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Abstract  15 

Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each 16 

year as a consequence of the ever-increasing anthropogenic activities and demographic 17 

growth of the human population, which is majorly concentrated along coastal areas. Marine 18 

ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the 19 

environment, and improving our understanding of how they can affect natural ecosystems. 20 

However, chemical contamination is not occurring in isolation, but rather against a rapidly 21 

changing environmental horizon. Most environmental studies have been focusing on short-22 

term within-generation responses of single life stages of single species to single stressors. As 23 

a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and 24 

magnitude of future impacts of chemicals on marine ecosystems. Current approaches that 25 
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lack an evolutionary perspective within the context of ongoing and future local and global 26 

stressors will likely lead us to under or over estimations of the impacts that chemicals will 27 

exert on marine organisms. It is therefore urgent to define whether marine organisms can 28 

acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, 29 

i.e. realign the population phenotypic performances to maximize fitness, to the new chemical 30 

environment within a selective horizon defined by global changes. To foster a significant 31 

advancement in this research area, we review briefly the history of ecotoxicology, synthesis 32 

our current understanding of the fate and impact of contaminants under global changes, and 33 

critically discuss the benefits and challenges of integrative approaches towards developing 34 

an evolutionary perspective in marine ecotoxicology: particularly through a 35 

multigenerational approach. The inclusion of multigenerational studies in Ecological Risk 36 

Assessment framework (ERA) would provide significant and more accurately information to 37 

help predict the risks of pollution in a rapidly changing ocean.  38 

 39 
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 42 

1. Introduction 43 

The marine environment and human civilization have always been in an intimate relationship, 44 

the latter being the main beneficiaries of the resources and ecosystem services provided by 45 

the former (Visbek, 2018). However, with the advent of industrialization, this marriage has 46 

gone sour! Beyond being a provider of resources for subsistence, heat production and 47 

construction, the environment has also become the major dumping ground for our industrial, 48 

agricultural, forestry, mining and household waste products (Clayson, 2001; Ahluwalia, 49 
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2015; Gaur et al., 2020; Kedzierski et al., 2020). This results in tens of thousands of 50 

contaminants entering the marine environment each year (Álvarez-Múñoz et al., 2016; 51 

Stauber et al., 2016). In this sense, marine ecotoxicology has played a fundamental role in 52 

predicting the potential impacts of these substances on marine ecosystems (Chapman, 2016). 53 

Besides, this discipline has developed a unique perspective on the interaction between 54 

humans and the environment, as well as essential tools to rapidly assess the health status from 55 

populations to ecosystems: such as, for example, tools used in biomonitoring programs and 56 

environmental disasters impact assessment, such as mining accidents and oil spills (e.g. 57 

Blasco et al.,2002; Riba et al., 2004; Morales-Caselles et al., 2006). Currently, coastal marine 58 

environments undergo chronic low levels of contamination, with a marked upward trend due 59 

to our explosive demographic growth and ever-increasing activity levels, particularly along 60 

coastal areas (Stauber et al., 2016). For example, since 1950s, the amount of plastic waste 61 

accumulated in the coastal environment has increased between 4.8 and 12.7 million tons per 62 

year (Jambeck et al., 2015). However, chemical contamination is not occurring in isolation, 63 

but against a changing environmental oceanscape due to ongoing global change (GC). This 64 

will incur changes to organism and ecosystem functions and their responses to pollutants, 65 

with important implications for the reliability and usefulness of indicators developed to date.  66 

Indeed, studying interactions among environmental stressors has become a major focus in 67 

environmental studies (Piggott et al. 2015; Côté et al. 2016). In this sense, several studies 68 

have recently focused on the combined impact of GC and pollutants, addressing the potential 69 

impact of industry and household wastes within the changing environmental oceanscape (see 70 

in Noyes et al., 2009; Kimberly  and Salice, 2015). However, these studies are based on short-71 

term (within-generation) single life-stage exposure experiments. Limitations of this approach 72 

arise with respect to species possessing complex life cycles (i.e. the vast majority of marine 73 
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organisms), and has been discussed (Coutellec and Barata, 2013; Calosi et al., 2016). This is 74 

particularly important in light of recent efforts to shift the focus of GC biology toward the 75 

characterization of species transgenerational plasticity and rapid evolutionary responses 76 

(Sunday et al. 2014; Munday et al., 2013; Reusch, 2014; Calosi et al., 2016).  77 

Ecotoxicological studies conducted to date have largely overlooked the interaction of 78 

contaminants with future GC drivers, and have not considered the role that plastic and 79 

adaptive responses will play within this context. This likely under or overestimates the 80 

impacts that pollutants exert on biological systems within the rapidly changing 81 

environmental oceanscape. Here, we discuss the limitation of having largely ignored 82 

fundamental issues in the field of ecotoxicology such as: Will marine organisms be able to 83 

cope with the combined exposure to contaminants and GC drivers, whilst considering the 84 

cumulative effects over multiple life-stages and/or over multiple generations?  Do organisms 85 

have the capacity for beneficial trans-generational plasticity (TGP) and to rapidly adapt to 86 

combined contaminants and GC scenarios? What are the fitness consequences of the 87 

combined exposure to contaminants and GC drivers over successive life stages and 88 

generations in marine organisms? Finally, as the central challenge for ecotoxicologists is that 89 

to acquire a critical understanding on impacts that are in the making (and even better 90 

preventively) instead of attempting to unravel its mechanisms a posteriori, it is important 91 

that we ask the question: Is ecotoxicology responding properly to emerging toxicological 92 

concerns in the rapidly changing environmental oceanscape?  93 

In order to achieve our aims, we first (1) provide a brief historical perspective of 94 

ecotoxicology. (2) We then critically review our current understanding of the general 95 

biological impacts of contaminants within the context of global ocean changes by using 96 

selected representative studies. (3) We explore the advantages, challenges and limitations of 97 
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using field and multigenerational approaches to investigate contaminants’ impacts within the 98 

context of a rapidly changing environmental oceanscape. Finally, (4) we discuss the much-99 

needed paradigm shift (and usefulness) required in marine ecotoxicology to acquire an 100 

evolutionary perspective on combined impacts of chemicals, whilst accounting for the 101 

multidimensionality of global changes, in order to inform future effective protection 102 

strategies and conservation policies. 103 

 104 

2. A brief history of ecotoxicology 105 

In the 1940s-1950s, as a response to the environmental implications of expansive human 106 

activity, emerged the field of Environmental Toxicology (Rattner, 2009) in the 1940s-1950s. 107 

It was concerned with studying the effects of toxicants on biological systems, and it focused 108 

on the screening of exogenous substances in the environment to identify those that may be 109 

potentially harmful (Leblanc, 2004). Ecological considerations were not included in these 110 

studies, and they were carried out with species easily obtained and cultured under laboratory 111 

conditions, whilst targeting parameters, endpoints and proxies easy to measure and reproduce 112 

(Chapman, 2002). However, “a single species for different purposes” is not a philosophy that 113 

allows us to reliably predict the health status of entire ecosystems under an exogenous 114 

pressure. Each ecosystem has its own set of key species and unique species-interactions. A 115 

relevant example of this approach is the widespread use of freshwater species to assess 116 

marine ecosystem health and vice versa (Chapman, 2002). Prominent examples of this are 117 

that of the toxicity tests carried out using (i) the freshwater water flea Daphnia magna (O. F. 118 

Müller, 1785), employed in many countries for biomonitoring programs to assess the impacts 119 

of wastewater discharges in marine waters, and (ii) the marine bioluminescence bacteria 120 

Vibrio fischeri to determine toxicity effects of contaminants in freshwater systems. The wide 121 
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use of the latter has been adapted in some legal frameworks beyond marine systems, as a 122 

criterion for the characterization and classification of solid industrial waste, through the 123 

toxicity of their leachates,  with implications for its management (Viguri et al., 2001; Coz et 124 

al., 2009; Abbas et al., 2018).  125 

Derived from Environmental toxicology, and intending to expand beyond the effects of 126 

potentially hazardous substances at the individual level, the research field of Ecotoxicology 127 

is defined as the assessment and prediction of the ecological and toxicological effects on 128 

natural populations, communities and ecosystems as a result of realistic exposure conditions 129 

to chemical contaminants (Forbes and Forbes, 1994; Luoma et al., 1996; Chapman, 2002).  130 

Ecotoxicology informs not only on the fate of contaminants in the environment but also on 131 

the mechanisms, and ins and outs, of their transport and transformation before their final 132 

destination. This field plays a major role in decision-making within the framework of 133 

Ecological Risk Assessment (ERA) (Chapman, 2002). However, as for all disciplines it has 134 

its limitations. Ecotoxicology investigates the short-term biological impacts of contaminants, 135 

without taking into account organisms’ long-term responses to the chronic exposure to 136 

xenobiotic substances, and ultimately their evolutionary consequences on populations. Some 137 

studies have highlighted the need to incorporate evolutionary processes in ecotoxicology 138 

studies in hopes of integrating these effects in ERA (Bickham et al., 2000 ; Van Straalen and 139 

Timmermans, 2002; Breitholtz et al., 2006; Morgan et al., 2007; Coutellec and Barata 2011; 140 

Dallinger and Höckner 2013).  141 

Evolutionary processes can alter the responses recorded during ecotoxicological 142 

experiments. Adaptive events could appear when populations are chronically exposed to 143 

pollution, giving rise to different responses if they are compared with unexposed populations 144 

(Barata et al., 2002; Coutellec and Barata, 2011). Other issues not addressed in toxicity tests 145 

https://link.springer.com/article/10.1007%2Fs10646-011-0637-x#CR19
https://link.springer.com/article/10.1007%2Fs10646-011-0637-x#CR6
https://link.springer.com/article/10.1007%2Fs10646-011-0637-x#CR15
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(such as genetic diversity, selective processes, inbreeding or epigenetic effects) may 146 

confound the interpretations of observed effects (Barata et al., 2000; Nowak et al., 2007; 147 

Coutellec and Barata, 2011). Severe reductions in survival and reproductive output, as well 148 

as increases in behavioural syndromes of individuals and populations are possible 149 

consequences of exposure to toxic substances, which can ultimately translate in changes in 150 

genetic diversity, allelic or genotypic frequencies, modifications in dispersal patterns or gene 151 

flow and increased mutation rates (Bickham, 2011; Oziolor et al., 2016). In the last decade, 152 

this has prompted researchers to propose the development of an ecotoxicology model 153 

considering a more holistic perspective (Chapman et al., 2002; Snape et al., 2004; Oziolor et 154 

al., 2016), to take into account the challenges that arise from a rapidly changing environment. 155 

Attaining these objectives is paramount to pursuing current and future challenges in the field 156 

of Ecotoxicology.  157 

 158 

3. The fate of contaminants under ocean global change 159 

Global change (i.e. anthropogenic global change) is mainly due to the tremendous and rapid 160 

demographic expansion of the human population since the Industrial Revolution, and the 161 

consequent changes in human society and life standards (Cohen, 2012). However, improving 162 

human well-being involves a continuous increase in the use of resources and disposal of 163 

contaminants in the natural environment which has accelerated the pace of natural changes 164 

of our planet (Waters et al., 2016). Ultimately, the great environmental changes that our 165 

planet experiences now, and in the near future will have long-lasting ecosystems effects, and 166 

in turn impact human well-being and health (Buttler and McFarlane, 2018).  167 

GC in the ocean includes eutrophication, coastal hypoxia, ocean warming (OW), sea ice loss 168 

and sea level rise, ultraviolet (UV) radiation increase, coastal and global ocean acidification 169 
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(OA), salinity changes due to freshening (flash floods and ice melting), tropicalization of the 170 

climate, habitat loss, over exploitation of fish stocks, changes in species distributions and 171 

ecosystems structure and functioning, coastal urban sprawl and pollution (IPCC, 2014).  172 

GC drivers can indirectly create new usage trends of chemicals products, as well as affect 173 

directly their transport and fate within the marine environment (Artigas et al., 2012: Balbus 174 

et al., 2013) and the degree of pollutant exposure to marine organisms (Noyes et al., 2009; 175 

Hooper et al., 2013; Kimberly and Salice, 2015) (see Fig.1). For example, it has been 176 

demonstrated that a reduction of pH in seawater, due to the increase of atmospheric pCO2 177 

levels, changes the solubility, absorption, the rate of redox processes and toxicity of metals 178 

(Millero et al., 2009). Acute seawater acidification processes impact the factors controlling 179 

the release of trace metals from sediments, enhancing the solubility of most trace metals 180 

because of the influence of pH on the dissolved organic matter, dissolution of carbonate, 181 

speciation of sulphide and iron (oxy)hydroxide minerals, the adsorption/desorption surface 182 

reactions and ion exchange processes (Martin-Torre et al., 2015). These mechanisms have 183 

been included into the kinetic modeling of Zn, Pb, Cd, Ni, Cr, Cu and As release from 184 

sediments under diverse seawater acidification scenarios, predicting important releases of 185 

these contaminants into the water column (Martin-Torre et al., 2016), thus increasing their 186 

availability to marine biota (Millero et al., 2009). In this sense, some studies have indicated 187 

that OA increases the toxicity of contaminated sediments (Roberts et al., 2013; Rodríguez-188 

Romero et al., 2014a, b) and could exacerbate metal bioaccumulation in certain organisms 189 

(e.g. Rodríguez-Romero et al., 2014b). Simultaneously, the introduction of chemicals in 190 

seawater changes the UV radiation dynamics. Organic and inorganic chemical UV filters, 191 

that are incorporated as ingredients in the formulation of sunscreens, are released, degraded 192 

and/or transformed under solar UV radiation in the marine environment to chemicals with 193 
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potentially toxic effects on marine organisms (Sánchez-Quiles and Tovar, 2014; Ramos et 194 

al., 2015). A recent study demonstrated that UV radiation plays a fundamental role in the 195 

mobilization of dissolved trace metals (i.e. Al, Cd, Cu, Co, Mn, Mo, Ni, Pb, and Ti) and 196 

inorganic nutrients (i.e. SiO2, P-PO4 
3−, and N-NO3

−) from sunscreen products used by 197 

beachgoers in seawater (Rodríguez-Romero et al., 2019).  198 

On the other hand, temperature is the other environmental stressor that most impacts the 199 

environmental fate of contaminants, particularly regarding persistent organic pollutants 200 

(POPS). Melting of glacial ice caused by warming leads to sea level rise. With the subsequent 201 

increase in intensity and frequency of storm events, further erosion of contaminated soils 202 

ultimately contributes to greater POP concentrations in coastal waters (Ma el al., 2016). 203 

Climate warming also leads to higher rates of methylation and volatilization processes of 204 

mercury from sediments accumulated from the past and in turn leads to a remobilization of 205 

this metal (Bogdal and Scheringer, 2011). As OA, OW not only affects the fate of 206 

contaminants in the environment, but also their toxicity. In general, the toxicity (e.g. higher 207 

bioaccumulation rates due to enhanced gill ventilation by organisms) increases with 208 

temperature. In contrast, an increase of temperature can also lead to higher rates of depuration 209 

and detoxification mechanisms (Stauber et al., 2016).  Therefore, chemical contamination is 210 

not occurring in isolation, but occurs against a radically changing environmental oceanscape, 211 

which is significantly altering fundamental oceanic ecological processes and functions (e.g. 212 

Nagelkerken and Connell, 2015; Ullah et al., 2018; Havenhand et al., 2019). 213 

  214 

4. Assessing the biological impacts of marine contamination under GC environmental 215 

scenarios: Multiple stressor experiments 216 
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A number of studies have investigated the implications of combined exposure to multiple 217 

environmental changes (e.g. pCO2/pH, temperature, salinity, ultraviolet radiation) under 218 

laboratory conditions (e.g. Egilsdottir et al., 2009; Zhangh et al., 2014; Pires et al., 2015; 219 

Velez et al., 2016; Ramajo et al., 2016; Freitas et al., 2017a; Araujo et al., 2018). The results 220 

reported by these studies reflect the lack (with few exceptions) of consistent patterns 221 

describing the different responses of marine species to combinations of multiple drivers 222 

(Johson and Carpenter, 2012; Duarte et al., 2014; Kavousi et al., 2015). The interactions of 223 

these drivers often produce non-linear changes in aquatic organismal fitness and community 224 

dynamics (Boyd et al.,, 2015; Piggott et al., 2015; Côté et al., 2016; Sabater et al., 2019) 225 

and their variation patterns depend on the species and choice of response (Matozzo et al., 226 

2013).   227 

In the last decade, the number of studies that have addressed the combined effects of 228 

contaminants within the context of ocean GC drivers has been on the rise (e.g. Nardi et al., 229 

2017; Malvaut et al., 2016, 2018a; Munari et al., 2020). As for studies of other environmental 230 

stressor interactions, a wide variety of results have been obtained, with metal(oid)s and OA 231 

being the most studied combination in the last years: see for example Lacoue-Labarthe et al. 232 

(2009, 2011, 2012, 2018), Houlbreque et al. (2012), Fitzer et al., 2013; Ivanina et al., 2013, 233 

2014, 2015, 2016; Ivanina and Sokolova, 2013, 2015; Campbell et al., 2014; Lewis et al., 234 

2013, 2016 Benedetti et al., 2016; Shi et al., 2016; Nardi et al., 2017, 2018; Dorey et al., 235 

2018a).  236 

On the other hand, there is no established trend describing the responses to a combined 237 

exposure of contaminants and environmental stressors. A complex pattern of response, which 238 

depends on the species, pollutant (including the concentration level of exposure) and the 239 

environmental stressor studied have been observed.  240 
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A synergistic positive pattern has been detected under the exposure to environmental 241 

stressors (i.e. OW, OA and changes in salinity levels) in combination with some metals. An 242 

increase in the toxicological effects of Cu has been found in the pale anemone Exaiptasia 243 

pallida (Agassiz, 1864), the harpacticoid copepod Harpacticus sp, the staghorn coral 244 

Acropora cervicornis (Lamarck, 1816) and in the Portuguese and Suminoe oysters 245 

Crassostrea angulate (Lamarck, 1819) and Crassostrea rivularis (Gould, 1861) (Patel and 246 

Bielmyer-Fraser, 2015; Sidiqqi and Bielmyer-Fraser, 2015; Bielmyer-Fraser et al., 2018; 247 

Scanes et al., 2018; Huang et al., 2018; Holan et al., 2019). The same pattern has been 248 

recorded for Cd or/and As toxicity in the Mediterranean mussel Mytilus galloprovincialis 249 

(Lamarck, 1819), the smooth scallop Flexopecten glaber (Linnaeus, 1758), C. angulata and 250 

the Japanese oyster Crassostrea gigas (Thunberg, 1793) (Nardi et al., 2017, 2018; Coppola 251 

et al., 2018; Moreira et al., 2018a,b,c). Notably, oxidative stress, reduced metabolism, 252 

increased energy demands and impacts on capacity to detoxify metals have been reported in 253 

bivalves among other responses (Hawkins and Sokolova et al., 2017; Coppola et al., 2018; 254 

Moreira et al., 2018a; Scanes et al., 2018).  255 

Although the majority of studies indicate an increase of metal bioaccumulation in 256 

combination with OA (e.g. Velez et al., 2016; Duckworth et al., 2017, Cao et al., 2018), it 257 

has been demonstrated that bioaccumulation responses are specific to each metal (Lacoue-258 

Labarthe et al., 2018; Dorey et al., 2018b). Synergistic effects of OW and OA, and Cd 259 

bioaccumulation has been also shown in the Antarctic scallop Adamussium colbecki (Smith, 260 

1902) with different sensitivity among analysed tissues (Benedetti et al., 2016). In 261 

combination with OA, an increased accumulation of Co but not Cs in the Manila clam 262 

Ruditapes philippinarum (Adams & Reeve, 1850) has been recorded by Sezer et al., (2018). 263 

However, no differences in Hg accumulation or tolerance were found in M. galloprovinciallis 264 
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and the sandworm polychaete Hediste diversicolor (O.F. Müller, 1776) when exposed to OW 265 

and OA conditions respectively (Freitas et al., 2017b, 2017c). Freitas et al. (2017b, 2017c) 266 

concluded that metal bioaccumulation could decrease when organisms are exposed to high 267 

temperature conditions for long periods via diminishing their metabolism. Evidence using M. 268 

galloprovincialis demonstrates that the impacts caused to the oxidative stress by the 269 

combination of Hg contamination and OW were similar to the ones induced by OW acting 270 

alone (Coppola et al., 2017).  271 

On the other hand, antagonistic toxicity interactions between metals and OA have been 272 

reported in different marine organisms such as algae, corals, mollusks and crustaceans (e.g. 273 

Pascal et al., 2010; Lacoue-Labarthe et al., 2012; Gao et al., 2017; Marangoni et al., 2019). 274 

For example, Pascal et al., 2010 observed a decrease of Cd and Cu uptake in the coastal 275 

copepod Amphiascoides atopus (Lotufo & Fleeger, 1995) and later, Lacoue-Labarthe et al., 276 

(2012) reported similar patterns for Cd in the hatchling tissue of the common cuttlefish Sepia 277 

officinalis (Linnaeus, 1758). A decrease of metals uptake could be due to an increase of H+ 278 

caused by OA, which can result in a competition for binding sites between metals and H+, 279 

making surface sites less available to absorb metals (Pascal et al., 2010). Additionally, Gao 280 

et al. (2017) indicated that a moderate increase of pCO2 could mitigate the toxicity of Cu in 281 

the seaweed Ulva prolifera (Muller, 1778).  282 

Despite the lack of attention given to other types of chemical contaminants, findings show 283 

that the interactions between global-related abiotic change and pharmaceuticals (e.g. 284 

carbamazepine, velanfaxina) may alter organisms sensitivity and may aggravate the toxicity 285 

of a tested substance (Freitas et al., 2016; Maulvaut et al., 2018c, 2019) affecting its uptake 286 

and elimination rate (Maulvaut et al., 2018b). For example, although oxidative stress 287 

responses in adults of R. philippinarum and M. galloprovincialis were more influenced by 288 
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OA than by the combination of reduced pH and diclofenac (Munari et al., 2018), larval stage 289 

R. philippinarum exposed to diclofenac under OA conditions experienced higher mortality 290 

and morphological malformations compared to the exposure to single stressors in isolation 291 

(Munari et al., 2016). However, the combined effect of low pH and the pharmaceutical 292 

carbamazepine on the peppery furrow shell clam Scrobicularia plana (Da Costa, 1778), was 293 

lower than each stressor acting in isolation, and the impacts were more pronounced in the 294 

population of clams from the contaminated area (Freitas et al., 2015). A later study 295 

demonstrated that the toxicity of carbamazepine synergistically increased under OA 296 

conditions, with reduced survival and increased oxidative stress in S. plana (Freitas et al., 297 

2016). Similarly, idiosyncratic responses have been reported for the ciliates Euplotes crassus 298 

(Dujardin, 1841) under OW conditions. On the one hand, a rise in survival rate was described 299 

after 24 h of exposure in combination with the antibiotic oxytetracycline; on the other, a 300 

decline of tolerance after 24 h of exposure in combination with copper was noted (Gomiero 301 

and Viarego, 2014).  302 

This variety of responses is also found for other contaminants such as nanoparticles and 303 

herbicides. For example, alleviation of toxicity with a modest increase of temperature was 304 

observed on the larva of the collector sea urchin Tripneustes gratilla (Linneaus, 1758) 305 

exposed to nano-Zn-oxide. Nevertheless, an enhanced effect of oxidative stress in H. 306 

diversicolor exposed to carbon nanoparticles under OA conditions has been recorded (De 307 

Marchi et al., 2019). In the same line, Shang et al., 2020 observed an enhanced of toxicity of 308 

TiO2 nanoparticles on the Korean mussel Mytilus coruscus (Gould, 1861) under acidification 309 

conditions, which could adversely affect its feeding metabolism. A one-year exposure 310 

experiment found a noticeable temperature/S-metolachlor (herbicide) and Cu toxicity 311 

relationship with significant synergistic effects on the embryo-larval development of C. gigas 312 
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(Gamain et al., 2017). An increased immune toxicity in the blood of the blood cockle 313 

Tegillarca granosa (Linnaeus, 1758) was recorded after the exposure to the persistent organic 314 

pollutant benzo[a]pyrene under future OA scenarios, which could make individuals more 315 

susceptible to pathogenic challenges (Su et al., 2017). 316 

Despite all efforts to date, the indirect and interactive impacts of GC drivers on marine 317 

organisms’ responses to environmental contaminants are scarcely explored (Nardi et al., 318 

2017). Studies on how multiple stressors interact affecting marine and coastal ecosystems 319 

are essential to accurately identify the level of contaminants that will be detrimental for 320 

biological systems under future global ocean scenarios (Schiedek et al., 2007; Nikinmaa, 321 

2013; Lewis et al., 2013; Campbell et al., 2014; Manciocco et al., 2014; Maulvaut et al., 322 

2018c). However, the majority of multistressor experiments have focused on single stages of 323 

the life cycle of a marine species, which are characterized in the great majority of cases by 324 

extremely complex life cycles (c.f.  Chakravarti et al., 2016, Gibbin et al., 2017a, 2017b; 325 

Thibault et al., 2020). This ultimately hinders our ability to account for organisms’ capacity 326 

to cope with a changing environment by adjusting (i.e. acclimating via phenotypic plasticity) 327 

and adapting (via selection). Although these experiments provide important information, they 328 

may overestimate or underestimate the “real” impact associated with new GC scenarios on 329 

marine species. Long-term exposure experiments, across multiple (ideally all) life stages 330 

charactering the complex life cycles of the vast majority of marine species are required. This 331 

entails a laborious endeavor in terms of time and resources, an issue that researchers need 332 

however to face in these challenging times (Byrne  and Przeslawski, 2013). 333 

 334 

 335 
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5. Approaches for acquiring an evolutionary perspective on ecotoxicology under GC 336 

stressors 337 

The combined exposure to GC drivers and chemical pollution represents an unprecedented 338 

hazard for marine life and marine ecosystem functions and services, threatening to lower 339 

organismal physiological and ecological performances and ultimately their fitness (Noyes et 340 

al., 2009). However, to date, most studies have been focusing on short-term responses of 341 

single species to single GC stressors (Kroeker et al., 2013; Thomsen et al., 2017), largely 342 

ignoring the importance of species ability for plastic responses (and in particular the suite of 343 

responses under the umbrella of transgenerational plasticity) and rapid adaptation. These two 344 

mechanisms help define species’ ability to cope under rapid environmental changes. 345 

Consequently, our understanding of the plastic and evolutionary potential of marine 346 

organisms in the face of rapid GC is extremely limited (Kelly and Hofmann, 2013; Munday 347 

et al., 2013; Sunday et al., 2014; Reusch, 2014, Kimberly and Salice, 2015; Thomsen et al., 348 

2017). More specifically, we have so far acquired a limited understanding of carry over, 349 

cumulative and delayed effects linked to plastic responses emerging from the exposure to 350 

contaminants across different life stages and generations, in marine organisms exposed to 351 

future ocean GC scenarios. Plastic responses can be beneficial (Huey et al. 1999) and non-352 

beneficial (Relyea, 2002), meaning they can bring an advantage or a disadvantage to the 353 

organisms expressing such plasticity in a new environment. Beneficial plastic responses can 354 

buffer the negative impacts (completely or partially) of contaminants and GC drivers (e.g. 355 

Chakravarti et al., 2016, Chen et al., 2018), effectively enabling an organism to maintain its 356 

regular functioning and ideally fitness levels, with its underlying costs (Hoffmann 1995; 357 

Jarrold et al., 2019). This ‘buffering’ ability is an essential mechanism enabling organisms 358 

to face periodic fluctuations and chronic changes in their natural environment (Ghalambor et 359 
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al., 2007), and within the context of GC, can help organisms maintaining high performance 360 

and fitness levels, potentially gaining time for evolutionary processes to occur. The 361 

acquisition of a more in-depth understanding of the potential impacts of contaminants in the 362 

rapidly changing environmental oceanscape on marine organisms is essential.  363 

 364 

5.1 Field experiments as a tool for long term in-situ observations  365 

Natural analogues of future environmental conditions can be found in marine ecosystem. 366 

These natural systems can operate as tools for the characterization of the responsiveness or 367 

adaptive potential of marine organisms to the combined impacts of environmental pollution 368 

under future GC scenarios. Adaptation occurs as a result of natural selection acting on the 369 

phenotypic / genotypic combinations existing within populations. There is increasing 370 

evidence that the ability to adapt to environmental stress may depend on the environmental 371 

history of previous life stages (Marshall and Morgan, 2011). For example, on a time scale 372 

different from that at which GC is taking place, adaptation to environments with high CO2 373 

concentrations or high CO2 variability has been observed in a number of marine organisms 374 

(Calosi et al., 2013; Pespeni et al., 2013; Conradi et al., 2019; c.f. Lucey et al. 2016). 375 

However, in some cases, the inability to adapt to high CO2 conditions has been shown (see 376 

for example Lucey et al. 2016). Some examples of natural analogues of GC are included here.  377 

1) Estuaries and coastal areas possess a strong space-temporal variability in terms of 378 

abiotic parameters, and display large environmental variability in temperature, 379 

salinity, pH, oxygen concentration, and nutrient load. In addition, these areas act as 380 

sinks for contaminant discharges by rivers: for example, showing high levels of 381 

diverse metal concentrations. In some cases, these metal loads discharged by rivers 382 

originate from mining activities from ancient civilizations (see Davis et al., 2000; 383 
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LeBlanc et al., 2000). However, the variability showed by coastlines and estuaries, in 384 

many cases, is already greater than projections expected under future conditions 385 

(Duarte et al. 2013). 386 

2) Underwater CO2 vents located for example in the Mediterranean Sea, Papua New 387 

Guinea, Atlantic Sea and Bay of Plenty in New Zealand are examples of vent systems 388 

which have been used as analogues for future OA (see Burrell et al., 2015, Hernández 389 

et al., 2016; Lamare et al., 2016; González-Delgado and Hernández, 2018; Rastrick 390 

et al. 2018). In some of these systems, pH gradient interacts simultaneously with other 391 

stressors, such as temperature (e.g. New Caledonia Lagoon), salinity, metal and 392 

metalloids concentrations (Vizzini et al., 2013). For example, hydrothermal seeps 393 

with high pCO2 levels offer scenarios mimicking the toxicity of metal(oid)s under 394 

future GC ocean conditions to study acclimatization/local adaptation in organisms 395 

that have lived in these conditions for extended periods of time (Ricevuto et al., 2016; 396 

Pichler et al., 2019).  397 

3) Upwelling areas. Upwelling events naturally bring low-oxygen, high-CO2 and low-398 

temperature waters, often undersaturated with respect to calcium carbonate, to 399 

nearshore environments (Booth et al., 2012). These waters are rich in trace elements 400 

and nutrients (Valdes et al., 2008) and therefore, these systems play an important role 401 

in the study of future impacts of multiple stressors. For example, studies suggest that 402 

natural variability in upwelling areas may promote acclimation and adaptation 403 

potential in inhabiting scallops to OA (Lardies et al., 2017). 404 

The use of these natural systems can enable us to study the implications of organismal chronic 405 

exposure to future ocean GC scenarios in natural populations and communities. The 406 

information obtained from these studies allows us to investigate the cumulative effects of 407 
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multiple stressors-induced by in situ evolutionary (Calosi et al., 2013) and ecological 408 

processes (Kroeker et al., 2017). Although the great advantage of this approach includes a 409 

more realistic conditions than laboratory bioassays (Barry et al., 2010), field studies are also 410 

constrained by a number of factors, such as: (i) the lack of true representative replicates and 411 

control treatments (Alexander et al., 2016); (ii) the confounding impacts of secondary 412 

environmental factors acting simultaneously in the natural environment, indistinguishable 413 

from the main factors of interest (Cornwall and Hurd, 2016). Non-controlled natural 414 

processes may lead to variation in response variables studied (Alexander et al., 2016). 415 

Despite of this, these natural systems are considered an excellent tool to validate the 416 

responses observed in laboratory experiments. This combination could avoid the complex 417 

web of confounding drivers observed in natural analogues (Rastrick et al. 2018).  418 

 419 

5.2. Multigenerational approach as a tool to assess the long-term implications of ocean 420 

global changes: advantages and limitations 421 

Multi-generational experiments are an effective tool to assess species’ capacity for plastic 422 

responses to environmental stressors from natural and anthropogenic sources. This approach 423 

addresses the potential for evolutionary changes in species by unravelling traits that are 424 

genetically correlated with characteristics that are direct objects of selection (Gilchrist et al 425 

1997; Munday et al., 2013). Understanding such correlated traits is crucial in making 426 

predictions of species and populations’ responses to rapid ocean changes (Pistevos et al., 427 

2011). Therefore, multi-generational experiments can provide valuable information on the 428 

evolutionary changes that may occur under new environmental scenarios (Collins and Bell, 429 

2004; Donelson and Munday, 2015; Rodríguez-Romero et al., 2015; Chakravarti et al., 2016; 430 

Gibbin et al., 2017b; Thibault et al., 2020).  431 
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Trans-generational plasticity is a mechanism which can improve performance across 432 

generations (Salinas et al. 2013, Calosi et al. 2016), and is defined as a non-genetic process 433 

whereby the environmental conditions experienced by a parent significantly alters its own 434 

phenotype, and through this alters the fitness, the performance and the plasticity of their 435 

offspring (Badyaev and Uller, 2009). TGP has the potential for adaptive significance, 436 

facilitating trans-generational acclimation and thus improving offspring survival and fitness, 437 

but can also have deleterious effects (Marshall and Uller, 2007). For example, some studies 438 

show that offspring are better able to cope with elevated concentrations of CO2 if their parents 439 

have experienced similar conditions (Miller et al, 2012; Parker et al, 2012; Shama et al., 440 

2016). Nevertheless, it has also been shown that parental and grandparental effects may lead 441 

to decreased offspring capacities (Dupont et al., 2013; Shama and Wegner, 2014). On the 442 

other hand, Kelly and Hofmann (2013) suggested that some populations will display reduced 443 

plastic and adaptation capacity to face changes in temperature. Either way, TGP can be an 444 

important source of variation in performances between individuals, ultimately influencing 445 

short-term selection and the evolutionary trajectories of populations (Mousseau and Fox, 446 

1998; Badyaev and Uller, 2009). Differently, adaptation through existing phenotypes 447 

requires genetically based variation to stress tolerance within a natural population (Sunday 448 

et al., 2014). Therefore, standing variation for multiple stressors tolerance within populations 449 

will ultimately determine their capacity to mount an evolutionary response to the ongoing 450 

GC in the oceans.  451 

In the last years, the number of multi-generational studies spanning multiple stages of the 452 

biological cycle is increasing, which is allowing the investigation of the ability to adapt, and 453 

the extent of adaptation (e.g. Sunday et al., 2011; Fitzer et al., 2013; Foo et al., 2012; Parker 454 
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et al., 2012; Rodriguez-Romero et al., 2015; Chakravarti et al 2016; Shama et al., 2016 455 

Munday et al., 2016; Gibbin et al., 2017b).  456 

Concerning the impact of pollutants in aquatic biotic systems, several multigenerational 457 

studies have been conducted using freshwater species (e.g. Gardestrom et al., 2008; Sowers 458 

et al., 2009; Corrales et al., 2014; Seeman et al., 2015; Knecht et al., 2017; Bal et al., 2017a, 459 

2017b; Reátegui-Zirena et al., 2017; González-Pérez et al., 2018). In this sense, Daphnia sp 460 

represents the species used par excellence in these type of studies (see for example Clubbs 461 

and Brooks, 2007; Dietrich et al., 2010; Plaire et al., 2013; Kim et al., 2014; Jeong et al., 462 

2015; Liu et al., 2017; Giraudo et al., 2017; Reis et al., 2018; De Liguoro et al., 2019; 463 

Chatterjee et al., 2019; Araujo et al., 2019). Marine models have not been extensively used 464 

in this sense, and only a few studies have focused on the impact of multigenerational 465 

exposure to chemical contaminants in marine organisms (Kwok et al., 2009; Sun et al., 2014, 466 

2018; Li et al., 2015; Xu et al., 2016; Krause et al., 2017; Chen et al., 2018; Po and Chiu, 467 

2018; Guyon et al., 2018). In this sense, copepods are the study species most used in these 468 

investigations. The results obtained from these studies have showed, for example, an 469 

increased tolerance of copepods to different contaminants such as oil, 4-methylbenzylidene 470 

camphor (ultraviolet filter), mercury, copper and tributyltin oxide (TBTO) (Krause et al., 471 

2017; Chen et al., 2018; Sun et al., 2014; Li et al., 2015; Xu et al., 2016). Plastic physiological 472 

adaptation, transgenerational genetic and/or epigenetic changes are some suggested 473 

explanations for the tolerance acquired by copepods after a multigenerational exposure 474 

(Kwok et al., 2009; Li et al., 2015; Xu et al., 2016; Chen et al., 2018).  475 

The increasing number of multigenerational studies is improving our understanding of 476 

marine organisms to buffer and adapt to future GC in marine ecosystems. However, due to 477 

the novelty of these studies, the majority of them only include one environmental stressor, 478 



21 

 

even though the future environmental oceanscape will harbor multiple GC drivers acting in 479 

combination (Donelson et al., 2018, c.f. Chakravarti et al. 2016, Gibbin et al. 2017a, 2017b; 480 

Jarrold et al. 2019, Thibault et al., 2020).  481 

To our knowledge, only a very limited number of publications have evaluated the 482 

multigenerational effects of chronic exposure to pollutants in combination with other 483 

environmental stressors (e.g. OA and OW) in aquatic environments (e.g. Fitzer et al., 2013; 484 

De Counter and Brander et al., 2017; Li et al., 2017; Wang et al., 2017). In some of these 485 

studies, authors indicated that the phenotypic plasticity could be responsible for the 486 

regulation of tolerance limits in response to the combined effects of multiple stressors. The 487 

endpoints measured in these cited studies are reporting in Table 1.  488 

Although phenotypic plasticity provides an important mechanism to cope with changes in 489 

environmental conditions in the short term (Fusco and Minelli, 2010), and may itself evolve 490 

by natural selection (Scheiner, 1993), there are limits and costs to plasticity responses (Auld 491 

et al., 2010; DeWitt, 1998). So, it is unlikely to provide a long-term adaptation solution for 492 

rapid GC in oceans (Gienapp et al., 2008). Nevertheless, plastic or adaptive responses cannot 493 

be established using multigenerational experiment alone. We require employing mutual 494 

transplants assays to collect signs of adaptation (see Fig. 2), as well as collect genetic 495 

evidence for the molecular evolution of laboratory populations kept under experimental 496 

conditions (DeWitt et al., 2016). Adaptation can also be determined by using a quantitative 497 

genetic approach, which entails crossing individuals from different treatments and pedigree 498 

experimental designs (Munday et al., 2013; Sunday et al., 2014).  499 

Another limitation of the use of multigenerational approach is represented by the difficulty 500 

in using this approach in long-lived organisms and species that are not easy to culture under 501 

laboratory conditions. The capacity for adaptation of long-generation long-lived species 502 
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under GC scenarios is garnering interest due to, in many cases, a considerable commercial 503 

interest for some of these species (such as lobsters, oysters and fish among others). In these 504 

cases, conducting multigenerational experiments is too great a challenge from a logistic (e.g. 505 

investment of a greater set of material, technical and human resources) and funding 506 

perspective. These experiments can last years, for species of economic and conservation 507 

importance, if at least two or three generations are to be characterized. Consequently, 508 

multigenerational experiments are most feasible using species with short generation time. In 509 

this sense, these experiments are best used as proof of concept rather than relevant tests for 510 

specific species. To this, it must be stated that a high risk in terms of scientific productivity 511 

(i.e. number of publications) is associated with this kind of approach, where the objectives 512 

are achieved (if ever!) only on the very long term.  513 

Despite these limitations, multigenerational studies provide an exceptional experimental tool 514 

by developing a more comprehensive understanding of the ensemble of carry over, 515 

cumulative, parental and selection effects. It is undeniable that this approach is an essential 516 

tool that merits integration with classic ecotoxicological studies, if we are to improve our 517 

predictions on how marine biodiversity and ecosystem functions will be affected by 518 

pollutants in combination with ongoing global changes.  519 

 520 

6. Environmental risk assessment (ERA) in a GC framework: Conclusions and 521 

perspectives 522 

In this paper we discuss the need to acquire a new perspective for the investigation of the 523 

effects of chemicals in a rapidly changing environmental oceanscape. This requires the 524 

development of a new comprehensive framework for the field of ecotoxicology, that fully 525 

integrates plasticity, TGP and rapid adaptation. Such a framework will be much better suited 526 
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to appropriately guide and support environmental managers in their decisions making 527 

processes, promote adaptive solutions, and foster the preservation of biodiversity levels and 528 

natural resources.   529 

It is important to recall that marine ecotoxicology plays a fundamental role in all components 530 

of ERA, even in the applied one (i.e. risk management), providing essential information about 531 

the potential impacts of stressors through toxicity tests (acute and chronic responses) as a 532 

main tool (Chapman, 2016). Controversially, within the framework of ERA, the role of these 533 

GC stressors in affecting the toxicity of chemical pollution is not considered yet. A 534 

fundamental shift in the focus and approach used in marine ecotoxicology is required in order 535 

to firmly advance our current understanding of the potential impacts caused by the interaction 536 

between pollution and other GC drivers, as well as the integration of GC evolutionary biology 537 

concepts and principles within the context of marine ecotoxicology. Furthermore, we are 538 

living in a new geological era of unprecedented environmental changes, which is driven by 539 

the exponential growth of the human population and human activities: the so called 540 

Anthropocene (Waters et al., 2016). This extends to the World’s oceans, and we need to face 541 

these ongoing and emerging concerns. Thus, ERA must not be merely constrained to 542 

chemicals (Filser, 2008; Landis et al., 2013).  543 

Marine ecotoxicology has a new challenge within the ERA framework and will need to 544 

evolve to provide useful information to empower stakeholders for making solid science-545 

informed adaptive decisions (Chapman et al., 2017). As we know, toxicity tests used 546 

currently in ERA have several gaps, which limit our ability to accurately predict the future 547 

of marine ecosystems. Integrating a multigenerational perspective within the current ERA 548 

framework will ensure a coherent evolution of ERA in these challenging times. The inclusion 549 

of multigenerational studies in ERA should provide environmental modelers, 550 
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conservationists and policy makers with new, significant and more balanced (i.e. less biased 551 

by over and under-estimations) information to help predict the risks of pollution in a rapidly 552 

changing ocean, and implement appropriate conservation guidelines and legislation to 553 

preserve natural resources and ecosystems. The complexity and diversity of the response 554 

across taxa, generations and stressors makes certainly difficult to operationalize these studies 555 

for all species, and make them applicable to all scenarios. Despite these limitations, for the 556 

implementation of multigenerational studies in ERA, two main standards should be 557 

considered: 1) the use of a number of fast generation (days to few weeks) species that can be 558 

easily cultured under global changes conditions in the laboratory, and thus used as model 559 

organisms (Krogh 1929); and 2) focus majorly on fitness measures (rather than only survival 560 

response) as endpoints. Both these aspects can be relatively easily implemented in the future 561 

ERA framework, making it more solid and reliable in providing longer-term implication of 562 

pollutant impacts within the context of global changes. Finally, in order to establish 563 

guidelines for the implementation of this new perspective within the national and 564 

international legal and management frameworks for environmental regulation of 565 

contaminants, we will require to create a discussion forum: designed specifically to rapidly 566 

identify forward solutions, and establish a sequence of stepping stones to enable the 567 

implementation of transgenerational plastic and rapid adaptation effects within ERA. This is 568 

paramount given the time-sensitive nature of the issues at stakes. 569 
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