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Abstract

This study aimed to estimate the contribution of disturbances to the uncertainty
of forest growth forecasts in the Bas-Saint-Laurent region in Quebec, Canada. We
focused on two major disturbances affecting that region: spruce budworm (SBW)
outbreaks and harvest activities. Growth forecasts were carried out for a period of
100 years (2003-2103) using ARTEMIS-2009, a stochastic individual-based model.
Using the Monte Carlo technique, we simulated four scenarios: a baseline; a harvest
scenario; a SBW scenario; and a scenario including both harvest and SBW. Uncer-
tainty estimation was performed using a bootstrap variance estimator that applies
to the context of hybrid inference. The results revealed that the total variances
increased over time. For the scenarios including SBW, the variances were three to
six times greater than those in the scenarios without outbreaks. Harvesting did not
greatly contribute to the total variance. We conclude that to reduce the uncertainty
of large-area growth forecasts in the Bas-Saint-Laurent, considering SBW dynamics
is a crucial issue.

Keywords: regional-level forecasts, bootstrap estimator, stochastic individual-
based model, hybrid inference, variance.
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Introduction

The influence of disturbances on forest ecosystems has been given special attention over
the last decades due to anticipated environment changes (Turner, 2010). The disturbance
regime plays a dominant role in shaping forest dynamics, such as influencing structure
and composition (Bouchard and Pothier, 2011), as well as determining temporal and
spatial patterns (Didion et al., 2007). This important role has triggered efforts to include
disturbances in forest management plans (Daniel et al., 2017) and in growth forecasts
(Turner, 2010).

Natural disturbances along with anthropogenic activities are one of the major agents
that shape the landscape. In European forests, the most common large-scale disturbances
are storms, followed by fires and insect outbreaks (Schelhaas et al., 2003). In the Canadian
boreal forests, the natural disturbances are mainly fires and insect outbreaks such as
forest tent caterpillar (Malacosoma disstria), jack pine budworm (Choristoneura pinus)
and spruce budworm (Choristoneura fumiferana (Clem.); SBW) (Brandt et al., 2013).
They are known to affect up to millions of hectares (Gauthier et al., 2015). Among other
anthropogenic disturbances such as agriculture and roads, harvest activities have become
a key driver of forest dynamics (Venier et al., 2014). Approximately 40% of the boreal
forest is under management and these managed areas are more disturbed by harvesting
than by natural disturbances (Venier et al., 2014).

Including disturbances in growth models is necessary to properly simulate forest dy-
namics over large areas (Seidl et al., 2011). It generates more realistic growth forecasts,
which are of great interest in practical forestry, ecology and climate change mitigation
activities (St̊ahl et al., 2016). Nevertheless, the process of simulating forest growth over
large areas implies propagating errors. Such uncertainties arise from the model and the
sampling. Model errors are a result of parameter estimation and the structure of the
model, among others factors (Walker et al., 2003; Refsgaard et al., 2007). Sampling er-
rors are due to the upscaling of forest variables to a higher level (Breidenbach et al.,
2014).

Because large-area growth forecasts are based on both the model and the sampling
design (St̊ahl et al., 2016), they represent a typical case of what is known as hybrid
inference (Corona et al., 2014). This context of hybrid inference arises when: (i) the
variable of interest, such as growth, is not observed but predicted using a model; and (ii)
the explanatory variables of the model are observed in the sample only and not throughout
the entire population (McRoberts and Westfall, 2014; Fortin et al., 2016). This requires
special estimators that account for both sources of uncertainty (McRoberts and Westfall,
2016). Hybrid estimators applied with forest growth models propagate errors from the
plot to the regional or national level and they represent an implementation of an upscaling
method known as the direct extrapolation method (Wu et al., 2006).

Uncertainty assessment of forest growth forecasts has been studied by many authors
(e.g., Kangas, 1999; Xu and Gertner, 2008; Horemans et al., 2016). In some cases, natural
and anthropogenic disturbances were taken into account. However, to the best of our
knowledge, the uncertainty they induce in large-area growth forecasts has not been fully
addressed. In the very few cases where the uncertainty due to the disturbances was
addressed, it was either for anthropogenic or natural disturbances, but not for both.
Moreover, the uncertainty that stemmed from the sampling was overlooked (e.g., Bergeron
et al., 2017). This conjecture motivated this study.

The impact of a particular type of disturbance on growth forecast uncertainty can be
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assumed to be closely related to its spatial and temporal patterns. Some authors who stud-
ied these patterns with regard to population dynamics found that different populations
from the same species present a synchronicity (e.g., Williams and Liebhold, 2000), i.e.,
one population is likely to occur simultaneously with other populations. This correlated
population fluctuation has been detected in various taxa and over many spatial scales
(Liebhold et al., 2004). For insects acting as a disturbance in forests, the synchronicity of
outbreaks can impact growth forecasts due to the coincident changes in forest attributes.
At the landscape level, the extent of these changes can lead to variability.

Given the influence of disturbances on forests, our main objective was to take them into
consideration in large-area growth forecasts and to estimate their contribution in terms
of uncertainty. To do this, we worked on a real-world case study: the administrative
region of Bas-Saint-Laurent, Quebec, Canada. More specifically, we focused on spruce
budworm outbreaks and harvesting, which are the two major disturbances in that region.
As a natural component, spruce budworm outbreak is of concern since it occurs on a large
scale with return intervals of a few decades, and has a great impact on forest productivity
(Boulanger et al., 2012). The region is presently facing a SBW outbreak.

Motivated by the spatial synchrony theory, we first hypothesized that spruce budworm
outbreaks have a greater impact than harvesting on the uncertainty of large-area growth
forecasts. In the context of hybrid inference, the uncertainty related to the predicted
occurrence of natural and anthropogenic disturbances belongs to the model part and not
to the sampling. In a previous study on large-area growth forecasts, Melo et al. (2018)
found that the model-related variance increased along the projection length and could
match that of the sampling in the absence of disturbances.Given that the occurrence of
natural disturbances is highly stochastic, our second hypothesis was that disturbances
induced more uncertainty than the sampling in these large-area growth forecasts. Data
from the provincial network of permanent plots in Quebec, Canada, and the ARTEMIS
growth model (Fortin and Langevin, 2012) were used to generate those large-area growth
forecasts for the Bas-Saint-Laurent region.

Material and methods

ARTEMIS growth model

We worked with the distance-independent individual-based growth model, ARTEMIS
(Fortin and Langevin, 2010, 2012). The first version of the model was designed in 2009.
Since then, it has been regularly updated. The model was fitted using the network of
permanent plots of the Quebec provincial forest inventory (MFFP, 2009, 2015). Briefly,
ARTEMIS is composed of seven sub-models, with five of them being dynamic and the
other two static (Fig. 1). The dynamic sub-models predict the harvest probability, the
mortality probability, the diameter increment, the number of recruits and the diameter
of these recruits, respectively. The two static sub-models make it possible to predict tree
height and commercial volume based on other characteristics of the trees and the plot.
All these sub-models were fitted using mixed-effects models or covariance structures in
order to account for serial and spatial dependence at the plot, interval and tree levels.
More details are available in Fortin and Langevin (2010, 2012).

The model uses 10-year growth steps. The output of a given step is re-inserted in
the model in order to obtain forecasts over longer time periods. Users may run growth
simulations in a deterministic or stochastic fashion. The stochastic mode relies on the
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Monte Carlo technique (Rubinstein and Kroese, 2007). In such a mode, three types of
errors are simulated: the errors in the parameter estimates, the plot or interval random
effects and the residual errors. The model provides tree-level predictions. Plot-level
predictions are obtained through the aggregation of the predictions at the tree level.

(Insert Fig. 1 here).

ARTEMIS relies on a large array of explanatory variables. At the plot and tree levels,
the model considers the tree species, harvest occurrence (yes/no), stem density (tree ha−1)
and basal area (m2ha−1), which is the sum of the cross-section areas at 1.3 m in height.
These aforementioned variables are considered as endogenous variables, i.e., influenced
by factors within the system (Rao and Toutenburg, 1995). ARTEMIS also considers
the potential vegetation. The potential vegetation refers to the composition at a late
successional stage (Grondin et al., 2009). Thirty-two potential types of vegetation exist
in the province of Quebec (Saucier et al., 2015) and ARTEMIS was designed to work with
the 25 most frequent ones. Each potential vegetation type was modeled individually, thus
resulting in 25 versions of the model (Fortin and Langevin, 2010).

Finally, mean annual precipitation (mm) and temperature (◦C) are predictors in
ARTEMIS. They are both entries in the mortality and recruitment sub-models. The
diameter increment sub-model considers only precipitation, whereas the sub-models pre-
dicting recruit diameter and tree height consider only the mean temperature. These
variables are estimated using BioSIM, a software program that predicts climate variables
for a particular geographical location based on the data of the nearest climate stations
(Régnière et al., 2010).

Considering that disturbances are the focus of this study, the way they are taken into
account in ARTEMIS is further described in the next lines. The harvest module works
in two steps. It first yields a 10-year harvest occurrence prediction for a particular plot
considering some plot-level variables (e.g., slope inclination) and the annual allowable cut
volume (AAC) (MFFP, 2003). This AAC volume is estimated by a governmental agency
for a particular territory and it represents the maximum volume that can be sustainably
harvested. In our simulations, we assumed that this AAC volume remained constant
over time, even though it is re-estimated every five years in practice. Whenever a plot is
harvested, the second part of the sub-model predicts a harvest probability for each tree of
this plot given a management regime (Fortin, 2014). Readers are referred to Melo et al.
(2017) and to Fortin (2014) for additional details about the harvest sub-model.

ARTEMIS also takes the impact of spruce budworm defoliation into account. A re-
currence of outbreaks must be specified by the user. An outbreak is here defined as at
least four consecutive years of moderate to severe defoliation on all the host species at the
regional level. According to Pothier et al. (2005), this four-year period can be considered
as a threshold beyond which the mortality rates of the host species significantly increase.
For the recurrence R, the annual probability of occurrence can be derived as the inverse
of the recurrence, i.e. 1/R. The probability that no outbreak occurs during a 10-year
growth step is based on the balance of probability: (1 − 1/R)10. The probability that at
least one outbreak occurs is then 1 − (1 − 1/R)10. We assumed that all the plots were
affected by the outbreak when it occurred.

The impact of SBW outbreaks was statistically tested in the mortality sub-model and
it was included as a dummy variable (Fortin and Langevin, 2010, 2012). This variable
takes the value of 1 whenever an outbreak occurs during a particular 10-year growth step.
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This induces an increase in the predicted probabilities of mortality for spruce (Picea spp.)
and balsam fir (Abies balsamea (L.) Mill.).

Uncertainty estimation

A key step in our study is to estimate uncertainty in the predicted volumes in the context
of hybrid inference, that is, inference relying on both the model and the sampling design
(Corona et al., 2014). To do this, we used a hybrid variance estimator based on the
bootstrap method (Fortin et al., 2018). The mathematical developments behind the
estimator are presented in the Supplementary Material SM1.

If we consider a design of simple random sampling without replacement with even
inclusion probabilities, an unbiased estimator of the population mean is the sample mean:

µ̂ =
1

n

∑
i∈s

yi (1)

where s is the sample, yi is the variable of interest in plot i and n is the sample size.
The variance of this estimator is, in turn, estimated as:

V̂(µ̂) =
(

1 − n

N

) ∑
i∈s(yi − µ̂)2

n(n− 1)
(2)

where N is the number of units in the population.
When yi is not available, a model can be used to obtain a prediction that is denoted as

ŷi. Substituting ŷi for yi in Eq. 1 still yields an unbiased estimator of the mean provided
that the model has no lack of fit. However, the adaptation of the variance estimator
requires further developments, namely propagating errors from different sources within
the model. This error propagation can be carried out using the Monte Carlo technique
(Rubinstein and Kroese, 2007). The technique consists of drawing random deviates to
account for the errors in the parameter estimates, the random effects and the residual
errors. A single simulation based on a particular set of deviates provides a realization
of the estimated mean and the estimated variance shown in Eqs. 1 and 2. After a great
number of realizations, the bootstrap estimator of the mean is:

µ̂BS =
1

B

B∑
b=1

µ̂b (3)

where µ̂b is the sample mean obtained from realization b, and B is the total number
of realizations.

Consistent with Fortin et al. (2018), an unbiased bootstrap variance estimator is:

V̂(µ̂BS) =

∑B
b=1(µ̂b − µ̂BS)2

B
+ 2V̂(µ̂ȳ) −

∑B
b=1 V̂(µ̂b)

B
(4)

where V̂(µ̂ȳ) can be obtained by substituting ȳi =
∑B

b=1
yi,b
B

and µ̂BS for yi and µ̂,
respectively, in the variance estimator found in Eq. 2. The sampling contribution to the
total variance is obtained through V̂(µ̂ȳ), while the model contribution is calculated as

V̂(µ̂BS) − V̂(µ̂ȳ).
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Study area and dataset

The inventory data were a subset of the provincial network of permanent plots of Quebec’s
Ministry of Forests, Wildlife and Parks (MFWP). We limited our analysis to the regional
level. Thus, our dataset included only the plot measurements from the Bas-Saint-Laurent
administrative region. Covering a surface of 22,185 km2, the forest composition is rep-
resentative of broadleaved, mixed and coniferous vegetation. The dominant species in
this region are sugar maple (Acer saccharum Marsh.), yellow birch (Betula alleghaniensis
Britton), balsam fir, white spruce (Picea glauca Voss) and black spruce (Picea mariana
Britton). The plots are located in five different ecological regions, the result of a clas-
sification established by the MFWP to characterize the composition and dynamics of
the vegetation (MFFP, 2016). The plot distribution in the different ecological regions is
shown in Fig. 2.

(Insert Fig. 2 here).

Historically, the Bas-Saint-Laurent region has been subject to anthropogenic and nat-
ural disturbances. The region was affected by severe SBW outbreaks during the last cen-
tury, which, as a consequence, triggered salvage cutting (Boulanger and Arseneault, 2004).
Moreover, silvicultural practices have deeply transformed forest composition (Boucher
et al., 2009). The current regional forest planning guidelines prescribe silvicultural prac-
tices adapted to the different forest types (Gagnon et al., 2015): selection cutting in
shade-tolerant broadleaved forests; irregular and regular shelterwood cutting in mixed
stands; and harvest with protection of regeneration and soils for most coniferous forests
and some mixed stands.

Our dataset consisted of 393 permanent plots located in the Bas-Saint-Laurent region,
each one with an area of 400 m2. In these plots measured in 2003, all trees with diameter
at breast height (DBH, 1.3 m in height) equal to or greater than 9.1 cm were tagged for
individual monitoring. A summary of the dataset is provided in Table 1.

(Insert Table 1 here).

Forecasting

We built a framework to predict forest growth for the Bas-Saint-Laurent region, taking
harvest and SBW outbreak effects into account. These projections were carried out for
a period of 100 years (2003-2103), considering a 2◦C temperature increase and a 5% pre-
cipitation increase over the 21st century, which roughly corresponds to the representative
concentration pathway (RCP) 4.5 provided by the IPCC (2013, p. 1335). Since the initial
year of our forecasts was 2003, the observed disturbance history up to 2018 is known. We
first configured the forecasts to update the plot status, i.e., to take the management of
the first two decades (2003-2023) and the SBW outbreak initiated in 2013 into account.
Once this initial condition was established, we then tested four scenarios: (i) a baseline
scenario with no disturbances; (ii) a harvest scenario, in which plots were harvested ac-
cording to the current level of annual cut volume allowance and the prescribed treatments
for each forest type; (iii) a SBW scenario, in which we considered an average outbreak
recurrence of once every 35 years, according to Boulanger and Arseneault (2004); and
(iv) a scenario including both harvest and SBW outbreaks, structured as in the second
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and third scenarios but acting simultaneously here. The simulations were run on the
CAPSIS platform (Dufour-Kowalski et al., 2012). We ran a total of 10,000 Monte Carlo
realizations to account for the variability induced by disturbances for each scenario. It
is worth mentioning that the forecasts include stochasticity from disturbances, as well as
from the parameter estimates, the random effects and the residual errors.

ARTEMIS provides tree-level predictions. The individual predicted volumes were
aggregated at the plot level. The hybrid bootstrap estimators shown in Eqs. 3 and 4
were then used to perform the upscaling to the regional level, as proposed in the direct
extrapolation method (Wu et al., 2006).

Results

Long-term volume forecasts for the Bas-Saint-Laurent region are shown with their confi-
dence intervals in Fig. 3. The baseline scenario, in which no disturbance was considered,
resulted in an increasing volume that reached 220 m3ha−1 in 2103 (Fig. 3a). When the
disturbances were taken into account, similar growth patterns were observed but pre-
dicted volumes were smaller. More precisely, when SBW outbreaks were included in the
forecasts, the volume in 2103 was 20 m3ha−1 lower than that of the baseline (Fig. 3b).
When considering harvest occurrence only, volume for the same period was 45 m3ha−1

lower compared to the baseline (Fig. 3a). For the scenario in which harvest and spruce
budworm outbreaks occurred simultaneously, predicted volumes for 2103 were 60 m3ha−1

smaller than the baseline (Fig. 3b).
The confidence intervals provide an assessment as to how future growth can vary in

the Bas-Saint-Laurent region under disturbances. Considering the predicted lower limit
of the interval for the scenario considering both SBW outbreaks and harvesting (Fig. 3b),
it is very unlikely that the mean volume per hectare at the end of the 21st century will
be smaller than what it was in 2003.

Growth forecasts were characterized by a total variance that increased over time
(Fig. 4). The magnitude of the increase was dependent on the scenario. The increase
was steep for these scenarios including SBW (Fig. 4c,d). At the end of the time horizon,
the variances of these two scenarios were greater than 100 m6ha−2, whereas the variances
of the scenarios without SBW were smaller than 50 m6ha−2.

(Insert Fig. 3 here).

(Insert Fig. 4 here).

The scenarios including harvesting were characterized by smaller total variances. The
total variance in the scenario considering harvesting only reached 30 m6ha−2 in 2103,
whereas it was estimated at 43 m6ha−2 for the baseline scenario (Fig. 4a,b). Likewise, in
the scenario including simultaneously harvest and SBW, total variance was estimated at
138 m6ha−2, compared to 199 m6ha−2 in the scenario with SBW only (Fig. 4c,d).

The sampling-related variances showed the same pattern across the scenarios. The
variance slightly decreased in the first two decades and then remained stable or slowly
increased over time. Model-related variances increased over time. Our results revealed
two main trends. In the first case, for the baseline and harvest scenarios, the model-related
variances increased steadily (Fig. 4a,b). The second case was related to the inclusion of
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SBW outbreaks, which already greatly inflated the model-related variance on the short-
term (Fig. 4c,d). In both cases, the model-related variance mainly explained the patterns
observed in the total variance. The absolute and relative variances related to all four
scenarios are presented in Table 2.

(Insert Table 2 here).

Discussion

This study focused on the uncertainty of large-area volume forecasts under the effect
of harvesting and SBW outbreaks. It turns out that both disturbance types affect the
volume yield in predictions and their variances. It is obvious that omitting disturbances
leads to overestimating growth (Valle et al., 2006). In our study, we managed to estimate
this bias. Harvesting is accounted for in most simulations, while natural disturbances are
often omitted due to their stochastic nature. In the Bas-Saint-Laurent region, omitting
SBW outbreaks caused an overestimation of 7.4% in volume at the end of the 21st century
(Fig. 3).

Uncertainty estimation was performed in the context of hybrid inference at the regional
scale. This was possible because: (i) a hybrid bootstrap variance estimator was available,
and (ii) the model benefited from a full stochastic implementation, which is a requirement
for the use of the estimator (Fortin et al., 2018). Using this framework, we reproduced the
variance patterns arising from the model and the sampling, and checked how they were
affected by SBW outbreaks and harvest activities. Such a comprehensive consideration
for the different sources of uncertainty in growth forecasts contributes to the originality
of our study compared to past efforts.

Our first hypothesis was that SBW outbreaks induced more uncertainty in volume
forecasts than harvesting. The scenarios including SBW outbreaks led to a variance that
was three to six times greater than those in the scenarios without outbreaks (Fig. 4).
In our forecasts, enabling the occurrence of SBW outbreaks generated some realizations
where all plots that contained host species were suddenly affected by greater mortality
rates, whereas the other realizations were only subject to regular mortality. In contrast,
harvesting affected all realizations, and in each of them, only a few plots were harvested
while the others were left untouched. The clear consequence is a greater variability from
the model in the scenarios including SBW outbreaks.

A surprising result was that the scenario including harvest was slightly less uncertain
than the baseline scenario. Although unexpected, it can be reasonably assumed that
the endogenous nature of the harvest sub-model implies less variability. In ARTEMIS,
harvest probabilities are based on some plot-level variables that are predicted by the
model. For instance, the larger the basal area is, the greater the probability of harvest
will be (Melo et al., 2017). Regardless of the realizations, plots with greater basal areas
are then more prone to be harvested. As a consequence, there are fewer plots with large
basal areas, and the population tends to be more homogeneous than in the baseline
scenario. As outlined in Kneeshaw et al. (2011), harvest activities are likely to produce
similar structural forests when compared with others natural disturbances such as spruce
budworm outbreaks. Given this homogenizing effect of the harvesting, we cannot entirely
validate our second hypothesis, which was that disturbances were expected to induce a
greater deal of uncertainty in the forecasts than the sampling. This was true for SBW
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outbreaks, but not for harvesting activities.
The sampling-related variance did not show a decreasing trend in long-term predictions

as it did in the study of Melo et al. (2018). It must be stressed that the sampling-related
variance as estimated through the hybrid estimator of Fortin et al. (2018) is actually the
variance of the mean plot-level predicted values. As the projection length increases, these
plot-level predicted values tend to be similar due to model convergence. As reported
in Melo et al. (2018), the population variance cannot be estimated from this sampling
variance because it overlooks the increasing contribution of the residual errors. In other
words, the flat trends we observed for the sampling-related variances cannot be interpreted
as a constant degree of heterogeneity between the plots all along the projection. This plot-
to-plot heterogeneity actually increases because of the model residual errors.

In the study of Melo et al. (2018), model- and sampling-related variances of basal
area predictions were reported per ecotype for the Bas-Saint-Laurent region. To check if
the different patterns in the sampling-related variances were a matter of ecotype, we also
estimated model- and sampling-related variances of volume predictions per ecotype. We
obtained trends similar to those observed by Melo et al. (2018), even if we were working
with volumes, which allowed us to rule out any variable representation effect. This led
us to consider the implications of an ecotype stratification on the sampling variance. The
differences observed in the behavior of sampling uncertainty herein and in Melo et al.
(2018) could probably be due to inter-ecotype variance. Further details about these
additional results can be found in the Supplementary Material SM2.

Melo et al. (2018) also outlined the impact of sample size in sampling variance. Despite
the greater sample size in this study, the estimated sampling variances were still large.
Again, the inter-ecotype variance could be an explanation for this trend that we observed
in our simulations.

It is known that a stratified sampling design can decrease the variance of the estimates.
The decrease in the variance is linked to the homogeneity within the strata (Gregoire and
Valentine, 2008, p. 127). In forestry, McRoberts et al. (2012) demonstrated that a strati-
fication based on LiDAR data reduced the variance of mean volume estimates of growing
stock. McRoberts and Westfall (2016) also obtained smaller variance estimates when us-
ing a stratified estimator in the context of individual tree volume. Building on this, we
can reasonably assume that our sampling variance would decrease if we used a stratifica-
tion based on the ecotypes, for example. The original version of the bootstrap estimator
developed by Fortin et al. (2018) relies on the Horvitz-Thompson estimator (Horvitz and
Thompson, 1952) which easily adapts to stratified sampling designs (Gregoire and Valen-
tine, 2008, p. 135). However, the gain in precision under a stratified sampling design
remains to be tested.

Finally, in our simulations, we observed that there is uncertainty related to sam-
pling, but more importantly, there is greater uncertainty in modeling growth when SBW
outbreaks are included. Previous studies (St̊ahl et al., 2014; Breidenbach et al., 2014)
concluded that the efforts to reduce sampling uncertainty were justified because it was
the greatest source of uncertainty. In our study, priority should be given to reducing
the uncertainties that stemmed from SBW outbreaks when forecasting growth. We do
not advocate that sampling uncertainty should not be considered at all, but it clearly is
smaller than the uncertainty from SBW outbreaks.

Existing research in growth forecast uncertainties under SBW is limited. The recent
studies that are available support our findings. Boulanger et al. (2016) argued that model-
specification uncertainty should be the focus of research assessing future pest outbreak
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dynamics. Gray (2017) suggested that future outbreak forecasts could be improved by
building models with more precise data.

In this respect, an obvious question arises as to whether or not other exogenous dis-
turbances such as fire and wind have the same effect on growth forecasts as those we
observed for SBW. Introducing exogenous disturbances is subject to high levels of un-
certainty (Artés et al., 2013; Cencerrado et al., 2015). Relying on the spatial synchrony
theory (Williams and Liebhold, 2000), it is reasonable to assume that large forest fires
and severe windstorms would greatly impact some realizations, while others would remain
untouched. In the study of Bergeron et al. (2017), in which forest age classes were assessed
in relation to fire and harvest activities, the scenarios with the greatest variability were
those that considered fire occurrence. In addition, Pichancourt et al. (2018) also reported
an increase in the variance of carbon predictions when considering windstorms.

However, the comparison between the three types of disturbances - fire, storms and
insect outbreaks - in terms of uncertainty contribution is not so simple and remains to be
tested. The vulnerability of forest stands is dependent on the type of disturbances. For
example, forest fires are more likely to occur in old boreal stands (Bernier et al., 2016).
When windstorms occur, the tallest trees are more prone to damage than the smaller ones
(Schmidt et al., 2010). For insect outbreaks, the number of host species is often limited
and, for this reason, the damage is highly dependent on the species composition. In the
case of SBW outbreaks, the host-tree species are: balsam fir, black spruce, white spruce
and red spruce (Gray, 2017).

The variance of large-area forecasts is closely related to the severity of the damage
when the disturbance occurs. In our case study, the damage of SBW was severe because
the host species were abundant at the regional level. The three host species represented
30% of the basal area of Bas-Saint-Laurent forests, with balsam fir alone representing
20.5% of the basal area at the regional level (Table 1).

Bergeron et al. (2017) assumed that all stands had an equal probability to be burned,
regardless of their age or changes in vegetation composition. Likewise, in our study,
we assumed that SBW outbreaks had equal probabilities of occurrence over time. In
other words, the probability that a SBW outbreak occurs is not impacted by previous
outbreaks. This can have an effect on the estimated variance. As a matter of fact,
the probabilities of SBW outbreak occurrence are probably not independent of previous
outbreaks. Candau and Fleming (2005) modeled SBW outbreak occurrences, and reported
that the frequency and defoliations exhibited a spatial pattern that is influenced by climate
and forest composition. This is a more complete approach in modeling, and using it would
probably reduce the estimated variances we obtained in our study.

Estimating uncertainty arising from disturbances can provide important insights. In
past studies, the focus was generally on model development or model uncertainty, while
the perspective of hybrid inference was missing. In terms of approach, we chose to run
the model at the plot level and to then scale the predictions up to a greater spatial
level. This approach is known as the direct extrapolation method and is recommended
to reduce errors arising from nonlinearity, such as Jensens inequality (Wu et al., 2006).
Furthermore, variance estimates based on the Monte Carlo technique, like those in this
study, are preferred to analytical methods since they apply to complex and nonlinear
models (Wilson and Smith, 2013), such as ARTEMIS.

The scenario in which harvest and SBW outbreaks could occur simultaneously re-
sulted in smaller volume forecasts. In reality, the estimates in this particular scenario
can be underestimated. In the event of an outbreak, salvage cuttings normally take place
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(Boulanger and Arseneault, 2004). However, ARTEMIS does not consider this possibility,
which means that some plots that are harvested by the model are actually spared. More-
over, a major driver of the harvest model is the annual allowable cut (AAC) volume, that
is estimated by a government agency. In our simulation, this AAC volume is constant,
whereas in practice, it is re-estimated every 5 years.

Even if harvest activities did not have the greatest contribution to the forecast vari-
ance, some authors reported the impacts of uncertainties related to harvest in forest
planning. For example, Pasalodos-Tato et al. (2013) observed economic losses on harvest
scheduling due to errors in forest inventory. Makinen et al. (2012) also found that errors
on growth predictions and forest inventory had a critical impact on harvest scheduling
planning problems. As recommended by Robinson et al. (2016) and Daniel et al. (2017),
efforts to assess uncertainties in harvest activity should be done with respect to man-
agement planning. Recent developments integrated uncertainties into forest management
planning. Non probabilistic methods, such as programming analysis, were developed in
Eyvindson and Kangas (2016) and Eyvindson and Kangas (2017). This issue of manage-
ment planning is beyond the scope of this paper, but our framework may serve as a basis
to facilitate the implementation of these methods.

Conclusions

Estimating uncertainties in forest growth forecasts under disturbances can provide insights
to decision-makers. Volume forecasts for the Bas-Saint-Laurent region are more uncertain
when including SBW outbreaks. This natural disturbance proved to be the most impor-
tant source of uncertainty against harvest and sampling variance. We therefore suggest
that forest management would be more realistic if it accounted for the uncertainties that
stem from natural disturbances.

In order to reduce the uncertainty of large-area growth forecasts in the Bas-Saint-
Laurent region, the understanding and prediction of SBW dynamics is a crucial issue. An
essential step would be to take the relationships between the variables that explain the
occurrence of disturbance events into account. Along with what was proposed by Gray
(2017), we also suggest that efforts should be made to gather reliable datasets that could
be used to create or improve existing models of SBW dynamics.
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de la Faune et des Parcs, Gouvernement du Québec, Canada.
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Pasalodos-Tato, M., Makinen, A., Garcia-Gonzalo, J., Borges, J. G., Lamas, T., and
Eriksson, L. O. (2013). Assessing uncertainty and risk in forest planning and decision
support systems: review of classical methods and introduction of innovative approaches.
Forest Systems, 22:282–303.

Pichancourt, J.-B., Manso, R., Albrecht, A., and Fortin, M. (2018). Are fossil-fuel to
wood-based substitution policies that good to reach the french grand-est lulufc green-
house gas emission targets? European Carbon Forest Policy, In prep.:1.

Pothier, D., Mailly, D., and Tremblay, S. (2005). Predicting balsam fir growth reduction
caused by spruce budworm using large-scale historical records of defoliation. Annals of
Forest Science, 62:261–267.

Rao, C. R. and Toutenburg, H. (1995). Linear Models - Least squares and alternatives.
Springer series in Statistics, New York.

Refsgaard, J. C., van der Sluijs, J. P., Hojberg, A. L., and Vanrolleghem, P. A. (2007).
Uncertainty in the environmental modelling process - a framework and guidance. En-
vironmental Modelling and Software, 22:1543–1556.
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Tables

Table 1: Summary of 393 plots in the dataset. Attributes were broken down for the
most abundant species. The minimum and maximum values are shown in parentheses.
n: number of trees.

Plot-level Basal area (m2ha−1) Stem density (trees ha−1) Volume (m3ha−1)*

Sugar Maple 2.5 (0 - 29.7) 68 (0 - 1266) 73.3 (0.48 - 226.94)
Red Maple 1.2 (0 - 13.7) 57 (0 - 900) 19.55 (0.40 - 120.81)
Balsam fir 5.1 (0 - 42.6) 256 (0 - 2350) 42.01 (0.25 - 162.73)
White spruce 1.5 (0 - 28.2) 61 (0 - 1850) 22.38 (0.19 - 143.39)
Black spruce 0.7 (0 - 21.5) 48 (0 - 1800) 17.24 (0.27 - 111.12)
White birch 1.6 (0 - 18.5) 95 (0 - 875) 23.92 (0.26 - 156.76)
All species 17.8 (0 - 61.2) 778 (25 - 2550) 53.7 (0.06 - 221.04)

Tree-level n DBH (cm) Height (m)

Sugar Maple 1,124 20.4 (9.1 - 78.3) 17.5 (7.2 - 27.1)
Red Maple 901 14.9 (9.1 - 68.3) 14.6 (9.2 - 24.1)
Balsam fir 4,072 15.1 (9.1 - 49.3) 13.3 (3.8 - 24.5)
White spruce 983 17.0 (9.1 - 54.5) 13.0 (5.0 - 24.5)
Black spruce 762 13.3 (9.1 - 32.5) 10.7 (5.2 - 21.0)
White birch 1,492 14.2 (9.1 - 42.8) 13.2 (6.5 - 19.8)
All species 12,451 16.2 (9.1 - 98.8) 14.5 (3.8 - 27.7)
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Table 2: Model and sampling-related variance contribution (m6ha−2), as well as the total
variance estimated for each one of the four scenarios. The percentage contribution appears
in parentheses.

Scenarios Year Model-related Sampling-related Total Variance

Baseline

2003 0.12 (0.6%) 20.59 (99.4%) 20.70
2013 0.86 (5.3%) 15.61 (94.7%) 16.47
2023 1.34 (9.3%) 12.98 (90.7%) 14.32
2033 1.99 (12.1%) 14.39 (87.9%) 16.38
2043 3.09 (16.8%) 15.31 (83.2%) 18.40
2053 4.77 (23.1%) 15.89 (76.9%) 20.66
2063 7.05 (30.1%) 16.41 (69.9%) 23.46
2073 10.14 (37.4%) 17.00 (62.6%) 27.14
2083 13.82 (43.8%) 17.72 (56.2%) 31.54
2093 18.76 (50.2%) 18.59 (49.8%) 37.35
2103 23.86 (54.8%) 19.62 (45.2%) 43.48

Harvest

2003 0.11 (0.5%) 20.58 (99.5%) 20.70
2013 0.87 (5.3%) 15.63 (94.7%) 16.50
2023 1.61 (11.0%) 12.99 (89.0%) 14.61
2033 2.78 (17.5%) 13.15 (82.5%) 15.93
2043 4.47 (25.6%) 13.00 (74.4%) 17.48
2053 6.26 (32.9%) 12.73 (67.1%) 18.99
2063 8.10 (39.3%) 12.53 (60.7%) 20.63
2073 10.43 (45.7%) 12.39 (54.3%) 22.82
2083 12.96 (51.4%) 12.28 (48.6%) 25.24
2093 15.98 (56.7%) 12.19 (43.3%) 28.17
2103 18.53 (60.4%) 12.13 (39.6%) 30.66

Harvest and SBW

2003 0.13 (0.6%) 20.59 (99.4%) 20.72
2013 0.80 (4.8%) 15.61 (95.2%) 16.41
2023 1.47 (10.1%) 12.98 (89.9%) 14.45
2033 49.77 (79.2%) 13.04 (20.8%) 62.81
2043 84.78 (86.8%) 12.94 (13.2%) 97.71
2053 106.72(89.3%) 12.72 (10.7%) 119.54
2063 118.23 (90.5%) 12.46 (9.5%) 130.70
2073 127.34 (91.3%) 12.21 (8.7%) 139.54
2083 125.08 (91.3%) 11.94 (8.7%) 137.02
2093 125.00 (91.4%) 11.69 (8.6%) 136.70
2103 127.03 (91.7%) 11.51 (8.3%) 138.54

SBW

2003 0.13 (0.6%) 20.58 (99.4%) 20.71
2013 0.77 (4.7%) 15.61 (95.3%) 16.38
2023 1.53 (10.5%) 12.99 (89.5%) 14.52
2033 55.24 (79.4%) 14.28 (20.6%) 69.52
2043 102.84 (87.1%) 15.27 (12.9%) 118.11
2053 138.14 (89.6%) 15.99 (10.4%) 154.13
2063 162.35 (90.7%) 16.56 (9.3%) 178.91
2073 175.46 (91.1%) 17.07 (8.9%) 192.53
2083 176.47 (90.9%) 15.59 (9.1%) 194.06
2093 178.45 (90.8%) 18.14 (9.2%) 196.59
2103 180.48 (90.6%) 18.80 (9.4%) 199.28
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Figure 1: Flowchart of ARTEMIS-2009 considering its iterative process. Dark gray boxes
represent the dynamic sub-models. Dotted light gray boxes are the static sub-models.
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Figure 2: Distribution of the 393 permanent plots in Bas-Saint-Laurent. The plots are
located in the ecological regions classified according to the MFWP: Appalachian Hills (4f);
Baie des Chaleurs Coastline (4g); Gaspé Coastline (4h); Mountains of Gaspé Peninsula
(5h); Highlands of Gaspé Peninsula (5i).

a) Without SBW b) With SBW

Figure 3: Mean predicted volumes (m3ha−1) and their 0.95 confidence intervals for the
Bas-Saint-Laurent region. The confidence intervals rely on the assumption of a normal
distribution. The solid line represents the scenarios without harvesting, while the dashed
line represents the scenario including harvesting.
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Figure 4: Model, sampling and total variances illustrated per growth scenario. Model con-
tribution: gray dashed line; Sampling contribution: dark gray dotted line; Total variance:
black solid line.
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