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Abstract  19 

Low pH vent systems are ideal natural laboratories to study the consequences of 20 

long-term low pH exposure on marine species, and thus identify life-history traits 21 

associated with low pH tolerance. This knowledge can help to inform predictions on 22 

which types of species may be less vulnerable in future ocean acidification (OA) 23 

scenarios. Accordingly, we investigated how traits of calcifying polychaete species 24 

(Serpulidae, Spirorbinae) varied with pH using a functional trait analysis at two natural 25 

pH gradients around Castello Islet in Ischia, Italy. We first observed the distribution and 26 

abundance patterns of all calcifying polychaete epiphytes in the canopy of Posidonia 27 

oceanica seagrass across these gradients. We then used laboratory trials to compare 28 

fecundity, settlement success, and juvenile survival in the dominant species from a 29 

control (Pileolaria militaris Claparède, 1870) and a low pH site (Simplaria sp., 30 

(Serpulidae, Spirorbinae). We found significantly higher reproductive output, juvenile 31 

settlement rates, and juvenile survival in Simplaria sp. individuals from the low pH site, 32 

compared to P. militaris individuals from control pH sites, when observed in their 33 

respective in situ pH conditions. Our results suggest that tolerance to low pH may result, 34 

in part, from traits associated with successful reproduction and rapid settlement under 35 

low pH conditions. This finding implies that other species with similar life history traits 36 

may cope better in future OA scenarios, and should be targeted for future OA tolerance 37 

research. 38 

Keywords: Ocean Acidification, Calcifiers, Settlement Success, Fecundity, Early-life 39 

Survival, Serpulidae, Population Resilience 40 
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1 Introduction 41 

Anthropogenically-driven global changes may reduce or alter marine biodiversity 42 

(Raven et al. 2005, Widdicombe & Spicer 2008). One such change, ocean acidification 43 

(OA), occurs when surface seawater absorbs increasing atmospheric carbon dioxide 44 

(CO2), resulting in lowered pH and reduced availability of the carbonate ions many 45 

marine organisms require to build skeletal structures (IPCC, 2014). Despite confidence in 46 

forecasts of the chemical impacts from this process into the next century (Bopp et al. 47 

2013, IPCC 2014), uncertainty surrounds the corresponding biological and ecological 48 

impacts (Harley 2011, Gaylord et al. 2014). Determining sensitivities and tolerances to 49 

future OA conditions represents a necessary first step in improved understanding of how 50 

marine biodiversity will change in the next decades (Stockwell et al. 2003, van Oppen et 51 

al. 2015).  52 

Functional trait analyses (FTA) can help determine sensitivity or tolerance of 53 

different species to low pH conditions. These analyses link environmental gradient 54 

survey data (e.g. species abundance patterns), to specific phenotypic trait changes in two 55 

or more species along the same gradients (e.g. body size, reproductive habit, fecundity) 56 

(McGill et al. 2006). The assumption is that by comparing a specific trait among 57 

phylogenetically similar species (i.e. sister species, or species derived from a common 58 

ancestral node), differences can be attributed to specific environmental effects. In the 59 

context of future OA, application of specific functional trait analyses along natural pH 60 

gradients provides a relatively straightforward tool to evaluate which types of species will 61 

play pivotal roles in reorganizing the biodiversity landscape (McGill et al. 2006).  62 
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Abundance surveys performed in volcanic vent systems, which emit CO2, have 63 

recently proven useful in identifying traits associated with invertebrate species 64 

sensitivities and tolerances to future OA change (Lucey et al. 2015, Gambi et al. 2016). 65 

For example, marine invertebrates without a pelagic life stage (i.e. brooders or direct 66 

developers) are more abundant in low pH sections of CO2 vent gradients (Lucey et al. 67 

2015). Identification of a specific brooding oyster species with increased survivability in 68 

a low pH upwelling environment (Waldbusser et al. 2016) reinforced this pattern 69 

Unfortunately, natural system assessments generally lack trait data regarding fecundity, 70 

larval survival, settlement and recruitment (however, see Padilla-Gamino et al. (2016) for 71 

coralline algae assessment). This gap partly exists because field observations cannot 72 

provide detailed data involving a temporal element (e.g. settlement rates), or observations 73 

requiring thorough quantification of small-scale processes (e.g. egg production, 74 

fecundity). Collecting and observing such traits in a laboratory setting that mimics the 75 

individuals’ in situ conditions can help to fill this gap. Combining such laboratory trials 76 

with natural system-based assessments may offer one mechanism to strengthen analyses 77 

of some functional traits.  78 

The sensitivity of early developmental stages underscores the need to understand 79 

marine invertebrate life histories within future OA scenarios (Kurihara 2008, Albright 80 

2011, Byrne 2011, Crook et al. 2016). As such, our study aims to identify fecundity and 81 

early life history traits associated with low pH tolerance in marine invertebrates using 82 

calcifying serpulid polychaetes (Spirorbidae, Annelida) along two natural pH gradients. 83 

These gradients border the Castello Aragonese Islet off the coast of Ischia (Naples, Italy), 84 

and are a formed when volcanically derived CO2 gas bubbling up through the seafloor 85 
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mixes with seawater, decreasing the pH from an ambient value of ~8.17 to as low as 6.57 86 

(Tedesco 1996, Hall-Spencer et al. 2008, Kroeker et al. 2011, Garrard et al. 2014), well 87 

representing business-as-usual IPCC pH projections for 2100 (IPCC, 2014) . 88 

We selected calcareous polychaetes of the sub-family Spirorbinae (Annelida, 89 

Serpulidae), which inhabit Posidonia oceanic seagrass leaves as epiphytes along the 90 

Castello pH gradients, as our  study focus. Generally, Spirorbinae polychaetes encompass 91 

a diverse suite of life history traits that can vary among closely related species 92 

(Macdonald 2003). Their dual life stages, with both free-swimming larval phases and 93 

sessile adult stages (Kupriyanova et al. 2001, 2006), offer another beneficial attribute.  94 

First, we assess the distribution and abundance patterns of the calcifying polychaete 95 

assemblage on Posidonia oceanica leaves across two natural pH gradients bordering the 96 

Castello Islet: – one along the north (mean pH range 7.39 - 8.03), and one along the south 97 

(mean pH range 6.99 -8.03). Second, we use laboratory trials comparing two closely 98 

related species - one from a low pH site and the other from a control pH site - to 99 

investigate possible links between fecundity, juvenile survival, settlement traits, and low 100 

pH tolerance. Knowing which of these life history traits are associated with low pH 101 

tolerance will help inform our predictions on the types of species that may be less 102 

vulnerable in future ocean acidification scenarios  103 

2 Materials & Methods 104 

2.1 Field survey 105 
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The pH gradients used in this study occur along the north and south sides of the 106 

Castello Aragonese islet on Ischia, an island off the coast of Naples, Italy (Tyrrhenian 107 

Sea) (Fig. 1). To represent three pH levels, six sampling sites were chosen within 108 

Posidonia oceanica seagrass meadows, at depths of approximately 3 ± 0.5 m. Sites are 109 

referred to as N3, N2, NC and S3, S2, SC, where “3” represents the extreme-low pH, “2” 110 

the low pH conditions, and “C” the control pH. The “N” and “S” represent north and 111 

south gradients (Fig. 1). Sites were chosen to be were comparable in depth and Posidonia 112 

cover (Donnarumma et al. 2014). The site names are listed with their corresponding 113 

carbonate seawater parameters in Table 1. Seawater parameters represent a synthesis of 114 

all available data in the last six years to convey the most comprehensive and realistic 115 

time-series data for these study sites (Ricevuto et al. 2014). For additional water 116 

parameters and GPS coordinates, see Supplementary Material: Site Details. 117 

To determine which calcifying polychaete species settle on Posidonia leaves in 118 

low pH environments, and how their abundance and distribution varies along the pH 119 

gradients, sampling by SCUBA diving was performed on September 29th - 30th, 2014. 120 

Four quadrats (replicates) of 40 x 40 cm were haphazardly placed at least 2 m apart on 121 

the seagrass canopy in each pH site. Within each quadrat, leaves of ten Posidonia shoots 122 

were randomly cut at the base of the rhizome and put in separate plastic bags. In the two 123 

extreme low pH sites (N3 and S3), initial visual inspection showed a highly reduced 124 

number of worms on leaves. Consequently, the number of sampled shoots was increased 125 

by cutting only the external leaf (oldest leaf) of 30 shoots within each of the four quadrats 126 

in both N3 and S3. This provided a more reliable estimate of worm abundance and helped 127 

preserve the seagrass from impact due to sampling. Samples were transferred in bags 128 
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containing seawater to the Villa Dohrn-Benthic Ecology Center of Ischia (Stazione 129 

Zoologica Anton Dohrn) within 1 h of sampling, and preserved in 4 % neutralized 130 

formalin for 24 h. They were then rinsed with fresh water and transferred into 70 % 131 

EtOH for long-term preservation.  132 

The number of calcifying polychaetes on the Posidonia leaves of each shoot was 133 

determined by viewing each leaf from each replicate/quadrat under a dissecting 134 

microscope (AZ100, Nikon, Milan, Italy; magnification 1- 50x). Species were identified 135 

from their tube orientation, operculum and chaetae morphology. Due to the loss of some 136 

opercula, some specimens remained unidentified. These were included in the counts by 137 

determining the ratio between the number of specimens identified for a given species and 138 

the total number of specimens found at each site. This ratio was used to calculate the total 139 

number of each species for each site replicate (Supplementary Materials: Table S.1). 140 

The average number of polychaetes at each site accounting for differences in the 141 

available settlement area was calculated by multiplying the shoot density to the 142 

settlement area (percentage of Posidonia shoots colonized by spirorbids * average 143 

number of spirorbids per shoot), with shoot density data from Donnarumma et al. (2014). 144 

Only leaves longer than 5 cm were considered. In the extreme low pH sites (S3 and N3), 145 

where sampling included only external leaves, the estimation followed the same 146 

procedure.  147 

2.2 Laboratory trials 148 

One day after the field survey, live individuals were collected for the laboratory 149 

trial by SCUBA diving. This entailed cutting Posidonia leaves with visibly attached 150 
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polychaete tubes from the S2 (low pH) and NC (control pH) sites. Leaves were placed in 151 

fabric bags, keeping the individuals from both sites separated and in their original 152 

seawater conditions. 153 

All material was transported to the ENEA Laboratory in La Spezia, Italy where 154 

specimens were sorted, identified and prepared for the trial (Supplementary Material: 155 

Transport Details). Specimens were held at the pH conditions from their respective field 156 

sites (control or low pH) during the sorting process (2 – 4 d). For the trial, we identified 157 

18 Pileolaria militaris adults from the control pH site (NC), and 12 Simplaria sp. adults 158 

from the low pH site (S2).  159 

These sites were chosen because they have the greatest average pH difference 160 

(Table 1), and specific species were chosen because the low pH site’s sample was 161 

dominated by Simplaria sp. and the control pH site’s sample was dominated by P. 162 

militaris. Additionally, the lack of Simplaria sp. individuals found in the control pH sites, 163 

and of Pileolaria militaris individuals found in the low pH sites, precluded a reciprocal 164 

laboratory transplant experiment. This in itself demonstrates that different species have 165 

different levels of sensitivity to low pH conditions, and thus the comparison in life 166 

history traits between the two selected species represents the best avenue to identify traits 167 

that help defining species’ successful colonization in low pH. As in most classical 168 

functional trait analyses, this between-species comparison is able to capture valuable 169 

information. 170 

At the start of the trial, each adult was placed in a separate Petri dish 171 

preconditioned with a biofilm from a 2 d non-filtered seawater soak and filled with 3 mL 172 
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of pH-conditioned filtered seawater (1 adult per Petri dish). The pH in the dishes was set 173 

at 7.61 for Simplaria sp. adults, representing the average value found in the S2 field site 174 

considering time-series data (Table 1). Similarly, dishes with P. militaris adults were 175 

maintained at the control pH value, 8.1. All other seawater parameters matched the field 176 

values for both species (Table 2). In this setup, eight covered aquaria were filled with 20 177 

mL of seawater. This water served as a bath for the uncovered Petri dishes (6-8 dishes 178 

per aquaria). Half of the aquaria were maintained at the lowered pH level by bubbling 179 

enriched (elevated pCO2 air) into the seawater, while the other half was maintained at the 180 

control pH level by bubbling normal air into the seawater. The pH inside each Petri dish 181 

was attained through surface CO2 diffusion within the covered aquaria (Gattuso 2011). 182 

The pCO2 going to these aquaria was measured continuously throughout the exposure 183 

period using a CO2 gas analyzer (Li-820, Li-Cor Biosciences, Lincoln, NE, USA). All 184 

aquaria were held in a thermal water bath that maintained stable thermal conditions. Petri 185 

dishes were randomly moved between the aquaria every two days. 186 

Seawater pH, temperature, and salinity were measured in each Petri dish daily 187 

with an integrated pH and temperature meter (SG2, Italy), and refractomer (V2, TMC, 188 

São Julião do Tojal, Portugal). The pH meter was calibrated daily with pH buffer 189 

standards (4.01, 7.0, 9.21; Mettler-Toledo, Leicester, UK). Seawater samples (250 mL) 190 

were taken at the beginning and end of the trial from the stock seawater prepared for each 191 

treatment. Samples were fixed with HgCl2 (0.02 %) to eliminate microbial activity, stored 192 

in borosilicate flasks (250 mL), and maintained in dark, dry conditions until total 193 

alkalinity (AT) was determined using gran titration method (Dickson et al. 2007). 194 

Carbonate-system parameters of pCO2 (µatm), total carbon dioxide (TCO2, mol kg-1), 195 
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bicarbonate concentration (HCO3
- mol kg-1), calcite saturation (Ωca), and aragonite 196 

saturation (Ωara) were calculated from AT, pHT (total scale), temperature and salinity 197 

using the package SeaCarb v.2.4.8 in software R (Lavigne & Gattuso 2013). Water-198 

chemistry parameters for each dish during the 14 d experimental phase, as well as 199 

discreet field data from each pH site are presented in Table 2.  200 

Seawater in each Petri dish was changed every other day by removing water with 201 

a syringe and replacing it with new seawater. This water was collected from La Spezia 202 

bay (La Spezia, Italy), and cleaned with a 0.1µm filter and UV sterilization system 203 

(V2ecton 600, TMC, São Julião do Tojal, Portugal) for 5 d before being transferred to 204 

sterile 2 L flasks. One flask was prepared for each treatment and placed in the 205 

temperature bath described above with bubbling elevated pCO2 air, or normal air, 206 

depending on the treatment. Additionally, a diet of rotifers, Artemia sp. and microalgae 207 

was added to seawater before each water change at 3 mL feed per 300 L seawater 208 

(Gamma Nutraplus Reef Feed, TMC, São Julião do Tojal, Portugal). Petri dishes were 209 

mixed three times per day by gently tilting aquaria to promote feeding. The density of 210 

worms in each Petri dish was purposefully low to avoid potential indirect effects caused 211 

by animal respiration (approx. < 0.092 mg-1). 212 

Under these laboratory conditions, all adults were monitored once a day with a 213 

light microscope (AZ100, Nikon; magnification ranges of 25x up to 50x) for the presence 214 

of embryos in the opercular brooding chamber. After adults released their first brood, 215 

both adults and offspring were monitored daily for the following 14 d. The number of 216 

offspring from each parent (brood size) was counted after the first day of brood release. 217 

The number of settled larvae was counted daily, along with any deaths or additional 218 
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broods. The parent tubes were photographed with a digital camera (Nikon Sight DS-U1, 219 

Nikon, Milan, Italy) mounted on a light microscope (AZ100, Nikon), and tested as a trait 220 

covariate to account for any bias between parental size and offspring traits (i.e. brood size, 221 

mortality, brood survival). Photographs were analyzed with ImageJ software (Rasband 222 

WS, US National Institutes of Health, Bethesda, MD, USA) to obtain tube area (mm2) 223 

(Abràmoff et al. 2004). 224 

2.3 Data analysis 225 

 226 

2.3.1 Field survey data 227 

Two data sets generated from the field survey were analyzed: (a) the abundance 228 

of all calcifying polychaete species along the north and south pH gradients (distribution); 229 

(b) the abundance of the two dominant species, Simplaria sp. and P. militaris adults 230 

along the pH gradients. Initial data exploration using Cleveland dot- and boxplots 231 

revealed no outliers in either dataset. Conditional boxplots revealed heteroscedasticity of 232 

the variances among the pH sites for both datasets, and histograms indicated violation of 233 

normality (Züur et al. 2010a). Non-linear patterns within the species-level dataset also 234 

existed (Züur et al. 2010a). As a consequence, a Welch’s ANOVA with a Games – 235 

Howell post-hoc test was used for both datasets to assess how the number of calcifying 236 

polychaetes varied along pH gradient, with ‘gradient side’ (north/south) and ‘pH site’ as 237 

fixed factors. This test is robust to non-parametric distribution of count data and 238 

heteroscedasticity of the variances.  239 
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Additionally, dataset (b) was analyzed by employing generalized additive models 240 

(GAMs) (Wood, 2006, 2011, 2014; Züur, 2010b) to describe the abundance of each 241 

species with respect to nominal ‘pH’ and to compare the abundance of each species along 242 

both gradient ‘sides’, GAMs accounted for the non-linear patterns in both the Simplaria 243 

sp. and P. militaris datasets, and were built using the mgcv (Wood, 2011) and nlme 244 

(Pinheiro et al. 2015) packages in R. For both species, gradient ‘side’ (factor: north or 245 

south) and ‘pH’ (fitted as a smoother) were set as the explanatory variables.  Nominal 246 

mean water pH for each gradient side and site was based on the one-month average of 247 

September data from (Kroeker et al. 2011) to accurately represent seasonal pH values 248 

during the survey. The appropriate degrees of freedom of the smoothers were selected 249 

automatically using cross validation (Wood 2006, 2011). For Simplaria sp. only, the 250 

interaction between gradient side and pH was included using the ‘by’ command in the 251 

mgcv package (Wood, 2011). Both models were optimized by initially looking for the 252 

optimal random structure, followed by the optimal fixed structure (Züur et al. 2007). 253 

Akaike information criteria was used to compare models and residual plots were used to 254 

assess the mean-variance relationships; models for both species indicated no violation of 255 

the assumption for homogeneity of the variances. Over-dispersion was also calculated for 256 

each model (sum of Pearson residuals2 / residual d.f.). High over-dispersion, particularly 257 

in Simplaria sp., required the use of negative binomial distribution with a log link 258 

(Pinheiro et al. 2015; Züur 2010b; Züur et al. 2007). The optimization function of the 259 

models (k parameter) was adjusted for this study’s specific dataset at six. All statements 260 

about abundance change are based on the significance of the main effect gradient side, 261 

and not on the interaction between gradient side and pH. 262 
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2.3.2 Laboratory trials  263 

  In order to assess how fecundity and early life history traits differed in response to 264 

differing pH conditions, we compared responses of the low pH– originating Simplaria sp. 265 

adults (from, and dominant in S2) – under low pH conditions, to the control pH–  266 

originating P. militaris adults (from, and dominant in NC) – under control pH conditions 267 

with one-way ANOVA tests. Traits analyzed included: brood size of each parent; time of 268 

larval release to settlement (d); and percentage brood mortality per parent on d 7 and d 14. 269 

Data were tested for normality of distribution and homogeneity of variance using 270 

Cleveland dot- and boxplots. Boxplots indicated homogeneity of the variances among the 271 

pH species groups, and histograms indicated no violation of normality of distribution 272 

(Züur et al. 2010a). 273 

All statistical analyses were performed by using the statistical software R (v.3.1.3; R 274 

Core Team 2015). 275 

3 Results 276 

3.1 Field survey 277 

3.1.1 Species identity 278 

All of the taxa found belonged to the Spirorbinae sub-family, within the 279 

Serpulidae family. The four main species were Pileolaria militaris Claparde, 1870, 280 

Simplaria sp., Janua heterostropha (Montagu, 1803) (= J. (Dexiospira) pagenstecheri), 281 

and Neodexiospira pseudocorrugata (Bush, 1905). A total of forty-eight undetermined 282 

Serpulinae were also encountered.  283 
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The taxonomy of the Simplaria sp. did not exactly match known records, but our 284 

primary prediction is that it is a putatively novel morphotype of Simplaria 285 

pseudomilitaris (Thiriot-Quievreux, 1965) – having more abundant, longer, and more 286 

pronounced distally projecting calcareous spines covering its operculum plate. Without 287 

further taxonomic analysis we reservedly designate these individuals as Simplaria sp.; 288 

and this inconsistency is further discussed in the Supplementary Materials: Taxonomy 289 

Details. 290 

3.1.2 Species abundance and distribution 291 

Total polychaete abundances on the Posidonia leaves along the pH gradient from 292 

the Castello CO2 vents ranged from 0 to 224 individuals per Posidonia shoot. There was 293 

a decrease in the mean abundance from the control pH sites (SC and NC) to the extreme 294 

low pH sites (S3 and N3) along both the north and the south gradients, with a decline 295 

from 341 to 13 individuals in the south (SC to S3), and from 1,183 to 14 individuals in 296 

the north (NC to N3) (F5, 92.97  = 75.11, p < 0.001, Fig. 2A). The means in both the 297 

northern and southern extreme-low pH sites (N3 and S3) were comparable (p > 0.05, Fig. 298 

2A). However, overall mean abundance was three times lower in the southern gradient 299 

compared to the north (p < 0.05, Fig. 2A). Additionally, in the north, there was a strong 300 

linear relationship between abundance and pH conditions. This differed from the south 301 

gradient, as mean abundance in the low pH site was highest (S2: 144 individuals), 302 

compared to the control pH site (SC: 124 individuals; p > 0.05, Fig. 2A). Higher shoot 303 

densities in the low pH sites compared to the control pH sites (Donnarumma et al. 2014) 304 

did not change the overall abundance patterns observed on both the north and south 305 

gradients (Fig. 3). For example, polychaete densities remained very scarce in the extreme 306 
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low pH sites despite a mean 1,000 shoots per m2 in S3 compared to the mean 467 shoots 307 

per m2 in SC, and 719 to 380 shoots per m2 in N3 vs. NC.  308 

The results also indicate that the two dominant species are Simplaria sp. and P. 309 

militaris within all the sites. These two species are also closely related to each other 310 

taxonomically, compared to the other species identified. This prompted separate analyses 311 

of the distributions of both Simplaria sp. and P. militaris. The results show that the 312 

distribution pattern seen along the southern gradient of the total species analysis is due to 313 

Simplaria sp. (Fig. 2B). Furthermore, in the species-specific analysis, the total abundance 314 

along the pH sites ranged from 0 to 498 individuals in P. militaris and from 48 to 532 315 

individuals in Simplaria sp. While the overall number of individuals for both species was 316 

comparable, their distribution differed. As in the total species analysis, abundances 317 

significantly declined with decreasing pH when considering all sample sites (P. militaris: 318 

F 4, 11 = 9.37, p = 0.006, Simplaria sp.:  F 5,78 = 24.27, p < 0.001 (Fig. 2B & 2C). The 319 

mean abundance of P. militaris was highest in the north compared to the south gradient 320 

(52 vs. 7, respectively), and decreased from the control pH to extreme low pH in the 321 

north (NC to N3), and low to extreme low in the south (S2 to S3). Simplaria sp. mean 322 

abundance was higher in the south than in the north gradient. The Simplaria sp. 323 

abundance in the low pH south site (S2) was not significantly different to the mean 324 

abundance in the south control pH site (SC), but was different in the north between the 325 

NC control and N3 extreme low pH site. Additionally, Simplaria sp. was the only 326 

spirorbid species found in the site with the lowest mean pH of the Castello vent system 327 

(S3 pH: 6.99 ± 0.34) (Hoffmann et al. 2011).  328 
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Comparisons of the smoothers (non-parametric curves) generated by the additive 329 

mixed models for the two gradients of both species confirmed that abundance decreases 330 

in both species with decreasing nominal pH across each gradient (p < 0.001 for both P. 331 

militaris and Simplaria sp., Fig. 4). For P. militaris, there were significant declines in 332 

abundance with decreasing pH along both north and south gradients, however the 333 

northern gradient had significantly more individuals compared to the southern gradient. 334 

In contrast, Simplaria sp. abundances in the north and south were not significantly 335 

different when pH values were greater than 7.9 within the gradient (Fig. 4B).  336 

3.1.3 Laboratory trials 337 

The laboratory trials revealed that life history trait values vary significantly along 338 

the pH gradients. The average number of offspring per brood from low pH– originating 339 

Simplaria sp. parents was significantly higher than from control pH– originating P. 340 

militaris parents: means 8.08 (± 1.54) vs. 3.61 (± 0.44)  (F 1, 28 = 10.80, p = 0.003, Fig. 5). 341 

Also, settlement success was significantly higher in Simplaria sp. compared to P. 342 

militaris: 86.5 % (± 6.8) compared to 13.4 % (± 6.3), respectively (F 1, 28 = 58.80, p < 343 

0.001, Fig. 5). Additionally, all offspring from the Simplaria sp. parents metamorphosed 344 

and settled within 1 h in low pH seawater, whereas less than 13 % of the offspring from P. 345 

militaris parents settled in the first 24 h in control conditions.  346 

Juvenile mortality rates 7 d after the first brood release was 4.2 % (± 2.9) in 347 

Simplaria sp. and 48.8 % (± 8.6) in P. militaris  (F 1, 28  = 16.77, p < 0.001, Fig. 5). Net 348 

survival after 14 d, including additional offspring from subsequent broods, was 349 

significantly higher (6.3 times) in Simplaria sp. offspring with respect to P. militaris 350 

offspring: means 9.5 (± 1.7) vs. 1.5 (± 0.4) offspring per parent, respectively (F 1, 28 = 351 
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26.90, p < 0.001, Fig. 5). Furthermore, between day 7 and day 14, 10 out of 12 parents 352 

released a second brood in the Simplaria sp. group, but only 4 out of 18 parents from the 353 

P. militaris group produced a second brood. No influence of parental tube size was found 354 

on brood sizes (p ≥ 0.05), and no parental mortality occurred during the 14 d trial. 355 

4 Discussion 356 

This study aimed to identify specific life history traits that offer species potential 357 

advantages to tolerating future OA conditions. We identified two primary species along 358 

the Castello pH gradients with a close phylogenetic relationship, Pileolaria militaris and 359 

Simplaria sp., and found that the higher abundances of Simplaria sp. in low pH (S2) were 360 

associated with the ability to produce more viable offspring able to quickly 361 

metamorphose and settle in low pH conditions, compared to that of its close relative 362 

dominant at a control pH site (NC), P. militaris, observed under control pH conditions. 363 

Below we discuss potential physiological and ecological explanations for differences in 364 

traits underling species’ sensitivity to low pH. 365 

Physiology considerations 366 

The most noticeable finding was that rapid offspring development accompanied 367 

OA tolerance, as demonstrated by the production of larvae that metamorphose in minutes 368 

in the low pH– originating Simplaria sp. under low pH conditions, compared to the 369 

multiple days required for control pH–originating P. militaris individuals in control 370 

conditions. This is noteworthy because the challenges of calcification associated with 371 

metamorphosis and initial juvenile tube growth in many marine invertebrates exposed to 372 

OA conditions have been well documented, with demonstrated altered metamorphosis, 373 
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slowed juvenile growth, weakened juveniles’ tubes, and tube dissolution under pH levels 374 

comparable to those used here (Dupont et al. 2009, Byrne 2011, Lane et al. 2012). In 375 

contrast, our results indicate that the low pH–originating Simplaria sp. appears to have 376 

overcome these challenges. We hypothesize that this may be, in part, due to specialized 377 

larval glands that are able to expedite the secretion of a primary tube, resulting in 378 

successful metamorphosis. These specialized larval glands are commonly found in 379 

Serpulidae species with lecithotrophic (non-feeding) larvae (Kupriyanova et al. 2001), 380 

but while both of the species here have primary larval glands, there were noticeable 381 

physiological differences them. The Simplaria sp. embryos and larvae had highly defined, 382 

large glands compared to P. militaris (see Fig. 6; white spots in the Simplaria sp. 383 

embryos). Moreover, in Simplaria spp. the contents of the primary shell gland are 384 

extruded via the anus and the calcareous secretion is molded by the movements of the 385 

larva into a tube capable of housing the entire settled larva in less than 5 min (Knight-386 

Jones, 1978) (Nott 1973, Potswald 1978, Beckwitt 1980, Qian 1999). 387 

Another interesting finding was the increased adult fecundity of low pH–388 

originating Simplaria sp., compared to control pH–originating P. militaris. This was 389 

despite no significant difference in opercular brood chamber size between the two species 390 

(chamber size is directly proportional to the adult’s overall size, and thus the number of 391 

offspring produced per brood) (Kupriyanova et al. 2001). In general, both species 392 

fertilize and incubate their eggs and embryos similarly: in a single chamber that provides 393 

aeration and physical protection from the outside environment (Thorp 1975). When ready, 394 

competent larvae exit these chambers through a pore at its base (Macdonald 2003). 395 

Explaining the fecundity differences may therefore involve testing for improved internal 396 
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fertilization, and/or accelerated embryo incubation in the low pH-originating Simplaria 397 

sp., comparatively (Chaparro et al. 2008, Segura et al. 2010).  398 

The fecundity differences may also be an outcome of plasticity from multi-399 

generational exposure in the low pH–originating Simplaria sp. population (Rodríguez-400 

Romero et al. 2015, Chakravarti et al. 2016). The possibility that plasticity may be the 401 

coping mechanism for species dealing with rapid changes has recently been revitalized, 402 

yet evidence of plasticity’s role in promoting persistence is not consistent (Merilä 2015, 403 

Calosi et al. 2016). For example, a field-based reciprocal transplant experiment using 404 

Simplaria sp. collected from the same low pH site (S2) found that plasticity was not 405 

attributed to fecunditiy differences (Lucey et al. 2016).  They also presented 406 

contradictory evidence that the low-pH originating Simplaria sp. were able to reproduce 407 

multiple times, in comparison to a population of control pH–originating Simplaria sp, yet 408 

inadequate sample sizes preventing statistical confirmation (Lucey et al. 2016). This 409 

alludes to the possibility that higher fecundity could be the consequence of modulating 410 

(i.e. plasticity) the ‘number of broods over time.’  411 

Rapid metamorphosis and increased fecundity was also coupled with lower 412 

offspring mortality during the first two weeks of offspring life in the low pH–originating 413 

Simplaria sp. group. This suggests that these Simplaria sp. will have a higher likelihood 414 

of recruitment success and overall population persistence, compared to the control pH–415 

originating P. militaris group (Hunt & Scheibling 1997). The field survey supports this 416 

idea: Simplaria sp. adults with embryos were found at every site along the gradient 417 

regardless of pH.  418 
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The overall decline of Simplaria sp. individuals at extreme low pH alludes to a 419 

pH threshold. This in partial agreement with Saderne and Wahl, (2013), where growth 420 

rates and recruitment of spirorbid Spirorbis spirorbis individuals at extreme low pH/ high 421 

pCO2 levels (3150 ± 446 μatm) were significantly reduced, whereas at more realistic pH 422 

levels for end of the century projections, individuals did not show any adverse effects 423 

(Saderne & Wahl 2013). These pH values closely correspond to the low (S2) and extreme 424 

low (S3) pH values in this study and corroborate the idea that each species has specific 425 

pH ‘tipping’ points, as demonstrated in the larval mussels’ development, Mytilus edulis 426 

(Ventura et al. 2016). This theory that physiological tipping points may limit populations’ 427 

pH tolerance complements that of Lucey et al. (2016), where abnormally low pH values 428 

at the low pH site (S2) may have confounded a potential local adaptation signature.  429 

Ecological considerations 430 

 Predation may also be playing a role in the distribution of spirorbid species 431 

around the CO2 vents, and their pH tolerance traits. Increases in spirorbids predation are 432 

likely as there have been documented increases in amphipod and copepod abundance in 433 

the low pH sites, known spirorbid predators (Knight-Jones et al. 1975, Kupriyanova et al. 434 

2001 p.60). This helps explain the decrease in spirorbids at the extreme low pH sites. 435 

Furthermore, it suggests a potential correlation between increased predation and the novel 436 

opercular spine morphology observed in the low pH– originating Simplaria sp., where 437 

rows of long, slender calcareous spines project from the top of the operculum and guard 438 

the tube opening. Further investigation is necessary to prove this theory (e.g. Harris, 1968, 439 

Knight-Jones et al. 1974, Bianchi 1981; also see Supplemental Materials: Taxonomy 440 

Details). There are also indirect predation threats that may be influencing the spirorbid 441 
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distributions: the very prominent reduction in overall Posidonia canopy height at the low 442 

pH sites as a consequence of intense grazing from the fish Sarpa salpa (Deudero et al. 443 

2008), compared to lower density long-leaved shoots in the control pH sites 444 

(Donnarumma et al. 2014, Scartazza et al. 2017). The increased grazing pressure under 445 

highly acidified conditions could explain the decreased spirorbid abundance, as fish 446 

grazing removes epiphytic invertebrates (Deudero et al. 2008). Additionally, this 447 

variation in the Posidonia canopy may indirectly be related to the observed low pH– 448 

originating Simplaria sp.’s fast juvenile growth. As Spirorbinae are small filter feeders 449 

that spend the majority of their lives inside tubes permanently attached to a substrate 450 

(Gee 1964, Potswald 1968, Tanur et al. 2010), the organisms in low pH/intense grazing 451 

may be rapidly maturing as a response to host plant phenology, a feature that has been 452 

highlighted for other Posidonia epiphytes (Piazzi et al. 2015).  453 

In addition to predation, it is possible that there are biological interactions 454 

between the two species, Simplaria sp. and P. militaris, which are responsible for their 455 

distributions. They may be competing with each other for available space or food, or may 456 

have different water movement requirements (Beckwitt 1980; Terlizzi et al. 2000). These 457 

factors may be contributing to the relative success of P. militaris in the north, compared 458 

to its limited southern abundance. The northern sites are more exposed to open water and 459 

dominant winds (from north and north-west), whereas the southern sites are within a 460 

small bay with less water movement (Rodolfo-Metalpa et al. 2010). This could mean that 461 

Simplaria sp. populations are better suited to live in more sheltered conditions, or that 462 

they are able to fill a niche where conditions are less stable due to pH. A parallel example 463 

is provided by the differential occurrence of two non-calcifying polychaete sister species, 464 
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Platynereis dumerilii and Platynereis massiliensis, around the Ischia CO2 vents, where 465 

the ecological exclusion of P. dumerilii in the high CO2 areas appears to be explained by 466 

differences in physiological and life history traits (Lucey et al. 2015). For the spirorbids, 467 

a more complete trait analysis able to encompass the full relevant trait space (i.e. testing 468 

population samples of each species from all sites and a broader array of traits) would be 469 

useful to elucidate which factors are most relevant to explain OA resistance phenotypes 470 

(Laughlin & Messier, 2015). 471 

5 Conclusions 472 

This study aimed to identify if and how fecundity, settlement, and juvenile 473 

survival were associated with low pH in order to better understand which life-history 474 

traits may have an advantage in future marine environments. We found that traits 475 

associated with low pH tolerance included increased reproductive output, rapid larval 476 

settlement, and high juvenile survival rates. By association, we infer that species with 477 

similar life history traits may be better suited to live in future OA inflicted environments, 478 

potentially driving future biodiversity patterns. Overall, this study shows how it is 479 

possible to guide future research and better our predictive ability of future marine life 480 

under increasing ocean acidification by incorporating aspects of community ecology with 481 

trait biology. 482 
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7 Figure Captions 706 

Figure 1- Map of sampling sites (black dots) along the two pH gradients of the Castello 707 

Aragonese on Ischia Island (Naples, Italy), with southern and northern sites depicted by 708 

‘S’ and ‘N’, respectively, and with ‘C’ indicating control pH, ‘2’ low pH and ‘3’ extreme 709 

low pH. Corresponding seawater carbonate data for each site is in Table 1 and all sites 710 

are in 3 m Posidonia seagrass meadows. 711 

 712 

Figure 2 - Mean abundance of spirorbids sampled from south sites (SC, S2, S3) and north 713 

sites (NC, N1, N2), colored in red and gray respectively, and with ‘C’ indicating control 714 

pH, ‘2’ low pH and ‘3’ extreme low pH: (A) Total spirorbid abundance (all species 715 

combined) (B) Simplaria sp. abundance and (C) P. militaris abundance, with non-716 

matching lowercase letters indicating significant differences among sites and S.E. as error 717 

bars. 718 

Figure 3 – Total abundance of all spirorbids as they are related to Posidonia shoot 719 

density: mean number of spirorbids calculated as total species sampled per replicate plot 720 

area, multiplied by shoot density (m2), with S.D. as error bars.  721 

Figure 4 - Trends in spirorbid species mean abundance (A) P. militaris and (B) Simplaria 722 

sp. Black dots: mean number of individuals found in each replicate along the northern 723 

gradient. Red dots: mean number of individuals found in each replicate along the 724 

southern gradient. Black lines are the smoothers for each gradient side; red and gray 725 

bands along smoother lines are 95 % CIs. 726 
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Figure 5- Fecundity traits and offspring survival from Simplaria sp. and P. militaris 727 

parents cultured in low and control pH conditions respectively, to match their field-728 

originating pH values (7.6 and 8.1); purple and blue bars respectively. (A) Brood size is 729 

expressed as the mean number of offspring in the first brood release, (B) mortality as a 730 

percent of the beginning brood dead 7 d after initial brood release, and (C) settlement 731 

success as the percent of metamorphosed living offspring from each brood 1 day after 732 

brood release, (D) total survival as the mean number of offspring living 14 d after the 733 

initial brood release, plus any additional offspring released during the 14 d of exposure. 734 

Error bars show S.E.; each trait had significantly different means (p < 0.05) between 735 

species groups. 736 

Figure 6 - (A) Simplaria sp. operculum containing embryos: embryonic calcified glands 737 

are indicated by white arrows (scale 0.5 mm), (B) a competent trochophore larvae from a 738 

Simplaria sp. mother (scale 0.1 mm)  739 
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8 Figures (low definition) 740 

 741 

Figure 1  742 
 743 
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Figure 2  745 
 746 
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Figure 3  748 
 749 
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Figure 4  751 
 752 



 39 

 753 

 754 
Figure 5  755 
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Figure 6   757 
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9 Tables 758 
 759 
Table 1 Seawater physico-chemical parameters from each pH site (mean ± SD); averaged 760 
from a published compilation of six time-series datasets between 2008-2015 in Ricevuto 761 
et al. (2014). 762 
 763 

Station mean pH pCO2(µatm) Ω aragonite  Ω calcite AT (equival kg-1) 

Extreme low, 
S3 

6.99 ± 0.34 8830.87 ± 
1942.55 

0.75 ± 0.50 0.99 ± 0.65 2499.83 ± 23.99 

Low, S2 7.61 ± 0.26 2031.19 ± 
1,411.65 

1.49 ± 0.61 2.52 ± 0.95 2523.68 ± 9.66 

Control, SC 8.03 ± 0.08 455.61 ± 
94.01 

3.36 ± 0.34 5.17 ± 0.47 2499.35 ± 6.94 

Extreme low, 
N3  

7.39 ± 0.25 4302.71 ± 
5769.22 

1.41 ± 0.71 1.94 ± 0.96 2549.45 ± 25.26 

Low, N2 7.65 ± 0.29 2639.82 ± 
7993.29 

2.07 ± 0.70 2.91 ± 1.23 2514.49 ± 7.76 

Control, NC 8.03 ± 0.05 468.21 ± 
63.85 

3.41 ± 0.20 5.20 ± 0.28 2499.67 ± 4.68 

  764 
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Table 2. Seawater physico-chemical parameters (a) at the field collection sites, and (b) 765 
corresponding laboratory trial pH treatments (mean + SD), measured (in bold) or 766 
calculated using the SeaCarb program* over the total trial period for each habitat, either 767 
daily (d) or monthly (m). pH is reported using the total scale.  768 
  Control pH (SC) Low pH (S2) 
(a) Field site data  
pHT  8.04 ± 0.09 7.84 ± 0.24 
Temperature 
(°C)  23.4 ± 0.7 23.8 ± 0.7 

Salinity  37.9 ± 0.3 37.9 ± 0.3 
AT (µmol kg-1) 2563 ± 3 2560 ± 7 
pCO2 (µatm) 567 ± 100 1075 ± 943 
CT (mol kg-1) 0.002 ± 1.02E-04 0.002 ± 1.72E-04 
Ω calcite 4.75 ± 0.53 3.52 ± 1.11 
Ω aragonite 3.13 ± 0.35 2.32 ± 0.73 
(b) Laboratory 
trials  

   

pHT (days) 8.08 ± 0.47 7.54 ± 0.53 
Temperature 
(°C) (d) 22.31 ± 0.57 22.17 ± 0.83 

Salinity (d) 36.38 ± 2.11  36.67 ± 2.87 
AT (µmol kg-1) (m) 2350.71 ± 53.70 2291.53 ± 122.55 

[CO2] (mol kg-1) 9.65E-06 ± 3.10E-06 2.11E-05 ± 6.62E-
06 

pCO2 (µatm) 327.88 ± 108.21 721.73 ± 228.33 
[HCO3

−] (mol kg-1) 0.002 ± 8.38E-05 0.002  ± 1.57E-04 

[CO3
2−] (mol kg-1) 2.49E-04 ± 4.75E-05 1.42E-04 ± 2.55E-

05 
CT (mol kg-1) 0.002 ± 4.601E-05 0.002 ± 1.47E-04 
Ω calcite 5.82 ± 1.07 3.33 ± 0.60 
Ω aragonite 3.82 ± 0.70 2.19 ± 0.39 

* Note: Lavigne & Gattuso 2013.  769 
 770 
  771 
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10 Supplementary materials 772 
 773 

Site Details:  774 

The north is relatively exposed to the dominant northwestern winds, and the south 775 

is a bay-protected area. The venting area in the south is approximately 3000 m2 and gases 776 

are emitted at a rate of 1.4 x 106 L d-1. In the north, the area is only 2000 m2 and the 777 

venting rate is slightly decreased at 0.7 x 106 L d-1 (Hall-Spencer et al. 2008). Specific 778 

quantities of the emitted gases are comprised of the following:  90-95 % CO2, 3-6 % N2, 779 

0.6-0.8 % O2, 0.2 - 0.08 % CH4, and 0.08-0.1 % Ar. No sulfur is present. Although 780 

neither seasonal, tidal nor diurnal variation in gas flows have been recorded, the pH does 781 

not stay static due to variable bubbling intensity, and shows quite variable values in 782 

relatively short, hourly time frames (Kroeker et al. 2011). 783 

Site name and description: Site GPS Coordinates: 

SC: South Control 40.729467, 13.964260  

S2: South Low pH 40.730075, 13.963651 

S3: South Extreme Low pH 40.731148, 13.963211 

NC: North Control 40.732777, 13.965218 

N2: North Low pH 40.732316, 13.964464 

N3: North Extreme Low pH 40.732000, 13.963716 

784 
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Laboratory Trial Transport Details:  785 

Samples were transported from field sites by boat to the Villa Dohrn-Benthic 786 

Ecology Center and maintained inside 10 L coolers with fresh seawater from each of the 787 

collection sites. Samples were kept in seawater matching the pH level of their respective 788 

field origin; leaves were inspected to select for living spirobids, and cut in smaller 789 

portions to facilitate transport to the ENEA Laboratory in La Spezia, Italy. Transport 790 

containers were prepared with spirorbids and unfiltered seawater (volume = 1300 mL; T 791 

= 21.96 ± 1.29 °C; pH: control = 8.03 ± 0.08, low = 7.61 ± 0.26; S = 36; density = approx. 792 

100 individuals per container) and kept in styrofoam coolers packed with ice to maintain 793 

a consistent water temperature. During the 8 h transport to ENEA, temperature and pH 794 

were recorded twice using a pH meter with integrated thermometer (SG2, Mettler-Toledo 795 

Analytical, Milan, Italy). The mean pH in the containers remained at 8.03 (control 796 

samples), or increased from 7.61 to 8.01 (low pH samples). The temperature decreased 797 

from 21.96 to 19.00 °C for 1 h in all containers. On arrival at the ENEA laboratory, 798 

containers were immediately placed in pre-conditioned temperature baths (T = 22.00 °C, 799 

S = 36). Temperature was controlled via two thermal baths connected to a temperature 800 

conditioner (TR 15, TECO, Naples, Italy) with heaters (V2-Them 300, São Julião do 801 

Tojal, Portugal). To enhance a homogeneous mixing of the water, and thus thermal 802 

stability of the system, submersible circulation pumps (Aquapump HJ-311, Mondial 803 

fauna, Milan, Italy) were also used. Containers were aerated with either ambient (control) 804 

air (pCO2 ~ 380 µatm, for pH = 8.22), or CO2-enriched air (pCO2 ~ 1000 µatm, for pH = 805 

7.70). CO2 gas was slowly released into a Buchner flask to enable mixing using a CO2 806 

regulator (6000 CO2, BOC, La Spezia, Italy).  807 
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Taxonomy Details:  808 

The tubes and operculum of both the adults and juveniles of the Simplaria sp. 809 

specimens found in this study closely resemble that of Simplaria pseudomilitaris 810 

(Thiriot-Quiévreux, 1965), a taxon first described in Villefrance sur Mer, France, and 811 

later identified in the Gulf of Naples by Harris (1968), although reported as Spirorbis 812 

berkeleyana (Rioja, 1942) (Knight-Jones et al. 1974), and in the fouling inside Port of 813 

Ischia, Italy (Terlizzi et al. 2000). Morphological similarities of the two are their sinistral 814 

coiled (clockwise) tube orientation, similar tube diameter (between 1.5-2 mm), latitudinal 815 

tube ridges, and 2-3 indistinct longitudinal tube ridges. The operculum also has a single 816 

opercular plate with ornamentation (protuberances, or spines, projecting from top of 817 

operculum). The operculum has been described having an elliptical cap with a partially 818 

encircling distal papillated rim that is absent on the substratum side (see also Bianchi  819 

1981), yet this feature is not in agreement with this study’s specimens, where the rim 820 

completely surrounds the distal papillated rim. This feature is, however, in better 821 

agreement with a description of S. pseudomilitaris from the west coast of the USA made 822 

by Beckwitt (1981), who further noted the high variation in operculum morphology in the 823 

species. The primary trait that is found in the Simplaria sp. specimens of this study that is 824 

not in agreement with the S. pseudomilitaris descriptions from the literature is the extent 825 

of ‘ornamentation’ on the operculum plate (e.g. Bianchi 1981; Fig. 6).  826 

The morphology of the Simplaria sp. here also closely matches Pileolaria 827 

quasimilitaris with respect to larval and operculum morphology, a taxon first described in 828 

the Caribbean Sea (Bailey 1970). In particular, P. quasimilitaris has distally projecting 829 

calcareous spines on the operculum that form a complete crown. However, it still does 830 
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not completely agree as there are up to three indeterminate rows of long, slender spines 831 

observed in the operculum crown center in this study’s specimens versus the two rows of 832 

spines originally described for P. quasimilitaris. Two other difference between these two 833 

species are in the tubes and chaetae: this study’s specimens have latitudinal ridges and 2-834 

3 indistinct longitudinal ridges, and no sickle chaetae on the third thoracic fascicles, 835 

versus the many longitudinal ridges and knobs of P. quasimilitaris and presence of these 836 

sickle chaetae.  837 

The key taxonomic feature for the genus Pileolaria is the presence of sickle 838 

chaetae on the third thoracic fascicles (Knight-Jones et al. 1974). In the sister genus 839 

Simplaria erected by Knight-Jones (1984), all of the characters of the genus Pileolaria 840 

are found, except the sickle chaetae in the third thoracic fascicles. After examining over 841 

40 Simplaria sp. specimens from this study, no sickle chaetae were found. In the original 842 

description of P. quasimilitaris by Bailey (1970) the chaetae of the third thoracic fascicle 843 

are defined as “hooked” chaetae. The morphology of sickle chaetae, is, however, quite 844 

variable (Knight-Jones & Fordy 1979) and “hooked” chaetae, sensu Bailey (1970) can be 845 

considered as sickle chaetae. Regardless, the specimens of this study also lacked hooked 846 

chaetae in the third thoracic fascicles. Therefore this relevant character, sickle chaetae 847 

absence, leads us to exclude the attribution to our specimens to any other Pileolaria 848 

species with spines on the operculum (e.g., as P. semimilitaris, Vine et al. 1972), and 849 

consider our taxon as a member of the Simplaria genus, and be considered or a 850 

morphotype/ecotype of S. pseudomilitaris having more abundant, longer, pronounced 851 

distally projecting calcareous spines covering the operculum plate, or a new species from 852 

the genus of Simplaria. The opercular morphology is a character quite variable in this 853 
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species, which has lead also to confusion of S. pseudomilitaris with other species (e.g. 854 

Spirorbis regalis in Bailey and Harris (1968)). Analysis of additional Simplaria 855 

pseudomilitaris material from both type locality and other areas could help to account for 856 

the possible variability in opercular morphology, however only a genetic analysis would 857 

help to determine the correct species status. Yet this is beyond the scope of this study. 858 

Therefore, the specimens of this study are designated as Simplaria sp. 859 

Supplementary Tables 860 

Table S.1 Number of spirorbids identified in each site replicate, and the ratio of 861 
specimens identified (ID’ed) at the species level to the total number of specimens found. 862 
These ratios were used to calculate the number of Simplaria and P. militaris in each 863 
replicate, as complete identification of each specimen was not possible due to lost 864 
taxonomic features. 865 

Site Repli-
cate 

Total 
spp. 

P. 
militaris 

Simplaria 
sp. 

Other 
spp. ID’ed Ratio 

ID’ed 
Simplaria 

sp. % 
NC A 146 62 48 13 123 0.84 39% 
  B 178 68 54 12 134 0.75 40% 
  C 161 26 32 12 59 0.37 54% 
  D 243 78 29 5 112 0.46 26% 
N2 A 50 12 16 0 28 0.56 57% 
  B 80 19 33 2 54 0.68 61% 
  C 54 25 35 1 61 1.13 57% 
  D 94 20 54 1 75 0.8 72% 
N3 A-D 46 5 5 0 10 0.22 50% 
SC A 113 4 28 3 35 0.31 80% 
  B 71 1 25 0 25 0.35 100% 
  C 132 0 57 2 59 0.45 97% 
  D 180 5 78 5 83 0.46 94% 
S2 A 75 2 39 1 42 0.56 93% 
  B 106 9 42 3 54 0.51 78% 
  C 234 1 99 3 103 0.44 96% 
  D 158 0 41 1 42 0.27 98% 
S3 A-D 47 0 13 0 13 0.28 100% 

 866 




