of the main challenges in using 

this type of generator has always been associated with the time when the electricity demand 

is low and the engine has to work for extended periods bellow its optimal level, which can 

damage the engine and shorten its lifespan by the emergence of adverse phenomena such as 

wet stacking, cylinder polishing, and cylinder glazing. Additionally, accurately identifying 

when a diesel engine generator is underperforming is another hurdle in the operation of 

DEGs. This research has leveraged exhaust gas data to train a neural network capable of 

predicting and pre-emptively addressing underperformance issues. 

The initial chapter of this research delves into the imperative role of DEGs in the 

electrification of remote areas by drawing on the previous research conducted in this domain. 

This chapter also explores the challenges in the literature posed by DEGs’ underperformance, 

particularly during periods of low demand, shedding light on the critical importance of 

addressing this issue for reliable and more cost-effective energy access in such regions. 

The second chapter is a published article in Energies journal titled "Experimental 

Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust 

Gas Emissions". This article is dedicated to data collection process from the diesel engine 

generator in three separate tests under various load levels ranging from 0% to 52% of the 

engine’s nominal output power, which is the first objective of our research. The recorded 

parameters include exhaust emission characteristics such as S, SO2, CO, CO2 NOx, and O2, 

as well as exhaust gas temperature and Brake Specific Fuel Consumption (BSFC). Following 

the data collection, a thorough analysis was conducted to identify parameters exhibiting 
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consistent behavior under low-load conditions. These parameters were recognized as the 

most reliable underperformance indicators, and they were subsequently utilized in 

subsequent chapters to train the neural network, enabling it to identify when the engine is 

underperforming. 

In the third chapter, we undertake a comparative analysis of different ANN models in 

industrial control settings and how they are practically employed as practical computational 

tools in non-linear operations compared to statistical forecasting methods like multiple 

regression. The limitations of regression models compared to their ANN counterparts are 

explored, showcasing how regression models can struggle to handle complex and non-linear 

patterns in the data, and they usually require significant number of assumptions in advance 

while ANNs do not have these limitations and because of having better generalization 

capacity, they can perform better on unseen datasets and produce more robust models. The 

subsequent section of the chapter looks into different ANN classifications, providing a 

comparative assessment of the advantages, drawbacks, and applications associated with each 

architecture. This classification is mainly centered on the learning algorithms and 

architectures of ANNs. It was demonstrated how the use of Feedforward Neural Networks 

(FFNN) such as Multilayer Perceptron (MLP) and Radial Basis Function (RBF) are widely 

used in similar contexts in forecasting the diesel engine generator’s behavior such as exhaust 

emissions, fuel consumption, etc. mainly because of their robustness under different datasets 

and their training capability for diverse input-output mappings. The other FFNN models, 

such as Convolutional Neural Networks (CNN), were also investigated, proving not to be in 

line with the scope of our research problem as they are primarily used in other applications 

such as image classification, object detection, and face detection. The other large 

classification of ANN models, namely, Recurrent Neural Networks (RNN), was also 

explored, demonstrating that because of the unique architecture of these neural networks, 

they are primarily used in contexts where we have sequential data and the network needs to 

retain past inputs to produce accurate results. Consequently, they are more utilized in Natural 

Language Processing (NLP) applications where the temporal order of inputs is essential. That 

is why, by the review of the literature, these networks are found to be less utilized in 
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regression problems, especially in industrial settings and, more specifically, diesel engine 

generator’s dynamic behavior forecasting. A comprehensive analysis of the existing 

architectures in the literature reveals that Multilayer Perceptron (MLP) neural networks, 

which in many studies are referred to as Feedforward Neural Networks (FFNN), along with 

Radial Basis Function (RBF) networks, are the most widely used architecture in dynamic 

behavior forecasting of diesel engine generators and they are chosen for this study because 

of their accuracy, time efficiency, and robust performance across different datasets. 

In the fourth chapter of this study, we embark on creating an artificial neural network 

using MATLAB’s neural network toolbox, a pivotal step in our research. This process 

involves data preprocessing, which includes normalizing our input data to enhance the 

convergence and stability of the neural network during the training process. The next step 

requires dataset allocation for train, test, and validation data, where different dataset splits 

are tested to find the one that yields the most accurate results. After simulating the ANN 

models, each network’s hyperparameters, including the training algorithm, number of hidden 

layers, neurons, and iterations, are modified, and their respective error is calculated and 

illustrated.  

The fifth chapter delves into the yielded results of both MLP and RBF networks, 

comparing their performance and accuracy in learning the nonlinear behavior of input data 

and how well it performs on unseen data to predict the operating load of the engine. This 

implemented neural network is then utilized in a proportional control system through 

MATLAB/ Simulink that decides on the value of the resistive load that needs to be added to 

the generator part of the DEG to change its operating load reaching to the minimum 

operational load prescribed by the manufacturer. This process converts excess electrical 

power to heat, consequently increasing the engine’s temperature and preventing the 

formation of carbon deposits inside the engine. This proactive measure is crucial in avoiding 

potential adverse consequences to the engine. Two separate scenarios are then tested on the 

control system to verify its responsiveness when the engine is performing below par and 

operating in its optimal operational range.  
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6.2 THE LIMITATIONS OF THE MODEL, RECOMMENDATIONS, AND FUTURE RESEARCH 

In this research, a notable challenge in diesel engine generator optimization lies in 

accurately predicting underperformance. This issue has been successfully tackled with 

remarkable precision by applying artificial neural networks. Nevertheless, it is equally vital 

to implement preventative measures after the load prediction step. Load banks often fulfill 

this purpose, especially in North America, with the goal of preventing potential negative 

consequences. This study has employed this method to tackle the issue, albeit with the trade-

off of heightened fuel consumption, increased electricity costs, and elevated pollution. 

Nevertheless, despite its limitations, this approach still offers some advantages compared to 

other alternatives. One alternative involves utilizing a combination of small diesel generator 

sets, where the combined output power equals that of a single large diesel engine generator. 

However, this proves to be a significantly more expensive approach when compared to the 

utilization of load banks. 

In future studies, more sustainable alternatives can be researched and employed, such 

as hybridizing the DEG with renewable energy sources such as wind turbines to prevent the 

low-load operation of the engine, especially for extended periods.  
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