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RESUME

La sédimentation de la mati¢re particulaire a été étudiée sous couvert de glace de
premiere année et en eau libre dans le secteur canadien de la mer de Beaufort. Les patrons
saisonniers d’exportation verticale de la matiere particulaire ont €té €tudiés pendant toute la
période de production des algues de glace, de la fin de I'hiver a la fonte printaniére, en
ciblant la couche de surface prés de la base de la glace (jusqu’a une profondeur de 25 m).
En eau libre, les variations spatiales de 1’exportation verticale de la matiére particulaire
sous la zone euphotique ont été étudiées en fonction des caractéristiques particuliéres de
cette région, i.e., I’influence du panache du fleuve Mackenzie et de la polynie du Cap
Bathurst.

L’étude réalisée sous la glace de premiere année de la baie de Franklin a montré une
étroite relation entre I’augmentation de la biomasse des algues de glace et la sédimentation
du matériel algal au printemps, avant la fonte de la glace. De plus, nous avons observé une
importante contribution de matériel non-algal a I’exportation verticale du matériel. Cette
étude a mis en évidence une transformation significative du matériel algal qui sédimente,
dans les 25 premiers metres de la colonne d’eau. La fonte printaniere a mis fin a la période
de production des algues de glace, tel que montré par une augmentation importante de la
sédimentation du matériel organique associée avec la libération de la biomasse présente
dans la glace. 11 est généralement considéré que la sédimentation de matériel provenant de
I’interface glace-eau est liée a la fonte de la glace. Nos résultats remettent ce principe en
question, bien que le maximum de sédimentation ait été observé pendant la période de
fonte.

L étude spatiale en eau libre a montré que I’étendue saisonniere des taux de
sédimentation du matériel organique particulaire était comparable dans la région influencée
par le fleuve Mackenzie et dans la polynie du Cap Bathurst. Nous avons observé une
diminution saisonni¢re de la sédimentation du matériel organique particulaire de I’été a
I’automne, dans toute la région d’étude. Cette €tude a aussi montré qu’une succession
d’espéces phytoplantoniques, a méme le matériel qui sédimente, prévaut dans le secteur
canadien de la mer de Beaufort, malgré les différences spatiales et interannuelles entre les
stations d’échantillonnage. Une étude comparative de I’exportation verticale du matériel a
une station de glace de rive, en présence de couvert de glace et en période libre de glace, a
mis en évidence I"importance de I’exportation verticale de la matiére organique particulaire
sous la glace, notamment au cours de la période de fonte.



ABSTRACT

The sedimentation of particulate material was assessed under first-year sea ice and in
open waters in the Canadian Beaufort Sea. Seasonal patterns of particulate material sinking
export were studied throughout the ice algal productive period, from late winter to spring
melt, targeting the upper water column near the bottom surface of the sea ice (down to
25 m). In open waters, spatial patterns in the sinking export of particulate material from the
euphotic zone were related to key features of this region, i.e. the influence of
Mackenzie River and the Cape Bathurst Polynya.

The underice component of this study showed a close coupling between the
increasing ice algal biomass and the sedimentation of algal material in spring, prior to the
onset of ice melt. In addition, we observed a large contribution of non-algal material to the
sinking flux of material. This research also showed significant transformation of the
sedimenting algal material in the upper 25 m of the water column. Spring melt induced the
termination of the ice algal productive period, as shown by a strong increase in the
sedimentation of organic material associated with the release of ice biomass. Passive
sinking export of material across the ice-water interface is generally considered to be
related to ice melt. Our results challenge this view, even if the spring melt period showed
maximum sedimentation.

The spatial investigation during ice-free conditions revealed comparable seasonal
ranges of sinking export of particulate organic material between the region influenced by
the Mackenzie River and the Cape Bathurst polynya. A general seasonal decrease in the
sinking export of particulate organic material was observed from summer to fall throughout
this study. This research also found that a strong seasonal phytoplankton species succession
prevailed in the Canadian Beaufort Sea, regardless of the spatial and interannual differences
between sampling stations. A comparison of the sinking export of particulate organic
material at a landfast station, during the ice covered period and subsequent ice-free
conditions, emphasized the importance of underice sinking export of particulate organic
material, particularly during spring melt.
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INTRODUCTION GENERALE

The Arctic Ocean

In recent decades it has become more apparent that the global climate is changing and
that a warming trend is at the center of this change. The global mean surface temperature
has increased by ca. 0.7°C over the last 100 years (from 1906 to 2005), increasing at a rate
of 0.1°C per decade over the last 50 years (IPCC 2007). Although the basis for the present
global warming trend is still debated (e.g. Oreskes 2004), there is growing evidence that
increasing atmospheric concentrations of the so-called green-house gases, particularly
carbon dioxide and methane, play a key role (IPCC 2007). The present atmospheric
concentrations of carbon dioxide and methane are the highest reported from ice core
records dating back 650,000 years (379 ppm and 1774 ppb, respectively, in 2005),
reflecting a significant increase since the pre-industrial era (280 ppm and 730 ppb,

respectively, in 1750; IPCC 2007).

Nowhere has the observed temperature increase been more pronounced than in the
Arctic, with land-surface temperatures increasing by 0.4°C per decade over the past
40 years (ACIA 2005). The extensive sea ice cover, permafrost areas and glaciers make the
Arctic highly susceptible to increasing temperatures. In addition, reduction of the sea ice

cover triggers a positive feed-back mechanism for temperature increases in the Arctic



(Johannessen et al. 2004), due to the reduction in surface albedo associated with a shift
from sea ice to open water conditions (ca. 80 and 20 % of incident solar radiation,
respectively; Kerr 1999). Altogether, the Arctic is considered an early indicator of climate

change, particularly increasing temperatures (ACIA 2005, [PCC 2007).

Sea ice in the Arctic Ocean is already showing signs of the ongoing warming trend,
as the annual average sea ice extent has decreased by ca. 3 % per decade between 1978 and
2005 (IPCC 2007). The summer minimum sea ice cover, i.e. the multi-year sea ice
concentrated mainly in the central Arctic Ocean, is showing the highest rate of decrease, at
ca. 7 % per decade between 1978 and 2005 (IPCC 2007). The reason for the different loss
rates is that multi-year sea ice is being replaced by first-year sea ice in some areas, thus
increasing the seasonal ice zone (Comiso 2002). In addition, the seasonal first-year sea ice
cover in the Arctic Ocean is predicted to show earlier ice break-up in spring, delayed
refreezing in fall and larger and more widespread flaw lead systems and polynyas (ACIA
2005, Lukovich & Barber 2005). Consequently, areas of permanently and seasonally
ice-free conditions are projected to expand in size and duration, particularly on the

continental shelves of the Arctic Ocean (ACIA 2005, IPCC 2007).

Increasing precipitation is another projected consequence of the warming trend in the
Arctic, with a projected increase in the freshwater runoff to the Arctic Ocean by up to ca.
15 % at the end of this century (ACIA 2005). The Arctic Ocean already receives the highest

freshwater runoff of any ocean relative to its size, since it receives 11 % of the global
y g



runoff but represents only 1 % of the world ocean water (Shiklomanov 1998). Arctic rivers
generally display a high discharge of organic material (Dittmar & Kattner 2003), which is
likely to increase with the projected increasing runoff and melting permafrost (ACIA
2005). The already strong riverine discharge of freshwater and material (Gordeev &

Rachold 2004), may therefore extend further onto and beyond the Arctic shelves.

Arctic continental shelves

The continental shelves are key regions of the Arctic Ocean, comprising more than
half of its total surface area (53 %; Jakobsson 2002) and displaying the highest annual
primary production (between ca. 170 and 323 Mt C y"'; Sakshaug 2004, Michel et al.
2006). In two recent reviews, the Arctic shelves were categorized in terms of their
exchange of water with the Atlantic or Pacific oceans (Fig. 1); as inflow, outflow or interior

shelves (Carmack & Wassmann 2006, Carmack et al. 2006).

This study focuses on the Canadian sector of the Beaufort Sea Shelf (Fig. 1),
categorized as a narrow interior shelf (Carmack & Wassmann 2006). This region includes a
shelf plateau bordering the Canada Basin in the Arctic Ocean, covering ca. 530 km
alongshore and ca. 120 km offshore (ca. 6.0 x 10 km?; Carmack et al. 2004). This shelf
receives freshwater from the Mackenzie River, which 1s the fourth largest river entering the
Arctic Ocean in terms of annual freshwater discharge (from 249 to 333 km?; Dittmar &

Kattner 2003). Along with the high freshwater discharge, occurring mostly between May to



September, the Mackenzie River shows the highest discharge of inorganic sediments of all
the Arctic rivers (ca. 127 Mt y”'; Macdonald et al. 1998). Also considered part of the
Canadian Beaufort Sea Shelf is the Amundsen Gulf, extending east from the Beaufort Sea
to the Canadian Arctic Archipelago, and covering ca. 8.7 x 10° km* (Bélanger et al. 2006).
The Amundsen Gulf is characterized by the Cape Bathurst Polynya, which generally starts
forming in May from a flaw lead system separating landfast first-year sea ice from the
offshore drifting pack-ice on the shelf (Barber & Hanesiak 2004). Sea ice continues to
retreat, during summer, generally leaving the Canadian Beaufort Sea Shelf completely free

of sea ice by September (Carmack & Macdonald 2002).
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Fig. 1. The Arctic Ocean with its shelves and basins. The black arrows indicate places and
strength for the inflows of Atlantic and Pacific Waters and the grey arrows indicate the
outflows of Arctic Water (redrawn after Carmack & Wassmann 2006)



Most Arctic shelves show a strong seasonal freshwater influence from melting
first-year sea ice and terrestrial runoff, in spring and summer (Koberle & Gerdes 2007,
Dickson et al. 2007). The resulting stratification of the water column influences the
seasonal pelagic primary production on these shelves; initially promoting phytoplankton
production above the halocline, while later limiting the replenishment of nutrients to the
phytoplankton community, as described later. Still, pelagic phytoplankton production
dominates the total annual primary production on Arctic shelves, comprising an estimated
ca. 75 to >97 % of the integrated ice algal and phytoplankton production (Subba Rao &

Platt 1984, Legendre et al. 1992, Gosselin et al. 1997).

Seasonal primary production and sinking export

Primary production in the Arctic Ocean is governed by the extreme annual cycle of
sunlight and the low angle of the sun above the horizon, at high latitudes; along with the
reduced light penetration in the water column during the sea ice covered period (Carmack
et al. 2004, 2006, Sakshaug 2004, Hill & Cota 2005). Yet, algal cells, mainly pennate
diatoms (Michel et al. 1996, Gosselin et al. 1997, Gradinger 1999, von Quillfeldt et al.
2003), entrained in the newly formed ice at the time of its formation (Garrison et al. 1989,
Gradinger & lkdvalko 1998, Riedel et al. 2007), initiate an ice algal bloom during early
spring (Michel et al. 2006). Variable ice thickness and snow cover on top of first-year sea
ice produce spatial patchiness in ice algal biomass on Arctic shelves (Gosselin et al. 1986,

Mundy et al. 2005). Ice algae in first-year sea ice are considered a seasonally important



food source for some pelagic copepods (Runge & Ingram 1988, Conover & Siferd 1993,
Michel et al. 1996, Hattori & Saito 1997) and amphipods (Werner 2000), and also support

sympagic micro- and meiofauna (Nozais et al. 2001, Michel et al. 2002).

Ice algal blooms are usually terminated during ice melt in spring, often resulting in an
abrupt export of ice bound material to the underlying water column (Tremblay et al. 1989,
Michel et al. 1996, 2002, Fortier et al. 2002, Lalande et al. 2007). Since the timing of the
ice melt and break-up may vary significantly between years (e.g. Barber & Hanesiak 2004),
the sinking export of ice algal material may not parallel the annual cycle of pelagic
herbivorous zooplankton (i.e. “mismatch” scenario; Wassmann 1998), notably calanoid
copepods in Arctic waters (Dawson 1978, Hirche & Mumm 1992, Richter 1995, Hirche
1997, Madsen et al. 2001). Under such a scenario, the sinking export of ice algae may
represent a seasonally important input of organic material to the benthic communities

(Carey 1987, Renaud et al. 2007b).

Unimpeded light penetration to the water column after the ice break-up, a stratified
water column formed by melt water and high nutrient concentrations following winter
mixing, generally promote a pelagic diatom bloom in spring, i.e. ice edge bloom (Sakshaug
& Skjoldal 1989, Strass & Nothig 1996, Head et al. 2000, Rat’kova & Wassmann 2002).
This intense primary production event often leads to nitrate or silicic acid depletion in the
surface mixed layer on Arctic shelves (Tremblay et al. 2002a, 2006a, Carmack et al. 2004,

Hill & Cota 2005), accompanied by increased sinking export of primary-produced material



(Wassmann et al. 2004 and references therein). Yet, herbivorous grazing activity may be
considerable during spring phytoplankton blooms reducing the sinking export of
primary-produced material (Andreassen & Wassmann 1998, Olli et al. 2002, Juul-Pedersen

et al. 2006, Tremblay et al. 2006b).

Phytoplankton production in summer on Arctic shelves generally remains limited by
nitrate and silicic acid, following the spring diatom bloom (Tremblay et al. 2002b, Carmack
et al. 2004, Hill & Cota 2005). Nutrient depletion in the surface mixed layer often leads to a
seasonal phytoplankton succession, from a diatom dominated spring bloom to a dominance
of flagellates, which have no requirement for silicic acid and higher nutrient affinity than
diatoms, during summer and fall on Arctic shelves (Bursa 1963, Heiskanen & Keck 1995,

Booth & Smith 1997, Rat’kova et al. 1998, Lovejoy et al. 2002, Hill et al. 2005).

Calanoid copepods are abundant during summer on Arctic shelves and shelf-slopes
(Madsen et al. 2001, Pasternak et al. 2002, Ringuette et al. 2002, Hirche & Kosobokova
2003, Riser et al. 2007), while copepod nauplii and protozooplankton may become
dominant towards the fall. At that time, various species of adult copepods descend to depth
to overwinter, as seen in Disko Bay, Greenland (Madsen et al. 2001). Zooplankton may
therefore utilize much of the phytoplankton biomass in summer. A phytoplankton bloom
may occur in the fall due to vertical mixing with deeper nutrient-rich waters during
increased wind activity (e.g. Klein et al. 2002, Arrigo & Dijken 2004). According to

predicted climate-change scenarios, a retreating multi-year sea ice cover may expose the



shelf-break to seasonally ice-free conditions and increased wind effect, thus promoting
upwelling of nutrient-rich waters from the central Arctic basins onto the Arctic shelves

(Carmack & Chapman 2003).

Ice algae initiate the primary production season in response to increasing light levels,
after winter, on the Canadian Beaufort Sea Shelf (Carmack & Macdonald 2002). Horner &
Schrader (1982) reported an increase in ice algal production and biomass from March until
the onset of ice melt in early-June 1979 (reaching ca. 63 mg C m™>d”' and
>26 mg chlorophyll a m’™?, respectively), with ice algal production comprising about two-
thirds of the total primary production (i.e. ice algal, phytoplankton and benthic microalgae).
An increase in the sinking export of particulate organic carbon (POC) during ice melt in
May and June was observed during two separate studies in 1987 and 2004 (O’Brien et al.
2006, Forest et al. 2007). Phytoplankton production, after the ice break-up, was reported to
increase until late-July (reaching ca. 200 mg C m?d"), when nitrogen became limited in
the surface mixed layer (Carmack et al. 2004). Subsequent summer phytoplankton
production (between ca. 40 to 100 mg C m™ d") was concentrated deeper (20 to 40 m),
where nutrient concentrations were higher (Carmack et al. 2004). The presence of the
Mackenzie River plume, in summer, has been shown to induce higher sinking export of
POC near the river outlet (ca. 80 mg C m™? d” at 213 m; O’Brien et al. 2006). Satellite
images of the Cape Bathurst Polynya, in the Amundsen Gulf region, showed occurrence of

two distinct phytoplankton blooms (Arrigo & Dijken 2004). A spring bloom followed the



sea ice retreat, while a later and often stronger phytoplankton bloom was reported in fall,

though timing and intensity of the blooms varied interannually (Arrigo & Dijken 2004).

Pelagic-benthic coupling

Gravitational vertical export, i.e. sinking export, of organic material is the principal
transport pathway linking pelagic primary production with the benthos. Yet, a multitude of
biogeochemical transformational processes affect the organic material during its transport,
heterotrophic degradation generally being the most pronounced (Boyd & Trull 2007). As
such, sinking algal cells may be subjected to bacterial degradation (Smith et al. 1995,
Grossart & Simon 2007) and viral cell lysis (Suttle 2005) but, often more importantly, to
zooplankton grazing (Turner 2002 and references therein). Transformation of the sinking
organic material during sinking generally follows a non-linear trend with depth, often
explained by a power law function (Buesseler et al. 2007), as first described by Martin et al.
(1987). High abundance and activity of zooplankton and bacteria in the surface and
subsurface layer, along with differential solubilisation of organic material (Smith et al.
1992, Hoppe et al. 1993), are considered the main reasons for the exponential attenuation in

sinking export of organic material with depth (Boyd & Trull 2007 and references therein).

The residence time of the sinking material within the pelagos determines the time
available for transformational processes to affec