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(Memorial University, Nl) . Main funding was provided by the Natural Sciences and 

Engineering Research Council (NSERC) through BOlNET, CHONe (F. Dufresne) 

and a Discovery Grant awarded to B. Sainte-Marie. Additional funding was provided 

by Fondation de l'UOAR (Bourse d'excellence en recherche, 2010-2011 ). Some of 
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RÉSUMÉ 

La biodiversité est la variété de la vie et elle peut être étudiée à différents niveaux 
(génétique, espèces , écosystèmes) et à différents échelles (spatiale et temporelle). 
Les dernières décennies ont montré que la biodiversité marine avait été gravement 
sous-estimée. Afin d'étudier les caractéristiques de la grande diversité des espèces 
marines et les processus sous-jacents de l'évolution de ces dernières, il est évident 
et nécessaire de connaître les espèces . Nous sommes aujourd 'hui confrontés aux 
taux les plus élevés d'extinction depuis la constitution de la société humaine (<< crise 
de la biodiversité») et seule une fraction d'espèces a été officiellement décrite (1,9 
millions sur 11 millions) , en raison , entre autres, d'une pénurie de taxonomistes 
formés et disponibles pour cet immense travail. Tous ces facteurs ont conduit à la 
proposition d'outils moléculaires pour permettre et faciliter l'identification des 
espèces et notamment le barcode moléculaire (le code-barres d'ADN ). Il s'agit de 
séquencer un fragment d'ADN du gène mitochondrial cytochrome c oxydase 1 (COI ) 
qui constitue alors un outil rapide , précis et rentable pour identifier les espèces. 
Ainsi , chaque espèce peut être définie par une étiquette d'identification unique et 
permanente qui ne sera pas changée par une éventuelle modification taxonomique. 
Outre l'attribution d'échantillons inconnus à des espèces identifiées a priori, les 
données fournies par le code-barres d'ADN seront très utiles pour des études 
phylogéographiques comparatives entre taxons multiples , pour clarifier les relations 
phylogénétiques à différents niveaux taxonomiques et pour élaborer des patrons 
évolutifs et de spéciation entre les groupes d'organismes. 

Le Chapitre 1 présente une mise en contexte du code-barres d'ADN par une revue 
des études qui ont été publiées sur le sujet, notamment en ce qui concerne 
l' identification des espèces marines. 

Le Chapitre 2 élabore une bibliothèque pour les crustacés marins de l'estuaire et du 
golfe du St. Laurent. Toutes les données (taxonomie , informations sur 
l'échantillonnage, images, séquences d'ADN et chromatogrammes), sont stockées 
en ligne dans le Barcode of Life Data Systems (BOLD) et sont disponibles pour un 
usage général. Les spécimens utilisés sont conservés comme 'vouchers ' dans des 
institutions publiques pour des vérifications futures . Les résultats ont montré la 
présence d'un amphipode invasif dans l'estuaire (mentionné précédemment dans les 
Grands Lacs et à Montréal , avec des effets sur la faune indigène d'amphipodes), et 
l'existence d'espèces cryptiques potentielles chez les amphipodes , mysidacés et 
décapodes. 

Le Chapitre 3 est axé sur l'utilisation des séquences COI fournies par le code-barres 
d'ADN comme un outil complémentaire pour la taxonomie et la phylogénie des 
amphipodes de la famille Talitridae dans l'Atlantique du Nord. En effet, la distribution 
et la diversité actuelle des espèces est le résultat de processus d'évolution et 
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d'interaction avec l'environnement à l'échelle d'une région géographique. Les études 
phylogénétiques permettent d'appréhender cette problématique en élaborant des 
scenarios évolutifs des relations entre taxons. Les résultats montrent l'existence 
d'espèces cryptiques chez trois espèces morphologiques. En outre, les genres 
anciens ne semblent pas être monophylétiques, suggérant la nécessité d'une 
révision taxonomique chez cette famille . 
Le Chapitre 4 aborde le thème de la diversité génétique qui permet la persistance 
des populations et des espèces dans le temps en permettant une adaptation 
continue aux changements environnementaux. À de grandes échelles spatiales, la 
diversité intraspécifique peut être structurée en généalogies en fonction de la 
géographie, définissant alors des patrons phylogéographiques, qui peuvent 
coïncider ou pas avec les divisions biogéographiques. Les séquences COI générées 
par le code-barres d'ADN ont été utilisées pour déduire des patrons 
phylogéographiques chez une espèce d'amphipode avec une distribution amphi-
Atlantique, Gammarus oceanicus. Cette espèce est très abondante et représente 
une partie importante des communautés intertidales et des réseaux trophiques 
côtiers . Les résultats ont montré une division profonde au sein de cette espèce avec 
deux groupes ayant une séparation latitudinale (la région tempérée du Canada 
Atlantique versus la région subarctique du Baie d'Hudson et l'Europe), indiquant la 
présence des deux espèces cryptiques potentielles. 
L'ensemble de ces travaux de recherche a montré que la biodiversité marine, 
notamment chez les crustacés marins de l'Atlantique du Nord , était sous-estimée. 
Des espèces cryptiques potentielles ont été trouvées chez huit espèces 
morphologiques, sachant que seulement les espèces les plus communes ont été 
échantillonnées pour cette étude. Le taux de diversité augmentera certainement 
avec l'ajout d'échantillonnes de différents taxons, de divers types d'habitat et de 
régions marines distinctes. 

Mots-clés : biodiversité marine; code-barres d'ADN ; identification des espèces; 
Crustacea; diversité cryptique; Atlantique du Nord 



ABSTRACT 

Biodiversity is the variety of life and can be studied at different levels (genetic, 
species , ecosystems) and at different scales (spatial and temporal) . The past 
decades have shown that marine biodiversity has been severely underestimated. To 
study the characteristics of the great diversity of marine species and the underlying 
processes of formation and maintenance of marine biodiversity, it is obvious and 
necessary to know what lives out there. We are now faced with the highest extinction 
rates since the formation of the human society ("biodiversity crisis") and only a 
fraction of species was formally described (1.9 million of 11 million) , because of a 
shortage of trained taxonomists available for this immense work, among other things. 
Ali these factors have led to the proposai of molecular tools to enable and facilitate 
the identification of species including DNA barcoding. This method uses a DNA 
fragment of the mitochondrial gene cytochrome C oxidase subunit 1 (COI) as a fast, 
accu rate and cost effective tool to identify species . Thus, each species can be 
defined by a unique identification tag that will not be changed during taxonomic 
revisions. In addition to the assignment of unknown specimens to species identified 
a priori by taxonomists, data generated through barcoding studies will be very useful 
for comparative phylogeographic studies of multiple taxa, phylogenetic studies at 
different taxonomic levels and for studies on evolutionary patterns between groups of 
organisms. 

Chapter 1 provides some background on DNA barcoding with a review on studies 
that were published on the subject, especially those focusing on the identification of 
marine species. 

Chapter 2 develops a reference library for marine crustaceans from the Estuary and 
the Gulf of St. Lawrence. Ali data (taxonomy, collection information, images, DNA 
sequences and chromatograms) are stored online in the Barcode of Life Data 
Systems (BOLD) and are available for general use. Specimens used for barcoding 
are kept as "vouchers" in public institutions for future use. The results showed the 
presence of an invasive amphipod in the estuary (mentioned previously in the Great 
Lakes and near Montreal , with impact on the native fauna of amphipods), and the 
existence of potential cryptic species in amphipods , mysids and decapods. 

Chapter 3 focuses on the use of COI sequences provided through DNA barcoding as 
a complementary tool for taxonomy and phylogeny of the amphipod family Talitridae 
in the North Atlantic. The current distribution and diversity of species is the result of 
evolutionary processes and interaction with the environment across a geographic 
region . Phylogenetic studies can investigate this issue by developing evolutionary 
scenarios on the relationships between taxa. The results show the existence of 
cryptic species in three morphological species. In addition , older genera do not 
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cryptic species in three morphological species. In addition , older genera do not 
appear to be monophyletic, suggesting the need for taxonomie revisions in this 
family . 

Chapter 4 addresses the issue of genetic diversity which enables the persistence of 
populations and species over time, allowing continuous adaptation to environ mental 
changes. At large spatial scales, diversity within species can be structured in 
genealogies according to geography, thus defining phylogeographic patterns, which 
may coincide or not with biogeographic divisions. COI sequences generated by DNA 
barcoding were used to infer phylogeographic patterns in an amphipod species with 
amphi-Atlantic distribution , Gammarus oceanicus. This species is very abundant and 
an important part of the intertidal communities and coastal food webs. The results 
showed a deep division within this species with two divergent groups correspond ing 
to a latitudinal segregation (temperate region of Atlantic Canada versus the subarctic 
Hudson Bay and Europe), indicating the presence of two potential cryptic species . 

This research showed that marine biodiversity , as seen in marine crustaceans from 
North Atlant ic, was underestimated. Potential cryptic species were found in eight 
morpholog ical species, knowing that only the most common species were sam pied 
for this study. The level of diversity will certainly increase with the addition of different 
taxa, different types of habitat and distinct marine regions . 

Keywords: marine biodiversity; DNA barcoding ; species identification ; Crustacea; 
cryptic species; North Atlantic 



GENERAL INTRODUCTION 

"In ail cultures, taxonomie classification means survival. The beginning of 

wisdom, as the Chinese say, is calling things by their right names" 

E.O. Wilson, The Oiversity of Life 

What's in the "biodiversity" name? 

"Biodiversity" is a heavily used term in science and very popular with the 

general public (>48 million results on Google , March 2012) . It is a shorthand form of 

"biological diversity" and it was defined as "the variability among living organisms 

fram ail sources including , inter a lia , terrestrial , marine and other aquatic ecosystems 

and the ecological complexes of which they are a part; this includes diversity within 

species and of ecosystems" (Convention on Biological Diversity, CBD, 1992) or, in 

simple words, "the variety of life". Conventionally , three levels of biodiversity are 

recognized (genetic, species, ecosystems) but only one is usually investigated, 

namely the species level. Reasons for this trend probably include "ease of reach" of 

species diversity (e.g., observations in nature or experiments, relatively cheap to 

conduct) and the "ease of understanding" its more intuitive numbers (of species, of 

individuals etc.). Generally, geographic areas with many species are considered 

more interesting for conservation than species-poor areas. The species level is , 

however, more than an easy-to-grasp category due to its practical value: it is a 

check-list of extant species, a baseline against which to compare future changes 

towards biodiversity gain or, more likely, biodiversity loss. 

Ail biodiversity levels are interconnected and impacts on any level will trigger 

responses from the other biodiversity components . For example, genetic variation , 
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considered to be related to population size (Frankham, 1996; but see Bazin , Glémin 

and Galtier, 2006) , can act as a buffer against environmental changes (natural and 

anthropogenic) , allowing the persistence of populations and species in time. Theory 

predicts correlations between genetic and species diversity that are either positive 

(due to environ mental heterogeneity and/or time since disturbance) or negative 

(species richness associated with reduced niche breadth per species, allowing fewer 

genotypes to coexist) (Lankau , 2011). Ecosystem functioning (e.g., pelagic 

ecosystem processes) is related to biodiversity in genes , species and functional 

groups (e.g. , richness of producers and consumers) (Duffy and Stachowicz, 2006). 

Experiments have shown that intraspecific genetic diversity of foundation species 

(i.e. , dominant primary producers) may influence the community structure (i.e., 

species richness and abundance at higher trophic levels) , ecosystem processes and 

resistance to disturbance (Hughes and Stachowicz, 2004 ; Reusch et al., 2005 ; 

Crutsinger et al., 2006) , although the spatial scale has to be considered as weil 

(Crutsinger, Cadotte and Sanders, 2009) . 

Biodiversity and ecosystem functioning are directly connected to human well-

being through ecosystem services, thus the need to protect biodiversity for the 

existence of the human society (Figure 1). Humans (Homo sapiens) should not be 

considered an external factor but an intrinsic part of biodiversity as we are one 

species among the -8.7 million estimated to exist (Mora et al., 2011 ). Human 

activities have large impacts on ailleveis of global diversity but they are also variable 

across cultures (although differences between cultures might decrease due to 

globalization) . In this context, cultural diversity can be considered as an important 

factor in biodiversity sensu stricto , and even as another level of biodiversity rather 

than a research subject for a separate field (anthropology). As an index for this 

diversity, -7 ,000 languages are spoken worldwide (Davis , 2010) , mostly by small 

groups of indigenous people with livelihoods directly depending on natural 

resources, thus involved in shaping local biodiversity and continuously evolving with 

their environ ment. 
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Figure 1 Relationship between biodiversity, ecosystem functioning and human well-
being . Species are represented in the center by black and white abjects with various 
shapes and sizes. (Source: Naeem et al. , 2009) 
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Marine biodiversity: a few characteristics 

Marine biodiversity has long been underestimated due to the general belief 

that oceans are homogeneous with limited habitat diversity (compared to land), 

hence limited species diversity and infrequent speciation events. About 250,000 

marine eukaryote species have been described (First Census of Marine Life , CoML, 

2010) . The estimated numbers range , however, from 500,000 (Gray, 1997) to over 

10 million (Grassle and Maciolek, 1992) with recent estimates reaching 2.2 million 

species, which means that -90% of marine species are still to be discovered (Mora 

et al., 2011) . At higher taxonomic levels, marine diversity is much higher than the 

terrestrial counterpart (35 marine phyla versus 11 terrestrial phyla) due to the fact 

that life appeared in the sea , and hence has had a longer time for evolutionary 

diversification (Gray, 1997). The differences in species numbers between land and 

sea are believed to be quite recent (-110 million years ago, MYA), coinciding with 

an increase in productivity on land , and explained by: i) higher primary productivity 

on land , on average (although marine kelp forests have higher productivity per 

surface unit); ii) narrower specialization of terrestrial species; iii) more effective 

barriers to dispersal on land ; iv) greater 3D complexity and niche availability on land; 

and v) greater viability of low-density populations (and consequently rare species) 

(Vermeij and Grosberg , 2010) . 

Biodiversity has a heterogeneous distribution on the planet, with some areas 

being more diverse than others (Gaston , 2000). Some marine groups (e.g., bivalves) 

show a latitudinal diversity gradient with tropics as centers of origin and 

diversification and poles as species-poor areas (Gaston , 2000 and references 

therein; Valentine and Jablonski , 2010). The Arctic regions are less diverse 

compared to the Antarctic regions due to historical differences such as age and 

glacial history (Gray, 1997). Other patterns include an increase of species richness 

from shallow-waters to the deep-sea in soft sediments , higher diversity in the benthic 
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compared to the pelagie realm, a diversity peak for coastal species in the western 

Pacifie and for oceanic groups at mid-latitudes (Gray , 1997; Tittensor et al., 2010). 

Both species and genes (with in species) have a heterogeneous distribution in 

nature, thus the importance of geography for biodiversity. Species-rich and endemic 

species-rich areas are considered hotspots of biodiversity, in need of conservation . 

Likewise, genetically diverse or evolutionary distinct populations (evolutionary 

significant units, ESU) are hotspots of intraspecific diversity and should be 

considered as such in conservation plans (Crandall et al., 2000 ; Rauch and Bar-

Yam, 2004). 

Current status: threats and mitigation measures 

Many species are currently going extinct (or are predicted to do so) leading 

scientists to declare a state of emergency, or "biodiversity crisis". The world is 

dynamic with species being formed and lost through natural processes. Large 

extinction events have occurred throughout Earth 's history (five mass extinctions 

between 440 MYA - 65 MYA; Futuyma, 1998). The genus Homo has also caused 

marked changes in ecosystems and species extinctions since the formation of 

primitive human communities . There have been a number of recent calls for defining 

a "sixth mass extinction" in the current era , in light of extinction rates between 100-

1,000 times higher than pre-human values and estimated future rates 10 times the 

current rates (Figure 2) (Pimm et al., 1995; Pimm and Raven , 2000; Millenn ium 

Ecosystem Assessment, MA, 2005) . In the sea , humans have sa far directly caused 

the global extinction of more than 20 species including mammals, seabirds, fishes , 

invertebrates and algae, along with many more local or regional extinctions (Sala 

and Knowlton , 2006 and references therein ). As species do not live in isolation but in 

interactions, the extinction of one species triggers effects at other biodiversity levels. 

However, the functional role might be more important th an the number of species 

going extinct per se (O'Connor and Crowe, 2005). 
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Figure 2 Species extinction rates from fossil data , real data and predictions for the 
future. (Source: MA, 2005) 

The greatest threats for marine biodiversity include overharvesting , pollution 

(partly due to agricultural run-off), habitat destruction , climate change (increasing 

surface sea temperatures , acidification due to an increase in CO2) and invasive 

species (UNEP report on marine biodiversity, 2010) . Coastal systems are more 

susceptible to be affected due to a growing human population concentrating on 

coastlines (Gray, 1997). Indeed, it has been estimated that no pristine marine area is 

left and that 41 % of oceans are heavily impacted by humans (Figure 3; Halpern et 

al., 2008) . This view stands in opposition to the view of oceans as open systems, 

less susceptible to be seriously affected by human activities (at least pollution) 

compared to land (Gray, 1997; Boero, 2009). Marine fisheries are predicted to 

collapse by the mid-21 st century (Worm et al. , 2006) , while local coliapses of small 

fish species can have ecosystem-wide impacts by reducing food supply for larger 

fish , seabirds , and marine mammals (Pinsky et al. , 2011). 
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Figure 3 Anthropogenic impact on the world 's oceans (investigation performed in 20 
ecosystem types). Colors correspond to impact intensity, see above. (Source: 
Halpern et al., 2008) 

The present-day extinction rates for species (but also for plant varieties and 

for domestic animal breeds) are worrisome. One species, our own, has had an 

enormous influence, directly and indirectly, on the rest of the biodiversity. Equally 

impressive are changes in our own cultural diversity. About 50% of existing 

languages are predicted to disappear within 1-2 human generations (Davis, 2010). 

Since languages can be considered as markers of distinct cultures, this implies that 

we stand to lose "half of humanity's social , cultural and intellectual legacy" (Davis, 

2010). Notably, the globalized, industrialized culture, which is in great ascension, 

poses the greatest risk to biodiversity in the conventional sense. 

ln order to mitigate global biodiversity loss there is a need for sound 

conservation measures which usually consist of creating protected areas based on 
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species level attributes (e .g., richness , endemism). However, genetic data should be 

included as weil when designing marine protected areas (MPA) due to its capability 

to infer population connectivity in protected species (Palumbi , 2003) and to identify 

populations with different evolutionary histories in need of protection (Crandall et al. , 

2000). 

The economics of biodiversity 

Humans are an intrinsic part of global biodiversity and our very existence 

depends heavily upon biodiversity preservation . We are living in a dynamic 

environment and we are witnessing a shift in our perception on biodiversity and its 

importance . Since the formai recognition of the term , biodiversity was considered 

important and worthy of conservation measures due to its role in supplying food , raw 

materials, biotechnological resources, ecosystem health and many other services 

(Table 1), although the overall value was difficult to grasp. In this context , a new 

approach focused on applying economic concepts to biodiversity valuation has been 

proposed and a synthesis on the global economic benefits of biodiversity and the 

costs of biodiversity loss has been published (TEEB, 2010). The overall goal of this 

emerging direction is to provide a link between science, policy ma king and business, 

th us a new vision for managing natural resources. 

Ecosystem "goods and services" (provisioning , regulating , cultural and 

supporting services; MA, 2005) have been valued at US$ 16-54 trillion per year 

(average of US$ 33 trillion/year) for the entire biosphere while the global gross 

domestic product was -US$ 18 trillion per year (Costanza et al. , 1997). The marine 

environ ment contributes -63% of the estimated value with most services coming 

from coastal systems (US$ 10.6 trillion/year) . For instance, half a billion people 

depend on coral reefs for their livelihoods and the monetary value of reefs was 
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estimated at US$ 6,000/ha/year (Constanza et al. , 1997) or US$ 360 million/year for 

Hawaiian reefs alone (TEEB 2010) . 

Table 1 Ten economic, ecological , moral , and legal reasons why society needs to 
protect and manage biodiversity (Modified from Costello , 1998) 

Economic 

It is essential for the assimilation and recycling of wastes derived from human 
activity. 

2 It is the source of food for humans and domestic animais. 

3 It provides valuable recreational resources. 

4 It contains biotechnological resources of increasing commercial importance. 

S It produces non living resources of commercial importance. 

Ecological 

6 It supports economic resources through the food web and interaction between 
species. 

7 It maintains local-to-global ecosystem health through its interaction with the 
physical and chemical environ ment (e.g., atmospheric carbon dioxide, 
oxygenation) and can buffer the world against climate change. 

Moral and Ethical 

8 It is generally accepted that other life forms have a right to exist , and that 
humans have a responsibility of stewardship to protect our natural inheritance 
for future generations. Indeed , a review of history suggests that we can have 
little idea of what uses and values future generations may discover in 
biodiversity. 

9 The production of unnecessary waste , and thus pollution , can be considered 
immoral. 

Legal 

10 The Convention on Biological Diversity and other laws now place a legal 
obligation on most countries and their citizens to protect and sustainably use 
biodiversity. This is essential because sorne people will either not have the 
ability or willingness to understand the importance of biodiversity, or their short-
term selfishness and greed will result in their activities reducing biodiversity. 
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TEEB might be seen as giving a price to something priceless. However, it 

might be an effective direction for sustainable development because the human mind 

can deal better with numbers (e.g. , US$ 19,580/ha/year for swamp/floodplains) than 

with ecological/ethical reasons when protecting nature. As global biodiversity and 

services it provides are dynamic, there is a need to forecast modifications associated 

with climate change and globalization , to update CBD to the current pace of global 

change and to find viable solutions at local , regional and global levels (Bayon and 

Jenkins, 2010; Mooney, 2010 ; TEEB 2010) . However, a prerequisite for ail 

conservation plans is to know the extent of biodiversity, how it was developed and 

what processes maintain it . 

The origin of marine biodiversity - how do species arise? 

Those people who believe that life is dynamic and continuously evolving have 

wondered about the underlying mechanisms of diversification (an intrinsic part of 

biodiversity) . Marine organisms are not uniformly distributed but they are rather 

grouped into local populations connected by dispersal. The ability to maintain 

population connectivity in the sea will affect the genetic structure, which ranges from 

lack of structure, indicating panmixia, to various degrees of differentiation , which will 

eventually culminate in the formation of new species (Figure 4) (Hedgecock, 1986; 

Palumbi , 1994; Bohonak, 1999). Dispersal capability in the sea is mainly determined 

by biological factors such as the developmental mode of organisms and by 

environ mental factors su ch as the oceanographic features . Pelagic species (the less 

diverse component of marine biodiversity; Gray, 1997) are usually highly dispersive 

through ocean currents , and are therefore believed to be panmictic. Benthic speeies 

(aeeounting for 98% of marine speeies; Brunei , 2005) usually have an adult benthie 

phase and a larval pelagie phase. Larvae are released into the water eolumn and 

can disperse over large spatial seales via oceanographie currents depending on the 

amount of time spent in the plankton , their behavior, the spawning season and the 
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rate and direction of the currents (Scheltema, 1986; Hohenlohe, 2004). Other benthic 

species are direct developers with eggs hatching into juveniles or non-dispersive 

larval forms (often associated with maternai care) , thus lacking a pelagic larval 

phase and apparently being highly restricted in their dispersal. Alternative modes of 

dispersal for benthic taxa include adult active dispersal (by swimming or crawling) 

and passive dispersal through rafting on floating objects or transport by human 

vectors (e.g. , shipping) (Scheltema, 1986; Thiel and Gutow, 2005). 

BIODIVERSITY 
(species richness) 

1 
--'-G~~ti c -- .- [Z;~;-i1;~J .- Dispersal 

/' differentiation (active, p assive) 

1 t • / SPECIATION 

Other factors: oceanographic 
features, histori ca l biogeography, 
demographic history, behaviour, 

natural selection 

1 
1 

Figure 4 Factors affecting the genetic differentiation, and thus speciation and 
biodiversity, in the sea. (Partially compiled from Palumbi , 1994 and Grosberg and 
Cunningham, 2000) 

Measuring dispersal in the marine environment is a difficult task but is crucial 

in determining the size of spatial neighborhoods to be considered in management 

plans (Palumbi , 2004). Historical patterns of dispersal can be indirectly inferred from 

fossil data (wh en such data exist) , while the present-day dispersal can be directly 

measured by tagging organisms or indirectly inferred from genetic data. Tracking 

individuals with various electronic devices is used mainly for marine vertebrates 

(mammals, turtles , seabirds, fishes) (Block et al., 2011 ), less so for invertebrates 
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(Freire and Gonzalez-Gurriaran , 1998; Gilly et al., 2006) and only for the adult or 

late-juvenile phases. Therefore , genetic studies are widely employed to investigate 

the influence of marine dispersal on gene flow and genetic structure with the 

prediction that direct developers (or species with abbreviated larval development) will 

show stronger genetic structure (potentially leading to isolation by distance and even 

allopatric fragmentation) compared to species with dispersive larval phases. Indeed, 

support for these theoretical expectations has been found in studies of bryozoans 

(Watts and Thorpe, 2006) , gastropods (Kyle and Boulding , 2000 ; Collin , 2001 ; 

Johnson and Black , 2006) and crustaceans (Teske et al. , 2007) . However, many 

other genetic stud ies found various patterns not concordant with the developmental 

mode - gene flow hypothesis (Costa et al., 2004; Richards et al. , 2007; Weetman et 

al., 2007; Luttikhuizen et al. , 2008). Based on genetic evidence, dispersal (i.e., 

successful movement to a new location) cannot be equalled with gene flow (i.e., 

successful reproduction of migrants in the new location) , although direct developers 

are obviously less connected at the geographic and genetic levels (Hedgecock, 

1986; Scheltema, 1986; Bohonak, 1999). Genetic differentiation and marine 

speciation are also influenced by environ mental factors (e.g., oceanographie 

features , climatic oscillations, plate tectonics , topography) as weil as demographic 

history, or behavioral , ecological and genetic factors (Figure 4) (review in Palumbi , 

1994 and Grosberg and Cunningham, 2000) . 

The evolution of genetically divergent populations into closely related species 

(i.e., reproductively isolated units) is based on the appearance of pre/post-zygotic 

reproductive barriers (e.g., oceanographie features , environmental tolerance, habitat 

specialization , mate preference and recognition , spawning synchrony, fertilization , 

offspring viability) (Palumbi , 1994), even if some external barriers are temporary 

(Hohenlohe, 2004). Depending on the spatial scale involved in the formation of 

reproductive barriers, speciation can be allopatric, para patrie, peripatric and 

sympatric (Figure 5) and while the allopatric mechanism seems more likely to occur 

(reproductive isolation is "helped" by geographic separation), other mechanisms are 
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also occurring in the sea and might be even more common than previously believed 

(Malay and Paulay, 2010 ; Miglietta, Faucci and Santini , 2011 and references 

therein) . 
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Figure 5 Speciation models depend on the spatial scale involved . A: allopatric model 
when reproductive isolation occurs between populations physically isolated ; B: 
peripatric model (founder effect) with a small population being physically separated 
and evolving towards reproductive isolation ; C: parapatric model with reproductive 
barriers occurring between contiguous populations due to low dispersal ; D: sympatric 
model with reproductive barriers developing within the same geographic area. 
(Source: Futuyma, 1998) 

The application of molecular techniques to the study of marine biodiversity 

and speciation has challenged the once widely-held view of oceans as homogenous 

environments with few barriers to dispersal , and of marine species as truly panmictic 

with large population sizes, high fecundity and high dispersal capability . In the light of 

genetic evidence , speciation appears to be very common in the sea (review in 

Palumbi , 1994 and Miglietta, Faucci and Santini , 2011). Dispersal in some groups is 

more limited than theoretical predictions with adult movements of only a few km to 
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up to 10-100 km (e.g. , adult demersal fishes and invertebrates) and larval dispersal 

of only 10-100 km in invertebrates and of only up to 50-200 km in fishes (review in 

Palumbi , 2004) . Cryptic speciation , due to ecological divergence of species without 

morphological differentiation , is also common in the sea (Knowlton , 1993). The end 

product of this process, namely cryptic species, cannot be identified based on 

morphological characters but just by using molecular methods. Many taxa previously 

considered cosmopolitan are actually complexes of cryptic species with geographical 

separation. Other cryptic complexes followed a sympatric model of speciation with 

reproductive barriers resulting from differences in habitat choice or resource use 

(Miglietta , Faucci and Santini , 2011 and references therein). Cryptic species are a 

hidden aspect of marine biodiversity and seem to occur across ail marine groups, 

therefore the extent of marine biodiversity (i.e ., species richness) might eventually 

rival that of the terrestrial realm after more detailed investigation. The identification of 

cryptic species can be highly controversial (see the following sections) but genetic 

data can reveal at least the existence of intraspecific genetic groups that are very 

divergent from one another and , usually, separated geographically (i.e., 

phylogeographic groups) (Avise et al. , 1987) according to marine biogeographic 

divisions (Dawson , 2001 ). Whether or not a cryptic species is formally recognized , 

the occurrence of such intraspecific divergent groups indicates a separate 

evolutionary history (i. e., ESU), and hence of importance for biodiversity and for 

management strategies. 

Towards a global inventory 

The need to have a global inventory of extant species is not provoked only by 

our curiosity and ambition to organize nature in a professional way (e.g., a stamp 

collection). Such a checklist will act as a baseline for assessing future biodiversity 

changes with implications on ecosystem services and , consequently, on human well-

being . Moreover, it will help us understand the ecological and evolutionary processes 



15 

which are generating and maintaining biodiversity . Surprisingly for the general public, 

the number of world extant species (or even described species) is unknown. Not 

surprisingly for scientists , the difficulty in adding up numbers comes from the 

weakness of extrapolation methods to estimate richness , the scarce sampling of the 

Earth , the multitude of synonyms (2 million names for 1.6 million described speeies; 

Stork, 1997) and taxonomie splitting (i.e. , division of one species into two or more). It 

has been suggested that the number of species on Earth lies anywhere between 3 

and 100 million species (Wilson , 2003 and references therein), but most likely 

around 11 million species inhabit the planet (Chapman , 2009). The latest estimate is 

a bit lower, -8 .7 million species , but still indicates a large amount of species awaiting 

discovery (Mora et al., 2011) . In addition , we lack sound information on most species 

that do have names (e.g., distribution ranges , threat of extinction ; Stork , 1997). 

Traditionally , species have been classified , named and described according 

to their morphological characteristics within the field of taxonomy (i .e. , alpha-

taxonomy). This procedure follows a strict protocol according to the International 

Codes of Nomenclature by which species have unique binomial scientific names 

(genus and species) and are linked to type specimens (from type loealities) 

preserved in museum collections. Establishing this Linnaean taxonomie system is a 

very laborious task , which involves the analysis of, ideally, hundreds or thousands of 

specimens per species in order to assess the extent of intraspecific morphological 

variation . Consequently, only a fraction of presumed species richness has been 

described in 250 years. About 6,000 taxonomists are believed to practise worldwide 

(Wilson , 2003) and their number is rapidly decreasing due to shortage in funding and 

to the lack of interest in pursuing a "dead" specialization on the job market. The 

resulting "taxonomie impediment" and the current progress in classifying life (-1 ,600 

species described every year; Bouchet, 2006) predict a timeframe of >1 ,000 years 

for an inventory of marine biodiversity alone. Considering also the rates of 

biodiversity loss, it is evident that many species will go extinet before we even know 

they existed (Mora et al., 2011) . 



16 

With the lack of trained personnel and the inherent difficulties to identify many 

invertebrate groups (especially the various life history phases of species with 

complex life histories and groups with highly plastic morphology such as corals) , it is 

no wonder that marine faunal inventories usually fail to identify one third of 

specimens to the species level (Schander and Willassen , 2005) . In addition, cryptic 

species will add to the species level of biodiversity (once they are validated) but also 

to the difficulty in compiling such lists as they are almost impossible to detect by 

morphological characters. Therefore, molecular methods have been proposed for 

species identification (DNA barcoding) as weil as for a new taxonomie system (DNA-

taxonomy; Tautz et al. , 2003) . 

A new tool: DNA barcoding 

The term "DNA barcoding" was coined by analogy with the Universal Product 

Codes, in which every product has a unique barcode, and it was proposed as a fast , 

reliable and cost-effective identification tool that uses DNA sequences unique to 

each species (Hebert et al., 2003) . In most animais, this approach uses a fragment 

of the mitochondrial (mt) gene cytochrome C oxidase subunit 1 (COI ) to assign 

unidentified specimens to known species (previously identified by experts and stored 

in a reference DNA library) . The choice of mtDNA over nuclear DNA is based on a 

few characteristics: i) large copy numbers in each cell , therefore easier to amplify 

from small amounts of tissue or when DNA is degraded; ii) maternai inheritance, 

therefore no recombination (but see Galtier et al., 2009); iii) higher evolutionary rate ; 

and iv) lack of introns (Hebert et al., 2003). In most animais, the circular mt genome 

includes 24 genes for mtDNA translation (2 ribosomal RNAs: 12S, 16S; 22 transfer 

RNAs) and 13 protein-coding genes for the electron transport chain (Figure 6) . 

These 37 genes interact with -1 ,500 genes encoded by nuclear DNA (nDNA) 

(Gershoni , Templeton and Mishmar, 2009) . 
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Figure 6 Mitochondrial genome of the Arctic amphipod Onisimus nanseni. The 
position of COI is indicated by an arrow. (Modified from Ki et al. , 2010) 

Protein-coding genes have the advantage of lacking insertions and deletions 

and COI was selected due to its slow mutation rate (relative to other mt genes), thus 

a higher probability of being amplified in a wide range of species with standard 

protocols, while previous research found this gene to distinguish between closely 

related species and to identify intraspecific phylogeographic groups (Hebert, 

Ratnasingham and deWaard, 2003; Hebert et al., 2003). Mitochondria are the 

"powerhouse" of cells generating energy through the electron transport chain which 

consists of multiple protein complexes situated in the inner mitochondrial membrane. 

The protein coded by COI has a functional role as part of the Complex IV of the 

respiratory chain (Figure 7) . The mitochondrial respiratory chain is more efficient in 

producing energy than the nuclear-controlled glycolysis for instance (30 versus 2 

ATP molecules per molecule of glucose oxidized) , but it also generates toxic 

products (reactive oxygen species, ROS), which can have a negative effect on DNA, 

protein and lipids (Ballard and Whitlock, 2004) . 



matrlx 
/' 

1 I MM 

IMS 

Complex 

nONA-encoded -30 

mtONA-encoded 7 

/c~~'" 
succlnate ACIO fumarate 

CYCLE ,~ 

III " 
-8 4 

o 

IV 

-6 

3 

18 

V 

-13 

Figure 7 Mitochondrial respiratory chain in the nematode Caenorhabditis e/egans 
with five complexes of proteins encoded by mtDNA (red) and nDNA (green). IMM: 
inner mitochondrial membrane; IMS: intermembrane space; Q: ubiquinone; Cyt c: 
cytochrome c. (Note: in C. e/egans there are only 12 protein-coding mt genes). 
(Source: Lemire, 2005) 

This molecular identification method has stirred an unprecedented debate 

since its inception, with opponents constructing a long list of shortcomings for COI , 

the use of only one diagnostic character, taxonomic inflation by over-splitting 

traditional species, potentialloss of interest for morphological taxonomy, and alleged 

anti-intellectualism or competition for funding with other biology fields (Ebach and de 

Carvalho, 2010; Will and Rubinoff, 2004; Will , Mishler and Wheeler, 2005; Rubinoff, 

2006; Rubinoff, Cameron and Will , 2006). However, almost one decade of research 

has shown that DNA barcoding did not cause the extinction of classical taxonomy 

and that many advantages can arise from its use. The capacity to identify anything 

that contains DNA has multiple practical applications: food traceability (Marko et al. , 

2004; Wong and Hanner, 2008; Barbuto et al., 2010); detection of pests, disease 

vectors, parasites (Locke et al., 2010), endangered species traded illegally, and 

invasive species (Radulovici, Sainte-Marie and Dufresne, 2009; Saunders, 2009); 

diet analysis (gut content or feces) (Deagle et al., 2010; Stech et al. , 2011 ; Zeale et 

al. , 2011). DNA extraction protocols are evolving towards non-invasiveness by 

swabbing bird eggs (Schmaltz et al., 2006), using cetacean blows (Frère et al., 
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2010) , amplifying DNA leaked into the water (Ficetola et al., 2008) or ethanol 

(mescal "worms"; Shokralla , Singer and Hajibabaei , 2010) . New protocols also allow 

for the recovery of small specimens after DNA isolation in order to preserve the 

vouchers (Porco et al. , 2010). 

DNA barcoding is more than just another method of molecular identification in 

that, as its name implies, it involves standardization. In practice, in any given 

taxonomie group, there are always markers that are as good as or even better for 

resolving species than the COI barcode. However, the issue is not which marker is 

best for each particular group. By sequencing optimal markers for each group, there 

will be a vast , diverse, but non-comparable array of genetic data. The issue is 

whether the COI barcode performs sufficiently weil across the broadest possible 

range of taxa . In addition , barcoding fosters links to various non-genetic data such as 

collection information , specimen images, accessions for vouchers stored in public 

institutions . Ail data are uploaded on-line (Barcode of Life Data Systems, BOLD; 

Ratnasingham and Hebert, 2007) and publicly available following project publication . 

The importance of DNA barcoding for marine biodiversity will be discussed at length 

in Chapter 1. 

Goals of this thesis 

The general goal of my PhD thesis was to use molecular methods 

(specifically DNA barcodes represented by COI sequences) as a means to assess 

biodiversity in the marine environment. As it is impossible to investigate the entire 

extent of marine biodiversity at the global scale, a case-study was chosen: shallow-

water crustaceans from the northwest Atlantic (NWA). Two biodiversity levels were 

tackled: genes and species. 
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As DNA barcoding is an emerging tool , the first step in any study of this kind 

consists of building a reference library of DNA sequences. A reliable database has to 

be built by performing COI sequencing on specimens previously identified by a 

taxonomist. Therefore, a pre-requisite for genetic investigations in this study was the 

technical step of building a database for crustaceans from NWA. 

Species level 

An intrinsic part of DNA barcoding is species-hypothesis testing (i.e., does 

any given morphologically defined species consist of one or multiple barcode 

ciusters?) and for this purpose 1 used various taxa with different potential for 

dispersal (hence different potential for genetic divergence and speciation ; Figure 4) . 

Results of DNA barcoding usually inciude detection of cryptic species, which will 

translate into higher species richness once validated by taxonomists . 

Besides species richness , another important aspect in biodiversity is the 

phylogenetic diversity, involved in calculating the taxonomic distinctness index 

(Warwick and Clarke, 1995). Underestimating this type of genetic variation will affect 

diversity indices and , consequently , biodiversity assessments. Phylogenetic 

analyses were conducted within one crustacean family , the semi-terrestrial 

Talitridae, in order to investigate the monophyly of genera (i.e ., ail congeneric 

species are descending from one common ancestor) . Non-monophyly, implying 

different evolutionary histories, will lead to taxonomic splitting into multiple genera 

which will translate into higher diversity above the species level (higher taxonomic 

distinctness) , once validated by taxonomists. 

Specific questions at the species level: 

i) How common are cryptic species among NWA crustaceans? 
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ii) How many cryptic species exist within one crustacean family , the 

Talitridae? 

iii) What are the phylogenetic relationships within Talitridae? Are talitrid 

genera monophyletic or not? 

Genetic level 

Focusing on individual species, DNA sequences can be used to infer 

phylogeographic patterns at large spatial scales and/or genetic structure at smaller 

spatial scales. Strong population differentiation will have reverberations at the 

superior (species) level on an evolutionary time scale (Figure 4). Phylogeographic 

patterns were investigated in one littoral amphipod species, Gammarus oceanicus, 

with amphi-Atlantic distribution (Steele and Steele, 1972), and most likely affected by 

the glacial history of the North Atlantic. Besides genetic differentiation , the goal was 

to explain the present-day distribution pattern (survival on bath coasts or on only one 

with subsequent colonization of the other coast). 

Study area: North Atlantic 

The North Atlantic originated in the Jurassic period during the break-up of 

Pangaea and it was influenced by climatic oscillations with rapid cooling in the late 

Eocene (from subtropical to temperate and cold) . These changes lead to biological 

diversification in the marine environment in relation to emerging environmental 

conditions (Golikov and Tzvetkova, 1972). During the Pliocene, the North Atlantic 

was invaded by Pacific taxa via the Arctic due to the opening of the Bering Strait 

(Vermeij, 1991). More recently the North Atlantic communities were influenced by the 

Pleistocene glaciations, during their glacial and interglacial phases. At the last glacial 

maximum (LGM) , North America and Europe were covered by massive ice sheets 
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(Figure 8) while the sea level decreased to -130 m (Mix, Bard and Schneider, 2001) 

uncovering the continental shelves and forcing organisms to migrate south or survive 

in glacial refugia. 
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Figure 8 The extent of ice and sea level retreat during LGM. (Source: Hewitt, 2000) 

The present-day North Atlantic communities are the result of the above-

mentioned historical events. Moreover, the ocean circulation (Figure 9) is one of the 

main factors influencing genetic differentiation, and therefore biodiversity (Figure 4). 
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Figure 9 Present-day circulation in the North Atlantic. Currents: red - warm, blue -
cold . GIN - Greenland/lceland/Norway. Black rectangle: Atlantic Canada. (Source: 
www.planetastronomy.com ) 

Figure 10 Circulation patterns within the Estuary and the Gulf of St. Lawrence. 
(Source: DFO) 
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ln Atlantic Canada, special focus was oriented towards the Estuary (ESL) and 

the Gulf of St. Lawrence (GSL) , a region with complex physiographic , oceanographic 

and bathymetric characteristics , which has been divided into 20 biogeographical 

zones (Figure 10) (Brunei , Bossé and Lamarche, 1998). 

5tudy group: Malacostraca, Crustacea 

Crustacea is a subphylum currently composed of six classes, 42 orders, 849 

families and -52 ,000 described species but estimated to be much more diverse 

(Martin and Davis, 2001 and references therein) . Living in marine, freshwater and 

terrestrial systems, crustaceans are an ancient group, dating back to the Cambrian , 

and from a morphological and ecological point of view, it is the most diverse 

metazoan group (Martin and Davis, 2001) . Recent phylogenies based on multiple 

genetic markers (62 single-copy nuclear protein-coding genes) have shown the non-

monophyletic character of crustaceans, placed together with terrestrial insects 

(Hexapoda) in a Pancrustacea phylum (Regier et al., 2010) . 

Marine crustaceans exhibit a wide variety of body shapes, sizes and life 

styles (from free-living to tube-dwelling , sessile , commensal or parasites on 

invertebrates or vertebrates) , and biological and ecological characteristics. 

Crustaceans occupy diverse habitats in both the pelagic and benthic realm , at ail 

latitudes and depths. As a result , they play an important role in marine ecosystems, 

often being a key part of food webs (e.g., copepods in the Northern Oceans, krill in 

the Southern Oceans) or being harvested as a food source on large spatial scales. 

For this study, crustaceans were chosen as a target group for the following reasons: 

i) taxonomic difficulty, often requiring the help of highly-trained personnel for 

identification ; ii) unsettled systematic; and iii) importance (ecological and economic). 

The use of DNA barcoding for crustacean identification has multiple practical 

applications: identification of eggs and larvae (consequent use in stock assessment 
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of harvested species) , invasive species , parasites, cryptic species or fraudulent 

substitutions in processed seafood . 

This study focused on two superorders of malacostracan crustaceans from 

shallow-water North Atlantic: Peracarida and Eucarida (Figure 11). Peracarids are 

generally short-lived organisms with low fecundity and they are characterized by 

direct development (eggs hatch directly into juveniles within the maternai brooding 

pouch with no larval phases) , and hence limited capabilities for large-scale dispersal 

(with implications at the genetic level , see Figure 4) . Among peracarids, amphipods 

are a species-rich order that is also an important component of the marine food 

webs. Other peracarids targeted in this thesis include isopods and mysids. Eucarids 

are generally long-lived organisms with high-fecundity and larval development, with 

larvae usually spending various amounts of time in the plankton , hence their 

potential for large-scale dispersal. Among eucarids, decapods are the most 

important group. They include species with economic importance (e.g., lobsters, 

shrimps, and crabs) which bring high revenues to Atlantic Canada. Decapods are 

also ecologically important as top predators in marine benthic ecosystem. Genetic 

studies for North Atlantic crustaceans have shown various degrees of population 

connectivity and genetic structure (Sévigny, Savard and Parsons, 2000; Martinez et 

al., 2006; Puebla et al., 2008) culminating with cryptic speciation (Kelly , Maclsaac 

and Heath , 2006), which might be a frequent phenomenon in crustaceans (Knowlton , 

1993, 2000). 
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Figure 11 Representatives of the main crustacean groups targeted in this study. A-
D: peracarids (A, B: amphipods, C: isopod, D: mysid), E-H: eucarids (E: euphausiid , 
F-H : decapods). 
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Methodology 

ONA barcoding is a unique and rapidly expanding method for the molecular 

identification of organisms. The workflow includes a few mandatory steps required 

for "true" ONA barcoding studies as opposed to other methods of molecular 

identification : vouchers stored as reference in public institutions, taxonomy, images 

and collect ion details uploaded on BOLO and publicly available. This study followed 

the barcoding workflow as closely as possible. Crustaceans were collected at low-

tide in multiple habitat types (rocky shores, mudflats, sandy beaches, salt marshes, 

seagrass beds) or during research surveys of Fisheries and Oceans Canada (OFO) 

and stored in a ONA-friendly manner (e.g., fixed and stored in 95% ethanol). 

Metadata included collection details (date, GPS coordinates, locality name for low-

tide sampling , and depth for OFO missions) and taxonomie data. Specimens were 

photographed, identified by qualified personnel (at least one specimen per species) 

and stored as vouchers for future reference. Ali data were uploaded to BOLD and 

they are publicly available (published projects, see Chapter Il) or will become so after 

publication (Chapter III and IV) (Figure 12). 

The laboratory operations were carried out at the Canadian Center for ONA 

Barcoding (University of Guelph , Canada) . Specifie protocols are explained in 

greater detail in Chapter II. COI sequences and trace files were uploaded to BOLO 

and in some cases data were analyzed directly in BOLO (Chapter Il) by calculating 

genetic distances and building neighbor-joining trees. Genetic distances are usually 

calculated by incorporating the Kimura-two-parameter (K2P; Kimura 1980), which 

takes into account multiple substitutions per site and different rates for transitions (A-

G, C-T) versus transversions (AIG-CIT) , but invariable substitution rate between 

sites and equal frequency for the four nucleotides. Although there are multiple 

models of molecular evolution , K2P has been proposed for DNA barcoding studies 

involving the COI gene as the best metric for low distances (Hebert et al., 2003). By 

using these standard methods, large-scale comparisons across taxa will be easily 
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conducted in future studies. Neighbor-joining trees based on K2P distances are 

usually built in order to rapidly visualize large data sets of DNA barcodes and the 

assortment of individuals into clusters (Hebert et al., 2003) . Genetic distances are 

used for species delimitation based on a threshold of 3% (seen to deliver 98% 

success for species delimitation in Lepidoptera; Hebert et al., 2003) or 10x the mean 

intraspecific value (Hebert et al., 2004) . However, eut-off approaches have to be 

carefully considered due to variable mutation rates across taxa (Galtier et al., 2009) 

or incomplete taxonomie sampling (Meyer and Paulay, 2005) . Another method for 

species delimitation in crustaceans takes into account the number of substitutions 

per site (0.16 substitutions per site ; patristic distances) but requires an a priori 

phylogeny (Lefébure et al. , 2006) , therefore it was not used in this thesis. Partial 

datasets of COI sequences generated for barcoding purposes were used in 

phylogenetic and phylogeographic analyses and methodological details are given in 

Chapters III and IV. 

Figure 12 (page 29) Example of data and metadata related to a DNA barcoding 
project in BOLD. Ali data can be downloaded . A: Project page (code: WVVT AL) with a 
list of specimens inciuded in the project, links to specimen and sequence details, and 
to various analyses that can be conducted directly in BOLD. B: Specimen page with 
metadata for a specimen of Uhlorchestia uhleri (voucher details, taxonomy, image, 
and collection details with GPS coordinates and site map). C: Sequence page for the 
same U. uhleri specimen with details about the sequencing step (primers used, DNA 
sequence and amino acid translation) . D: Chromatogram (forward reaction) for the 
same U. uhleri specimen. 
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Thesis outline 

This thesis includes an introduction to the basic principles explored , a review 

of past and current literature (Chapter 1) , three research chapters (Chapter II-IV) and 

general conclusions. 

Chapter 1 gives a partial introduction to molecular methods for marine 

biodiversity assessments. The focus of this chapter is on the species level of 

biodiversity and it reviews multiple studies involving DNA barcoding of various 

marine groups, from seaweeds and diatoms, to invertebrates and ending with 

mammals. This chapter provides also a philosophical view on the importance of 

species and future directions for collaborative work between taxonomists and 

barcoders. 

Chapter Il begins the research part of this thesis at a medium spatial scale , 

namely GSL, and its malacostracan fauna (amphipods, isopods, mysids, decapods, 

and euphausiids). The most common species and those with economic importance 

(shrimps, crabs, and lobster) were included. While it can be considered a technical 

chapter in which sequences were generated for a regional database, it includes an 

intrinsic goal of testing species boundaries (a universal theme in barcoding studies). 

Therefore, routine barcoding studies reveal cases of cryptic species (species-

splitting) or taxonomie synonymy (species-Iumping). 

Chapter III increases the spatial scale southward by including the east coast 

of Canada and the US, the Gulf of Mexico (GOM) , and eastward by including a few 

localities from Europe. The focus of this chapter is still on the species level but with 

investigations at higher taxonomic levels (within and between genera) . The 

investigation of species boundaries (DNA barcoding) and phylogenetic relationships 
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(maximum-likelihood, Bayesian inference) were conducted within one family , 

Talitridae, a unique amphipod family with semi-terrestrial distribution . 

The last chapter extends the spatial scale northward by including amphi-

Atlantic localities (GSL, open Atlantic coast in Canada , Iceland, Norway, Poland) as 

weil as the Arctic (Hudson Bay, Hudson Strait). This chapter specifically targets the 

genetic (intraspecific) level by conducting large phylogeographic analyses in one 

amphipod species, Gammarus oceanicus, a very common and abundant species in 

intertidal and subtidal communities. 

The general conclusions review the main findings of my thesis on barcoding 

marine crustaceans from North Atlantic. This final component includes a broad 

discussion on possible limitations of the present study and future directions in 

understanding and protecting marine biodiversity. 
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1.1 Résumé 

Le terme «Biodiversité» désigne la diversité du vivant. Elle peut être étudiée à 
différents niveaux (génétique, espèces, écosystèmes) et à différentes échelles 
(spatiale et temporelle) . Les dernières décennies ont montré qu 'à tous les niveaux, 
la biodiversité marine a été gravement sous-estimée. Afin d'étudier plusieurs 
modèles représentatifs de cette biodiversité marine et les mécanismes de 
spéciation , il est nécessaire d'identifier les espèces présentes dans l'écosystème 
marin . Un nouvel outil d'identification des espèces, le code-barres d'ADN , peut 
attribuer sans ambiguïté des échantillons inconnus à des espèces connues , révélant 
aussi le potentiel cryptique de certaines espèces ou la présence de populations 
génétiquement éloignées. Ce chapitre passe en revue le rôle du code-barres d'ADN 
dans l'étude de la biodiversité marine au niveau des espèces. 

Mots-clés: biodiversité; marine; code-barres d'ADN ; identification des espèces 

1.2 Abstract 

"Biodiversity" means the variety of life and it can be studied at different levels 
(genetic, species, ecosystem) and scales (spatial and temporal ). Recent decades 
showed that marine biodiversity has been severely underestimated at ail levels. In 
order to investigate diversity patterns and their underlying processes, there is a need 
to know what species live in the marine environ ment. An emerging tool for species 
identification , DNA barcoding , can reliably assign unknown specimens to known 
species , also flagging potential cryptic species and genetically distant populations. 
This paper will review the role of DNA barcoding for the study of marine biodiversity 
at the species level. 

Keywords: biodiversity; marine; DNA barcoding ; species identification 
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1.3 Introduction 

"Biodiversity" is a broad and abstract concept , widely used by the scientific 

world but with reverberations at the economic, political and social levels. With more 

than 17,000,000 hits on the Google search engine (February 2010) , the concept of 

biodiversity is becoming a commonplace name, even more so in 2010 - The 

International Year of Biodiversity as proposed by the United Nations. But what does 

"biodiversity" mean? Shorthand form of "biological diversity", it literally means the 

"variety of life" (Gk. "bios", Lat. "diversitas"). It was officially mentioned for the first 

time at the National Forum on Biodiversity held in 1986 at Washington D.C. (Wilson, 

1988) and it became a funded research field in 1992 through the Convention on 

Biological Diversity (http://www.cbd .int). With three main levels accepted and usually 

investigated (genes, species, ecosystems) , biodiversity must be conserved in order 

for our society to prosper, even more so that a "biodiversity crisis" (highest human-

induced extinction rates ever) was shown to occur (Pimm et al. , 1995). However, a 

required step prior to protection is biodiversity assessment, usually conducted at the 

species level of biodiversity . Therefore, species identification has a paramount 

importance. 

How many species are there and how do we recognize them? No precise 

species number can be provided but it is believed to approximate 1.9 million 

described species out of 11 million estimated (Chapman, 2009). Traditionally, 

morphology was a key factor in describing and naming species within the field of 

taxonomy. This long-standing approach , starting with Aristotle and becoming 

organized due to Linnaeus, can be very tedious and a matter of subjectivity since it is 

up to the taxonomist to choose those morphological characters believed to delineate 

species (whatever "species" meant according to different views; Coyne and Orr, 

2004). As a result , it took 250 years for traditional taxonomy to provide descriptions 

for less than a quarter of the world species using as tools a variety of morphological 

keys , sometimes "written by those who don't need them for those who can 't use 
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them" (Packer et al., 2009a) . After centuries of acquiring knowledge, taxonomy 

started to lose popularity to other fields resulting in a worldwide shortage of trained 

personnel. Paradoxically enough , every biological study requires some taxonomie 

knowledge. 

At the turn of the last century, the original blend of "biodiversity crisis" and 

"taxonomie impediment" brought astringent flavour to biodiversity studies. Although 

a solution is not envisaged yet, new approaches based on molecular markers might 

be of great help in advancing our knowledge of biodiversity. As opposed to 

morphological identifications and their "mediocrity" in some cases (Packer et al. , 

2009a), molecular methods are better tools for the identification of early life stages or 

partial specimens. One method in particular, DNA barcoding , was the incentive for a 

large debate on the current and future status of taxonomy. Here, we review the role 

of DNA barcoding for marine biodiversity studies at the species level. For this goal , 

we searched the Web of Science by using "DNA barcod*" and "marine" as keywords 

and we retained only those papers that specifically dealt with species diversity and 

reference libraries of DNA barcodes. We provide an update regarding the progress 

in barcoding various marine groups and some future directions, as weil as a plea for 

collaboration between barcoders and classical taxonomists . 

1.4 Marine biodiversity 

By numbers, biodiversity in the sea seems to be quite low, varying between 

167,817 valid species (or 318,004 taxa, species to phyla) according to the World 

Register of Marine Species (WoRMS; http://www.marinespecies.org ) (February 

2010), and 229,602 marine species described (Bouchet, 2006) (Table 1.1), but 

estimated to exceed 10 million (Grassle and Maciolek, 1992). 
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Table 1.1 Global numbers of marine species per taxon according to Bouchet (2006) 
and WoRMS. Only taxa present on both lists were included 

Marine group Bouchet (2006) 

Bacteria 4,800 
Fungi 500 
Rhodophyta 6,200 
Acanthocephala 600 
Annelida 12,148a 

Arth ropoda 47 , 217b 

Brachiopoda 550 
Bryozoa 5,700c 

Chaetognatha 121 
Cnidaria 9,795 
Ctenophora 166 
Cycliophora 1 
Echinodermata 7,000 
Echiura 170 
Entoprocta 165-170 
Gastrotricha 390-400 
Gnathostomulida 97 
Hemichordata 106 
Mesozoa 106d 

Mollusca 52 ,525 
Nematoda 12,000 
Nemertea 1,180-1 ,230 
Phoronida 10 
Platyhelminthes 15,000 
Porifera 5,500 
Rotifera 50 
Sipuncula 144 
Tardigrada 212 
Chordata 21 ,51 r 
Total 203,887 
aincludes Pogonophora (separate taxon in Bouchet, 2006) 
bas two taxa, Crustacea and Chelicerata 
cas Ectoprocta 
das two taxa, Rhombozoa and Orthonectida 

WoRMS (February 2010) 
Valid species 

625 
1,061 
6,302 
410 

12,631 
44,591 

386 
1,525 
208 

11 ,071 
170 

2 
5,764 
203 
161 
524 
97 
106 
115 

23 ,689 
5,889 
1,371 

11 
3,348 
8,174 
185 
158 
170 

21 ,944 
150,891 

eincludes Urochordata, Cephalochordata , Pisces and Mammalia (no reptiles) 
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The belief that oceans are a homogeneous environment in which speciation 

is not a common process resulted in only a fraction of the scientific attention being 

oriented towards marine compared to terrestrial biodiversity (Figure 1.1). 
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Figure 1.1 The amount of articles focusing on marine biodiversity since 1988 
("biodiversity" and "marine" used as keywords in Web of Science). 

However, oceans cover more than 70% of our planet and it was a matter of 

improving technolog ies until new explorations of new habitats, especially deep-sea, 

allowed the discovery of new species (Vrijenhoek, 2009), while cryptic species 

(morphologically similar but genetically distinct) were shown to be a common 

presence in marine systems (Knowlton, 1993). Consequently , a more carefullook at 

the world oceans might show, even by numbers, that biodiversity in the sea is as 

great as on land . On the other hand , an opposite situation occurs at higher 

taxonomie levels. Of the 35 animal phyla that have been described so far, ail but one 

has living representatives in the oceans, while 14 phyla are marine endemics 

(Briggs, 1994; Gray, 1997). Within marine ecosystems, most diversity is benthic, 

consisting of invertebrates residing in (infauna) and on (epifauna) sediments. Brunei 
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(2005) mentioned that benthic animais, seaweeds and protists account for 98% of 

marine species diversity and the remaining 2% is pelagic. Other patterns of marine 

biod iversity include an increase in species diversity from Arctic to tropics and from 

coastal waters to deep-sea (Gray, 1997). 

The importance of marine biodiversity can be translated at the economic or 

ecological level: source of food , biotechnological and non-living resources, as weil as 

indicator of environ mental health and ecosystem function ing (food webs). Major 

threats to marine biodiversity include overharvesting , habitat degradation , pollution , 

global warming , biological invasions and other anthropogenic stressors, most of 

them impacting coastal areas rather than the open ocean (Gray, 1997). For instance, 

overfishing is predicted to cause a collapse of ail fished taxa within the next 50 years 

(Worm et al. , 2006), while marine invaders have already increased their ranges and 

are present in at least 84% of marine ecoregions worldwide (Molnar et al., 2008). 

Given these major concerns , it becomes more important than ever to know how 

many species are present in an ecosystem in order to understand and conserve 

species diversity. 

There are significant disparities across marine taxa in terms of knowledge 

and status of taxonomic inventory. Larger organisms (e.g. , fishes , mammals) are 

represented by fewer taxa in the world oceans and are usually well-studied groups. 

However, surprising findings can sometimes emerge, challenging our views on 

current knowledge. For instance, the number of marine mammals from Canadian 

waters currently reaches 52 species (Archambault et al. , 2010) compared to 10 

species listed in 1995 (Mosquin , Whiting and McAllister, 1995). Considering how 

comparatively weil known marine mammals are relative to most marine 

invertebrates, the inferred gaps in knowledge are particularly disconcerting when 

attempting to estimate the biodiversity of smaller organisms in poorly-sampled 

taxonomic groups, such as benthic and pelagic invertebrates, phytoplankton , and 

microbes. For marine invertebrates, the extent of taxonomic knowledge, including 
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the number of species described every year, depends on the size of the taxonomie 

community studying various groups (Figure 1.2) (Bouchet, 2006). For instance, 

molluscs and crustaceans are the largest groups but probably due to large 

communities of malacologists and carcinologists, while polychaetes, believed to be 

one of the most abundant and species-rich macrobenthic taxa (Grassle and 

Maciolek, 1992), are in great need of taxonomie work. With so many difficulties for 

biodiversity assessment, there is no wonder that marine faunal inventories usually 

fail to identify one third of specimens to the species level when using morphological 

methods (Schander and Willassen , 2005). 
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Figure 1,2 Average number of marine animal species per taxon described every 
year. (Modified from Bouchet, 2006) 



40 

1.5 Molecular methods for species diversity 

Given that morphological diagnosis poses a problem for the identification of ail 

life stages (e.g. , eggs, larvae) , for sexually dimorphic species or those with large 

phenotypic plasticity and considering that cryptic species are widely distributed in 

marine systems (Knowlton , 1993), it is no surprise that scientists took the opportunity 

provided by the development of molecular methods to clarify many ambiguities in 

traditional taxonomy. Allozymes, alternative forms of enzymes coded by alleles at 

the sa me locus , were the first molecular markers widely used in population genetics 

to document patterns of genetic diversity in populations and also served as a useful 

tool in early molecular systematic studies (Avise , 1975). For instance, Sévigny et al. 

(1 989) used the information provided by glucose phosphate isomerase to distinguish 

between closely related species of the planktonic copepod Pseudoca/anus. Although 

electrophoretic patterns were not useful for species discrimination due to shared 

alleles, genetic analyses (heterozygosity, allele frequency, private alleles) showed 

that organisms previously grouped into species based on subtle morphological 

differences were also genetically isolated . Better resolution was found for larval 

identification of three oyster species (Hu , Lutz and Vrijenhoek, 1992). However, 

protein-based approaches soon lost popularity in systematic studies due to several 

drawbacks such as the need to work with tissues that were either fresh or frozen and 

available in relatively large quantity (i.e. , very small eggs or larvae could not be 

analyzed). Furthermore, as this technique only detects nonsynonymous 

substitutions, the revealed polymorphism was often low. Consequently, the advent of 

polymerase chain reaction (PCR) allowing the amplification of various genes from 

small amounts of tissue , either fresh or preserved in ethanol , led to a boost in 

molecular-based identification of organisms. Various methods have been developed, 

including DNA hybridization , species-specific PCR, random amplified polymorphie 

DNA, restriction fragment length polymorphism, single strand conformational 

polymorphie DNA and sequencing of PCR products, with their advantages and 

disadvantages (see Table 1 in Wong and Hanner, 2008) . Of ail these, sequencing 
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methods, providing access to the most accu rate genetic information (i. e. , the string 

of nucleotides) , were soon to become the method of choice for species identification . 

One of the early sequencing-based studies in marine species looked at a 

mitochondrial gene, cytochrome b oxidase (cyt-b) , and found that four species of 

tu na could be distinguished based on these sequences (Bartlett and Davidson , 

1991), while Medeiros-Bergen et al. (1995) successfully identified three holothurian 

species with other mitochondrial sequences (16S). Bucklin et al. (1999) sequenced 

yet another mitochondrial gene, cytochrome C oxidase subunit 1 (COI) , in eight 

species from three genera of planktonic copepods and found the method to reliably 

discriminate even among sibling species. The authors acknowledged the need for a 

"rapid , simple, inexpensive and reliable" molecular protocol for marine species 

identification. 

1.6 DNA barcoding for species identification and discovery 

1.6.1 The concept: advantages and limitations 

A ground-breaking approach to species identification was brought by Hebert 

et al. (2003) who proposed the use of a small fragment from the mitochondrial 

genome for species identification across phyla from the entire animal king dom and 

coined the term "DNA barcoding" for this approach . Reasons for choosing 

mitochondrial (mtDNA) over nuclear DNA include uniparental inheritance (in a 

majority of animal phyla , but see Breton et al., 2007) , high evolutionary rate , lack of 

introns, large copy numbers in every ce Il , and limited recombination (but see Galtier 

et al., 2009) . The proposai of COI as the target gene for DNA barcoding was not an 

arbitrary choice since decades of research showed a useful phylogenetic signal for 

both above- and below-species level and that "universal" primers could recover the 

5'end of COI in most animal phyla . According to the barcoding approach , species 
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could be identified based on a "barcoding gap" between intra- and interspecific 

genetic distances by using a threshold value of 23% (Hebert et al., 2003) or a 10-

fold value of mean intraspecific distance (Hebert et al. , 2004) for species 

delimitation. 

Although numerous studies used molecular methods for species identification 

prior to the DNA barcoding era, it is still a unique concept with manifold attributes. 

Initially proposed only for animal taxa , a DNA-based identification system was soon 

found to be successful in land plants (Hollingsworth et al., 2009), algae (Saunders, 

2005) , fungi (Seifert et al. , 2007) , whether using only COI and/or other DNA regions 

(mitochondrial , plastid , nuclear) for better resolution . Besides the global scale 

involved , DNA barcoding brings a few major assets. It implies standardization (i.e., 

the same DNA fragment(s) used within a taxon) , which allows comparisons between 

datasets of various researchers, revealing cases of synonymy, potential cryptic 

species or genetically distinct populations. Vouchers are permanently stored , ideally 

in a DNA-friendly manner, in museum collections, publicly accessible for future 

reference. This step is in contrast to most molecular studies conducted so far, which 

lack the possibility of specimen retrieval for sequences deposited in public data bases 

(GenBank), therefore resulting in impossible taxonomie verifications and growing 

concerns about the documentation of scientific data (Pleijel et al. , 2008 and 

references therein). Vouchers can be stored under different forms (specimens, 

tissue , detailed photographs or stained slides for microscopy) and preservation 

methods (frozen , ethanol-preserved or dried specimens). DNA extracted from these 

vouchers is permanently stored in DNA banks available for future usage (e.g., 

inferring evolutionary patterns in different genes or proteins among taxa or habitats). 

The DNA Barcode of Life Data Systems (BOLD; http://www.boldsystems.org 

Ratnasingham and Hebert, 2007) provides a unifying protocol for data acquisition , 

storage and analysis . Data stored in BOLD include sampling details with GPS 

coordinates, images, taxonomie information , DNA barcodes, primer sequences, 

electropherogram "trace" files , and even detailed laboratory operations (with 
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protocols for each step and gel images) for specimens processed at the Biodiversity 

Institute of Ontario (BIO, http://www.biodiversity .uoguelph .ca) . Aboveall . this 

data base if freely accessible and ail data can be downloaded after publication or 

analyzed directly in BOLO with distance-based methods. Future taxonomic updates 

are possible. These attributes make BOLD a more advantageous tool to use when 

dealing with DNA barcodes th an GenBank (notorious for hosting erroneous data; 

Harris, 2003) , proved by an eight-fold greater amount of barcodes produced at BIO 

and directly stored in BOLD (>650,000 barcodes) compared to GenBank (>90,000 

barcodes) (February 2010) . 

Data scrutiny is vital since errors can occur at every step of the DNA 

barcoding protocol , from sampling in the field to COI amplification , leading to 

surprising results su ch as amphipods identified as decapods according to DNA 

barcodes (A. Radulovici , unpublished). Any evidence of misidentification , 

mislabelling, cross-contamination between samples due to leaked ONA in ethanol 

jars with mixed samples (Shokralla , Singer and Hajibabaei , 2010) or during COI 

amplification , other contaminations (e.g. , human, mouse, bacteria) or pseudogenes 

(nuclear copies of COI) , is routinely investigated in barcoding studies. Once through 

the cleansing step , DNA barcodes can be used in various analyses. 

DNA barcoding was initially faced with great criticism (Will and Rubinoff, 

2004 ; Will , Mishler and Wheeler, 2005; Rubinoff, 2006; Rubinoff, Cameron and Will ; 

2006) by people who feared that a universal DNA-based approach for species 

identification would gain exclusivity over traditional methods and taxonomists would 

go extinct while funding would be vacuumed by high-throughput facilities in order to 

provide "barcode-species" (i .e., species seen as strings of nucleotides) . As with any 

other method, ONA barcoding has limitations, acknowledged by barcoders: low 

resolution in some cases (hybrids, recently diverged species, species complexes or 

slow evolving groups); the presence of pseudogenes (Song et al. , 2008) ; 

contaminants amplified with "universal" primers (Siddall et al. , 2009) ; or cases of 
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mitochondrial introgression (Kemppainen et al. , 2009) (see barcoding reviews, 

Frézal and Leblois , 2008 and Mitchell , 2008) . Also , the functional group of many 

organisms is impossible to identify with DNA-barcodes. Thresholds have to be 

carefully considered due to variable mutation rate across taxa (Galtier et al., 2009) or 

incomplete sampling of taxa (Meyer and Paulay, 2005 ; Ekrem, Willassen and Stur, 

2007). Distance-based methods have been criticized and they are sometimes used 

in combination with character-based ones, but analytical tools are constantly being 

developed to incorporate the large body of information produced by DNA barcoding 

(Nielsen and Matz, 2006) . Moreover, critics have been oriented towards a new 

"barcode-species" concept which will lead to an extreme amount of divergent 

clusters being arbitrarily raised to the species level (taxon over-splitting ). On the 

other hand , reproductive isolation , the requirement for the popular biological species 

concept , is a very difficult investigation in marine systems. However, G6mez et al. 

(2007) tested this case in a cosmopolitan marine bryozoan and showed that 

divergent barcode clusters might indeed correspond to reproductively isolated 

groups, providing a link between DNA barcoding and the biological species concept. 

Despite its limitations, DNA barcoding has become an appealing tool for 

biodiversity investigations, by identifying specimens during ail life stages, from fresh 

or preserved material , and cases of sexual dimorphism or potential cryptic species. 

Non-specialists are able to have a fast (express-barcoding in less than two hours; 

Ivanova, Borisenko and Hebert, 2009) , cheap and reliable identification tool with 

many practical and fundamental applications. Moreover, there is an international 

Consortium for the Barcode of Life (CBOL; http://www.barcoding .si .edu) dedicated to 

establish DNA barcoding as a standard tool for species identification . The largest 

project currently envisaged is the International Barcode of Life Project (iBOL, 

http://www.ibo l.org), launched in October 2010, with the goal of acquiring DNA 

barcodes for 500,000 species by 2015. 
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1.6.2 Practical applications for the marine environment 

ln recent years , DNA barcodes have proved to be a valuable asset in 

identifying marine organisms, especially in the obvious cases where morphological 

identification is not possible, namely processed seafood. The famous example of fish 

sold as "red-snapper" in the US and actually consisting of other species in 77% of 

cases (cyt-b sequences; Marko et al. , 2004) was soon followed by other studies, 

which proved that seafood substitutions are common . The extent of this 

phenomenon on the global market of fresh , smoked or dried fish products varies 

across continents (Smith , McVeagh and Steinke, 2008 ; Wong and Hanner, 2008; 

Holmes, Steinke and Ward , 2009 ; Barbuto et al. , 2010) and the possible 

explanations include genuine mislabelling due to morphological similarities between 

closely related species or fraudulent substitution of expensive species with cheaper 

variants. An extreme case of fish substitution had drastic consequences for public 

health , leading to food poisoning due to puffer fish toxin and the consequent recal l of 

products (Cohen et al., 2009). With its power to reveal mislabelled products, DNA 

barcoding will have multiple implications from food safety and public health , to 

fisheries management (depletion of fish stocks) and conservation (protected species 

caught illegally). 

Most marine organisms have larval stages difficult to identify based on 

morphological characters and DNA barcoding could have a great impact in this field , 

provided that a complete reference library for adults is developed (Barber and 

Boyce, 2006; Pegg et al., 2006; Webb et al., 2006,). Reliable identification of adults 

could have economic implications, for instance in aquarium fish trade regulations 

since many species originate in coral reefs (Steinke, Zemlak and Hebert, 2009), a 

highly threatened ecosystem. Moreover, routine DNA barcoding of marine organisms 

could identify invasive species (Saunders, 2009), with special importance in cases of 

partial specimens which lost their key diagnostic characters (Radulovici, Sainte-

Marie and Dufresne, 2009). 
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1.6.3 Progress in DNA-based inventories of marine groups 

Many marine taxa represent an ideal target for DNA barcoding due to a lack 

of reliable morphological characters for easy diagnosis. Marine algae represent such 

a group due to simple morphology, phenotypic plasticity and alternative 

heteromorphic generations, among other factors (Saunders, 2005) . The same 

standard marker as for animais (COI) proved to work weil in red algae and revealed 

the presence of an invasive species in Canadian waters (Saunders , 2009) as weil as 

a large proportion of cryptic species (Saunders, 2008) . Other invasive red algae with 

a negative impact on coral reefs were identified in Hawaii based on a multi-gene 

approach including COI (Conklin , Kurihara and Sherwood, 2009). Successful results 

with COI were shown in brown algae (McDevit and Saunders, 2009) but less so in 

green algae where other markers are being tested (G . Saunders, pers. comm.). 

Diatoms represent a large component of the marine microbiota and another 

group where COI was not successful on large scale. A recent study including 114 

diatom species found the internai transcribed spacer (ITS) to have 99.5% 

identification success (Moniz and Kaczmarska, 2010) , a result that will surely lead to 

an increase in DNA-based inventories for this important marine group. 

Due to low substitution rate in mtDNA, plant barcoding had a lower success 

rate compared to barcoding the animal king dom. Alternative regions have been 

proposed and a final recommendation for a two-Iocus approach (plastid coding 

genes: matK and rcbL) has recently been made (Hollingsworth et al. , 2009) . 

Consequently , seagrass species (e.g., Zostera spp., Posidonia spp.) with no 

reference in SOLD yet (February 2010), will soon be targeted by barcoding studies. 

Sponges are an ancestral metazoan group with simple morphology but 

complex and important roles in marine ecosystems and pharmaceutical industry 
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(Worheide and Erpenbeck, 2007). Currently, this is the only invertebrate phylum to 

be barcoded through a global campaign (8ponge Barcoding Project, 

http://www.spongebarcoding.org) , although a COI fragment downstream of the 

"Folmer" region was found to be more variable, and hence more appropriate for 

species identification in sponges (Erpenbeck, Hooper and Worheide, 2006). 

Cnidarians (e.g. , corals, sea anemones) and sponges constitute the most 

important components of coral reefs. COI seems to evolve too slowly in both groups, 

therefore lacking the power to reliably identify species. And while in sponges another 

COI fragment than the standard 5'end might be useful , cnidarian barcoding might 

need another gene «2% interspecific divergences in scleractinian corals (8hearer 

and Coffroth , 2008) (Table 1.2). Moura et al. (2008) assessed the efficacy of 168 

and showed that this gene could be a useful marker at the species and even 

population , genus and family levels in hydrozoans. Combining their own sequences 

with public ones from GenBank, the authors flagged problematic issues for hydroid 

systematics: potential cryptic species , conspecificity (Iow divergence between 

species) or cosmopolitan species consisting of species complexes . However, recent 

advances involving planktonic hydrozoans (Bucklin et al. , 2010) indicate that this 

group might actually be successfully COI barcoded. 



48 

Table 1.2 Levels of genetic divergence in marine taxa. Only studies using the 5' end 
of COI and giving average K2P genetic divergences were included. NoS: number of 
species barcoded ; Intra: mean genetic distances within species; Inter: mean genetic 

distances between species 

NoS Reference 
Crustaceans 
Malacostracans 80 0.91 8 13.6 Radulovici et al. , 2009 

Decapods 54 0.46 17.16 Costa et al., 2007 

Copepods 24 0.75b 27.05 Bucklin et al., 2010 

Molluscs 
Heteropods 9 3.28 21.7 Jennings et al., 2010 

Pteropods 31 3.02 17.6 Jennings et al. , 2010 

Corals 30 0.05 1.90 Shearer and Coffroth 2008 

Chaetognaths 14 1.45 34 .5 Jennings, Bucklin and 
Pierrot-Bults, 2010 

Echinoderms 191 0.62 15.33 Ward , Holmes and 
O'Hara, 2008 

Fishes 207 0.39 9.93 Ward et al., 2005 
aif deeply divergent clusters are removed , the mean value becomes 0.51 %. 
bmean intraspecific for the entire dataset (crustaceans , cnidarians , chaetognaths , one 

nemertean). 

Molluscs represent the largest marine group with more than 50 ,000 described 

species (Table 1.1). One of the early studies to draw attention on the risks of using 

thresholds and incomplete sampling in barcoding approaches was tested on cowries , 

a very diverse and well-studied group of marine gastropods (Meyer and Paulay, 

2005) . Results showed that overlap between intra- and interspecific divergences 

might lead to large errors in species identification when a taxon is undersampled. 

Two species of intertidal gastropods were found to share haplotypes in NE Atlantic, 

potentially due to introgression or incomplete lineage sorting (Kemppainen et al., 

2009), while gastropod eggs from Philippines could not be identified to the species 

level due to a lack of comprehensive barcode databases (Puillandre et al., 2009) . 

Local-scale barcoding of species from four genera of Norwegian bivalves was a 
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successful case, although larger datasets are needed to prove the applicability of 

barcodes in identifying bivalves (Mikkelsen , Schander and Willassen , 2007). A 

barcoding study of planktonic gastropods (pteropods and heteropods) from six 

oceans revealed the highest average values (> 3%) for genetic distances between 

individuals of the sa me species reported to date (Table 1.2) (Jennings et al., 2010). 

This is a strong indication that divisions below the species level (e.g., subspecies) 

might represent valid species and a taxonomic revision should be conducted . 

Crustaceans are one of the largest (Table 1.1) and most diverse, 

morphologically and ecologically , marine groups. Playing important roles in marine 

food webs, crustaceans have representatives in ail marine habitats. Costa et al. 

(2007) used their own sequence data and public data from GenBank to perform a 

large-scale analysis in crustaceans (150 species from 23 orders). Besides 

successful species identification (Table 1.2), their study revealed cases of potentially 

overlooked species and the need for taxonomic revisions (e.g ., valid species that 

should be lumped). Taxon-specific barcoding studies were conducted on 

euphausiids (Buck lin et al. , 2007) and stomatopod larvae (Barber and Boyce, 2006). 

While the former could identify ail specimens to the species level , the latter showed 

that a large part of stomatopod species from Indo-Pacific coral reefs is unknown as 

adults. Reef-associated crustaceans, mainly decapods, stomatopods and 

peracarids, from French Polynesia have been recently barcoded , revealing a large 

proportion of singletons (i.e. , species represented by one specimen) living in 

Pocillopora dead heads (Plaisance et al. , 2009). While undersampling is usually the 

cause for a bias towards singletons, this study used a semi-quantitative sampling 

design to show that associated fauna in coral reefs is largely composed of low-

abundance species. In addition , no species barcoded in this study had a match in 

GenBank, highlighting once more the need for comprehensive reference libraries. 

Radulovici , Sainte-Marie and Dufresne (2009) used a regional approach in barcoding 

malacostracan crustaceans from the Gulf of St. Lawrence and revealed the 

existence of an invasive amphipod species, Echinogammarus ischnus , which 
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expanded its distribution since previous studies. Cryptic speciation was not found to 

be common (5% of cases) but it might be a result of incomplete taxon sampling (80 

species representing only 20% of the regional malacostracan fauna) or geographical 

scale . 

A large barcoding study was conducted on echinoderms (191 species fram 

five classes) by including also public data fram GenBank (70% of the final dataset) 

(Ward , Holmes and O'Hara , 2008). Based on shallow intraspecific versus deep 

congeneric divergences (Table 1.2), a large amount of specimens (97 .9%) could be 

assigned to known species. Those specimens that could not be assigned belonged 

to one genus, Amblypneustes, known to include morphologically and genetically 

similar species. Additionally , a few cases of potential cryptic species were recorded . 

Smaller groups are also targeted in barcoding studies. For instance, sea 

spiders (Pycnogonida) were recently sampled as part of a marine inventory of the 

Ross Sea, Antarctica , and 25 species were identified based on morphological and 

molecular data (18S, 12S, 16S, COI) (Nielsen, Lavery and Lorz, 2009). Although 

statistics related to the level of genetic divergence were not provided by this study, a 

general concordance between barcode clusters and morphospecies was reported 

(only one case of misidentification or potential cryptic species) and no new species 

was revealed during the survey. However, with a larger geographic sampl ing for an 

abundant and circumpolar species , Krabbe et al. (2010) found multiple cryptic 

mitochondrial lineages, geographically restricted , within one nominal species. A 

much smaller group than sea spiders (see Table 2.1 in Bouchet, 2006), 

chaetognaths are mostly planktonic invertebrates with simple morphology but 

complex raies in the pelagic realm together with large distribution areas at the global 

scale. Successful identification can be performed with standard COI barcodes, even 

though the level of intraspecific variation is slightly higher than in other marine 

groups (Table 1.2) (Jennings, Bucklin and Pierrot-Bults , 2010). 
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A large and morphologically difficult group, therefore with underestimated 

diversity, but with potential roles as indicators of anthropogenic impact on marine 

systems, nematodes could greatly benefit from DNA barcoding (Table 1.1). So far, 

the 18S gene was found to amplify across many taxa and with 97% identification 

success (Bhadury et al. , 2006 ). 

Parasites are very often excluded from marine faunal inventories. However, 

they are very common and play important roles in marine ecosystems by affecting 

population dynamics of their hosts. Therefore, a reliable identification system would 

be of great utility in community ecology (e .g. , identifying ail life cycles in different 

hosts) as weil as for public health (e.g. , human parasites). In the marine realm, a 

recent attempt to barcode parasites of intertidal species from New Zealand targeted 

a group of trematode species, ail of which could be distinguished based on DNA 

sequences (Leung et al. , 2009). Although the authors chose to amplify a short DNA 

fragment downstream of the "Folmer" region , while the standard 5'end can generally 

be amplified in this group (Locke et al. , 2010) , the study provided important 

ecological data on the trematode species analyzed with notes on new host-parasite 

interactions in intertidal mudflats. 

Fishes are among the most studied marine groups and are currently 

barcoded within two global campaigns, FISH-BOL (http://www.fishbol.org) and 

SHARK-BOL (http://www.sharkbol.org) (Ward , Hanner and Hebert, 2009). One of the 

early studies on barcoding marine life looked at 207 fish species from Australia and 

showed that ail could be discriminated based on their COI sequence, including five 

species of Squalus previously described but not formally named (Ward et al., 2005). 

Other studies found barcoding to be useful in identifying fishes from Pacific Canada 

(Steinke et al., 2009), North Atlantic (Ward et al., 2008) or fish larvae from the Great 

Barrier Reef (pegg et al., 2006). When including shared species between distant 

geographical areas, DNA barcodes could be useful to test the relationship between 

distance and intraspecific variation . For instance, Ward et al. (2008) found only two 
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out of 15 species shared between North Atlantic and Australasia with deep 

intraspecific divergence (2 .75% and 7.44%). On the other hand , Zemlak et al. (2009) 

showed that populations of commercial fish with inshore distribution in South Africa 

and Australia have high levels of genetic divergence (mean within species: 5.10%) 

and estimated that one third of the 1,000 shared species between these two regions 

are cryptic taxa. As a general remark , DNA barcodes were shown to be a powerful 

tool in discriminating marine fishes (98% success) . Rare cases of incongruence were 

due to potential cryptic species or species complexes (deeply divergent intraspecific 

clusters) , or to cases of hybrids , recent radiation , taxonomic over-splitting or 

morphological misidentification (shared haplotypes) (Ward et al. , 2009 ). 

Sea turtles are represented by only seven species worldwide but are 

threatened across their entire distribution range , therefore DNA barcodes could be 

very useful in species conservation and wildlife forensics by identifying turtle meat 

and eggs illegally traded or carcasses stranded on beaches (Vargas , Araujo and 

Santos, 2009). Although sea turtles represent an ancient group with slow mutation 

rate, ail species were successfully identified and no cryptic species was revealed 

based on genetic distances and character-based methods (Naro-Maciel et al. , 2009 ). 

Two recently radiated species showed the only interspecific distance below the 

threshold of 2-3% but even so, there was no overlap between intra- and interspecific 

values. Other marine reptiles , such as snakes, will be barcoded within a large iBOL 

project targeting ail vertebrates (A. Borisenko , pers. comm .), while birds connected 

to the marine environ ment are already being barcoded within "Ali Birds Barcoding 

1 nitiative" (http://www.barcodingbirds .org). 

The most studied and charismatic marine vertebrates (whales , dolphins and 

the other cetaceans), lack a comprehensive library of DNA barcodes. However, a 

newly established campaign , Mammalia Barcode of Life 

(http://www.mammaliabol.org), has as goal to provide DNA barcodes for ail 

mammals by 2015 , marine species as weil. 
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DNA barcoding is a tool for species identification and discovery (by flagging 

divergent clusters) and modern taxonomy and systematics is increasingly 

incorporating COI sequences as additional data into their fields (Jarnegren et al., 

2007; Krug et al., 2007; Derycke et al., 2008; Cardenas et al., 2009 ; De Wit, Rota 

and Erseus, 2009) . DNA barcodes might become a standard character to be 

included with species description and low sequencing prices will soon make this tool 

widely available to researchers from economically poor but biodiversity rich 

countries . Although we saw a multitude of cases arguing for potential cryptic species 

("taxon-splitting"), there will definitely be cases of "taxon-Iumping" revealed with a 

DNA-based approach . For instance, two lumpsucker species with different 

morphology were found to have identical sequences for multiple genes and to 

actually represent one sexually dimorphic species (Byrkjedal , Rees and Willassen , 

2007). Moreover, DNA barcodes could be incorporated into large phylogenies 

(Kappner and Bieler, 2006; larsson , Ahmadzadeh and Jondelius, 2008) or used for 

inferring preliminary phylogeographic patterns (Costa et al., 2009). 

1.7 Current status 

1.7.1 How many marine barcodes? 

We attempted to make a synopsis of marine groups that have been targeted 

by DNA barcoding by focusing on published data. Sorne of the papers reviewed here 

were contributions to the Marine Barcode of Life Project (MarBOl, 

http://www.marinebarcoding.org), a joint effort of CBOl and Census of Marine Life 

(CoMl; http://www.coml.org) to provide 50,000 barcodes for marine species by mid-

2010. Since the project is still in progress, only preliminary results are available at 

this moment. However, with more than 37,000 barcodes produced (MarBOl website, 

February 2010), the project is moving fast forward confirming the usefulness of such 

an approach for marine systems (Figure 1.3). 
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Figure 1.3 Proportion of barcoded species across marine animal taxa. (Data 
provided by D. Steinke, MarBOl coordinator) 

There is a wealth of on-going case-studies in the marine realm that will be 

published in the near future (http://www.bolinfonet.org/casestudy; Taxonomy 

Browser in BOlD). Whether taxon-oriented (FISH-BOl, SharkBOl, Sponge 

Barcoding Project) , nationwide (Canada , Australia , Norway, India) or locally focused 

on entire biota (Churchill , Moorea) , targeting ecosystems (ReefBOl), ecoregions 

(Polar Barcode of Life) or multiple taxa from the entire marine environ ment 

(MarBOl), large-scale barcoding campaigns will provide a vast amount of 

information in need for accu rate treatment and analysis. 

A first glimpse at the Canadian case-study might suggest that marine 

biodiversity has been severely underestimated even in a marine non-hotspot area. 

First , there is an enormous amount of marine species, mostly invertebrates, 

collected in the past and still awaiting formai description and naming (only 48% of 

marine species classified ; Mosquin et al., 1995; Archambault et al., 2010). Second, 

the opening of the Northwest Passage due to climate change will lead to new Arctic 

explorations, most likely ending with new faunal discoveries, especially in less-
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known groups (e.g., polychaetes) . Third , DNA barcodes indicate that cryptic 

speciation might take place even in well-known marine taxa (though to less extent) 

and geographical areas. For instance, DNA barcodes showed that one quarter of 

polychaete identified morphospecies actually consists of potential cryptic species 

when considering a nationwide scale with ail three oceans, Atlantic, Arctic and 

Pacific, included (C . Carr, pers. comm.). Based on this result and knowing that there 

are at least 673 infaunal polychaetes for the three oceans (Archambault et al. , 2010) , 

this would mean that around 840 species of polychaetes are present in Canadian 

waters alone . Cryptic speciation seems to be common in different groups of marine 

algae (G . Saunders, pers. comm.) but less so in fish (Steinke et al. , 2009) or marine 

crustaceans (Radulovici , Sainte-Marie and Dufresne, 2009). However, marine 

crustaceans include a wide variety of groups with different potential for dispersal 

(hence different potential to speciate) and once a nationwide scale is included and 

taxonomic input provided , crustaceans might likely exhibit various extents of cryptic 

speciation (Radulovici et al., unpublished) . 

1.7.2 Special issues with marine taxa 

Where are we now? Recent developments provide non-invasive DNA 

extraction with total voucher recovery (Porco et al., 2010), as weil as extraction of 

DNA leaked into the aquatic environment (Ficetola et al., 2008) or ethanol 

(Shokralla , Singer and Hajibabaei , 2010) . Primers are being developed for various 

taxa and additional markers or larger COI fragments used in cases of slow mutation 

rate (e.g ., sponges, cnidarians) . The BIO high-throughput facilities provide around 

250,000 barcodes per year and that amount will double in the future (G. Singer, pers. 

comm.). We have the technological capacity to barcode the entire life, yet marine 

barcoding lags far behind the terrestrial counterpart (Figure 1.4). Why? The long-

standing tradition of preserving marine material by using formalin , which prevents 

DNA amplification , represents a serious impediment in using museum specimens for 

DNA barcoding , in contrast to terrestrial taxa. Therefore, fresh material stored in 
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ethanol must be collected during sampling cruises, which are very expensive and 

usually focused on one or a few particular groups of marine organisms. These 

specimens have to be identified by trained taxonomists who are drastically 

decreasing in number. Moreover, most marine groups do not benefit from the help of 

amateurs, in contrast to terrestrial groups such as birds or butterflies. Consequently , 

a greater effort is inevitable when barcoding marine taxa. 

1.7.3 Taxonomy and barcoding 

At the moment we are unable to assess the impact of DNA barcoding on 

species diversity in terms of number of new species described as a result of this 

approach . The reason is simple: barcoding studies have the role to screen large 

sample sizes and flag cases of intraspecific deep divergence ("cryptic species"). 

However, the task of investigating further the extent of this phenomenon (additional 

genetic, ecological, behavioral data) culminating in a new species description does 

not belong to a barcoder but to a taxonomist. And since the number of taxonomists is 

rapidly decreasing (Packer et al. , 200gb) while marine barcodes are rapidly 

accumulating , the majority of flagged cases stop at the level of "potential cryptic 

species". Without a larger interest and involvement of highly trained taxonomists in 

marine barcoding studies, the advancement of the understanding of marine 

speciation will not be very rapid , potentially leading to another "tale of stupidity" 

(Boero, 2010). 
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Figure 1.4 The amount of barcoding studies targeting marine systems ("DNA 
barcod*" and "marine" as keywords in Web of Science) relative to barcoding studies 
in general ("DNA barcod*"). 

1.7.4 Future directions 

Most of the studies reviewed here did not flag a high amount of cryptic 

speciation but this discovery is contingent upon the scale of the studies. An 

increased geographic scale and the inclusion of groups with lower potential for 

dispersal will surely bring interesting results. Since a few cases of deep divergence 

have been found in fishes, the most popular marine group for barcoding , surveys of 

similar scales in understudied groups will be promising for species discovery. 

New methods for sampling the deep-sea will lead to the discovery of many 

new species. Sampling expeditions with on-board laboratories might become 

commonplace. While most barcoding studies are still taxon-oriented , there are a few 

others opening new directions by targeting marine communities (e.g., zooplankton , 

Machida et al., 2009 ; Bucklin et al., 2010) . DNA microarrays ("chips") will be 

developed for certain marine groups (Kochzius et al. , 2008), allowing re liable 
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identification of known species. Once reference libraries are completed , next 

generation sequencing will allow reliable identification of environ mental samples 

(e.g., water, sediment) or species diet, with reverberations for studying the 

ecosystem level of biodiversity. 

1.7.5 Species as currency for biodiversity 

This review looked at reliable methods for biological identifications. But do we 

need species names? The idea that species might not represent equal parts of the 

global diversity ("some animais are more equal than others"; Warwick and 

Somerfield , 2008), resulted in alternative approaches for biodiversity assessments, 

for instance including the diversity of higher taxa (e.g., taxonomie distinctness rather 

than species diversity; Warwick and Clarke, 1995). Moreover, in functional ecology 

species names are not important but just the functional group (e.g., predator, prey). 

ln this case, one might argue that barcodes are useless because they do not offer 

any functional information , while morphological characters (e.g., mouthparts in 

crustaceans) could be an indication of specimens' functional group and their role in 

ecosystems. Alternatively , at the genetic level of biodiversity, species names are not 

crucial. Clusters of DNA barcodes might be used in biod iversity surveys by using a 

phylogenetic diversity analysis (Faith , 1994; Faith and Baker, 2006). Therefore, we 

should take advantage of various methods, including classical taxonomy, for a 

holistic approach to biodiversity. 

1.8 Conclusions 

DNA barcoding is a unique concept with many innovative attributes undergoing 

continuous improvement. It is not the goal but the tool to be used in order to improve 

our understanding of the surrounding world. It is a fast , reliable and cheap method 

for species identification and discovery. It provides permanent tags unchanged 
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during taxonomie revisions . It will have multiple applications for marine life: 

identification of larvae, invasive species, cryptic species, new species, illegal trade of 

protected species, stock management, biodiversity assessments, ecosystem 

monitoring , revisions of certain taxa, inference of phylogenetic relationships , and 

phylogeographic and speciation patterns. Most of the studies reviewed here were 

published within the last two-three years and there was no sign that traditional 

taxonomy is being replaced by DNA barcoding , as once feared , but that they are 

complementary approaches. Not only that species are not seen as merely strings of 

nucleotides, but we are witnessing a renaissance of taxonomy due to the need (and 

curiosity) to understand how and why divergent barcode clusters are (if really) 

morphologically identical. As seen above, the apparent "failure" of DNA barcoding to 

identify species is mainly due to a lack of comprehensive reference libraries and 

taxonomists will play a vital role in completing such a global database. Millions of 

barcodes will soon be generated and new species revealed , in need for proper 

taxonomie description . Furthermore, as marine inventories are not carried out by 

taxonomist experts at museums but by trained personnel at university or 

governmental institutions, there is a pressing need to make a concordance between 

taxonomy and DNA barcoding. Therefore, taxonomy is far from being extinct . 

Whether DNA barcoding with the plethora of global and local campaigns will 

succeed in meeting close deadlines (500 ,000 species by 2015) or not, remains an 

open question. During the last ten years, CoML had the objective to assess and 

explain the diversity, distribution , and abundance of marine life, contributing 

significantly to an understanding of the marine environment and the inhabitants of 

the global oceans. However, even with the amount of new information generated by 

CoML, it is only the beginning . DNA barcoding might be of great help in this 

direction , leading to a shift in our view of marine biodiversity, patterns and processes 

included. But above ail , DNA barcoding provides data freely accessible to everyone. 

And even if computers and Internet access, needed to browse data in BOLD, are not 

yet a commodity in many countries, DNA barcoding represents the largest 
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experiment of open-access data sharing which could help decision making to 

preserve and protect marine biodiversity now and into the future . 
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2.1 Résumé 

Les crustacés marins représentent un groupe taxonomique qui se caractérise par 
une forte diversité morphologique et écologique. Ils sont difficiles à identifier par les 
approches traditionnelles et nécessitent généralement l'aide de taxonomistes 
hautement qualifiés pour une identification certaine. La méthode rapide 
d'identification par le code-barres d'ADN , s'est révélée un outil très efficace pour 
l'identification des espèces, notamment pour de nombreux groupes de Métazoaires, 
y compris certains groupes de crustacés. Notre travail consiste ici à élargir la base 
de données d'ADN barcode par l'étude de 80 espèces de malacostracés provenant 
de l'estuaire et du golfe du Saint-Laurent. Les séquences d'ADN pour 460 
spécimens ont été regroupées en groupements correspondant à des espèces 
morphologiquement connues dans 95% des cas. Les distances génétiques entre les 
espèces étaient en moyenne 25 fois plus élevées qu 'au sein de chaque espèce. Une 
divergence intraspécifique élevée (de 3,78 à 13,6%) a été observée chez des 
spécimens appartenant à quatre espèces morphologiques, suggérant la présence 
d'espèces cryptiques. Par ailleurs, nous avons révélé la présence d'une espèce 
envahissante d'amphipode présente dans l'estuaire du Saint-Laurent. Cette étude 
confirme l'utilité de l'ADN barcode pour l'identification des crustacés marins. 

Mots-clés: Crustacea; code-barres d'ADN ; Golfe du St. Laurent; diversité d'espèces 
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2.2 Abstract 

Marine crustaceans are known as a group with a high level of morphological and 
ecological diversity but are difficult to identify by traditional approaches and usually 
require the help of highly trained taxonomists. A faster identification method , DNA 
barcoding , was found to be an effective tool for species identification in many 
metazoan groups including some crustaceans. Here we expand the DNA barcode 
data base with a case study involving 80 malacostracan species from the Estuary 
and Gulf of St Lawrence. DNA sequences for 460 specimens grouped into clusters 
corresponding to known morphological species in 95% of cases. Genetic distances 
between species were on average 25 times higher than within species. Intraspecific 
divergence was high (3.78-13.6%) in specimens belonging to four morphological 
species , suggesting the occurrence of cryptic species. Moreover, we detected the 
presence of an invasive amphipod species in the St. Lawrence Estuary. This study 
reconfirms the usefulness of DNA barcoding for the identification of marine 
crustaceans. 

Keywords: Crustacea ; DNA barcoding ; Gulf of St. Lawrence; species diversity 
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2.3 Introduction 

A biodiversity crisis has emerged in the last decades and we are confronted 

with the highest extinction rates since the formation of human society (Pimm et al., 

1995). Mitigation measures are needed but difficulties arise due to the unknown 

extent of biodiversity and spatial distribution of species assemblages. At the species 

level , the most investigated of biodiversity levels , it is generally agreed that only a 

small fraction of ail species has been formally described , between 1.5-1 .8 million out 

of an estimated 10 million (Wilson 2003) . In the face of dwindling numbers of trained 

taxonomists , a fast identification method was needed to assist in species inventories. 

ln this context, Hebert et al. (2003) proposed the use of a small fragment of 

mitochondrial DNA from the 5'-end of the cytochrome C oxidase subunit 1 (COI) gene 

as a reliable , quick and cost-effective identification system for the whole animal 

kingdom. Although the method faces strong criticism (Will and Rubinoff, 2004; Ebach 

and Holdrege, 2005 ; Will , Mishler and Wheeler, 2005) , it has nonetheless proven 

effective in a variety of animal groups in both terrestrial and aquatic environments 

(Hebert et al., 2004; Hajibabaei et al., 2006 ; Clare et al. , 2007; Hubert et al. , 2008) . 

However, the proposed threshold value of 3% COI sequence divergence for species 

delineation (Hebert et al., 2003) may be problematic in some cases (Barber and 

Boyce , 2006 ; Burns et al., 2008 ). 

Diversity in the sea includes about 300 000 described species, a much smaller 

number than documented for the terrestrial realm (Gray 1997). However, marine 

faunal inventories fail to identify about one-third of specimens to the species level 

(Schander and Willassen , 2005) and the existence of cryptic species (Knowlton 

1993, 2000; Etter et al., 1999) creates another difficulty for biodiversity assessments. 

Crustaceans are an interesting target for DNA barcoding because they represent 

one of the most diverse metazoan groups from a morphological and ecological point 

of view. The subphylum Crustacea includes 52 000 described species divided into 

849 families , 48 orders and six classes, but their estimated number is much higher 
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(Martin and Davis, 2001) . There is no general agreement on crustacean systematics 

at higher classification levels (e.g . class) (Boxshall , 2007) , and recent molecular 

phylogenies have challenged systematics at the family and genus levels (Englisch, 

Coleman and Wagele , 2003; Browne, Haddock and Martindale, 2007; Hou , Fu and 

Li , 2007). Morphological identification of crustaceans can be difficult, time-consuming 

and very often requires highly trained taxonomists . Previous work on crustaceans 

found DNA barcoding to be a useful tool for specimen identification in both marine 

and freshwater species (Bucklin et al., 2007; Costa et al. , 2007) . 

This study builds on previous barcoding work on crustaceans by focusing on 

marine species from the Estuary and Gulf of the St. Lawrence River. This geographic 

region of Atlantic Canada is known for its complexity, having such a wide range of 

physiographic, oceanographic and bathymetric characterist ics that Brunei , Bossé 

and Lamarche (1998) divided it into 20 biogeographical zones. Although some 770 

crustacean species are known from the Estuary and Gulf (Brunei , Bossé and 

Lamarche 1998), we chose to focus mainly on amphipods and decapods. The former 

represents the most speciose crustacean order and is an important component of 

marine food webs. The latter includes species (Iobster, shrimp and crabs) that are 

important economically in providing large harvests and high income to Atlantic 

Canada , and ecologically as top predators in the marine benthic ecosystem. Our 

study adds to existing databases a large number of specimens sam pied across a 

vast geographical area for a better representation of intraspecific variation . DNA 

barcodes reported in this study represent permanent species tags that will not 

change during taxonomic revisions . 
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2.4 Material and methods 

2.4.1 Samples 

We used 507 crustacean specimens collected in the Estuary and Gulf of the 

St. Lawrence River in 2000 (7 specimens) and between 2005 and 2008 (500 

specimens) (Figure 2.1). The specimens represented 87 described species in 60 

genera, 39 families and 5 orders (Amphipoda, Decapoda, Euphausiacea, Isopoda, 

Mysida) of a single class (Malacostraca) . Deep-water specimens were collected 

during trawl surveys conducted by Fisheries and Oceans Canada (DFO), while 

littoral specimens were collected at low tide using dip nets and baited traps . Samples 

were stored in 100% ethanol (2005-2008) or in 70% ethanol (2000). Morphological 

identifications were done by experts or followed available keys for North Atlantic 

amphipods (Bousfield 1973) , decapods (Squires, 1990), isopods (Schultz, 1969), 

mysids (Brunei , 1960) and euphausiids (Mauchline, 1971). Scientific names followed 

the Integrated Taxonomic Information System (www.itis.gov) and the list of 

McLaughlin et al. (2005). In most cases , the whole specimen was stored as a 

morphological voucher for future reference . For a few large decapod species, we 

obtained only tissue (legs or abdominal muscle) for barcoding and we stored these 

samples as tissue vouchers. However, additional specimens of each of these 

decapod species have been stored as proper morphological vouchers . In a few 

juvenile amphipods and crab larvae, no voucher could be preserved due to their very 

small body size, but photographs were taken prior to DNA extraction . Ali details 

regard ing taxonomy, vouchers and collection sites with geographical coordinates can 

be found on the Barcode of Life Data System website (BOLD, 

www.barcodinglife .org) under the "Crustaceans of the St. Lawrence Gulf' project 

(WWGSL) by following "View ail records" - "Specimen Page" (Ratnasingham and 

Hebert , 2007). In order to ensure geographical coverage for DNA barcodes, when 

possible , we included multiple specimens (at least two per site) from different 

geographical areas of the Gulf of St Lawrence (e.g. North Shore vs . Southern Gulf). 
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Figure 2.1 Distribution map for ail sampling sites within the Estuary and Gulf of the 
St. Lawrence River. Canadian provinces surrounding the study area: Québec (QC), 
New Brunswick (NB), Nova Scotia (NS), Prince Edward Island (PEI ), Newfoundland 
and Labrador (NFL). 
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2.4.2 DNA extraction, amplification, sequencing 

Laboratory operations were carried out at the Canadian Centre for ONA 

Barcoding (CCOB) , University of Guelph . Total genomic ONA was extracted from 

small amounts of tissue (1-mm3 muscle tissue or whole legs for small specimens) by 

using an automated silica-based protocol with glass fibre filtration plates (Ivanova, 

Oewaard and Hebert, 2006) . The barcode region was amplified with alternative sets 

of primers depending on the reaction success: LC01490/HC02198 (Folmer et al., 

1994) with M13 tails , CrustOF1' (5-GGTCWACAAA YCATAAAGAYATTGG-3') -

CrustOR1 (5'-TAAACYTC AGGRTGACCRAARAAYCA-3') (O. Steinke , University of 

Guelph , in preparation) and CrustF1/HCO (Costa et al. , 2007). Ali primer sequences 

can be found on the BOLO website within the project WWGSL ("View ail records" -

"Sequence Page" for each specimen) . The polymerase chain reaction (PCR) was 

performed in 12.5 IJL volume containing 2 IJL H20 , 6.25 IJL 10% trehalose, 1.25 IJL 

10x PCR buffer, 0 . 62~L MgCI2 (50 mm) , 0.0625 IJL d NTPs (10 mm), 0.06 IJL 

Platinum Taq polymerase (Invitrogen) , 0.125 IJL of each primer (10 IJm) and 2 IJL 

ONA template. PCR thermal conditions included: 1 min at 94°C, five cycles of 94°C 

for 40 s, 45°C for 40 s and 72°C for 1 min , followed by 35 cycles of 94°C for 40 s, 

51 °C for 40 s and 72°C for 1 min , and a final step of 72°C for 5 min . PCR products 

were visualized on 96-well precast 2% agarose gels (Invitrogen E-Gel 96 system) 

and bidirectionally sequenced with Big Dye version 3.1 on an ABI 3730xl ONA 

Analyser (Applied Biosystems). Primers used for sequencing depended on those 

used for amplification , namely M13F/M13R, CrustOF1/CrustOR1 or CrustF1/HCO. 

Additional details about laboratory protocols for each step are available from the 

CCOB website (www.dnabarcoding .ca) . 
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2.4.3 Data analysis 

DNA sequences were aligned with SeqScape version 2.1.1 (Applied 

Biosystems) and manually checked for ambiguities. DNA sequences, as weil as 

trace files , are available on the SOLO website within the project WWGSL ("View ail 

records" - "Sequence Page" for each specimen) and on GenBank (Accession nos 

FJ581463 - FJ581922). A SLAST search inciuding one sequence per species was 

performed on GenBank (megablast algorithm) . The Kimura 2-parameter (K2P) 

model for base substitution (Kimura , 1980) was used in analyses on the BOLD 

website to obtain pairwise genetic distances. A neighbor-joining tree (NJ) based on 

K2P distances was also built in BOLD for a graphie representation of intraspecific 

distances. MEGA 4 (Tamura et al. , 2007) was used to test the NJ tree by bootstrap 

analysis with 1000 replications . Genetic distances between specimens were 

calculated for each taxonomie level with the "Distance Summary" command 

implemented by BOLD. Cases of intraspecific divergence higher than 3% were 

considered as potential cryptic species. 

2.5 Results 

Amplification failed in the seven specimens stored in 70% ethanol , 

representing the amphipods Oyopedos monacanthus (n = 1), Gammarellus homari 

(n = 1) , Gammarus fasciatus (n = 1), Gammarus lacustris (n = 2) , and Jassa 

marmorata (n = 2) . Consequently, successful amplification of the barcode region was 

not obtained for five of the 87 species studied here. The remaining 500 specimens 

yielded a positive amplification of COI. Short or low-quality sequences (double 

peaks, background noise) obtained from 36 specimens and possibly representing 

pseudogenes were discarded. Only 25% of our sequences had matches in GenBank 

due to the fact that most species in our study had not been COI-sequenced before. 

Additionally, the amphipod Stegocephalus inflatus (n = 2) and the isopod Calathura 



70 

brachiata (n = 2) did not match crustacean COI sequences, possibly due to 

contamination. One discrepancy appeared between our morphological identifications 

and GenBank: COI sequences of amphipod specimens in poor condition that we 

morphologically identified as Marinogammarus obtusatus matched those of the 

invasive species Echinogammarus ischnus from GenBank. 

The data base resulting from this study includes DNA sequences for 460 

specimens belonging to 80 species in 56 genera . The number of COI sequences per 

species varied between 1 and 29 with a mean of 5.75 . The 658-bp COI fragment had 

432 variable sites and 226 conserved sites, while 419 sites were parsimony-

informative. Ambiguities were present in a few cases but they did not change the 

final result. The mean intraspecific divergence was 0.91 % while the maximum 

reached 13.6% (Appendix A). By contrast , the minimum interspecific distance was 

2.81 %, between Hyas araneus and H. coarctatus (Apendix 2.1). The two levels of 

variation , namely within and between species, showed a small overlap (Figure 2.2). 

Morphological species were represented by individual clusters containing highly 

similar sequences in 95% of cases. However, four cases of deep intraspecific 

divergence, greater than 3%, were observed and the respective clusters were 

considered to be potential cryptic species (Table 2.1; Figure 2.3). With these clusters 

removed, the mean intraspecific divergence is 0.51 %. The crab larvae sequenced in 

this study matched Chionoecetes opilio sequences, a result confirmed by rearing a 

few larvae in the laboratory. 
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Figure 2.2 Frequency distribution of mean divergences for COI sequences for 80 
species of malacostracan crustaceans from the Gulf of St. Lawrence. Two taxonomie 
levels are represented : species (solid bars) and genus (shaded bars). For maximum 
intraspecific divergences higher than 3%, see Table 2.1. 

Table 2.1 Crustacean species with maximum intraspecific COI sequence 
divergences higher than 3% 

Species name Maximum Putative Maximum Bootstrap 
intraspecific number i ntra-I i neage support for 
divergence of cryptic divergence each cryptic 

(%) lineages (%) lineage 

Ampelisca eschrichtii 13.6 2 0; 0.61 99; 99 
Ischyrocerus anguipes 4.24 2 1.39; 2.17 94; 99 
Neomysis americana 3.78 2 0; 0.45 99; 99 
Spirontocaris spinus* 6.91 3 0.5; 1.07; - 98; 99; -
*Th is species has three lineages, one represented by a single specimen (therefore, no 
pairwise comparison and no bootstrap support). 
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Figure 2.3 Branches of the neighbor-joining tree highlighting the four species 
complexes (and related species) found for malacostracan crustaceans fram the st. 
Lawrence Gulf. Bootstrap values based on 1000 replications are included. 
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2.6 Discussion 

This study further supports the validity of DNA barcoding for species 

identification in marine crustaceans. The ratio of interspecific to intraspecific variation 

(25 x) was much higher than the threshold (10 x) proposed by Hebert et al. (2004) as 

a species boundary. Therefore, assigning specimens to species was usually 

straightforward with no overlap between intra- and interspecific distances (95% of 

cases). 

ln four morpholog ical species COI sequences grouped into 2-3 clusters that 

diverged by at least 3% (Table 2.1; Figure 2.3), suggesting either the presence of 

cryptic species or nuclear mitochondrial pseudogenes (numts). A growing concern 

regarding numts and DNA barcoding is that , if undetected , numts might lead to an 

overestimation of species richness (Song et al., 2008) . In crustaceans, numts have 

been found to diverge from the COI gene by up to 18.8% (Williams and Knowlton , 

2001 ). To investigate the possibility of having amplified numts, we used a few steps 

suggested by Song et al. (2008). We found no stop-codons (quality control tool on 

BOLD) or indels, the sequences were of high quality, had the expected length (658 

bp), matched COI sequences in GenBank, and the proportion of adenine-thymine did 

not differ strikingly among lineages. Moreover, intraspecific clusters were not related 

to geography. Consequently, we suggest that the amphipods Ampelisca eschrichtii 

and Ischyrocerus anguipes, the mysid Neomysis americana and the decapod 

Spirontocaris spinus represent species complexes. Classical taxonomy has already 

inferred the existence of species complexes in North American Ampelisca spp. and 1. 

anguipes based on the existence of size morphs or subtle differences in morphology 

(Kaim-Malka, 2000 ; King and Holmes, 2004; references therein ). Additional 

taxonomic , ecological and molecular work is required to investigate the full extent of 

cryptic speciation in crustaceans from the Gulf of St. Lawrence, as DNA barcoding 

can only serve to flag su ch cases. 
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The smallest divergence between species was 2.81 % in Hyas araneus and 

H. coarctatus , two species that are morphologically distinct from the larval stages to 

adulthood but genetically close (Hultgren and Stachowicz, 2008). This finding is in 

agreement with other cases of DNA barcoding difficulties for arthropod identification 

(Barber and Boyce, 2006 ; Burns et al. , 2008) , suggesting once more that the 3% cut-

off in sequence divergence is not always applicable and that caution must be 

exercised in cases of incomplete lineage sorting . 

Practical applications of DNA barcoding of crustaceans include detection of 

invasive species, substitution in processed seafood and estimation of stock size of 

harvested species based on larval abundances (Costa et al., 2007). We report here 

the presence of an invasive amphipod , Echinogammarus ischnus, in the St. 

Lawrence Estuary near Berthier-sur-Mer. This species has spread from its native 

Ponto-Caspian region into Western Europe and the Great Lakes of North America. In 

Canada, it has been previously reported along the St . Lawrence River upstream from 

Montréal (Palmer and Ricciardi , 2004) and the present study confirms its north-

eastern expansion . This species was identified as the morphologically similar 

Marinogammarus obtusatus based on specimens in poor condition, but ail 

sequences matched those of E. ischnus determined in a previous phylogeographical 

study (Cristescu et al., 2004). Without these reference sequences, our error might 

have gone unnoticed, thus emphasizing the importance of classical taxonomy to 

barcoding . Reciprocally, this example also stresses the success of DNA barcoding in 

rapidly detecting invasive species. 

The 80 species sequenced in the present study represent on ly 20% of about 

400 species inventoried within the Estuary and Gulf of the St Lawrence River 

(Brunei , Bossé and Lamarche, 1998) for the five malacostracan orders represented 

here. Some 20 other amphipod species were not included due to uncertain 

morphological identifications. Full taxonomie coverage of the known crustacean 

species from the Estuary and Gulf is hampered by sampling difficulties. Indeed, 
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except for decapods of economic importance (60% sequenced) , other mala-

costracan species are not targeted by regular sampling surveys and seldom show up 

as by-catch. Moreover, for some taxa (e .g. amphipods), the use of dip nets, baited 

traps or bottom trawls will lead to a sampling bias towards highly mobile species. 

Therefore, the fraction of species diversity representing the most common (Brunei , 

Bossé and Lamarche, 1998) and most mobile (Sainte-Marie and Brunei, 1985) forms 

was explored in this study. There are two avenues to create a comprehensive 

data base for the Gulf crustaceans in the future : fund research cruises targeting rarer 

crustaceans; and/or technological advances for high-throughput DNA extraction from 

formalin-preserved crustaceans. Exploiting museum collections , one of the goals of 

DNA barcoding , is a difficult task when working with crustaceans due to the 

traditional use of formalin which negatively affects DNA recovery . Consequently, 

barcoding studies are most successful wh en performed on groups that can make 

use of museum "dry" collections (e .g. insects, birds, mammals) . There is no global 

campaign yet to barcode ail crustacean species (or at least Malacostraca) as exists 

for other animal groups (e.g. fish , birds, lepidopterans) ; however, building regional 

databases throughout the world will bring us closer to understanding crustacean 

diversity. In summary, DNA barcoding is a very useful tool for the identification of 

malacostracan crustaceans by assigning unknown specimens to known species, 

insofar as species assignations in GenBank are reliable . DNA barcoding may lead to 

species discovery by flagging cryptic species, although more data than COI 

sequences are necessary for describing new species . However, based on DNA 

barcoding of the most common species at the regional scale of the Estuary and Gulf 

of St. Lawrence, cryptic species do not appear to be very common . 
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3.1 Résumé 

Les Talitridae représentent une grande famille d'amphipodes (plus de 200 espèces 
décrites et plus de 2,000 espèces estimées) , répartis le long des rives de la plupart 
des continents. Ils appartiennent à la seule famille d'amphipodes qui ait colonisé la 
terre . Ils sont artificiellement divisés en plusieurs groupes écologiques sans aucun 
soutien phylogénétique (espèces qui s'enfouissent sous du varech échoué, espèces 
palustres, espèces qui s'enfouissent sous le sable, espèces terrestres). Nous 
élaborons dans ce chapitre , une bibliothèque de référence de code-barres d'ADN 
(séquences de cytochrome c oxydase 1, COI) pour les Talitridae de l'Atlantique du 
Nord , principalement présents le long de la côte nord-américaine (Golfe du Mexique 
et Golfe du Saint-Laurent) ainsi que pour quelques espèces européennes. L'analyse 
phylogénétiq ue (inférence bayésienne, maximum de vraisemblance) de 218 
séquences d'ADN a révélé la présence d'espèces cryptiques nord-américaines. De 
plus, certains genres semblent non monophylétiques et le caractère polyphylétique 
des groupes écologiques est renforcé . La liste initiale de 15 espèces 
morphologiquement définies a été étendue à 24 espèces supposées, principalement 
par la découverte de trois complexes d'espèces (Platorchestia platensis, Orchestia 
gril/us, Tethorchestia sp. B). La spéciation cryptique suit essentiellement un modèle 
allopatrique (sauf pour O. gril/us) et certains de ces groupes sont soutenus comme 
'espèces nouvelles' par des preuves morphologiques. Des recherches à venir 
devront inclure du matériel des localités types , afin de clarifier la position 
phylogénétique des "vraies" espèces morphologiques . Le séquençage d'autres 
gènes mitochondriaux et nucléaires ainsi que l'ajout de taxons supplémentaires 
seront nécessaires pour une analyse complète des relations phylogénétiques au 
sein des Talitridae. 

Mots-clés : diversité cryptique; code-barres d'ADN ; évolution ; Atlantique du Nord ; 
Talitridae 
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3.2 Abstract 

Talitridae represents a large family of amphipods (>200 species described , >2 ,000 
species estimated) distributed along the shores of most continents and the only 
amphipod family that has colonized the land. They are artificially divided into 
ecological groups (wrack, palustral , sand-burrower, land-hopper) with no 
phylogenetic support . Here we build a reference library of DNA barcodes 
(cytochrome c oxidase 1, COI) for talitrids from the North Atlantic, mainly from the 
North American coast (Gulf of Mexico , open-Atlantic coast , Gulf of St. Lawrence) , 
together with a few species from Europe. A total of 218 DNA sequences indicated 
the presence of cryptic species in North American talitrids while phylogenetic 
analyses (Bayesian inference, maximum likelihood) showed some genera to be non-
monophyletic and reinforced the polyphyletic character of the ecological groups. The 
initial list of 15 morphologically defined species was extended to 24 putative species 
mainly by discovering three species complexes (Platorchestia platensis , Orchestia 
gril/us , Tethorchestia sp . B) . Cryptic species were geographically separated (except 
for O. gril/us) and some of these clusters were supported as new species by 
morphological evidence . Further directions should include barcoding of material from 
type localities, in order to clarify which cluster is the "real " morphological species. 
Additional mitochondrial and nuclear genes, as weil as more taxa , are needed for in-
depth analysis of phylogenetic relationships within Talitridae. 

Keywords: cryptic diversity; DNA barcoding ; evolution ; North Atlantic; Talitridae 
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3.3 Introduction 

Amphipods represent a highly diverse crustacean order but only one family, 

the Talitridae Rafinesque, 1815, was successful in colonizing the terrestrial 

environ ment. Talitrids are distributed worldwide along coastlines, in freshwater, 

brackish and marine habitats, as weil as on land , in grassland and wet forests at low 

and high altitudes. Due to their body modifications for hopping , they are commonly 

known as "hoppers". Presumably evolving from aquatic ancestors during the 

Cretaceous (Bousfield, 1984, but see Conceiçao, Bishop and Thorpe, 1998) , talitrid 

diversification was probably stimulated by the appearance of long coastlines 

following the break-up of the supercontinents, and it was more accentuated in 

tropical and temperate regions of Tethyan and Gondwanan origin than in Laurasian 

successors. 

Current amphipod taxonomy at higher levels (e.g., subfamily , family, and 

superfamily) is unsatisfactory and without a phylogenetic basis. Families are usually 

presented alphabetically and higher taxonomie levels are under continuous revision 

with talitrid systematics following the same dynamic trend. Currently, taxonomie 

levels above Talitridae include superfamily Talitroidea (consisting of four families : 

Talitridae, Hyalidae, Chiltoniidae and Dogielinotidae), infraorder Talitrida and 

suborder Gammaridea (Serejo, 2004). Within talitrids , genera are frequently being 

split into multiple taxa and currently amount to 52 genera (Serejo and Lowry, 2008) . 

As a proxy for talitrid classification , Bousfield (1984) proposed the use of four 

"systematic-ecological (polyphyletic and overlapping, but pragmatically useful) units": 

1) palustral species (marsh-hoppers) with primitive morphology, semi-aquatic in 

marine, estuarine (salt marshes, swamps) and freshwater habitats in tropical and 

temperate regions ; 2) beach fleas (beach-hoppers) with more advanced morphology 

but no capability to engineer their substrate, mostly semi-terrestrial , supralittoral in 

rocky and sedimentary habitats but terrestrial in coastal rain forests , from tropical to 
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boreal shores; 3) sand-hoppers with highly specialized morphology for substrate 

engineering (i.e. , burrowing in sand) , semi-terrestrial , supralittoral on sandy beaches, 

from tropical to boreal shores; 4) land-hoppers with advanced morphology for 

terrestrial life, that usually do not engineer substrate, present in forest leaf litter of 

coastal and high-altitude rain forests, in tropical and temperate regions. Although 

widely used in the literature , these lumped non-monophyletic groups create 

difficulties in inferring talitrid evolutionary history. For this reason we have followed 

the strictly ecological classification in Wildish (1988) . Believed to have undergone 

strong adaptive radiation due to their high species richness and endemicity (Serejo, 

2004) , land-hoppers are of unknown origin and several scenarios have been 

proposed , including evolution from primitive beach fleas (Bousfield, 1984) to 

palustral ancestors (Lindeman , 1991). Moreover, the process of colonizing land 

probably included multiple events (Wildish, 1988). In addition to the previous 

morphology-based phylogenies, restricted in taxa and geographic coverage, limited 

effort has been put into resolving genetic relationships of talitrids . Focused on 

European fauna , mainly UK and the Mediterranean basin , genetic investigations 

have been conducted on a total of nine species using both allozymes (Conceiçao, 

Bishop and Thorpe, 1998; De Matthaeis, Davolos and Cobolli , 1998) and DNA 

sequences (Tafani et al., 2004; Davolos and Maclean , 2005) . 

Aquatic talitrids play important ecological roles by decomposing plant material 

cast up on shores and provide a food source for other invertebrates (e.g ., insects, 

spiders, crabs) and vertebrates (e .g., shore birds, mammals) , although their narrow 

zonal distribution might limit their role at the ecosystem scale (review in Wildish , 

1988). Many species reach high densities and biomass, representing a dominant 

component of wrack in the supralittoral zone, the ecotone between marine and 

terrestrial environments. Moreover, some species have been proposed as biological 

indicators for heavy metal contamination (Ugolini et al. , 2004) and quality of sandy 

beaches suffering from anthropogenic activities such as tourism (Ketmaier, Scapini 

and De Matthaeis, 2003) . Amphipods (as ail peracarid crustaceans) are direct 

developers, with eggs hatching into juveniles inside the brood pouch of females . 
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Lacking larval stages (which are usually highly dispersive) and inhabiting a narrow 

supralittoral zone with patches of suitable and unsuitable habitat, talitrids are 

believed to use passive dispersal (rafting , phoretic associations with birds or 

mammals, and human-mediated transport in ballast water) more than active 

methods (e.g., hopping , swimming) for dispersing at various spatial scales (Wildish , 

1988). 

The total number of extant talitrids is unknown although estimates as high as 

1,000 land-hopper species have been mentioned (Bousfield , 1984). If the estimated 

number of land-hoppers represents half of ail talitrid species, as the current ratio for 

described species suggests, it follows that around 2,000 talitrid species might exist 

on Earth , a number an order of magnitude higher than ail currently described species 

(>200; Bousfield , 1984; Serejo and Lowry, 2008) . Regardless of the precision of 

these estimates , there is definitely a large number of talitrid species still to be 

discovered and described . 

As with many other amphipods, talitrids are difficult to identify based on 

morphological characters , especially in juvenile and immature stages. In the field , 

some hoppers can be identified based on their epidermal pigment pattern , 

considered to be less variable within than among species, although parasitic 

infestation can affect the color (LeCroy, 2010). Moreover, the pigmentation is not 

preserved in some storage liquids (e.g. , alcohol) . Such a diverse and taxonomically 

difficult group would benefit greatly from DNA barcoding . This method has been 

proposed as a fast , reliable and cost-effective method for an imal species 

identification by using a fragment of the mitochondrial gene cytochrome C oxidase 1 

(COI) (Hebert et al., 2003) . DNA barcoding has been successfully tested in a variety 

of marine groups (reviewed in Radulovici, Archambault and Dufresne, 2010), 

including crustaceans (Costa et al. , 2007; Radulovici, Sainte-Marie and Dufresne, 

2009 ; da Silva et al. , 2011) , and it has been used together with morphological 

characters to detect and describe a new talitrid species from Taiwan (Cheng et al. , 

2011 ). However, taxonomie or regional inventories of talitrids based on DNA 
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barcoding are stililacking . 

Here we focus on talitrid fauna fram the East Coast of North America , from 

the Gulf of St. Lawrence (GSL) to the Gulf of Mexico (GOM) , including also selected 

species from the Caribbean and Europe (UK) , spanning various biogeographical 

provinces, each with a different glaciation history. There is an increase in species 

and genus richness fram North to South , with three genera and five species currently 

recognized for Atlantic Canada (Brunei , Bossé and Lamarche, 1998; Bousfield , 

1973), increasing to six genera and eight species in GOM (LeCroy et al. , 2009), 

while many more species occur in the Caribbean , some of which have been 

collected decades ago and still await formai description (Bousfield , 1984). In 

addition , a decrease in body size from north to south has been documented in two 

talitrid species (Wildish et al., 2011 ). The known North Atlantic talitrid checkl ist 

includes generalists and specialists , endemic and cosmopolitan species, good and 

poor dispersers, species with various habitat requirements and salinity tolerances. 

Because there are no native land-hoppers in North America (Bousfield , 1982), this 

group has been excluded from our study, while the term "talitrid hoppers" is 

employed as a general label for the other three ecological groups (wrack, sand-

burrowing and palustral species) . Our goals were to : i) establish a barcode reference 

library for North-Western Atlantic (NWA) talitrid hoppers; ii ) uncover the level of 

cryptic diversity; and iii) infer phylogenetic relationships among North Atlantic 

tal itrids. 

3.4 Material and methods 

3.4.1 Sam pie collection 

Talitrids were collected on various sandy beaches, rocky shores and marshes 

along the East Coast of North America , fram GSL to GOM and the Caribbean (Table 
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3.1). A few species from Europe (UK) were included as weil in order to infer 

phylogenetic relationships within the genus Orchestia Leach , 1814 (Figure 3.1). As 

outgraup to talitrids , we chose Parhyale fascigera Stebbing , 1897 from the closely 

related family Hyalidae Bulycheva, 1957. Samples were collected with pitfall traps or 

by hand and immediately fixed and then stored in 95% ethanol. Whenever possible, 

we tried to collect multiple specimens per species (to reveal the intra- versus 

interspecific genetic variation) and from multiple geographic localities (to gain 

insights into the geographic variation of DNA barcodes). 

Regarding the salinity tolerance and ecological habitats occupied by talitrids 

(Table 3.2), we included species with a wide range of salinity tolerance fram 

freshwater to brackish and marine species , and species representing three out of 

four "systematic-ecological" groups of Bousfield (1984) . Ali specimens were 

identified to the species level based on morphological characters according to 

available taxonomic keys for North America (LeCroy, 2010; Bousfield , 1973) and the 

nomenclature followed the "World Amphipoda Database" (Lowry, 2010) available in 

the World Register of Marine Species (WoRMS; http://www.marinespecies .org). 

Voucher specimens were stored for future reference. Details regarding collection , 

including geographic coordinates, taxonomic identification and images can be found 

in the Barcode of Life data Systems (BOLD, Ratnasingham and Hebert, 2007) within 

two projects: WWTAL ("Barcoding Amphipoda - Talitridae") and WWGSL 

("Crustaceans of the St. Lawrence Gulf') under the "Specimen Page". 
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Table 3.1 Speeies name, taxonomie authority , sam pie size (N) and geographie origin 
of taxa ineluded in this study 

Species name N Geograehic region* 

Americorchestia heardi Bousfield , 1991 5 USA (FL) 

Americorchestia /ongicornis (Say, 1818) 15 Canada (NS , OC) 

Americorchestia mega/ophtha/ma (Bate , 1862) 16 Canada (NB, NS, PEI , 
OC) 

Che/orchestia forceps Smith & Heard , 2001 2 USA (FL) 

Orchestia aestuariensis Wildish , 1987 5 UK 

Orchesfia cavimana Helier, 1865 5 UK 

Orchestia gamma rel/us (Pallas , 1766) 25 UK, Canada (N L) 

Orchestia gril/us (Bosc, 1802) 35 USA (FL, ME, MS, SC), 
Canada (NB) 

Orchestia mediterranea Costa , 1853 9 UK 

P/aforchestia p/atensis (Kmyer, 1845) 39 Canada (NB) , USA (FL, 
MS) 

Ta/itrus sa/tator (Montagu, 1808) 9 UK 

Tethorchestia antillensis Bousfield , 1984 8 USA (FL) 

Tethorchestia sp. B Bousfield , 1984 30 USA (FL), Belize, Mexico 
(OR) 

Uh/orchestia uh/eri (Shoemaker, 1930) 2 USA (MS) 

Parhy"a/e fascigera Stebbing , 1897 13 Mexico {OR~ , USA {FL~ 

Total 218 
* Abbreviations: FL - Florida , ME - Maine, MS - Mississippi , NB - New Brunswick , NS -
Nova Scotia , NL - Newfoundland and Labrador, PEI - Prince Edward Island, OC - Ouebec, 
OR - Ouintana Roo , SC - South Carolina . 
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included in this study 
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Species name Salinity tolerance Ecological habitat 

Americorchestia heardi Brackish Sand-burrower 

Americorchestia /ongicornis Marine Sand-burrower 

Americorchestia mega/ophtha/ma Marine Sand-burrower 

Che/orchestia forceps Marine Palustral 

Orchestia aestuariensis Estuarine Wrack 

Orchestia cavimana Freshwater, brackish Wrack 

Orchestia gammarellus Marine, brackish Wrack 

Orchestia gril/us Marine, brackish Wrack 

Orchestia mediterranea Marine, brackish Wrack 

P/atorchestia p/atensis Marine Wrack 

Ta/itrus sa/tatar Marine Sand-burrower 

Tethorchestia antillensis Marine Wrack 

Tethorchestia sp. B Marine Wrack 

Uh/orchestia uh/eri Marine Palustral 
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Figure 3.1 Map with sampling localities for supralittoral amphipod species barcoded 
in this study. 
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3.4.2 DNA extraction, amplification, sequencing 

Genomic ONA was extracted from a small amount of muscle tissue, usually 

from one pereopod , preserving the rest of the organism as voucher. However, small-

size specimens were used entirely for Iysis and the exoskeleton recovered 

afterwards and stored in ethanol for future reference. A glass fibre protocol was used 

for extraction (Ivanova, Oewaard and Hebert, 2006) and the barcode region , a 658bp 

fragment at the 5'-end of the COI gene, was amplified and sequenced with standard 

protocols (Radulovici , Sainte-Marie and Oufresne, 2009) . Two alternative sets of 

primers were used and their sequences are available in BOLO: LC01490 -

HC02198 (Folmer et al., 1994) with M13 tails and CrustDF1 - CrustDR1 (Steinke, 

unpublished). 

3.4.3 Data analysis: genetic diversity and phylogenetic relationships 

ONA sequences were manually edited in Sequencher 4.9 (Gene Codes 

Corporation , Ann Arbor, MI) and aligned with the MUSCLE algorithm and default 

settings in MEGA 5 (Tamura et al. , 2011). Trace files and edited sequences are 

available in BOLO within WVVTAL and WWGSL projects under the "Sequence Page". 

As a routine test for detecting pseudogenes, we checked the quality of COI 

sequences, their length , and the presence of STOP codons or indels in the reading 

frame. Sequences were also checked for contamination by using BLAST searches in 

GenBank at the National Center for Biotechnology Information website 

(http://blast.ncbi.nlm.nih .gov/Blast.cgi) . Pairwise genetic distances within and among 

species were based on Kimura 2-parameter (K2P) model for base substitution 

(Kimura, 1980) and performed in MEGA 5. Graphical representation of genetic 

distances (maximum intraspecific - minimum interspecific) was performed in R 

2.13.1 (R Oevelopment Core Team, 2010) . When morphological species were split 

into barcode clusters diverging by more than 10x the mean value for intraspecific 

variation , they were considered potential cryptic species and treated as separate 
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Molecular Operational Taxonomic Units (MOTU; Blaxter, 2004) in further analyses. 

ln these cases, median-joining haplotype networks were constructed in Network 4.6 

(Bandelt , Forster and Rohl , 1999), to visualize relationships between haplotypes. 

The final dataset used for phylogenetic analyses included ail of our 

provisional talitrid species, an outgroup species P. fascigera , together with 26 COI 

sequences downloaded from GenBank and belonging to the following species: 

Platorchestia paludosus (H0010305-06, H001 0311 , H0010322, H0010325, 

H0010329-30, H0010333-36; Cheng et al., 2011) , P. japonica (EF570353 ; Hou, Fu 

and Li , 2007; H0010337-39; Cheng et al., 2011 ), Orchestia cavimana (EU276197; 

Browne, Haddock and Martindale, 2007) and O. gammarellus (EU276190-

EU276199; Henzler and Ingolfsson, 2008) . The haplotype dataset was used in 

jModelTest 1.0.1 (Posada , 2008) to find the appropriate model of sequence evolution 

under the Akaike Information Criterion (AIC) (Posada and Buckley, 2004). A 

maximum-likelihood (ML) phylogeny was built in RAxML 7.2.8 (Stamatakis, Hoover 

and Rougemont, 2008) as web-server application through Vital IT unit of the Swiss 

Institute of Bioinformatics (http://phylobench .vital-it.ch/raxml-bb). In addition , a 

Bayesian inference (BI) phylogeny was built in MrBayes 3.1.2 (Ronqu ist and 

Huelsenbeck, 2003) by using the General Time Reversible (GTR) model with 

gamma distribution (+G) and a proportion of invariable sites (+1 ). Two simultaneous 

analyses, each consisting of four chains , were run for 10 million generations, 

sampling every 1,000 generations. The initial 25% of samples were discarded as 

bu rn-in and the final consensus tree was rooted and edited in FigTree 1.3.1 

(http://tree.bio.ed .ac.uk/software/figtree) . 
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3.5 Results 

3.5.1 DNA barcodes 

Almost ail talitrid species were successfully amplified with the available set of 

primers. Exceptions were Americorchestia salomani Bousfield , 1991 (U .SA) and 

Tethorchestia sp. (Bahamas) . Because these samples yielded positive results for the 

18S gene (data not included here) , the failure of COI amplification is probably due to 

mutations in one of the primer binding sites and not to DNA degradation . 

A total of 218 talitrids belonging to 14 morphologically defined species from 

seven genera and one hyalid species (outgroup) were barcoded in this study (Table 

3.1). Most COI sequences recovered the full length of the barcode region (658 bp) 

while a few sequences were shorter due to low-quality extremities. To have a 

uniform dataset, we trimmed ail sequences to a length of 629 bp. A BLAST search in 

GenBank returned positive matches for only four species, three of which were 

barcoded in a previous study on the GSL crustacean fauna (Radulovici , Sainte-Marie 

and Dufresne, 2009). The 629 bp DNA fragment included 287 variable sites and it 

was translated into 209 amino acids. No contaminations or pseudogenes were 

detected. 

3.5.2 Genetic distances 

DNA barcoding of North Atlantic talitrids showed that morphological species 

usually correspond to clusters of highly similar sequences, reciprocally monophyletic 

in a phylogenetic tree (Figure 3.2). 
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Figure 3.2 Phylogenetic tree of talitrid species based on COI sequences. Tree has 
been rooted with the hyalid P. fascigera. Sequences for P. japonica and P. 
paludosus are public sequences from GenBank. Numbers on branches represent 
posterior probability >95% for the Bayesian (BI) tree (above) and bootstrap support 
> 70% for the maximum-likelihood (ML) tree (below) . 
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However, exceptions were observed in three morphological species (21 % of 

cases) resulting in multiple intraspecific barcode clusters. Platorchestia platensis 

reached a maximum of 19% pairwise genetic distance and was divided into three 

clusters each with sample sizes between 3-27 individuals and separated by mean 

distances of about 15% (Table 3.3) . Orchestia gril/us had a maximum intraspecific 

divergence of -18% and was split into seven clusters separated by mean values 

between 4-12.9% (Table 3.3). In the latter case , barcode clusters included between 

one and 17 individuals, three clusters being represented by only one individual, the 

only singletons in our dataset. Tethorchestia sp . B reached a maximum of 6.5% and 

was split into two clusters. Following these results , the 12 barcode clusters were 

considered as potential cryptic species and treated as separate MOTU for further 

analyses . Consequently a total of 24 talitroidean MOTU's (including one hyal id 

species) were generated during this study. Sam pie size varied between 1 and 27 

with an average of 9 individuals per MOTU. Mean distance was 0.3% (±0 .01 ) within 

an MOTU and 13.7% between MOTU's. Maximum divergence within an MOTU 

reached 1.6% in Tethorchestia sp. B1 while the closest MOTU's were separated by 

4% (O. gril/us 3 and 4) as opposed to 9.6% in the closest morphologically defined 

species (Table 3.3). Regardless of the unit employed (MOTU versus species), the 

barcoding gap (intra- versus inter-) was clear and assigning unknown specimens to 

MOTU's was straightforward (Figure 3.3) . 
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Table 3.3 Genetic diversity of talitroid species included in this study: number 
of haplotypes, mean K2P distances within and between species 

MOTU COI Haplotypes Mean intrasp. Mean intersp. 
sequences (±SE) (±SE) 

A. heardi 5 5 0.009 (0 .002) 0.193 (0.019) 

A. /ongicornis 15 3 0.003 (0 .002) 0.193 (0.019) 

A. mega/ophtha/ma 16 4 0.002 (0.001 ) 0.196 (0.019) 

C. forceps 2 1 0 0.181 (0.019) 

O. aestuariensis 5 0 0.096 (0.01 3) 

O. cavimana 5 0 0.205 (0.020) 

O. gammarellus 25 4 0.005 (0.002) 0.207 (0.021 ) 

O. grillus 1 1 nia 0.129 (0.016) 

O. grillus 2 1 nia 0.129 (0.016) 

O. gril/us 3 5 3 0.005 (0.002) 0.040 (0.007) 

O. gril/us 4 8 6 0.004 (0.002) 0.040 (0.007) 

O. gril/us 5 2 1 0 0.056 (0.009) 

O. gril/us 6 1 nia 0.056 (0.009) 

O. gril/us 7 17 0 0.056 (0.009) 

O. mediterranea 9 4 0.002 (0.001 ) 0.096 (0.01 3) 

P. p/atensis 1 3 2 0.002 (0.002) 0.155 (0.018) 

P. p/atensis 2 27 7 0.006 (0.002) 0.143 (0.016) 

P. p/atensis 3 9 2 0.013 (0.005) 0.143 (0.016) 

T. sa/tator 9 4 0.003 (0 .002) 0.194 (0.020) 

T. antillensis 8 4 0.002 (0.001 ) 0.264 (0.024) 

T. sp 81 11 9 0.008 (0.002) 0.058 (0.010) 

T. sp 82 19 5 0.003 (0.001 ) 0.058 (0.010) 

U. uh/eri 2 0 0.201 (0.020) 

P. fascigera 13 7 0.003 {0.001 } 0.205 {0.021} 

Total 218 78 
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Figure 3.3 Distance graph for minimum interspecific distances related to maximum 
intraspecific variation (based on K2P distances) . Ali values are above the line, hence 
no overlap between these two categories. 

3.5.3 Phylogenetic relationships 

The dataset used for phylogenetic analyses included 244 sequences (218 

generated in this study and 26 sequences from GenBank) which were collapsed to 

91 haplotypes (78 from our dataset and 13 from GenBank). Both trees had identical 

topology and showed good support for the sa me clusters (Figure 3.2). Regardless of 

cryptic species harboured by some taxa, two genera were monophyletic 

(Platorchestia and Americorchestia) and well-supported while two others proved to 

be polyphyletic (Orchestia and Tethorchestia). Within-genus relationships were less-

resolved and except for sister-species such as o. aestuariensis - o. mediterranea 

(morphologically, ecologically and genetically close) , no other clear inference about 
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the relatedness between congeneric species could be made. None of the three 

"systematic-ecological" groups was monophyletic. 

3.6 Discussion 

3.6.1 DNA barcodes for species identification 

Our dataset included ail the presently known and described talitrid genera 

from the East Coast of North America except Talitroides Bonnier, 1898. This genus 

is represented by two widespread species, T. topitotum (Burt, 1934) and T. al/uaudi 

(Chevreux, 1896) , living inland in leaf litter. Being land hoppers and exotic species, 

introduced to North America together with greenhouse plants (LeCroy, 2010), these 

species were not included in our analysis. In addition , two native, but less common 

species, could not be collected : Americorchestia barbarae Bousfield , 1991 and 

Uhlorchestia spartinophila Bousfield & Heard, 1986. 

This study adds support for the use of DNA barcoding for species identification 

among Crustacea by showing the importance of this molecular tool for talitrid 

taxonomy and it adds to similar studies targeting other amphipod groups (Witt , 

Threloff and Hebert, 2006 ; Costa et al. , 2007; Radulovici , Sainte-Marie and 

Dufresne, 2009). Beginning with 15 morphologically defined species (14 talitrids and 

one hyalid), DNA barcoding suggested the existence of 24 genetic clusters 

representing putative species. This increase was due to cryptic speciation in three 

morphological species, P. platensis, O. gril/us and Tethorchestia sp . B, detected only 

as a result of including a geographical component when sampling for DNA 

barcoding . Consequently, 21 % of species showed cryptic diversity, compared to only 

5% found in a previous study restricted ta GSL crustaceans (Radulovici , Sainte-

Marie and Dufresne, 2009) , and this difference is probably due to the longer 
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geological time available in GOM (millions of years) versus the brief period (-10,000 

years) of re-colonization after the last Ice Age in GSL. 

3.6.2 Genetic diversity 

Limited sampling does not allow for detailed analyses on genetic diversity in 

relation to the dispersal potential , ecological type or correlation with specifie 

environ mental factors. However, some interesting insights can be gained if 

compared to previous studies. 

ln our study European talitrid hoppers were represented by four Orchestia 

spp . (O. cavimana , O. gammarellus , O. aestuariensis, O. mediterranea), which occur 

in the Medway Estuary (UK) as weil as many other locations on Atlantic and 

Mediterranean coasts of Europe. In the Medway Estuary only the two first and the 

two last species overlap in distribution . The potential for interspecific matings 

between them has been tested in the laboratory. Hybridization does not occur 

between cavimana x gammarellus , but the cross male aestuariensis x female 

mediterranea yielded hybrids, although the reciprocal cross (with male mediterranea ) 

was sterile (Wildish , 1970). Naturally occurring hybrids were subsequently found in 

the Tamar Estuary, UK (Wild ish , 1987). 

O. cavimana Helier, 1865 is a freshwater talitrid found in wrack on river banks 

or lake shores but also extending into dilute brackish water in estuaries, and with a 

disjunct distribution in Northern Europe and the Mediterranean basin (Wildish , 1969). 

Our specimens from the Medway Estuary (UK) shared the sa me COI haplotype with 

a specimen from the inland Tegeler See (Germany; Browne , Haddock and 

Martindale , 2007). Apparently, the sa me haplotype is reaching Northern Italy (Lake 

Garda) and this wide distribution might be the consequence of recent expansion 

(Ketmaier and De Matthaeis, 2010), as this species is currently increasing its range 

on the Estonian coasts (Herkul , Kotta and Kotta, 2006). However, two cryptic 

divergent clusters (19% COI distance) have recently been found in O. cavimana 
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(Ketmaier and De Matthaeis, 2010) . As one of them includes the type locality, which 

is a freshwater spring on Mount Olympus, Cyprus, and this haplotype appears to be 

restricted to the Eastern Mediterranean and Black Seas (Cyprus, Turkey), it follows 

that the rest of O. cavimana specimens (including ours) belong to a different species, 

still to be formally described . 

O. aestuariensis (estuarine range 6-10%0) and O. mediterranea (marine and 

estuarine, range >10%0) may occur together in lowland European estuaries and are 

considered as sister species. While fertile hybrids occur, their sex ratio is skewed 

towards males, limiting the chances of genetic exchange between the two species 

(Wildish ,1988). Very close morphologically, these two species are also the closest 

genetically (9.6%) in our dataset, with o. mediterranea showing higher diversity (four 

haplotypes from the sa me sampling local ity as opposed to only one haplotype in O. 

aestuariensis). 

O. gammarellus is the type species of Orchestia Leach , 1814, a marine 

talitrid with amphi-Atlantic distribution , in Northern Europe, the Mediterranean and 

Newfoundland (Canada) to Maine (U.S.A) (Bousfield , 1973). Our four haplotypes 

included three singletons (Chittick Beach and Fogo Island , Canada) and one very 

common haplotype distributed in the UK (Medway, Ogmore and Duddon Estuaries) 

and Canada (Fogo Island, Witless Bay) (data not shown). This low genetic variation 

and lack of genetic structure on both sides of the Atlantic is consistent with the 

hypothesis of Henzler and Ingolfsson (2008) that O. gammarellus recently colonized 

North America from Europe via northern islands as stepping-stones. 
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3.6.3 Cryptic diversity in a wrack generalist: Platorchestia platensis (Kmyer, 

1845) 

Platorchestia platensis is a very common wrack generalist with wide 

distribution across continents both in warm-temperate and tropical regions . The type 

species was described from Montevideo (Uruguay) , and has since been recorded 

from the shores of ail continents , except Antarctica. However, morphological work 

has highlighted various forms , some of them with full species status at present: a 

closely related form in mid-Atlantic islands (P. monodi Stock, 1996) and P. 

paraplatensis Serejo & Lowry, 2008 in Australia . To facilitate the classification , 

Miyamoto and Morino (2004) proposed the use of sexually dimorphic characters to 

divide the genus into three groups, with P. platensis in group 1 and P. monodi in 

group 2. 

Already mentioned as a species complex (Bousfield , 1984; Bousfield and 

Poinar, 1995; Serejo and Lowry, 2008) due to multiple closely related variants, P. 

platensis is an interesting model to study speciation . Because our sampling was 

limited to only one continental coast (NWA and GOM), our genetic data shows the 

existence of only three divergent clusters separated by -15% COI distance (Figure 

3.4). Considering the distance between the closest pair of morphological species in 

our dataset (9.6% for O. aestuariensis - O. mediterranea), these three clusters 

should be considered as separate species and the common view of one 

cosmopolitan P. platensis should be discarded . Due to the development of molecular 

tools , and especially with the recent popularity of DNA barcoding , the existence of 

cosmopolitan distributions has been challenged and results often showed the 

presence of complexes of cryptic species in many widely-distributed taxa including 

marine invertebrates (G6mez et al. , 2007). In addition , the European P. platensis, 

believed to be an introduced species with an expanding range , exhibits 

morphological variation compared to material from the type locality (Serejo and 

Lowry, 2008). Molecular investigation might reveal yet another cluster of this species 

complex in Europe . By sequencing specimens from the type locality, some light will 
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be shed on the "real " P. platensis and ail its "relatives" that should be treated as 

separate species. 

Our three putative species are distributed as follows: one in NWA (including 

GSL) (subject of a separate phylogeographic study) and the other two inside GOM 

(one group exclusively in Florida , the other only in Mississippi). Previous genetic 

studies on marine species have regarded Florida as a sharp phylogeographic break 

between the open-Atlantic coast and the Gulf (review in Neigel , 2009) , which might 

explain our results , cluster 1 being more distant to the other two (15.5%, Table 3.3, 

Figures 3.2 and 3.4) . It is more difficult to interpret the existence of two genetically 

divergent but morphologically similar clusters , situated relatively close in a space 

with no obvious barrier (coastlines of Florida and Mississippi) . Moreover, P. platensis 

is considered a wrack generalist , very abundant, highly tolerant to environmental 

variations, good competitor with other talitrids and using rafting in wrack to disperse , 

successfully invading Europe and spreading along its coastlines in the last 150 years 

(Persson , 2001 and references therein) . The difficulty of morphologically 

discriminating these two groups based on light microscopy would explain why 

taxonomists have not recognized the three haplotypes (but see LeCroy, 2010). A 

similar case of cryptic speciation has been found in P. japonica from Taiwan and 

Japan (Cheng et al. , 2011) with three clusters separated by lower values (10.4-

14.3%) than the P. platensis groups. The genetic cluster fram Taiwan (Japan having 

the type locality) was named (P. paludosus) and described based on fine 

morphological differences (type of setae) revealed only by scanning electran 

micrascopy (SEM) . Therefore, our puzzling pattern might be solved by future SEM 

investigations. 
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Figure 3.4 Haplotype network and geographical distribution of haplotypes for 
Platorchestia platensis species complex. Each putative species (clusters 1 to 3) has 
a different colour: 1 - brown, 2 - orange, 3 - violet). Interrupted lines represent deep 
divergences separating MOTU. 
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3.6.4 Cryptic diversity in a palustral specialist: Orchestia gril/us (Bosc, 1802) 

Orchestia gril/us is a salt marsh specialist , nestling among roots of Spartina 

and other marsh grasses where it feeds on wrack and marsh debris from GSL to 

GOM (Bousfield , 1973). Specifie habitat requirements (salt marshes which are 

typically separated by variable geographic distances) should result in limited 

dispersal between populations (depending on dispersal distance), therefore reduced 

gene flow among populations translating into strong genetic structure culminating 

with speciation (Bohonak, 1999). This species complex consisted of seven clusters 

with COI divergences ranging from 4% to -13% (Table 3.3.). Geographically, 

clusters 3 and 4 were situated in South Carolina and Maine-New Brunswick, 

respectively , while the other five groups were ail distributed in GOM, one in 

Mississippi and four in Florida (Figure 3.5). The existence of three singletons might 

indicate the amplification of pseudogenes, especially in clusters 1 and 2, the most 

divergent from the rest (12 .9% distance; Figure 3.2). In our analysis , we could not 

detect any obvious sign of pseudogenes (e.g., STOP codons, indels, double-peaks) 

but this does not discard the possibility of having them in this dataset (Buhay, 2009). 

Regardless of this possibility, believed to overestimate species richness if 

undetected (Song et al. , 2008), and considering the most conservative measure for 

our dataset (three possible "untrue" clusters) , there is enough proof for cryptic 

speciation in O. gril/us. While additional morphological (SEM), ecological and genetic 

work is required in order to clarify the extent of this species complex, future 

biodiversity assessments of NWA and GOM should be aware of hidden diversity in 

this and other talitrid species. 



102 

+ 
o 1 000 _ _ Krn 

Figure 3.5 Haplotype network and geographical distribution of haplotypes for 
Orchestia gril/us species complex. Each putative species (clusters 1 to 7) has a 
different colour: 1 - brown, 2 - dark green, 3 - light green, 4 - light blue, 5 - yellow, 
6 - red , 7 - dark blue. Interrupted lines represent deep divergences separating 
MOTU. 
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3.6.5 Cryptic diversity in Tethorchestia sp. B Bousfield, 1984 

When Bousfield (1984) erected a new genus of beach fleas from the 

Caribbean with the type species Tethorchestia antillensis Bousfield , 1984, he gave a 

brief description of the new genus and the new species with no drawings and 

mentioned the existence of six additional species to be described later (spp. B 

through G) . Subsequently he provided illustrations for the type species (Bousfield 

and Poinar, 1995) but never for the other Tethorchestia spp. The only undescribed 

species from Florida was sp . B, hence our use of the name for those Floridian 

specimens that did not belong to the type species. This study showed that 

" Tethorchestia" sp. B should be separated in a different genus (see Section 3.4.6 

and Figure 3.2) , and the genetic finding is reinforced by morphological differences 

between the type species and our specimens (LeCroy, 2010). By extending our 

sampling to the Caribbean (Mexico , Belize) , we discovered two genetic clusters 

distanced by 5.8% (Table 3.3) , reciprocally monophyletic and geographically 

separated , in Florida and the Caribbean , respectively (Figure 3.6) . Although 5.8% is 

lower than the minimal distance (9.6%) between morphological sister-species 

studied here, it is still above thresholds used for delimiting putative amphipod 

species (3 .75% in Hyalella ; Witt, Threloff and Hebert, 2006) and weil above the 

minimal interspecific value for other crustaceans such as decapods (2.8% in Hyas; 

Radulovici , Sainte-Marie and Dufresne, 2009) . More importantly, obtaining an 

interspecific value for two known sister-species when the overall talitrid diversity is 

largely still unknown, does not support its use as a universal threshold for the entire 

family or for amphipods in general. In addition to genetic data, there are 

morphological differences that support the split of sp. B into two species (Wildish and 

LeCroy, in preparation). 
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Figure 3.6 Haplotype network and geographical distribution of haplotypes for 
Tethorchestia sp. B complex. Each putative species (clusters 1 and 2) has a different 
color: 1 - dark green, 2 - light green. Interrupted lines represent deep divergences 
separating MOTU's. 
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3.6.6 Phylogeny 

Our inference of phylogenetic relationships between talitrid taxa is limited to 

one gene, COI , known to be a good marker at the species level, hence its use in 

DNA barcoding. Although higher taxonomie levels are usually clarified by using 

slower evolving and multiple genes, our study is still the largest phylogenetic 

endeavour to date and gives an interesting glimpse at evolutionary relationships 

among talitrids . 

Few genera formed well-supported monophyletic clusters. Platorchestia spp. 

formed a monophyletic cluster containing ail six putative species from the two 

species complexes, P. platensis and P. japonica (Figure 3.2) . While the two P. 

platensis clusters from GOM (2 and 3) are sister species, it is unresolved if cluster 1 

from NWA is more closely related to them or to the other species complex, P. 

japonica fram Asia . In the latter complex, P. paludosus seemed to be sister species 

with Chinese collections assigned to P. japonica and less related to collections from 

Japan , but none of these branches were supported . The obvious conclusion is that 

the two cryptic P. japonica clusters should be considered distinguished species, and 

named and described, as weil as P. platensis 1, 2, 3. Moreover, by including 

additional genes and more Platorchestia spp., it will become evident if the various 

species complexes are at least monophyletic with regional cryptic species or if the 

entire classification within this genus has to be revised and the morphological groups 

praposed by Miyamoto and Morino (2004) should be discarded. Platorchestia 

Bousfield , 1982 has been traditionally considered within Orchestia Leach , 1814 (type 

genus for Talitridae) and our data support this split and shows Platorchestia to be 

sister group to various Orchestia spp., as weil as other genera, although with low 

support in both analyses (Figure 3.2). 

On the other hand , Orchestia is definitely non-monophyletic. A well-supported 

cluster included sister species 0. aestuariensis and 0. mediterranea together with O. 

gammarellus, ail of which are morphologically and ecologically similar. Another well-
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supported cluster consisted of the O. gril/us species complex (seven clusters), sister 

group to Americorchestia spp., while o. cavimana was separated together with U. 

uh/eri in the same weakly supported group (Figure 3.2). More detailed investigations 

into the morphology of Orchestia might bring support for a division into multiple 

genera. If a revision proves to be necessary, as seems to be the case here, O. gril/us 

would be placed in a new genus, as O. gamma rel/us is the type species for 

Orchestia . 0. gril/us is a marsh specialist with habitat requirements and life history 

traits quite different from those of most Orchestia spp. (see Section 3.6.4). 

The North American genus Americorchestia formed a monophyletic cluster, 

well-supported in both BI and ML analyses (Figure 3. 2). This genus consists of five 

species divided into two morphological/ecological groups, named after the species 

inhabiting sandy beaches on the open-Atlantic coast: mega/ophtha/ma (including 

also GOM speeies, A. sa/omani and A. barbarae) and /ongicornis (with the GOM 

eounterpart, A. heardl) . We included only three species, which showed clear 

separation from one another (-20%) but no support for a geographieal (NWA versus 

GOM) or "systematic" (towards genus splitting ) differentiation . Therefore, within-

genus relationships will be elarified once the two missing species (A. barbarae and 

A. sa/oman!) are eollected and sequeneed . The same observation is valid for genus 

level patterns. 1 n the present phylogeny, the sand-burrower Americorchestia was 

close to the wrack generalist Orchestia. However, the former was ereeted as a 

separate genus (Bousfield , 1991) from a large group of sand-burrowing talitrids , 

Ta/orchestia sensu /ato , which is frequently being split into additional genera (see 

WoRMS for updated taxonomy) . It was also mentioned to be more similar to taxa 

from the NW Pacifie (Ta/orchestia sensu /ato ) than to other sand-burrowers 

(Ta/orchestia sensu stricto , Mega/orchestia , Talitrus) and our phylogeny eonfirms its 

distinetness from Ta/itrus sa/tator (Montagu , 1808). A similar result has been found 

for the European sand-burrowers (Ta/orchestia , Ta/itrus , Orchestia) (Conceiçao, 

Bishop and Thorpe, 1998) (but see Davolos and Maelean , 2005 for an opposite 

result). Only by inereasing sampling to sand-burrowing taxa morphologieally and 

eeologically closer or more distant to Americorchestia , will phylogenetie relationships 
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among sand-burrower taxa and their closest relatives from the "systematic-

ecological" groups be resolved . 

Some Tethorchestia spp. were mentioned as having overlapping 

morphological characters with Orchestia spp., hence a hypothetical evolutionary 

connection between genera throughout North Atlantic and the marsh specialist O. 

grillus (Bousfield , 1984). In our phylogeny, only T. antillensis is close to Orchestia 

spp ., being nested in the Orchestia - Americorchestia cluster, but with low support . 

By contrast , Tethorchestia sp . B1 and B2 were very distant and sister group to ail 

other talitrid species (except for T. sa/tator) , with good support in both analyses. This 

strongly indicates that B1 and B2 do not belong to Tethorchestia and morphological 

characters further support the COI phylogeny and the need for a taxonomic revision 

to erect a new genus for these taxa (see Section 3.6.5) . As no formai description has 

been provided for the extra six Tethorchestia spp. collected in the Caribbean 

(Bousfield, 1984), this genus presently consists of only two extant, T. antillensis and 

T. karukarae , and one extinct species, T. pa/aeorchestes. As a result the phylogeny 

within this genus is more difficult to investigate. 

Other palustral species (besides O. grillus) are less widely distributed in our 

sampling area and we were able to include only two species from GOM. 

Uh/orchestia uh/eri (Shoemaker, 1930) , is an American species distributed from 

Maine (U.SA) to Southern GOM (Bousfield , 1973; Velasco, Sanchez and Florido, 

2005) . Together with its sister species, U. spartinophi/a (not collected for this study) , 

they are the only representatives of this genus. Che/orchestia forceps Smith & Heard 

2001 is known only from GOM. Both palustral species grouped with wrack 

generalists in weakly supported clusters, showing polyphyly for this group, the sa me 

pattern as for the other two groups (wrack generalists, sand-burrowers) . Our 

phylogeny cannot be easily compared with Bousfield 's well-known morphological 

phylogeny, conducted at the genus level and restricted mostly to the North Pacific 

(Bousfield , 1982), because of differences in the taxa sampled . However, both 

phylogenies found that "systematic-ecological" groups are polyphyletic and they 
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should therefore be used with caution . In the absence of a better system, this 

classification can be useful to some extent although it is hampered by morphological 

convergence. The barcoding initiative is constantly growing and many talitrid taxa will 

be collected in the global attempt to catalogue the world 's biodiversity (International 

Barcode of Life, http://ibol.org/). Although complete phylogenies cannot be based 

solely on COI , the amount of information generated through iBOL will shed some 

light on talitrid systematics and will stimulate subsequent genetic studies including 

multiple genes. 

3.6.7 Biogeography 

By sampling a large coastline at the continental scale , it was inevitable to 

include multiple marine biogeographic provinces (Arctic, Cold-temperate NWA, 

Warm-temperate NWA, Tropical NWA and Northern European Seas) with various 

marine ecoregions: Southern Labrador, GSL - Eastern Scotian Shelf, Scotian Shelf, 

Gulf of Maine - Bay of Fundy, Carolinian , Floridian , Northern GOM, Western 

Caribbean , North Sea and the Celtic Sea (Spalding et al. , 2007). Talitrid distribution 

is fairly weil known on European shores and along the American open-Atlantic coast 

but is still incomplete in the GOM, especially in the southern region . With present 

knowledge, our dataset consisted of taxa ranging from "cosmopolitan" (see Section 

3.6.3) to amphi-Atlantic and endemic on either of the two coasts. There were four 

endemic genera (Americorchestia , Tethorchestia , Chelorchestia , and Uhlorchestia ) 

to the American Atlantic and Caribbean regions (Bousfield , 1984). While the 

knowledge of GOM talitrids is limited (but still believed to reach 30% endemic 

species), talitrids are mainly known from the northern GOM and currently include 

eight species, four being endemic (LeCroy et al., 2009). The strongest barrier to 

talitrid distribution is believed to be the Mississippi Delta, which separates sand-

burrowing hoppers into an eastern (A. salomani and A. heardl) and a western group 

(A. barbarae and unknown counterpart species for A. heardl) (Bousfield , 1991 ). 
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The primary goal of DNA barcoding studies is species identification , with 

limited sample size per species. Limited sampling does limit our ability to apply our 

data to phylogeographic studies. However, some patterns such as deep intraspecific 

divergences at large spatial scales (i.e. , potential cryptic species) can be easily 

detected and follow-up investigations should be conducted in order to explain the 

observed patterns. In this study, we identified that a new morphologically defined 

species ("Tethorchestia sp . B") actually belonged to a new genus, presented new 

distribution records (to be included in future distribution maps) and discovered 

multiple divergent clusters inclusive of putative new species among taxa with 

supposedly continuous distribution (P. platensis and O. gril/us) . At a large spatial 

scale (NWA), the major break was between the open Atlantic coast and GOM , in 

agreement with previous studies (reviewed in Neigel , 2009) . At smaller scales 

(northern GOM), the Mississippi Delta may act as a dispersal barrier for talitrid 

species distribution (see above) with consequences for genetic structure (Neigel , 

2009) . This boundary does not explain our findings for P. platensis and 0. gril/us. 

Considering the historical biogeography of the entire North Atlantic, with tectonic 

movements (e.g., Central American Isthmus) and glacial cycles , the large scale 

patterns observed here may reflect the impact of glacial cycles at the genetic level 

(Hewitt, 2000) . However, their present-day maintenance might involve some physical 

(oceanographic) , ecological (microhabitat preference) or biological (behavioral) 

barriers and should be the focus of more detailed investigations. By extending 

sampling to the western GOM (west of the Mississippi boundary) and the tropical 

southern GOM, new intraspecific clusters might be revealed. Various glacial cycles 

had different impacts on GSL (completely covered by ice sheets) compared to GOM 

(sea-Ievel drop) , and this might explain the higher diversity (as number of 

haplotypes) seen in A. heardi (GOM) as opposed to A. longicornis and A. 

megalophthalma (GSL and open-Atlantic Canadian coast) . Moreover, southern 

populations have multiple generations per year and are active all-year round while 

northern populations have only one generation per year (Wildish et al. , 2011) and 

are inactive in the sediment during long winters (Wildish , 1988). These life-history 



110 

traits might affect the mutation rate resulting in higher diversity in the south over the 

evolutionary time scale. 

3.7 Conclusions 

This study has shown the importance of molecular tools for taxonomie studies 

and their potential evolutionary implications. Talitrids are already a species-rich 

group and many more species (possibly hundreds to thousands) await discovery, 

mainly in Indo-Pacific tropical areas. In addition , many undescribed taxa have been 

collected over the previous decades and remain in museum collections awaiting 

formai description . In this context, DNA barcoding comes as a tremendously useful 

tool to identify, classify and discover new taxa, a "professional organizer" for the 

plethora of synonyms, similar forms , unknown distributions (native or introduced) and 

mysterious taxa known as sp. A, B, C, D as in Bousfield (1984) . 

Starting with 15 morphologically defined species we increased the diversity 

list to 24 putative species mainly by discovering three species complexes (P. 

platensis, O. gril/us , Tethorchestia sp. B) . However, the clarification of the "real " (i. e., 

type) species requires molecular work on material from the type locality, to be 

collected and analyzed in the future. Cryptic species showed an allopatric distribution 

(except for clusters 1 and 2 in O. gril/us) and further SEM investigation might 

highlight fine morphological differences, while ecological studies might reveal 

microhabitat variation. As many cryptic species are detected worldwide in ail taxa, 

there is a need to formally recognize new species and genera in order to ease the 

backlog of unnamed functional units of biodiversity (i.e. , putative species revealed 

through DNA barcoding). 

We conducted the largest phylogenetic study (based on DNA sequences) on 

talitrids to date. Although the tips of the tree (i.e ., putative species) , as weil as some 

clusters (e.g., Platorchestia , Americorchestia) were well-supported , phylogenetic 
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relationships within and between genera were less resolved . With the selected taxa 

and only one gene, there is evidence for polyphyly in some genera (e.g., 

Tethorchestia , Orchestia) and in ail ecological groups included (sand-burrowers, 

wrack generalist and palustral hoppers). There is an obvious need to increase 

sampling of various taxa worldwide and to include additional mitochondrial and 

nuclear genes, together with morphological characters , in order to have a better 

picture of talitrid evolutionary history and the link between "systematic-ecological" 

and true phylogenetic groups. We believe that the phylogenetic tree provided in th is 

study (Figure 3.2), when updated with more of the world 's talitrid fauna and 

additional genes, might provide a satisfactory higher level classification of this group. 
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4.1 Résumé 

Les communautés en eau peu profonde actuellement distribuées dans l'Atlantique 
Nord ont été façonnées par des événements historiques tels que l'ouverture du 
détroit de Béring , un échange transarctique, et plus récemment par les glaciations 
du Pléistocène. Au cours du dernier maximum glaciaire, des calottes glaciaires 
massives ont recouvert les rives rocheuses américaines, menant vraisemblablement 
à l'extinction des espèces intertidales et à une recolonisation à partir de l'Europe 
après le retrait des glaciers. Dans ce chapitre , nous étudions un amphipode 
intertidal , Gammarus oceanicus, habitant les rivages rocheux des deux côtés de 
l'Atlantique. Les séquences ADN du cytochrome c oxydase 1 (COI) ont été utilisées 
pour étudier les modèles phylogéographiques de cette espèce amphi-atlantique. Un 
total de 273 séquences provenant de 87 sites d'échantillonnage a montré l'existence 
de deux groupes séparés par une distance génétique conséquente moyenne (2,4% 
de divergence) et par des étendues géographiques importantes (milliers de km). 
Aucun haplotype n'est partagé entre les groupes. Un groupe est distribué en Europe 
et dans l'Arctique canadien (Baie d'Hudson) tandis que l'autre est limité au Canada 
atlantique (Golfe du Saint-Laurent et l'ouverture de la côte atlantique). Par ailleurs, 
une analyse AMOVA a montré un certain niveau de structuration génétique dans ce 
dernier groupe. Nos résultats indiquent la présence des deux côtés de l'Atlantique 
de refuges glaciaires tels que les Grands Bancs, le banc Georges (Amérique du 
Nord), la Manche et la mer d'Irlande (Europe) . Ce modèle est cohérent avec les 
résultats précédents observés chez les algues marines (ex. Ascophyllum nodosum) 
utilisées comme source de nourriture et d'abris par G. oceanicus. La dispersion à 
plus petite échelle (comme au Canada atlantique) semble être entravée par des 
caractéristiques océanographiques. Bien que la distance génétique entre les 
groupes ne soit pas très élevée, il pourrait cependant indiquer un phénomène de 
spéciation en cours . L'intérêt croissant pour le code-barres moléculaire permettra 
l'utilisation des mêmes séquences d'ADN pour réaliser des études supplémentaires. 
Par exemple , des analyses en phylogéographie comparative de taxons co-distribués 
permettront de comprendre l'impact de différentes influences sur l'actuelle structure 
génétique des organismes du littoral. 

Mots-clés: espèces cryptiques; code-barres d'ADN ; Gammarus oceanicus; 
glaciations; Atlantique du Nord; phylogéographie 



114 

4.2 Abstract 

Shallow-water communities currently distributed in North Atlantic have been shaped 
by historical events such as the opening of the Bering Strait, followed by a trans-
Arctic interchange, and more recently by the Pleistocene glaciations. During the last 
glacial maximum, massive ice sheets covered the American rocky shores 
presumably leading to extirpation of intertidal species and re-colonization from 
Europe after the retreat of the glaciers. Here we investigated an intertidal amphipod , 
Gammarus oceanicus, inhabiting rocky shores on both Atlantic coasts. DNA 
sequences belonging to the barcode region , cytochrome c oxidase 1 (COI) , have 
been used to investigate phylogeographic patterns in this amphi-Atlantic species. A 
total of 273 sequences from 87 sampling sites showed the existence of two clusters 
separated by medium genetic (2.4% divergence) and large geographic (thousands of 
kilometres) distances. No haplotype was shared between clusters . One group was 
distributed in Europe and Arctic Canada (Hudson Bay) while the other was restricted 
in Atlant ic Canada (Gulf of St. Lawrence and the open Atlantic coast) . Moreover, the 
AMOVA analysis showed a certain level of genetic structuring in the latter group. Our 
results indicate persistence on both Atlantic coasts , in glacial refugia such as Grand 
Banks, Georges Bank (North America) , the English Channel and the Irish Sea 
(Europe). This pattern is concordant with previous findings in marine seaweeds (e.g., 
Ascophyllum nodosum) which are used as food source and shelter by G. oceanicus. 
Dispersal at smaller scales (e.g. , Atlantic Canada) seems to be hampered by 
oceanographic characteristics . Although the gap between clusters is not very high , it 
might be indicative of ongoing speciation . With the growing efforts for DNA barcoding 
of various groups, there will soon be an extraordinary opportunity to use the same 
DNA sequences for additional studies such as comparative phylogeography of co-
distributed taxa in order to unravel the impact of various forces on the present-day 
genetic structure of coastal organisms. 

Keywords: cryptic species; DNA barcoding; Gammarus oceanicus; glaciations; North 
Atlantic; phylogeography 
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4.3 Introduction 

North Atlantic communities have been shaped during various steps of the 

geologic and climatic history of the Northern Hemisphere. Originating from the initial 

break-up of Pangaea during the Jurassic, the North Atlantic Ocean was largely 

influenced by climatic oscillations. Rapid cooling in late Eocene (from subtropical to 

temperate and cold ) resulted in the emergence of new biotopes to and through which 

marine life adapted and diversified , therefore Atlantic species adapted to primitive 

climate (i. e., subtropical and warm-temperate) might be considered phylogenetically 

older than species distributed in new biotopes (i.e. , cold-temperate and arctic) 

(Golikov and Tzvetkova, 1972). Besides the "local" North Atlantic radiation , a large 

input of species resulted from the opening of the Bering Strait in the early Pliocene, 

around 3.5 million years ago (MYA), followed by trans-Arctic interchange and an 

invasion of the North Atlantic by North Pacific species (Vermeij , 1991 ). The latest 

historical events with great impact on marine, freshwater and terrestrial communities 

were the Pleistocene glaciations leading to contractions and expansions of species 

ranges during glacial and interglacial phases, respectively . The peak of the last 

glacial cycle , known as the Last Glacial Maximum (LGM), occurred -24KYA 

(thousands of years ago, calibrated years) , when massive ice sheets covered large 

areas of North America and Europe , including coastal habitats, and low-stand values 

for sea level reached -1 30 m (Mix, Bard and Schneider, 2001 ), exposing the 

continental shelves. In this context , it was considered that cold-temperate and arctic 

species survived in large refugia south of the unfavourable habitat (ice and 

permafrost) and re-colonized the northern habitats once the glaciers began to 

retreat. Biogeographic data (e.g., endemic species, disjunct distributions) raised the 

issue of periglacial refugia (i.e ., small ice-free patches in the north) where small 

populations could have survived during LGM but proof for such refugia is usually 

scarce (review in Brochmann et al., 2003) and never supported by multiple types of 

data (geomorphology, radio-carbon dating , palynological data , fossils , climate 

reconstruction). For coastal species, reliable information on their persistence is 
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difficult to gather as their hypothetical refugia are presently below sea level. 

Therefore indirect evidence for the impact of glacial history is harnessed from 

molecular data (Hewitt, 2000 , 2004) and various genetic patterns can be considered 

a signature of LGM (Figure 3 in Maggs et al. , 2008). 

ln the Northwest Atlantic (NWA) the Laurentide Ice Sheet extended south to 

Long Island Sound completely covering rocky shores , a habitat type lacking south of 

this boundary (Ingolfsson , 1992 and references therein) . Therefore it has been 

considered that intertidal and subtidal communities associated with rocky shores 

went extinct during LGM, such that the present-day structure is the result of post-

glacial colonization from Europe (Ingolfsson, 1992). Some studies found genetic 

evidence in support of this hypothesis among a few intertidal invertebrates (Wares 

and Cunningham, 2001 ; Breton et al., 2003; lives et al., 2010), including amphipods 

(Henzler and Ingolfsson, 2008) . However, other coastal species were found to have 

a long history on both sides of the Atlantic (Wares and Cunningham, 2001 ; lives et 

al. , 2010; Olsen et al. , 2010; Panova et al. , 2011 ). The controversial NWA periglacial 

refugia have been recently supported by reconstructions of the ice advance and 

retreat (Shaw, 2006; Charbit et al., 2007), although ice-free areas do not necessarily 

imply favourable environ mental conditions to support viable populations (Brochmann 

etal. , 2003). 

Species with a disjunct distribution are good models for studying the role of 

vicariance and dispersal on the present-day genetic architecture (Avise , 2000) and a 

large amount of genetic data generated within phylogeographic studies of single 

species is rapidly accumulating (review in Maggs et al., 2008). Data usually consist 

of DNA sequences belonging to mitochondrial and chloroplast genes, less often to 

nuclear genes. Moreover, the recent development of DNA barcoding greatly expands 

the DNA data base and its potential use. DNA barcoding is a molecular tool for 

species identification , which uses DNA sequences to assign unidentified specimens 

to known species (Hebert et al. , 2003). In animais, both phylogeographic and DNA 
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barcoding studies use the sa me gene fragment, the S'end of cytochrome C oxidase 1 

(COI). Although these two types of studies tackle different levels of biodiversity 

(genetic variation in phylogeography and species richness in DNA barcoding), recent 

large-scale initiatives involving DNA barcoding (International Barcode of Life Project, 

iBOL, www.ibol.org) will generate extensive datasets (objective of 5 million barcodes 

by 2015) that could benefit phylogeographic studies focused on single species, co-

distributed species or entire communities. 

Here we investigate the phylogeographic structure of a North Atlantic 

intertidal invertebrate using COI sequences generated during DNA barcoding. We 

chose the amphipod Gammarus oceanicus Segerstrale, 1947, to investigate the 

impact of glacial history on the present-day genetic structure (i .e., survival on one 

coast with subsequent colonization of the other coast versus long-term persistence 

on both coasts) because of its amphi-Atlantic distribution and preference for rocky 

shores. This is one of the most common and abundant coastal invertebrate species, 

living under stones or among algae in the intertidal and subtidal zones (0-25 m, 

Segerstrale , 1947), on sheltered bays and rocky shores. Its disjunct distribution 

includes the NWA coast from Foxe Basin and Baffin Island (north) to Long Island 

Sound (south), and the European coast from Franz Joseph Land (north) to northern 

France (south), but also the mid-Atlantic Greenland , Iceland and Faroe Islands 

(Steele and Steele , 1972; Bousfield , 1973) . Gammarus oceanicus is euryhaline and 

omn ivorous, grazing on seaweed but feeding on other invertebrates too, including 

crustaceans (e.g., mysids, A. E. Radulovici , pers. obs.). Although adults are food-

flexible, juveniles need seaweeds for food and shelter, hence an intrinsic relation 

between G. oceanicus and various intertidal seaweeds (Ascophyllum nodosum, 

Fucus spp.). This species plays an important role in intertidal food webs, as prey for 

fish , birds and marine mammals. 

ln North America , the entire present-day distribution range of G. oceanicus 

was covered by the Laurentide Ice Sheet, therefore European populations were 
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considered to be the source of existing NWA populations (Ingolfsson , 1992 but see 

genetic patterns in Henzler, 2006; Costa et al. , 2009). The objectives of this study 

are two-fold : i) reveal phylogeographic patterns at the amphi-Atlantic scale by 

including data from a large geographic area covering most of the species range); ii) 

reveal genetic structure in Atlantic Canada in order to assess potential survival 

during LGM and post-glacial colonization routes in NWA. 

4.4 Material and methods 

4.4.1 Sam pie collection 

Sampling was conducted between 2006-2010 along the shores of Eastern 

Canada (Gulf of St. Lawrence - GSL, open Atlantic coast) and in a few sites in 

northern Canada and Norway (Figure 4.1). Amphipods were collected at low tide 

with dip nets and immediately stored in 95% ethanol. Morphological identifications 

followed available keys for NWA (Bousfield , 1973). Specimens were stored as 

vouchers for future reference. Details regarding collection , geographic coordinates, 

taxonomy, vouchers and images can be found in Barcode of Life Data System 

(BOLD, Ratnasingham and Hebert, 2007), within the project GAMOC 

("Phylogeography of Gammarus oceanicus") under the "Specimen Page". In order to 

increase our geographic coverage for this taxon , we included published data for 

Iceland , Poland and Canada (Costa et al. , 2009, project code: FCGA; Radulovici , 

Sainte-Marie and Dufresne, 2009, project code: WWGSL), as weil as sequences of 

additional Canadian specimens provided by Dr. Paul Hebert (University of Guelph). 
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Figure 4.1 Collection sites for Gammarus oceanicus and the general circulation 
patterns for North Atlantic. Circles represent sites from Atlantic Canada (Southern 
cluster) while triangles are used for sites from the Arctic Canada and Europe 
(Northern cluster). 

4.4.2 DNA extraction, amplification, sequencing 

Genomic DNA was extracted from small amounts of muscle tissue, usually 

from one pereopod , preserving the rest of the organism as a voucher. The 

amplification and sequencing of the barcode region , a 658 bp fragment at the 5'-end 

of the COI gene, followed previously described protocols (Radulovici , Sainte-Marie 

and Dufresne, 2009). Two alternative sets of primers were used and their sequences 
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are available in BOLD: LC01490 - HC02198 (Folmer et al. , 1994) with M13 tails 

and CrustDF1 - CrustDR1 (Steinke, unpublished) . 

4.4.3 Data analysis: genetic diversity, structure and demographic history 

DNA sequences were manually edited in Sequencher 4.9 (Gene Codes 

Corporation , Ann Arbor, MI) and aligned in MUSCLE with the default settings in 

MEGA 5 (Tamura et al., 2011 ). COI sequences were translated into amine acids in 

MEGA 5, to verify the reading frame and to assess the possibility of having amplified 

pseudogenes. Details regarding DNA sequences, trace files and ami no acid 

translation can be found in BOLD within the projects GAMOC, \fINVGSL and FCGA, 

under the "Sequence Page". Pairwise genetic distances between COI haplotypes 

used the Kimura 2-parameter (K2P) evolutionary correction (Kimura, 1980) and were 

generated in MEGA 5. 

Population structure was assessed with a two-step approach . First, COI 

haplotypes were used for Bayesian inference (BI ) and maximum likelihood (ML) 

phylogenies. A ciosely related species, Gammarus duebeni, was used as outgroup. 

The most appropriate model of sequence evolution was chosen by running the 

dataset in jModelTest 1.0.1 (Posada, 2008) under the Akaike Information Criterion 

(AIC) (Posada and Buckley, 2004) . The General Time Reversible (GTR) model with 

a proportion of invariable sites (+1 ) was used in MrBayes 3.1.2 (Ronquist and 

Huelsenbeck, 2003) to run two inde pendent analyses, inciud ing 10 million 

generations and sampling every 1,000 generations. The initial 25% of samples were 

discarded as bu rn-in and the final consensus tree was rooted and edited in FigTree 

1.3.1 (http://tree .bio.ed .ac.uk/software/figtree). An ML tree was built in RAxML 7.2.8 

(Stamatakis, Hoover and Rougemont, 2008) a web-server application available 

through Vital IT unit of the Swiss Institute of Bioinformatics (http://phylobench .vital-

it.ch/raxml-bb). Following the phylogenetic results , which revealed the existence of 

two divergent clusters, the next step included basic genetic structure analyses 
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performed on separate (e.g. , each cluster) and combined datasets. Haplotype 

networks for each cluster were constructed in Network 4.6 (Bandelt, Forster and 

Rohl , 1999), which uses a median-joining algorithm to build parsimony networks. 

Atlantic Canada was sampled thoroughly in terms of geographic coverage (except 

for the Labrador coast) but with a small sam pie size per site, therefore we pooled 

sites into larger groups. Multiple approaches were used for finding genetically and 

geographically cohesive groups: spatial analysis of molecular variance, SAMOVA 

(Dupanloup, Schneider and Excoffier, 2002), discriminant analysis of principal 

components , DAPC (Jombart, Devillard and Balloux, 2010) , Bayesian analysis of 

population structure, BAPS (Corander et al., 2008). Since none of these methods 

gave a clear result , our final division was loosely based on the biogeographical 

zones of GSL (Brunei , Bossé and Lamarche, 1998) resulting in 10 groups (Table 4.1 

and Figure 4.2). These artificial groups were treated as "populations" in subsequent 

analyses. Molecular diversity indices such as haplotype diversity (Hd) and nucleotide 

diversity (TT) were calculated for each population in Arlequin 3.5 (Excoffier and 

Lischer, 2010) based on K2P distances. Geographic structure was tested by 

hierarchical analysis of molecular variance (AMOVA) with K2P distances and 10,000 

permutations and c:P-statistics . The first AMOVA investigated the existence of genetic 

differentiation between the two clusters , while the second AMOVA tested for further 

potential subdivision in Atlant ic Canada . For the latter, populations were grouped into 

three regions: northern GSL, southern GSL and open Atlantic coast. Pairwise c:PST 

population comparisons were calculated with haplotype frequencies and 10,000 

permutations, taking into account K2P distances. 
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Table 4.1 Genetic diversity for pooled collection sites: sample size (N), number of haplotypes per population (H), 
haplotype diversity (Hd) and nucleotide diversity (TT) with standard deviation between brackets 

Code Populations N H Hd (SO) TT (SD 
Atlantic Canada 
ESL Estuary 32 8 0.8165 (0.0358) 0.0029 (0.0019) 
GAP Gaspe Peninsula 16 8 0.8750 (0.0591 ) 0.0058 (0.0034) 
SGF Southern Gulf 27 10 0.8462 (0.0427) 0.0030 (0.0019) 
PEI Prince Edward Island 21 8 0.7952 (0.0677) 0.0032 (0.0020) 
MIS Magdalen Islands 37 4 0.2508 (0.0909) 0.0005 (0.0006) 
NSH North Shore 11 4 0.6727 (0.1232) 0.0035 (0.0023) 
WNF Western Newfoundland 8 6 0.8929 (0.1113) 0.0029 (0.0021 ) 
ENF Eastern Newfoundland 29 12 0.8744 (0.0380) 0.0050 (0.0029) 
NSC Nova Scotia 14 8 0.8242 (0.0977) 0.0033 (0.0022) 
FYB Fundl' Bal' 33 13 0.8958 {0.0295) 0.0076 {0.0042) 

South cluster 228 67 0.9507 {0.006} 0.0075 {0.0041 } 
Arctic Canada 
CHU Churchill 28 2 0.0714 (0.0652) 0.0001 (0.0002) 
NOC Northern Ouebec 2 1 NA NA 
Euroe.e 
NOR Norway 6 3 0.6000 (0.2152) 0.0021 (0.001 7) 
ICE Iceland 7 1 NA NA 
POL Poland 2 2 1.0000 {0.5000} 0.0032 {0.0038} 

North cluster 45 7 0.3576 {0.089} 0.0011 {0.0009} 
Total G. oceanicus 273 74 0.9485 (0.006) 0.0155 (0.0079) 

122 



4CO __ ==Km 

123 

Figure 4.2 The Gulf of St. Lawrence with colored sites corresponding to our 
populations: ESL - orange, GAP - brown, SGF - light blue, PEI - dark blue, MIS -
light green, WNF - dark green, NSH - violet, ENF - red , NSC - yellow, FYB - pink. 
Oceanography includes main currents (thick arrows), secondary currents (thin 
arrows) and gyres (circle arrows), according to DFO data. 

Present-day genetic diversity can be influenced by demographic history. 

Mutation-drift equilibrium was tested by three analyses for both the combined and 

separate datasets: mismatch distribution, two neutrality tests, Tajima 's 0 (Tajima, 

1989) and Fu 's F's (Fu, 1997), in Arlequin 3.5. The analysis of mismatch distribution 

of pairwise differences between COI sequences took into consideration the observed 

values compared against simulated values under a demographic expansion model 

and a spatial expansion model. Goodness-of-fit between observed and simulated 

data was tested by the sum of squared deviations (SSD) and the raggedness index 

(r) based on 10,000 permutations. The neutrality tests were performed in order to 
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infer recent population changes and their significance was tested with 10,000 

permutations. 

4.5 Results 

4.5.1 COI - genetic diversity 

A total of 246 amphipods were successfully sequenced (BOLO project code: 

GAMOC) . Twenty-seven additional COI sequences of G. aceanicus were included in 

our analyses: ten sequences fram Canada (pravided by P. Hebert), three sequences 

generated in a previous study from Canada (Radulovici , Sainte-Marie and Oufresne, 

2009 , BOLO project code: VWVGSL) and 14 published sequences fram Canada , 

Iceland and Poland (Costa et al., 2009; BOLO praject code: FCGA) . Although the 

last study included 33 G. oceanicus sequences, we chose only those with trace files 

in BOLO, good quality and longer than 620 bp. The final dataset consisted of 273 

amphipods fram 87 sampling sites with a range of 1-11 specimens per site. At the 

regional level there were 15 amphipods fram four European sites, 30 fram seven 

Arctic Canadian sites and 228 collected in 76 sites along the shores of co Id-

temperate Atlantic Canada. For the last region , the 10 populations (Figure 4.2) had a 

sample size varying between eight and 37 specimens (Table 4.1). Considering also 

published sequences (Costa et al. , 2009) from Maine (U .S.A), which were not 

included in our analyses for reasons mentioned above but compared to our dataset 

(data not shown) , we fully covered the southern range of the species distribution in 

North America. 

The majority of COI sequences spanned the full barcode length - 658 bp . 

However, the presence of a few shorter sequences resulted in a final trim to a 

uniform length of 621 bp. The alignment included 66 polymorphie sites and no indels 

or stop codons (indication of pseudogenes) were detected. A total of 69 mutations 
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formed 74 haplotypes (H1-H74). Most of these mutations were silent, occurring at 

the third position of codons. However, five mutations at the first codon position led to 

changes in the string of 207 amino acids. These non-synonymous mutations 

involved four transitions and one transversion , ail in samples from Atlantic Canada. 

One transition occurred at codon 106 leading to a change from Valine (GTC) to 

Isoleucine (ATC) within H29, H33, H65 and H69. One transition (A TT - GTT) at 

codon 42 resulted in the change of Isoleucine with Valine within H52, while a 

transversion (TT A - GTA) in codon 87 changed the coded amino acid fram Leucine 

to Valine within H73. The last two transitions involved a change from Glycine to 

Serine at codon 27 within H28 (GGA - AGA) and at codon 112 within H64 (GGT -

AGT) . K2P distances between haplotypes varied from 0.2±0.2% to a maximum of 

3.0±0.7% and had a mean value of 1.0±0.2%. 

4.5.2 Population structure 

Both BI and ML trees had similar topologies and mainly showed a split of 

samples into two clusters : one distributed exclusively in Europe (Poland , Iceland, 

and Norway) and Arctic Canada (subsequently referred to as "Northern cluster" 

although Poland and GSL share similar latitude) and one distributed exclusively in 

Atlantic Canada (subsequently referred to as "Southern cluster") (Figure 4.1 and 

4.3). Mean distances within clusters were 0.4±0.2% (north) and 0.8±0.2% (south), 

while between groups it reached 2.4±0.5%. The two groups consisted of 45 

sequences and seven haplotypes in the north and 228 sequences and 67 haplotypes 

in the south , and no haplotype was shared between the two clusters . 
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Figure 4.3 Phylogenetic tree for G. oceanicus based on COI haplotypes. The 
dashed line to the outgroup, G. duebeni, is not illustrated to scale. Although both BI 
and ML trees identified the same two divergent clusters (Northern and Southern), 
both of them had weak support. 
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The Northern haplotype network (Figure 4.4), while based on only a few 

haplotypes, showed more variability in Europe compared to Arctic Canada: two 

haplotypes from two specimens in Poland , three haplotypes from six specimens in 

Norway, while ail six Icelandic specimens shared the same haplotype with almost ail 

samples from Arctic Canada (both Hudson Strait and Hudson Bay). One common 

haplotype (H6) accounted for 80% of specimens , while 11 % were singletons (i. e. , 

haplotypes represented by one specimen) (Appendix B). The Southern haplotype 

network (Figure 4.5) showed a highly diverse group and a star-like phylogeny with 

two central haplotypes (H10 and H19), separated by two mutational steps and 

dividing the network into a group corresponding to the southern GSL and one 

corresponding to the northern GSL, Estuary and the open Atlantic coast. The two 

central haplotypes accounted for -18% of specimens, another 18% were 

represented by singletons, while 14% shared the most abundant haplotype (H37, 

N=32) which was restricted to Magdalen Islands. Most haplotypes were connected 

by one mutational step, however many missing haplotypes were needed to connect 

ail haplotypes and a few cases of homoplasy appeared as reticulation in the network. 

Overall , haplotypic diversity Hd was high (0.9485±0.0060) and the nucleotide 

diversity TT was moderate (0.0155±0.0079). At the regional level , Hd was high in the 

south (0.9507±0 .0060) but low in the north (0.3576±0 .0890), wh ile TT was moderate 

in the south (0.0075±0.0041 ) and low in the north (0.0011 ±0.0009) (Table 4.1). 

The AMOVA analysis conducted for Atlantic Canada showed that around half 

of the variation occurs within populations, and the rest is shared at higher levels 

(within and between groups) (Table 4.2). Pairwise ct>ST between populations showed 

high levels of genetic differentiation between populations (Table 4.3). 
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Figure 4.4 Median-joining haplotype network for the Northern cluster. Circles 
represent haplotypes, their size being proportional to the subset of samples 
exhibiting the particular haplotype, black dots are missing haplotypes, and lines 
represent mutational steps. Colors represent different populations: NOR - dark blue, 
POL - light pink, ICE - yellow, NOC - purple, CHU - brown. 

Table 4.2 Hierarchical analysis of molecular variance (AMOVA) for G. oceanicus 

Structure tested Source of variation % Variance <I>-statisticsa 

Canada+Europe Among groups 74.88 0.74884 

Among populations within groups 11.46 0.45638 
Within populations 13.65 0.86346 

Atlantic Canada Among groupsb 24.25 0.24255 
Among populations within groups 23.07 0.30460 
Within populations 52.67 0.47327 

aAIi fixation indices were significant at P<0.01 
bGroupS: Southern Gulf (SGF, PEI, MIS), Northern Gulf (EST, GAP, NSH, WNF), 
open Atlantic coast (ENF, NSC, FYB). 



129 

Figure 4.5 Median-joining haplotype network for the Southern cluster. Each circle represents one haplotype (the size 
corresponds to the number of individuals sharing that haplotype), each line represents one mutation step, and black dots 
are missing haplotypes. Colors represent different populations, identical to the ones used in Figure 4.2. 
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Table 4.3 Pairwise <P ST values between populations 

2 3 4 5 6 7 8 9 10 11 12 13 14 

2 0.195 

3 0.492 0.426 

4 0.609 0.528 0.290 

5 0.720 0.677 0.488 0.686 

6 0.346 0.303 0.589 0.661 0.837 

7 0.436 0.344 0.142 0.414 0.662 0.554 

8 0.182 0.213 0.380 0.496 0.624 0.278 0.342 

9 0.095 0.144 0.388 0.538 0.731 0.309 0.354 0.091 

10 0.228 0.230 0.440 0.517 0.602 0.272 0.363 0.176 0.161 

11 0.861 0.787 0.878 0.875 0.969 0.857 0.883 0.778 0.854 0.686 

12 0.866 0.778 0.882 0.877 0.977 0.855 0.871 0.781 0.854 0.684 0.439 

13 0.887 0.829 0.901 0.902 0.982 0.903 0.932 0.809 0.895 0.718 0.627 0.894 

14 0.923 0.905 0.936 0.941 0.986 0.952 0.969 0.872 0.944 0.800 0.802 0.945 -0 .072* 

15 1 0.868 0.778 0.883 0.879 0.980 0.861 0.891 0.774 0.858 0.669 0.400* 0.667* 0.000* -0 .332* 
* Non-significant P-values (P>0.05) after 10,000 permutations. 
Populations: 1 - EST, 2 - GAP, 3 - SGF, 4 - PEI , 5 - MIS, 6 - NSH, 7 - WNF, 8 - ENF, 9 - NSC, 10 - FYB, 11 - NOR, 
12 - POL, 13 - ICE, 14 - NOC, 15 - CHU. 
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4.5.3 Demographie history 

Graphie representations for mismatch distributions showed unimodal 

distributions, more accentuated in the Southern cluster where the sam pie size was 

higher (Figure 4.6). The goodness-of-fit tests (SSD and r) had non-significant P-

values, therefore we cannot reject a spatial expansion model in both clusters. Both 

neutrality tests, Tajima's D and Fu 's F's, had negative values and were significant, 

indicating recent mutations due to demographic expansion or selective sweeps in 

both clusters (Table 4.4). 
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Figure 4.6 Mismatch distribution for each cluster of G. oceanicus. Black lines: 
observed values, grey lines: expected values. Colored dashed lines represent 
confidence intervals (90%, 95%, 99%). 
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Table 4.4 Historical demography parameters with 95% confidence intervals ranges and P-values between brackets 

Model Parameter North cluster South cluster Total 

Sudden exeansion 

Tau 3.000 (0.082- 4.250) 3.871 (2.010- 1.883 (0.305-13 .619) 
6.422) 

Theta 0 o (0-0 .009) 0.519 (0-1 .935) 5.258 (0-13.039) 
Theta 1 0.545 (O-inf) 25.527 (11.823-inf) 42.461 (11 .636-inf) 

SSD 0.010 (P=0.43) 0.002 (P=0.5) 0.014 (P=0.29) 
0.242 {P=0.52} 0.016 {P=0.57} 0.019 {P=0.17} 

Tau 2.140 (0-12.964) 3.230 (1 .801- 1.795 (0 .578-14.298) 
5.442) 

Theta 0.324 (0.001-0.968) 1.017 (0 .001- 5.170 (0.001-12.447) 
4.193) 

M 0.295 (O-inf) 31 .941 (12 .904-inf) 38.393 (0 .964-inf) 
SSD 0.006 (P=0.55) 0.002 (P=0.5) 0.014 (P=0.27) 

r 0.242 (P=0.62) 0.016 (P=0.66) 0.019 (P=0 .19) 
Tajima's D -1.604 (P=0.03) -1.863 (P=O) -1 .130 (P=0.11) 

Fu 's F -3 .741 (P=0.01) -25 .569 (P=()} -24.591 (P=0.0003) 
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4.6 Discussion 

4.6.1 Origin and genetic divergence: amphi-Atlantic structure 

G. oceanicus is a species adapted to a cold climate (Steele and Steele, 1972) 

and it might have evolved during changing conditions of late Pliocene (Golikov and 

Tzvetkova , 1972). During the Quaternary dimate change with its sea level and ice 

cover fluctuations , the northern G. oceanicus populations followed an extinction-

recolon ization (from the south) pattern which finally led to the present-day 

distribution of this species. The phylogenetic analysis (Figure 4.3) identified two 

clusters that are segregated latitudinally (Europe and Arctic Canada versus Atlantic 

Canada) (Figure 4.1). Populations belonging to these groups showed high <P ST 

values (0.66-0.98) (Table 4.2) and differentiation in the AMOVA analysis (74% of 

variation occurred between the two groups) (Table 4.2) . Moreover, the clusters were 

separated by mean pairwise distances of 2.4% for COI , a value which might be 

indicative of species boundary (see 2.8% in Hyas spp.; Radulovici , Sainte-Marie and 

Dufresne, 2009) . By using the sequence divergence and a molecular dock 

commonly used in crustaceans (-2% per MY; Raupach et al., 2010a), the separation 

time can be estimated at roughly 600KYA, during the Pleistocene which was an 

epoch of rapid radiation for Gammarus spp. in general (Steele and Steele, 1972). 

The use of a molecular clock assumes uniform mutation rates along lineages and it 

is still a debated issue (Emerson , 2007) . Amphipods lack good fossil records and no 

molecular dock has been calibrated , hence our use of the common crustacean dock 

of -2%/MY. However, some crustacean groups might evolve faster than others while 

northern and southern populations of the same species might have a different 

number of generations per year translated into variation in the intraspecific 

evolutionary rate (Thomas et al. , 2010). Nonetheless, in G. oceanicus even by using 

faster docks, as proposed in other amphipods (9.6%/MY; Henzler, 2006) or in 
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mysids (27%/MY, Audzijonyte and Vainola, 2006) , the separation time between the 

two groups is placed before LGM (125 KY A and 44 KY A respectively ,). 

Consequently , the two intraspecific clusters originated sometime in the 

Pleistocene when the coastal habitat became unsuitable for G. oceanicus and 

populations receded to ice-free areas in Europe as weil as in North America , from 

which they recolonized northern areas during the following interglacial period . After 

LGM, both clusters expanded their ranges as shown by the analysis of mismatch 

distribution and the neutrality tests (Table 4.4, Figure 4.6) . The lack of shared 

haplotypes indicates a clear genetic isolation of clusters even after the retreat of the 

ice sheets. 

The Northern cluster included fewer samples, fewer haplotypes, lower 

haplotype and nucleotide diversity compared to the Southern cluster, a genetic 

pattern that might indicate recent expansion from a small refugium or a post-glacial 

bottleneck. Moreover, the most common haplotype (H6) was shared by CHU , NQC 

and ICE, even though these populations are separated by thousands of kilometers of 

deep water, land masses and strong currents (Figure 4.1), indicating a European 

source for Canadian Arctic populations. Recent and rapid colonization of large 

territories is usually explained by species dispersal capacity. As with ail amphipods, 

G. oceanicus is a direct developer (i.e., eggs hatch into juveniles) and lacks a 

pelagic dispersive larval phase, which may favour large-scale dispersal via currents . 

Although a good swimmer, G. oceanicus is restricted to active dispersal only at small 

scales during high tide, in shallow infralittoral waters (Ingolfsson and Agnarsson , 

2003), but is incapable of surviving and dispersing along the deeper ocean bottoms. 

Therefore, this species must have succeeded in rapidly colonizing Arctic Canada 

from Europe via Iceland by means of passive dispersal. Amphipods can be 

transported between sites by rafting in clumps of detached algae (Ingolfsson, 1995), 

phoretic associations with other animais (birds, aquatic mammals) or by humans 

(e.g., shipping). While rafting is considered a common way by which invertebrates, 
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including amphipods (Henzler, 2006) , colonize new habitats (review in Thiel and 

Gutow, 2005), its success is highly dependent on physical (currents , winds, 

temperature), as weil as biological (food source, competition and predation while 

rafting ) factors (Vandendriessche, Vincx and Degraer, 2007). Moreover, successful 

rafting (i.e. , reaching a new site) does not necessarily imply successful colonization 

(i. e. , reproduction and propagation in the new site). In G. oceanicus, rafting from 

Iceland to Labrador and Newfoundland might be possible, especially in the early 

post-glacial period when the current system had an opposite pattern (from east to 

west); th is scenario should lead to introgression of northern haplotypes into the 

Southern cluster which was not identified in this study. However, rafting from Iceland 

to Hudson Bay seems less probable (Figure 4.1) and shipping activities are too 

recent in the Arct ic to explain colonization . Therefore, we consider passive dispersal 

through seabi rds to be the most probable mechanism of dispersal between ICE and 

CHU . Seabirds have yearly migrations between Europe and Canada with southwest 

Greenland being an important wintering ground for many species breeding on both 

continents (Boertmann et al., 2004). Birds feed on intertidal invertebrates, including 

amphipods, hence a possibility for external (on feathers) or internai (digestive tract) 

transportation . These mechanisms have not been investigated in marine intertidal 

amphipods yet. However, studies have found some freshwater amphipods, including 

Gammarus spp., to be transported over land in bird feathers (Swanson , 1984 and 

references therein). Other crustacean species (copepods, branchiopods) were able 

to survive as eggs inside the digestive tract and hatch afterwards (review in 

Figuerola and Green, 2002), while recent findings have shown adult sn ails giving 

birth to juveniles after surviving through a bird 's gut (Wada, Kawakami and Chiba, 

2011 ). In amphipods, internai transport as eggs is improbable due to parental care 

(i .e., females carrying eggs and then juveniles in the brood pouch). Beavers, 

muskrats or dogs have been mentioned as carrying amphipods in their fur 

(Swanson , 1984 and references therein). In G. oceanicus, the most probable 

candidates for smaller-scale dispersal in northern habitats (e.g. , within Hudson Bay) 

would be polar bears which feed in the intertidal area where amphipods might attach 
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or penetrate their fur. Although speculative at this point, dispersal of G. oceanicus 

through phoretic associations should not be discarded . After ail , there is a lack of 

knowledge on the potential for amphipod colonization through infrequent transport by 

birds carrying berried females or potential amphipod mates. 

4.6.2 Glacial refugia in North Atlantic 

Traditional views on LGM considered that massive thick ice sheets covered 

extensive parts of the northern continents (Figure 1 in Hewitt, 2000) , therefore 

northern coastal species disappeared or receded to southern refugia on both coasts. 

However, there is geologic evidence for ice-free areas in the north (not indicative of 

biological survival though; see Brochmann et al. , 2003), and multiple and 

controversiallocations for coastal glacial refugia have been proposed. 

Coastal refugia were believed to have been common in GSL (around Gaspe 

Peninsula , west coast of Newfoundland, Pielou , 1991 ; Magdalen Islands, Prest et al. , 

1976) but the latest reconstructions of the ice sheet give alternative refugia on the 

Atlantic continental shelves (Grand Banks, Georges Bank and the Flemish Cap) 

while the Gulf seems to have been completely covered by ice (Shaw, 2006) . The 

former two banks became coastal plains during LGM due to a low sea level and 

acted as potential refugia for entire coastal and terrestrial communities. By contrast, 

the Flemish Cap was still below the sea level (-10 m) and although G. oceanicus is a 

marine species living in shallow waters (-25 m), it is associated with intertidal 

seaweeds at least in the juvenile stage. Therefore, the Flemish Cap is less likely to 

have been a valid refugium for this species. In this context, when ice began to break 

up and melt, GSL was probably rapidly re-colonized by active or passive dispersal 

through the Cabot Strait (as Belle-Isle was still blocked by ice) , starting with the 

southern regions and ending with the Estuary, the last region to be deglaciated 

(Shaw et al., 2006). 
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Proposed marine refugia in Europe include Iceland , northern Norway, 

southwest Ireland , the English Channel (Hurd Deep) , the Mediterranean, Iberian 

Peninsula and the Azores (review in Maggs et al., 2008) . While Iceland has been 

proposed based on genetic patterns found in an isopod species (Idotea balthica ; 

Wares and Cunningham, 2001) and would be consistent with our data on G. 

oceanicus, this possibility has been dismissed for coastal species based on geologic 

evidence (Ingolfsson, 2009) , although groundwater amphipods may have survived 

there (Kornobis et al., 2010) . Consequently , it is believed that both Iceland and 

Canada were rapidly colonized by coastal species surviving in other European 

refugia, which took advantage of the post-glacial sea-current system to move from 

east to west (Ingolfsson , 1992). A boreal species adapted to live in shallow water 

with seaweeds, G. oceanicus probably survived in suitable habitats in the English 

Channel and the Irish coast . 

The long-term persistence of G. oceanicus in NWA is indirectly supported by 

phylogeographic patterns of seaweeds, its main food source or habitat. Olsen et al. 

(2010) showed genetic patterns consistent with amphi-Atlantic survival of 

Ascophyllum nodosum, while other seaweeds apparently survived in southern 

European refugia and only recently colonized NWA (Fucus vesiculosus , Muhlin and 

Brawley, 2009; Chondrus crispus, Hu et al., 2010), probably facilitating dispersal and 

colonization of its associated fauna capable of rafting . 

4.6.3 Genetic structure in Atlantic Canada 

The Southern cluster was restricted to Atlantic Canada. DNA sequences 

belonging to G. oceanicus from Maine (data not included here; Costa et al. , 2009) 

were found to share the same haplotype with some FYB samples, therefore we are 

confident that we covered the southern distribution range of this species and no 

European haplotypes occur in NWA. 
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High genetic diversity, the star-like phylogeny with many rare haplotypes and 

demographic analyses are indicating rapid post-glacial expansion while the presence 

of two central haplotypes might indicate secondary contact between populations 

surviving in separate refugia . As Long Island Sound is the southern limit for G. 

oceanicus distribution and also for the Laurentide Ice Sheet, our results are indirect 

evidence for survival in some NWA periglacial refugia . Pairwise <PST (Table 4.3) and 

the AMOVA analysis (Table 4.2) showed a high level of present-day genetic 

structuring in NWA, although the phylogenetic tree lacked resolution in finding 

genetically differentiated clusters (both clusters had weak support) (Figure 4.3). 

Genetic structure is the consequence of limited gene flow between populations, 

despite the potential for rafting , phoretic associations and human-mediated transport 

at the scale of Atlantic Canada. Previous studies on marine invertebrates found 

various genetic patterns in NWA (especially Atlantic Canada and Gulf of Maine) fram 

lack of structure in the sea cucumber, Cucumaria frondosa (So et al., 2011 ), snow 

crab, Chionoecetes opilio (Puebla et al. , 2008), sea urchin, Strongylocentrotus 

droebachiensis (Addison and Hart, 2004) to certain levels of genetic differentiation in 

lobster, Homarus americanus (Kenchington et al., 2009) and barnacles, 

Semiba/anus ba/anoides (Dufresne, Bourget and Bernatchez, 2002). However, none 

of the previous studies had a thorough sampling of GSL and the adjacent Atlantic 

coast and the targeted species had a pelagic developmental phase. Th is study 

indicates that an intertidal species with direct development survived during LGM in 

NWA although species with a larval phase were considered favorites for escaping 

harsh conditions in the north due to their potential for large-scale dispersal (Faurby 

et al., 2011 ). It also shows genetic structure at small-scale which is concordant with 

limited active dispersal (as direct developer) but in contrast with the potential for 

large-scale passive dispersal. However, fast evolving nuclear markers (e.g., 

microsatell ites) are needed in order to assess the level of population connectivity at 

fine spatial scale in NWA. 
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4.6.4 Magdalen Islands 

The isolated Magdalen archipelago lies in the center of the GSL, being 

separated by -90 km from the closest landmass (PEI) (Figure 4.2). A thorough 

sampling of most of the largest islands revealed the existence of three haplotypes 

restricted to the archipelago, two singletons (H38 , H39) and one common haplotype 

(H37) found at every sampling site (Appendix B). A fourth haplotype (H19) had a 

central position in the Southern network (Figure 4.5) and its presence demonstrates 

the close genetic relatedness (one mutation) between the present-day insular 

population and one of the surviving ancestral populations. There are two alternative 

explanations for this pattern : a population surviving in one of the glacial refugia 

outside GSL started to colonize southern GSL immediately after deglaciation (see 

sections above) and one haplotype founded the future insular population (the 

founder effect) or a glacial refugium was actuaily situated in the Magdalen 

archipelago and the colonization of the southern GSL started from there when the 

ice broke-up and melted . The hypothesis of an unglaciated Magdalen archipelago 

during the Pleistocene (Prest et al. , 1976) has led to its consideration as a glacial 

refugium for insects (Hamilton , 2002) or small mammals (Youngman , 1967) . This 

might be considered a valid argument when designing scenarios for rapid 

colonization of the Gulf foilowing deglaciation (faster colonization from inside GSL 

rather than from outside, the heavy flow of outgoing ice-melt and icebergs making it 

difficult to move upstream into the Cabot Strait (Figure 3 in Shaw et al., 2006) . 

However, there is no geologic evidence in coastal sediments to show that large 

areas of GSL remained ice-free (Bernard Hétu , UQAR, pers. comm.). On the other 

hand , there is no information on the minimum space required for the survival of a 

minimum viable population of G. oceanicus and GSL has not been thoroughly 

investigated for geological evidence of glacial refugias . Consequently, although we 

follow the most accepted scenario of a completely ice-covered GSL and glacial 

refugia only in the Maritimes (Grand Banks, Georges Bank), we do not exclude the 

possibility of a refugium inside GSL. 
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Regardless of the location of the glacial refugium and the exact origin for the 

insular amphipod fauna , the present-day genetic structure of G. oceanicus indicates 

genetic isolation of the geographically isolated Magdalenian population from the 

other populations in Atlantic Canada. Therefore the potential dispersal mechanism 

through rafting at the GSL scale might be hindered by oceanographie features such 

as local currents and gyres (Figure 4.2) or by some biological features (e.g., food 

limitation affecting survival during rafting) . Moreover, based on currents and wind 

patterns, there should be migration through rafting especiaily from the tip of the 

Gaspe Peninsula or from northeast PEI/Cape Breton , less likely from WNF or NSH, 

but we found no evidence for su ch migration patterns. The fourth haplotype in MIS 

(H19) is shared between Old Harry Harbour/Brion Island (MIS) and the 

Northumberland Strait (southwest PEI , SGF), Chaleur Bay, WNF and NSC, the least 

likely sources of potential migrants for the Magdalen fauna. Therefore, the Magdalen 

population might be completely isolated from the surrounding populations, being in 

the slow process of differentiation and speciation and should be investigated further 

with fast-evolving markers. 

4.6.5 Present-day barriers to dispersal 

Glaciations divided the ancient distribution range of G. oceanicus and the 

present-day genetic structure can be easily interpreted as the result of vicariance. 

However, the lack of mitochondrial introgression between groups (across the 

Atlantic) remains a puzzle. With numerous species re-colonizing NWA via passive 

dispersal from Europe through Mid-Atlantic islands as stepping stones (Ingolfsson, 

1992; Wares and Cunningham , 2001 ; Henzler, 2006 ; lives et al., 2010), there is no 

obvious explanation for the European G. oceanicus colonizing Arctic but not Atlantic 

Canada. Seabird-mediated dispersal between GSL and Hudson Bay is hampered by 

the feeding behavior of birds during the migration , namely stop-over at in land lakes, 

which does not permit the viable transport of intertidal marine amphipods. Human-

mediated dispersal led to successful recent invasions of species belonging to 
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Gammarus sensu lato into the non-native Atlantic coast (G. tigrinus in Europe, 

Echinogammarus ischnus in NWA). One possible explanation for the lack of 

introgression between G. oceanicus clusters would be ecological divergence of the 

amphipods' ability to use food sources (e.g., seaweed species) . Indeed , recent work 

showed such local adaptation in another marine grazer, Idotea balthica , in which 

local populations adapt to their host (Fucus versus Zostera) resulting in parallel 

divergence (Vesakoski et al. , 2009) . As our study was mainly focused on Atlantic 

Canada , our sampling was quite intensive towards the species southern range limit 

but scattered in the northern areas. Therefore we lack samples from the contact area 

between clusters , namely the labrador coast (Figure 4.1). Samples from this region 

would add valuable information regarding a genetic contact zone and the processes 

maintaining it. 

4.7 Conclusions 

This study showed the existence of two divergent intraspecific clusters for the 

common intertidal amphipod Gammarus oceanicus with amphi-Atlantic distribution. 

These two clusters did not correspond to a European - North American separation 

but rather to a certain latitudinal segregation between north and south . COI 

sequences showed high divergence (2.4%) and no shared haplotypes between 

clusters, an indication of potential cryptic species. Ancestors of the Northern cluster 

probably survived in glacial refugia in Europe and began a colonization process into 

Arctic Canada soon after deglaciation , possibly by multiple means of dispersal (e.g ., 

birds, rafting by algae) and via stepping stones in the North Atlantic (Norway, 

Iceland, Greenland) . Ancestors of the Southern cluster probably survived in two 

glacial refugia in or south of the Canadian Maritimes and colonized from there and 

separately the southern GSl and the northern GSl together with the Estuary. The 

missing link between the two clusters is the remote coast of labrador. Therefore, 

sampling along this coast is vital in order to clarify the distribution range (overlapping 



143 

or not) of the two clusters and the possibility of hybridization (e.g., mating trials) . In 
addition , fast evolving genetic markers (such as micrasatellites) would help clarify 

the genetic structure at small spatial scales. 

DNA barcoding can reveal the deep splits within morphological species, 

indicative of cryptic (incipient) speciation. While it is a tool for species identification 

and not for population studies, the large number of DNA barcode data being 

generated at the global level (> 1.3 million in BOLD, August 2011 ) will have major 

implications for other types of research such as comparative phylogeography of co-

distributed species. By its large-scale approach , DNA barcoding has an 

unprecedented raie in generating exploratory data on which general hypotheses on 

genetic diversity will be formulated and subsequently tested with "confirmatory 

approaches" (Jaeger and Halliday, 1998). 
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GENERAL CONCLUSIONS 

Overview: context and originality 

ln the context of a "biodiversity crisis" combined with the "taxonomie 

impediment", there is a need for a fast inventory of global diversity in order to design 

viable conservation actions. DNA barcoding is su ch an inventory tool , providing fast , 

reliable and co st-effective species identification . Libraries built through barcoding 

projects are rapidly accumulating at the global level and the iBOL project has as 

objective to provide 5 million barcodes for 500 ,000 species by 2015. 

The general goal of my PhD thesis was to use molecular methods 

(specifically DNA barcoding generating COI sequences) as a means to assess 

biodiversity in the marine environ ment. A specifie goal consisted in testing the 

efficacy of DNA barcoding in marine crustaceans from the North Atlantic with the 

implicit result of providing a reference library of COI sequences. As with every 

barcoding study, it included an inherent test of species hypothesis (i.e., does every 

traditional species consist of only one cluster of highly similar sequences?) . At the 

species level of biodiversity, this study focused on detecting the existence of 

potential cryptic species in five crustacean orders (Amphipoda, Isopoda, Mysida, 

Decapoda, Euphausiacea) , as weil as assessing the monophyletic/polyphyletic 

nature of genera within one amphipod family (Talitridae) . Implications of su ch tests 

concern biodiversity indices such as species richness and taxonomie distinctness. At 

the genetic diversity level, the goal of this study was to reveal patterns of genetic 

structure in the common intertidal amphipod , Gammarus oceanicus, with an amphi-

Atlantic distribution . This is a study investigating genetic patterns of biodiversity and 

not the processes responsible for creating various patterns, which are more difficult 

to be inferred due to confounding factors. 
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This is the first DNA barcoding study for marine crustaceans from the NWA. It 

is also the most comprehensive study on crustacean diversity (i.e. , species richness) 

based on molecular methods. It involves the most thorough geographic sampling in 

NWA both for species (>200 sites for the entire project) and at the genetic level (87 

sites for G. oceanicus) investigations. Also , the taxon sampling is very diverse, 

including 92 species encompassing five orders. The chapters presented here have 

each an original side. Chapter 1 is the first comprehensive review on the role of DNA 

barcoding for marine biodiversity. Chapter Il is the first study on barcoding marine 

crustaceans in the NWA, specifically from one geographic area, namely the St. 

Lawrence estuarine and marine system. Chapter III presents the most 

comprehensive phylogenetic analysis for Talitridae based on molecular data, in 

addition to providing a barcoding library for this family . Chapter IV is one of the first 

studies to use DNA barcodes (i.e., COI sequences generated during large-scale 

barcoding studies) beyond species identification in marine crustaceans, by providing 

a phylogeographic analysis for one of the most common and abundant intertidal 

amphipods and with amphi-Atlantic distribution . 

Overview: main findings at two biodiversity levels 

Invasive species 

One of the unexpected findings of this study was the detection of an invasive 

species in ESL, Echinogammarus ischnus (Figure 13 D). It is an amphipod native to 

the Ponto-Caspian basin which expanded its distribution range to western Europe 

and North America through shipping activities during the past century (Cristescu et 

al., 2004). While in the native range this species shows genetic differentiation 

concordant with geographic isolation between basins (e.g., Black and Caspian Seas) 

and limited dispersal capability (as amphipods are direct developers) , the invaded 

range includes very similar populations at the genetic level indicating colonization 
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from a small source of individuals originating in the northern Black Sea (Cristescu et 

al., 2004) . In North America it has been previously reported from the Great Lakes, 

Detroit River and St. Lawrence River, near Montreal (Witt, Hebert and Morton , 1997; 

Cristescu et al., 2004; Palmer and Ricciardi , 2004) and this study identified a new 

locality, Berthier-sur-Mer, a few hundred km downstream from Montreal , thus a 

range expansion in this species. Previous studies have shown that E. ischnus 

competes for resources with the native Gammarus fasciatus , replacing the latter in 

some areas (Palmer and Ricciardi , 2004) but the overall effect on the local food 

webs is unknown . 

A routine barcoding study revealed a case of range expansion for an invasive 

species (but see Chapter Il for details on how this positive match was possible) , 

hence the practicality of barcoding . The ability to identify invasive species , especially 

in the initial phases of settlement, will be of great help in decision-making related to 

limiting the spread of non-native guests. Invasive species are considered to be the 

second greatest threat to biodiversity after habitat destruction (www.iucn .org), but 

are they really so negative? Invasion is a natural process that has occurred since life 

appeared on Earth , shaping the present-day distribution and genetic make-up of 

many species. For example, at least 12 marine interchanges took place during the 

last 25 million years and the one caused by the opening of the Bering Strait resulted 

in a large invasion of the North Atlantic by North Pacific taxa with an interesting 

evolutionary consequence: -47% of Atlantic species with Pacific origin are now 

distinct from their ancestors (Vermeij, 2005) . A large part of our food , livelihood and 

aesthetic life is based on introduced species and some of these unpopular life forms 

actually have positive effects on native diversity (Davis et al. , 2011 ) or both positive 

and negative effects on different native taxa (Briggs, 2007 and references therein ), 

therefore the human bias that "non-native" (alien , exotic, invasive, introduced) equals 

"harmful" does not always hold true . 
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Figure 13 Some of the species mentioned in Chapters Il , III and IV. A: Neomysis 
americana; B: Ampelisca eschrichtii; C: Ischyrocerus anguipes; D: Echinogammarus 
ischnus; E: Platorchestia platensis; F: Orchestia gril/us; G: Tethorchestia sp. B; H: 
Gammarus oceanicus. 
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The "invasion" scale is global (Figure 14) and considered to have increased 

so drastically in the last century that we might ask ourselves not "What species is 

invasive?" but rather "What species is actually native?" (Carlton, 1989). With sailing 

activities between seas since the oldest historical times and a lack of archaeological 

species checklists, it might be difficult to identify the true origin of species in some 

cases. Davis et al. (2011) recently proposed a more practical view on invasion by 

considering the environmental impact rather than the origin of a species. This new 

approach is embedded in the general view that communities (natural and cultural) 

are continuously evolving, with a mix of long-term and new residents having an 

impact on each other and building together new forms (ecosystems, cultures), 

therefore it might be useless (in terms of funding and outcome) to try to recreate 

some previous "rightful" state if the newcomers are not harmful to the locals (Davis et 

al., 2011). 

....,.---_.....--..- -... --...- ----~ 
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Figure 14 Distribution map for invasive species according to marine ecoregions. 
Darker red shades indicate higher number of harmful species and greater impact on 
native communities while dark blue indicates ecoregions with less harmful species. 
(Source: Molnar et al. , 1998) 



149 

Underestimation of species richness 

Chapters II-III showed that DNA barcoding is a useful tool for species 

identification in crustaceans because morphological species usually correspond to 

clusters of similar COI sequences separated by large genetic distances ("barcoding 

gaps") from other species . 

The 460 specimens barcoded in Chapter Il belonged to 80 species, 56 

genera, 36 families and five malacostracan orders (Amphipoda, Isopoda, Mysida, 

Euphausiacea, Decapoda) and they represented only 20% of about 400 crustacean 

species inventoried within ESL and GSL (Brunei, Bossé and Lamarche, 1998). They 

also represent the most common (Brunei , Bossé and Lamarche, 1998) and most 

mobile (Sainte-Marie and Brunei , 1985) species. Four species showed intraspecific 

clusters with divergences greater than 3% (the proposed threshold for species 

delineation ; Hebert et al., 2003) or the 10x mean intraspecific value (Hebert et al. , 

2004) . These special cases (5% of ail species analyzed) included two amphipods 

(Ampelisca eschrichtii, Ischyrocerus anguipes), one mysid (Neomysis americana) 

(Figure 13, A-C) and one decapod species (Spirontocaris spinus). Except for A. 

eschrichtii, ail other species seem to present sympatric intraspecific clusters . 

However, such allegations are difficult to make when working with marine species, 

some of them collected by trawling , baited traps , plankton nets, hence lacking 

precise details on microhabitat. Therefore , habitat specialization leading to sympatric 

diversification is difficult to test in the sea. 

The 218 specimens barcoded in Chapter III belonged to 15 species, 8 genera 

and two families , one of them (Hyalidae) used as outgroup in phylogenetic analyses. 

The main family investigated here was Talitridae, the only amphipod family with both 

aquatic and terrestrial distribution. Talitrids are a species-rich group and many more 

species (hundreds to thousands) await discovery, while many undescribed taxa have 

been collected decades ago and remain in museum collections awaiting formai 
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description . In this group, three species (20% of the total) showed divergent 

intraspecific clusters indicating potential cryptic species. Platorchestia platensis and 

Tethorchestia sp . B (Figure 13, E, G) showed intraspecific allopatric segregation , 

while Orchestia gril/us Figure 13, F) encompassed seven clusters of which two were 

apparently sympatric (note: as they were represented by single individuals and very 

divergent from the other clusters , they might be pseudogenes). The 273 specimens 

included in Chapter IV and used for phylogeographic analyses in Gammarus 

oceanicus revealed the existence of two intraspecific clusters (see the next sub-

section) . 

DNA barcoding detected potential cryptic speciation occurring in eight 

morphological species encompassing a total of 23 clusters, hence a total of 15 

unknown clusters (i. e. , potential new species) for science . Among the morphological 

species, there were six amphipod and one mysid species, ail peracarids with direct 

development as opposed to only one decapod species (Iarval development) showing 

cryptic speciation. This finding might be explained by a different potential for 

dispersal related to the developmental mode, leading to different speciation rates. 

However, ail these species complexes have an unclear status in the present , waiting 

to be investigated and , hopefully validated , by taxonomists. 

Although cryptic speciation might be considered infrequent in marine 

crustaceans from the NWA (8.7% species complexes) , it is still a measure of 

biodiversity underestimation at the species level. Moreover, the phylogenetic 

analyses performed in Talitridae showed polyphyly in some genera (e.g., 

Tethorchestia , Orchestia) with potential taxonomic revision towards genus splitting , 

hence a higher richness in high-taxa (e.g., genus) revealed by DNA barcoding and 

that was previously overlooked . 
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ln this study, DNA barcoding proved its usefulness beyond species 

identification , complementing molecular phylogenetics, phylogeography and 

taxonomy (Hajibabaei et al., 2007) . 

Linking genetic and species level 

The phylogeographic study on the amphi-Atlantic G. oceanicus (Figure 13H), 

one of the most common and abundant intertidal species, had the largest geographic 

coverage in terms of number of sites and marine ecoregions (Spalding et al. , 2007) 

sampled . A previous study (Henzler, 2006) included more sequences (326 COI ) and 

better European coverage (but still largely incomplete for this species range). 

However, it had less coverage in Atlantic Canada (only 20 sites compared to our 73 

sites) and , most importantly, no specimens from Arctic Canada , thus ignori ng an 

important part of the post-glacial colonization in G. oceanicus. Presently, genetic 

data only partially cover this species' distribution range with no data from the 

southern European range, hence an incomplete picture of species history persists 

despite the large amount of sequence data currently available. 

DNA barcoding followed by phylogeographic analyses revealed the existence 

of two divergent intraspecific G. oceanicus clusters (2.4% COI distance) (Figure 4.3), 

which did not correspond to a European - North American separation but to a partial 

latitudinal segregation between north and south . Two phylogeographic patterns have 

been revealed : i) large genetic gaps with two major Iineages allopatric as in Atlantic 

Canada and Europe (type 1 in Avise et al. 1987; Figure 15); ii ) small (or inexistent) 

genetic gaps with lineages allopatric as in Arctic Canada and Europe (type III , Figure 

15). Such patterns could be easily explained according to the vicariance and 

dispersal hypotheses, respectively (Figure 16). The species distribution range 

became fragmented due to Pleistocene glaciations which forced populations to 

migrate south in refugial areas where genetic differentiation (due to genetic drift and 

natural selection acting on mutations) began the process of speciation. The present-
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day vicariant clusters are genetically and geographically separated and if the 

reproductive isolation is proven , it will be a classic example of allopatric speciation . 

On the other hand, some of the European survivors managed to colonize mid-

Atlantic islands (e.g., Iceland) and Arctic Canada in the postglacial era and probably 

through a rapid colonization process (seen the genetic identity of specimens from 

Iceland and Hudson Bay; Figure 4.4) . Although a recent colonization process, the 

northern cluster still includes geographically isolated populations and there is no data 

on the extent of gene flow currently occurring between these populations living on 

different shores, islands and continents . Given enough time to develop reproductive 

barriers, the northern cluster may become a classic example of allopatric speciation 

through dispersal and colonization. The probable contact area between clusters , 

namely the Labrador coast , could not be sampled for this study. However, a 

secondary contact between clusters , if existent, should occur in this geographic area, 

therefore the Labrador coast is the missing link towards clarifying any incipient 

speciation (i.e ., how far on the speciation path are these two clusters) in G. 

oceanicus. 

As a note, classic speciation models (in particular allopatry) might not be very 

accu rate when applied to the marine environ ment. Species presently distributed on 

both coasts of the Atlantic (amphi-Atlantic) are considered to have a disjunct 

distribution and genetic differentiation would occur through vicariance. However, the 

vicariant hypothesis includes initial contiguous distribution occupied by an ancestral 

population which splits into two (or more) clusters after the formation of barriers 

(Futuyma, 1998). In this regard , could marine distributions of coastal species 

(including islands and continents) ever be considered as contiguous? The North 

Atlantic is a "young" ocean but the present-day configuration is multi-million years old 

preceding the appearance of G. oceanicus and many other extant marine species 

with disjunct distributions. 
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Figure 15 Phylogeographic patterns with the evolutionary circumstances involved. 
Rectangles represent various mtDNA haplotypes (denoted by letters) or groups of 
closely related haplotypes with their geographic distribution . Haplotypes are 
connected in networks with dashes indicating the number of mutational steps 
involved within specifie pathways. (Modified from Avise et al., 1987) 
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Figure 16 Phylogenetic relationships between populations or species inhabiting 
geographically separated areas, under vicariance and dispersal. Lowercase letters 
represent taxa , uppercase letters represent geographic areas. (Modified from Avise , 
2000) 

Limitations of DNA barcoding 

Life is too complex to be easily and fully resolved by DNA barcoding. 

Limitations, as weil as advantages, of employing DNA barcoding are mainly related 

to the characteristics of mtDNA (see Chapter 1). Being a haploid marker, it cannot 

detect hybrids unless they are already differentiated from their parent species. The 

importance of this loss for biodiversity molecular assessments has to be addressed 

on the basis of hybridization frequency . Other difficulties are caused by: 

mitochondrial introgression , incomplete lineage sorting, he teroplasmy, intracellular 

endosymbionts (review in Frézal and Leblois, 2008), contamination or taxonomie 

misidentifications leading to the attachment of DNA barcodes to erroneous species 

(e.g ., E. ischnus initially misidentified due to specimens in poor-shape; see Chapter 

Il ). Thresholds have to be considered more as rough indications rather than eut-off 



155 

values with subsequent careless splitting or lumping of morphological taxa. This is 

especially true for species complexes, recently diverged species, slow evolving 

groups (e.g., cnidarians; Hebert, Ratnasingham and deWaard , 2003) or in cases of 

incomplete taxon sampling (Meyer and Paulay, 2005) . 

Pseudogenes (or nuclear mitochondrial pseudogenes, numts) are mtDNA 

sequences which are duplicated during cell division and migrate into the nucleus. 

Although non-functional , pseudogenes can still be amplified with universal primers, 

th us blurring the variation patterns of orthologous mtDNA. This is a general situation 

occurring for ail mt genes but it is of special concern for DNA barcoding due to the 

use of COI sequences for species identification and discovery (Song et al., 2008). If 

undetected , pseudogenes would lead to large overestimates of diversity indices. 

Divergence values above 3% (threshold for species delimitation , but see above) will 

generate inflation of the species richness index (see Orchestia spp.; Chapter III) with 

great impact on barcoding studies (Song et al. , 2008; Buhay, 2009). Lower 

divergences «3%) will inflate the genetic diversity indices (e.g. , haplotype diversity) 

with great impact on phylogeographic studies (Bertheau et al. , 2011) . A series of 

steps have been proposed when dealing with the nightmare of pseudogenes (Figure 

17). The routine in barcoding studies includes some quality control measures: check 

DNA sequences for indels, STOP codons, double peaks, background noise, and 

length variation . Cloning is not a routine step due to the long time required for this 

process and cost. Additional markers can be used when detecting deep clusters. 

However, other mt genes might also turn out to be pseudogenes. Nuclear genes 

have been proposed as a second marker to give strength to the process of species 

discovery (Raupach et al., 2010b). However, nDNA and mtDNA would probably give 

opposite results for recently diverged species due to their different evolutionary 

rates . Amplifying mtDNA from isolated mitochondria or from tissues rich in 

mitochondria might help in "getting" the right gene but these procedures might be 

expensive or time consuming . DNA barcoding involves standardization (across 

protocols and research groups) , rapid processing and low cost. In this context, 
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probably the easiest way to ensure quality control and bring support for cryptic 

speciation would be a second round of operations starting with tissue. As the 

amplification of pseudogenes, usually in large copies , is a random process, a second 

sequencing should result in a different sequence (if pseudogenes are involved) or an 

identical sequence (if the orthologous gene has been amplified). 

Steps to help avoid and identify 
numt contamination in DNA barcoding 

use I111DNA rich tissue 

Il11DN/\ enrichl11enl 
or isolation 

PCR with laxon 
specifie COI pril11er's 

Long PCR or RT-PCR 

Yes 

Yes 

Chromatogram 
examination and 
sequ ence editing 

NCBI Blast Search 

Quality Score (phred) 

Translate sequences 
10 check for indels 
8nd slop codons 

Compare 10 COI from 
closely-relaled 

published ml genomes 

Examine 
composi tional biases 

Figure 17 Measures to limit the amplification of pseudogenes in DNA barcoding 
studies. (Source: Song et al. , 2008) 
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Genetic studies based on mtDNA have assumed neutrality for this marker 

when inferring effective population size or demographic history. However, the mt 

genome has a vital raie in cellular functioning by coding prateins involved in the 

respiratory chain (Figure 7). Mutations in the mtDNA caused by oxidative impact 

through ROS, for instance, would lead to a deficient functioning of the respiratory 

chain due to mismatches between mt and nDNA, both involved in this cellular 

function , therefore they would be incompatible with life (Ballard and Whitlock, 2004; 

Gershoni, Templeton and Mishmar, 2009) . With deleterious mutations being 

removed thraugh purifying selection , it follows that the genetic variation inferred 

through genetic analyses would mirror neutral processes (review in Galtier et al., 

2009) . However, recent investigations have challenged the general assumption 

regarding neutrality of mtDNA, ma king this issue one of the most controversial 

aspects in genetic studies. According to Bazin et al. (2006) , mtDNA exhibits low 

diversity values at the intraspecific level across ail animal groups investigated due to 

recurrent selective sweeps (adaptive evolution) rather than to population size or 

ecology. Selective sweeps imply positive . selection of certain haplotypes with 

subsequent drops ("sweeps") in overall mtDNA diversity due to lack of recombination 

of the mt genome. Such sweeps might be caused by selection of beneficial 

haplotypes (e.g ., more efficient energetic metabolism according to temperature), 

selection of "selfish" mutations (e.g., higher replication rate regardless of the effect 

on the fitness) or by genetic hitchhiking (e.g. , maternally inherited symbionts, such 

as Wolbachia, affecting the host mt genome in order to spread across host's 

distribution range) (Ballard and Rand, 2005 ; review in Galtier et al. , 2009) . 

The entire DNA barcoding approach is based on the existence of "barcoding 

gaps" between genetic variation within and among species. Low intraspecific 

diversity observed in some groups could be a result of recurrent selective sweeps or 

an artifact of small sample size used in barcoding studies. However, recent analyses 

of large COI datasets in birds have found no evidence for positive selection 

(selective sweeps) (Kerr, 2011). DNA barcodes did not fit the neutrality predictions 
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either and the implication was that the evolution of COI is largely driven by purifying 

selection . As large barcoding datasets are currently being built at the global scale, it 

will soon be possible to test neutrality predictions across taxa and the level of 

correlation between intra- and interspecific levels of diversity. 

Only a few of the above-mentioned limitations were encountered during this 

study and the concerned data were not included in further analyses. Cases of cross-

contamination between taxa during laboratory operations and of pseudogene 

amplification (Chapters II-III) did occur but with low frequency, therefore 

pseudogenes do not seem to affect the success of DNA barcoding in marine 

crustaceans. A bigger limitation for this project was the low sequencing success 

(65%) with "universal" primers, hence the need for better barcoding protocols (i.e., 

primer design). Above ail , the lack of taxonomists to validate the species complexes 

detected in this study (and most barcoding studies) is probably the most stringent 

problem currently encountered in the barcoding world . 

The species ... issue 

Species are considered the unit of biodiversity and , yet, there is no defin ition 

for this fundamental component of the living world . The species concept is probably 

the most controversial issue in biology, partially due to a semantic shift by which 

methods for species identification were raised to the rank of "concept" (Hey, 2006). 

Consequently , more than 25 concepts were proposed (Coyne and Orr, 2004) with 

the biological species concept (BSC) being the most accepted one (Table 2). 



159 

Table 2 Various species concepts (SC) (Modified from Futuyma, 1998). The closest 
concept to DNA barcod ing , the Phylogenetic SC, and the most popular concept, 

Biological SC, are highlighted 

BIOLOGICAL SC A species is a group of individuals fully fertile inter se, but 
barred from interbreeding with other similar groups by its 
physiological properties (producing either incompatibility of 
parents, or sterility of the hybrids, or both). 

PHYLOGENETIC 
SC 

EVOLUTIONARY 
SC 

RECOGNITION 
SC 
COHESION SC 

ECOLOGICAL SC 

1 NTERNODAL SC 

Species are groups of actually or potentially interbreeding 
natural populations that are reproductively isolated from other 
su ch groups. 
A phylogenetic species is an irreducible (basal) cluster of 
organisms that is diagnosably distinct from other such clusters, 
and within which there is a parental pattern of ancestry and 
descent. 
A species is the smallest monophyletic group of common 
ancestry. 

A species is a single lineage (an ancestral-descendant 
sequence) of populations or organisms that maintains its 
identity from other such lineages and which has its own 
evolutionary tendencies and historical fate . 

A species is the most inclusive population of individual 
biparental organisms that share a common fertil ization system. 
A species is the most inclusive population of individuals having 
the potential for phenotypic cohesion through intrinsic cohesion 
mechanisms. 

A species is a lineage (or a closely related set of lineages) that 
occupies an adaptive zone minimally different from that of any 
other lineage in its range and which evolves separately from ail 
lineages outside its range. 
Individual organisms are conspecific by virtue of their common 
membership in a part of the genealogical network between two 
permanent splitting events or between a permanent split and 
an extinction event. 

What is a species and why is it important? Species are a virtual tool that we 

need in order to organize the diversity of life into categories that our mind can 

understand. Organizing diversity started with classifying organisms into "species" 

based on their phenotype and on reproductive compatibility . With the advent of 
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molecular methods, came the importance of the genotype for species delineation as 

weil. Linnaeus started to organize life in a systematic way by giving unique binomial 

names to species and this approach has been in place for the past 250 years , 

leading to the description of a fraction of global biodiversity. DNA barcoding is an 

additional tool to classify life but based on DNA sequences rather than morphological 

characters . It provides a molecular tag linked to existing binomial species names. 

However, it also uncovers new categories (i.e., cryptic species), unknown to the 

scientific community , therefore challenging traditional views on diversity. The role of 

DNA barcoding in species discovery as opposed to species identification (much 

easier to agree upon) is still a debated issue (Rubinoff, 2006; Ebach and de 

Carvalho , 2010) . Indeed , species validation should not rely solely on one marker and 

on small sample sizes (although many morphological species are known from single 

specimens and/or localities; Stork, 1997). 

DNA barcoding does not validate species per se but detects interesting cases 

for further investigation. The barcode clusters identified , and which are usually 

reciprocally monophyletic, would correspond to potential cryptic species according to 

PSC (Table 2). In some cases, these divergent clusters correspond to reproductively 

isolated groups, generating a close link with BSC (G6mez et al., 2007). However, 

most specimens used for DNA barcoding are not kept alive and they cannot be used 

for mating trials . The current situation includes a large body of genetic information 

(>1 .3 million barcodes in BOLD, August 2011), with many of these sequences 

lacking scientific names (due to the taxonomic impediment) . The molecular work is 

rapidly advancing with the obvious result of generating millions of barcode clusters 

with no validation either way (nominal species approved or discarded) . One solution 

for assigning names to sequences consists of sequencing already identified museum 

material (e.g., type specimens) . Unfortunately, protocols are available mostly for 

"dry" material (e.g ., insects, birds, mammals, plants) and les so for "wet" collections, 

such as crustaceans, which included formalin during preservation . Another solution 

might consider a shift in our view on biodiversity by using number-tags (i.e ., barcode 
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clusters identified by unique numbers) rather than names (at least temporarily). In 

this way, barcode clusters could be considered as the functional units of biodiversity. 

Although challenging for our mind , number-tags are as good as names in some 

cases (e.g., finding streets in a city) and , in the biodiversity world , they might act as 

proxies for estimating diversity. 

No matter what will be the future of biodiversity classification, it is important to 

keep in mind that "species" are dynamic rather than amorphous things in named 

boxes. The elusive "species issue" is not a problem or a failure (Hey, 2006) but an 

interesting puzzle. By focusing too much on defining an indefinable concept , we 

cannot see the forest for the trees ("it is somewhat depressing that evolutionary 

biologists continue to spend so much time arguing about what constitutes a species 

when the debate cannot be resolved by normal scientific methods"; Coyne and Orr, 

2004). Molecular methods in general , and DNA barcoding in particular, have 

challenged the practicality of using species in biodiversity inventories or 

environmental monitoring due to the amount of cryptic species being detected . The 

end-users of species lists (conservation biologists, macroecologists) have difficulties 

due to taxonomic inflation . However, they have to acknowledge that life is more 

complex than clean species lists and advance their investigation methods 

accordingly (e.g ., phylogenetic diversity; Faith, 1994) . 

Below-species investigations: limitations of COI 

Mitochondrial DNA, and especially the COI gene, has been widely employed 

as a useful marker for studies at the intraspecific level (Avise et al., 1987; Avise , 

2000) . COI has the power to identify phylogeographic clusters , therefore there is a 

bonus for using this gene in barcoding studies: while building reference libraries for 

species identification , the same data can be used in phylogeographic studies 

(provided an appropriate sam pie size) . Chapter IV used that bonus and the analyses 
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revealed deep phylogeographic patterns with allopatric divergent clusters . However, 

a more detailed analysis of the genetic structure at smaller spatial scales was not 

well-supported . The baseline in any analysis (i .e., population assignment) could not 

be accurately identified , hence the use of a proxy for population subdivision . 

Sampling sites were grouped into "populations" according to biogeographical zones 

of GSL (Brunei , Bossé and Lamarche, 1998). This is definitely an artificial measure 

with no biological support. Unfortunately, every method employed for finding 

genetically and geographically cohesive groups (SAMOVA, DAPC, BAPS) , has 

failed . Two remarks can be made about this outcome. First , the short COI barcodes 

do not have enough resolution for population structure investigations. While it is a 

good marker at the species level and coarse intraspecific level (i.e. , large scale 

patterns) due to its slow mutation rate , it cannot offer good resolution at fine scale, 

where highly variable markers (e.g., microsatellites) should be used instead . Second, 

the level of population connectivity in G. oceanicus, as in many other marine 

invertebrates, is largely unknown . Direct estimation is almost impossible to gain 

unless micro-tagging devices are developed. Indirect estimation can be based on 

genetic data (e.g., hypervariable markers) . However, additional methods su ch as 

modeling analyses based on biological and environ mental factors should be included 

in order to validate patterns inferred from genetic data. It is intriguing that one of the 

basic aspects in biology, namely population size, is largely ignored when it comes to 

marine species (even the common intertidal ones) . But then , "population", just as 

"species", is still a puzzle for scientists (Table 3) . 



163 

Table 3 Definitions of "population" according to various criteria (Modified from 
Waples and Gaggiotti , 2006) 

Ecological 
paradigm 

Evolutionary 
paradigm 

Statistical 
paradigm 

Variations 

A group of organisms of the same species occupying a particular 
space at a particular time 
A group of individuals of the sa me species that live together in an 
area of sufficient size that ail requirements for reproduction , survival 
and migration can be met 
A group of organisms occupying a specifie geographical area 

A set of individuals that live in the same habitat patch and therefore 
interact with each other 

A group of individuals sufficiently isolated that immigration does not 
substantially affect the population dynamics or extinction risk over a 
1 OO-year time frame 

A community of individuals of a sexually reproducing species within 
which matings take place 
A major part of the environ ment in which selection takes place 

A group of interbreeding individuals that exist together in time and 
space 
A group of conspecific organisms that occupy a more or less well-
defined geographical region and exhibit reproductive continuity from 
generation to generation 
A group of individuals of the sa me species living close enough 
together that any member of the group can potentially mate with any 
other member 

An aggregate about which we want to draw inference by sampling 
The totality of individual observations about which inferences are to 
be made, existing within a specified sampling area limited in space 
and time 

Stock: a species, group, or population (of fish) that maintains and 
sustains itself over time in a definable area 
Oemes: separate evolutionary units 
Natural population: bounded by natural ecological or genetic barriers 

Local population : (i) individuals have a chance to interact ecologically 
and reproductively with other members of the group, and (ii) some 
members are likely to migrate between local groups 
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ln a nutshell: findings and extrapolations 

This study built a reference library for 92 morphological species from five 

orders of malacostracan crustaceans fram the North Atlantic and revealed a few 

interesting results (Figure 18). One invasive species was detected in ESL (E. 

ischnus) and its impact on the estuarine food web is unknown . 

At the species level, DNA barcoding identified a total of eight species 

complexes consisting of 23 clusters . If validated by taxonomists , these barcode 

clusters would lead to the description of 15 new species. Three species complexes 

harboring 12 clusters (nine clusters unknown to science) were identified within 

Talitridae, the only amphipod family to have colonized the land. Although taxonomic 

revision is needed for species validation , these results clearly indicate an 

underestimation of crustacean diversity in the North Atlantic. 

Above the species level, DNA barcoding revealed polyphyly for two genera 

indicating the need for taxonomic revision . These two genera will probably be spl it 

resulting in an overall increase for this limited dataset (seven genera) with two new 

genera (Wildish and LeCroy, in prep .). Therefore employing a taxonomic distinctness 

index at the genus level based on the current classification would lead to slightly 

erroneous results, underestimating diversity and distinctness. The phylogenetic 

analysis also showed that ail three ecological-systematic groups used to classify 

talitrids (sand-burrowers, wrack generalists and palustral hoppers) are polyphyletic 

and a large revision at the family level should be conducted . 

Below the species level, DNA barcoding and phylogeographic analyses 

showed a certain level of genetic structure in G. oceanicus in Atlantic Canada 

culminating with a phylogeographic pattern type 1 (Figure 15). Two clusters 

separated genetically by 2.4% COI distance and geographically by thousands of km 
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might be indicative of cryptic speciation . In terms of genetic variation , crustaceans 

seem to be more diverse at the intraspecific level (0.5% mean variation when 

removing species complexes) compared to other groups (Chapters 1-11 ; Costa et al., 

2007) reflecting the age of the group and/or faster evolutionary rate compared to 

vertebrates and other invertebrate groups. 

Among the two main groups barcoded here, there were seven species 

complexes in peracarids and only one in eucarids. This finding might be explained by 

a different potential for dispersal in peracarids (direct developers) compared to 

eucarids (Iarval development) , leading to different speciation rates (Figure 4). 

However, extensive studies have to be made to test the dispersal-cryptic speciation 

hypothesis and the geographical pattern involved (allopatric/sympatric). 

A number of 8.7% cases of cryptic speciation in this study does not allow for 

extrapolations on the frequency of cryptic species in crustaceans. What might seem 

a low value overall , might be influenced by various factors, biological (dispersal 

potential) and human (taxonomic accuracy for various groups). In addition , 

extrapolation regarding threshold for crustaceans should be considered very 

carefully . An interspecific value of 2.8% between two morphological species of crabs 

(Hyas spp.) does not generalize this value as a universal threshold for crustaceans. 

Ali crustaceans are not evolutionary equal and some groups might accumulate 

mutations faster than other groups (hence the problematic use of "universal" 

molecular clocks). 
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Figure 18 Schematic representation of the main findings of this project. The pyramid represents biodiversity with its main 
levels, including cultural diversity. Results for each chapter are mentioned on the left side, while future directions are on 
the right side of the pyramid . Arrows connect the results with the biodiversity levels tackled (full lines for results, dashed 
lines for future investigations). 
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Future directions 

COI sequences analyzed for this thesis (N=907) represent about half of ail 

sequences (N)2,OOO) generated during the barcoding project of marine crustaceans 

from NWA. In turn , this total amount represents -65% of ail specimens tested 

(successful DNA extraction , failed COI amplification or sequencing). Such a medium 

success is not a failure of DNA barcoding , just an indirect indication of the complexity 

of Malacostraca. Within a highly diversified class with various groups (e.g., 

amphipods , isopods, decapods etc.) probably having different mutation rates , the 

existing "un iversal" primers fail to amplify COI acrass ail taxa. Consequently , a lot of 

effort has to be put in developing new primers, prabably at the family level 

(especially in amphipods). 

Extending research from this study 

There are many loose ends after the completion of this study. DNA barcoding 

has the raie to screen large sample sizes and identify cases of discordance between 

morphology and genetics. However, it cannot bring answers to ail questions, thus the 

multitude of directions to be taken further (Figure 18). 

One invasive species has been identified in ESL (Chapter Il ) but there is no 

additional information in this case . How abundant is this species in the estuary? 

What role does it play in the food web? What impact does it have on local estuarine 

fauna? What measures (if any) should be taken? 

Eight species complexes have been detected (Chapter II-IV) but there is a 

stringent need to continue investigations on these groups. Are ail the 23 clusters 

valid species? Are there some pseudogenes that might blur our inference on cryptic 
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speciation? Are these putative species different at the morphological , ecological , 

behavioral or physiological level? If they are valid species, will they ever be 

described according to the current standards? The barcoding analyses were based 

solely on genetic distances. Therefore other methods (character-based or coalescent 

inference) should be taken into account for comparison (Pons et al., 2006; Rach et 

al., 2008). 

Phylogenetic and phylogeographic analyses (Chapters III-IV) should be 

based on multiple markers, therefore there is a need to include nuclear genes into 

these analyses. The field of phylogeography is rapidly evolving in terms of analyzing 

and visual izing data . The methods applied here belong largely to descriptive 

phylogeography, in which genetic patterns are believed to be the result of 

biogeographic processes (vicariance and dispersal) (Avise et al., 1987; Avise , 2000). 

The next step, statistical phylogeography, will include coalescent models to estimate 

parameters and testing of phylogeographic hypotheses (Hickerson et al., 2010 and 

references therein ). For G. oceanicus, the missing link between the two clusters is 

the remote coast of Labrador. Therefore, sampling along th is coast (as weil as in 

Europe) is vital in order to clarify the distribution range of the two clusters and the 

possibility of hybridization or sympatric speciation due to local adaptation to food 

source. Mating trials between specimens from the two clusters and the application of 

fast evolving genetic markers (e.g. , microsatellites) would bring more clarity on the 

issue of cryptic speciation in G. oceanicus. For talitirids, SEM investigations might 

reveal fine morphological characters to distinguish between cryptic species in 

Platorchestia and Orchestia . A new genus and two new species (former 

Tethorchestia sp. B) are currently being described, their discovery being driven by 

the findings of DNA barcoding (Wildish and LeCroy, in prep.). Multiple nuclear 

genes, a matrix of morphological characters and many additional taxa should be 

included in the phylogenetic analysis of Talitridae. Sampling entire distribution 

ranges of species is highly desirable to investigate the geography of genetic 

variation . 
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Genetic diversity across marine regions 

Only half of the sequences generated while barcoding Canadian crustaceans 

have been included in this study. The complete database (>2,000 DNA sequences) 

spans hundreds of species across the five malacostracan orders and across 

Canada's three oceans. A large-scale analysis is currently envisaged for testing the 

hypothesis of speciation rates being correlated with dispersal capacities 

(developmental mode) (Figure 4). Another goal is finding spatial scales for diversity 

patterns (e.g., oceanographie areas more genetically diverse than other areas). This 

type of analysis has been conducted in polychaetes from Canadian oceans (Carr et 

al. , 2011) , therefore an interesting comparison between two invertebrate groups 

(crustaceans and polychaetes) could be done. 

Complete crustacean (Malacostraca) inventory for NW Atlantic 

Only the most common species have been included in this study. Full 

taxonomie coverage of the known crustacean species from Atlantic Canada is 

hampered by sampling difficulties. Indeed, except for decapods of economic 

importance, other malacostracan species are not targeted by regular sampling 

surveys and seldom show up as by-catch . Moreover, for some taxa (e.g. , 

amphipods) , the use of dip nets, baited traps or bottom trawls will lead to a sampling 

bias towards highly mobile species. There are two possibilities to create a compre-

hensive data base for crustaceans in the future : research cruises targeting rarer 

crustaceans or technological advances for high-throughput DNA extraction from 

formalin-preserved crustaceans, neither of them very probable to occur in the near 

future . At the global level, many small-scale studies are targeting crustaceans. By 

combining these datasets, a global database of crustacean barcodes will eventually 

emerge. New directions in biodiversity studies involving barcodes, such as 

environ mental barcoding (a special Working Group in iBOL) and quantifying food 

webs (Smith et al. , 2011) , require reference libraries of high quality (i.e. , validated by 
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taxonomists), thus the need for a close collaboration between barcoders and 

taxonomists. 

Genomics 

The rapid development of next-generation sequencing technologies will 

generate an enormous amount of DNA sequences and even entire genomes, 

processed fast and cheap. These data will allow for better resolution in species 

delimitation (congruence of nuclear and mitochondrial markers), population 

assignment (e.g., by using microsatellites) and inferring genetic patterns at various 

spatial scales (e.g., microsatellites, mitochondrial and nuclear genes). Moreover, 

data will be helpful in identifying genes with potential role in speciation (Miglietta, 

Faucci and Santini , 2011 ), allowing us to understand the mechanisms driving the 

formation and the extinction of species as part of global biodiversity. 

Comparative phylogeography 

Future studies on comparative phylogeography of co-distributed taxa will 

have important implications due to their strength in inferring patterns (i.e. , repeated 

patterns, in many taxa , provide support for historical hypotheses). Such studies wil l 

identify geographical areas where communities exhibit unique evolutionary histories. 

These areas should be prioritized in conservation plans, thus ensuring not only the 

preservation of present-day diversity but also of the processes generating th is 

diversity (Moritz and Faith , 1998). Understanding the past (i.e., evolutionary history) 

will help scientists predict the future. There is a need to make good predictions about 

the impact of climate change on biodiversity at various spatial scales and levels. 

Comparative phylogeography will certainly be a part of the research fields involved in 

modeling the response of communities to a changing environment although more 

powerful coalescent model-based methods have to be created (Hickerson et al., 
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2010). In addition to phylogeography, large datasets of DNA sequences might be 

used in landscape genetics (concerned with a smaller temporal scale than 

phylogeography), although some debate still exists about choosing appropriate 

markers for various temporal scales (Bohonak and Vandergast, 2011 ; Wang , 2011). 

ln terdisciplina rit y 

DNA barcodes (and genetic data in general) provide useful but limited 

information . For a complete picture on any given aspect, there is a need to work 

across disciplines. In the case of marine crustaceans from NWA, some 

interdisciplinary links have been mentioned above. Another important direction is to 

link genetic biodiversity with ecosystem functioning by investigating the functional 

role of cryptic species. Spatial distribution of (cryptic) species can be tackled with 

ecolog ical niche modeling (ENM; synonym with spatial distribution modeling , SDM). 

This type of analysis can bring support (or not) to genetic studies on past 

distributions (e.g., survival or extinction due to glacial cycles) and can be used to 

predict future range shifts due to climate change , for instance. 

Th is study had a four-fold focus: i) biodiversity (two levels); ii) molecular 

methods; iii) marine crustaceans; and iv) North Atlantic. However, ail four keywords 

were only partially addressed and by no means will this thesis shed light on marine 

biodiversity (except that it is underestimated). Specifics of this project: i) species 

level - only species identification (no measure of species diversity etc.); genetic level 

- mainly phylogeographic patterns investigated ; ii) only one molecular method used 

(DNA barcoding) with only one marker (COI); iii) only selected species of 

Malacostraca targeted , mainly shallow-water and benthic taxa; and iv) only coastal 

areas of North Atlantic (and Arctic Canada in Chapter IV) were sampled by 

opportunistic methods. When it comes to marine biodiversity and speciation , most 

studies are conducted in coastal areas and on relatively well-known taxa, a lot fewer 

studies occur in deep-sea or open-water and in poorly known groups such as algae, 
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meiofauna, microbes (Miglietta, Faucci and Santini , 2011) or parasites. Therefore the 

gaps in our knowledge are very large and we will probably never fill them completely 

but just start the process and try to work not only on "How many species are out 

there?" but also on "What do we know about the species that already have names? 

What role do they play in marine ecosystems? How will communities evolve in the 

context of global change?" 

Overall advantages of DNA barcoding 

DNA barcoding arises as an exceptional tool and some of its advantages 

have been mentioned throughout this thesis . It is a tool developed for species 

identification and disco very but with implications at the genetic (detect 

phylogeographic clusters) and ecosystem levels (identify the make-up of functional 

groups). It is a revolutionary method by which anything carrying DNA could be easily 

identified , hence many practical applications (food traceability , specimen trading , 

detection of disease vectors, pests, invasive species, etc. ). One of the main 

advantages of DNA barcoding is the capacity to perform large-scale screenings of 

diversity and pick up those cases (e.g., morphological species in disagreement with 

barcode clusters) in need for detailed investigation at the morphological , ecological , 

physiological or behavioral levels. Ali data related to DNA barcoding are maintained 

in curated data bases online while vouchers are stored in public institutions for future 

reference. By using a standard gene fragment , comparisons across taxa and 

geographic regions are greatly improved . 

Another great advantage of DNA barcodes regards their function as 

permanent species tags, a crucial role in a world where up to 20% of species names 

might be synonyms due to multiple descriptions of the same species (Stork, 1997) 

and where species are continuously being split or lumped following taxonomic 

revisions . DNA barcoding provides a temporal and spatial snapshot on genetic 
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diversity: at time t, there were X barcode clusters from y morphological species in a 

given area. As the barcoding initiative is constantly growing , many new distribution 

records for various species will be added to the global data base on biodiversity. 

Moreover, the barcode data base will act as a baseline for species and genetic 

diversity estimates to be compared with future shifts caused by global change. The 

large amount of data generated by DNA barcoding will act as exploratory research 

and will likely serve to formulate new hypotheses about genetic diversity in space 

and across taxa (e.g ., molecular evolution of various groups) subsequently tested as 

part of confirmatory research (Jaeger and Halliday, 1998). 

Only history will tell if DNA barcoding succeeds in advancing and improving 

research on biodiversity , in fostering close collaborations between barcoders and 

taxonomists and in changing mentalities about sharing scientific results . At the 

moment, DNA barcoding (through iBOL) is the largest biodiversity genomics project 

("natural history re-Ioaded") and the largest experiment of open-access data sharing , 

involving non-scientists in creating a bio-literate world. 

Preserving global biodiversity 

"In the end, we will conserve only what we love, we will love only what we 

understand and we will understand only what we are taught. " (Baba Dioum, 

Senegalese environmentalist) . 

Humans are an intrinsic part of the living world and our existence is dependent 

on natural resources (Figure 1), thus the need to preserve biodiversity. Failure to 

wisely manage natural resources might lead to the collapse of human societies (e.g ., 

the Rapa Nui culture on Easter Island that might have declined as a consequence of 

deforestation ; Diamond , 2005) . While it is easy to agree on the importance of 

biodiversity, it is more difficult to find a consensus for taking action and finding 
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precise conservation measures, in the context of one species having an immense 

impact on the remaining many millions of species as weil as on the general climate. 

Finding sustainable solutions was beyond the scope of this thesis . The overall goal 

here was to use molecular methods (specifically DNA barcoding) to tackle two 

biodiversity levels. By no means did the results fill gaps in our knowledge on marine 

life, rather it added a few drops of information (and information does not equal 

knowledge; Boero, 2010) . Further studies will go into more details regarding the 

crustacean diversity in the North Atlantic. However, the most important question 

rising from this and ail the other studies on biodiversity is: "So what? Would knowing 

ail the species living out there and their genetic make-up solve the biod iversity 

crisis?" 1 argue it is a timid but vital step in solving a complex situation as we have to 

start by knowing what lives where. However, scientific information has to be put into 

practice and the first step consists of a closer dialogue between scientists and the 

rest of the world . A big step forward in sustaining life on Earth will be made by 

including humans and cultural diversity within global biodiversity. Saving endangered 

cultures in situ (not by translocation in reserves) will imply saving local biodiversity 

and knowledge, as most of these indigenous cultures are usually linked to hotspots 

of biodiversity. Most importantly is to keep in mind that species and cultures are 

continuously evolving both in their native habitat and beyond , and to design 

conservation plans accordingly. 

"- What's the use of their having names, the Gnat said, if they won 't answer to them ? 

- No use to them, said Alice, but it 's use fuI to the people who name them, 1 suppose. 

If not, why do things have names at ail?" 

Lewis Carroll , Through the Looking Glass 



APPENDIX A 

SPECIES LIST WITH DETAILS ABOUT SAMPLE SIZE (N) , 

MEAN AND MAXIMUM INTRASPECIFIC DIVERGENCE (%), 

AND NEAREST NEIGHBOR DISTANCE (NN %) 
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Order Family Species N Mean % Max% NN% 
Amphipoda Ampeliscidae Ampelisca eschrictii 12 5,5 13,6 27,25 

Ampithoidae Ampithoe longimana 3 0,2 0,3 21 ,34 
Ampithoe rubricata 5 0,06 0,15 21 ,34 

Calliopiidae Calliopius laeviusculus 29 0,89 2,32 26 ,58 
Halirages fulvocinctus 2 ° ° 24,29 

Caprellidae Caprella linearis 8 0,57 1,08 21 ,26 
Caprella mutica 4 0,38 0,61 21 ,9 
Caprella septentrionalis 12 0,34 0,92 24,42 

Epimeriidae Paramphithoe hystrix NIA NIA 24,29 
Eusiridae Eusirus cuspidatus 2 ° ° 22,7 

Pontogeneia inermis 3 0,2 0,3 25,43 
Rhachotropis aculeata 9 0,95 2,01 23,92 

Gammarell idae Gammarellus angulosus NIA NIA 19,48 
Gammaridae Echinogammarus ischnus 4 ° ° 24,8 

Gammarus duebeni 6 ° ° 23,34 
Gammarus lawrencianus 21 0,5 1,54 24 ,37 
Gammarus mucronatus 9 0,47 0,92 26 ,03 
Gammarus oceanicus 3 0,72 1,07 19,48 
Gammarus tigrinus 13 1,33 2,48 23 ,67 

Hyalidae Hyale prevostii 1 NIA NIA 21 ,89 
Hyperiidae Themisto libellula 5 0,06 0,15 31 ,09 
Ischyroceridae Ischyrocerus anguipes 21 2,23 4,24 21 ,26 
Lysianassidae Orchomenella minuta 2 0,15 0,15 10,71 

Orchomenella pinguis 11 0,05 0,15 10,71 
Psammonyx nobilis 4 0,08 0,15 18,25 
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Psammonyx terranovae 8 0,08 0,3 18,25 
Melitidae Melita dentata 2 ° ° 30,7 

Me/ita formosa 5 0,06 0,15 30,7 
Oedicerotidae Monocu/odes intermedius 2 ° ° 22,64 

Oediceros saginatus 5 ° ° 22,64 
Pleustidae P/eustes panop/us 3 0,92 1,38 27 ,51 
Pontoporeiidae Monoporeia sp. 2 ° ° 25,84 
Talitridae Americorchestia /ongicomis 10 0,03 0,15 19,7 

Americorchestia mega/ophtha/ma 4 ° ° 19,7 
P/atorchestia p/atensis 3 0,3 0,46 22 ,24 

Uristidae Anonyx makarovi 10 0,91 1,86 12,43 
Anonyx sarsi 13 0,28 0,92 12,43 
Onisimus litoralis 4 0,1 0,15 25,24 

Decapoda Cancridae Cancer irroratus 8 0,02 0,31 21 ,27 
Crangonidae Argis dentata 5 0,74 1,85 17,86 

Crangon septemspinosa 13 0,54 0,92 20,46 
Pontophi/us norvegicus 2 0,31 0,31 23 ,09 
Sabinea sarsii 2 0,15 0,15 5,75 

Crangonidae Sabinea septemcarinata 5 0,31 0,61 5,75 
Sc/erocrangon boreas 7 0,16 0,3 17,86 

Galatheidae Munidopsis curvirostra 3 ° ° 21 ,86 
Hippolytidae Eua/us fabricii 2 0,15 0,15 16,78 

Eua/us gaimardii NIA NIA 17,32 
Eua/us maci/entus 6 0,1 0,3 20,84 
Lebbeus groen/andicus 1 NIA NIA 16,78 
Lebbeus polaris 2 ° ° 17,47 
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Spirontoearis /i/ljeborgii 2 0 0 5,4 
Spirontocaris spinus 7 3,92 6,91 5,4 

Lithodidae Lithodes maja 7 0,44 0,92 14,57 
Nephropidae Homarus americanus 5 0,21 0,46 20,53 
Oregoniidae Chionoeeetes opilio 6 0,13 0,3 11 ,96 

Hyas araneus 8 0,44 0,77 2,81 
Hyas coaretatus 7 0,26 0,46 2,81 

Paguridae Pagurus aeadianus 4 0,23 0,46 10,68 
Pagurus areuatus 3 1,02 1,23 12,46 
Pagurus /ongiearpus 8 0,62 1,08 17,61 
Pagurus pubescens 3 0,61 0,76 10,68 

Palaemonidae Pa/aemonetes vu/garis 6 0,14 0,3 25,16 
Pandalidae Panda/us borea/is 4 0,44 0,93 12,08 

Panda/us montagui 12 0,29 1,54 12,08 
Panopeidae Dyspanopeus sayi 3 0 0 18,67 
Pasiphaeidae Pasiphaea mu/tidentata 3 0 0 23,93 
Portunidae Ca rein us maenas 6 0,31 0,92 21 ,29 

Euphausiacea Euphausiidae Meganyctiphanes norvegica 10 0,37 0,92 15,72 
Thysanoessa raschii 2 ° ° 15,72 

Isopoda Aegidae Aega psora NIA NIA 30,69 
Syseenus infe/ix 5 0,61 1,23 34,23 

Idoteidae Edotia tri/ob a 3 0,2 0,31 32,63 
/dotea ba/thiea 1 NIA NIA 25,2 

Janiridae Jaera a/bifrons 1 NIA NIA 27,46 
Mysida Mysidae Boreomysis arctica 5 0,24 0,46 21 ,82 

Mysis gaspensis 4 0,23 0,3 15,29 
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Mysis mixta 2 0 0 15,29 
Mysis stenolepis 6 0,1 0,3 15,42 
Neomysis americana 7 1,85 3,78 24,86 



APPENDIX B 

LIST OF HAPLOTYPES AND THEIR FREQUENCY IN EACH 

POPULATION. THE TWO CENTRAL HAPLOYTPES (H10, H19) 

ARE IN BOLD LETTERS 
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Population Code N Haplotype Haplotype 
number frequenc~ 

Norway NOR 6 H1 4 
H2 1 
H3 1 

Poland POL 2 H4 1 
H5 1 

Iceland ICE 7 H6 7 
Churchill CHU 28 H6 27 

H7 1 
Northern Ouebec NOC 2 H6 2 
Estuary EST 32 H8 6 

H9 10 
H10 7 
H11 1 
H12 1 
H13 1 
H14 5 
H15 1 

Gaspe Peninsula GAP 16 H9 3 
H10 2 
H16 1 
H17 5 
H18 1 
H19 1 
H20 2 
H74 1 

Southern Gulf SGF 27 H19 8 
H21 1 
H22 2 
H23 1 
H24 5 
H25 6 
H26 1 
H27 1 
H28 1 
H29 1 

Prince Edward Island PEI 21 H19 1 
H25 6 
H30 1 
H31 8 
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Prince Edward Island PEI H32 1 
H33 1 
H34 1 
H35 1 
H36 1 

Magdalen Islands MIS 37 H19 3 
H37 32 
H38 1 
H39 1 

North Shore NSH 11 H10 3 
H40 6 
H41 1 
H42 1 

Western Newfoundland WNF 8 H10 1 
H19 1 
H43 3 
H44 1 
H45 1 
H46 1 

Eastern Newfoundland ENF 29 H10 8 
H40 1 
H47 1 
H48 5 
H49 1 
H50 1 
H51 3 
H52 1 
H53 1 
H54 5 
H55 1 
H56 1 

Nova Scotia NSC 14 H10 6 
H1 9 1 
H27 1 
H57 2 
H58 1 
H59 1 
H60 1 
H61 1 

Fundy Bay FBY 33 H27 1 
H62 3 
H63 3 
H64 1 
H65 1 
H66 4 
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Fundy Bay FBY H67 1 
H68 2 
H69 1 
H70 7 
H71 1 
H72 1 
H73 7 
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