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PREFACE

The wind turbine blade is one of the essential wind turbine components. However,
these blades are subjected to different types of challenges such as continuously changing
aerodynamic forces, gravitational loads, weather conditions, and lightning strikes. As a
result, all blades experience cracking, crazing, delamination, holes at the leading and trailing
edges, and ice build-up on the blades. All these challenges reduce the life of the blades, result
in a loss of energy production of 30-70%, and some safety issues. Therefore, it is important
to perform regular blade inspections. Today, to optimize the conditions for stopping and
restarting wind turbines, it is essential to find an innovative solution that detects and
quantifies the defect and limits or even prevents the formation of ice on the blades. Several
detection systems are known (guided wave, ultrasound, taping test, optical fiber, thermal
imaging), but the detection and localization of these defects remain a significant problem.
Indeed, the detection is based on global parameters (temperature, humidity, frequency, etc.),
giving general information on the situation of the defect and does not allow a precise and

localized quantification. Moreover, these sensors do not detect or forecast ice formation.

Our interest in diagnosing defects on wind turbine blades comes from our desire to
expand the technical studies to obtain a better performance of the systems in question. Thus,
the main objective of the thesis is to identify, compare and analyze the techniques allowing
to have a reliable, effective, and complete detection of the defects on the blades of wind
turbines without bringing modifications or significant disturbances to its architecture. Thus,
this thesis aims to solve this problem via hyperspectral imaging. Frequencies outside the
visible band will characterize the fault. This will optimize the power produced and the power

dissipated during the blades' de-icing, whatever icing mitigation system is used.
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RESUME

A mesure que la demande d'électricit¢ augmente, les réglementations
environnementales limitent l'utilisation des centrales thermiques et des sources d'énergie
renouvelable ; en particulier, I'énergie éolienne devient de plus en plus populaire dans le
monde entier. L'électricité d'origine éolienne n'a cessé d'augmenter au cours des derniéres
décennies et continuera a le faire dans les années a venir. La production d'énergie éolienne
est une technologie mature, avec plus de 740 GW de capacité installée dans le monde.
L'exploitation des parcs éoliens pose des défis cruciaux pour maintenir le co(t de I'énergie
au plus bas. C'est pourquoi, dans ce secteur, la disponibilité des éoliennes et la capacité a
détecter précisément les défauts a l'avance sont devenues trés importantes. Les pannes
inattendues d'un composant d'une éolienne peuvent entrainer des pertes financieres
importantes. Par conséquent, il est essentiel de détecter a I'avance ou de prévoir les pannes
des éoliennes causees par divers facteurs tels que les défaillances électriques ou mécaniques,
la dégradation des matériaux, les défauts ou les dommages, etc. Les pales des €oliennes sont
les composants les plus chers et les plus exposés, et elles subissent une variété de défauts,
notamment des fissures, I'érosion et le givrage, qui réduisent leurs performances. Par
consequent, l'une des tentatives les plus efficaces consiste a utiliser des diagnostics non
destructifs des pales d'éoliennes pour prévenir les défaillances catastrophiques et les temps
d'arrét imprévus. Actuellement, l'optimisation des conditions d'arrét et de redémarrage des
éoliennes nécessiterait le développement d'un nouveau systeme qui identifie et quantifie les
défauts tout en limitant, voire en éliminant, I'accrétion de glace sur les pales. La majorité des
études dans le domaine du diagnostic des pales se concentre sur le développement d'un
systeme de détection précoce des dommages. Si ces défauts sont découverts a un stade
précoce, les temps d'arrét et les colts de maintenance seraient considérablement réduits. Cette
these examine certaines des techniques non destructives récentes pour I'analyse des pales
d'éoliennes, ainsi que leur applicabilité, leurs avantages et leurs inconvénients. En effet, la
détection et la localisation de ces défauts restent un défi sérieux dans la plupart des systémes
de détection. Ces techniques sont basées sur des parametres globaux qui fournissent quelques
informations générales concernant la situation du defaut dans les pales sans creer une
quantification localisée du défaut.

Néanmoins, ces inconvénients peuvent étre surmontés par la télédétection. L'imagerie
hyperspectrale est une technique d'imagerie spectrale qui integre l'imagerie et la
spectroscopie, permet I'analyse et I'identification de signatures spectrales distinctives, et les
attribue aux éléments de I'échantillon examiné. Ainsi, I'objectif principal de cette thése est
d'améliorer la surveillance des pales d'éoliennes en appliquant la technologie d'imagerie
hyperspectrale. Cette thése décrit la mise en ceuvre de l'imagerie hyperspectrale dans
I'acquisition, le traitement et la reconnaissance des défauts et la détection des fissures, de



I'érosion et des événements de givrage. Les résultats de cette technique sur le terrain montrent
que les défauts des pales peuvent étre détectes a un stade précoce avec une grande exactitude

et précision.

Mots clés : Deéfaillance des pales, Imagerie hyperspectrale, Détection des pannes,
Fissure, Erosion, Givrage
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ABSTRACT

As the demand for electricity increases, environmental regulations limit thermal power
plants and encourage renewable energy sources. Specifically, wind power is becoming
increasingly popular across the globe. Wind-generated electricity has been steadily
increasing over the past few decades and will continue to do so in the coming years. Wind
energy generation is a mature technology, with over 740 GW of installed capacity worldwide.
The operation of wind farms poses crucial challenges to sustain the lowest possible cost of
energy. Therefore, in this sector, the availability of wind turbines and the capability to
accurately detect defects in advance have become very important. Unexpected breakdowns
of a wind turbine component might result in significant financial losses. As a result, it is
essential to detect in advance or predict wind turbine breakdowns caused by various factors
such as electrical or mechanical failure, material degradation, defects or damage, and others.
Wind turbine blades are the most expensive and the most exposed components, and they
endure a variety of faults, including cracks, erosion, and ice built-up, which reduce their
performance. Therefore, one of the most effective attempts is to use non-destructive
diagnostics of wind turbine blades to prevent catastrophic failures and unscheduled
downtime. Currently, optimizing wind turbines’ shutdown and restart conditions would
necessitate the development of a new system that identifies and quantifies faults while also
limiting, if not eliminating, ice accretion on the blades. The majority of studies in the area of
blade diagnostics focus on developing a system for early damage detection. If these flaws are
discovered at an early stage, downtime and maintenance costs would be significantly
reduced. This thesis examines some of the recent non-destructive techniques for the analysis
of wind turbine blades, as well as their applicability, advantages, and disadvantages. Indeed,
the detection and localization of these defects remain a serious challenge in most detection
systems that require a large number of defect indications. These techniques are based on
global parameters that provide some general information concerning the situation of the flaw
in the blades without creating a localized quantification of the default.

Nevertheless, these drawbacks can be overcome by remote sensing. Hyperspectral
imaging is a spectral imaging technique that combines imaging and spectroscopy, allowing
for the study and identification of different spectral signatures and assigning them to the
sample elements under examination. Thus, the main objective of this thesis is to improve
wind turbine blade monitoring through the use of hyperspectral imaging technology. This
thesis describes hyperspectral imaging's implementation in image acquisition, handling, flaw
recognition, and detection of cracks, erosion, and icing events. This technique's field output
results show that blade defects can be detected in their early stages with high accuracy and
precision.



Keywords: Blade defect, Hyperspectral imaging, Damage detection, Crack, Erosion,
Icing
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GENERAL INTRODUCTION

The gradual heating of Earth’s surface, oceans, and atmosphere triggered by human
activity, mainly the burning of fossil fuels that emit carbon dioxide, methane, and other
greenhouse gases into the atmosphere, has shifted nations™ focus to renewable resources
rather than non-renewables. Renewable energy, known as "clean energy," is a natural energy
source that is constantly replenished, such as sunlight and wind. All these natural resources
are freely accessible, without any security concerns on energy supply [1]. However, non-
renewable energy, generally mentioned as “dirty energy,” is a type of energy that exists in a
limited amount and needs a long time to replenish, such as coal, gases, and oil [1]. But these
resources are subjected to fluctuating prices, security issues with energy supplies, and some
environmental issues. For instance, oil drilling may necessitate strip-mining Canada’s boreal
forest [2], fracking technology can cause earthquakes and water pollution, and coal power
plants pollute the air [3, 4]. All these constraints pushed up the “clean energy,” replacing the
“dirty energy,” especially in the power sector, resulting in lower carbon and other types of
pollution emissions. Thus, in response to climate change, renewable energy is thriving as
nations develop progressively modern and cost-effective methods of harnessing natural

power resources, particularly wind [5].

For decades, wind energy has been used to power tasks such as thrusting cruising boats,
milling grain, pumping water, and powering factory machinery [1]. As early as 5,000 BC,
people used wind energy to thrust boats along the Nile River [6]. Simple wind-powered water
pumps were used in China by 200 BC, and windmills with woven-reed blades were used in
Persia and the Middle East to grind grain [7]. Wind energy was eventually used in new ways
all over the world. Wind pumps and windmills were widely used for food production in the

Middle East by the 11th century [8]. Merchants and Crusaders brought wind technology to



Europe. The Dutch constructed huge windpumps to drain the Rhine River Delta's lakes and

marshes [6].

European immigrants brought wind energy technologies to the Western Hemisphere.
American colonists utilized windmills to process grain, pump water, and cut wood at
sawmills [9]. Homesteaders and ranchers erected thousands of windpumps when they
inhabited the western United States. Small wind-electric generators were also popular in the
late 1800s and early 1900s. As rural electrification programs in the 1930s extended power
lines to most farms and ranches across the country, the number of wind pumps and turbines
decreased. Some ranches, however, continue to use wind pumps to provide water to their

livestock.

Small wind turbines are regaining popularity, primarily as a source of electricity in
remote and rural areas [6]. In plus, several larger wind turbines were built or conceptualized
in the first half of the twentieth century, which significantly impacted the development of
today's technology [10]. The Smith—Putnam machine, built at Grandpa's Knob in Vermont
in the late 1930s, was the most significant early large turbine in the United States [11]. This
was the largest wind turbine ever built, with a diameter of 53.3 m and a power rating of 1.25
MW, at the time and for many years afterward [12]. This turbine was also significant because
it was the first large turbine with two blades. It was a precursor to the two-bladed turbines
built by the US Department of Energy in the late 1970s and early 1980s in this regard. The
turbine was also notable because the company that built it, S. Morgan Smith, had extensive
hydroelectric experience and planned to produce a commercial line of wind turbines. Sadly,
given the state of wind energy engineering at the time, the Smith—Putnam turbine was too

huge and too early. In 1945, the blade failed, and the project was abandoned [6].

During the 1990s, the focus of wind turbine manufacturing definitively shifted to
Europe, particularly Denmark and Germany, following the demise, that happened in 1996,
of the largest US manufacturer, Kennetech Windpower. Concerns about global warming and
nuclear power have led to a tremendous demand for more wind generation in that country,

as well as in other countries. Some of Europe's major suppliers are establishing



manufacturing facilities in countries such as Spain, India, and the United States. The largest
commercial wind turbines have grown from about 50kW to 2MW over the last 40 years, with

commercial machines planned for up to 5SMW [6].

According to preliminary wind energy statistics published recently by the World Wind
Energy Association (WWEA), the world set a record for new wind turbine deployments,
contributing 93 GW in 2020 [13]. China, the United States, and Russia set new
implementation records, while most European markets only saw a slight increase. Many
countries have revealed delays in the past year due to distorted international supply chains
and a shortage of labor availability, therefore the strong growth appears as a surprise to some
observers. The global market for new turbines attained a total volume of 93 GW in 2020,
roughly 50% more than the previous year and more than ever was installed in a single year.
Currently, the total capacity of all wind farms globally reaches 744 GW, which is enough to
cover 7% of the world's electricity demand. This impressive growth was achieved although
the pandemic. While COVID-19 seems to be weakening advancement in some countries, it
appears to have had no negative impact overall, rather accelerating the transition to wind and
other renewable energy sources. China was still in a league of its own, constructing 52 GW
in a year, equivalent to a 56% market share. With this regard, China will now have 289 GW
of installed wind capacity, accounting for 39% of global capacity. The US market has also
grown rapidly, with nearly 17 GW added in 2020. With this new record and wind farms
totaling 122 GW, the United States has unquestionably cemented its position as the world's
number two. Among the top ten wind power markets, there were few variations. With a
reliable market volume of 2,5 GW in 2020, for a total of 18 GW, Brazil went up from eighth
to seventh place, whereas France fell from seventh to eighth place. Without a doubt, the
newcomer of the year was Russia, which increased its installed wind capacity from 312 MW
to 1027 MW and rose from 53" place in the wind power market at the end of 2019 to 37"
place [13].

Despite its growth, the wind turbine market, like other developing sectors, still

encounters some obstacles and constraints due to environmental and manufacturing factors



limiting its potential. Wind turbine blades, one of the most important and costly parts of the
wind turbine, are expected to last up to 20 years. During this time, they withstand a
fluctuating wind load distinguished by a combination of lift and drag in normal wind
conditions. Blades become worn out after a long period. As a result, weariness promotes
material degradation and results in the formation of cracks on the blade [14]. Some wind
turbines are placed in areas where severe weather, such as high winds and icing, is common.
Ice accumulations, cracks, delamination, and erosion, all pose problems for blades. These
flaws will reduce the annual energy production by lengthening the turbine's downtime for
wear and tear [15]. Most damage detection research focuses on developing an innovative
method for detecting damage early on to reduce maintenance time and costs [16]. To decrease
maintenance costs and extend the life of wind turbines, frequent inspections should be carried
out [17], particularly on the blades, which account for 20% to 30% of the total cost of a wind

turbine [18]. Visual testing in wind turbine blades is the mainstay of maintenance tasks.

Stutzmann et al. [19] analyzed the tests in a numerical simulation of fatigue cracks
using a conditional probability model. They attempted to reduce uncertainty in estimating
the useful life of wind turbine structures due to fatigue. However, it is dependent on the
workers' experience and is subjective. Kim et al. [20] proposed a straightforward and
necessary non-destructive technique for wind turbine blades. The pan-tilt-zoom camera
system serves as the foundation for the damage detection system. This system is used to
identify wind turbine failures. It can detect a 2 cm wide crack from a distance of 200 m.
Numerous failures of wind turbine blades and the lack of images of these failures make

failure diagnosis difficult.

Other methods such as ground-based inspection, internal inspection, ultrasound,
thermal imaging, vibration analysis, and various ways are used to detect damage and ice,
which is a type of surface contamination. However, defect detection and location remain
important issues. Indeed, the detection is based on global factors (humidity, temperature,

frequency, etc.), giving an overall knowledge of the defect on the blades and does not allow



a precise and localized quantification of the fault. Moreover, the sensors used in these

techniques do not forecast ice formation.

Only a few researchers, such as Young et al. [21], have discussed the use of
hyperspectral images for blade damage detection, and their analysis has been limited to
erosion detection. To that end, this research will fill in the gaps and demonstrate the utility
of hyperspectral imaging in detecting surface defects and icing events as a multi-target
technology in the test phase of WTBs during manufacturing as well as in wind farm
monitoring. Despite the opinion of Young et al. that detailed hyperspectral image information
may not necessarily needed during field conditions monitoring, but such information will
present an unsubstantial qualitative and quantitative measurements of the defects under
study. Additionally, this information can be useful for studying the physical proprities of
defects and later used as a dataset for various WTB monitoring on field windfarms or during

manufacturing processes.

Hyperspectral imaging technology has been proven its accuracy and robustness in
various application areas, including vegetation and water resource monitoring [22, 23],
forensic medicine [24, 25], archaeology and art conservation [26, 27], security monitoring,
and crime scene detection [28, 29], etc. This technology is a type of remote sensing that

combines spatial and spectral data from a target object or scene.

Among the available wind turbine blade defect-recognition solutions, hyperspectral
imaging is a promising technology [21]. By fusing spectroscopy with conventional imaging,
hyperspectral imaging can create spatial maps that span a wide range of spectral information,
leading to various applications in blade defect detection. [30].

The overall objective of this project is to research, study, compare, and analyze the
different non-destructive inspection techniques of wind turbine blades and present and
explain the potential of the hyperspectral imaging technique in the remote detection of these
defects. Hyperspectral imaging is used to detect and quantify blade defects and ice accretion.

It allows limiting or even preventing the formation of ice on the blade in conjunction with



anti-icing and de-icing equipment. It reduces the cost of wind energy without making any
major modifications or disturbances to the blade architecture. Numerical simulations,
practical tests, and technical analyses of these defects will be studied using the hyperspectral
Imaging technique, in which each defect will be characterized by frequencies outside the
visible band, which constitutes the spectral signature of the defect.

This dissertation is divided into eight major chapters. The first chapter presents an
overview of wind turbines, the challenges that hinder their availability, statistics showing
components’ failure, and a survey of flaws detection methods used on wind turbine blades.
In addition, Chapter 2 describes the phenomenon of icing and its effects on wind power
generation and wind turbine safety, as well as a survey of the icing detection methods.
Chapter 3 introduces hyperspectral imaging technology. Chapter 4 presents a preliminary
study showing the experimental setup, and the results found that assure the importance of the
hyperspectral imaging technique in the inspection of a wind turbine blade. Chapter 5 details
the experimental setup for hyperspectral imaging use in flaws and icing detection. The results
of the defects and icing detection are then discussed in the two corresponding Chapters 6 and

7. Finally, a general conclusion and future work are presented.
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CHAPTER 1
WIND TURBINE BLADE FLAWS AND DETECTION METHODS

1.1 WIND TURBINE COMPONENTS AND TYPES

Several factors interact to put the atmosphere in action, a phenomenon known as wind.
This kinetic energy or natural motion exists, and it appears reasonable to find ways to harness
it. Humans already used the wind's kinetic energy to turn windmills, sailboats, and pump
water almost thousands of years ago [31]. The fundamental theory is that the wind's kinetic
energy is the trigger element to turn apparatus. Nowadays, this wind energy constitutes the

catalyst in energy production in wind turbines [32].

In general, wind turbines use the aerodynamic force of rotor blades to convert wind
energy into electricity. When the wind blows, the air pressure on one side drops. Lift and
drag are caused by the difference in air pressure on both sides of the blade. The rotor rotates
because the lift force is greater than the drag force. The rotor is connected to the generator
either directly, for a direct drive turbine, or via a shaft and a series of gears that speed up the
rotation and allow for a physically smaller generator. The conversion of aerodynamic force
to generator rotation results in the generation of energy [33]. As a result, knowing how

different types of wind turbines look and where they can be used is extremely beneficial.

1.1.1  Components of wind turbines

A wind turbine's main component groups are the rotor, the drive train, the yaw system,
the mainframe, and the tower [34]. The rotor is made up of the blades, the hub, and the
aerodynamic control surfaces [35]. The drive train consists of the gearbox, generator,
mechanical brake, and the shafts and couplings that link them [36]. The components of the

yaw system are determined by whether the turbine uses free yaw or driven yaw, which is



determined by the orientation of the rotor. Yaw system components consist of, at a minimum,
a yaw bearing and, in some cases, a yaw drive, yaw brake, and yaw damper [37]. The
mainframe serves as a support for mounting the other parts. The tower group consists of the
tower itself, its foundation, and possibly the machine's self-erection mechanism [38]. A more
detailed overview of each of these subcomponents is presented in the following sections.

Unless otherwise specified, the turbine is assumed to have a horizontal axis.

1111 Rotor

Wind turbines have rotors designed to extract substantial power from the wind and
switch it to rotary motion [39]. Wind turbine rotors must run under a variety of load
circumstances, including constant, periodic, and stochastically variable loads. Because these
fluctuating loads occur over a significant number of cycles, fatigue is a major factor to
consider. The designer must make every effort to limit cyclic stresses to a minimum and to
utilize materials that can endure such pressures for as long as possible [40]. The rotor also
serves as a cyclic loading generator for the rest of the turbine, especially the drive train [41].

The following three sections concentrate on the rotor's main elements: blades,

aerodynamic control surfaces, and hub [42].

a) BLADES

The blades are the essential elements of the rotor; they are the tools that transform the
wind's force into the torque required to generate usable power. There are many factors to
consider when designing blades, but most of them fall into aerodynamics or structural
categories. Other factors can be the overall arrangement of the turbine, material

characteristics, and its fabrication methods [43].



The blade aerodynamic design is based on the combination of several blades, design
rated power and rated wind speed, solidity, design tip speed ratio, airfoil, rotor power control,

and its orientation [44].

To begin with, increasing the number of blades will raise the fixed costs and the stresses
at the roots of the wind turbine. Most commercial wind turbines have either two or three
blades [45]. Secondly, design rated power and rated wind speed determine the length of the
blade by affecting the overall size of the swept area [46]. Thirdly, a high tip speed ratio
ensures the design of lighter and cheaper blades by outcoming low solidity due to a smaller
overall blade area. In addition to that, a fast-rotating speed is beneficial to and supports the
drive train [47]. However, extreme tip speed ratios develop more significant aerodynamic
noise from the turbine and raise flap-wise loads at thin depths of blades. These vibration
issues and large deflections may be the reason behind blade—tower collisions. Furthermore,
these increased design tip speed ratios directly affect the blade's chord and twist distribution,
necessitating the appropriate airfoil use [48]. Fourthly, while increasing the lift-to-drag ratio
to boost the power coefficient, this lift coefficient will impact the rotor solidity and smaller
the blade’s chord [49].

Fifthly, the best-matched airfoil is chosen based on the rotor's aerodynamic control
mechanism, which can be simplified by referring to data sets such as those created by Selig
(1998). In plus, wind turbine blades feature a variety of airfoil shapes, often of the same
family but with different relative thicknesses, running the length of the blade. Wind turbine
blades can be made stronger by using thicker airfoils towards the root while retaining proper
overall performance [50]. Sixthly, the power control technique (stall or variable pitch) has a
considerable impact on the blade design, especially airfoil selection. In high winds, a stall-
controlled turbine relies on the lift loss of a stall to restrict power output. Therefore, good
stall qualities in the blades are desirable. They should progressively stall as the wind speed
rises, and they should generally be devoid of transitory phenomena like a dynamic stall. Stall
characteristics are typically less significant in pitch-controlled turbines [51]. Whereas it is

crucial to note that the blades function admirably when thrown in strong winds. It is as well



worth mentioning that blades may be thrown to feather, with a lessening angle of attack, or
stall, with the rising angle of attack [52]. Finally, the rotor's orientation about the tower
influences the blade geometry, although it is largely secondary to the reckoning of the blades
[53]. During preconing, the blades are skewed away from a plane of rotation indicated by the
blade roots. To allow the rotors to track the wind and preserve some yaw stability, the blades
must be coned away from the plane of rotation and must be kept away from colliding with
the tower. For instance, whereas most down-wind turbines carry on with free yaw, preconed

blades are present on certain upwind rotors [54].

To sum up, to adequately account for both aerodynamic and structural constraints,
blade design generally takes several iterations. Each iteration begins with the development
of arough design, which is then assessed. Selig and Tangler (1995) devised an inverse design
method as a way to speed up this procedure. It entails the use of a computer program
(PROPID) to generate designs that fulfill specific criteria [55].

Aside from the stresses that a wind turbine blade must resist, the main structural design
concerns are materials and production alternatives. The connection of the blades to the hub
is also a major problem. Wind turbine blades were traditionally composed of wood and
coated with linen. Steel blades for bigger wind turbines were used until the middle of the
twentieth century [56]. The Smith—Putnam 1250 kW turbine from the 1940s and the Gedser
200 kW turbine from the 1950s are two examples of these types of wind turbines. Most blades
for horizontal axis wind turbines have been built of composites since the 1970s [42].
Fiberglass in polyester resin is the most frequent composite, but wood—epoxy laminates have
also been widely employed. The blades of most vertical axis wind turbines are made of
aluminum. Because their blades have a continuous chord and no twist, they adapt themselves
to aluminum pultrusion creation. Pultrusion is a method of creating the desired shape by
pulling material (such as aluminum) through a forming die. The length of the shape is
consistent. Although aluminum blades have been utilized in a few horizontal axis wind

turbines, it is not currently widely employed in these types [56].
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Following the discussion of the blade design's aerodynamics and structural
characteristics, it is critical to present the blade production technique to produce a robust and
light structure with an outer shape that matches the design [57]. Non-linear forms are ideal
for horizontal-axis wind turbines, whose blades are typically tapered and twisted, with
variable degrees of curvature. Two kinds of pieces are modeled for this purpose. The skin
gives the airfoil its ideal shape, while the spar gives it stiffness [58]. A cross-section of a

typical fiberglass blade is shown in Figure 1 [59].

D spar Web doubler Fiberglass skin

Foam cores

'
-~
TRLLNVIANY

Figure 1. Cross-section of a typical fiberglass blade ©Peery and Weingart, 1980 [59]

Building a spar is usually the first stage in the fabrication of a blade. Spars come in a
range of shapes and sizes, but the goal is to design a light component that can withstand
applied moments. A web, a box beam, or a D are all possible shapes for the spar. A box beam
or web will have an outside flapwise dimension that allows it to be attached to the interior of
the skin on both the top and bottom of the blade. The blade skin is also attached to the front
of the spar when using a D spar [60].

Spars in fiberglass blades are typically constructed by layering fiberglass and resin
around a mandrel and then removing it. Inside a mold, layers of fiberglass fabric and resin
are built up to create the skin of a glass-reinforced plastic blade. Pieces of the upper surface
and the lower surface are melted, then taken from the molds and linked together, with the
spar in the middle [61]. A similar process is used to make wood—epoxy blades anon-stall-
regulated shown in Figure 2.Figure 1 The primary distinction is that wood plys are utilized

in the laminate instead of fiberglass fabric. Furthermore, the skin thickness is generally larger
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than the blade thickness in a glass-reinforced plastic blade, and instead of a box beam spar,
a plywood strip is utilized to give rigidity. While it is worth noting that any conceivable
surface may be created with the molds detailed here, the downside of making blades in this
manner is that the lay-up requires a lot of manual effort leading to large expenses, as well as
difficulty in ensuring uniformity from one blade to the next [62].

Birch plywood 3 mm laminated fir
Plywood

Web

4.5 mm

42 mm 20 mm

Figure 2. Cross-section of wood-epoxy blade ©Hau,1996 [63]

Filament winding is a distinct method of producing primarily fiberglass blades. It
entails the simultaneous coiling of glass fibers around a mandrel and the application of resin.
This technique, which was initially developed for the aerospace industry, may be automated.

Nevertheless, it is challenging to be applied to concave forms [64].

The root, which is the end closest to the hub, is a valuable component of the blade
subjected to peak loads. It is generally built as thick as possible in the flapwise direction to
reduce stresses. The link between the root and the hub has been shown to be problematic in
various circumstances. This is due to variations in material properties and rigidity between
the blades, hub, and fasteners. The problem is made worse by the fact that the loads are

constantly changing [65].

The Hutter design, named after its designer, the German wind energy pioneer Ulrich
Hitter, is one form of the root. Long fiberglass strands are glued into the lower portion of the

12



blade using this approach. At the base of the blade, round metal flanges are supplied, and
circular hollow spacers are connected to these flanges, as seen in Figure 3. The fiberglass
strands are coiled around the spacers and reintroduced into the blade. Resin holds all of the
strands and flanges in place. Bolts via the flanges and spacers finally connect the blades to
the hub. This root design is best suited to fixed-pitch rotors and may be tweaked to

accommodate variable pitch rotors [63].

Figure 3. Hitter root ©Hau,1996 [63]

Another technique of connection is the use of studs or threaded inserts attached directly
to the blades. Fixed-pitch wind turbine blades are often connected to the hub with bolts or
studs oriented radially and perpendicular to the bottom of the blade root, as seen in Figure 4.

These fasteners must withstand all the loads arising from the blades [62].

13



Oversize stud in Composite overlap
tapped hole

Metal root tube

Figure 4. Blade root stud in fiberglass reinforced plastic blade ©National Research Council,
1991 [62]

A variable pitch blade's root is built differently than a fixed pitch blade's. For the blade
to be turned, the root—hub connection must have bearings. These bearings must withstand the
bending moments and shear pressures exerted by the remainder of the blade. Furthermore,

these bearings must withstand the centrifugal force generated by the rotor's spin [66].

On medium and larger turbines, the blade attachment methods mentioned above are the
most frequent. Small turbine blades usually use a variety of attachment methods. One
approach involves thickening the root and installing bolts through it and a corresponding

component on the hub. The bolts are steep to the blade's long axis and chord [67].

In terms of blade properties, the structural study of the rotor requires information on
the entire blade, such as total weight, stiffness and mass distributions, and moments of inertia.
The blade's strength, inclination to deflect under load, natural vibration frequencies, and

fatigue resistance are all important considerations [68].

Due to the blade's complicated shape, which changes from root to tip, certain of the
blade's characteristics can be difficult to acquire. The most common approach is to split the
blade into pieces, similar to how aerodynamic analysis is done. The dimensions and material
distribution are used to discover properties for each segment, which are then combined to

find values for the whole blade [42].
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b) AERODYNAMIC CONTROL SURFACES

Aerodynamic control surfaces, integrated onto wind turbine blades and coming in a
variety of types, are devices that can be manipulated to adjust the aerodynamic characteristics
of a rotor. Their design is affected by the blade’s model, and their selection is based on the
overall control philosophy. Aerodynamic brakes, such as tip brakes, flaps, and spoilers, are
commonly used in stall-regulated wind turbines. Figure 5 shows an illustration of a tip flap
[69].

Figure 5. A tip flap aerodynamic brake

More aerodynamic control is present in non-stall-regulated wind turbines. For
instance, the entire blade can function as a control surface by spinning across its long axis in
typical pitch-controlled turbines. Nevertheless, partial span pitch control is used in other
turbine designs, where the inner section of the blade is fastened to the hub, and the outer
section, supported by bearings, can rotate around the blade's radial axis. Moreover, the
pitching mechanism for partial span pitch control does not need to be as enormous as it does

for full-span pitch control [70].
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The aileron, a movable flap situated at the blade's trailing edge, is another sort of
aerodynamic control surface. The aileron may be about a third of the length of the blade and

extend about a fourth of the way towards the leading edge [71].

Any control surface must be utilized in tandem with a procedure that either allows or
pushes it to step in the desired direction. Bearings, hinges, springs, and linkages are all
possible components of this system. Moreover, while electromagnets are commonly used in
aerodynamic brakes to keep the surface in place during normal operation but release it when

needed, motors are used to operate active pitch or aileron control mechanisms [42].

c) Hus

The hub is the wind turbine’s element that joins the blades to the main shaft and the
drive train’s remainder [72]. The hub is responsible for transmitting and sustaining all of the
loads generated by the blades [39]. Hubs are typically composed of welded or cast steel.

Details of hubs vary greatly depending on the turbine's general design idea [73].

There are three fundamental categories of hub design in contemporary horizontal axis
wind turbines: rigid hubs, teetering hubs, and hubs for hinged blades [73]. While rigid hubs
have all their important elements fixed relative to the main shaft, teetering hubs provide
relative motion between the blade-connected section and the main shaft-connected part. Hubs
for hinged blades, on the other hand, allow for independent flapping motion about the rotation
plane. One- and two-bladed wind turbines often use teetering hubs. Nevertheless, three or
more bladed wind turbines are prevalent with rigid hubs. In comparison, only some
commercial machines use hubs for hinged blades, although they have been used on several
historically significant turbines (Smith—Putnam) and are currently gaining renewed interest.

The following figure depicts some of the most popular types of hubs [42, 74].
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Figure 6. Wind turbine hub types ©Gasch, 1996 [75]

1.1.1.2 Drive train

All rotational components of a wind turbine drive train are included: the rotor, main
shaft, couplings, gearbox, brakes, and generator [76]. All of these are detailed in the
following sections, except the rotor components, which were discussed before. A typical

drive train is depicted in Figure 7.
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Figure 7. The drive train’s components [42]

a) MAIN SHAFT

The main shaft, often known as the low-speed or rotor shaft, is present in every wind
turbine. It is the major rotating member of the drive train, transferring the torque from the

rotor to the rest of the system and supporting the rotor’s weight [32].

Bearings, which transmit reaction loads to the turbine's main frame, support the main
shaft. The shaft and/or bearings may be included within the gearbox or independent from it,
connected merely by a coupling, depending on the design of the gearbox [77]. The primary
shaft is sized, accounting for the torque and bending loads combined. Main shafts are
frequently made of steel [78]. The primary shaft choices are shown in Figure 8.
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Figure 8. Main shaft options ©Harrison et al., 2000 [79]

b) COUPLINGS

Couplings have many roles, mainly joining the shafts and transferring the torque
among them [80]. In other words, before the power is converted to electricity, it is sometimes
beneficial to attenuate torque changes in the main shaft. This can be achieved by coupling of
suitable design such as fluid coupling. Large couplings are most likely placed between the

main shaft and the gearbox and between the gearbox output shaft and the generator [81].

c) GEARBOX

A gearbox is used in most wind turbine drive trains to raise the velocity of the input
shaft to the generator. Increasing the speed is required as wind turbine rotors, and hence main
shafts, rotate at a significantly slower rate than most electrical generators [82]. While the
rotors of small wind turbines spin at speeds of a few hundred revolutions per minute, larger

wind turbines rotate at a slower rate, and most common generators spin at 1500 or 1800 rpm
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[42]. Other than boosting speed, some gearboxes have other purposes, such as supporting the
main shaft bearings [82].

A case, shafts, gears, bearings, and seals are the most common components of all
gearboxes. For instance, many wind turbine gearboxes include spur gears. However, helical
gears can also be encountered. Depending on the stresses, bearings are either ball bearings,
roller bearings, or tapered roller bearings [83]. Aside from that, there are two fundamental
types of gearboxes used in wind turbines: parallel-shaft gearboxes and planetary gearboxes
[42].

In parallel-shaft gearboxes, gears are mounted on two or more parallel shafts carried
by bearings which are installed in the case. In a single-stage gearbox, there are two parallel
shafts of different speeds, passed out through the case and attached correspondingly to the
main shaft of the rotor and the generator. In addition, there is a gear on each shaft, with the
largest one is mounted on the low-speed shaft. Furthermore, it is important to note that large
speed-up ratio gearboxes employ several shafts and gears, forming a gear train. For instance,
a two-stage gearbox would come up with three shafts: a high-speed output shaft, in which its
gear is driven by the larger of the many gears that are installed on the medium-speed shaft,
and a low-speed input shaft driving the smaller gear [42, 84]. The following figure depicts a

common parallel-shaft gearbox.

Figure 9. Parallel shaft gearbox ©Hau, 1996 [63]
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However, planetary gearboxes have their input and output shafts coaxial and multiple
pairs of gear teeth meshing at any time [85]. Hence, planetary gearboxes, shown in the
following figure, are light and compact, and the loads applied on each gear are diminished.
Moreover, there is a low-speed shaft firmly attached to a planet carrier, which bears three
similar tiny gears known as planets, and is carried by bearings in the case. These free-turning
gears are installed on short shafts and bearings. A large-diameter internal ring gear and a
small-diameter solar gear interconnect with these planets. When the low-speed shaft and
carrier spin, the planets in the ring gear mesh, causing the planets to rotate at a faster rate
than the carrier. The interactions of the planets with the sun's gear cause it to rotate as well.
The high-speed shaft, supported by the bearings in the case, is then driven by the sun gear,
which is rigidly linked to it [42, 86].

Figure 10. Exploded view of two-stage planetary gearbox [42]

A single-stage planetary gear set, like a parallel-shaft gearbox, has a threshold of
speed-up ratio. For that, multiple stage planetary gears are connected in sequence to achieve

a larger speed-up ratio [84].

When designing and selecting a gearbox, there are numerous factors to consider such
as separate gearbox and main shaft bearings, or an integrated gearbox, basic type, number of
stages, speed-up ratio, gearbox weight and costs, gearbox loads, lubrication, intermittent

operating effects, and noise [87].

Wind turbine gearboxes can be purchased separately or in combination with other

components known as integrated or partially integrated gearboxes. While the turbines with a
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partially integrated gearbox have the main shaft and main shaft bearings integrated into the
rest of the gearbox, the turbines with a completely integrated gearbox have the gearbox case
functioning as the wind turbine's main frame. The rotor is attached to the low-speed shaft.
The generator is attached to the case directly and is linked to the high-speed shaft. The
generator is fastened directly to the case and is linked to the high-speed shaft. The yaw system
is partially integrated into the case's bottom [42, 88]. A partially integrated, two-stage

planetary gearbox is illustrated in Figure 11.
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Figure 11. A partially integrated, two-stage planetary gearbox [42]

In most cases, the number of stages in a gearbox is of minor importance to the wind
turbine designer. It is significant since it influences the gearbox's complexity, size, weight,
and cost. Additional internal components, such as gears, bearings, and shafts, are required

when stages are added [89].

A gearbox's speed-up ratio is proportional to the rotor's desired rotational speed,

determined by aerodynamic considerations, and the generator's speed [90].

The weight of a gearbox rises considerably as the turbine's power rating rises and

scales roughly with the cube of the radius. Because planetary gearboxes are lighter than
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parallel-shaft gearboxes, they provide a weight benefit. However, because of their greater

complexity, they cost more than their lighter weight would suggest [91].

The rotor is responsible for most of the loads that the gearbox must withstand. Loads
may include at least the main shaft torque, as well as the weight of the rotor and several
dynamic loads, depending on the degree of integration of the gearbox with the main shaft
and bearings. Furthermore, the generator, both while starting and during normal operation,
as well as any mechanical brake on the high-speed side gearbox side, imposed loads. Over
time, the gearbox will be subjected to certain relatively constant loads, others that vary
periodically or randomly, and yet others that are transitory. All of these factors contribute to

gear teeth fatigue and wear, as well as bearings and seals [92].

Lubrication is a key factor to consider when operating a gearbox. For that, oils must
be chosen to lessen wear on gear teeth and bearings while also having the turbines perform
well under external environmental conditions. Filtering or active cooling of the oil may be
required in some situations, and oil samples should be taken regularly to examine the status

of the oil and look for symptoms of internal wear [93].

The intermittent operation, which is frequent in wind turbines, can significantly
shorten a gearbox’s life. Oil may drain away from the gears and bearings when the turbine is
not working, leading to insufficient lubrication when the turbine starts. In cold weather, the
oil's viscosity may be excessively high while waiting for the gearbox has heated up, and the
use of gearbox oil heaters may be beneficial. In addition, moisture condensation can

accelerate rust [42, 93].

Noise from gearboxes is a possibility. The type of gearbox, the materials used to make

the gears, and how they are cut influence the noise produced [94].
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d) GENERATOR

The generator transforms the rotor's mechanical energy into electrical energy. Most
grid-connected generators run at a constant or virtually constant speed causing most wind

turbine rotors to turn at an almost constant speed [95].

e) BRAKE

In addition to any aerodynamic brakes, a mechanical brake is used in almost every
wind turbine's drive train. In the vast majority of circumstances, the mechanical brake is
sufficient to stop the turbine's operation. It can be used too in some scenarios for parking and

stopping the rotor from spinning at the stop of the turbine’s operation [96].

Disc brakes and clutch brakes are the two types of brakes commonly used on wind
turbines. The disc brake works the same way that a car's brake does. The shaft to be braked
is securely attached to a steel disc. Brake pads are pushed against the disc by a hydraulically
driven caliper during braking. The resulting force produces a torque that opposes the disc's

rotation, slowing the rotor [42, 97]. Figure 12 depicts an example of a disc brake.
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Figure 12. A disc brake [42]

Whereas clutch brakes are generally activated by springs, making them fail-safe by
design. Compressed air or hydraulic fluid is used to release these brakes. Another, less
popular type of brake is the 'dynamic brake," which is powered by electricity [98]. After
removing the wind turbine's generator from the electrical grid, the primary premise is to feed
power to a resistor bank. This puts a strain on the generator and, as a result, torque on the

rotor, slowing it down [42].

Mechanical brakes can be found in several places throughout the drive train. When
mechanical brakes are installed on the high-speed side of the gearbox, they can be installed
on either side of the generator. They can be too on the low-speed side of the gearbox, but
they should apply significantly more torque than one on the high-speed side. As a result, it
would be quite large. Nevertheless, when the brake is on the high-speed side, it must work
through the gearbox, potentially adding gearbox wear. Moreover, if the gearbox experiences
an internal breakdown, the high-speed brake may be incapable of slowing the rotor [42, 99].

The type of brake depicts its activation mode. Hydraulic pressure, provided by a
hydraulic pump in union with an accumulator, is required for disc brakes. Springs can be

used in some designs to exert brake pressure, and the brakes are released by a hydraulic
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system. Whereas, spring-applied brakes are common on clutch-type brakes where they are
released using either a pneumatic or hydraulic mechanism. An air compressor and storage

tank, as well as necessary plumbing and controls, are required in the case of pneumatics [42].

Three significant factors are considered when choosing a brake: the maximum torque,

length of time required to apply, and energy absorption.

A brake designed to stop a wind turbine must be capable of exerting a torque greater
than that which might reasonably be expected to come from the rotor. According to
recommended standards, the brake design torque should be equivalent to the wind turbine's

maximum design torque [42, 99].

A turbine brake should apply almost instantly and ramp-up to full torque in a matter of
seconds. The ramp-up period chosen strikes a balance between immediate, which would
impart a significant transient load to the drive train, and gradual, which could cause rotor
acceleration and brake heating during deceleration. In most cases, the full braking event takes
less than five seconds from start to finish [42].

The brake's ability to absorb energy is a key issue. First and foremost, when the rotor is
whirling at its maximum speed, the brake must absorb all of the kinetic energy in the rotor.
It must also be capable of absorbing any additional energy acquired by the rotor during the

stopping phase [32].

1.1.1.3 Yaw system

Almost all horizontal axis wind turbines should be able to yaw to be oriented in the
direction of the wind [100]. Some turbines also use active yaw to regulate power. In any
scenario, a mechanism must be supplied to allow yawing to occur, and it must do so at a

moderate enough rate to avoid excessive gyroscopic forces [101].

Active yaw and free yaw are the two most common types of yaw systems. While up-

wind turbines are usually those with active yaw using a motor to actively orient the turbine,
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down-wind turbines are usually the ones with free yaw using the rotor's aerodynamics to
orient the turbine. Hence, all horizontal axis wind turbines have a yaw bearing, irrespective
of the type of yaw system. This bearing must support the weight of the turbine's main
component while also transmitting thrust loads to the tower. The yaw bearing of a turbine
with active yaw has gear teeth around its perimeter. The yaw drive's pinion gear engages with
those teeth, allowing it to be driven in any direction. This yaw drive consists of an electric
motor, speed reduction gears, and a pinion gear. The speed must be decreased to allow for a

slow yaw rate and sufficient torque to be delivered by a small motor [102].

One issue with active yaw has been the rapid wear or breaking of the yaw drive due to
the turbine's continual tiny yaw movements and the shock load cycles that occur between the
gears as a result of the motion. A yaw brake is now commonly utilized in active yaw systems
to decrease these cycles. When the turbine is not yawing, this brake is activated. Just as
yawing occurs, it is released. An example of a yaw drive with a brake is shown in Figure 13.
Furthermore, in an active yaw system, the yaw motion is controlled by the yaw error as an
input, detected by a wind vane installed on the turbine. The drive system is triggered, and the
turbine is pushed in the appropriate direction when the yaw error is outside the allowable

range for some time [103].

Yaw bearing and bull gear
Brake disc
Yaw brake caliper

Nacelle access ladder Cable transfer mechanism

Figure 13. Typical yaw drive with brake ©Van Bibber and Kelly, 1985 [104]

27



However, the yaw system in turbines with free yaw is usually significantly simpler, it
consists simply of the yaw bearing. However, some turbines have yaw dampers to lessen
gyroscopic loads by slowing the yaw rate. They are best for machines with a low polar

moment of inertia around the yaw axis [42].

1114 Nacelle

The main components of a wind turbine except the rotor are housed in the nacelle,

which consists of the main frame and the nacelle cover [105].

The main frame provides a sturdy structure to ensure that all components are aligned
properly. It is joined to the gearbox, generator, and brake and serves as a connection point

for the yaw bearing connected to the tower's top [32].

Main frames are divided into two categories: a separate component or a section of an
integrated gearbox. While the main frame, as a separate component, consists of a stiff steel
casting or weldment, the main frame, as a section of an integrated gearbox, has a thick case
to carry the required weights. In both types, threaded holes or other attachment points on the

main frames are provided for bolting on the other components [42].

All rotor loads, as well as reaction loads from the generator and brake, must be
transmitted to the tower through the main frame. It also needs to be stiff enough to prevent

relative movement between the rotor support bearings, gearbox, generator, and brake [106].

Nacelle covers are often composed of a light material like fiberglass. On larger
machines, they are large enough to allow technicians to enter and examine or maintain the
internal components. However, a separate nacelle cover is generally linked to the main frame
on small and medium-size turbines, allowing easy access. The following figure depicts an
example of a nacelle cover. The spinner or nose cone, a component closely related to the

nacelle cover and found on various turbines, is where the hub is housed [105].
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Figure 14. Typical nacelle cover [42]

1.1.15 Tower

The primary part of the turbine is supported in the air by towers. A tower's height is
usually at least as tall as the rotor's diameter and may be higher for smaller turbines. Its height

should be above 24 m as there is low and turbulent speed close to the ground [42].

For horizontal axis wind turbines, three types of towers are commonly used. Free-
standing lattice towers were widely employed until the mid-1980s. Tubular towers have been
employed more regularly since then. Guyed lattice or pole towers have never been very
typical for machines of medium size or greater, with a few notable exceptions such as the
Carter and Wind Eagle turbines [14]. The following figure depicts a few different tower

types.

29



Figure 15. Tubular tower, truss tower, guyed tower (from left to right) [42]

Tubular towers offer a variety of benefits. Unlike lattice towers, they do not rely on
a large number of bolted connections that must be torqued and checked regularly. They give
a safe place to climb to gain access to the equipment. They give a form that some people find

more appealing than an open truss in terms of aesthetics [107].

In terms of materials, wind turbine towers are typically composed of steel, though
reinforced concrete is occasionally utilized. Steel is usually galvanized or coated to protect it

from corrosion [108].

The tower can be subjected to static and dynamic loads. Steady loads can be primarily
the aerodynamically produced thrust and torque and the machine's weight. Dynamic effects,

particularly on soft or soft-soft towers, can be a substantial source of loads [109].

For evaluating the tower's loading, at least two conditions are considered: functioning
at rated power and stationary at survival wind speed. The consequences of loading must be
taken into account, especially when it comes to bending and buckling [42, 109].
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The tower top allows the link of the primary structure of the wind turbine to the tower
and is linked to the stationary section of the yaw bearing. The top tower is often made of cast

steel, and its shape is based on the type of tower [42].

The tower foundation should be able to keep the turbine standing and stable under
extreme design conditions. The most common type of foundation is a reinforced concrete
pad, and the concrete's weight is designed to overturn resistance in all scenarios. Sometimes,
turbines are erected on the solid rock where rods are grouted into holes bored deep into it. A
concrete pad can be utilized to deliver a flat surface, but the rods will eventually bear any
tensile loads [110].

*— Tower
Flange bolts

.0 R T P S e

(a) Foundation in soil

Foundation

Rods

(b) Foundation in rock ———= Rock

Figure 16. Wind turbine foundations ©Hau, 1996 [63]

The method of tower erection chosen will directly impact the tower's design. While
cranes are commonly utilized in the installation of bigger turbines, self-erecting turbines are
typical in small and medium-sized turbines. The loads that the tower will encounter during
installation are a significant factor in the tower's design, regardless of the method of erection
[42].
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1.1.2  Types of wind turbines

Modern wind turbines are classified into horizontal-axis and vertical-axis turbines
based on the rotating axis of the rotor blades. In addition, diffuser-augmented, multi-rotor,

and co-axial wind turbines are examples of other types of wind turbines [111].

1.1.2.1 Horizontal axis wind turbines

Horizontal axis wind turbines have two or three blades or a disk with many blades,
which is the multibladed type, attached to it [112]. They are one type of wind turbine that
must be aligned with the direction of the wind. As a result, they necessitate a wind sensor to
detect wind direction and some sort of yawing mechanism to spin the device to be
successfully aligned against the wind. The need for facing the wind stems from both a more
effective distribution of force on the rotors and the risk reduction of structural damage to the
turbine due to inadequate loading on the turbine structure. In terms of structural
consequences, the building of this sort of turbine demands significant tower support to
support the weight of the blades, gearbox, and generator, as well as the use of a massive crane

to bring the pieces to the top of the tower [113].

Furthermore, the mast's base must withstand strong winds that blow where the turbine
is installed. Horizontal axis wind turbines are the most commonly used type of wind turbine
due to their efficiency and higher power generation capability for the same footprint. As a
result, most wind farms, which are power plants with several wind turbines generating
electricity, employ these types of wind turbines [114]. This type of wind turbine also has low

cut-in wind speeds and low cost per unit power output [31].

Horizontal axis wind turbines are classified into two types: up-wind turbines and down-

wind turbines, based on the wind-flowing direction's configuration of the wind rotor.
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The majority of horizontal-axis wind turbines in operation today are up-wind turbines,
with wind rotors towards the wind [32]. Because up-wind horizontal axis wind turbines
encounter the wind, the wind attains the rotors before the mast. As a result, the rotors are not
affected by the wind shade behind the tower, resulting in a more efficient operation and less
vulnerability to rotor wear and tear. Nevertheless, the yawing mechanism is required, which
adds to the weight of the structure and avoids destroying the turbine [115]. Another
consideration for up-wind wind turbines is that their rotors should not be flexible so that they
do not bend and collide with the mast when the wind speed is high. To further avoid such
incidents, the rotor is set back from the tower. This complicates the manufacturing of these
wind turbines, and the relative inflexibility of the rotor blades necessitates the use of heavier

material for blade construction [31]. Figure 17 depicts an up-wind turbine.

Figure 17. An up-wind turbine

However, down-wind horizontal axis wind turbines are one of the less prevalent types
of wind turbines. Their design is similar to that of upwind horizontal axis wind turbines, with
the exception that the rotor is placed downstream of the tower; wind strikes the mast before
reaching the blades. Because the rotor blades are more flexible in this configuration, lighter
materials can be used. As a result, this design achieves two goals: lighter structural weight
and improved structural dynamics of the tower by shifting some of the load from the tower

to the blades during bending. Downwind horizontal axis wind turbines do not require a
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yawing mechanism if the rotors and casing are constructed so that the casing passively
follows the wind direction. For large wind turbines with earthing wires connected to the
casing, the passive yawing of these wind turbines would not be an opportunity [114]. Because
the rotor of these wind turbines is located downstream of the mast, they endure wind shade.
Wind shade not only causes fluctuations in the amount of power produced, but it also causes
more fatigue in down-wind wind turbines than in up-wind wind turbines [31]. Figure 18

shows a downwind horizontal axis turbine.

Figure 18. A down-wind horizontal axis turbine

1.1.2.2 Vertical axis wind turbines

Vertical axis wind turbines are a type of wind turbine in which rotors rotate a vertically
placed shaft. Such a design allows for less sensitivity to wind direction, making them ideal
for places where the wind direction changes frequently. No matter which way the wind
blows, the blades will still move and rotate the shaft to generate power [116].

The generator of these wind turbines is close to the ground. This is because, given the
design of the rotors and their height, taking it to a higher altitude would be impractical. This

configuration makes vertical axis wind turbines easier to maintain than horizontal axis wind
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turbines, which have all their components installed at some height [117]. Vertical axis wind
turbines, on the other hand, have poorer efficiency than horizontal axis wind turbines due to
significant quantities of air drag on the rotors for some designs, as well as reduced power

production because wind speed and flow are higher and softer at a distance from the ground
[118].

The paragraphs that follow discuss some of the vertical axis wind turbine models.

One of the drag-type vertical axis wind turbine types is Savonius turbines, as illustrated
in Figure 19. Their design concept is very similar to that of cup anemometers. Therefore,
there is always one surface with the maximum drag, while others have less drag force applied
to them [118].

Figure 19. Savonius turbine

The key feature of this design is that it will rotate regardless of which way the wind
blows. These wind turbines can deal with low-speed winds, are simple to build and maintain,
and perform well in turbulent winds. Despite these benefits, this design is extremely
inefficient. It is because the favorable and adverse drag forces are not so dissimilar, and hence
the rotational speed is not as fast. Because of the high torque created, these wind turbines can
self-start, but there cannot be a lot of electrical energy produced at the generator due to their

low revolutions per minute. As a result, they cannot be used for large-scale power generation
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and may only be appropriate for small-scale applications where other types of wind turbines
may perform better [119]. There are twisted Savonius turbine designs with long helical
scoops that create torque smoothly and could be deployed on rooftops [118], as shown in the

following figure.

Figure 20. Twisted Savonius turbines

Darrieus wind turbines, as opposed to Savonius wind turbines and shown in Figure
21, are lift-type vertical axis wind turbines that employ the concept of lift production of
airfoils. These are the most commonly used vertical axis wind turbines for power generation,
with curved, C-shaped blades that run from the top of the tower to the bottom, where they
are connected to the generator shaft [120]. They are efficient because they rotate at higher
rates, which allows them to create more power. Torque ripple, which is a periodic increase
and drop in the generated torque, causes periodic stress on the tower structure. Torque ripple

is not an issue with three-bladed Darrieus wind turbines [121].
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Figure 21. Darrieus turbine

Darrieus turbines inspired the design of Giromill wind turbines. As a result, these
wind turbines are lift-type vertical axis wind turbines with straight vertical blades rather than
curved blades [122]. Giromill turbines, illustrated in Figure 22, do not self-start like Darrieus
wind turbines and may not have a constant rotational speed. As a result, they are less efficient
than Darrieus turbines. Nonetheless, they are less expensive, quicker to build, and can
perform effectively in high winds [123].

Figure 22. Giromill turbine
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Cycloturbines, a hybrid-type of vertical axis wind turbines, are extremely similar to
Giromill wind turbines with airfoil blades having changeable pitch. During the turbine's
startup, the wind is not fast enough. Because of that, the blades are pitched against the wind
like the principle of Savonius wind turbines to produce the highest drag and torque to create
a self-starting wind turbine. When the turbine reaches certain revolutions per minute, the
blades change pitch to produce more lift rather than drag, allowing the revolutions per minute
to rise even higher, as is the case with Darrieus wind turbines [124]. Being efficient and
adaptable vertical axis wind turbines, it is evident that cycloturbines’ design and production
are more sophisticated than the other designs, making them more expensive. They will also

have more components, making them heavier and requiring more maintenance [114].

1.1.2.3 Other designs

There are also other efficient and innovative wind turbine designs. For horizontal axis
wind turbines, different designs are available, such as ducted rotors, shrouded wind turbines,
co-axial multi-rotor turbines, and counter-rotating turbines. Furthermore, there are enclosed

blades, H-rotors, O-wind turbines, and other types of vertical axis wind turbines [114].

Aside from these newer versions of the same horizontal axis wind turbines and vertical
axis wind turbines concepts, there exist bladeless wind turbines such as vaneless ion wind

generators and boundary layer turbines [125].

1.2 WIND TURBINE BLADE FAILURE WITH STATISTICS AND DESCRIPTION

1.2.1  Reliability statistics of wind turbines and subsystems

The probability that a subassembly will perform its needed function under specified
conditions over a specific amount of time is defined as reliability. The rating scale for an
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unrepairable system is reliability, while the rating scale for a repairable system is availability.
Unrepairable and repairable systems, such as gears, bearings, bolts, and yaw components,
are found in wind turbines. As a result, both reliability and availability should be taken into

account while evaluating wind turbines [126].

Low reliability could lead to a series of breakdowns that necessitate significant repair.
Although high levels of reliability can reduce the cost and frequency of failures, they can be
prohibitively expensive to achieve. Breakdown and maintenance costs account for a large
portion of a WT's (Wind Turbine) operating and maintenance expenditures. WT reliability
also impacts overall system performance and power output, resulting in additional expenses

due to income lost [127].

This section presents WT subassembly reliability data analyzed in terms of failure
rates and downtimes to identify critical subassemblies and compare onshore and offshore
WT reliability statistics. The failure and downtime per failure statistics are based on 15 data
sources: 12 onshore and three offshore. Only 10 of the 15 data sources offer downtime
information; the Windstats Denmark, India, CWEA, UK offshore round 1, and SPARTA data
sources do not include downtime data [127].

The current trend in wind turbine design is for larger, heavier constructions,
increasing the failure frequency. In actuality, failure rates for onshore and offshore wind
turbine systems of the same type are vastly different. The failure rates of wind turbine
systems and components are depicted in Figure 23. It shows that some essential components
fail at a larger rate than others and that the same components, except yaw system and sensors,
that work offshore fail at a considerably higher rate than those that work onshore [126].
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Figure 23. Failure rates for onshore and offshore wind turbine subassemblies [126]

The disparity in failure rates between onshore and offshore can be explained in part
by the harsh working circumstances encountered offshore, such as greater mean wind speeds
and corrosive salt water. Offshore WT structure is prone to a greater loading variation in high
wind speeds due to the influences of the marine environment, including soil and wave
conditions. As a result, several important subassemblies on offshore WTs, including blades
and hubs, gearboxes, generators, structures, and electrical components, fail at higher rates
than onshore WTs. For instance, the failure rates for blades and hubs of onshore and offshore

wind turbines are correspondingly 15% and 75% per turbine per year [127].

It is also shown in the previous figure that the turbine blades, generator, and
gearboxes are some of the prominent types of wind turbine failure. Because of the remote
locations of wind farms and the size of the turbines, routine inspections and maintenance
proved difficult. It can be tough to access the enormous rotor blades during periodic

maintenance and assess the blade materials and the composite zones. Nowadays, emerging
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innovations are paving the road in blade monitoring. For instance, drones are being used for
blade inspections, which assists in the inspection process. Nevertheless, it is a must to do a
proper, precise, and regular inspection of the rotor blades or components failures will occur
[128]. When it comes to blade failure, the larger rotor blades, the more the blades can capture
the wind to convert it into torque, driving the generators. Also, greater aerodynamic
efficiency is achieved by using larger and longer turbine blades. Recently, the arcs of the
turbine blades can stretch up to 80 meters. However, the rising size of the turbine blades
might impose additional strain on the structure, leading to blade failures like delamination,
gel coat cracks, and erosion. In addition to the size of the rotor blade, lighting strikes, material
failure, damage from extraneous factors are all reasons leading to blade failure. Blade failure
is the most common in wind turbine failures. However, when the rotor blades capture the
wind, the generator is responsible for converting the mechanical energy into electrical energy
to create electricity. VVarious reasons like extreme weather conditions, thermal cycling, some
mechanical or electrical failure, improper installation, or some design faults cause the
generator to fail. While the gearbox is meant to work in demanding conditions for 20 years,
it may fail due to various contributing factors such as contaminated lubricant, bearing

difficulties, temperature variations, or insufficient maintenance [128].

The weighted average downtimes per failure for different subassemblies of onshore
WT populations are derived similarly to the failure rate comparison. Only one offshore data
source reports the repair time per failure (Strathclyde). The onshore and offshore downtimes
and repair times are illustrated in Figure 24. For example, the downtime of blades and hubs
for onshore wind turbines is 100 hours per failure, whereas their repair time for offshore ones
is 15 hours per failure. Furthermore, the repair time, lead time, and other logistic delays that
may apply to bringing a maintenance team to the turbine to make a repair and bring the
subassembly back to an operational state are expected to be included in the downtime per
failure of each subassembly. As a result, downtime exceeds repair time. Onshore databases
record downtime, whereas the offshore database (Strathclyde) reports simply repair time.
Although there is little evidence to determine whether the population has more downtime or

repair time, general tendencies can be noticed [127].
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Figure 24. Downtime and repair times for onshore and offshore databases

Hence, offshore WTs have a higher failure rate than onshore WTs. However, the
offshore WT's downtime at each stop is almost double that of an onshore WT. These
disparities could be due to the harsh offshore working environment and the difficulties in

repairing and maintaining offshore WTs [126].

1.2.2  Wind turbine blade failure modes

Wind turbine blades can fail due to various failure and damage modes. Depending on
the blade design, the complexities of damage evolution will differ. Regardless of blade
design, however, experience has proven that a blade can produce various material and
structural damage patterns. These damage mechanisms can lead to blade failure or, in some

situations, blade repair or replacement [129].

Failure of a composite construction can be triggered by several circumstances, as listed

in the following lines.
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1. Geometrical variables such as significant deflection, folding, buckling, and crushing
2. Material properties such as rupture, plasticity, cracking, and ductile/brittleness

3. Early fabrication flaws such as residual tensions, initial distortion, or manufacturing

flaws

4. Temperature variables such as low temperatures related to operating in cold weather and

high temperatures associated with fire and explosions

5. Dynamic factors (strain rate sensitivity, inertia effect, damage) associated with impact

pressure caused by explosions, dropped objects, or similar events
6. Fatigue cracking and other age-related deterioration

A significant amount of knowledge is required to establish how damage builds in a wind
turbine blade and design a blade against failure using analytical or numerical approaches
[129].

Blades are occasionally tested to failure in full-scale testing to validate the design and
provide insight into likely damage types and severity. A combination of axial tension, axial
compression, torsion, and bending loads generate failure mechanisms in wind turbine blades
at a global level. As a result, the global wind turbine blade analysis aims to find the worst
combination of these loads for the local failure mechanism assessments, where all pertinent
failure mechanisms must be examined for criticality across the blade as a whole. If a
significant failure mechanism is discovered, design calculations or testing must be performed

to show that the failure mechanism will not occur during the blade's design lifetime [130].
The five typical composite failure mechanisms are:

1. Global Buckling Fibre Failure where fibers fail with dominant strain parallel to the
fiber direction surpassing the individual fibers’ tensile or compressive strength

capability. At both the micro and macro scales, fibers can buckle, and buckling will
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dramatically lower compression strength, and flaws will amplify its effect. However,

fibers rarely give and are prone to brittle fracture [130].

2. Matrix Failure can be caused by longitudinal/transverse tensile and compressive
loads, as well as in-plane shear stresses. It reduces the laminate's strength and
stiffness, leading to further delamination. Both the matrix and the interface to the fiber
must be considered in matrix failure assessments, and the strength of the interface
may be impacted significantly if the fiber seizes [130].

3. Inter-Laminar Failure exists in two types: Shear stresses cause inter-laminar shear
failure, and tensile stresses cause inter-laminar tension failure in the matrix between
neighboring plies/ laminae. De-lamination and sub-laminate buckling can occur due

to these failure types [130].

4. Sandwich Failure is caused by tensile, compressive, and shear loads, which
eventually lead to the breaking and local yielding of the sandwich core material.
Wrinkling, shear crimpling, and face dimpling are three additional probable buckling

failure modes for the sandwich structure [130].

5. Fatigue failure accumulated by cyclic loading and passing through many phases
beginning with matrix cracking, delamination, progressive fiber breaking, and finally
fracture if it can be demonstrated that the structure can tolerate the degradations
inherent in the previous fatigue damage stages [130].

Erosion is an additional significant failure mode, contributed by various environmental
factors such as rain, dust, and sand. In plus, wind turbine blades' leading edge and tip are
particularly prone to erosion. Therefore, the basis for erosion protection must be expressly
indicated in the technical specifications for the blade, and relevant surface finishes must be
analyzed for projected erosion and tested at the highest projected surface temperatures if the
blade has anti-icing functions [130].
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Figure 25 depicts some failure mechanisms discovered in a wind turbine blade that was

tested to failure.

Figure 25. Failure modes identified in a wind turbine blade that was purposely tested to fail
[129]

Inspecting these blade conditions is an important first step in blade maintenance
which entails a thorough examination and evaluation of blades. Inspections result in findings
that are analyzed to see if blades can satisfy their design goals, such as resisting fatigue and
high structural loads during their entire design life and producing projected power levels
[130].

Typically, identifying the severity and/or criticality of a finding is part of the
assessment process; this procedure lends itself to grouping findings of common severity into
categories. There is no standard system for categorizing wind turbine blade damage or
defects. Turbine or blade producers, service providers and blade inspection/maintenance
firms, drone operators, turbine owners, operators, consultants, and industry groups have all

established and use various categorization systems [129, 130].

Individuals with varying levels of experience, knowledge, and motivations assign
categories. The majority of defect and damage classifications, and hence judgments about

repair execution and scheduling, are dependent on experience and judgment, as well as
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practical and commercial concerns like the season, accessibility, downtime impact, and crew
and material availability. Quality systems for blade and turbine manufacturers often set
acceptance standards for faults, and structural repair guides typically define damage repair
limits [129, 130].

Table 1 shows a variety of failures and faults in wind turbines as described in the
presentation produced by Find M. Jensen, Bladena, with an additional column for failure
categories based as published by Strange Skriver from Danmarks Vindmglleforening [129].

Table 1 : Variety of wind turbine failures and faults (Find M. Jensen, Bladena) and its

failure categories (Strange Skriver from Danmarks Vindmglleforening) [129]

Failure mode Category Reason

Interlaminar failure V2-V3 Brazier effect, Bending
moment

Delamination — faulty V1

injection

Peeling / wear V1 Wear

Erosion of the sealing of V2

the root

Flacking of the topcoat V1 Air bubbles from the
manufacturing/poor quality

Missing external parts V2-V3 Flacking and external
objects impact

Fine cracks in topcoat V1 Low quality of material

Transverse cracks from V2-V3 Poor design

trailing edge

Transverse cracks on V2-V3 Poor design

blade surface
Front edge cracks
(transverse and

longitudinal)

Web failure V3 Brazier effect, Bending
moment, poor design

Fatigue failure in root V3 Poor design

connection

Fatigue failure in the root V1-V2
transition area
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Fatigue failure in bond V1-Vv2 Transversal shear distortion,

lines, longitudinal cracks Deformation of the trailing

in the trailing edge edge panels, Trailing edge
buckling

UV effect on the fibers V1 Wear, flaking,

Lightning damage V3 Lighting

Tower hit by blade V3 High Tip deflection

Balsa / composite
cracking (transverse and

longitudinal)
Transport damage V0-V3
Complete separation V3

Finally, the following figures are photographic examples of damage and defects taken
from an EPRI research of current blade maintenance procedures [131]. It is presented in this
section to provide an overview of the state of the industry in terms of categorizing damage

and faults, as determined by examining the findings of an industry survey.

Figure 26. Scratch in coating [131]

Figure 27. A small area of coating damage [131]
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Figure 28. Crack in structure at the leading edge [131]

Figure 29. Leading-edge erosion [131]

£

Figure 30. Leading-edge erosion with large exposed surfaces of fiberglass [131]
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Figure 31. Long leading-edge chordwise crack with spanwise cracking [131]

1.3 TECHNICAL, ECONOMIC, AND ENVIRONMENTAL CHALLENGES

Many challenges hinder the process of generating electricity from wind energy. They

fall under different orders: technical, economic, and environmental. Below is an overview.

1.3.1 Technical challenges

To further increase the performance of WT energy capture, longer and wider power
blades are being manufactured [132]. However, an increase in the size of WTB (Wind
Turbine Blades) is followed by the rise in the load, which directly affects the safety of WTBs
in the service and leads to fault formation [133]. Furthermore, during the blade development
process, some flaws may occur. In addition, blades can fail due to fatigue mechanisms when

exposed to multiple cycle loads over their lifespan [134].

Moreover, a high degree of reliability should be achieved to get the best possible
power production performance of the mounted wind turbine or increase the availability of
turbines [135]. The wind turbine blades are crucial in the efficient operation and wind power
plant reliability. Hence, high reliability can be accomplished by recognizing the early stages
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of blade faults formation to minimize its failure events and depends also on external, indirect
factors, such as the maintenance technique used, the availability of spare parts, the time

required to repair the wind turbine, etc. [135].

While the offshore repair time per failure of wind turbine blades is about 15 hours,
the onshore downtime per failure is about 100 hours [136], as shown previously in Figure
24. Hence, regular inspection and maintenance planning could make maintenance more
successful and reduce breakdown situations. Furthermore, wind turbines' operation and
maintenance constitute about 25-30% of the overall energy generation cost [137, 138].
Therefore, the maintenance plan should consider both the increase in reliability and the
decline in maintenance costs. The wind turbine operation, regular inspection, and
maintenance approach is geared towards improved condition monitoring systems [135].
Table 2 compares the cost and time of some non-destructive flaw diagnosis techniques. It is
seen that the detection method is either expensive or the acquisition of the results is delayed.

However, hyperspectral imaging is cost-effective and rapid.

Table 2 : Synopsis on cost and time of results of test methods

Test Method Cost Time of Results
Ultrasonics [139] Expensive Immediate
Eddy Current [139] Expensive Immediate
Infrared Very Expensive Delayed
Thermography [140]

Visual Testing [141] Unexpensive Immediate
Acoustic Emission Unexpensive Delayed

[142]
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1.3.2  Economic challenges

Wind turbines, including blades, poles, transport, and construction costs, represent
the primary cost portion of a wind farm, usually accounting for around 75 percent of the cost
of production [143]. For instance, rotor blades contribute to around 22.2% of the total 5 MW

wind turbine costs [143].

Wind turbines are typically designed to have a service life of approximately 20 years
withstanding the vagaries of a specific local wind climate class, but they can endure longer,
particularly in climates of low turbulence. However, some wind turbines were substituted
earlier due to their failures which increased the operation and maintenance costs of the wind
farm [143]. Moreover, according to a 15-year-long study performed in Germany, rotor blades
breakdown is found to be 7% reported of the total failures [144], as shown in Figure 32.
Moreover, wind turbine blade failure is very expensive, as when wind turbine blades are
damaged, the overall wind turbine in itself will be broken down. Thus, more wind loads faced
the neighboring wind turbines, which led in turn to its breakdown [145]. High construction
costs and high wind energy leveling costs relative to energy market rates are also
characteristics that need to be considered when calculating the feasibility of constructing a
new wind turbine [146]. Hence, regular inspection of blade failures can help decrease the

operation and maintenance costs of a wind turbine in particular and a wind park in general.
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Figure 32. Percentages of failure of wind turbine components [144]

1.3.3  Environmental challenges

Wind turbine blades are vulnerable to damage when continually working in harsh and
severe conditions, including moisture accumulation, sleet, ultraviolet irradiation, ambient
degradation, fatigue, and wind gusts or lightning strikes. Thus, WTB suffers from many faults
and damages [145]. For example, the abrasive airborne particles impact the blade's leading
edge and particularly the area close to the tip, characterized by its high velocity, and
ultimately lead to its erosion and cause delamination [147]. In addition, damage and cracks
can occur around the lightning attraction point [18]. Furthermore, the condition of low
temperatures and extreme icing contribute to imbalanced loads induced by ice mass on the
blades that increase fatigue and shorten the lifespan of the framework [148].

The key disadvantages of wind farms are the visual effect, noise emissions,
ecosystem-related problems such as environmental threats to flora and fauna, health risks due
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to electromagnetic fields and potential causes of accidents, and the end of life defined by the

wind turbine waste treatment [149].

For instance, the end-of-life wind turbine is a dilemma that is of high implication. A
new wind turbine is planned to run for an estimated 20 years. It must be either renewed or
recycled after this point. The critical issue with the decommissioning process for wind
turbines is that, except steel, copper, and aluminum, the glass fiber reinforced plastics (based
on polyester or epoxy) used in the rotor blades have proven difficult to recycle. The choices
for blade material waste treatment are mechanical recycling (which is a labor rigorous
process and uses the processed material as a filler in artificial wood, cement, or asphalt),

incineration, pyrolysis, and landfill, which is the worst alternative [150].

Furthermore, the Caithness Wind Farm Information Forum has published a
comprehensive table covering all reported cases of accidents and incidents related to wind
turbines that have been identified and verified by press coverage or official releases of
information up to 30 June 2020. The data include human incidents (deaths, injuries, etc.), fire
accidents, failures of wind turbine components that cause significant harm (failure of
structural parts, blade failures, etc.), damage to building and transport, ice throwing, damage
to the atmosphere (damage to animals mainly to birds, oil leakage contamination, etc.). This
data clearly reveals that the most common wind turbine accident is blade failure, closely
followed by fire [151]. A chronological overview of the accidents discussed earlier is shown

in Figure 33. The pattern is as predicted — more incidents occur as more turbines are installed.
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Figure 33.

To reduce the listed environmental risks, existing wind turbines should be inspected
regularly to detect the blade flaws at their early stage of formation and maintained

immediately to avoid replacing them with a more significant number of new parts for the

wind turbines.

Wind turbines accidents and incidents [151]

1.4 DETECTION METHODS: ADVANTAGES AND INCONVENIENCES

Several reviews on damage detection methods were presented. Shohag et al. presented
a fault diagnosis of the rotor blade with structural health monitoring (SHM) [18]. Yang et al.
did a review on all NDT used in the fault detection in wind turbine blades [152]. To avoid
premature defects and high maintenance costs, a routine inspection of the wind turbine blades
must be done[153]. Different methodes are employed for this aim, but each has advantages

and limitations. This section summarizes the techniques that can be used to detect crack and

erosion on the wind turbine blade.
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1.4.1  Acoustic emission testing

The acoustic emission method passes a signal from a source through a propagation
medium and is captured by a transducer [154, 155]. This latter sends an electrical signal,
which parameters indicate the tested sample's state [156, 157]. The wind turbine blades emit
a non-stationary time-varying acoustic emission signal in the presence of mechanical
breakdowns or material defects such as cracks and erosion [141, 157, 158]. This method can
inspect, even during operation, large areas and many micro-damage types [152, 155].
However, the static condition is not covered, and errors in processing algorithms can lead to
misleading results [159, 160].
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Figure 34. Acoustic Emission Testing Process [161]
1.4.2 Infrared testing

Every material whose temperature is over OK emits infrared radiation due to the
movement of its molecules. This radiation can be measured using an infrared thermal imager
receiver [162]. This latter transfers the energy disseminated onto a photosensitive element
[158]. Infrared thermography displays the heat variation of the examined sample on the
monitor. In the presence of blade defects, the cooling during the heat conduction process is
disturbed [163]. The size and shape of the flaws are visualized [164]. This method is highly
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sensitive, efficient, and relatively easy to implement [165]. Nevertheless, it is costly and hard

to detect a point temperature [166].
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Figure 35. Infrared Testing Process [167]

1.4.3  Fiber grating testing

This method draws incident light into the fiber core using the light sensitivity of
optical fiber materials. Therefore, its sensor measures the refractive index variations inside
the fiber core [168]. A fiber grating sensor can be positioned anywhere on the wind turbine
blade to test and detect any damage signal. Then, the blade damage can be identified by
analyzing the data [169]. This method helps predict blade lifetime and its stress level.
Furthermore, it works for either static or dynamic signal defect detection [158]. Yet, this
method has many drawbacks for long-term monitoring, such as its sensitivity to power source

alterations [17].
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Figure 36. Fiber Grating Testing Process [170]

1.4.4  Ultrasonic testing

This method uses the change of materials’ ultrasonic diffusion wave reflection and
energy during the conveyance to detect internal faults [157]. The transit time is used to
calculate the distance between the surface and the imperfection. Furthermore, the flaw size
is determined by referring to the echo signal’s size and the transmitting transducer location
[155]. In the presence of defects, the received signal has reduced wave amplitude and
velocity, variation in frequency, and others [157, 160]. This method is rapid and inexpensive.
It is also effective, delicate, and secure. Nonetheless, it is a tough inspection technique,
especially for non-smooth surface evaluation, and pretentious to subjective and objective
factors [141, 155].
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1.45  Guided wave testing

This method uses an actuator that generates a high frequency of guided waves [172].
They act as stress waves and propagate following the studied sample’s boundaries [173]. If
the guided waves diffuse in all directions and their regular pattern is changed, structural
damage such as cracks and erosion is present [152]. This method can inspect large areas for
external and internal flaws not far from the sensing equipment [174]. However, the guided

wave detection method’s equipment is expensive and occupies large spaces [175].
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Figure 38. Guided Wave Testing Process [176]
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1.4.6  Thermal imaging

This method uses the thermoelastic effect [177]. In other words, variations in stresses
lead to variations in temperature detected by sensors or cameras [17]. Higher temperature
indicates the presence of defects in the tested region [178]. This method helps in structural
health monitoring by locating hot spots on the blade and reducing the damage [178].
However, it is a costly method. Moreover, conduction and convection processes affect the
spotting of temperature variations that make the inspection more difficult on a localized scale
[179].
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Figure 39. Thermal Imaging Process [167]

1.47  Terahertz imaging

This technology inspects dielectric structures in a non-ionizing, non-invasive, and
non-contact manner by propagating electromagnetic radiations with frequencies ranging
from 0.1 to 10 THz [152]. The refractive index shows variations in the presence of flaws
[164]. Flaws are detected using pulse terahertz time-domain spectroscopy, and thickness is

calculated by comparing the hindrances of the propagating pulses and their echo [180].
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Although this method is recommended for detailed inspection of the defect area [181], its

main drawback is the duration, as the analysis is done point by point [164].
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Figure 40. Terahertz Imaging Process [182]

1.4.8  Visual inspection

This procedure is dependent on the technician's experience and vision [183]. Its
current applications are being broadened to be performed remotely [184] via drones that scan
and send the image to a processing algorithm for further investigation [185]. This method is
cheap as no equipment is required if done manually without the use of drone and camera.

However, it is time-consuming and affected by human subjectivity and light conditions [186].
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Figure 41. Visual Inspection Process [187]

Figure 42. Unmanned Vehicle [188]

149 Tap test

This method entails lightly striking the inspected structure and listening for variations
in emitted sound caused by material changes, thickness variations, or the existence of
material degradation or defects [152]. It can also be automated using a Computer-Aided Tap
Tester System [163]. This method helps discover irregularities in the tested sample, and its
results can be automated [189]. However, it leads to ineffective results for thick structures
[181].
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Figure 43. Computer-Aided Tap Tester System [190]

1.4.10 Electromagnetic testing

This method uses electric or magnetic fields and studies the electromagnetic response
of the structure [141]. An example is the Eddy Current Testing that produces eddy currents
at the magnetic field application on a sample [191]. The coil impedance and the intensity of
these currents change in the presence of faults [192]. This technique is cheap, simple, and

can detect surface and subsurface flaws [165]. However, it is a time-consuming job [152].
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Figure 44. Electromagnetic Testing Process [193]

1.4.11 Vibration analysis

This method is based on applying external forces to the investigated structure and
studying its dynamic response as represented by modal specifications and vibration
characteristics [194]. The change in these responses can detect the flaws, and the location
can be determined using vibration transducers [160, 189]. This method can be applied during
both the static and fatigue laboratory tests of wind turbine blades [181]. Nonetheless, it is
untrustworthy for structural health monitoring since the many transducers on the blade can
produce false data [155].
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1.5 CONCLUSION

To summarize, Chapter 1 presented the different types of wind turbines and their main
components, statisticts on wind turbines failures, some challenges facing the development of
the wind energy sector, and finally a review on some methods used in the wind turbine blade
monitoring industry for surface defects. However, the following chapter will present an
extensive literature review on icing morphology and accretion phenomena, and the detection
methods used for this external problem. Additionally, the drawbacks of ice accumulation on

wind energy production are cited.
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CHAPTER 2
CRITICAL DISCUSSION OF ICING DETECTION METHODS

2.1 ICING PHENOMENA AND IMPORTANCE FOR WIND ENERGY PRODUCTION AND WIND
TURBINE SAFETY

While the windy seasons and increased air density with the falling temperature make
winters the optimum season for wind energy harvesting, wind turbine icing is the most severe
hazard to the integrity of wind turbines in cold locations. While total wind power capacity
reached 800 GW globally in 2020, including 120 GW in the United States alone, statistics
from the International Energy Agency TCP Task 19 of "Wind Energy in Cold Climates"
show that wind power installation in cold climates accounts for 30% of total installed wind
power capacity worldwide. In the climate regions of North America, Europe, and Asia,
respectively, 72 percent, 94 percent, and 19 percent of wind turbines are exposed to various
icing incidents [196].

It has been discovered that even a mild icing event, such as frost, can cause enough
surface roughness on turbine blades to significantly lower their aerodynamic efficiency,
resulting in significant wind turbine power reduction. In the event of severe ice, the wind
turbine may be unable to start, resulting in the loss of all available electricity for extended
periods [197].

Wind turbines in Sweden, for example, were reported to have been shut down for
over seven weeks during the best operating season due to icing in the winter of 2020. Since
February 14, 2021, numerous wind turbines on Texas wind farms have been forced to shut
down due to a winter storm that battered the state. Millions of Texans were affected by the

over week-long blackouts in Texas, which were partly blamed on frozen wind turbines [196].



During wind turbine operation, ice accretion and irregular shedding can cause load
imbalances and excessive rotor vibration, which can cause the wind turbine to shut down.
Icing can potentially cause structural failures in tower structures by raising strains, especially
when combined with high wind loads. The icing was also discovered to influence
anemometer dependability, resulting in erroneous wind speed measurements and resource
calculation inaccuracies. Because of falling and anticipated huge ice chunks, icing difficulties
can directly impact worker safety in the surrounding area. It's worth noting that the icing risk
is typically greatest in places where wind turbines are best suited, such as northern latitudes,
offshore wind farms, and high elevations. In cold weather, wind turbines in these areas are
more prone to water contamination and icing [196].

According to a field study done by Gao et al. (2021) to illustrate the effects of ice
accretion on the power production of utility wind turbines, it was found that, despite the high
wind, frozen wind turbines rotated substantially slower and even stopped down repeatedly
throughout the icing event, with icing-induced power losses of up to 80% [198].

Various types of icing may appear at various locations. Precipitation icing, in-cloud
icing, and frosting are the most common types of wind turbine icing. Precipitation icing is
separated into two types: wet snow and freezing rain, and in-cloud icing is divided into two
types: rime icing and glaze icing [196].

The occurrence of freezing drizzle, freezing rain, or wet snow is connected with
precipitation icing. When drizzle or rain droplets fall onto a cold surface, they freeze over
with a relatively high ice density and adhesion strength, resulting in freezing drizzle or rain.
The drizzle or rain droplets are much larger than the freezing fog for in-cloud icing, ranging
from 50 microns to 5000 microns [199-202]. Wet snow is most common when the air
temperature is between -3°C and 0°C. Wet snow adheres to blade surfaces significantly more
easily than dry snow [203]. Frost icing occurs when the surrounding temperature is below
the freezing point of water and ice forms on cold surfaces. In comparison to other types of
icing, frost icing frequently happens overnight with a lower chance of occurrence [204-207].

When super-cooled water droplets in the environment, such as freezing fog, impinge

on a cold surface and freeze into ice, this is known as in-cloud icing. The droplets are usually
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smaller than 50 microns in diameter. In-cloud icing is the most prevalent type of atmospheric
icing, and it typically lasts for a long time, making it the focus of wind turbine icing research
[208-212].

Rime icing is most common in areas with relatively dry air and a colder ambient
temperature, mainly below 20°F, which is typical of wind turbines in lowa and other Midwest
states. Glaze icing is typically seen for wind turbines located along the coast in the Northeast
States and is connected with highly wetted air and warmer ambient temperatures mainly
above 20°F. The most hazardous sort of ice is glaze ice. Because of its wet nature, glaze ice
would form far more intricate ice formations over turbine blades. Glaze ice, as opposed to
rime icing, could have a bigger impact on the aerodynamic performance of turbine blades,
resulting in a considerably higher icing-induced power loss for wind turbines. When the cold
air from the north collided with the wet air from the Gulf Coast during the disastrous energy
collapse in February 2021, this is believed to be what happened to the frozen wind turbines
in Texas [196].

The development of effective and reliable anti-/de-icing devices for wind turbine
icing mitigation and protection necessitates a thorough understanding of the underlying
physics, including how ice forms and the performance reduction caused by ice on turbine
blades [196].

Moreover, studies describe that ice accretion on solid surfaces can be measured in three
ways. It can be directly measured by revealing the variations in physical properties such as
mass, inductance, thermal conductivity, and others. However, indirect measurements are
related to the change in meteorological situations indicating icings such as wind speed,
humidity, and temperature. Moreover, a decrease in power production or other icing effects
is also considered in indirect methods [213]. In comparison, numerical modeling is based on
creating an empirical model that determines the duration and severity of icing situations
[214].
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2.2 ICING DETECTION METHODS: ADVANTAGES AND INCONVENIENCES

Several reviews on icing detection methods were presented, and relative conditions for
ice accretion measurements and various methods employed in ice detection and de-icing
systems. Parent et al. described the ice precipitation phenomena and its different types [213].
To avoid premature icing formation and high maintenance costs, a routine inspection of the
wind turbine blades must be done[153]. Different technologies are employed for this aim,
but each has advantages and limitations. Some of these technologies are presented in this

section.

2.2.1  During the site assessment stage

To evaluate a blade heating system financially, the severity of icing and the potential
wind energy during the icing event should be determined [215]. For that, the geometry and
operation of the turbine and the weather conditions related to icing events (liquid water
content, temperature, pressure, etc.) should be studied [213]. Unfortunately, the
measurements of these meteorological parameters are costly or complicated. Furthermore,
icing duration is empirically calculated [216], and its severity is barely accessible [217]. We
should also note that the icing events should be measured reliably at the same elevation of
the top blade tip [214] in the intended implementation site [218] with a radial distance from
the turbine of 1 km [215].

The following lines describe the icing evaluation methods during the site assessment

phase.

2.2.1.1 Double anemometry and vane

Icing occurrences can be identified using heated and unheated anemometers when the
difference in observed wind velocities exceeds 5% [219] and sometimes can achieve 20%

for values above 2 m/s [220]. This method is cheap, can depict the ice climate and its
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persistency [219], and is reliable at temperatures around 0°C [221]. However, Craig proposes
the use of a permanently heated anemometer, an unheated anemometer, and an intermitently
heated anemometer. This latter is used when detection of 15% difference in wind speeds is
measured using the other anemometers. With the relative humidity measurements, these
methods can determine the duration of the ice that affects the blade's performance [222] by
correlating it to the duration of ice disturbance of the unheated anemometer [219], which is
longer than the real icing period. Nevertheless, the main drawback of the double anemometry
method is the difference in elevation between the anemometer and the blade where ice is
mostly accumulated [223]. Other disadvantages can be the false indication of icing provided
by the unheated anemometer and caused by low temperatures [219], as this equipment
displays both higher and lower wind velocities. Furthermore, at zero wind, no indication can
be provided [224] and at higher values, snowfall can be occurring. Whereas, at lower values,
inertial characteristics can affect the measurements and provide misleading results.
Although, Talhaug suggests calculating the standard deviation of an unheated wind
vane, at temperatures below zero, from 6 succeeding 10-minute averages to state the

occurrence of an icing event [213].

Figure 46. Anemometer and Vane [225]
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2.2.1.2 Ice sensors

Ice sensors can be found based on many methodes such as vibrating probes,
longitudinal wire waves, ice mass measurement method [226], and others [223, 227].
However, they are either costly or inaccurate, unreliable, and asynchronous [223].
Sometimes, ice sensors undervalue the icing conditions due to the heating cycle. For that, a
heated detector should be used to determine the severity of the icing event and an unheated
one to define its duration [213, 223].

Figure 47. Ice Sensors [228]

2.2.1.3 Visibility and cloud base

In-cloud icing is formed when an object is bounded by a cloud at an approximately
wind velocity of 2 m/s and a temperature less than 0°C. Clouds can be spotted using
horizontal visibility or the cloud base height via airport observation, video monitoring, a
pyranometer, or automatic sensors.

Ice accretion is detected when the cloudiness index measured by the airport
observation is higher than 6/8, and the wind turbine is higher than the cloud base altitude. Its
intensity can be measured using this index [220]. Furthermore, cloud density can be
numerically determined by video monitoring using tinted poles far from the met mast of 50
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m to 300 m [229]. At the same time, a pyranometer can detect icing when its measurement
of solar radiation intensity is less than 300 W/m? [216]. Lastly, radar and microwave
radiometers can estimate the liquid water content quickly and automatically detect icing
events [230].

However, this method is very costly and underestimates the real ice accretion [223].

Figure 48. Visibility and Cloud Base Detector [231]

2.2.1.4 Relative humidity and dew point

Ice events can be identified by detecting humidity higher than 95% with temperatures
below 0°C. Furthermore, it can also be done using a dew point detector [222]. The first
method is more applied, but icing conditions are not detected simultaneously with the ice

detectors, and thus the expectedness of icing events is low [213, 223].
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Figure 49. Dew Point Detector [232]

2215 Models

Icing events can be detected using physical mesoscale models and statistical models
that consider further information such as temperature, wind speed and direction, cloud cover
and height, and others. Using this method, the frequency and rate of icing can be determined
[213, 215].
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Figure 50. Example of Mesoscale Model [233]

2.2.1.6 Other methods

Icing incidents can be observed visually by videotaping guy cables, and their thickness
can be calculated after taking into account the influence of wire vibration. The results of this
method can be amended using the airport observations of cloud base [234]. Furthermore,
icing conditions can be spotted using damage examination, such as the failure of power lines

or climatic poles due to resonance or buckling [213, 224].

2217 Recommendations on methods

Freezing precipitation and in-cloud icing are responsible for the different results of

the ice detection methods, which none are always reliable and accurate [235]. It is
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recommended to measure icing events along with the assessment phase for a minimum of 1
year using these methods. Furthermore, at least two methods should be used simultaneously
to facilitate the estimated icing events. None of them shows preeminence on others, and each
one is appropriate to specific weather and determination [223]. For instance, an ice detector
could be used with the onsite weather indications. Moreover, the severity, which affects the
whole ice resulted in production losses, and the duration of icing events, which affects the
required heating energy, should be measured via different devices [213].

To have an illustration of the available icing conditions inexpensively, one heated and
one unheated anemometer should be installed on the tested mast, and chronological cloud
base height results should be compared to the nearest airport observations. In addition to that,
a dew point detector intended for the subzero process could help detect the occurrence of in-

cloud icing events [222].

2.2.2  During the operation stage

An optimized blade heating system is significantly related to an excellent controlling
ice detector [236] that spots ice at its accretion start [237] and by that prevents power
production losses that can sometimes attain 15% [238]. Although blade de-icing techniques
operated successfully, the ice sensors could not consistently spot the beginning of icing
events [214]. Moreover, ice detection on wind turbines should be measured by locating the
sensor, having a high sensitivity to detect small accretion, on the blade tip. It should be able
to spot icing at different points on the blade [213]. Some of the methods that respect these

requirements are cited in the following lines.

2.2.2.1 Multiple anemometry

This method is already explained in the assessment section. The biggest disadvantage

is the elevation difference between the anemometer's highest attainable location, the nacelle
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roof, and the blade tip, which makes detecting all in-cloud icing incidents more difficult.
Furthermore, the turbine wake effect should be taken care of to prevent misleading results
[235].

2222 Ice detectors

It is the same method described in the assessment section and most used in anti-icing-
de-icing-system controlling. A heated detector is used to measure the severity of icing and
the unheated one for its duration [223]. However, slight ice masses cannot be instantly
detected [215].

2.2.2.3 Video monitoring

A webcam in the hub placed on the expected pressure side of the iced rotor blade can
be used to test the blades’ surface and compare its appropriate resulting information with
others ice detection techniques. The main drawback of this method is that it is costly, a non-
stop monitoring, and depends on the visibility of the controller [224]. Thus, it can be

appropriate for a short duration of testing [214].

ViewEye

Figure 51. Video Monitor [239]
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2224 Power curve

Continuous monitoring and comparison between calculated and actual production
power curves with temperature and air pressure measurements should be made to detect icing
events for stall regulated wind turbines where a power decrease of 50% is suggested as a
datum [223]. The difference between the calculated production power curve, indicated by the
anemometer, and the actual production power curve, based on the ice detectors [219], can be
present for reasons other than icing [214].
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Figure 52. Theoretical and Actual Power Curves [240]

2.2.25 Vibration and noise

Vibration sensors can be linked to the de-icing control system to detect unusual high
vibrations [222]. After that, the blade starts heating at the onset of turning off the turbine
[223]. Small masses of ice accretion can also be detected by noticing the rise of aerodynamic
noise from the rotor blades at higher frequency ranges [224]. Furthermore, more studies

should be done to determine how the results are affected by the changes in wind velocities
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and background noises [213]. Along with stall operation, icing cannot be spotted using these
two methods [223].

Figure 53. Vibration Sensors [241]

2.2.2.6 Recommendations on methods

To summarize the study results done by Homola et al. (2006), none of the 29 tested
icing detection methods always show reliable results [214]. The fundamental issue limiting
the methods' implementation is that the equipment utilized in various ways, such as double
anemometry and ice collecting cylinders, is situated on the nacelle of the turbine rather than
on the blade tip. Furthermore, the most suitable methods for icing detection on wind turbines
are the installation of ice sensors near the blade tip in an inner ultrasound of the blade and a
capacitance, impedance, or inductance-based sensor, infrared spectroscopy via fiber-optic

wires, and a flexible resonating diaphragm [213].
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2.3 CONCLUSION

To summarize, the icing phenomena has been presented in this chapter. In addition to
this, some of the methods for detecting icing events have been detailed in this chapter. In
spite of the various methods presented, none of these methods presents a powerful method;
each of these has its corresponding disadvantage from misleading induction due to the
anemometer-blade tip elevation, visibility, sensitivity to temperature and humidity, and the
power drop for various reasons. All these drawbacks can be overcome by the use of
hyperspectral imaging technology which is presented in Chapter 3 and its experimental icing
results are presented in Chapter 7.
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CHAPTER 3
SYNOPSIS ON HYPERSPECTRAL IMAGING TECHNIQUE

With the advancement of remote sensing technologies, the usage of hyperspectral
imaging is becoming incrementally pervasive. Hyperspectral imaging is based on the capture
of images in adjacent-continuous visible and infrared wavelengths [242]. It combines
standard imaging and spectroscopy to obtain spatial and spectral information about a sample.
This technique allows researchers to analyze the composition of the specimen and
synchronously visualize its spatial distribution [243]. Accordingly, they obtain a reflectance
spectrum for each pixel of the scene, which allows them to use this signature in various fields

of application to find objects, identify materials, or detect processes [244, 245].

3.1 COMPARISON AMONG BROADBAND, MULTISPECTRAL, HYPERSPECTRAL, AND
ULTRA-SPECTRAL IMAGING

Figure 54 depicts the distinction between multispectral and hyperspectral imaging.
Broadband sensors often generate panchromatic pictures with wide bandwidths. For
example, WordView-1 produced panchromatic images with a high spatial resolution of 50
cm. Most multispectral imagers use four fundamental spectral bands: blue, green, red, and
near-infrared. Some multispectral imaging satellites, such as Landsats 7 and 8, have
additional spectral bands in the shortwave infrared (SWIR) region [246]. Hyperspectral
imaging systems are intended to capture images abounding hundreds of contiguous,
continuous spectral bands with standard bandwidths of 10 nm or less. The NASA JPL
AVIRIS airborne hyperspectral imaging sensor, for instance, collects spectral data across 224

continuous frequencies, each with a bandwidth of 10 nm and a spectral range of 400 to 2500



nm [247]. Ultra-spectral imaging sensors with very fine spectral resolution could be
designated for interferometer imaging sensors. Because of the high data rate, these sensors
frequently, but not always, have a limited spatial resolution of only a few pixels [246].
Therefore, the distinction between these remote sensing techniques is not only based on the
number of bands used or the type of assessment but also on the continuity between the

spectral bands and their spectral resolution.

Broadband l m SWIR LWIR

Band Band Band Band Band Band
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Figure 54. Comparison among the remote sensing technique

By way of illustration, Figure 55 below illustrates the previous explanation; an apple
can be analyzed differently by using one of the three spectral imaging classes. First, the
broadband, this remote sensing technique, has a single spectral band. Second, the
multispectral image is presented where the intensity of the apple can be seen by the bar chart
in Figure 55. The resulting image contains only several spectral bands, less than 10. In the
third class, the result of a hyperspectral imager is presented, where a spectral signature of the

apple is obtained with over 100 spectral bands [248].
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Figure 55. Comparison among broadband, multispectral and hyperspectral

3.2 CONCEPT OF THE HYPERSPECTRAL CUBE

In a metaphorical sense, hyperspectral sensors collect data as a series of pictures. Each
image represents a spectral band, which is a wavelength range of the electromagnetic
spectrum. These series are combined to generate a spectral cube. This spectral cube is a three-
dimensional hyperspectral data cube for processing and analysis. The x and y axes represent
the scene’s two spatial dimensions, and the A ax represents the spectral dimension [249],

presented in Figure 56.

The (X, y, A) spectral cube represents the different layered and graphical thicknesses
that could be useful for the overall image analysis. The magnitude of the spectral signature
is computed by mapping a color to the intensity of the spectral response at various
wavelengths over a specified spatial area. Because these 3D cubes are formed over a wider
area than the focal plane array can capture in a single frame, the second dimension of the
spatial image develops over time [249, 250]. So, spatial resolution is a critical element
recommended for discriminating attributes. However, this attitude of visualizing allows you

to identify specific spectral properties in a scene [251].
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The hyperspectral cube, often known as the hypercube, is a potent and vigorous
element for visualizing data in terms of spatial and spectral properties that would otherwise
be impossible to display in a single format[249, 251]. This hypercube is frequently used as
an analytical tool at the initial data analysis and exploitation step. As the spectral and spatial
dimensions decrease, the amount of data required to generate the hyperspectral data cube
increases. This will lead to a massive volume of computational data [251]. Lossless
compression ensures that no data is when restored. Thus, the need for lossless image
compression is required; yet, this type of compression may be ineffective in some
applications because it does not provide a significant data reduction. The criticality of the
data defines whether image compression can be applied.

Figure 56. Hyperspectral data cube

3.3 THE NEED FOR DIMENSIONALITY REDUCTION

Hyperspectral images include far more information than conventional RGB imagery,
which has both benefits and drawbacks. In fact, hyperspectral imaging of a scene can
generate a hypercube of order gigabytes in size. This huge amount of data is one of the key

drawbacks of this spectroscopy technic [249]. However, more than 90% of the information
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may usually be explained by a small amount of the data due to considerable redundancy. This

promotes the reduction of the size of hyperspectral images [248].

In practice, hyperspectral imagery leads to images of enormous size. Presently, the
volume of data delivered is constrained by existing bandwidth and onboard storage space.
As a result, the compression step becomes an essential aspect of the acquisition system to
improve the ability to store, access, and transfer information [252]. Time continuous
acquisitions can be made possible via onboard compression in space probes or satellites. The
compression should ideally be lossless to ensure the highest possible information quality. On
the other hand, lossless compression algorithms do not provide compression ratios greater
than two or three [253, 254].

Because compression algorithms must be executed onboard prior to space-to-ground
transfer, information losses due to compression will be irreversible [252]. Although the loss
of information may be tough to believe, it will allow sensors to gather and send more images
at a faster rate. Additionally, suppressing less significant information allows for the
acquisition of more beneficial information. Together with the previously mentioned high
redundancy in hyperspectral acquisitions, these considerations make users more prepared to
accept lossy compression, also known as “data reduction.” This is mainly accomplished by
dimensionality reduction methods applied to the hyperspectral image [255, 256]. Hence, by
applying these methodes, the spectral dimension A of the 3-D data cubes (X, y, A) is reduced

by their index number.

3.4 HYPERSPECTRAL IMAGE WORKING THEORY

After describing the hyperspectral image, it is time to present the fundamental principle
of operation of the hyperspectral sensor. Imaging spectrometers are used to generate
hyperspectral images [251]. These advanced sensors are made by integrating remote sensing
and spectroscopic technology [250]. Spectroscopy is the analysis of light beams that are
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emitted or reflected by materials, as well as its energy variation with wavelength. By means,
spectroscopy represents the amount of electromagnetic radiation in a wavelength. As applied
to the field, the hyperspectral sensor receives the reflected light from an inspected target and
converts this radiation into an electrical signal. Four basic components are required to
accomplish this process. A focusing lens and a slit, as its name implies, focus the incoming
light onto the sensor in an incredibly thin but wide light beam. An optical dispersing element
such as a diffraction grating or prism in the sensor splits this inbound light into a spectrum
of many narrow, adjacent wavelength bands. And the energy in each band is measured by a

photoreceptor [249].

Dispersed Spectrum

Near Infrared
Diffraction Grating

Spectral Band Collectors

Focusing Lenses
and
Collimating Slit

Incoming Light

Figure 57. Elements of a hyperspectral imaging sensor

Figure 57 presents a graphical illustration of the elements of a hyperspectral imaging
sensor. The lens of the hyperspectral imager acquires reflected light as the airborne, or
spaceborne sensor hovers over a target zone. The gathered beam goes through a series of
lenses. The light is focused by the lenses to generate an image of the ground. Once the
incoming light is focused by the lenses, the beam enters a slit through which only a very thin,
flat beam can pass. The permitted beam is projected onto a diffraction grating. A diffraction
grating is a finely etched reflective surface that scatters light extremely accurately in its

spectrum. A charge-coupled device (CCD) receives the scattered beam. These photoreceptors
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measure the spectral intensities of the scattered beam. They then transform the measured
intensities into electrical signals [249, 251]. As shown in Figure 58, the output from the

photoreceptors includes electrical signals for each of the spectral bands for each of the pixels
in the image.

Imaging §
Target

Hyperspectral
datacube

Transmission

: Spectra recorded
Grating

by imaging sensor

Figure 58. Hyperspectral operating theory

As the fundamental theory of the hyperspectral operating principle is developed in
the preceding paragraphs, the hyperspectral data cube, shown in Figure 58 above, can be
produced by using three main scanning modes. These modes are known as whiskbroom (or

point scanning), pushbroom (or line scanning), and staredown (or area scanning) [246], and
are seen in Figure 59.
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Figure 59. Whiskbroom, pushbroom, and staredown spectrometers outputs [257]

The table below summarizes the three scanning modes listed above.

Scanning Mode

Table 3 : Scanning modes

Whiskbroom / Point
Scanning

Pushbroom / Line Scanning

Staredown / Area
Scanning

The whole spectrum is
obtained at a single point of
the scene. Light from this
location passes through the
objective lens, where it is
divided into wavelengths by
a spectrometer and detected
by a linear array detector.
After accomplishing
spectral acquisition, another
point’s spectrum can be
captured.

To complete the hypercube,
scanning must be done in
both spatial dimensions
[249, 251].

The spectra of all pixelsin a
single image line are recorded
at the same time. This method
yields a two-dimensional data
matrix with one spatial and
spectral dimension. While
scanning across the target area
in a direction perpendicular to
the imaging line creates the
datacube’s second spatial
dimension. This necessitates
relative movement between the
scanned sample and the
hyperspectral sensor, by
moving one of the two
elements (sample or sensor)
while maintaining the other in a
fixed location [249, 251].
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A two-dimensional data
matrix is acquired by using
this mode, but the
collected data represents a
more traditional image
with two spatial
dimensions. Thus,
collecting a sequence of
these photos for one
wavelength band at a time
yields a complete three-
dimensional data cube. In
this mode, a tunable filter
is used to adjust the
wavelength of the
incoming light [249, 251].



3.5 APPLICATIONS OF HYPERSPECTRAL IMAGING

Although hyperspectral technology has been in the area for a few years, it has been
integrated into various fields, but it has largely been dominated by government and military
institutions. Particularly, the American Army deployed a program specified to the detection
of landmines spectral characteristics entitled “Hyperspectral Mine Detection Phenomenology
(HMDP)” [258]. However, agriculture and mining have traditionally dominated non-military
applications. The use of commercial off-the-shelf computing equipment to perform real-time
analysis of hyperspectral imaging data is a relatively new discovery [249]. For instance,
airborne crop measurement is a popular hyperspectral imaging use. A hyperspectral sensor
is used to fly over cropland in this manner. The results are evaluated to spectral characteristics
of common crops. Rural economists can estimate crop yields for the coming harvest more
promptly using this strategy [243, 256]. Aside from that, here is a list of some of the most
common hyperspectral imaging applications. First, in the field of biotechnology, the use of

hyperspectral technologies in biological and medical applications has grown in popularity.

Obtaining usable data in the laboratory is simple and rapid. They are mainly employed
in cell biology research, fluorescence microscopy, and wound investigation. Second, this
technology is booming in popularity for monitoring environmental changes. It is widely used
to figure out how much CO: is released into the atmosphere, track pollution levels, map

hydrological formations, and more [244].

Third, hyperspectral imaging is widely used in the food industry for a number of
purposes, including apple bruise detection, seafood freshness inspection, citrus fruit
inspection, sugar distribution in melons, and potato sorting [259]. Apple bruise, for example,
is not evident at first and takes a few days to develop a dark color imprint. As a result, this
technology can be used to trace the early stages of a bruise for quality control purposes.
Moreover, as hyperspectral imaging is known in the quality control fields, it is commonly
used to manage drug packaging and powder mixing, as well as to monitor illegal or

counterfeit drugs. Similarly, in the realm of medical diagnostics, it is utilized for illness
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diagnosis and prevention, including the early identification of cancer and retinal disease. As
hyperspectral imaging technology can distinguish precise spectral resolution, thus it is an
ideal technique for forensic laboratories [251, 260]. It can make the difference between
analyzing questioned documents, visualizing bloodstains, fiber composition, fingerprint

enhancement, and many other forensic studies.
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CHAPTER 4
PRELIMINARY STUDY

Before beginning our research, we explored the possibility of using hyperspectral
imagery in WTB monitoring to detect surface defects and ice accretion. We have created a
preliminary experiment for this purpose, in which we will focus on detecting cracks, erosion,
and ice on composite plates imitating the WTB composite. However, this preliminary study
is published in “Remote Sensing Applications: Society and Environment” with an article title
“hyperspectral imaging applied for the detection of wind turbine blade damage and
icing”’[261].

4.1 MATERIAL PREPARATION

As samples, three fiberglass composite plates measuring 30 cm in length, 21 cm in
width, and 0.5 cm in thickness were employed, see Figure 60. Each sample contains one of
the three types of induced defects defined above. Each defect was tested in detail aside. These
two induced defects are of the same length of 1.5 cm and the same depth of 0.05 cm, as
sho™wn in Figure 61, but the only difference is that the erosion appears on the edge of the
corner of the sample, but the crack emerges in the middle of the fiberglass sample. Similarly,
a portion of the third sample is covered with 0.5 mm thick ice. Spectral signatures are
obtained using an ASD FieldSpec4 spectroradiometer, presented in Figure 62. The spectral

range of this spectroradiometer is 350 to 2500 nm, with a spectral sampling of 1 nm.



Figure 61. Faults on the tested specimen

Figure 62. ASD FieldSpec4
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4.2 EXPERIMENTAL PROCEDURE

After preparing the fiberglass samples with the corresponding defect, the methodology

that was used is as follow:

Each of the samples was induced with one type of surface defect. Also, to prepare the
ice sample, cold water was sprayed on the sample and put in the freezer at a temperature of -
27°C. Then, the signature of each defect was retrieved, and the signature of the fiberglass
was used as a reference. The faults were dispersed on the fiberglass image at different
locations. To clarify, the crack signatures can be found in different pixels in the normal
fiberglass imaging data. Similarly, in the case of erosion, the image has the same number of
defects. Ice signatures can be found in an area of the fiberglass image in the case of ice. The
hyperACE algorithm is then employed in the detection procedure, which is based on the

cosine/coherent adaptive estimator technique described in Appendix I.

To detect lighter defects using HSI (HyperSpectral Imaging), the spectral signature of
each defect is combined with the spectral signature of the fiberglass sample as described in
the following equation:

merged signature = a. fault signature + (1 — a).normal signature 1)

Where a denotes the fault signature percentage. After that, the merged signature is introduced
into the fiberglass sample image, which is then checked by the detection algorithm. By

merging the signatures, we are experimenting with the effect of fault size.

The datacube is subjected to a band reduction algorithm to determine the optimum number
of bands while retaining a high detection probability. Hyperspectral images usually present
a high degree of end-to-end spectral band correlation. Consequently, reducing redundant data
would reduce the volume of data that needed to be evaluated. So, to eliminate redundancy,
Mutual Information (MI) and Net Analyte Signal (NAS) are used (see Appendix I). The Mi
is a tool that compares two images and determines how similar they are. Thus, images with

low similarity are taken for further study in order to reduce duplicate information. Photos
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with minimal similarity are taken for further study to remove redundant information. The low
similarity image is next subjected to NAS, where NAS is a component of the analyte gamut
that is unique to that analyte (Lorber, 1986). Furthermore, NAS is a useful method for
determining a signal’s figures of merit. Later, these figures of merit are utilized to compare

different models in an optimum number of bands.

Figure 64. Acquisition of erosion signature

4.3 PRELIMINARY RESULTS

After the acquisition, the data processing in the hypercube is a crucial step before the

detection procedure. First, the spectral analysis is accomplished to differentiate the elements
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that make up the hypercube. It is based on a comparison of spectra in the data cube with a
target’s reference signature. This analysis will enable the detection of a target’s concentration

and distribution in a scanned image.

43.1 Crack

The spectral signature of the crack surface versus the normalized reflectance is
presented in the figure below.
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Figure 65. Spectral signature of cracked versus normal fiberglass composite

As shown in Figure 65, the spectral signature of the crack has a higher mean than that
of the fiberglass sample. We can deduce that the crack has the same signature shape but a
higher reflectance than the surface material. As stated in the previous section, several surface
cracks are present in the composite fiberglass, and a detection algorithm was tested on it. The
reflectance of the fiberglass sample is shown in Figure 66a. At the crack's position, the

reflectance reaches its maximum levels. The spikes in this figure can then be used to identify
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the location of these imperfections. Figure 66b depicts the detection probability of the cracks
provided. The detection probability changes based on the crack reflectance abundance factor
and its size. For example, the detection probability for an abundance factor of 80% of crack
was shown to be about 85% in this figure, while the detection probability for a full-crack
abundance factor was shown to be 100%, and the detection probability for an abundance

factor of 20% of crack was nearly 25%.
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Figure 66. Detection process of crack a) reflectance distribution b) defect probability

The detection probability of non-crack signature is less than 0.1, as indicated by the
blue plane. As mentioned in equation (1), the signature of the crack defect is combined with
the signature of the composite material. The merged signature will support our research on
the impact of surface defect size on HSI detection. The optimum number of bands is obtained
by reducing the image with the merged signature while preserving a high detection
probability. Mutual information (MI) reduces the 1827-band image to 193 bands, which is
then fed to the NAS algorithm for further reduction. Table 4 summarizes the results of band
reduction with different percentages of fault signature using NAS. The effect of size

reduction and different percentages of fault insertion on the detection probability is presented
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in Table 4. A good detection probability of 92.31% is maintained in the case of 10% of the
crack signature, a 1.5 mm long crack, and after applying a 40% reduction to the image to
achieve 116 bands. With only 20 bands, the chance of detection increases to 100% if the
crack size is extended to 10.5 mm (90% reduction). This table demonstrates that as the fault

size grows more prominent, the number of bands required decreases.

Table 4 : Crack sample results

Crack
Fault Insertion Band Reduction Detection Probability
90% 7.69 %
80% 7.69 %
70% 23.08 %
0.1 crack + 0.9 sample 60% 61.54 %
50% 84.62 %
40% 92.31 %
30% 92.31 %
20% 100.00 %
90% 38.46 %
80% 92.31 %
70% 92.31 %
0.2 crack + 0.8 sample 60% 92.31 %
50% 92.31 %
40% 100.00 %
90% 92.31 %
80% 92.31 %
0.3 crack + 0.7 sample 20% 92,31 %
60% 100.00 %
90% 92.31 %
0.4 crack + 0.6 sample 80% 92.31 %
70% 100.00 %
90% 92.31 %
0.5 crack + 0.5 sample 80% 100.00 %
90% 92.31 %
0.6 crack + 0.4 sample 80% 100.00 %
0.7 crack + 0.3 sample 90% 100.00 %
0.8 crack + 0.2 sample 90% 100.00 %
0.9 crack + 0.1 sample 90% 100.00 %
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43.2 Erosion

Figure 67 below presents the spectral signature of the eroded sample versus the
normal fiberglass reflectance.
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Figure 67. Spectral signature of eroded versus normal fiberglass composite

The spectral signature of the surface crack has a lower mean than that of the fiberglass
composite, as illustrated in Figure 67. The erosion has the same signature form as the surface
material with a lower reflectance. The composite fiberglass image had a corner erosion
signatures, as described in the material preparation section, and a detection algorithm was
evaluated on this image. The reflectance of the fiberglass specimen is shown in Figure 68a.
At erosion's position, the reflectance reaches its lowest value. The position of these defects

can be determined using the vertical nearly blue planes illustrated in Figure 68a.

96



8

8

2

=}
&

=)

I

Reflectance
° 2
B o
o °
a a
Detection Probability (%)

X
S
=]

200 0.1

] 70
50
L 40
30

i 300
4 20

200
\ ” 10
100 ~— ) 100
e 450 200 it 100 o
\ 1 .
0 0 50 200 O
Glass Fiber Width (mm) Glass Fiber Width (mm)
Glass Fiber Length (mm) Glass Fiber Length (mm)

Figure 68. Detection process of erosion a) reflectance distribution b) defect probability

Figure 68b depicts the detection probability of the presented erosion. The probability
of detection varies according to the severity of the erosion. For example, we can see that this
figure presents high probability detection values on severe erosion locations. On the other
hand, these values are at their lowest values in areas with light erosion. As stated in equation
(1), the signature of erosion is combined with the signature of the composite sample. After
that, the image with the merged signature is reduced to acquire the optimal number of bands
while keeping a high detection probability. The MI on the damaged specimen results in a
drop in the number of bands from 1827 to 157. At that moment, NAS reduces the resultant

image, and these reduction results are summarized in Table 5: Erosion sample results.

Table 5: Erosion sample results

Erosion
Fault Insertion Band Reduction Detection Probability
0.1 erosion + 0.9 sample 90% 0.00 %

80% 15.39 %

70% 46.15 %

60% 53.85 %

50% 69.23 %

40% 84.62 %
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30% 92.31%

20% 92.31 %
10% 92.31 %
0.2 erosion + 0.8 sample 90% 38.46 %
80% 84.62 %
70% 92.31 %
60% 92.31 %
50% 92.31 %
40% 100.00 %
0.3 erosion + 0.7 sample 90% 76.92 %
80% 92.31 %
70% 92.31 %
60% 100.00 %
0.4 erosion + 0.6 sample 90% 92.31 %
80% 100.00 %
0.5 erosion + 0.5 sample 90% 100.00 %
0.6 erosion + 0.4 sample 90% 100.00 %
0.7 erosion + 0.3 sample 90% 100.00 %
0.8 erosion + 0.2 sample 90% 100.00 %
0.9 erosion + 0.1 sample 90% 100.00 %

4.3.3 lcing event

The icing event differs from the other two cases represented above. The spectral

reflectance of ice presents a total absorption at 1400 nm, see Figure 69.
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Figure 69. Spectral signature of ice versus normal fiberglass composite

Figure 70 illustrates the results of the hyperACE algorithm in the ice detection

procedure.
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In Figure 70a, we can see that the reflectance is at its lowest values where ice is
present, about 0.12, and highest at no-ice regions, with a value of 0.21. The hyperspectral
imaging technology (HSI) has a lot of potential in detecting icing problems, as shown in
Figure 70. The ability of HSI to identify ice with a thickness of 0.5 mm was demonstrated in
Figure 70b. A 100% detection probability is reached at ice accumulation spots, while no-ice
areas have a 10% detection probability. As mentioned in equation (1), the ice signature is
combined with the signature of the fiberglass composite sample. The image is reduced by Ml
from 1827 to 874 bands only, following the same approach as for the crack fault. Table 6

summarizes the results after applying NAS on the reduced image.

Table 6 : Ice sample results

Icing
Fault Insertion Band Reduction Detection Probability
90% 86.36 %
0.1ice + 0.9 sample 80% 97.73 %
70% 100.00 %
0.2 ice + 0.8 sample 90% 100.00 %
0.3 ice + 0.7 sample 90% 100.00 %
0.4 ice + 0.6 sample 90% 100.00 %
0.5ice + 0.5 sample 90% 100.00 %
0.6 ice + 0.4 sample 90% 100.00 %
0.7 ice + 0.3 sample 90% 100.00 %
0.8 ice + 0.2 sample 90% 100.00 %
0.9ice + 0.1 sample 90% 100.00 %

The effect of ice thickness and data-cube reduction is considered in Table 6. With
only 88 bands, the HSI can detect ice development at a thickness of 0.1 mm in a strong and

dependable manner.

According to the findings, HSI has a high potential for detecting all forms of crack,
erosion, and ice accretion at an early stage of production robustly and dependably. HSI
detected ice with a thickness of 0.5 mm in this simulation and demonstrated the ability to
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detect ice with a thickness of 0.1 mm. There was also a demonstration of the detection of
light surface faults.

After presenting these preliminary results of the potential of hyperspectral imaging in
the diagnosis of wind turbine blades, this technology was applied on a real wind turbine

blade, as detailed in the next chapters.
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CHAPTER 5
EXPERIMENTAL SETUP

The methodology followed to achieve the main objective depends on the selection of
the sensors, the experimental setup, and the performance of some other activities. After the
preliminary experiment presented in Chapter 4, an experiment was done on a real WTB
sample, with some predefined surface defects and icing. In this chapter, a detailed

explanation of that experiment is presented.

5.1 SENSOR SELECTION

After a preliminary review of available sensors, it was determined that hyperspectral
imaging technology (HSI) offers some advantages for detecting cracks, erosion, and ice that
may reduce some of the limitations associated with the other monitoring systems summarized
above. This work aims to introduce the hyperspectral imaging technique into the world of
blade inspection methods. The fundamental concept of HSI is that radiance reaching every
pixel is fractured into very many narrow adjacent wavelengths [181, 262]. These spectral
bands constitute the spectral signature of the object being scanned. HSI provides both spatial
and spectral information, which creates a three-dimensional data cube, identified as
“hypercube data” or as an “image cube” [263]. As stated, each material or object has its
signature which is used in detection and classification processes. For instance, ice detection
using HSI depends on the difference in spectral signatures between the accreted ice and the
blade surface. For this application, the ice and the blade shell will mutually reflect energy at

distinct ratios giving a difference in the reflectance of each type of material.



We apply hyperspectral imaging of a wind turbine blade section for fault detection, like
crack, erosion, and ice accretion. For this purpose, we use three hyperspectral sensors. These
sensors cover a bandwidth from 300 to 1700 nm with a spectral resolution of 3 nm. These
three sensors, shown in Figure 71, cover the range from 340 to 840 nm, 640 to 1050 nm, and
950 to 1700 nm, respectively.

e

Figure 71. 340-840 nm Sensor Figure 72. 640-1050 nm Figure 73. 950-1700 nm
Sensor Sensor

5.2 EXPERIMENTAL SETUP

The GFRP blade sample illustrated in Figure 74 has 53.0 cm in length, 34.5 cm in
width, and a thickness of 4.0 cm. Also, we induced some predefined cracks and erosion on
the blade. These faults were of different sizes ranging from unseen defects to severe ones
dispersed between 13 cracks and 22 erosions. Furthermore, to accrete ice on this sample, as
shown in Figure 75, cold water was sprayed on it, then placed in the freezer at a temperature
of -25°C to be frozen. This work is done at different stages to achieve the required thickness
(0.5 mm, 0.7 mm, 4 mm, and 7 mm). Finally, with the required conditions being available,
the GFRP sample is scanned pixel per pixel using the hyperspectral sensors in turn, as

illustrated in Figure 76. After this procedure, a data cube of information will be gathered.
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Figure 76. GRFP Setup for scanning
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5.3 ACTIVITIES

Before starting the experiment, two reference signals must be retrieved: the white
reference and the dark reference signal. These two signals will be used in the image
calibration phase using the equation:

HI, = (2)

In equation (2), HI,, is the calibrated/normalized image, HI is the retrieved/scanned

image, D is the dark reference signal, and W is the white reference signal.

The original hyperspectral image, built on black and white reference images, can be
arranged into reflectance mode. While the dark reference picture suppresses the area
detectors’ obscure current effect, the white reference picture stands for the uppermost
intensity values. Then, the sample blade is scanned with the sensors for the acquisition of the
hyperspectral image. However, this image should be normalized to detect crack, erosion, and

icing.

After the calibration phase, a normalized data cube is built. 542 bands compose this
hyperspectral image.

Also, a preprocessing step removes the effect of dust and moisture on the blade. The
spectra of the physical effects are removed to boost the resulting diversified regression,
classification model, or exploratory research. This hypercube is fed into the detection
algorithm “hyperACE” to check the detection capacity and ensure a 100% detection for
crack, erosion, and icing signals [264, 265]. For each vector of this hypercube, we compute
a metric that describes the degree of similarity between the pixel and the fault we are looking
for. After that, we select a threshold to distinguish suspicious spots from normal ones.
Changing this threshold affects the probability of detection as well as the FAR. In this thesis,
we set the threshold for all targets to be detected, and then we registered the obtained FAR.
By the way, the performance metrics Pd and FAR are defined as follow; Pd represents the
probability of correctly detecting a fault, while the FAR states the percentage of false
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positives samples from the total negatives samples. Spectral data of modern spectroscopy
technologies have many wavelengths that make the computation complex, the detection
ineffective, and the inspection slow. A band reduction reduces the computational time needed
and the amount of data computed during the detection process [252, 266]. We select the
optimal variables and the calibrated wavelengths using Multicriteria Classification and Net
Analyte Signal algorithm. The Multicriteria Classification focuses on preserving the rare
event inside the scene scanned while maintaining an optimum band reduction [252]. Also,
the Net Analyte Signal algorithm has a vital role in computing the figures of interest in a
calibrated model’s characterization [267]. Hence, optimum bandwidth can be obtained [268].

Figure 77 illustrates the flowchart for the hyperspectral imaging experiment.
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Figure 77. The flowchart of the methodology of the hyperspectral imaging experiment
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After presenting in Chapter 5 the followed methodology during this study, the result of
the crack and erosion faults are detailed in Chapter 6 while the results of the icing events are

presented in Chapter 7.
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CHAPTER 6
WIND TURBINE BLADE FLAWS DETECTION USING HYPERSPECTRAL
IMAGING

To enlighten the enhancements of the results obtained using hyperspectral imaging,
RGB image results are cited and compared. However, all the results discussed in this chapter
are published in the journal “Remote Sensing Applications: Society and Environment —
ELSEVIER” under the title of “wind turbine blade defect detection using hyperspectral
imaging”’[269].

Before exploring the following chapters, it is a necessary to specify how the RGB
image is constructed. After scanning the blade sample with the hyperspectral sensors and
building the 3D datacube, the RGB image is extracted from this 3D cube by choosing only
the wavelengths corresponding of the red, green, and blue colors (625-740 nm, 520-565 nm,
430-500 nm respectively)[270]. Then, this figure is fed into a detection algorithm resulting

the outcomes presented in section 6.1 and 7.1.

6.1 RGB 3-BAND BLADE IMAGE RESULTS

RGB imaging mimics human eye vision by scanning images through three filters (red,
green, and blue) wavelengths.

Table 7 shows the detection probability (Pd) and false alarm rates (FAR) of crack, and
erosion using the RGB image. The probability of crack detection using RGB is a full
detection. Furthermore, the false alarm rate using RGB images for crack detection is 0%. In
other words, RGB can detect crack faults without any false errors. In comparison, the

probability of detecting erosion using RGB is 100.00%. The false alarm rate using RGB



images for erosion detection is 77.55%. In other words, RGB shows unsatisfactory results in

erosion detection on the surface of the wind turbine blade specimen.

Table 7 : The detection probability (Pd) and false alarm rates (FAR) of fault types using an
RGB image

Pd (%) FAR (%)

Crack 100.00 0.00

Erosion 100.00 77.55

6.2 FAULT SIGNATURE RETRIEVAL

The explored faults of the wind turbine blade specimen are of three types: crack,
erosion, and icing, as shown in Figure 82. Crack and erosion real images were shown

respectively in Figure 78 and 79.

Figure 78 illustrates a hairline crack (scratch) on the wind turbine blade specimen’s
surface, one type of external flaw that splits the surface without crashing apart. Figure 79
presents a light erosion, a different shell fault that gradually destroys the surface and
diminishes the structure. The severe ones, severe crack, and severe erosion are shown

respectively in Figure 80 and 81.
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Figure 78. Minor crack on the blade Figure 80. Severe crack on the blade
specimen specimen

Figure 79. Light erosion on the blade Figure 81. Severe crack on the blade
Specimen Spec|men

Figure 82. Ice on the specimen

Reflectance mode allows us to inspect these surface flaws on the wind turbine blade
and avoid specular reflection. The illuminated sample absorbs a small portion of the incident

light, whereas the largest percentage of the reflected light conveys the more appreciated
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information. The detector stands opposite to the light source to capture this data, the spectral

signatures, as described in the following paragraphs.

The illustration of the crack surface signature with its different width value, in red,
and that of the undefective blade signature, in blue, are shown in the following figures. The
crack widths in Figure 86 are respectively 0.1, 0.3, 1.0, and 2.0 mm. These figures prove that
the crack reflectance values for the different tested thicknesses are lower than those of the
normal blade signature for the wavelengths ranging between 300 and 600 nm and between
1000 and 1700 nm. Whereas, between these two ranges, the normal blade signature achieves
higher reflectance values than the crack signature. The obtained crack signature differs from
that obtained in the preliminary study (Chapter 4) due to the use of different materials
representing the WTB sample. Each material has its own reflectance properties. The
difference in reflectance values for these two signatures is not very important in Figure 83,
where the tested crack width is 0.1 mm. For instance, these two signatures overlap for
wavelengths less than 1000 nm. This difference increases and is easily noticeable in Figure
84 with crack width growth. We note that the normal blade signature and the crack signature
have the same shape and achieve their peaks at the same wavelengths, such as 600, 800,
1100, 1300, and 1500 nm.
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Figure 87 and Figure 88 present the erosion flaw blade surface’s spectral signature
ranging from light to severe, in red, versus normal blade surface signature in blue. For the
light erosion signature illustrated in Figure 87, its reflectance is lower than that of the normal
blade for the wavelength range between 300 and 400 nm. Then, for wavelengths between
400 and 500 nm, these two signals overlap. After 500 nm, the spectral signature of light
erosion is higher than the normal blade signature. This difference switches starting for

wavelengths higher than 1000 nm. Slope variations are similar for both signatures, and peak
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locations appear at the same wavelengths, 600, 800, 1100, 1300, and 1500 nm. Furthermore,
a zero-reflectance value appears for a wavelength of 1700 nm. For the severe erosion
illustrated in Figure 88, the reflectance signature is lower than the normal blade for the
wavelengths ranging between 300 and 1700 nm. The difference is as large as 50%. Same
signature shapes are noticeable for the normal and severe erosion signature with peaks at
wavelengths equal to 600, 750, 1100, 1300, and 1500 nm.
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Figure 87. The spectrum of light erosion Figure 88. The spectrum of severe erosion
signature versus normal blade signature signature versus normal blade signature

6.3 HYPERSPECTRAL IMAGE ACQUISITION

Figure 89 and Figure 90 illustrate a 3D hyperspectral cube image of the wind turbine
blade specimen consisting of one wavelength and two spatial dimensions. It comprises 542
bands, 44 pixels in blade length and 29 pixels in blade width. It results from scanning the
wind turbine blade specimen by moving the detector along two spatial dimensions. This data
cube presents the blade specimen over 542 layers of different frequencies. The reflectance is
increased from light red to dark red.

Figure 90 shows that the reflectance intensity varies differently in the region with

accreted ice and in faulty regions. Furthermore, it varies with the wavelength in an
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unarranged manner, slightly different along with the wind turbine blade specimen where ice
accretion occurs. For instance, at the uppermost band index, the reflectance is around 0.8 at

regions of faults and negligible elsewhere.
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Figure 89. 3D hyperspectral cube of the Figure 90. 3D Blade image with iced
wind turbine blade specimen section

6.4 FULL-SPECTRUM FLAW DETECTION

At this step, the hyperACE algorithm is applied based on an adaptive cosine/coherent
estimator algorithm to detect crack, erosion, and ice accretion regions. It sees the points of
defects by scanning the sample and locating the faults on its signature. The detection
probability of these types of flaws (crack and erosion) is 100%, and the likelihood of its false
alarm rate is 0%, as shown in Table 8. We conclude that this detection algorithm using the

hyperspectral imaging technique leads to a full and reliable detection of these flaws.
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Table 8 : The detection probability (Pd) and false alarm rates (FAR) for defect types using

a hyperspectral image

Pd (%) FAR (%)
Crack 100 0.00
Erosion 100 0.00

The crack abundance factor on a 2D illustration of the wind turbine blade surface
appears in Figure 91. In this figure, the regions free of cracks are dark blue, light crack
locations are light blue, and severe ones are yellow. Figure 92 presents a 3D illustration of
the crack detection on the wind turbine blade sample’s surface. In this figure, the cracks on
the surface of the wind turbine blade specimen appear as spikes. Their severity is indicated
by the scaled color, as for the 2D illustration, and the spike height. The cracks of width less
than 1 mm appear as light cracks, and the others as severe ones.
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Figure 93 displays the erosion abundance factor in a 2D illustration of the wind turbine
blade sample. In this figure, dark blue indicates the areas uneroded, light blue designates the
light erosion regions, and yellow, the severe ones. Also, a 3D representation of the erosion
inspection of the blade sample appears in Figure 94. The spikes represent the eroded regions.
The light erosion spikes have the top in light blue, the severe ones in yellow, and the uneroded
areas appear dark blue. As shown in Figure 93 and Figure 94, light and severe erosion are at

two corners of the wind turbine blade sample’s surface.
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6.5 RGB VERSUS HYPERSPECTRAL IMAGING

The hyperspectral imaging technique shows a complete crack and erosion detection of
100% without any false alarm rate. Although a 100% detection probability using the RGB
analysis for both faults (crack and erosion) was 100%, this technic presented a high false
alarm rate in the erosion case; 0.00% and 77.55% is detected as false alarm rate respectively
for crack and erosion detection using the RGB method.

117



In conclusion, hyperspectral imaging, consisting of multiple monochromatic images and a
wide range of continuous wavebands, is superior to RGB images for blade flaw detection.
These characteristics demonstrate hyperspectral imaging capacity to detect external surface
defects (crack and erosion accretion at their early stages of formation) otherwise misleading
results using the naked eye or conventional RGB image analysis.

After achieving the 100% detection probability and decreasing the computational time and

the amount of data computed, a band reduction should be performed.

6.6 SPECTRUM REDUCTION

Finally, we explored the detection performance using a reduced spectrum to accelerate
image processing. Table 9 presents the detection performance parameters (Pd and FAR) with
a band reduction of the image’s full spectrum. The original hyperspectral image consists of
542 bands. After performing a 90% reduction, only 55 bands are required to maintain a 100%

detection of crack and erosion. The bandwidth ranges from 706 to 822 nm.

Table 9 : Summary of band reduction results

Percentage of Reduction Number of Crack Erosion
Bands

Pd FAR Pd FAR
95% 28 62.07% 37.93% 79.59% 20.41%
90% 55 100.00% 0.00% 100.00% 0.00%
80% 109 100.00% 0.00% 100.00% 0.00%
70% 163 100.00% 0.00% 100.00% 0.00%
60% 217 100.00% 0.00% 100.00% 0.00%
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50% 271 100.00% 0.00% 100.00% 0.00%

40% 326 100.00% 0.00% 100.00% 0.00%
30% 380 100.00% 0.00% 100.00% 0.00%
20% 434 100.00% 0.00% 100.00% 0.00%
10% 488 100.00% 0.00% 100.00% 0.00%

After all the results presented in this chapter, HSI presented an accurate and sensitive
technology capable of quantifying, qualifying, and locating the surface defects studied from
the crack or the erosion by offering the spectral signature of each defect. Also, these defects
can be detected by using only 55 bands instead of 542 bands, mainly in the bandwith ranging
from 706 to 822 nm without any false alarm unlike the RGB image which presented an ability
to detect these types of defects accompanied with a high false alarm rate. Thus, HSI is one

step ahead of other monitoring conditions.
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CHAPTER 7
WIND TURBINE BLADE ICING DETECTION USING HYPERSPECTRAL
IMAGING

To enlighten hyperspectral imaging performance, we compare the results with RGB
images. However, all the results discussed in this chapter are published in the journal
“Remote Sensing Applications: Society and Environment — ELSEVIER ” under the title of

“wind turbine ice detection using hyperspectral imaging”’[271].

7.1 RGB 3-BAND BLADE IMAGE RESULTS

RGB imaging mimics human eye vision by scanning images through three filters (red,
green, and blue) wavelengths. The same procedure stated in Chapter 6 has been done. For
instance, in our experiment, the probability of icing detection is 100.00%, and the false alarm

rate of icing is 94.44%.

7.2 ICE FAULT SIGNATURE RETRIEVAL

Ice covers a large surface of the blade, as shown in Figure 95. The thickness of the ice,

as cited before, is 0.5 mm, 0.7 mm, 4 mm, and 7 mm.



Figure 95. Ice on specimen

The following figures present the normal blade spectral signature in blue versus the
ice spectrum in red color for different thicknesses. The ice thickness in Figure 96,Figure 97,
Figure 98, andFigure 99 is 0.5 mm, 0.7 mm, 4.0 mm, and 7.0 mm. In Figure 96 andFigure
97, the two signals almost overlapped for the wavelengths ranging between 400 and 600 nm.
Starting from around 600 nm, the ice reflectance is lower than the clean blade signature
reflectance and becomes zero at approximately 1450 nm. At about 600 nm, the ice reflectance

is 0.2, and the clean one is almost 0.3.

Furthermore, we can notice that the peaks in signatures have the same wavelength. In
other words, the shape of the graphs is similar for the clean and the iced blade. We observe
similar behavior for the results in Figure 98. Still, the ice reflectance becomes zero at
approximately 1500 nm and then increases slightly to a reflectance of about 0.01 and
decreases again to zero at 1700 nm. We should note that we have a total ice absorption of

emitted light at zero reflectance.
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Figure 96. The spectrum of 0.5 mm ice
thickness versus clean blade signature
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Figure 98. The spectrum of 4.0 mm ice
thickness versus clean blade signature
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Figure 97. The spectrum of 0.7 mm ice
thickness versus clean blade signature
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Figure 99. The spectrum of 7.0 mm ice
thickness versus clean blade signature

7.3 HYPERSPECTRAL IMAGE ACQUISITION

After performing the scanning and calibration stages described before, the result shown
in Figure 100 is a scanned blade image having 29 by 44 pixels over 542 bands. This data
cube presents the blade specimen over 542 layers of different frequencies. The reflectance
increases according to the color scale in the figure. We notice, confirming the previous

section's conclusion, that ice reflectance at each band index is lower than the normal
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reflectance of the clean blade, that icing is accreted over a length of 15 cm at one side of the

blade along its width.

Band Index

Blade Width(cm) 0 o Blade Length (cm)

Figure 100. 3D Blade Image with partial icing

7.4 FULL-SPECTRUM ICE DETECTION

The hyperimage consisting of 542 bands, shown in Figure 100, is fed into the detection
algorithm. The hyperACE algorithm shows an ice probability detection of 100% and a false
alarm rate of 0%. These results are visualized in 2D in Figure 101 and 3D in Figure 102.

Figure 101 and Figure 102 show that the probability of detection for the region where

ice is accreted, for the different mentioned thickness, is 100%, and this probability achieves

0% where no icing is present.
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7.5 RGB VERSUS HYPERSPECTRAL IMAGING

The hyperspectral imaging technique shows a complete ice detection of 100%, the
same as in the case of an RGB image. However, no false alarm rate (FAR) is shown in
hyperspectral imaging, whereas 94.44% false alarm rate occurs with the RGB case. Hence,
hyperspectral imaging shows a robust ability to detect ice at its early stages of accretion. For
instance, a human eye cannot notice a 0.1 mm ice thickness but can be detected using
hyperspectral imaging. After achieving the 100% detection probability, we decrease the
computational time and the amount of data by performing a band reduction.

7.6 SPECTRUM REDUCTION

Transforming the "hyper image" through multicriteria classification, we reduce the
number of bands from 542 to 134. In other words, 134 bands are enough to detect the ice
accumulation while maintaining the rare event in the resulted scene. These bands are from
354 to 636 nm, 740 nm, 776 nm, 824 nm, 992 nm, 1020 nm, from 1400 to 1450 nm, 1474,
1500 nm, from 1670 to 1675 nm. However, bypassing the "data cube™ through Net Analyte
Signal, with a 90% reduction, the number of bands is reduced to 55 while sustaining a 100%
of ice detection. These bands are from 706 to 822 nm.

After combining the multicriteria classification and the Net Analyte Signal, 160 bands
remained after a 70% reduction for 100% of ice detection. These bands are from 360 to 636
nm, from 726 to 784 nm, 824 nm, 991 nm, 1020 nm, 1400 to 1500 nm, 1670 nm, and 1676
nm.

We can notice that the Net Analyte Signal makes the most considerable reduction, but

this reduction is made at different stages, as shown in Table 10.
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Table 10 : Summary of Net Analyte Signal Results

Percentage of Number Ice

Reduction of Bands Pd FAR
95% 28 88.47% 11.53%
90% 55 100.00% 0.00%
80% 109 100.00% 0.00%
70% 163 100.00% 0.00%
60% 217 100.00% 0.00%
50% 271 100.00% 0.00%
40% 326 100.00% 0.00%
30% 380 100.00% 0.00%
20% 434 100.00% 0.00%
10% 488 100.00% 0.00%

Nevertheless, the multicriteria classification reduces the number of bands at once.
Furthermore, the combined result provides a higher number of reduced bands, which can
help prevent the loss of the rare elements that are not representative of the ice detection

points.

After all the results presented in this chapter, HSI presented an accurate and sensitive
technology capable of quantifying, qualifying, and locating ice accretion on WTB by offering
also its spectral signature (fingerprint). Also, this external problem can be detected by using
only 55 bands instead of 542 bands, mainly in the bandwith ranging from 706 to 822 nm
without any false alarm unlike the RGB image which presented an ability to detect it
accompanied with a high false alarm rate. Thus, HSI is one step ahead of other icing detection

technics which does not lead to faulty results due to sensitivity to temperarture, elevation or

power generation drop.
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GENERAL CONCLUSION

All in all, as a result of climate change, governments are developing increasingly
sophisticated and cost-effective techniques of capturing natural electricity resources,
particularly wind. Wind energy has been utilized for decades to power tasks such as
propelling cruising boats, processing grain, pumping water, and powering factory machines.
It is also used in wind parks to produce electricity from wind energy. At the moment, the
total capacity of all wind farms in the globe is 744 gigawatts, which is enough to meet 7% of
the world's energy demand.

Like other development sectors, wind turbines suffer some restrictions and constraints
due to environmental and manufacturing factors that limit their potential despite their
expansion. Wind turbine blades, one of the most significant and expensive components of
wind turbines, are predicted to endure up to 20 years subjected to varying wind loads. After
a long time of being exposed to lift and drag, the blade begins to wear, and fatigue promotes
the material breakdown and causes blade cracks. Moreover, ice deposits, cracks,
delamination, and erosion are all causes of blade difficulties. These flaws lower annual
energy output by increasing turbine downtime. The majority of damage detection research is
devoted to developing novel early damage detection systems to reduce maintenance time and
costs. For that, frequent inspections are essential, particularly for rotor blades, which account
for 20-30% of the entire cost of wind turbines. Therefore, non-destructive techniques are

essential to improve wind turbines’ efficiency and availability and reduce wind energy costs.

This report presents a thorough and systematic review of non-destructive blade
inspection techniques. First, the material of the wind turbine blade and the common fault and
defect in the blade's production and operation are investigated. Following that, the numerous
non-destructive techniques for composite blade inspection (acoustic emission, infrared, fiber

grating, ultrasonic, guided wave, thermal imaging, terahertz imaging, visual, tap,



electromagnetic, and vibration non-destructive techniques for composite blade inspection)
were summarized and discussed. Indeed, the detection in these methods is based on global
parameters (humidity, temperature, frequency, etc.), providing an overall picture of the state
of the defect on the blades but not allowing for exact and localized quantification.
Furthermore, the sensors used in these techniques do not qualify for the detection of frost

formation.

Moreover, after describing some conventional methods used for ice accretion detection
on wind turbine blades, this thesis proposes the hyperspectral imaging (HSI) technique,

which has been rapidly evolving and broadly applied in many non-destructive diagnostics.

For that, this research concentrated on the use of hyperspectral imaging for the
detection of wind turbine blade flaws and ice accretion. The technology has evolved over the
years and is now widely utilized in non-destructive material analysis. Finally, this study
describes the principles, developments, and uses of spectroscopic imagery technology in the
non-destructive detection of wind turbine blade defects and ice formation. It also discusses
the experimental setup, essential elements, and the related processing and analytical methods.
This technique shows advantages compared with the other discussed methods in detecting
the defects and their location and spotting icing at its early stages of accumulation regardless

of its thickness and type.

It was demonstrated, in this study, that hyperspectral imaging can build spatial maps
that span an extensive range of spectral information by merging spectroscopy with
conventional imaging, leading to a variety of applications in blade flaw identification. This
study also indicates that spectroscopy imaging and remote on-field assessment can detect
icing events with high resolution, precision, and discrimination. It is a non-invasive and
reliable tool for identifying variations between iced and clean surfaces, thus granting
powerful monitoring capacity, especially in the early detection of icing events. HSI remote
monitoring of wind turbine blades for icing detection can be an effective tool. It could
robustly and accurately measure and identify the ice at a thickness of 0.1 mm at its early

formation stage. Thus, HSI is the upcoming ice detection module of wind turbine blades,
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which can offer a lower inspection shutdown time and lower maintenance costs by supplying
a simple routine inspection of the wind turbine blade. As for future applications, HSI can also

serve for the non-destructive monitoring of wind turbine blades.

In a future work, a monitoring of a real wind turbine farms using hyperspectral imager
mounted on a drone must be conducted in order to validate the experimental results obtained
in a laboratory study. Also, the study of the subsurface defects like delamination must be
examined using hyperspectral imager with a higher bandwidth than those utilized in this
study.

To sum up, this report demonstrates hyperspectral imaging’s potential role in
monitoring wind turbines’ safety and saving wind energy costs. We anticipate that this

research will aid various energy industries.
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APPENDIX I
ALGORITHM USED

According to the thesis presented by Eric Truslow in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering in the
Northeastern University in August 2012, the performance evaluation of the adaptive cosine
estimator detector for hyperspectral imaging applications is studied, and the following

algorithm and equations are determined and analyzed.

The most common detectors used in HSI:

The matched filter (MF) and the adaptive cosine estimator (ACE). Both detectors arise
under the hypotheses:

Ho: X ~ N (0, 6°Zh)
Hi: X ~ N (as, 6%Zb)

where a and o are scalars, s is the target signature and X, is the background covariance

matrix.

To use hypotheses, we have to assume that the input x has been de-meaned, and the
target signature has been demeaned making s = st —up. In this discussion here, the variable a
is not to be confused with fill fraction a; a is a scaling like a, but a is not constrained between

0 and 1, and it does not affect the covariance matrix under either hypothesis.



Derivation of the Matched Filter (MF)

The matched filter is probably the most well-known and best understood detector. It is
also the easiest to derive. The likelihood ratio is a ratio of conditional densities where one is

zero-mean, and the other is not.

f(x|Hy)

L0 = F el

where the conditional densities f (x|H,) and f(x|H,) are

1 1 -
_ _ - .,T
i) = Gy (7 2., )

f(x|Hy) = . ( ~(x- as)TZl(x - as))

CmP/2[5, |72 (02)p/2 P\ 267

We can apply a monotonic function to L(x) without not change the performance of the
detector. Taking the logarithm (a monotonic function) of L(x) results in the log likelihood
ratio, which we denote L™ (x). Substituting the conditional densities into the likelihood ratio,
the leading terms cancel, and the exponents combine, resulting in

! T e — — — —
L' (x) 22(x as) Eb(x 0LS)+2 5 X be
Dropping Ieading constants, expanding, and canceling like terms, yields

-1 -1
L’(x)=st x—sTZ s
b b

Applying the scaling 1/4/sT X3 * s and dropping the right-most term, we obtain the MF

sty tx

y = ——
MF Ty —1g S5
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This definition can be simplified by introducing the whitening transformation.

Assuming that X, is positive definite and has a square root matrix Z,l,/ % such that

Y, =Yt/ 12 The inverse of the square root matrix ¥, /2

is known as a whitening
matrix or whitening transformation; multiplying x and s by this matrix yields the whitened

vectors X ands:

5=Y;"? s and

>
Il

-1/2
Z x
b

The input under each hypothesis after whitening becomes
Ho: % ~ N (0, I)
Hi: % ~ N (a3, 1)
where | is a p dimensional identity matrix. This allows us to write the MF as

%Ts
YMF =

g

where the numerator is simply the dot product of the whitened input with the whitened

target, and the denominator is the length of the whitened target vector.

Statistics of the Matched Filter

There are many different versions and ways to define the MF; in order of decreasing

verbosity, we can define the MF as

sty tx

y = ——————
MF ﬁ;;rifiii;
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or in terms of the whitened vectors X ands:as

xTs
YMF = 77—
§TS
or for brevity as
— nhT g
ymr = h" X

%]}

where h = . In the last case, the vector h is known as the matched filter vector.

Uy
~
(%1

We will generally use the brevity equation because it is extremely concise, and very
general. Note that we can scale the MF arbitrarily but the definitions above are beneficial for
this thesis because they facilitate the use of statistical relations, but others may choose a scale
that is appropriate with no change in performance. As an example, we will use a different
scaling to use the MF as a fill fraction estimator (FFE). We define the FFE as

1
YFFE = ﬁ YMF

where yprg 1S an estimate of the fill fraction a. To obtain basic statistical results for the
MF, we assume that we have subtracted pp from the data and set ¢ = 1, resulting in the

hypotheses
Ho: x ~N (0, X}, )
Hi:x ~ N (as, X )

The mean of the output of the matched filter defined in brevity equation is called the
Voltage Signal to Noise Ratio (VSNR), and its square is the Signal to Noise Ratio (SNR),

defined as
VSNR = pyp

SNR = i jp
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where wyr = ah§ = av 575. Immediately we see that using the FFE, the mean of the
output becomes the scaling of the target mean a. For the hypotheses Hoand Hi the distribution
of the MF becomes

Ho: ymr ~ N (0, 1)
Hi: yyr ~ N (VSNR, 1)

The separation between the means of the target-absent and target-present distributions
in the output is controlled by the VSNR; a high VSNR results in very good performance,

while a low VSNR results in bad performance.

The Derivation of The Adaptive Cosine Estimator (ACE):

The Adaptive Cosine Estimator (ACE) or Adaptive Coherence Estimator is a simple
extension of the Matched Filter where we compute the Matched Filter value, and then
normalize by the length of X. This statistic is simply the cosine of the angle between X and §,

which we designate 6. We see that ACE (yace) is equal to cos(6), and is defined as

§Tx

YacE = (58 (VD)

In the literature, ACE usually refers to cosine-squared (cos(8)?), but for simplicity we
will use ACE to refer to cosine. The term “adaptive” in ACE generally refers to estimating

the covariance matrix of the background };,, .

In deriving the MF, we assumed that the parameters a and ¢ were known, but if o is
unknown we may seek a generalize likelihood ratio test (GLRT) [30]. In this GLRT, we

replace o?with its maximum likelihood estimate 2under each hypothesis.

Returning to the likelihood ratio and canceling like terms we have
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TON () R TN e as) bty 4
X) = 5, exp 2621(36 as) X —as 2620x x

The maximum likelihood estimate (MLE) of the variance for each hypothesis can be

shown to be

6%, = %(x —as)T Z_l(x —as)

These estimates are obtained by differentiating f(x|H1) and f(x|Ho) with respect to o2,
setting the derivative to 0, and solving for 2. Substituting these estimates into L(x) equation

and dropping the constant right-hand term, yields
~2 -p/2
1 = (52)
0%

and an equivalent statistic is

~2
" 0o
v = (5)
1

Substituting 52, and 6% ,we have

(x—as)T Y 1(x —as)
xTY1x

L'(x) =

Distributing = using its square root matrix =2 we have

(% —ad®)T (% — ad)

Lll(x) — X“Tf

At this point we assume that the scaling a is unknown and substitute the MLE a.

When a is unconstrained the MLE is
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XTy-ts 7

sTY-1g T§T

A

a =

| e

when we constrain a > 0, the MLE becomes: @ = max [O ] Substituting the

unconstrained estimate,

U:z Cm

Tx
s

C/:z (m

UJz Rl
N——

UJz

X—S==

L'(x) = (

e

xT
~Ts
“=PX

The term resulting from as can be written using projection matrix notation as § ZTS
Factoring X the numerator of L' (x), yields
XT(1—Py) (I — POX = TPs*%

Where Ps* is known as an orthogonal projection matrix. Finally, we have

~Tp L=

L'(x) = = sin?(0)

where we are measuring the angle between § and %. This is monotonically related to

cosine squared

~Tp =

5 XTP %
cos“(0) = ~T~
XTx

which is the classic definition of ACE found in the literature. Since we assume a is

nonnegative, we constrain the scaling a to be non-negative, so the log-likelihood function

becomes

n - A>
V') =1z » Jorez0
0, fora<o

In this case, L'’ (x) is a monotonic function of
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L"(x) = rreal fora=0

0, fora<o

and when s is a single vector the first term becomes

which is equivalent to the cosine between ¥ and §, as expected.

The Statistics of ACE

As with the MF, there are many equivalent representations for ACE. The most
important versions are the cosine, cotangent and the t-detector, which we define only in terms

of the whitened and de-meaned vectors ¥ and § as

§Tx

YacE = (TR %) (V575)

We note that these three detectors are monotonically related; in particular, the cosine
and cotangent are both ratios of sides from the same triangle. It can be shown that the cosine

is related monotonically to the cotangent by
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Yeot

Yace = T
vV1+Yeor

meaning they are equivalent detection statistics.

Interestingly, the t-detector has this name because it follows a t-distribution under
certain circumstances. Although, these three detectors are equivalent, only the t-detector
follows a well-known distribution; so, we will use this version when discussing statistical

distributions. The distributions of the t-detector for the two hypotheses are:
HO: yt ~ tp_l(o, 1)
Hl: yt "’tp_l(VSNR, 1)

Under both hypotheses, the detector follows a univariate t-distribution. We note that
this distribution only occurs when the detector is designed with the exact covariance matrix
of the input x. When the design covariance matrix is different from the input covariance

matrix, we say there is covariance mismatch.

Net Analyte Signal

According to Lorber (1986), the concept of Net analyte signal is introduced and used
to find the part of the signal that belongs to the orthogonal plane of all materials other than
the target. By this, we choose the most representative bands of the target. These bands will
be used as input to the detection algorithm (HyperACE) in order to detect the targets instead

of detecting the complete signal spectrum.

The chosen bands are calculated as follows:
-1

where s; is the target spectrum, S,j is a matrix of background analyte spectra and n; is

the portion of s; that is orthogonal to S,j.
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Mutual Information

The mutual information (M) is also a measure widely used in evaluating the similarity
of two images. This measure relies on the probabilistic relation and the distribution of
intensities in the images used. Ml is highly robust to changes in illumination, even to non-
linear ones. The mathematical expression of the MI between A and B, of size m X n, is defined
in:

m

n
MI(AB) = ) > pas (@ by)log,

i=1j=1

pag(a;, bj)
pa(a;)pp (bj)

Where pa(a:) is the probability that a pixel in A has a gray-level ai, ps(bj) is the
probability that a pixel in B has a gray-level bj, and pas(ai, bj) is the probability that a pixel
in A has a gray-level a: and the same pixel in B has a gray-level b;. The probability
distributions are determined using the normalized histograms of the images. In the histogram
of an image, each possible gray-scale value has its corresponding number of occurrences in
the image. Normalizing the histogram by the total number of pixels determines the
probability distribution of the gray-scale pixel values of an image. The higher the value of
the MI, the higher the similarity between two images. The MI describes the stochastic
association between the two images and evaluates image similarity from the probabilistic

aspect.
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APPENDIX 11
HYPERSPECTRAL IMAGING APPLIED FOR THE DETECTION OF WIND
TURBINE BLADE DAMAGE AND ICING

Publié dans Remote Sensing Applications: Society and Environment - ELSEVIER
Volume 18, April 2020
Citation:

P. Rizk, N. Al Saleh, R. Younes, A. llinca, and J. Khoder, "Hyperspectral imaging
applied for the detection of wind turbine blade damage and icing,” Remote Sensing
Applications: Society and Environment, vol. 18, p. 100291, 2020/04/01/ 2020, doi:
https://doi.org/10.1016/j.rsase.2020.100291

Résumé:

L objectif principal de cet article est d"étudier le potentiel de I"'imagerie hyperspectrale
dans la détection des défauts auxquels la pale est soumise. Tout d’abord, il présente les
différents types de défauts des pales. Puis, apres avoir exposé certaines des méthodes
traditionnelles utilisées pour la surveillance des pales d'éoliennes, cet article propose une
technique d'imagerie hyperspectrale (HSI) a travers une expérience sur une fibre de verre
composite polymere imitant la pale d'éolienne. Cette technologie s'est révélée tres
prometteuse pour la détection de défauts, quels qu'ils soient, en surface, sous la surface ou
méme en cas de givrage. Cette technologie d'inspection a distance sur le terrain offre une
grande précision dans un temps d'inspection court. Elle peut étre un outil puissant pour
surveiller a distance les pales d'éoliennes de tous types de dommages. Elle permet de détecter
la glace a différentes épaisseurs d'une maniére robuste et fiable. Elle a le potentiel de
quantifier et de localiser les défauts de surface et de subsurface a un stade précoce de leur
formation. Ainsi, la HSI est la méthode d'inspection imminente des pales d'éoliennes qui

permettra de réduire la période d'arrét pour Il'inspection, les colts de maintenance et la
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fréquence des pannes soudaines en fournissant une inspection réguliére facile des pales
d'éoliennes [181].
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ARTICLE INFO ABSTRACT

Index Terms: Despite the enhancement in the wind energy sector, the wind turbine industry still faces certain limitations due
Blade to some facturing and envir 1 factors. Blades are one of the major components of the wind turbine.
Hyperspectral During their lifetime, these blades are susceptible to deterioration and normal wear and tear that limit their
g‘::l:( efficiency and result in higher maintenance costs and longer turbine downtime. Periodic inspections must be
Delamination performed to detect faults at an early stage and help in mitigating these shortcomings. Many methods were used
Bioaion for this purpose such as: ultrasound, sonic IR, vibration analysis and others. Recent developments have seen a

Icing trend of using remote inspection techniques that eliminate the need for human access to the blades. Hyper-
spectral imaging or imaging spectroscopy is a non-destructive and fast monitoring technique in remote sensing. It
is widely used in various classification, and detection fields. In this study, the potential of the use of hyperspectral
imaging system in the detection of wind turbine blade damage and icing incident is introduced. Specifically, this
study lists the types of damage, its causes, and the techniques used to detect it. Finally, current problems and
promising attempts for analyzing real-time turbine blade damage detection are discussed. The results demon-
strated that hyperspectral imaging could detect surface and subsurface defects as well as icing events in their

early stages of occurrence.

1. Introduction

With the conventional energy and fossil fuel resources moving to-
ward an end, the necessity of using renewable energy is increasing,
promising to provide sustainability for next generations (Aust, 2014).
One of these promising resources that has a big potential in achieving
long-term sustainability is wind energy. Wind turbines capture the ki-
netic energy on wind to generate electricity (Ellabban et al., 2014).
According to World Wind Energy Association (WWEA), the worldwide
installed wind capacity reached 597 Gigawatt by the end of 2018 with
an increase of approximately 10% per year. The largest installed ca-
pacity of wind turbine in 2018 was shown in most of European and Asian
countries, whereas Asia shares the largest market and USA occupies the
second rank (World Wind Energy Association (WWEA), 2018).

As other developing sectors and despite its growth, the wind turbine

still faces some obstacles and constraints due to some environmental and
manufacturing factors that limit its potential. Under normal wind con-
ditions, wind turbine blades bear fluctuating wind load characterized by
a combination of lift and drag. After a prolonged period, fatigue occurs
in blades. Therefore, weariness stimulates material degradation that
produces cracks on the blade (Technical Application Papers No.13,
1913).

In fact, some of the wind turbines exist in regions where severe
weather like extensive wind and icing are present. Blades suffer from
challenges like ice accumulations, cracks, delamination, as well as
erosion. These defects will negatively affect the annual energy produc-
tion by increasing the downtime period of the turbine for wear and tear
(Ragheb, 2047). Most researches in the domain of damage detection
focus on finding a method for early damage detection to lower the
maintenance period and the cost (Qiu et al., 2012). In order to decrease
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Trailing edge

Fig. 1. Structure of the blade (Yanget al., 2013).

maintenance costs and have longer lifetime, frequent inspection of wind
turbines should be performed (Ciang et al., 2008) especially on the
blades which constitute 20% to 30% of the total cost of a wind turbine
(Shohag et al., 2017).

Ultrasound, sonic IR, thermal imaging, vibration analysis, distrib-
uted fiber optic sensor and many other methods are used for damage
detection (crack, erosion and delamination) and ice detection which is
another form of surface contamination.

Few researchers such as Young & al. have discussed the use of
hyperspectral images for blade damage detection and it was only limited
to erosion detection. For that, this study will fulfill the gap and present
the potential of hyperspectral imaging technique in the detection of
surface, subsurface flaws, and ice detection. Section II.A introduces the
blade structure and the blade’s region most susceptible to damage is
determined in section IL.B. Section II.C discusses the main causes of
turbine blade failure, and the resulted flaws are divided into different
types and categorized in classes in section I1.D where the icing problem
is discussed and the ice accretion is modeled. A survey of turbine blades’
flaws detection is detailed in section III. Section IV presents an experi-
ment performed on four glass fiber composite material plates with
different defect types (crack, erosion, delamination, and icing). Finally,
section V, concludes by summarizing the discussed work and briefly
describes our insight on the great potential of hyperspectral imaging
technique and its advantages in detecting the flaws regardless of their
types from surface, subsurface, or even icing events.

2. Blades structure and its failure
2.1. Blade structure

Wind turbine blades are formed by composite materials, specifically
glass fiber or carbon fiber, balsa wood or foam (Eker et al., 2006). These
materials are lightweight which increase both the strength-weight ratio
and the efficiency (McGugan et al., 2015). The structure is described by
vertical shear webs joined to the upper and lower spar caps by a
highly-toughness adhesive, allowing all the loads on the blade to be
supported while ensuring torsional rigidity and bending stiffness (Her-
nandez Crespo, 2016). Gel coat covers the outside of the blade to protect
it from ultraviolet degradation and water penetration (Hemandez
Crespo, 2016). The blade is composed of two sides: a suction side
characterized by low pressure and high velocity and a pressure side
characterized by high pressure and low velocity (McGugan et al., 2015).

The structure of the blade is shown in Fig. 1.
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Fig. 2. Crack and erosion regions (Zhang, 2016).

2.2. Area prone to damage

Ciang et al. (2008) stated the four typical areas of the blade that are
prone to damage as 30%-70% in the chord length from the blade root,
the root of the blade, the maximum chord and the upper spar cap. They
characterized two regions where cracks and erosion most probably can
occur. The region between the root section and two-third of the blade
length is mainly subjected to cracks (Jensen, 2009). However, erosion
can occur at any location on the leading edge, typically found in the tip
region because of the higher speeds than those in other regions (Ciang
et al., 2008). These regions are shown in Fig. 2.

2.3. Causes of failure

This study discusses the faults caused by strong winds, lightning
strike, ice and manufacturing defects. As known, wind is the driving
force of wind turbine; however, winds of large scale can severely dam-
age the turbine blades. Lightning strike is another main reason of wind
turbine blade failure as it creates a destructive internal shock wave
within its blades, subsequently the exceeding levels of pressure over-
stresses the blade and causesits damage (Li et al., 2015). Furthermore, at
greater speeds and with large centrifugal force caused by blade rotation,
there is a high probability of facing uneven ice accumulation where ice is
built unequally among the blades. That will lead to unbalanced rotation
and consequently can stress the hub and lead to damage the turbine
blades (Shohag et al., 2017). Finally, manufacturing defects cannot
provide the best rigidity of the structure needed to have the effective
operation and thus lead to damage the blades (Sorensen, 2009).

2.4. List of flaws

Continuously operating in harsh environments, wind turbine blades
are susceptible to damage. The abrasive airborme particles impact the
leading edge of the blade and especially the region close to the tip
characterized by its high velocity, and subsequently lead to its erosion
and creates delamination (Sareen etal., 2014). Damages and cracks can
occur around the areas of lightning attraction or the receptors (Shohag
et al., 2017). Cold climate and severe icing lead to imbalanced loads
caused by the ice mass on the blades which increase the fatigue and
shorten the structure lifetime (Hudecz et al., 2014). Fatigue occurs after
many load cycles in wind turbine blades and leads to its collapse
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Table 1
List of flaws (Ciang et al., 2008; Shohag et al., 2017).

Type  Description

Type  Skin/adhesive debonding and/or main spar/adh

layer where the

1 damage is formed in the adhesive layer joining skin and main spar flanges
Type Adhesive joint failure between skins where the damage is formed in the
2 adhesive layer joining the up and downwind skins along leading and/or
trailing edges
Type  Sandwich panel face/core debonding where the damage is formed at the
3 interface between face and core in sandwich panels in skins and main spar
web
Type Del. driven by a 1 or a buckling load where the damage is
4 formed in laminates in skin and/or main spar flanges, under a tensile or a
compression load
Type  Fiber failure in tension and laminate failure in compression where splitting
5 and fracture of separate fibers in laminate occur on the skin and main spar
of the table
Type  Skin/adhesive debonding induced by buckling where buckling of the skin
6 due to damage occurs in the bond between skin and main spar under

compression load. This is a specific case of type 1
Type  Gel-coat cracking and gel-coat/skin debonding where cracks are formed in
7 the gel-coat leading to its debonding from the skin

Type 4
Delamination
(+/-45°)

Sandwich/core
debonding

Delamination in
load-carrying
laminate (main
spar)

y
Type 5: Splitting
along fibres

Fig. 3. Types of flaws of wind turbine blades (Li et al., 2015).

(Gallardo, 2011). Table 1 states the different types of damages as
reviewed in (Sorensenet al., 2004).

These seven types of flaws are summarized in Fig. 3.

In addition to these seven types, there is an external problem related
to the environmental condition of the area where the wind turbines are
installed which is ice accumulation (Froese). In fact, flaws can be
divided into three categories or classes: icing event (type 8), surface
flaws (type 1, type 5, type 7), and subsurface flaws (type 2, type 4).

2.4.1. Icing problem

Wind turbine suffers from severe weather conditions especially in
high altitudes and in cold regions. In regions with northern climate, the
wind power increases by 10% than other regions due to the existence of
increased air density with low temperature (Fortin et al., 2005). Possible
icing events may affect wind farms installed in some of the best wind
sites around the globe and lead to some mechanical, electrical failure,
and power losses (Lamraoui et al., 2014).

2.4.1.1. Types of ice. Ice formation can occur under three formats in-
cloud, precipitation, and frost type (Homola et al., 2006). In-cloud
icing occurs when super-cooled water droplets hit the surface of the
turbine blade below 0 °C and freeze upon impact (Ilinca, 2011). This
type is divided further into rime and glaze ice; the difference between
these two types is that rime ice occurs at coldest temperature whereas
glaze at warmest temperature (Politovich, 2003). Precipitation icing is
the ice that is formed when wet snow or freezing rain occur and hit a
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Fig. 4. Type of ice as function of wind speed and air temperature (Fakorede
et al., 2016).

surface below 0 °C (Daniel, 2017). Fig. 4 describes the icing profile and
characterizes the region where glaze, soft rime, and hard rime ice exist,
and which parameter control their formation (Fakorede et al., 2016)
(see Fig. 4).

2.4.1.2. Ice accretion model. There are two methods of ice modeling:
one depends on some physical swell parameters, and the other depends
on meteorological parameters that will influence the input of the system
(Homola et al., 2006). Makkonen (1994) described the ice accretion
phenomena by equation (1).

am
I:m @3 w-U-A [¢0]
where 9/ presents the icing rate, and a;, ay, and a; correspond respec-
tively to the collision efficiency, the sticking efficiency, and accretion
efficiency. While w presents the mass concentration of the particles by
means of the liquid water content (LWC), v is the relative velocity of the
particle, and A represents the cross-sectional area of object with respect
to the direction of particle velocity vector (Maldwonen, 1994).

2.4.2. Internal and external surface flaws

Since wind turbine may exist in harsh weather conditions, it faces
rain, hail, as well as some insects that will lead to some defects on the
external surface of the blade like erosion and crack (Zhang et al., 2014a).
As erosion begins in the blade, the performance of the turbine will
decrease, resulting a decrease in the output and an increase in the
maintenance cost (Maniaci et al., 2016). Thus, a regular inspection is
mandatory to avoid high maintenance cost. Due to fatigue, cyclic loads
or uneven ice accumulation, the internal structure may be subject to
delamination between the laminate of the blade as well as the external
structure may also face induced crack (Mishnaevsky et al., 2017).
Delamination is one of the most dangerous faults in the blade structure
because it is not easily detected by some traditional detection methods
especially if it was at its early stage (Dolinski et al., 2018).

3. Detection methods survey

Several reviews on icing and damage detection methods were pre-
sented and relative conditions for ice accretion measurements and some
methods used in the ice detection and the de-icing systems were eval-
uated. Parent et al. described the ice precipitation phenomena and its
different types (Parent and Ilinca, 2011). Shohag et al. presented fault
diagnosis of rotor blade with structural health monitoring (SHM)
(Shohag et al., 2017). Yang et al. made a review on all NDT used in the
fault detection in wind turbine blade (Yang et al., 2016).

In order to avoid premature defects and high maintenance cost, a
routine inspection of the wind turbine blades must be done (Pinho,
2016). Different methods are used for this purpose but each one has its
advantages as well as its disadvantages. Some of these methods are
presented in this section.
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3.1. Visual inspection (VI)

VI is a basic method that depends on the technician and skills to
inspect blade structure (Boopathy et al., 2017; Tchakoua et al., 2014). As
drawbacks, this time-consuming job (Yang et al., 2016) cannot provide
good visibility in some weather conditions and some light crack or
erosion may go unseen (Parent and Ilinca, 2011; Gholizadeh, 2016).
Moreover, some inspectors use video monitoring for ice detection; when
the monitor visualizes an ice accretion occurs, the technician sends a
signal to the operating room in order to shut down the turbine and
activate the de-icing system (Yang et al., 2016). Nowadays, VI is
remotely done via a robot or an unmanned vehicle. The latter is used to
scan the blade structure and take snapshot of it to be fed to an image
processing algorithm such as line and edge detection methods (Zhang
and Jackman, 2013), Haar-Like features (Wang and Zhang, 2017), or
using a deep convolutional neural network for damage recognition (Yu
etal., 2017).

3.2. Ultrasound technique (UT)

UT is a nondestructive testing (NDT) technique widely used by the
wind energy industry mainly for structural evaluation of wind turbines
towers and blades (Tchakoua et al., 2014) such as estimating the loca-
tion and nature of flaws in composite and other kinds of materials (Yang
etal, 2017).

UT evaluation system comprises a transmitter and receiver circuit,
transducer tool, and display device (Gholizadeh, 2016). The principle of
measurement is quite simple. Elastic waves are propagated into the re-
gion to explore, and reflection within material are detected and revealed
(Tchakoua et al., 2014).

The execution of this technique is related to the time of flight or
delay, path length, frequency, phase angle, amplitude, acoustic imped-
ance, and angle of wave deflection. Consequently, signal-processing
algorithms such time-frequency techniques as the Wigner-Ville distri-
bution, Hilbert-Huang transform, and wavelet transform, can be used to
discover additional information on internal defects (Tchakoua et al.,
2014; Raisutis et al., 2008).

This method stands as a fast, reliable, and effective tool for SHM of
the principal turbine components (Gholizadeh, 2016). Ultrasound
scanning can check the laminate for dry glass fibers and delamination
under blade surface as attenuation caused by multiple fiber ruptures is
less than natural attenuation variation in the laminate (Ciang et al.,
2008). However, UT is difficult in setting up (Yang et al., 2017), it needs
skill to scan a part accurately and test sample to insure accurate testing
(Gholizadeh, 2016).

3.3. Guided-wave (GW)

GW method is based on the study of a propagated wave along the
inspected structure. When the wave interacts with the imperfections like
surface crack, delamination, its normal pattern is modified and that
enables the detection of flaw. Two approaches can be presented: the
Pulse-Echo, where the same transducer is used as a transmitter of the
wave and receiver of the reflected echoes. The second approach is the
Pitch-Catch; the reflected signal is assimilated by another transducer
and the defect is detected due to amplitude change or time of the flight
(Yang et al., 2016). GW technique has some advantages such as early
damage detection of the internal and external structure. Small trans-
ducers implemented in few locations can inspect a large area. While the
main disadvantage is its huge equipment (Hernandez Crespo, 2016).

3.4. Acoustic emission (AE)
AE is a powerful method of in-situ and laboratory imperfection

investigation (Gholizadeh, 2016), with a large frequency range ranging
from 50 kHz to 1 MHz (Tchakoua et al., 2014), for fast global flaw
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detection in gearboxes, blades, shafts and bearings (Tchakoua et al.,
2014), by allowing a global evaluation of the structural integrity of large
wind turbine blades (Yang etal., 2017). Itis an effective NDT and single
harmonic motion (SHM) technique used to notice any further growth of
earlier cracks or to distinguish failure mechanisms (Yang et al., 2016).

AE phenomena is based on detecting the fast release of energy of
transitory elastic waves (Yang et al., 2017) that are produced by dy-
namic deformation process once crack pledges and proliferates within
the blade (Tchakoua et al., 2014). These material defects can be local-
ized as delamination, matrix micro cracking, fiber pullout and breakage
or fiber-matrix debonding (Tchakoua et al., 2014). The stress waves
caused by these types of defects diffuse concentrically from their origin
and are discovered by a group of extremely sensitive piezoelectric
transducers and optic fiber displacement sensors (Gholizadeh, 2016).
The most usually measured AE factors for analysis are amplitude, kur-
tosis, root mean square value, crest factor, energy, events, and counts
(Tchakoua et al., 2014).

There are two categories of acoustic condition monitoring: active
type characterized by external application of excitation and passive type
characterized by an excitation performed by the component itself
(Raisutis et al., 2008). For instance, the source of AE for the testing of a
fiberglass (FGL) structure is cracking of matrix and fibers (Raisutis et al.,
2008). FGL structure produces some AE by itself during the early loading
or at loads low compared with the normal load (Raisutis et al., 2008).
Despite the presence of intemal cracks and non-homogeneities in
emission informative signals, such outcome can be used for localization
of regions with high residual stresses (Raisutis et al., 2008).

Several studies and research present good results by combining vi-
bration and AE monitoring effort that was performed over a continuous
period on operating wind turbines (Tchakoua et al., 2014). AE technique
has high sensitivity to detect different types of flaws, as stated before,
using multiple and permanent sensors mounting for process control
without the need to dissemble the desired specimen to be checked
(Gholizadeh, 2016). It is also characterized by its high signal-to-noise
ratio (Tchakoua et al., 2014). However, one of its limitations is the
signal attenuation during propagation in composite blade material
(Yang et al., 2017), thus the need for multiple AE transducers to carry
out damage location (Raisutis et al., 2008).

3.5. Tap test

It is a non-visual defects detector which works effectively on thin
laminates. The procedure consists of tapping on the blade shell and
listen to the change in the emitted sound when the thickness or material
type change, or when the presence of porosities or dis-bond occurs (Yang
et al, 2016). When using an automated system (Drewry and Georgiou,
2007) such as the local resonance spectroscopy with an automated im-
pulse hammer and a microphone, the excited sound is recorded (Juen-
gert, 2008). The resonance sound emitted is dependent on the material
inspected (Juengert and Grosse, 2009).

3.6. Sonic infrared

In this method, the sample is excited via an acoustical energy source
like the ultrasonic horn and then the reflection of the thermal wave from
the sample is investigated via an infrared (IR) camera (Zhang et al.,
2014b). If a defect is present in the sample, the acoustical energy will
trigger the defect surface to scrub which will induce a localized increase
in temperature (Cheng et al., 2013). IR camera images the thermal re-
flected wave (Cheng et al., 2013). This method provides an effective,
fast, and wide-area range detection method, as well as it can be used for
surface and subsurface fault detection (Zhang et al., 2014b) (Fig. 5).

3.7. Thermography

Infrared thermography (IRT) is based on detecting flaws by assessing
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Fig. 5. Working principle of Sonic IR (Cheng et al., 2013).

the temperature distribution using nowadays IR cameras (Gholizadeh,
2016). The presence of a defect in the structure will vary the normal
pattern of heat flow (Drewry and Georgiou, 2007) anticipated in sound
pattern by varying the continuity of the structure (Yang et al., 2017;
Chady, 2016). By that, the flaw is detected and located using the ther-
mography image. This method is also used in blade SHM (Kaushal and
Kiran, 2014) in laboratory tests as in its full-field measurements (Yang
et al., 2016). The procedure for delamination detection using this
technique is described in (Hwang et al., 2015) and that of ice detection
in (Abdel-Moati et al., 2018).

IRT technique has two types: the active type and the passive type
(Yang et al, 2016). Active thermography can be existed in
non-equilibrium state in many situations (Kaushal and Kiran, 2014),
such as the surface heating thermography when a lamp, flash, hot water
or laser is used to heat the surface of the specimen to be tested and then,
the heat is conducted from surface to inner and the volume heating
thermography when the specimen is excited by high frequency induc-
tion current and microwave and then, the carbon fiber reinforced
polymer (CFRP) and glass fiber reinforced polymer (GFRP) are volu-
metric heated (Yang etal., 2016). Passive thermography is performed in
equilibrium state during the rotation of rotor blades from the ground
level (Kaushal and Kiran, 2014; Gémez Munoz et al., 2016).

Despite its efficiency in identifying subsurface flaws (Cheng and
Tian, 2012), IRT is subjected to many limitations (Boopathy et al.,
2017). The main one is the influence of high environmental temperature
and its effect of hiding the small incipient defect detection in wind
turbine blade in SHM practice (Yang et al., 2017).

3.8. Vibration analysis (VA)

VA inspects the structural health condition of blades by examining
their dynamic responses that are revealed by external forces excitation.
Any change in material or structural properties such as stiffness, mass
and damping can be determined by these dynamic responses which are
described by some modal parameters and vibration features. (Yang
etal., 2017; Dolinski and Krawezuk, 2009). VA technique is used for a
wide range of frequency (0.01-100 kHz) by using different type of
sensors (Raisutis et al., 2008; Juengert, 2008). In addition to its role in
condition monitoring, VA can locate the damaged region by using many
vibrations transducers to reduce the effect of high damping of composite
materials on the dynamic response and to be able to have some of them
near the position of defect to be well detected (Yang et al., 2017). This
technique has been performed during the static and fatigue laboratory
tests of wind turbine blades. But the fact of installing many transducers
on an operating wind turbine blade leads to unrealistic in-situ applica-
tion (Yang et al., 2017). Hence, VA cannot be a reliable method to
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execute the structural health monitoring of wind turbine blades.
3.9. Eddy current testing (ECT)

ECT has been broadly used in identifying flaws in composite fiber
reinforced polymer, metal-matrix composites and other conductive
composite material (Yang et al., 2016).

When an alternating magnetic field is applied to a component, eddy
currents (EC) are generated. The intensity of these currents varied with
the conductivity, the set-up geometry and the permeability of the
product. Any change of these parameters can be noticed by the excita-
tion coil as the coil impedance will vary also. The cathode-ray tube will
display the amplitude and phase information of the detected EC signals
(Kaushal and Kiran, 2014). Inaddition to its role in detecting surface and
subsurface defects (Cheng and Tian, 2012), ECT is able to define the
composition, conductivity, hardness, permeability and other conditions
of conducting materials such as engineering metals (Yang et al., 2016).
Because of that, sometimes EC responses can lead to masked results.

Pulsed ECT has shown its good deep defect detectability, high reli-
ability and good visibility over other ECT by the development in feature
extraction technique (Cheng et al., 2013). C-scan imaging in this method
visualize the flaw in large-scale structures (Yang et al, 2016).

3.10. Terahertz

Terahertz electromagnetic radiation is a NDT that allows non-
ionizing, non-invasive and non-contact inspection of non-conducting
polymer composites reinforced with quartz, glass, or Kevlar fibers,
CFRP and GFRP (Yang et al., 2016) and dielectric structures such as
wind turbine blades (Chady, 2016).

Terahertz waves are electromagnetic radiations with a wide range of
frequency varying between 0.1 and 10 THz (Yang et al., 2016) and they
are sensitive for changes of refractive index disturbed by any flaws such
as void, inclusion, delamination, material inhomogeneities, surface
roughness, fiber waviness and internal interfaces in layered structures
(Chady, 2016). Generally, flaws are located by reflection of incident
terahertz pulse or transmission imaging based on pulsed terahertz time
domain spectroscopy (Chady, 2016). This reflection is caused by the
interface between the separated layers and weakens the transmitted
pulse. The thickness and the inner structure state are determined
depending on the changes in delays of the propagated pulses and their
echo (Chady, 2016).

3.11. Power curve

Power curve analysis method is used as an ice detection method in
which the actual power curve is compared to the theoretical one while
checking the weather conditions. A 50% decrease in the power gener-
ated is an indication of ice accretion (Parent and Ilinca, 2011). This
method presents a robust and efficient detection approach of ice ac-
cretion during turbine operation in severe weather conditions, but it has
a main disadvantage that the decrease in power can be triggered by
other factors than icing event (Tesauro et al., 2014). A fast ice detection
algorithm based on Langevin equation is tested offline on the power
curve (Fang and Wang, 2016).

4. Hyperspectral remote sensing

Hyperspectral remote sensing is one of the spectral imaging tech-
niques, it collects and processes information from across the electro-
magnetic spectrum (Adaoet al., 2017). It presents an image at different
wavelengths thus forming a data cube of spectral and spatial informa-
tion (Adaoet al., 2017). This data cube holds some information that the
human eyes cannot see without the hyperspectral image (Adaoet al.,
2017). The goal of this technology is to obtain the spectrum for each
pixel in the image of a scene, in order to detect some specified targets

149



P. Rigk et al.

and identifying them (Adaoet al., 2017). Hyperspectral imaging (HSI) is
applied in different domains like agriculture, food quality monitoring,
surveillance, target detection and many others (Malkkiet al., 2018). On
the other hand, a less powerful technology than the hyperspectral im-
aging is the multispectral imaging which acquires spectral information
in a fewer number of bands than the HSL. The multispectral imaging
technique is based on taking a snapshot of the scene at different wave-
lengths; in which a spectral signature of a specific object is obtained and
can be used for the detection as well as for the classification of this target
(Gregoris et al., 2004). This multispectral camera employs the spectral
spectroscopy to detect icing, in a robust and reliable manner for a
thickness less than 0.5 mm (Gregoris et al., 2004). This method offers a
flexibility in the location of the inspected area and reduces the time
needed to inspect a specific surface (Gregoris et al., 2004). HSI proved a
good detection ability with ice (Nakauchi et al., 2012) and erosion
(Young, 2017). Thus, we will use this technology in order to detect
surface and subsurface flaws as well as ice accumulation on wind turbine

blade.
4.1. Methodology
The experiment is done based on the procedure described below:

e Glass fiber samples preparation with their corresponding faults.

o Spectral signature extraction of each fault aside and that of the glass
fiber is taken as reference. Several surface cracks are present in
different positions on the glass fiber sample, as well as, for the sub-
surface delamination case. In the third glass fiber sample an erosion
is present within its corner. In the fourth sample, a large area of the
glass fiber is covered by an ice layer. After retrieving the signature of
normal and faulty glass fiber composite several times, an image was
reconstructed from these signatures which will be used in the
simulation. The hyperACE algorithm, based on the adaptive cosine/
coherent estimator algorithm (Broadwater and Chellappa, 2007;
Zhang et al., 2010), is used in the detection process.

With the intention of detecting lighter faults with the HSI, the
spectral signature of each defect is merged with spectral signature of
the glass fiber sample as described in the following equation:

merged signature = a.fault signature + (1 — a).normal signature (2)

where « represents the abundance factor of fault signature (Manolakis
et al., 2003). The merged signature is then inserted in the glass fiber
sample image and the image is tested by the detection algorithm. By
merging the signature, we are playing on the effect of the size of the
fault.

o Band selection algorithm is applied to the data cube in order to find
the optimum number of bands while maintaining a high detection
probability. Hyperspectral images commonly present a high corre-
lation between end-to-end spectral bands. Consequently, eliminating
the redundant information would minimize the volume of data to be
interpreted by the processor (Khoder et al., 2017; Rizk et al., 2019).
Mutual information (MI) and Net Analyte Signal (NAS) are used to
remove the redundancy. The MI measures the similarity between two
images (Ithoder et al., 2017). To remove the redundant information,
the images with low similarity are taken for further study. Then NAS
is applied to the low similarity image; where according to (Lorber,
1986) NAS is a part of the analyte gamut that is exclusive to that
analyte (Grahn and Geladi, 2007). NAS is a useful method to find
figures of merit of a signal. These figures of merit are used latterly to
compare different models in an optimum number of bands (Bro and
Andersen, 2003).
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Fig. 7. Spectral signature of caacked versus normal glass fiber compos-
ite material.

4.2. Material preparation

For this purpose, four glass fiber composite material plates of 300
mm in length, 210 mm in width, and a thickness of 5 mm are used as
samples. Each of these samples holds a type of defects. The first sample
carries numerous crack surface defects of different sizes up to 15 mm
length and 0.5 mm depth. The second sample presents delamination in
the subsurface of the plate with the same size of the crack. The delam-
ination was induced during manufacturing process. The third sample
holds an erosion on the comer. The fourth sample is covered in a large
part of it with ice of thickness 0.5 mm. The icing is based on spraying
cold water on the composite sample and then put it in a freezing system
with temperature between —15 °C and —30 °C until a thin layer of ice
appears. An ASD FieldSpec4 spectroradiometer is used to retrieve the
spectral signature. This spectroradiometer provides a spectral range
from 350 to 2500 nm and a spectral sampling of 1.4 nm at 350-1000 nm
and 1.1 nm at 1001-2500 nm (see Fig. 6).

4.3. Results
4.3.1. Surface flaw

4.3.1.1. Crack flaw. The spectral signature of the crack surface versus
the normalized reflectance is presented in Fig. 7.

As shown in Fig. 7, the spectral signature of the surface crack has a
higher mean than that of the glass fiber material. The crack has the same
signature shape with a higher reflectance than that of the surface
material.

As stated in the methodology section, several surface cracks exist in
the composite glass fiber image and a detection algorithm was tested on
it. Fig. 8(a) presents the reflectance of the glass fiber sample. The
reflectance achieves its highest values at cracks’ location. The spikes
shown in this figure can determine the location of these flaws.
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Fig. 8. Crack detection process a) before b) after.

Table 2
Crack sample results.

Crack Sample

Fault Insertion Band Reduction Detection Probability

0.1 crack + 0.9 sample 90% 7.692%
80% 7.692%
70% 23.077%
60% 61.538%
50% 84.615%
40% 92.308%
30% 92.308%
20% 100.000%

0.2 crack + 0.8 sample 90% 38.462%
80% 92.308%
70% 92.308%
60% 92.308%
50% 92.308%
40% 100.000%

0.3 crack + 0.7 sample 90% 92.308%
80% 92.308%
70% 92.308%
60% 100.000%

0.4 crack + 0.6 sample 90% 92.308%
80% 92.308%
70% 100.000%

0.5 crack + 0.5 sample 90% 92.308%
80% 100.000%

0.6 crack + 0.4 sample 90% 92.308%
80% 100.000%

0.7 crack + 0.3 sample 90% 100.000%

0.8 crack + 0.2 sample 90% 100.000%

0.9 crack + 0.1 sample 90% 100.000%

The detection probability of these presented cracks is illustrated in
Fig. 8(b). The detection probability varies depending on the abundance
factor of crack reflectance and on its size. For instance, we can notice in
this figure from the spikes color that for an abundance factor of 80% of
crack, the detection probability was shown to be about 85%, while for a
full-crack abundance factor, we can notice 100% detection probability
and for an abundance factor of 20% of crack, the detection probability
nearly achieves 25%. The blue plane indicates that the detection prob-
ability of non-crack signature is below 0.1. The signature of the surface
defect is merged with the signature of the composite material as stated in
equation (2). The merged signature will help us to study the effect of the
size of surface fault on the detection by HSI.

The image with the merged signature is reduced in order to obtain
the optimum number bands while maintaining a good detection
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Fig. 9. Spectral signature of eroded versus normal glass fiber compos-
ite material.

probability. The image, of 1827 bands, is reduced by MI to 193 bands
only, and then fed to the NAS algorithm for further reduction. The re-
sults of the band reduction with different percentage of fault signature,
with NAS, are summarized in Table 2.

Table 2 presents the effect of size reduction and different percentages
of fault insertion on the detection probability. In the case of 10% of the
crack signature, a crack of 1.5 mm of length and after applying a
reduction of 40% to the image to reach 116 bands, a good detection
probability of 92.308% is maintained. If the crack size increased to 10.5
mm then the probability of detection will be 100% with only 20 bands
(90% reduction). We can conclude from this table that as the fault size
increases, the number of bands needed decreases.

4.3.1.2. Erosion flaw. The spectral signature of the eroded surface
versus the normalized reflectance is presented in Fig. 9.

As shown in Fig. 9, the spectral signature of the surface crack has a
lower mean than that of the glass fiber material. The erosion has the
same signature shape but a higher reflectance than that of the surface
material. As stated in the methodology section, a corner erosion signa-
tures existed in the composite glass fiber image and a detection algo-
rithm was tested on this image. Fig. 10(a) presents the reflectance of the
glass fiber sample. The reflectance achieves its lowest values at erosion’s
location. The vertical nearly blue planes shown in this figure can
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Table 3
Erosion sample results.

Erosion Sample

Fault Insertion Band Reduction Detection Probability
0.1 erosion + 0.9 sample 90% 0.000%
80% 15.385%
70% 46.154%
60% 53.846%
50% 69.231%
40% 84.615%
30% 92.308%
20% 92.308%
10% 92.308%
0.2 erosion + 0.8 sample 90% 38.462%
80% 84.615%
70% 92.308%
60% 92.308%
50% 92.308%
40% 100.000%
0.3 erosion + 0.7 sample 90% 76.923%
80% 92.308%
70% 92.308%
60% 100.000%
0.4 erosion + 0.6 sample 90% 92.308%
80% 100.000%
0.5 erosion + 0.5 sample 90% 100.000%
0.6 erosion + 0.4 sample 90% 100.000%
0.7 erosion + 0.3 sample 90% 100.000%
0.8 erosion + 0.2 sample 90% 100.000%
0.9 erosion + 0.1 sample 90% 100.000%

determine the location of these flaws.

The detection probability of the presented erosion is illustrated in
Fig. 10(b). The detection probability varies depending on the severity of
the erosion. For instance, we can notice in this figure that high proba-
bility detection values are shown on severe erosion locations. However,
these values achieve their lowest values in lightest erosion locations. The
signature of this surface defect is merged with the signature of the
composite material as stated in equation (2). The image with the merged
signature is then reduced in order to obtain the optimum number bands
while maintaining a good detection probability. The result of the MI on
the eroded sample is a reduction from 1827 to 157 number of bands. At
that point, the resulted image is also reduced by NAS and the results of
this reduction are summarized as percentage in Table 3.

Table 3 presents the effect of size reduction and different percentages
of fault insertion on the detection probability. In the case of 10% of the
erosion signature, a very light erosion can be detected with only 110
bands while maintaining a good detection probability of 92.308%.
However, in the case of severe erosion like 90% of erosion, only 16

normal
delamination
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Fig. 11. Spectral signature of delaminated versus normal glass fiber compos-
ite material.

bands are needed for a 100% detection probability.

4.3.2. Subsurface flaw

Fig. 11 presents the subsurface delamination spectral signature
versus the normal glass fiber composite signature. The delamination
signature maintains a higher signature than that of the glass fiber sample
until 1600 nm. The inflection point of the delamination signature is at
2250 nm and the reflectance becomes lower than that of the sample
reflectance.

Fig. 12(a) presents the reflectance of the glass fiber sample. The
reflectance achieves its lowest values at delamination’s location. The
spikes shown in this figure can determine the location of these flaws (see
Fig. 12).

The detection probability of the presented delamination is illustrated
in Fig. 12(b). The detection probability varies depending on the abun-
dance factor of delamination reflectance and on its size. For instance, we
can notice from the spikes color that for an abundance factor of 80% of
delamination, the detection probability was shown to be about 82%,
while a large delamination can achieve a 90% detection probability and
for an abundance factor of 20% of delamination, the detection proba-
bility nearly achieves 10%. The blue plane indicates that the detection
probability of non-delamination signature which is below 0.1. The
signature of the subsurface delamination defect is merged with the
signature of the composite material as stated in equation (2). The same
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Table 4
Delamination sample results.

Delamination Sample

Fault Insertion Band Reduction Detection Probability

0.1 delamination + 0.9 sample 90%-10% 0.000%

0.2 delamination + 0.8 sample 90% 0.000%
80%-50% 7.692%
40% 30.769%
30% 30.769%
20% 38.462%
10% 53.846%

0.3 delamination + 0.7 sample 90% 7.692%
80% 23.077%
70% 38.462%
60% 46.154%
50% 61.538%
40% 76.923%
30% 76.923%
20% 84.615%
10% 100.000%

0.4 delamination + 0.6 sample 90% 61.538%
80% 76.923%
70% 84.615%
60% 84.615%
50% 84.615%
40% 100.000%

0.5 delamination + 0.5 sample 90% 92.308%
80% 100.000%

0.6 delamination + 0.4 sample 90% 100.000%

0.7 delamination + 0.3 sample 90% 100.000%

0.8 delamination + 0.2 sample 90% 100.000%

0.9 delamination + 0.1 sample 90% 100.000%

procedure done for the surface flaw is done here, the image is reduced by
MI from 1827 to 196 bands only. The results, after applying NAS to the
reduced image, are summarized in Table 4.

Table 4 shows the effect of the size of the delamination and the
reduction on the detection probability. A delamination of 4.5 mm in
length can be detected by the HSI with a minimum of 175 bands. As the
size of the delamination increases, we can reduce the size of the image to
fewer number of bands while maintaining a high detection probability.
For instance, as seen in this experiment, HSI has an ability to detect a
delamination of 9 mm with only 20 bands.

4.3.3. Icing case

The case of the icing event is different from the two cases above;
there is a total absorption of the spectral reflectance of ice from the
wavelength of 1400 nm (see Fig. 13).
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Fig. 13. Spectral signature of rime ice versus normal glass fiber compos-
ite material.

The results of the hyperACE algorithm in the ice detection process
are presented in Fig. 14. We can notice in Fig. 14(a) that the reflectance
achieves its lowest values at locations of accumulation of ice of around
0.12, and are higher with a value of 0.21 at no-ice locations.

We can deduct from Fig. 14 that hyperspectral imaging technique
(HSI) has a great potential in the detection process of icing problem.
Fig. 14(b) proved the potential of HSI to detect the ice of thickness 0.5
mm. A 100% detection probability is achieved at locations of ice accu-
mulation and about 10% detection probability at no-ice locations. The
signature of the ice is merged with the signature of the composite ma-
terial as stated in equation (2). The same procedure done for the surface
flaw is done here, the image is reduced by MI from 1827 to 874 bands
only. The results, after applying NAS to the reduced image, are sum-
marized in Table 5.

In Table 5, the effect of the ice thickness and the reduction of the
data-cube is studied. The HSI is able to detect ice formation at a thick-
ness of 0.1 mm in a robust and reliable manner with only 88 bands.

From the results presented, HSI presents a great potential to detect in
a robust and reliable manner all types of surface and subsurface flaws as
well as the ice accretion at their early stage of formation. In this simu-
lation, HSI detected ice of thickness 0.5 mm and proved a potential to
detect it at a thickness of 0.1 mm. Also, the demonstration of the
detection of a light surface and subsurface flaws were presented.
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Table 5
Ice sample results.
Ice Sample
Fault Insertion Band Reduction Detection Probability
0.1 ice + 0.9 sample 90% 86.364%
80% 97.727%
70% 100.000%
0.2 ice + 0.8 sample 90% 100.000%
0.3 ice + 0.7 sample 90% 100.000%
0.4 ice + 0.6 sample 90% 100.000%
0.5 ice + 0.5 sample 90% 100.000%
0.6 ice + 0.4 sample 90% 100.000%
0.7 ice + 0.3 sample 90% 100.000%
0.8 ice + 0.2 sample 90% 100.000%
0.9 ice + 0.1 sample 90% 100.000%

5. Conclusion

After stating some traditional methods used for wind turbine blades
monitoring, hyperspectral imaging (HSI) technique is proposed in this
paper. This technology proved a great potential to detect the flaws
regardless of their types from surface, subsurface, or even icing event.
This remote in-field inspection technology provides a high accuracy in a
short inspection time. It can be a powerful tool to remotely monitor the
wind turbine blades from all types of damage. It provides an ability to
detect ice at a thickness of 0.1 mm in a robust and reliable manner. It has
a potential to quantify and localize the surface and subsurface flaws at
their early stage formation. Thus, HSI is the impending inspection
method of wind turbine blades which will provide a less shutdown
period for inspection, less maintenance cost, and low frequency of
sudden breakdown by providing an easy regular inspection of the wind
turbine blade. As for future work, HSI will be tested on different material
types of blade in order to study the effect of material used in blade
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Résumé:

Cet article présente les concepts, les avancées et les applications de la technologie
d'imagerie spectroscopique dans la détection non destructive des défauts des pales
d'éoliennes. 1l décrit la mise en ceuvre de l'imagerie hyperspectrale dans 1'acquisition, le
traitement et la reconnaissance des défauts ainsi que la détection des fissures et de I'érosion.
Il aborde également le dispositif expérimental, les éléments essentiels, ainsi que les méthodes
de traitement et d'analyse associées. Cette technique présente des avantages par rapport aux
autres méthodes discutées. L'article démontre le réle potentiel de I'imagerie hyperspectrale
dans le contréle de la sécurité des éoliennes et la réduction des colts de I'énergie éolienne.
Les résultats de cette technique sur le terrain montrent que I'exactitude et la précision de la

détection des défauts des pales sont considérablement ameliorées [269].
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Regardless of the evolution in the wind turbine industry, the operation of wind farms faces critical challenges
when it comes to maintaining the lowest possible cost of energy. It is essential to early detect or predict wind
turbine breakdowns due to different factors such as material degradation, electrical or mechanical failures, faults,
or environmental damage. Wind turbine blades are the most expensive and most exposed parts of a wind turbine
and suffer from many shortcomings, mainly cracks and erosion, which reduces their performance. Hence, there is
an essential requirement for using non-destructive diagnostic of wind turbine blades. This paper lists some of the
current non-destructive techniques for wind turbine blades analysis, their applicability, advantages, and draw-
backs. Nevertheless, these methods face drawbacks that can be overcome by remote sensing. Hyperspectral
imaging is a spectral imaging technique that integrates imaging and spectroscopy. It also enables the analysis and
identification of distinctive spectral signatures and assigns them to the examined sample elements. Thus, this
paper describes hyperspectral imaging implementation in image acquisition, handling, and flaw recognition as
well as the detection of cracks and erosion. This technique’s field output results show that blade defect de-
tection’s accuracy and precision are significantly enhanced.

1. Introduction

Driven by technological advancement and limited fossil fuel sources,
industry and population’s increased energy needs requires an acceler-
ated development of renewable energy sources (Ellabban et al., 2014).
Wind energy has experienced an exponential growth for the last 20
years. The total installed capacity is over 600 GW. Today, it is a mature
technology, with a serial production of megawatt size wind turbines
(Drewry and Georgiou, 2007). The share of wind energy is estimated to
reach 20% of the total energy supply in the next years (Li et al., 2015).

Wind turbines are compound structures mainly composed of rotor
blades, and a nacelle, both installed on the top of a tower (The Inside ofa
Wind Tur). The blades are an essential and expensive component of the
wind turbine. They must be durable and rigid, yet the need to be as light
as possible. The largest wind turbines use blades as long as 107 m for
offshore sites (Onshore turbine capaciti, 2021) and rotor diameter as
long as 170 m for onshore sites (How Long Are Wind Turbin, 2021), the
stresses should be kept as small as possible not only in the blades but also
on the nacelle, tower and foundation. Blade materials are typically
fiber-reinforced composites that provide low weight, high strength and

stiffness and optimal fatigue performance. Most of them are made of
fiberglass/epoxy, fiberglass/polyester, or carbon-fiber/epoxy compos-
ites (Jureczko et al., 2005). Blades are expected to have a lifetime of up
to 20 years, during which time they will be exposed to different atmo-
spheric conditions and dynamic loads. The design should withstand
different types of damage and faults such as cracks and erosion, which
will negatively affect their performance (Li et al., 2015).

The available data for wind farm operation show that the downtime
likelihood for each failure of wind turbine blades is: 9h/year per turbine
in WMEP database, 62 h/year per turbine in LWK database, 18 h/year
per turbine in VTT database, 36 h/year per turbine in WindStats Ger-
many database, 8 h/year per turbine in WindStats Denmark database,
and 31 h/year per turbine in CREW database. This corresponds to time
percentages of 0.10%, 0.71%, 0.21%, 0.41%, 0.09%, and 0.35%
respectively (BrannerGhadirian, 2014).

Thus, there is an exigency towards overcoming the lengthy and
costly maintenance of wind turbine blades to prevent breakdowns (Li
et al., 2015). Various methods are available to evaluate the blade status
and detect potential defaults, the non-destructive techniques being of
interest for wind farm operators. These techniques can be extended to
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other applications (Gholizadeh, 2016) such as aerospace (LiewVeidt
et al., 2011), manufacturing and industry of pipes, tubes and storage
tanks (Venkataraman, 2001; Hufenbach et al., 2011; Schneider, 1984;
CastaingsHosten, 2008), nuclear industry (VavilovPlesovskikh et al.,
2015), military and defense (BennettLewis and Hungler, 2013), com-
pound flaws identification and classification (FotsingRoss and Ruiz,
2014).

Non-destructive testing entails recognizing and delineating de-
structions on the surface and inside materials without splitting or
modifying the material (Lockard, 2015). Therefore, there is a necessity
to use a non-destructive evaluation of wind turbine blades to identify
faults and defects without harming the tested blade (Newswire, 2013).

The main methods referred in the composite non-destructive evalu-
ation field are Acoustic Emission Testing (SarasiniSantulli et al., 2014),
Infrared Testing (VavilovBudadin and Kulkov, 2015), Fiber Grating
Testing (Li et al., 2014), Ultrasonic Testing (PengZhang et al., 2012),
Guided Wave Testing (CastaingsHosten, 2008), Thermal Imaging
(Kroeger, 2014), Terahertz Imaging (Rizk et al., 2020), Visual Inspection
(BossiGiurgiutiu et al., 2015), Tap Test (Rizk et al., 2020), Electro-
magnetic Testing (YangKim et al., 2013) and Vibration Analysis (Rizk
et al., 2020). Nevertheless, the inspection of wind turbine blades de-
pends on the controller’s precision and capacity, the detection method’s
reliability, and the equipment’s efficiency (Yang et al., 2016).

Regular imaging and spectroscopy cannot obtain spectral informa-
tion over large tested areas (Adaoet al., 2017). With the fast evolution of
information science and image processing technology, remote sensing
technologies have become useful in the non-destructive detection of
blade faults (Xiaona Li et al., 2017). Hyperspectral imaging, belongs to
the family of spectral imaging technologies, and it is a promising
candidate among the available wind turbine blade defect-recognition
solutions (Young et al., 2016). By merging spectroscopy methods and
conventional imaging, hyperspectral imaging can create a spatial map
over a broad range of spectral information, leading to various uses in the
blade defect-recognition (Xiaona Li et al., 2017).

In this work Section 1 introduced wind turbine technology and the
challenges facings its widespread adaptation. Section 2 presents a brief
survey of the non-destructive wind turbine blade inspection and surface
flaws detection techniques. Section 4 presents the basic concepts of
hyperspectral imaging and its application for detecting blade material
defaults. We continue with an experiment's setup completed on a GFRP
blade sample showing different severity of cracks and erosion on its
surface, whereas section 6 explains the methodology. Finally, section 7
lists and analyses the results of this experiment. We conclude with a
summary of the work and highlight the potential of the hyperspectral
imaging technique and its benefits in identifying blade defaults.

2. Non-destructive blade defects detection methods
2.1. Acoustic emission testing

The acoustic emission method passes a signal from a source through
a propagation medium and is captured by a transducer (SarasiniSantulli
etal, 2014; Yu et al,, 2017). This latter sends an electrical signal, that
indicates the tested sample’s state (Xie, 2009; Tchakoua et al., 2014). In
the presence of mechanical breakdowns or material defects such as
cracks and erosion, a non-stationary time-varying acoustic emission
signal is generated by the wind turbine’s blades (Gholizadeh, 2016; Li
et al, 2014; Tchakoua et al., 2014). This method can be used, even
during operation, and can cover large areas and many micro-damage
types (Yang et al., 2016; Yu et al., 2017). However, the static condi-
tion is not covered, and errors in processing algorithms can lead to
misleading results (Zhongkui Zhu and Wang, 2005; RaisutisJasiunien_e
et al., 2008).
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2.2. Infrared testing

Every material whose temperature is over 0 K emits infrared radia-
tion due to the vibration of its molecules. This radiation can be measured
using an infrared thermal imager-receiver (Dahao Yueet al., 2011). This
latter transfers the energy disseminated onto a photosensitive element
(Li et al., 2014). The heat variation of the tested sample appears on the
monitor via infrared thermography. In the presence of blade defects, the
cooling during the heat conduction process is disturbed (Drewry and
Georgiou, 2007). The size and shape of the flaws are visualized (Chady,
2016). This method is highly sensitive, efficient and relatively easy to
implement (ChengTian, 2012). Nevertheless, it is costly and can hardly
detect a point temperature (BoopathySurendar et al., 2017).

2.3. Fiber grating testing

This method draws the incident light into the fiber core using the
light-sensitivity of optical fiber materials. Therefore, its sensor measures
the variations of the refractive index inside the fiber core (Rao, 1997). A
fiber grating sensor can be positioned anywhere on the wind turbine
blade to test and detect any damage signal. Then, the blade damage can
be identified by analyzing the data (Ying Shi, 2010). This method helps
predict blade lifetime and blade stress level. Furthermore, it works for
either static or dynamic signal defect detection (Li et al., 2014). Yet, this
method has many drawbacks for long-term monitoring, such as its
sensitivity to power source alterations (Ciang et al., 2008).

2.4. Ultrasonic testing

This method uses the change of materials’ ultrasonic diffusion wave
reflection and energy during the conveyance to detect internal faults
(Tchakoua et al., 2014). The distance between the surface and the flaw is
determined using the transit time. Furthermore, the flaw size is deter-
mined by referring to the echo signal’s size and the transmitting trans-
ducer location (Yu et al., 2017). In the presence of defects, the received
signal has reduced wave amplitude and velocity, in addition to variation
in frequency and others (Tchakoua et al., 2014; RaisutisJasiunien_e
et al., 2008). This method is rapid and inexpensive. It is also efficient,
sensitive, and safe. Nonetheless, it is a tough inspection technique,
especially for non-smooth surface evaluation, and pretentious to sub-
jective and objective factors (Gholizadeh, 2016; Yu et al., 2017).

2.5. Guided wave testing

This method uses an actuator that generates high-frequency guided
waves (Croxford ADrinkwater et al., 2007). They act as stress waves and
propagate following the studied sample’s boundaries (Lowe MJS, 1998).
If the guided waves diffuse in all directions and its regular pattern is
changed, structural damage such as cracks and erosion is present (Yang
et al., 2016). This method can inspect large areas for external and in-
ternal flaws that are not far from the sensing equipment (Yuan Sshi
et al., 2008). However, the guided wave detection method's equipment
is expensive and occupies large spaces (Herandez Crespo, 2016). For
instance, Zhao et al. introduced wireless and wired approaches in guided
wave testing on an aircraft wing and shows the advantages and disad-
vantages of each one (Zhaoet al., 2007; Zhaoet al.). Moreover, Kwan el
al. compared these approaches and showed that the wirelessly acquired
signal matches well with the acquired signal with its wired predecessor
(Kwan et al., 2018).

2.6. Thermal imaging

This method uses the thermoelastic effect (Avdelidis N
Plbarra-Castanedo et al., 2006). In other words, variations in stresses
lead to variations in temperature, detected by sensors or cameras (Ciang
et al., 2008). Higher temperature indicates the presence of defects in the
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tested region (Hahn FPaynter et al., 2002). This method helps in struc-
tural health monitoring by locating hot spots on the blade and reducing
the damage (Hahn FPaynter et al., 2002). Yet, it is a very costly tech-
nique. Moreover, the spotting of temperature variations is affected by
conduction and convection processes. These facts make the inspection
more difficult on a localized scale (Tesauro et al., 2014).

2.7. Terahertz imaging

This method uses a non-ionizing, non-invasive and non-contact in-
spection of dielectric structures by propagating electromagnetic radia-
tions with frequency ranging from 0.1 to 10 THz (Yang et al., 2016). In
the presence of flaws, the refractive index shows variations (Chady,
2016). Flaws are located by pulse terahertz time-domain spectroscopy,
and thickness is computed by taking into consideration the difference in
hindrances of the propagated pulses and their echo (Mittelman D.
MNeelamani et al., 1999). Although this method is recommended for
detailed inspection of the defect area (Rizk et al., 2020), its main
drawback is the lengthy duration as the analysis is done point by point
(Chady, 2016).

2.8. Visual inspection

This method is based on the technician’s experience and his/her
vision capacity (KKim DYJung et al., 2013). Its present applications are
expanded to be remotely performed (Marsh, 2011) via drones that scan
and send the image to a processing algorithm for further investigation
(Cripps, 2011). This method is cheap as no equipment is required.
However, it is time-consuming and affected by human subjectivity and
light conditions (Hanson, 1920). Whereas, Drone inspection technique is
also affected by the poor battery endurance and the weather conditions
(WIND TURBINE, 2021).

2.9. Tap test

This method consists of hitting lightly the inspected structure and
checking for any variations in emitted sound due to alterations in ma-
terial, variations in thickness or the presence of material degradation or
faults (vang et al, 2016). It can also be automated, using a
Computer-Aided Tap Tester System (Drewry and Georgiou, 2007). This
method helps discover irregularities in the tested sample, and its results
can be automated (Juengert and Grosse, 2009). However, it leads to
ineffective results for thick structures (Rizk et al., 2020).

2.10. Electromagnetic testing

This method uses electric or magnetic fields and studies the elec-
tromagnetic response of the structure (Gholizadeh, 2016). An example is
the Eddy Current Testing that produces eddy currents at the magnetic
field application on a sample (KoyamaHoshikawa and Kojima, 2013).
The coil impedance and the intensity of these currents change in the
presence of faults (KaushalKiran, 2014). This technique is cheap, simple,
and can detect surface and subsurface flaws (ChengTian, 2012). How-
ever, it is a time-consuming testing (Yang et al., 2016).

2.11. Vibration analysis

This methoed is based on exciting the examined structure by external
forces and analyzing its dynamic response illustrated by modal specifi-
cations and vibration characteristics (Dolinskikraweczuk, 2009). The
change in these responses can detect the flaws, and the location can be
determined using vibration transducers (RaisutisJasiuniene et al,
2008; Juengert and Grosse, 2009). This method can be applied during
both the static and fatigue laboratory tests of wind turbine blades (Rizk
et al., 2020). Nonetheless, it is unreliable for structural health moni-
toring as the various transducers on the blade can provide misleading
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results (Yu et al., 2017).
2.12. Internal inspection

Intemal wind turbine blade inspections usually necessitate an
inspector crawling into a blade to collect visual data. They not carried
out often enough for some reasons. Firstly, they take a long time to
complete. Secondly, they n e some spi d knowledge in
terms of confined space entry from the inspectors, and while they are a
good source of information, they are also restricted by the visual ex-
amination of the inside or outside of the blade. Furthermore, there are
limits in determining the degree of harm caused by lightning strikes (The
Uptime Wind Energy P, 2021).

2.13. Ground-based inspection

At a Duke Energy wind farm, EPRI and Digital Wind Systems, Inc.
successfully demonstrated a new wind turbine blade inspection tech-
nology, known as SABRE method (Beyond Speculation and S, 2014). It
has many improvements over traditional inspection techniques. When
the blades are in use, the machine inspects them from the ground. It
incorporates a sophisticated long-wave infrared (IR) camera for spotting
minor IR emissions from structural defects in rotating blades that reveal
as hot or cold spots. Broadband high sensitivity microphones are used in
acoustic spectral analysis technologies to detect and locate lightning
strike gaps, cracks, and irregular surfaces. Phase imaging photography is
also encompassed in the device, which can detect surface irregularities
(Ground-Based Wind Turbine, 2015). However, this industry somehow
relies on visual inspection by staff who climb the turbines, which is
time-consuming and expensive due to turbine shutdowns (Beyond
Speculation and S, 2014).

3. Hyperspectral imaging technique

The hyperspectral imaging technique combines modern imaging and
spectroscopy to obtain both spectral and spatial information from an
object simultaneously (Zhang BLi et al., 2014). The Goetz et al. were the
first researchers to introduce hyperspectral or spectroscopy imaging in
remote sensing applications, especially the direct translation of surface
materials into images (Goetz AFSolomon and Rock, 1985). Spectroscopy
imaging has currently arisen as a scientific tool for detecting surface and
subsurface defects of structures with the growth of optical sensing and
imaging techniques (Khoder et al., 2017). Hyperspectral imaging aims to
acquire the spectrum for each pixel in a scene image to locate objects,
recognize materials or detect mechanisms (CI, 2003; Malddet al., 2018).
Using conventional RGB images, rare events that are not visible to the
human eyes may go undetected or unseen. Compared to traditional RGB
images, whose gamut is limited to three bands, the hyperspectral images
provide a broad monochromatic image up to hundreds of bands (Zhang
etal., 2014). The required number of bands depends on the application.
For instance, Kwan el al. showed the potential of using convolutional
neural network (CNN) for land cover classification using 4 bands (RGB
+ NIR) to achieve somehow the same results of the best performing
methods using all the hyperspectral bands (Kwanet al., 2020). Indeed,
the target object’s spatial position in the image is conserved by the
contiguous band images at different wavelengths (Elmasry GSun and
Allen, 2012). Thus, at each waveband image, the rare event can be
detected using a specific detection algorithm such as the Adaptive
cosine/coherent estimator that proved its robustness in target detection
in real-time applications (iKhodoret al., 2021), the cluster kernel RX that
proved its high performance in anomaly detection with good computa-
tional requirements (Zhou et al., 2016).

4. Experimental setup

Hyperspectral imaging was applied for surface fault detection, like
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crack and erosion, for a wind turbine blade section. Scratch is used as
notation in this paper to better illustrate the early stage of cracks
occurrence. A crack eventually forms in the zone of a notch, scratch, or
change in section and spreads slowly at first, then quickly, until the
blade fails. As a result, abrupt changes in section or scratches are
extremely dangerous in high-cycle fatigue, frequently shortening the
fatigue life. For the detection of these flaws, three hyperspectral sensors
are used. These sensors cover a bandwidth from 340 nm to 1700 nm with
a spectral resolution of 3 nm. These three sensors cover the range from
340 to 840 nm, from 640 to 1050 nm, and from 950 to 1700 nm. The
GFRP blade sample illustrated in Fig. 1, has 53.0 cm in length, 34.5 ecm
in width, and a thickness of 4.0 ecm. Also, we induced some predefined
scratches and erosion on the blade. These faults were of different sizes
ranging from unseen defects to moderate ones.

5. Methodology
Before starting the experiment, two reference signals must be

retrieved: the white reference and the dark reference signal. These two
signals will be used in the image calibration phase using the equation:

RS —D
R=%->

In equation (1), R is the calibrated/normalized image, RS is the
retrieved/scanned image, D is the dark reference signal, and W is the
white reference signal.

The original hyperspectral image, built on black and white reference
images, can be arranged into the reflectance mode. While the dark
reference picture suppresses the area detectors’ obscure current effect,
the white reference picture stands for the uppermost intensity values.

After the calibration phase, a normalized data cube is built. Five
hundred forty-two (542) bands compose this hyperspectral image. Also,
a preprocessing step removes the effect of dust and moisture on the
blade. The spectra’s physical effects are removed to boost the resulting
diversified regression, classification model, or exploratory research. This
hypercube is fed into the detection algorithm "hyperACE" to check the
detection capacity and ensure a 100% detection for crack and erosion
signals. Spectral data of modem spectroscopy technologies have many
wavelengths that make the computation complex, the detection inef-
fective, and the inspection slow. A band reduction reduces the compu-
tational time and the amount of data computed during the detection
process. The optimal variables are selected and the calibrated wave-
lengths using Multicriteria Classification and Net Analyte Signal Algo-
rithm. The Multicriteria Classification focuses on preserving the rare
event inside the scanned scene while maintaining an optimum band
reduction. Also, the Net Analyte Signal algorithm has a vital role in
computing the figures of interest in a calibrated model’s
characterization.

(e8]

Fig. 1. Blade section.

Remote Sensing 22(2021) 100522

li Society and

Fig. 2 illustrates the flowchart for the hyperspectral imaging
experiment.

6. Results

Fig. 3 illustrates a 3D hyperspectral cube image of the wind turbine
blade specimen consisting of one wavelength and two spatial di-
mensions. It comprises 542 bands, 44 pixels in blade length and 29
pixels in blade width. This result is obtained by scanning the wind tur-
bine blade specimen by moving the detector along two spatial
dimensions.

Fig. 3 also shows that the reflectance intensity is varying with the
wavelength in an unarranged manner. Furthermore, it varies slightly
along the wind turbine blade specimen concerning the faults’ regions’
effects. For instance, at the uppermost band index, the reflectance is
around 0.8 at regions of faults and negligible elsewhere.

The explored defaults of the wind turbine blade specimen are of two
types: crack and erosion, as shown in Figs. 4-7. Fig. 4 illustrates a
hairline crack, a minor scratch, on the wind turbine blade specimen’s
surface, one type of external flaw that splits the surface without crashing
apart. Fig. 5 presents a light erosion, which is another type of shell fault
that gradually destructs the surface and diminishes the structure. The
moderate ones, moderate scratch, and moderate erosion are shown
respectively in Figs. 6 and 7.

Reflectance mode allows us to inspect these surface flaws on the
wind turbine blade and avoid specular reflection. The illuminated
sample absorbs a small portion of the incident light, whereas the largest
percentage of the transmitted light conveys the more appreciated in-
formation. The detector stands opposite to the light source to capture
this data, the spectral signatures, as described in the following
paragraphs.

The illustration of the scratch surface signature with its different
width value, in red, and that of the undefective blade signature, in blue,
are shown in the following figures. The scratch widths in Figs. 8-11 are
respectively 0.1, 0.3, 1.0, and 2.0 mm. These figures prove that the
scratch reflectance values for the different tested thicknesses are lower
than those of the normal blade signature for the wavelengths ranged
between 300 and 600 nm and between 1000 and 1700 nm. Whereas,
between these two ranges, the normal blade signature achieves higher
reflectance values than the scratch signature. The difference in reflec-
tance values for these two signatures is not very important in Fig. 3,

White reference Hyperspectral Dark reference
image (W) image (HI) image (D)

Normali; P
HIn = HI-D/W-D

Hyperspectral reflectance
image
Spectral extraction I
'
Dimension
reduction

Selected images

Feature extraction

selection

Efficient wavelengths

Classification

Fig. 2. The flowchart (methodology) of the hyperspectral imaging experiment.
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Fig. 3. 3D hyperspectral cube of the wind turbine blade specimen.

Fig. 4. Minor scratch on the blade specimen.

i

Fig. 5. Light erosion on the blade specimen.

|

where the tested scratch width is 0.1 mm. For instance, these two sig-
natures overlap for the wavelengths less than 1000 nm. This difference
increases and is easily noticeable in Figs. 9-11 with scratch width
growth. It is noted that the normal blade signature and the scratch
signature have the same shape and achieve their peaks at the same
wavelengths, such as 600, 800, 1100, 1300, and 1500 nm. At 1700 nm,
the reflectance of the scratch signature in these figures becomes zero.
Figs. 12 and 13 present the erosion flaw blade surface’s spectral
signature ranging from light to moderate, in red, versus normal blade
surface signature in blue. For the light erosion signature illustrated in
Fig. 12, its reflectance is lower than that of the normal blade for the
wavelength ranged between 300 and 400 nm. Then, for wavelengths
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Fig. 6. Moderate scratch on the blade specimen.
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Fig. 8. The spectrum of 0.1 mm width scratch versus normal blade signature.

between 400 and 500 nm, these two signals overlap. After 500 nm, the
spectral signature of light erosion is higher than the normal blade
signature. This difference switches starting for wavelengths higher than
1000 nm. Slope variations are similar for both signatures, and peak lo-
cations appear at the same wavelengths, 600, 800, 1100, 1300, and
1500 nm. Furthermore, a zero-reflectance value appears for a wave-
length of 1700 nm. For the moderate erosion illustrated in Fig. 13, the
reflectance signature is lower than the normal blade for the wavelengths
ranging between 300 and 1700 nm. The difference is as large as 50%.
Same signature shapes are noticeable for the normal and moderate
erosion signature with peaks at wavelengths equal to 600, 750, 1100,
1300, and 1500 nm. The moderate erosion signature’s reflectance be-
comes zero at a wavelength equal to 1700 nm, as for the light erosion.

At this step, the hyperACE algorithm is applied based on an adaptive
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Fig. 10. The spectrum of 1.0 mm width scratch versus normal blade signature.
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| Normal Blade Signature
28 S S A cosine/coherent estimator algorithm to detect crack and erosion re-
07 gions. It sees the points of defects by scanning the sample and locating
the faults on its signature. The detection probability of both types of
06 surface flaws (crack and erosion) is 100%, and the likelihood of its false
alarm rate is 0%, as shown in Table 1. In conclusion this detection al-
205 gorithm using hyperspectral imaging technique leads to a full and reli-
= able detection of surface flaws.
E 04 The scratch abundance factor on a 2D illustration of the wind turbine
2 "JM\VW n blade surface appears m.Flg. 14. In this .ﬁgure, tlfe regions free of
03 scratches are dark blue, light scratch locations are light blue, and the
\\ moderate ones are yellow. Fig. 15 presents a 3D illustration of the
0.2 M‘\,/"-\‘\ scratch detection on the wind turbine blade sample’s surface. In this
—_ \'\
0.1 e " \\ Table 1
TT—— X The detection probability (Pd) and false alarm rates (FAR) for defect types
0 ke using a hyperspectral image.
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Fig. 15. 3D illustration of the scratch detection.

figure, the scratches on the surface of the wind turbine blade specimen
appear as spikes. Their severity is indicated by the scaled color, as for the
2D illustration, and the spike height. The scratches of width less than 1
mm appear as a light scratch and the others as moderate ones.

Fig. 16 displays the erosion abundance factor in a 2D illustration of
the wind turbine blade sample. In this figure, dark blue indicates the
areas uneroded, light blue designates the light erosion regions, and
yellow, the moderate ones. Also, a 3D representation of the erosion in-
spection of the blade sample appears in Fig. 17. The spikes represent the
eroded regions. The light erosion spikes have the top in light blue, the
moderate ones in yellow, and the uneroded areas appear dark blue. As
shown in Figs. 16 and 17, light and moderate erosion are at two corners
of the wind turbine blade sample’s surface.

Finally, the detection performance is explored using a reduced
spectrum to accelerate image processing. Table 2 presents the detection
performance parameters (Pd and FAR) with a band reduction of the
image’s full spectrum. The original hyperspectral image consists of 542
bands. After performing a 90% reduction, only 55 bands are sufficient to
maintain 100% detection of crack and erosion. The bandwidth ranges
from 706 to 822 nm.

Remote Sensing Society and 22(2021) 100522

30 100

. i gl)
10 20 30 40 50

25

N
S

Blade Width(cm)
o

10
5
0
0
Blade Length (cm)
Fig. 16. 2D illustration of the erosion detection.
100
20
80
100 -
f 80 -
2
3
S 60
8
c 40
©
g
3 207 30
<
05
0 20
10
30 R
o= I h
Blade Length (cm) s0 0 Blade Width(cm)
Fig. 17. 3D illustration of the erosion detection.
Table 2

Summary of band reduction results.

Percentage of Numberof ~ Crack Erosion

Reduction Bands Pd FAR Pd FAR
95% 28 62.07% 37.93% 79.59% 20.41%
90% 55 100.00%  0.00% 100.00%  0.00%
80% 109 100.00%  0.00% 100.00%  0.00%
70% 163 100.00%  0.00% 100.00%  0.00%
60% 217 100.00%  0.00% 100.00%  0.00%
50% 271 100.00%  0.00% 100.00%  0.00%
40% 326 100.00%  0.00% 100.00%  0.00%
30% 380 100.00%  0.00% 100.00%  0.00%
20% 434 100.00%  0.00% 100.00%  0.00%
10% 488 100.00%  0.00% 100.00%  0.00%

7. Conclusion

In conclusion, non-destructive techniques are essential to improve
wind turbines’ efficiency and availability and reduce wind energy costs.
A thorough and systematic review of non-destructive blade inspection
techniques is presented. First, the wind turbine blade material and the
usual fault and defect in the blade’s production and operation are
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explored. Next, the various non-destructive techniques (acoustic emis-
sion, infrared, fiber grating, ultrasonic, guided wave, thermal imaging,
terahertz imaging, visual, tap, electromagnetic, and vibration non-
destructive techniques for composite blade inspection) were summa-
rized and discussed. The research concentrated on the use of hyper-
spectral imaging for the detection of wind turbine blade flaws. The
technique has increasingly evolved over the past decades and is broadly
used in the non-destructive analysis of materials. Finally, this paper sets
out the concepts, advances, and applications of spectroscopy imagery
technology in the non-destructive detection of wind turbine blade de-
fects. It also discusses the experimental setup, essential elements, and
the related processing and analytical methods. This technique shows
advantages compared with the other discussed methods. The paper
demonstrates hyperspectral imaging’s potential role in monitoring wind
turbines’ safety and saving wind energy costs. We assume the different
energy fields will benefit from this research.
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Résumé:

Cet article offre un apercu des technologies de détection du givrage et explore les
applications de I'imagerie par spectroscopie pour la détection de I'accrétion de givre dans les
parcs éoliens. Cette étude décrit I'application de la technique d'imagerie hyperspectrale (HSI)
dans la télédétection du givrage incident sur une pale d'éolienne. Cet article décrit I'approche
expérimentale menée sur un échantillon de pale avec une partie couverte de glace. Le modeéle
de givrage, sur lequel cette méthode de détection est basée, est congu, simulé et confirmé
pour acquérir une meilleure connaissance du givrage de la pale. Cette technologie a démontré
un grand potentiel pour repérer le givrage aux premiers stades de son accumulation, quels
gue soient son épaisseur et son type. Les résultats expérimentaux de cette technique révelent
que I'exactitude et la précision de la détection du givrage des pales sont considérablement
améliorées. Cette étude indique que I'imagerie spectroscopique et I'évaluation a distance sur
le terrain peuvent détecter les événements de givrage avec une résolution, une précision et
une discrimination élevées. Il s'agit d'un outil non invasif et fiable pour identifier les

variations entre les surfaces givrées et les surfaces propres, ce qui confére une puissante
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capacité de surveillance, notamment pour la détection précoce des événements de givrage.
La surveillance a distance par HSI des pales d'éoliennes pour la détection du givrage peut
étre un outil utile [271].
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ARTICLEINFO ABSTRACT
Index Terms: Wind energy haz been playing a pivot role in replacing the traditional energy sources. Thiz
Wind turbine blade emerging paradigm haz proved itzelf az a good candidate among all renewable energy sources.
Hyperopectral imaging: Although the exponential growth of the wind industry, wind turbines still suffer from blade icing
|I=_=d=h=ﬂim especially in cold regions. Blade icing disturbs aerodynamic performance and resules in power
Icing lozzes, safety rizks, mechanical and electrical breakdowns, meazurement, and control faults. Anti-

icing and de-icing techniques mitigate these adverse effects. It iz mandatory to rigorously evaluate
the meteorological operating conditions during the assezzment phaze to determine the need and
advantages of installing an anti-icing or a de-icing system. Moreover, thiz diagnostic iz alzo
ezzential during the operatdon to detect icing, prevent failure, and enhance production. Differant
ice detection methodz, such az double anemometry, vane, relative humidity, and dew point, are
Thiz paper offers an overview of icing detection technologies and explores spectroscopy imaging
applications for detecting ice accretion in wind farme. Thiz study describes the application of this
non-destructive and fazt monitoring technique in remote sensing of icing incident on a wind
turbine blade. Thiz paper outlines the experi tal approach 1 on a blade zample with
an ice-covered portion. The icing model, on which thiz detection method iz based, is designed,
simulated, and confirmed to acquire enhanced blade icing knowledge. The hyperspectral imaging
validation results for icing occurmrence detection in their initial development phases are zatis-
factory. The experimental findings of thiz technique reveal that the accuracy and precizion of
blade icing detection are conziderably enhanced.

1. Introduction

‘Wind energy iz one of the fastest-growing renewable energy (Jacger, 2021; Gomez Munoz et al | 2016). Wind farms are often
located in high-altitude sites (Carlsson, 2000; Fortin and Ilinca, 2005) where cach 100 m clevation corresponds to an average wind
epeed inerease of 0.1 my/s (Parent and llinea, 201 1; Fim et al |, 201 7). Recent studies show that 20% of wind farms are located in areas
with a high iring likelihood {Gémez Muhoz et al., 201 6; Barati-Bolday and Komareji, 2017; Tammelin et al., 2000). However, during
winter in cold high-altitude regions, icing events are negatively affecting the performance of the wind turbines (Parent and llinea,
201 1) resulting in mechanical and clectrical breakdowns ([linca, 2011), and power production losses (Tammelin ot al | 2000; Shajice
et al, 2013; Pliego Mamgan and Pinar Perez, 20]6). For instance, for a total installed power of 6582 MW produced by 517 wind
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turbines, icing accretion on wind turbine blades leads to a power loes of 18,966 MWh in 29 menthe (Marquez =t al., 2018).

Furthermore, these energy losses increase the operating and maintenanee costs (Gomez Munoz et al | 201 6). Anti-ieing and de-icing
gyeteme reduce these consequences ([linca, 207 1). There are many methods deseribed in the literature for icing detection on wind
turbines: the double anemometry with relative humidity obeervations during the assezsment phase, ice sensors and the power curve
methed during the operation phase (Fabardinet al |, 2021 ). However, nene of the metheods is reliable and accurate. Each one givez a
different result of icing detection, which iz affected mainly by the freezing precipitation and in-cloud icing (Marjaniemist al. | 2000; Lin
et al , 2019). Howewver, these deficiencies can be overcome by using hyperepeetral imaging technology. This technelogy is one of the
remote sensing techniques that combines ordinary imagery and spectral imaging to obtain spatial and spectral information about an
inspected feature. This specification generates a spectral signature or a fingerprint, which is later employed in the detection procedure
{Ahmed et al, 2019). Nevertheleze, hyperspectral imaging has demonstrated strong promize in different target detection disciplines,
including fault identification on wind turbine blades (Fizk et al., 2020a), sea lee detection (Han et al., 2017), and many other forensic
investigations that require a high preeision and accuracy (Zulfigar =t al | 202]; Melit Devassy and George, 2021). In this paper, we
preecnt a comparison nfﬂ::ndsﬁngiu:dchmﬁnnb:dmiqu:smdptnpmahypﬂwp:mﬂmgmg application in remote scnsing of
icing events on wind turbine blades. Section 2 chows the effects of 1ce accumulation on wind turbines, whereas section 2 defines the
different types of atmospheric icing. A review of ice detection methods iz detailed in section 4. Section 5 desenibes the experiment
performed on a Glass Fiber Reinforeed Plastic (GFRP) blade zample to detect the ice layer of different thickneszes. Section 6 discusses
the experimental results. Finally, section 7 concludes with a synopsis of the discussed work and illustrates our vision on the promisc of
the hyperspectral imaging technique and ite advantages m detecting ice accretion.

2. Impacts of icc accretion on wind turbines

In cold regions, wind turbine blades arc susceptible to icing ewents disturbing their acrodynamic performance. Ieing events occur
during both the wind asseszment and the operating phases (Parent and [linea, 201 1). These adverse effects inelude power losses (Chen
etal | 2019; Diang et al | 2016), safety rigks (Abdel-Moati et al | 20] £), mechanieal and eleetrieal breakdowns (Mad: et al | 2019}, and
meagurement and control faulte (Niemann et al | 201 8; Szwedo and Hellstein, 2014; Yang t al | 2016).

2.1. Power loszes

Small quantitics of ice accretion on a wind turbine blade’s surface can diminish its acrodynamic propertics by varying the blade’s
chape and roughnese (Maraniemi and Pelicla, 1 908). Consequently, the ineurred power loss wvaries mainly with the applied detection
technique, the intensity, and the duration of the icing, with a range from 0.005 to 50% of the annual preduction (Botta et al | 1998;
Gillenwater, 2008; Tammelin et al | 2005).

2.2 Safety rizk

For a gite with moderate icing events, having an average of 5 daye of icing per year, the probability of being thrown by a mass of ice
varying between 0.18 and 0.36 kg iz 0.]1. Thiz value iz determined by the Monte-Carlo simulation executed by Battizti et al. (Battisti
et al | 2005) and valid for a perzon on the site during 10 h of the turbine's operation subjected to the de-icing system. The estimated
daily ice accretion is 75 kg per rotor. The radial distance around any turbine that can be susceptible to this safety hazard is onc and a
half of the combined rotor diameter and the turbine’s height (Tammelin =t al., 2000).

2.3. Mechamcal and electrical breakdowns

Iee aceretion affects the mechanical and electrieal elements of the wind turbine. With the acereted ice on the blades, the mechanieal
load inereases and eauses a mass imbalanee that may lead to dangerous vibrations. Furthermore, wariations in oil wiscosity and
condensation in the wind turbine’s electronics occur during operation in low temperatures (Botta et al | 1993; Seifert, 2003

2.4 Measurement and control foults

During icing cvents, the anemometers can face fanlts and errors in meazsunng wind speed that can be az high as 30% (Laakzost al |
2002) and ean reach 40% for an ice-free anemometer and 60% for a standard anemometer (Fortin and [linea, 2005). Furthermore, the
wind vanes subjected to icing can lead to a mislcading wind direction. In addition, temperature sensore can also be affected and lead to
wrong measurements (Parent and [linea, 2011).

Table 1
Tvpea of ice.
Type Descipton
Precipitation Precipitation icing cocurm as freesing rain when rinfall drops oo 2 surface having a temperature below 0°C and as wet snow when alightly Liquid
mnow falls om a ourface with an air temperatore betweeen 0°C and -3°C (Bolul:, 1996)
Incloud icing  In-clowd icing occurs when water droplets at very low temperatuses, sometimes ao low an — 30°C, touch a surface below 0°C and freeze (Filheet al.,

2006). The form of ice accretion varies from rime ar lowest to glaze ar high (I50-12494, 20010
Froat Proat acours when water vapor depodits on a cool surface and hardens upon impact (Boluk, 1996; Richers, 1996)
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3. Types of ice

The most frequent types of atmospheric icing on a wind turbine are precipitation, in-cloud, and frost (Parent and [linea, 2011).
Table | presents a definition of icing types.

4. lcing detection survey

Iee accretion on solid surfaces iz measured using three approaches. The first method reveals the variations in physical properties
such as mass, inductanee, thermal conductivity, ete. Indirect measurements identify meteorclogical eenditions resulting in ieing, such
az a combination of wind specd, humidity, and temperature. A decreasc in power production or other icing cffects is aleo an indirect
method (Parent and [linea, 201 1). In comparizon, a numerical approach uses an empirical model that determines the duration and
severity of icing situations (Homeola =t al | 2008).

4.1. Icing detection during the site assessment stage

The study of icing events during wind asseszment aims to evaluate the need and financial feasibility of installing a de-1cing or anti-
icing selutien on wind turbines. To do that, the severity and duration of icing events and the potential wind energy loss chould be
determined (Laakzoet al | 2003). The turbine’s geometry and operation are integrated with the observed weather conditions related to
icing events (wind epeed, humidity, liquid water content, temperature, pressure, ete ) to prediet preduction lesses (Parent and [linea,
2011). The measuremente of these meteorological parameters are costly or unreliable. Furthermore, icing duration is empirieally
caleulated (Fimura et al., 2000), and its severity iz barely ever aceessible (Bathisti =t al | 2005). We should alzo note that the icing
events ehould be evaluated reliably at the same elevation of the top blade tip (Homaola et al. | 2006) in the intended implementation site
{Fikke et al., 2006) with a radial distance from the turbine of 1 km (Laakso =t al., 2003).

The following subecctions deseribe the icing evaluation methods during the site assezsment phase.
4.1.1. Double anemometry and vane

Icing events can be detected using heated and unheated anemometers when the measured wind welocities” difference exceeds 5%
(Laakeo et al | 2003) and sometimes can achieve 20% for values above 2 m/s (Tallhaug, 2003). This method ie cheap, can depiet the ice
climate and ite persistency (Laakso et al . 2003), and reliable at temperatures around 0°C (Craiz, 1996). Craig proposes using a
permanently heated anemometer, an unheated anemometer, and a second heated anemometer (Craig, 1996). This latter serves when a
15% difference in wind speeds i measured using the firet two anemometers. With the relative humidity measurementz, these methods
can determine the icing event duration that will affect the blade’s performance (Laakso =t al., 2005) by correlating 1t to the duration of
ice disturbance of the unheated anemometer (Laal=c et al., 2003), which iz longer than the real icing period. The main drawback of the
double ancmometry iz the difference in elevation between the anemometers and the blade's tip, where icing is most sewere (Tammelin
et al | 2005). Another issue ig the falee indieation of icing provided by the unheated anemometer and caused by low temperatures
{Laakso et al., 2003}, az this equipment dieplays both higher and lower wind velocities. Furthermore, at zero speed wind, no indication
can be provided (Seifert, 2002). During snowfalls, at low wind speeds, the inertial characterishies can affect the measurements and
provide mislcading resulis.

Talhaug suggests calculating the standard deviation of an unheated wind vane, at temperatures below zero, from 6 succeeding 10-
min averages to state the oceurrence of an ieing event (Parent and [linea, 2011).

4.1.2 Ice sensors

The ice sensors use different physical characteristics to detect ice accretion: wibrating probes, longitudinal wire wawes, ice mass
measurement methed ((50-12494 200]) and others (Tammelin et al | 2005; Fikke et al | 2005). Howewer, they are either costly or
inaccurate, unreliable, and asynchronous with the real icing event (Tammelin t al | 2005). Sometimes, ice sensors undervalue the
icing conditions due to the heating eyele. For that, a heated detector should serve to determine the severity of an icing svent and an
unhcated onc to define its duration (Parent and [linca, 2011; Tammelin et al, 2005).

4.1.3. Vizbility and cloud baze

In-cloud icing oceurs on an object immersed in a cloud at a wind speed of 2 m./s approximately and a temperature less than 0°C. The
herizontal visibility or the cloud base height wia airport ebeervation, videe monitoring, a pyranometer or automatie sensors serve to
identify the cloud presence.

‘When the eloudiness index measured by the airport obeervation is higher than 6/8, and the wind turbine ig higher than the cloud
base altitude, ioe aceretion occurs, and ite intensity can be measured using this index (Tallhaug, 2003). Furthermore, cloud density can
be numenecally determined by wideo monitoring using tint=d poles far from the met mast of 50 m-300 m (Dobesch et al | 2003)
Simultancously, a pyranomecter can detect icing when its solar radiation intensity measurement iz lesz than 300 W/m® (Kimura ct al,
2000). Lastly, radar and microwave radiometers can fastly estimate the liquid water content and automatically detect wcing events
(Battish et al |, 2005).

However, this method iz very costly and underestimates the real iee aceretion (Tammelin «t al | 2005).

4.1.4. Relative humidity and dew point

Tee events occur at a humidity abowve 95% and a temperature below 0°C. Furthermore, they can aleo be predicted using a dew point
detector (Laakso ot al., 2005). The use of a humidity sensor 12 more common, but icing conditions are not detected simultaneously with
the ies detectors, and thus, the expectedness of icing events iz low (Parent and llinea, 2011; Tammelin et al | 2005).

3
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4.1.5. Models

Ieing events ean be detected using phyzsical mesoseale and statistical models that consider further information such as temperature,
wind speed and direction, cloud cover, and height. The frequency and rate of icing can be determined uzing this method (Parent and
llinca, 2011; Laakso =t al., 2003).

4.1.6. Other method:

Icing events can be detected visually by video filming of guy wires, and ice thickness iz correlated with wire vibration. This
method’s rezulte can be improved using the airport observations of the cloud base (Harstveit et al., 2005). Furthermore, icing con-
ditions are identified by examining damages as the failure of power lines or elimatie poles due to resonanee or buekling (Farent and
linca, 2011; Seifert, 2003)

4.1.7. R dations on method:

Freezing precipitation and in-eloud icing are the events deteeted by the various iee detection methods. However, none of these
methods are alwaye reliable and accurate (Marjaniem: =t al | 2000). It 1= recommended to evaluate icing events during the azsessment
phase for 2 minimum of one year. Two or more methods should be used simultansously to improve the icing event detection accuracy.
None of the individual techniques show preeminence on others, and sach one of them iz appropriate for specific weather and
determination (Tammelin et al., 2005). For instance, an ice detector could be used with the onsite weather indications. The ice severity
affects the production losses, whereas the duration of icing events affects the required heating energy. These indications ehould be
meazured wia different deviees (Parent and [linea, 2011).

One heated and one unheated anemometer chould be installed on the measuring mast to estimate icing events inexpensively.
Chronological cloud baze height resulte should be compared to the nearest airport obeervations. In addition, a dew point detector
intended for the subzero temperatures could help detect the ocourrence of in-cloud icing events (Laaksco <t al, 2005).

4.2 Icing derection during the operation stage

An optimized blade heating system ie significantly related to an excellent controlling ice detector (Maldonen et al | 2001 ) that epots
ice at ite aeceretion start (Tammelin and Santti, 1994), thereby preventing power production losses that can sometimes attain 15%
(Peltola et al | 1996). Although blade de-icing techniques operated suceessfully, the iee sensors cannot consistently spot the beginning
of icing events (Homola ot al | 2006). Moreowver, 1ce detection on the blade tip requires locating a high sensitivity sensor carefully. It
chould be able to spot icing at different pointz on the blade (FParent and [linca, 2011). Some of the methods that respect these re-
quirements are presented in the following sub-sections.

4.2.]. Multple anemomety

Thiz method is similar to the one presented in detail in the assessment section. Its main drawback ie the difference in elevation
among the highest possible point by the anemometer, the nacelle roof, and the blade tip, the most exposed surface to icing. This makes
the detection of all in-cloud icing events more difficult Furthermore, the turbine wake effect should be considered to prevent
migleading resulis (Marjaniem: et al., 2000).

4.2.2 Ice detectors

It iz the same method deseribed in the assessment section and most used in anti-icing and de-ieing syetem eontrolling. The heated
detector measures the severity of icing, whereas the unheated one measures the icing’s duration (Tammelin =t al., 2005). However,
slight ice masses cannot be instantly detected (Laaksc ot al | 2003).
4.2.3 Video momtoring

A webecam placed in the hub, filming the rotor blade’s pressure side, can detect icing by corrclation with other ice detection
techniques. This method’s main drawback iz that it iz costly, requires non-stop monitoring, and depends on the controller’s visibility
{Seifert, 2002). Thus, it ean be appropriate for a short duration of detection (Homola =t al | 2006).

4.2.4 Power curve

Continuous monitoring and eomparison between caleulated and actual produection power curve with temperature and air pressure
measurements ean detect icing events for stall regulated wind turbines, with a power deerease of 50% as a referenee (Tammelin et al |
2005). A difference between the caleulated production power curve, indicated by the anemometer, and the actual production power
curve (Laakso et al | 2003), can occur for reazons other than ieing (Homola =t al | 2006). A correlation with meteorclogical data and
other detection methods should climinate these poesibilitics.

4.2.5. Vibration and noise

Vibration sensors can be linked to the de-icing control syetem to detect the unueual high vibrations (Laalkeo =t al.| 2005). After that,
the blade starts heating at the onset of turning off the turbine (Tammelin =t al | 2005). Small masses of ice ean result in aerodynamie
noize increaze at higher frequency ranges (Seifert, 2003). Furthermore, more studies are needed to determine how these results are
affected by other factors as wind veloeities and background neises (Farent and llinea, 2011). Along with the stall operation, these two
methods cannot detect icing accurately (Tammelin et al | 2005)

4.2.6. Recommendations on methods
To summarize the study resulte by Homola =t al [2006), none of the 20 tested icing detection methods alwaye show reliable results

4
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(Homela et al., 2006). The main issue that limite the methods" application is that the equipment used, such as the double anemometry
and iee eollecting eylinders, 1s mounted on the turbine’s nacelle, not on the blade tip. The most suitable metheds for ieing detection on
a wind turbine are installing ice scnsors near the blade tip: an internal ultrasound, a capacitance, impedance or inductance-based
sensor, infrared spectroscopy via fiber optic wires or a flexible rezonating diaphragm (Parent and [linca, 2011

5. Materials and methods

5.1. Sensor selection

After this review of available ice detection techniques, the hyperspeetral imaging technology (HSI) offers some advantages that
may reduce some of the other systems” limitations. This work aims to introduce the hyperspectral imaging technique into the world of
blade inspection metheds. The fundamental cencept of H3I is that radianee reaching every pixel ie fractured into very many narrow
adjacent wavelengthe (Makki et al | 201 8; Rizk et al | 2020b). These spectral bands constitute the spectral signature of the scanned
object. H5I provides both spatial and spectral information, which create a three-dimensional data cube, identified az "hypercube data”
or as an "Image cube” (Vasefi et al. | 2016; Rizk =t al | 202]). As stated, each material or ebject has ite signature, which ie used in
detection and classification proceszes. loe detection uzing HSI depends on the difference in spectral signatures between the acereted ice
and the normal blade surface. For this application, the ice and the blade surface will mutually radiate and reflect energy at distinet
ratios, giving a difference in each type of material’s reflectanee. Thus, the gpectral range needed must cover the bandwidth from 300 te

Table 2

Hypempectral sensom used.
340-E40 nm. 3 nm
640-1050 nm 3 nm
950-1700 nm 3 nm
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1700 nm. For this purpose, a combination of three hyperspectral sensore is uzed to cover the necessary bandwidth. In addition, all these
sensors are optical spectrometers with a epeetral resolution of 3 nm, but each has its spectral region. The three sensors cover 340-840
nm, 6401050 nm, and 950-1700 nm respectively, and they are presented in Table 2 below.

5.2, Experimental setup

The glass fiber reinforeed plastic (GFRP) wind turbine blade sample, shown in Fig. 1, iz 53.0 em long, 34.5 em wide and 4.0 em
thick.

Cold water iz sprayed on the surface of the sample to acerete ice, as shown in Fiz. 2. The sample iz placed in a freezer at a tem-
perature of - 25°C. The operation is performed in different steps to obtain the required thickness (0.5 mm, 0.7 mm, 4 mm, and 7 mm).
The ice-covered surface constitutes 15 cm in length from the right corner of the blade specimen of Fig. 2.

Each of the samples, the normal blade, and the surface where different ice thicknesses have acereted (0.5 mm, 0.7 mm, 4 mm, and 7
mm) is scanned pixel per pixel using the hyperspectral sensors, one after another. Each data cube of information created in the process
iz analyzed to determine the ability to detect 1ee aceretion features.

5.3. Methodology

This cxperiment aimes to characterize ice acerction on a blade sample using the hyperspectral sensore. Thus, before ecanning the
sample, two main zignals must be taken: the dark and white reference zignals. These zignals serve for calibration and to build a
normalized image. Then, the sample blade iz seanned with the same sensors for the acquisition of the hyperspectral image. This
hyperepeetral image iz normalized for ice detection. It ie done using the hyperepectral image (HI), the dark reference image (D) and the
white reference image (W), following thie relation:

=D nion
where, HI, iz the calibrated normalized hyperspectral image.

After the normalization, the data cube iz fed into the hyperACE algorithm, baced on the adaphve cosine/coherent estimator al-
gorithm is used in the detection process (BErcadwater and Chellappa, 2007; Zhang ot al, 2010). Then, we investigate the smallest
bandwidth range that acquires the highest probability of icing detection. As end-to-end spectral bands are strongly related in the
hyperepeetral images, we reduce the volume of the proeessed data by removing the redundant informatien while preserving the rare
event (Fhoder et al | 201 7; Rizk et al | 2019). We uze the multicriteria classification and net analyte signal (MAS) techniques to perform
this taslk Multieriteria classifieation serves to remove highly similar images while preserving on the rare event within the scanned
soene whilst maintaining an optimum band reduction (Fhoder et al, 201 7). The remaining onez are subjected to the MAS which holdz a
critical role in processing the figures of inferest in a calibrated model’s characterization. Also, it a section of the analyte gamut that iz
gpecial to that analyte (Grahn and Geladi, 2007). Thus, NAS is an effective algorithm for determining a signal’s figures of merit. Later
on, theee figures of merit are utilized to evaluate different models to find the optimum bandwidth (Bro and Andersen, 2003).

6. Results

After scanning the blade specimen using hyperspectral sensors in a whiskbroom mode, a snapshot of the specimen iz obtained at
each step. Using thiz approach, we were able to generate a hyperspectral cube of the tested blade. The section goes through the HSI

6.1. Ice fault signature retrieval

Ae mentioned in the previous section, the ice covers an area with a length of 15 em on ene side of the blade along 1te width, as shown
in Fig. 3. The studied thickness of the ice, as cited before, is repregented in Fig 4. In order to retrieve the speciral signature of these
different thicknesses, each case was retrieved on ite own and added to the spectral signature library to be used later in the detection
process.

The spectral zignature of the desired thickness iz derived solely based on scanning at one spot. The following figures prezent the
normal blade speetral signature in blue versue the ice speetrum in red eolor, for different thicknesses. The ice thickness in Fige. 5-8 is
0.5mm, 0.7 mm, 4.0 mm and 7.0 mm_ In Figs. 5 and &, the two signale almost overlapped for the wavelengths ranged between 400 and
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Fig. 2. lce accretion on blade sample.

Fig. 4. Zoom in on the ice blade sample in the studied cases.
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Fig. 5. The spectrum of 0.5 mm ice thickness versus clean blade signature.

175



P. Rick et al. Remote Gersing Applications: Society and Bnvirorment 26 (2022) 100711

il Blade Signatum

2
=™

2 2 B
n @ -

Raflaciznce
2
=

03

| e e
-,

400 600 EBOO 1000 1200 1400 1600
‘Wavalanghh ()

Fig, 6. The spectrum of 0.7 mm ice thickness wersus clean blade signanre.

Bl Bade Sigrabum.
4 mm koo Sgnakers

Raflacipnes
= 2@ e @ @ @
wm = ] o@m w o=@

=
7]

/

400 B BOD foon 1200 1400 1500
Wavalangth {nm)

Fig. 7. The spectrum of 4.0 mm ice thicknezs wergus clean blade signanre.

=)
=

¥ mm ion Sgnaters

e @ =
]n @ o

Ralleciance
=

=
@

=
]

_.

400 BOD BOD 1000 1200 1400 B0
‘Wavalangth (nm)

Fig: B. The spectrum of 7.0 mm ice thickness wergus clean blade signanre.

600 nm. Starting from around 600 nm, the ice reflectance iz lower than the elean blade signature reflectance and becomes zero at
approximately 1450 nm. At about 500 nm, the ice reflectance is 0.2, and the clean one is almost 0.3.

Furthermore, we can notice that the peaks in signatures have the same wavelength. In other words, the chape of the graphes 1z
similar for the clean and the iced blade. We observe similar behawier for the results in Fig. 7. 8tll, the iee reflectanes becomes zero at
approximately 1500 nm and then inereases slightly to a reflectance of about 0.0]1 and decreases again to zero at 1700 nm. We should
note that at zero reflectanes, we have a total ice abserption of emitted Light.
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Fig. 9. 3D blade image.

6.2. 3D Image acquisition

After performing the scanning and calibration stages described in the previ tion (Section 5.3. Methodology), the result chown
in Fig. 9 is a scanned blade image having 29 by 44 pixels over 542 bands. This data cube p the blade speci over 542 layers of
different fr ics. The refl : diiig to the color scale in the Sgure. We natice, confinming the previoms section's

lusion, that ice reflect: at each band index iz lower than the normal reflectance of the clean blade, where icing is acereted over
a length of 15 cm at one side of the blade along its width.

6.3. Full-spectrum ice detection

The hyperimage consisting of 542 bands, chown in Fig. 9, ie fed into the detection algorithm. The hyperACE algorithm shows an ice
probability detection of 100% and a false alarm rate of 0%. These results are visualized in 2D in Fig. 10 and in 3D in Fig. 11.
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Fig. 10. 2D Illustration of ice detection.
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Fig. 11. 3D llustration of ice detection.

Figs. 10 and 1 ] show the probability of detection for the region where iee iz acereted, for the different thicknesses mentioned. Theze
two figures depict a color seale reprezentation, with vellow representing a full detection and blue reprezenting no detection. In a 2D
and 3D rcpresentation of the wind turbine blade sample, the icing abundance factor, where the ice is identified, i= displayed. The
uniced areaz are shown n blue, while the ice-covered portions are shown in vellow. By means, as the thickness increases as the color
approaches to yellow aceording to the seale.

6.4 Spectrum reduction

Transforming the "hyper image” through multieriteria classification, we reduce the number of bands from 542 to 134. In other
words, 134 bands are enough to deteet the ice accumulation while maintaining the rare event in the resulted seene. These bands are
from 354 to 636 nm, 740 nm, 776 nm, 824 nm, 992 nm, 1020 nm, from 1400 to 1450 nm, 1474, 1500 nm, from 1670 to 1675 nm_
Howewer, bypaszing the "data cube” through Net Analyte Signal, with a 90% reduction, the number of bande iz reduced to 55 while
sustaining a 100% of ice detection. These bandz are from 706 to 822 nm.

After eombining the multieriteria classification and the Net Analyte Signal, 160 bande remained after a 70% reduction for 100% of
ice detection. These bande arc from 360 to 636 nm, from 726 to 784 nm, 824 nm, 99] nm, 1020 nm, 1400-1500 nm, 1670 nm, and
1676 nm.

‘We can notice that the Net Analyte Signal makes the most considerable reduction, but this reduetion is made at different stages, as
shown in Tabl= 3.

Mevertheless, the multicriteria classification reduces the number of bandz at once. Furthermore, the combined rezult providez a
higher number of reduced bandes, which can help prevent the loss of the rare elements that are not representative of the ice detection
points.

Table 3
Percentage of Reduction Humber of Bands =3
Pd FAR
95% 3 BE.47T% 11.53%
9056 55 100.009% 0.00%%
80% 109 100.0059% 0.00%%
7056 163 100.009% 0.00%%
60% 217 100.0059% 0.00%%
509 271 100.0059% 0.00%%
409 326 100.0:09% 0.00%%
309 360 100.0059% 0.00%%
209 434 100.0:09% 0.00%%
109 488 100.0059% 0.00%%
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7. Conclusion

After describing some conventional methods used for ice accretion detection on wind turbine blades, thiz paper proposes the
hyperspectral imaging (H5I) technique, which has been rapidly evolving and broadly applied in many non-destructive diagnosties.
This technology demonstrated a great potential for epotting icing at ite early stages of accumulation regardless of its thickness and type.
This study indicates that speetroscopy imaging and remote on-field assessment ean detect icing events with high resolution, preeizion,
and diserimination. It is a non-invasive and reliable tool for identifying variations between iced and elean surfaces, thus granting
powerful monitoring capacity, especially in the sarly detection of icing events. The HSI remots monitoring of wind turbine blades for
icing detection can be a useful tool. It eould rebustly and accurately measure and identify the ice at a thickness of 0.1 mm at ite early
formation stage. Thus, HEI 1= the upcoming 1oe detection module of wind turbine blades, which can offer a lower inspection shutdown
time and lower maintenance coste by supplying simple routine inspection of the wind turbine blade. Az for future applications, HSl can
also serve for the non-destructive monitoring of wind turbine blades.
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