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Coralline algae are major calcifiers of significant ecological importance in marine habitats but are among the
most sensitive calcifying organisms to ocean acidification. The elevated pCO2 effects were examined in three
coralline algal species living in contrasting habitats from intertidal to subtidal zones on the north-western
coast of Brittany, France: (i) Corallina elongata, a branched alga found in tidal rock pools, (ii) Lithophyllum
incrustans, a crustose coralline alga from the low intertidal zone, and (iii) Lithothamnion corallioides (maerl), a
free-living form inhabiting the subtidal zone. Metabolic rates were assessed on specimens grown for one
month at varying pCO2: 380 (current pCO2), 550, 750 and 1000 μatm (elevated pCO2). There was no pCO2 effect
on gross production in C. elongata and L. incrustans but L. incrustans respiration strongly increased with elevated
pCO2. L. corallioides gross production slightly increased at 1000 μatm, while respiration remained unaffected.
Calcification rates decreased with pCO2 in L. incrustans (both in the light and dark) and L. corallioides (only in
the light), while C. elongata calcification was unaffected. This was consistent with the lower skeletal mMg/Ca
ratio of C. elongata (0.17) relative to the two other species (0.20). L. incrustans had a higher occurrence of
bleaching that increased with increasing pCO2. pCO2 could indirectly impact this coralline species physiology
making them more sensitive to other stresses such as diseases or pathogens. These results underlined that the
physiological response of coralline algae to near-future ocean acidification is species-specific and that species
experiencing naturally strong pH variations were not necessarily more resistant to elevated pCO2 than species
from more stable environment.

© 2013 Elsevier B.V. All rights reserved.
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R1. Introduction

Coralline algae (Corallinaceae, Rhodophyceae) are themost dominant
group of calcareous algae. They are abundant andwidespread around the
world from tropical to polar oceans and throughout the photic zone
(Nelson, 2009). In benthic coastal areas, they are major framework
builders and carbonate producers (Cabioch et al., 1992; Nelson, 2009).
Corallinaceae developed different morphologies: geniculate (articulated)
algae have erected, branched thalli with uncalcified joints between
calcified segments; non-geniculate (non-articulated) algae are crusts
attached to the substratum or occur as free-living forms called
rhodolithes (Cabioch et al., 1992). In shallowwaters where they develop,
they have important biological and ecological roles (Foster, 2001) and are
considered ecosystem engineers (Nelson, 2009). They participate in reef
accretion acting as cement (Adey, 1998; Jokiel et al., 2008) or can build
large habitats as coralligenous or rhodolith beds. They favor larval
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recruitment and settlement of marine invertebrates (Adey, 1998), acting
as nurseries for some commercial molluscs and fishes (Kamenos et al.,
2004a,b). They increase benthic biodiversity, providing hard substratum
to settle and microhabitats for shelter (Foster, 2001; Grall et al., 2006;
Pena and Barbara, 2010).

In temperate waters, coralline algae can be found at various depths,
from the intertidal to the subtidal zone. In the intertidal zone, they fre-
quently inhabit rock pools, forming densemats at the edges or covering
the bottom of the pools (Cabioch et al., 1992). Because rock pools are
disconnected from the open sea at low tide, large pH variations are
common in this habitat (Morris &Taylor, 1983). Diurnal variation
often exceeds one pHunits, as a result of photosynthesis and respiration
(Björk et al., 2004;Morris and Taylor, 1983; Truchot andDuhameljouve,
1980). In the low intertidal zonewhere channels are formed in shallow
waters, understory coralline algae develop on rocks and pebbles under
the dense macroalgal canopy. Under the canopy, pH fluctuates
according to depth, photosynthetic production, wave exposure, flow
or irradiance and is likely to present strong diurnal variations of more
than one unit (Middelboe and Hansen, 2007). In the subtidal zone,
rhodoliths form large beds. These rhodolith beds grow in stable
environments with reduced flow (Foster, 2001) and relatively low pH
ee temperate coralline algae from contrasting habitats to near-future
6/j.jembe.2013.07.006
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variation (Teichert et al., 2012). In all these habitats, coralline algae are
important contributors to the global carbon budget and carbonate pro-
duction through their high community primary production and respira-
tion and their high calcium carbonate production (Amado-Filho et al.,
2012; Bensoussan and Gattuso, 2007; Martin et al., 2005, 2007).

Photosynthesis, respiration and calcification are linked metabolic
processes that can influence each other (Borowitzka, 1981; De Beer
and Larkum, 2001; Gao et al., 1993;Martin et al., 2013). Via CO2 uptakes
and outputs, photosynthesis and respiration processes cause increase
and decrease of pH respectively, in the intracellular medium and in
the diffusive boundary layer (Raven and Hurd, 2012). These variations
will increase the rate of calcification in the light and decrease it in the
dark. Very few studies have investigated these processes all together,
especially in coralline algae. Coralline species precipitate calcium
carbonate (CaCO3) containing magnesium (i.e. high magnesian calcite,
Mg-calcite) to form their thallus. This biogenic CaCO3 is more soluble
than aragonite at mole percentage (mol%) MgCO3 higher than 12%
(Andersson et al., 2008). In the Corallinales order, the mean mol%
MgCO3 in calcite is 13% but varies depending on the taxa considered
from 14% in Corallina genus or 25% in the Lithothamnion genus (Smith
et al., 2012). Due to the solubility of their skeleton, coralline algae
might be among themost sensitive organisms to CO2-driven ocean acid-
ification (Basso, 2012; Kroeker et al., 2010).

The ocean acidification phenomenon is generated by the constant
increase in atmospheric CO2 partial pressure (pCO2) since the 1800s
(Sabine et al., 2004). Surface ocean pH is predicted to decrease by
0.3–0.4 units by 2100 and by 0.7 units by the year 2300 (Caldeira
and Wickett, 2003). Simultaneously, the concentration of bicarbon-
ate ions (HCO3

−) is predicted to increase and carbonate ions (CO3
2−)

concentration to drop by 30% by the end of the century (Orr et al.,
2005). The CaCO3 saturation state (Ω), which is dependent on the
CO3

2− concentration and influences CaCO3 precipitation, is conse-
quently expected to decrease (Feely et al., 2004). Such changes in
seawater chemistry may have direct impacts on metabolic processes,
particularly ones using dissolved inorganic carbon (DIC) as a sub-
strate, and thus affect both calcifying and photosynthetic marine
organisms such as coralline algae.

Responses to high pCO2 of coralline algae belonging to different
morphological or taxonomical groups are variable and species-specific
(seeMartin et al., 2013 for a review).Most of them are negatively affect-
ed with detrimental effects on recruitment (Kuffner et al., 2008),
growth (Ragazzola et al., 2012), abundance (Martin et al., 2008), photo-
synthetic production (Anthony et al., 2008) and calcification (Gao and
Zheng, 2010). Bleaching associated to mortality (Anthony et al., 2008;
Diaz-Pulido et al., 2012) has also been found to increase in response to
high pCO2. Conversely, some authors reported a positive effect on
photosynthetic (Borowitzka, 1981) and calcification processes (Martin
et al., 2013) or parabolic responses of calcification to increased pCO2

(Johnson and Carpenter, 2012; Ries et al., 2009). The variability of the
algal responses also depends on the abiotic parameters applied during
the experiments. For example, calcification of Hydrolithon onkodes
measured under 336 μmol photons m−2 s−1 presented a parabolic
response with the highest calcification rate under the intermediate
levels of 530 μatm (Johnson and Carpenter, 2012) whereas a con-
stant calcification decrease was measured under 1200 μmol photons
m−2 s−1 on the same species (Diaz-Pulido et al., 2012). Hofmann
et al. demonstrated with the same technique (PAM fluorometry)
that photosynthesis in Corallina officinalis can decrease (Hofmann
et al., 2012a) or remain stable (Hofmann et al., 2012b) with an
increase in pCO2. As responses of living organisms are so varying, ap-
plying the same abiotic parameters is required to compare species-
specific responses.

In the present study, the metabolic processes of photosynthesis,
respiration and calcification were investigated simultaneously in differ-
ent algal species from contrasting habitats in response to elevated pCO2.
Assuming that organisms inhabiting highly variable environments are
Please cite this article as: Noisette, F., et al., Physiological responses of thr
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likely to be more robust to ocean acidification (Harley et al., 2012;
Raven et al., 2012) and able to tolerate high pH/pCO2 fluctuations,
we hypothesized that coralline algae living in fluctuating habitats
(intertidal rock pools and channels) will be less affected by elevated
pCO2 than algae from more stable subtidal environments. We inves-
tigated the physiological responses of three different algal species:
Corallina elongata, an erected coralline alga from rock pools;
Lithophyllum incrustans, a pink thick crustose coralline alga (CCA)
which covers the pebbles in tidal channels and Lithothmanion
corallioides, also called “maerl”, a key species forming rhodolith
beds in the subtidal zone.

2. Methods

2.1. Biological material

Three coralline algal species living in contrasting environments from
the intertidal to the subtidal zone on the north-western coast of Brittany
were selected for this experiment.

(1) C. elongata Ellis and Solander, 1786, is a geniculate alga erected
from a basal crust, composed of numerous articulated calcareous
branches. It is a perennial species from the intertidal zone,
abundant on exposed shores, which forms a continuous mat at
rock pool edges along Atlantic and Mediterranean coasts
(Cabioch et al., 1992). Specimens of C. elongata were sampled
onOctober 11th, 2010 in a shaded rock pool on the low intertidal
shore of “Les Amiets”, Cléder (48°41.45′N, 4°7.26′W). Algal
fronds free of epiphytic organisms were selected for the experi-
ment and carefully separated from their substrate to obtain
their encrusting base. In October 2012, under sunny conditions,
temperature fluctuated by about 1 °C, from 16.4 °C just after dis-
connection from the sea (pool emersion) to 17.5 °C just before
immersion at rising tide. Changes in temperature between the
night and day can reach 4 °C in such low intertidal shaded rock
pools (see Egilsdottir et al., 2013). The pH on the total scale
(pHT) in such a rock pool can vary locally according to the
depth of the pool and the presence of other macroalgae between
8.61 and 7.82, corresponding to 70 and 1000 μatm, respectively
(see Egilsdottir et al., 2013). The photosynthetic active radiations
(PAR) measured using a flat quantum sensor (LiCor®, LI-192 SA)
at midday under sunny conditions at the surface of the pool was
around 30 μmol photons m−2 s−1. This low light was due to a
large rock overhanging the pool and shading the pool area
along the day.

(2) L. incrustans Philippi, 1837, is a non-geniculate coralline alga
forming thick pink/grey crusts covering the substrate. The thallus
surface is variable in terms of color, thickness and shape, the oldest
ones forming thick, rippled and peeled off margins (Steneck,
1986). This species is usually immersed (Littler, 1972) and can
be found in rock pools and in the sub-canopy in the low intertidal.
Small pebbles entirely covered by L. incrustans were collected on
October 13th, 2010 in the middle of the Green Island Channel,
front of the Station Biologique de Roscoff (48°43.73′N, 3°59.22′W).
Selected thalli were completely pink, (without white patches)
characteristic of healthy crusts. In this channel, depth can vary be-
tween a few centimetres to meters between high and low tides
and spring and neap tides. Abiotic parameters were measured in
October 2012 at lowwatermean spring tide (similar environmen-
tal conditions as during the algal collection). Temperature varied
from 17.5 °C at midday on a sunny day to 16.2 °C during the
night. Under the dense Sargassum muticum canopy, pHT at low
tide fluctuated between 7.83 (pCO2 ≈ 700 μatm) during the
night and 8.74 (pCO2 ≈ 50 μatm) during the day, under sunny
ee temperate coralline algae from contrasting habitats to near-future
6/j.jembe.2013.07.006
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conditions. Incident irradiance measured at the surface at midday
during low tide using a flat quantum sensor (LiCor®, LI-192 SA)
was around 800 μmol photons m−2 s−1. Using an under-canopy
extinction coefficient calculated in laboratory (coefficient ≈ 16.2;
Noël, unpublished data), incident irradiance was estimated less
than 50 μmol photons m−2 s−1 in the understory.

(3) L. corralioides Crouan & Crouan, 1867 is a non-geniculate free-living
form of coralline algae. This species forms extensive beds, called
rhodolith or “maerl” beds, by accumulating live and dead thalli
(Foster, 2001). L. corralioides thalli were collected by SCUBA div-
ing on October 13th, 2010, in amaerl bed of the Bay of Morlaix at
the Guérhéon site (48° 42.66′N, 3°57.06′W), at 7 m depth below
Chart Datum. Individuals between 1.5 and 3 cm in diameter
were selected for the experiment. Abiotic parameters at the
Guérhéon site were characterized in October 2012. Temperature
was stable around 16.3 °C. pHT varied between 8.12 and 8.18
units before and after high tide (290–340 μatm). Irradiance
measured with a PAR spherical sensor (biospherical QSP200PD)
at 9 m depth reached 27 μmol photons m−2 s−1 in the midday
under cloudy (but bright) conditions which corresponds to
15 μmol photons m−2 s−1 with a flat sensor (factor conversion:
0.57 see Ouisse et al., 2011).

2.2. Experimental conditions and set-up

After collection, all samples were transferred directly to a cool
box maintaining in situ temperature and carried to the laboratory
at the Station Biologique de Roscoff. Specimens were selected, gently
cleaned to remove most epiphytes and biofilm forming organisms
and were maintained in natural unfiltered seawater until the begin-
ning of the experiment.

Sets of 4–6 C. elongata fronds, 5–6 L. incrustans pebbles and 4–5
L. corralioides thalli were labeled with small plastic numbers attached
with nylon wire. Two sets of each algal species were randomly distrib-
uted to each of the twelve 10-L aquaria composing the experimental
set up. In addition, unlabelled thalli were kept in each aquarium for
chlorophyll analyses. The thalli were softly brushed to take off epiphytes
and biofilm before proceeding to the different measurements. Dry
weight (DW) of each alga was determined at the end of the experiment
after oven drying fresh samples at 60 °C for 48 h. Then, thalli were
burned for 4 h at 450 °C to obtain ash-free dry weight (AFDW).

At the beginning of the experiment, (October 19th to 26th, 2010),
pH was progressively decreased by 0.05 pH units per day by gradually
increasing the pCO2 to avoid algae any drastic stress. Then, the
organisms were acclimated for one month (October 26th to November
23th, 2010) to the different pCO2/pHT conditions reached, selected
according to the recommendations of Riebesell et al. (2010): 380 μatm
(pHT = 8.07) was selected as the current pCO2, and 550 μatm
(pHT = 7.94), 750 μatm (pHT = 7.82) and 1000 μatm (pHT = 7.77)
as three elevated pCO2 corresponding to different scenarios predicted
by the Intergovernmental Panel on Climate Change (IPCC) for the end
of the century (Solomon et al., 2007). The pCO2 were adjusted by
Table 1
Mean temperature and parameters of the carbonate chemistry in each pCO2 treatment. pHT (on
at the beginning of the acclimation time and duringmetabolicmeasurements. Other parameters
seawater with respect to aragonite.

pCO2 treatments Temperature
(°C)

pHT

n = 32 n = 32

380 μatm 16.0 ± 0.1 8.01 ± 0.01
550 μatm 15.9 ± 0.1 7.88 ± 0.01
750 μatm 15.9 ± 0.1 7.80 ± 0.01
1000 μatm 15.9 ± 0.1 7.70 ± 0.01
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bubbling CO2-free air to increase pH (current atmospheric pCO2) or
pure CO2 to decrease pH (elevated pCO2) in four 100 L header tanks.
These tanks were continuously supplied with unfiltered seawater
pumped in from the 1800 m3 water reservoir of the Station Biologique
de Roscoff that fills up at high tide. Seawater was delivered from each
tank to a triplicate of aquaria at a rate of 100 ml min−1 (i.e. a renewal
rate of 60% h−1). The 12 aquaria were placed in temperature controlled
baths regulated by 100 and 150 W submersible heaters at 16 °C ±
0.02 °C (October mean in situ temperature). pCO2 and temperature
were monitored and controlled by an off line feedback system (IKS
Aquastar, Karlsbad, Germany) that regulated the addition of gas in
the tanks and the on/off heater switch in the temperature controlled
bath. The pH values of the pH–stat system were adjusted from daily
measurements of pH on the total scale (pHT) in the aquaria using a pH
meter (HQ40D, Hach Lange, Ltd portable LDO™, Loveland, Colorado,
USA) calibrated using Tris/HCl and 2-aminopyridine/HCl buffer
(Dickson et al., 2007). Light was provided by 39 W fluorescent tubes
(JBL Solar Ultra Marin Day, JBL Aquaria, Nelson, New Zealand). Irradi-
ancewas fixed at amean value of 30 μmol photonsm−2 s−1, represen-
tative of mean daily in situ irradiance in the three habitats, by adjusting
the distance of the fluorescent tubes above the aquaria and using a
quantum sensor (LiCor®, LI-192 SA). The photoperiod was adjusted to
9:15 (light:dark, h) corresponding to themean photoperiod in Autumn.

2.3. Seawater parameters

Seawater parameters were monitored throughout the experiment.
pHT and temperature were recorded daily in each of the twelve aquaria
with a pH-meter (HQ40D, Hach Lange, Ltd portable LDO™, Loveland,
Colorado, USA). Total alkalinity (AT) was measured in the four pCO2

treatments by HCl 0.01 N potentiometric titration on an automatic
titrator (Titroline alpha, Schott SI Analytics, Mainz, Germany) at the
beginning of the acclimation period (28th October 2010) and during
the acquisition of metabolic rates (23th–26th November 2010). Salinity
was checked in each aquarium at the beginning, twice during the
experiment and at the end of the experiment with a conductimeter
(LF 330/SET, WTW, Weilheim, Germany). The carbonate chemistry
of the seawater, i.e. dissolved inorganic carbon (DIC), exact CO2

partial pressure (pCO2) and saturation state of aragonite (ΩAr, be-
cause solubility of high Mg-calcite is closer to aragonite than calcite)
were calculated for each aquarium using CO2SYS software (Lewis
and Wallace, 1998) with constants of Mehrbach et al. (1973)
(refitted by Dickson and Millero, 1987). Mean values of the parame-
ters in each pCO2 condition (3 aquaria per condition) are presented
in Table 1.

2.4. mMg/Ca, chlorophyll a and bleaching analyses

The mol% Mg/Ca (mMg/Ca) ratio was analyzed in three samples per
algal species, only in the control condition (380 μatm) at the end of the
experiment. The algae did not grow enough in one month to produce
sufficient quantity of carbonate to perform comparisons between
pCO2 treatments. Samples were cleaned with distilled water, dried by
paper towel tapping, bagged and sent to the Institute of Earth Sciences,
the total scale) and temperaturewere measured daily. Total alkalinity (AT) was measured
were calculated using CO2sys software. pCO2: CO2 partial pressure;ΩAr: saturation state of

AT

(μEq)
pCO2

(μatm)
ΩAr

n = 35 n = 32 n = 32

2401.92 ± 3.78 450 ± 7 2.41 ± 0.03
2402.07 ± 3.08 637 ± 23 1.88 ± 0.05
2414.49 ± 4.18 790 ± 22 1.58 ± 0.03
2418.53 ± 5.16 1002 ± 24 1.29 ± 0.03

ee temperate coralline algae from contrasting habitats to near-future
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University of Iceland. Small samples (b0.01 g) of the skeletal material of
each alga were placed in 20 ml polyethylene vials which had been
cleaned by soaking for 3 days in 5% HNO3 and then washed with
distilled water and dried. To dissolve calcium carbonate, 1 ml of 65%
HNO3 suprapure acid (Merck, Germany) was added to the samples
and left to dissolve for 14 h, after which 4 ml of deionised purified
water (Milli-Q purification system, Millipore, USA) was added to the
sample. Themol%Mg/Ca (mMg/Ca) ratioswere analyzed at theUniversity
of Iceland Institute of Earth Sciences, with an Inductively Coupled Plasma-
Atomic Emission Spectrometer (ICP-AES Spectro CirosTM, Germany). The
ICP-analysis was calibrated with mixtures of NIST-traceable single ele-
ment solutions (Spex Industries Inc. NJ, USA).

Chlorophyll a (Chl a) content was measured in the three algal
species exposed to each pCO2 treatment at the end of the experiment.
Samples from the additive algal pool of each aquarium were removed
and immediately frozen at −20 °C pending analyses. Branches of
C. elongata fronds (≈50 mg) and pieces of L. corallioides thalli (≈1 g)
were removed from the samples just taken out of the freezer. Pink
surfaces of L. incrustans, around 1 cm2 per thallus, were scratched
with a scalpel to pick out the living cell layer. All the samples were
weighed and then ground in 10 ml 90% acetone with a cold mortar
pestle, on an ice bath, under dark conditions. The extract was poured
into 15 ml centrifuge tubes and placed in the dark at 4 °C overnight.
Samples were then centrifuged for 20 min at 4000 rpm. Total Chl a
concentration in the supernatant was determined according to the
method of Ritchie (2008), using a spectrophotometer (Helios Gamma,
Thermo Electron Corporation, England). Two successive extractions
were necessary for a complete Chl a extraction.

Bleaching was evaluated at the end of the experiment. White patches
of thalli, characteristic of bleaching only occurred in L. incrustans. The sur-
faces of incubated alga sets were photographed at the end of the experi-
ment. Images were analyzed with ImageJ software (Rasband, version
1.37) to calculate the percentage of the bleached thallus surfaces.

2.5. Metabolic rates measurements

Each set of labeled thalli was incubated between the 23th and the
26th November, once in the light and once in the dark, in 80 mL
(L. incrustans and L. corallioides) or 190 mL (C. elongata) acrylic respi-
rometry chambers (Engineering & Design Plastics Ltd, Cambridge, UK)
filled with the aquarium seawater. Water homogeneity was insured
by hand shacking and temperaturewas kept constant. Light incubations
were carried out under culture irradiance (30 μmol photon m−2 s−1)
and dark incubations by covering the aquaria with black plastic bags
with fluorescent tubes switched off. Incubations lasted around 3 h in
order to avoid oxygen saturation greater than 120% during light incuba-
tion and maintain oxygen saturation above 80% at the end of the dark
incubation. In parallel, control incubations without algae were carried
out to correct fluxes from any biological activity in seawater.

Net production (light incubation) and respiration rates (dark
incubation) were calculated, by measuring oxygen molar concen-
tration at the beginning and the end of the incubation period with
a non-invasive optical fiber system (FIBOX 3, PreSens, Regensburg,
Germany). The reactive oxygen spots in the chambers were calibrat-
ed just before the beginning of the measurements with 0% and 100%
oxygen buffers. Net production (NP), respiration (R) and gross
production (GP) rates (in μmol O2 g−1 AFDW h−1) were corrected
from controls and calculated as:

NP ¼ ΔO2 � Vð Þ= Δt� AFDWð Þ
R ¼ ΔO2 � Vð Þ= Δt� AFDWð Þ

GP ¼ NP−R

where ΔO2 is the difference between initial and final O2 concentra-
tions in μmol O2 L−1; V is the volume of the chamber in liters; Δt is
Please cite this article as: Noisette, F., et al., Physiological responses of thr
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the incubation time in hour and AFDW is the ash-free dry weight of
the algae in grams.

Calcification fluxes were estimated by using the alkalinity anomaly
technique (Smith & Key, 1975) based on a decrease of total alkalinity
(AT) by 2 equivalents for each mole of CaCO3 precipitated (Wolf-
Gladrow et al., 2007). Seawater was sampled directly in the aquaria at
the beginning of the incubation and in the incubation chamber at the
end. Samples were filtered through 0.7 μm Whatman GF/F filters into
100 mL glass bottles and immediately poisoned with mercuric chloride
(0.02% vol/vol; Dickson et al., 2007). AT value (in μEq L−1) were
determined by HCl 0.01 N potentiometric titration on an automatic titra-
tor (Titroline alpha, Schott SI Analytics, Mainz, Germany) and by using
the Gran method of non-linear least-squares fit applied to pH values
from 3.5 to 3.0 (Dickson et al., 2007). Light and dark calcification rates
(g light and g dark, in μmol CaCO3 g−1 DW h−1) were corrected from
controls and calculated as:

g ¼ − ΔAT � Vð Þ= 2� Δt� DWð Þ

where ΔAT is the difference between initial and final total alkalinity con-
centrations in μEq L−1; V is the volume of the chamber in liters; Δt is the
incubation time in hour and DW is the dry weight of the algae in grams.

2.6. Statistics

All statistical analyses were performed using the free software R
2.15.0 version (©The R Foundation for Statistical Computing). Before
applying each test, normality of the data and homoscedasticity were
checked by Shapiro's test and Levene's test respectively. Differences in
mMg/Ca ratio between the three algal species at 380 μatm and percent-
age of bleaching among the different pCO2 treatments in L. incrustans
were explored by one-way analysis of variance (ANOVA) following by
post hoc Student–Newman–Keuls (SNK) test. Because of heterogeneous
variances, chlorophyll contents among the algal species and among the
pCO2 conditions were compared by two different Kruskal–Wallis tests
followed by post hoc Dunn's tests. The effect of pCO2 on metabolic
rates was investigated with the GAD package independently for each
alga. All the metabolic rates were explored through nested two-ways
ANOVA considering “pCO2” as a fixed factor with 4 levels (390, 550,
750 and 1000 μatm) and “aquarium” as a 3 level random factor nested
in the “pCO2” one to deal with spatial pseudo-replication. In cases
of significant differences between treatments, a post hoc Student–
Newman–Keuls test was applied to explore them. All results are
presented as mean ± standard error.

3. Results

3.1. Seawater parameters

Salinity remained stable at 35.2 ± 0.1 during the experiment. Mean
values of the seawater parameters i.e. temperature, pHT, alkalinity, pCO2

and calcium carbonate saturation state relative to aragonite, in each
pCO2 condition (3 aquaria per condition) are presented in Table 1.

3.2. mMg/Ca ratios, chlorophyll a contents and bleaching

mMg/Ca ratios were 0.169 ± 0.002, 0.202 ± 0.006 and 0.202 ±
0.009 mol for C. elongata, L. incrustans and L. corallioides respectively.
The three algal species showed differences in their skeletal composition
(Table 2). L. incrustans and L. corallioides, the two specieswhich have the
closest morphotypes, had similar percentages (Table 2) of about 20%
MgCO3. C. elongata precipitated calcite with less magnesium than the
other species (Table 2) with 17% MgCO3.

Chlorophyll a contents in the livingpart of the algae (Table 3) did not
differ among pCO2 treatments regardless of algal species (Table 2)while
differences appeared between species (Table 2). Chlorophyll a content
ee temperate coralline algae from contrasting habitats to near-future
6/j.jembe.2013.07.006

http://dx.doi.org/10.1016/j.jembe.2013.07.006
Original text:
Inserted Text
" "

Original text:
Inserted Text
" "

Original text:
Inserted Text
" "

Original text:
Inserted Text
" "

Original text:
Inserted Text
" "

Original text:
Inserted Text
"hours"

Original text:
Inserted Text
"analysed "

Original text:
Inserted Text
" -"

Original text:
Inserted Text
"one "

Original text:
Inserted Text
"analysed "

Original text:
Inserted Text
"hours"

Original text:
Inserted Text
"’"

Original text:
Inserted Text
"’"

Original text:
Inserted Text
"380 "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"’"

Original text:
Inserted Text
"1000 "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"



427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

Table 2t2:1

t2:2 Results of the one-way ANOVAs testing the differences of mMg/Ca ratios between the three algal species at 380 μatm and the effects of pCO2 on bleaching in L. incrustans.
t2:3 Chlorophyll contents (algal and pCO2 effects) were explored by two Kruskall–Wallis tests.

t2:4 mMg/Ca ratio Bleaching Chorophyll contents

t2:5 df F p F p H p

t2:6 Factor: pCO2 3 7.337 0.002 0.140 0.987
t2:7 SNK test p b 0.05
t2:8 380 b 1000
t2:9 380 b 750
t2:10 550 b 1000
t2:11 Factor: alga 2 9.241 0.015 63.160 b0.001
t2:12 SNK test p b 0.05 Dunn's test p b 0.05
t2:13 C. elongata b L. incrustans C. elongata N L. incrustans N
t2:14 C. elongata b L. corallioides L. corallioides
t2:15 L. incrustans = L. corallioides

t3:1

t3:2

t3:3

t3:4

t3:5

t3:6

t3:7
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was the highest in C. elongata, intermediate in L. incrustans and the
lowest in L. corallioides.

Bleaching occurred only in L. incrustans thalli andwas observed in all
pCO2 treatments. The percentage of bleached surface at the end of the
experiment was significantly affected by pCO2 (Table 2) and increased
with increasing pCO2 from 1% of thewhole surface of the thalli bleached
at 380 μatm to more than 10% at 1000 μatm (Fig. 1).
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3.3. Metabolic rates

In all themetabolic rates, no aquariumeffectwas detected (p N 0.05,
Table 4).

In C. elongata, the mean rates of net production varied from 12.62
(550 μatm) to 17.02 μmol O2 g−1 AFDW h−1 (380 μatm) while respira-
tion and gross production rates reached maxima of −11.87 and
28.89 μmol O2 g−1 AFDW h−1, respectively (Fig. 2A). Gross production
was slightly decreased at 550 μatm (−24% relative to 380 μatm)
whereas net production and respiration were not affected by elevated
pCO2 (Table 4). Calcification rates in the light and dark were positive
except at 1000 μatm in the dark (Fig. 2B). No pCO2 effect was detected
on calcification both in the light and dark. Mean net calcification ranged
from 0.93 ± 0.71 μmol CaCO3 g−1 DW h−1 at 550 μatm to 1.81 ±
0.70 μmol CaCO3 g−1 DW h−1 at 1000 μatm in the light and from
0.78 ± 0.33 μmol CaCO3 g−1 DW h−1 at 550 μatm to −0.28 ±
0.41 μmol CaCO3 g−1 DW h−1 at 1000 μatm in the dark. Dissolution
(negative net calcification) only occurred at 1000 μatm in the dark.

Net production of L. incrustans varied from−0.91 to 0.23 μmol O2

g−1 AFDWh−1. Gross production rates were not affected by elevated
pCO2 but conversely, respiration increased with increasing pCO2 and
net production was also affected (Table 4). Gross production ranged
from 2.26 to 2.58 μmol O2 g−1 AFDW h−1 and respiration rate
increased from −2.04 (380 μatm) to −3.49 O2 g−1 AFDW h−1

(1000 μatm). Calcification in the light and in the dark (Fig. 2B)
decreased with increasing pCO2, as we observed a drop of 185.7% be-
tween 380 and 1000 atm in the light (from 0.08 ± 0.03 to −0.07 ±
0.03 μmol CaCO3 g−1 DW h−1) and 250% in the dark (from−0.06 ±
0.01 to −0.21 ± 0.03 μmol CaCO3 g−1 DW h−1). Dissolution, as the
net calcification rates were negatives, occurred in the light only
under elevated pCO2 (750 and 1000 μatm) and in all the conditions
in the dark.
Table 3
Chlorophyll a content in the three coralline algal species in each pCO2.

Chlorophyll concentrations (mg chlorophyll g−1 AFDW)

380 μatm 550 μatm 750 μatm 1000 μatm

C. elongata 2.04 ± 0.10 1.74 ± 0.13 1.56 ± 0.24 1.73 ± 0.06
L. incrustans 1.46 ± 0.03 1.69 ± 0.18 1.89 ± 0.10 1.94 ± 0.24
L. corallioides 1.15 ± 0.04 1.06 ± 0.03 1.13 ± 0.07 1.10 ± 0.05
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L corallioides net production rates ranged between 6.39 and
9.23 μmol O2 g−1 AFDW h−1, at 750 and 380 μatm respectively. Gross
production rates increased from 8.73 to 13.23 μmol O2 g−1 AFDW h−1

and respiration rates ranged between −1.55 (750 μatm) and −4.00
O2 g−1 AFDW h−1(1000 μatm). Elevated pCO2 affected respiration,
net and gross production (Table 4) by enhancing primary production
at 1000 μatm and decreasing respiration at 750 μatm (Fig. 2A). With a
mean of 0.38 ± 0.07 μmol CaCO3 g−1 DW h−1, calcification measured
in the light was much higher than calcification in the dark (Fig. 2).
pCO2 effects on light calcification were significant (p = 0.043, Table 4)
even though post hoc comparison tests did not show any significant
differences between pCO2 conditions. Dark calcification was not
significantly affected by pCO2 (Table 2). However, a general trend
showed a decrease in calcification rates from 0.14 ± 0.06 at 380 μatm
to −0.03 ± 0.08 μmol CaCO3 g−1 DW h−1 at 1000 μatm in the dark
(Fig. 2B). Dissolution occurred in the twomost elevated pCO2 condition
(750 and 1000 μatm) only in the dark.
4. Discussion

Calcifying marine algae show a large variety of responses to ocean
acidification (Hurd et al., 2009) and species-specific responses may be
developed by algae from the same family living in contrasting habitats
to cope with abiotic changes (Harley et al., 2012).

Photosynthesis in the three investigated algal species was not strong-
ly impacted by increasing pCO2. Indeed, in C. elongata, gross primary pro-
ductionwas not affected by increasing pCO2 except for an inconsiderable
decrease at 550 μatm. L. incrustans gross production remained constant
Fig. 1. Percentage of bleaching in Lithophyllum incrustans thalli in each pCO2 treatment.
Unshared letters above bars indicate significant differences between treatments (p b 0.05,
SNK post hoc test), n = 6.

ee temperate coralline algae from contrasting habitats to near-future
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Table 4t4:1

t4:2 Results of the one-way nested ANOVA testing the effects of pCO2 on the metabolic rates in the three coralline algal species.

t4:3 Net production Respiration Gross production Light calcification Dark calcification

t4:4 μmol O2 g−1

AFDW h−1
μmol O2 g−1

AFDW h−1
μmol O2 g−1

AFDW h−1
μmol CaCO3 g−1

DW h−1
μmol CaCO3 g−1

DW h−1

t4:5 df F p F p F p F p F p
t4:6 pCO2 effect

t4:7 C. elongata 3 3.143 0.087 2.250 0.160 11.136 0.003⁎⁎ 0.659 0.600 1.431 0.304
t4:8 L. incrustans 3 18.608 b0.001⁎⁎⁎ 5.328 0.026⁎ 0.133 0.938 18.262 b0.001⁎⁎⁎ 11.908 0.003⁎⁎
t4:9 L. corallioides 3 6.612 0.015⁎ 7.271 0.011⁎ 9.573 0.005⁎⁎ 4.340 0.043⁎ 1.211 0.366

⁎ p b 0.05.t4:10
⁎⁎ p b 0.01.t4:11
⁎⁎⁎ p b 0.001.t4:12
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at all the pCO2 treatments while L. corallioides gross production increased
at 1000 μatm. This general weak pCO2 effect on coralline algal photosyn-
thesis has already been demonstrated by several authors. For example,
photosynthetic rates did not vary in response to increasing pCO2 in the
articulated coralline C. officinalis (Hofmann et al., 2012b) and in the
crustose coralline alga Hydrolithon sp. (Semesi et al., 2009). Such non-
responsiveness has been attributed to carbon-concentratingmechanisms
(CCMs) present in many coralline algae (Giordano et al., 2005).

The CCMs transport bicarbonate ions (HCO3
−) through the cell walls

by using ion channels or catalyze the transformation of HCO3
− in CO2 via

a carbonic anhydrase enzyme (Raven et al., 2012). Photosynthetic rates
of macroalgae that have CCMs are not carbon-limited under current
environmental conditions (Giordano et al., 2005) and a lack of response
of photosynthesis is thus expected under near-future pCO2. The pres-
ence of CCMs in C. elongata and L. incrustans has never been reported
U
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T

Fig. 2. Gross production and respiration rates (A) and net calcification rates in the light and da
between treatments (p b 0.05, SNK post hoc test), n = 6.
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Fbut these two algae are likely to have CCMs due to their gross produc-

tion rate not enhanced by elevated pCO2 (Raven and Hurd, 2012) and
the presence of CCM in the taxonomically close species, C. officinalis
(Hofmann et al., 2013). Non-CCM macroalgae are generally carbon-
limited under current seawater concentration and may respond posi-
tively to elevated pCO2 (Kubler et al., 1999). Red macroalgae without
CCMs aremost common in low light environments and subtidal habitats
(Hepburn et al., 2011; Hurd et al., 2009; Middelboe and Hansen, 2007).
This is most likely the case for L. corallioides which may have benefitted
from the higher concentration of photosynthetic substrate (CO2) at
1000 μatm, as demonstrated by its slightly elevated primary production.

In contrast to photosynthesis, respiration was differentially affected
by pCO2 among the three algal species. C. elongata and L. corallioides
respiration rates remained unchanged regardless of pCO2. This lack of
response is consistent with the lack of pCO2 effect shown in two other
E

rk (B) in each pCO2 treatment. Unshared letters above bars indicate significant differences

ee temperate coralline algae from contrasting habitats to near-future
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temperate coralline algal species, C. officinalis (Hofmann et al., 2012b)
and Lithophyllum cabiochae (Martin et al., 2013) under similar pCO2

ranges. The non-responsiveness of macroalgal respiration under
elevated pCO2was attributed to the absence of changes in photosynthe-
sis and chlorophyll content by Zou et al. (2011). This hypothesis is not
supported by ourfindings since as L. corallioides gross production varied
significantly without affecting respiration. In contrast, L. incrustans
respiration strongly increased under elevated pCO2. This may be related
to the severe bleaching occurrence. With bleaching, the proportion of
undamaged tissue decreased and necrosis (i.e. dead areas) increased.
Non-photosynthetic organisms such as bacteria, fungi, boring organ-
isms may have developed on top and within the dead surfaces
(Figueiredo et al., 1997; Tribollet and Payri, 2001), contributing to the
increase in respiration rate.

Although bleaching occurred in all the pCO2 treatments, percentage
of bleached surfaces increased with increasing pCO2, covering more
than 10% of the total thallus area under 1000 μatm. Elevated pCO2 is
known to increase bleaching in crustose coralline algae (Anthony
et al., 2008; Diaz-Pulido et al., 2012;Martin and Gattuso, 2009). Howev-
er, bleached surfaces were observed in L. incrustans thalli even in the
control condition (380 μatm) suggesting poor health of this species
under experimental conditions. Temperature (Martin and Gattuso,
2009) and desiccation (Martone et al., 2010) are known to be factors
inducing crustose coralline algae bleaching. In our experiment, temper-
ature was kept constant at 16 °C and crustose coralline algae were
constantly immersed but other factors such as diseases or pathogens
(widely known for tropical crustose coralline algae, Littler and Littler,
1998; Ballantine et al., 2005) may have caused L. incrustans bleaching.
This understory species generally inhabits shaded environments,
protected by the upper dense canopy from high light intensities
(Irving et al., 2004). Although incident irradiance under the canopy
may reach 50 μmol photon m−2 s−1 at low tide, the constant light of
30 μmol photon m−2 s−1 applied during the whole experiment may
have been too high. In comparison, values reported by Figueiredo
et al. (1997) did not exceed 8–24 μmol photons m−2 s−1 under a
Fucus canopy (Isle of Man, UK) at high and low tide respectively. This
constant illumination 9 h per day may have caused damages to cell
tissues and led to partial bleaching of the thalli. In elevated pCO2, the
potentially negative effects of light may have been amplified at high
CO2 concentrations making the algae potentially more perceptive to
diseases, increasing the bleaching.

Interestingly, no bleaching was observed in L. corallioides although
it developed under dim irradiance (≈15 μmol photons m−2 s−1).
Comparisons between laboratory and in situ recorded metabolic rates
suggest that C. elongata and L. corallioides were in good health and
not negatively affected by experimental conditions. At 380 μatm,
C. elongata and L. corallioides net production rates were higher than
those recorded in situ in similar temperature and light conditions
(7.7 μmol O2 g−1 h−1; Egilsdottir, pers. com. and 2.4 μmol O2 g−1 d−1;
Martin et al., 2007, respectively). Daily and hourly net calcification rates
in L. corallioides (3.1 μmol CaCO3 g−1 d−1; Martin et al., 2006) and
C. elongata (3.5 μmol CaCO3 g−1 h−1, Egilsdottir, pers. com.) respectively,
measured in situwere similar to thosemeasured in our study. The consis-
tency between field and laboratory data confirmed that C. elongata and
L. corallioideswere not stressed under the experimental conditions.

Calcification in L. incrustans decreased along the pCO2 gradient, both
under light and dark conditions. Daily net calcification rate at 380 μatm
was low (0.03 mg CaCO3 g−1 DW d−1) because of the net dissolution
measured under dark conditions, most probably related to the bad
health of this alga. Net dissolution was also observed at 750 and
1000 μatm in the light and in all the pCO2 conditions in the dark. In
contrast with L. incrustans, increasing pCO2 did not affect calcification
in C. elongata. In L. corallioides, calcification rate was significantly
affected by elevated pCO2 only in light conditions. In the dark, a general
negative trend has been underlined but masked by a high inter-
individual-response variability. This calcification decrease has already
Please cite this article as: Noisette, F., et al., Physiological responses of thr
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been shown in other rhodolith species (Büdenbender et al., 2011;
Ragazzola et al., 2012) and crustose coralline algae (Anthony et al.,
2008; Jokiel et al., 2008; Semesi et al., 2009). In some species of coralline
algae, such as L. cabiochae, dissolution was related to necroses and
bleaching (Martin and Gattuso, 2009). In L. incrustans, skeletal dissolu-
tion of dead surfaces may have been promoted under elevated pCO2

and net calcification subsequently lowered. In the light, this phenome-
non was partly buffered by the photosynthesis, which increased the
pH in undamaged tissues and in the boundary layer (Borowitzka,
1981; Cornwall et al., 2013; Hurd et al., 2009). By increasing the pH, Ω
was increased and may have favored the calcification process. Con-
versely, respiration in the dark released CO2 leading to decrease in pH
and Ω. Precipitation of CaCO3 in undamaged tissues may thus be
hindered and dissolution exacerbated. pH variations induced by photo-
synthesis and respiration in the surrounding medium of the algae were
not likely to affect calcification in C. elongata as this alga may be able to
cope with elevated pCO2 by saving energy from down-regulating CCMs
(Cornwall et al., 2012; Hurd et al., 2009) or by modifying enzymes
contents such as carbonic anhydrase (Hofmann et al., 2012b; 2013) to
maintain calcification rates.

Differences between the three algal species could also be partly
explained by the high Mg-calcite they precipitate to form their thallus.
The carbonate mineralogy is linked to the dissolution phenomenon
and can influence calcification rates (Ries, 2011). Mg-calcite is the
most soluble form of CaCO3 and the mol% MgCO3 in the algal skeleton
may increase its solubility (Morse et al., 2006). C. elongata had a lower
mMg/Ca ratio (0.17) than the other two species (0.20), which can
potentially reduce dissolution (Büdenbender et al., 2011). Although
information on mMg/Ca ratio is not sufficient to define the robustness
of a calcareous structure (Ragazzola et al., 2012), a lower magnesium
content in Mg-calcite can confer a greater resistance to elevated pCO2.
Besides, C. elongata has thin, branched thalli that are less calcified than
thick crust thalli of L. incrustans and L. corallioides. Thallus morphology
is known to influence the speed of corrosion (Ragazzola et al., 2012)
and the thinnest thallus may be more resistant because of the higher
surface to volume ratio that may allow more exchanges leading to a
better chemistry regulation around the calcification site (Price et al.,
2011).

This study has demonstrated that CO2-driven effects varied between
algal species from the same family but collected in habitatswith varying
abiotic conditions. Our original hypothesis that organisms naturally
exposed to stressful conditions in their environment will be less
sensitive to future pH/pCO2 variations was partially supported. Indeed,
C. elongata was the most resistant to elevated pCO2 and may have
developed adaptations to strong daily variations in pH, commonly oc-
curring in tidal pools (Truchot and Duhameljouve, 1980). Surprisingly,
L. corallioides from amore stable pH environment showed a better resis-
tance than we expected with just a slight decrease in calcification
observed under elevated pCO2. This species may benefit from constant
optimal temperature and light provided in the mesocosm and might
maintain high metabolism even under elevated pCO2. In contrast,
L. incrustans, living in shallow-water dominated with macroalgae
where pH fluctuations are high (Middelboe and Hansen, 2007), was
the most sensitive to pCO2 increase. However, physiological responses
in L. incrustans are likely to be due to bleaching occurrence. Indeed,
the bleachingwas correlated to an increasing dissolutionwhich implied
a tissue deterioration affecting all the metabolic functions (Diaz-
Pulido et al., 2012). The increasing bleaching could also be linked to
productivity losses as shown on tropical crustose coralline algae
(Anthony et al., 2008). The lack of canopy in our experimental set-
up may have modify light intensity and quality that L. incrustans is
used to, leading to bleaching that not occurs in situ in the understory.
If individuals remained healthy and unbleached during the experi-
ment, L. incrustans could prove to be more resistant and a lack of
response to elevated pCO2 may be expected but further investigation
is needed.
ee temperate coralline algae from contrasting habitats to near-future
6/j.jembe.2013.07.006

http://dx.doi.org/10.1016/j.jembe.2013.07.006
Original text:
Inserted Text
"Corallina "

Original text:
Inserted Text
" "

Original text:
Inserted Text
" "

Original text:
Inserted Text
"Lithophyllum "

Original text:
Inserted Text
" "

Original text:
Inserted Text
" "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
" - "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"380 "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"380 "

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"1000 "

Original text:
Inserted Text
" "



T

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692Q6

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708
709
710
711
712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

8 F. Noisette et al. / Journal of Experimental Marine Biology and Ecology xxx (2013) xxx–xxx
U
N
C
O

R
R
E
C

High pCO2 sensitivity of coralline algae underlined by numerous
authors, (Basso, 2012; Büdenbender et al., 2011; Gao and Zheng,
2010; Hofmann et al., 2012a) is counterbalanced by others studies
that showed that calcification could be unaffected (Egilsdottir et al.,
2013; Martin and Gattuso, 2009) or even increased (Martin et al.,
2013; Ries et al., 2009) by moderate pCO2. These contrasting results
and the recent discovery of dolomite, a magnesium-rich stable carbon-
ate less soluble thanMg-calcite, present in some crustose coralline algae
led to a reappraisal of the sensitivity of coralline algae to near-future
ocean acidification (Nash et al., 2013). However, many studies
investigating coralline algae under elevated pCO2 were carried out in
mesocosms or laboratory experiments. In the field, pCO2 is not the
only stressor, and surely not the main one, impacting algal physiology.
Under combined stresses (e.g. light, temperature, pCO2), indirect pCO2

effects could enhance the sensitivity of algae and facilitate disease
development and bleaching occurrence even if algae are used to large
and rapid pCO2 variations in their habitat. As one stressor may limit
organism ability to deal with another stressor, bleaching can induce
a bias in the physiological responses to increasing pCO2. As for
L. incrustans in our study, bleaching induced dissolution that impacted
the calcification balance even if calcification process in undamaged
part of the thallus may not be affected by elevated pCO2.

Resilience to elevated pCO2 is probable but maybe at a cost (Martin
et al., 2013). C. elongatawas able tomaintain a heavily calcified skeleton
under elevated pCO2 during our experiment (one month). In the long
term, this ability could impact the general resistance of the organism
by decreasing its fitness and could reduce their ability to compete
with fleshy algae. In situ experiments along a natural pH gradient
showed that even if coralline algae were able to withstand the effects
of ocean acidification, they may suffer reductions in abundance
(Hall-Spencer et al., 2008; Kroeker et al., 2013; Martin et al., 2008;
Porzio et al., 2011). With the decrease of coralline algae in
macroalgal-dominated communities, space could be released for
fleshy algae (Kuffner et al., 2008) or turf which are generally favored
by elevated pCO2 (Connell and Russell, 2010). As turf and fleshy algae
have different ecological roles than coralline algae, these algal
community shifts could have considerable ecological and functional
consequences for macroalgal communities from the intertidal and
subtidal zones.
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