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RÉSUMÉ 

La sédimentation de la matière particulaire a été étudiée sous couvert de glace de 
première année et en eau libre dans le secteur canadien de la mer de Beaufort. Les patrons 
saisonniers d'exportation verticale de la matière particulaire ont été étudiés pendant toute la 
période de production des algues de glace, de la fin de l'hiver à la fonte printanière, en 
ciblant la couche de surface près de la base de la glace Gusqu'à une profondeur de 25 m). 
En eau libre, les variations spatiales de l'exportation verticale de la matière particulaire 
sous la zone euphotique ont été étudiées en fonction des caractéristiques particulières de 
cette région, i.e. , l'influence du panache du fleuve Mackenzie et de la polynie du Cap 
Bathurst. 

L ' étude réalisée sous la glace de première année de la baie de Franklin a montré une 
étroite relation entre l'augmentation de la biomasse des algues de glace et la sédimentation 
du matériel algal au printemps, avant la fonte de la glace. De plus, nous avons observé une 
importante contribution de matériel non-algal à l'exportation verticale du matériel. Cette 
étude a mis en évidence une transformation significative du matériel algal qui sédimente, 
dans les 25 premiers mètres de la colonne d'eau. La fonte printanière a mis fin à la période 
de production des algues de glace, tel que montré par une augmentation importante de la 
sédimentation du matériel organique associée avec la libération de la biomasse présente 
dans la glace. Il est généralement considéré que la sédimentation de matériel provenant de 
l'interface glace-eau est liée à la fonte de la glace. Nos résultats remettent ce principe en 
question , bien que le maximum de sédimentation ait été observé pendant la période de 
fonte. 

L' étude spatiale en eau libre a montré que l'étendue saisonnière des taux de 
sédimentation du matériel organique particulaire était comparable dans la région influencée 
par le fleuve Mackenzie et dans la polynie du Cap Bathurst. Nous avons observé une 
diminution saisonnière de la sédimentation du matériel organique particulaire de l'été à 
l' automne, dans toute la région d'étude. Cette étude a aussi montré qu'une succession 
d'espèces phytoplantoniques, à même le matériel qui sédimente, prévaut dans le secteur 
canadien de la mer de Beaufort, malgré les différences spatiales et interannuelles entre les 
stations d'échantillonnage. Une étude comparative de l' exportation verticale du matériel à 
une station de glace de rive, en présence de couvert de glace et en période libre de glace, a 
mis en évidence l' importance de l'exportation verticale de la matière organique particulaire 
sous la glace, notamment au cours de la période de fonte. 
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ABSTRACT 

The sedimentation of particulate material was assessed under first-year sea ice and in 
open waters in the Canadian Beaufort Sea. Seasonal patterns of particulate material sinking 
export were studied throughout the ice algal productive period, from late winter to spring 
melt, targeting the upper water column near the bottom surface of the sea ice (down to 
25 m). ln open waters, spatial patterns in the sinking export of particulate material from the 
euphotic zone were related to key features of this region, i.e. the intluence of 
Mackenzie River and the Cape Bathurst Polynya. 

The underice component of this study showed a close coupling between the 
increasing ice algal biomass and the sedimentation of algal material in spring, prior to the 
onset of ice melt. ln addition, we observed a large contribution of non-algal material to the 
sinking tlux of material. This research also showed significant transformation of the 
sedimenting al gal material in the upper 25 m of the water column. Spring melt induced the 
termination of the ice algal productive period, as shown by a strong increase in the 
sedimentation of organic material associated with the release of ice biomass. Passive 
sinking export of material across the ice-water interface is generally considered to be 
related to ice melt. Our results challenge this view, even if the spring melt period showed 
maximum sedimentation. 

The spatial investigation during ice-free conditions revealed comparable seasonal 
ranges of sinking export of particulate organic material between the region intluenced by 
the Mackenzie River and the Cape Bathurst polynya. A general seasonal decrease in the 
sinking export of particulate organic material was observed from summer to fall throughout 
this study. This research also found that a strong seasonal phytoplankton species succession 
prevailed in the Canadian Beaufort Sea, regardless of the spatial and interannual differences 
between sampling stations. A comparison of the sinking export of particulate organic 
material at a landfast station, during the ice covered period and subsequent ice-free 
conditions, emphasized the importance of underice sinking export of particulate organic 
material, particularly during spring melt. 
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INTRODUCTION GÉNÉRALE 

The Arctic Ocean 

In recent decades it has become more apparent that the global climate is changing and 

that a warming trend is at the center ofthis change. The global mean surface temperature 

has increased by ca. 0.7°e over the last 100 years (from 1906 to 2005), increasing at a rate 

of 0.1 oC per decade over the last 50 years (Ipee 2007). Although the basis for the present 

global warming trend is still debated (e.g. Oreskes 2004), there is growing evidence that 

increasing atmospheric concentrations of the so-called green-house gases, particularly 

carbon dioxide and methane, play a key role (Jpee 2007). The present atmospheric 

concentrations of carbon dioxide and methane are the highest reported from ice core 

records dating back 650,000 years (379 ppm and 1774 ppb, respectively, in 2005), 

reflecting a significant increase since the pre-industrial era (280 ppm and 730 ppb, 

respectively, in 1750; IPee 2007). 

Nowhere has the observed temperature increase been more pronounced than in the 

Arctic, with land-surface temperatures increasing by OAoe per decade over the pa st 

40 years (AeIA 2005). The extensive sea ice co ver, pennafrost areas and glaciers make the 

Arctic highly susceptible to increasing temperatures. In addition, reduction of the sea ice 

co ver triggers a positive feed-back mechanism for temperature increases in the Arctic 



(Johannessen et al. 2004), due to the reduction in surface albedo associated with a shift 

from sea ice to open water conditions (ca. 80 and 20 % of incident solar radiation , 

respectively; Kerr 1999). Altogether, the Arctic is considered an early indicator of climate 

change, particularly increasing temperatures (ACIA 2005 , IPCC 2007). 

2 

Sea ice in the Arctic Ocean is already showing signs of the ongoing warming trend, 

as the annual average sea ice extent has decreased by ca. 3 % per decade between 1978 and 

2005 (IPCC 2007). The summer minimum sea ice cover, i.e. the multi-year sea ice 

concentrated mainly in the central Arctic Ocean, is showing the highest rate of decrease, at 

ca. 7 % per decade between 1978 and 2005 (IPCC 2007). The reason for the different loss 

rates is that multi-year sea ice is being replaced by first-year sea ice in sorne areas, thus 

increasing the seasonal ice zone (Comiso 2002). In addition, the seasonal first-year sea ice 

coyer in the Arctic Ocean is predicted to show earlier ice break-up in spring, delayed 

refreezing in fall and larger and more widespread flaw lead systems and polynyas (ACTA 

2005 , Lukovich & Barber 2005). Consequently, areas of permanently and seasonally 

ice-free conditions are projected to expand in size and duration, particularly on the 

continental shelves of the Arctic Ocean (ACIA 2005, IPCC 2007). 

lncreasing precipitation is another projected consequence of the warming trend in the 

Arctic, with a projected increase in the freshwater runoffto the Arctic Ocean by up to ca. 

15 % at the end ofthis century (ACIA 2005). The Arctic Ocean already receives the highest 

freshwater runoff of any ocean relative to its size, since it receives Il % of the global 
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runoffbut represents only 1 % of the world ocean water (Shiklomanov 1998). Arctic rivers 

generally display a high discharge of organic material (Dittmar & Kattner 2003), which is 

likely to increase with the projected increasing runoff and meIting permafrost (ACIA 

2005). The already strong riverine discharge offreshwater and material (Gordeev & 

Rachold 2004), may therefore extend further onto and beyond the Arctic shelves. 

Arctic continental shelves 

The continental shelves are key regions of the Arctic Ocean, comprising more than 

half of its total surface area (53 %; Jakobsson 2002) and displaying the highest annual 

primary production (between ca. 170 and 323 Mt Cil; Sakshaug 2004, Michel et al. 

2006). ln two recent reviews, the Arctic shelves were categorized in terms of their 

exchange of water with the Atlantic or Pacific oceans (Fig. 1); as inflow, outflow or interior 

shelves (Carmack & Wassmann 2006, Carmack et al. 2006). 

This study focuses on the Canadian sector of the Beaufort Sea Shelf (Fig. 1), 

categorized as a narrow interior shelf(Carmack & Wassmann 2006). This region includes a 

shelf plateau bordering the Canada Basin in the Arctic Ocean, covering ca. 530 km 

alongshore and ca. 120 km offshore (ca. 6.0 x 104 km2
; Carmack et al. 2004). This shelf 

receives freshwater from the Mackenzie River, which is the fourth largest river entering the 

Arctic Ocean in terms of annual freshwater discharge (from 249 to 333 km3
; Dittmar & 

Kattner 2003). Along with the high freshwater discharge, occurring mostly between May to 
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September, the Mackenzie River shows the highest discharge of inorganic sediments of ail 

the Arctic ri vers (ca. 127 Mt il; Macdonald et al. 1998). Also considered part of the 

Canadian Beaufort Sea Shelf is the Amundsen Gulf, extending east from the Beaufort Sea 

to the Canadian Arctic Archipelago, and covering ca. 8.7 x 104 km2 (Bélanger et al. 2006). 

The Amundsen Gulf is characterized by the Cape Bathurst Polynya, which generally starts 

forming in May from a flaw lead system separating landfast first-year sea ice from the 

offshore drifting pack-ice on the shelf (Barber & Hanesiak 2004). Sea ice continues to 

retreat, during summer, generally leaving the Canadian Beaufort Sea Shelf completely free 

of sea ice by September (Carmack & Macdonald 2002). 

Fig. 1. The Arctic Ocean with its shelves and basins. The black arrows indicate places and 
strength for the inflows of Atlantic and Pacific Waters and the grey arrows indicate the 
outflows of Arctic Water (redrawn after Carmack & Wassmann 2006) 



Most Arctic shelves show a strong seasonal freshwater influence from melting 

first-year sea ice and terrestrial runoff, in spring and summer (Koberle & Gerdes 2007, 

Dickson et al. 2007). The resulting stratification of the water column influences the 

seasonal pelagic primary production on these shelves; initially promoting phytoplankton 

production above the haloc1ine, while later limiting the replenishment ofnutrients to the 

phytoplankton community, as described later. Still, pelagic phytoplankton production 

dominates the total annual primary production on Arctic shelves, comprising an estimated 

ca. 75 to >97 % of the integrated ice algal and phytoplankton production (Subba Rao & 

Platt 1984, Legendre et al. 1992, Gosselin et al. 1997). 

Seasonal primary production and sin king export 

Primary production in the Arctic Ocean is governed by the extreme annual cycle of 

sunlight and the low angle of the sun above the horizon, at high latitudes; along with the 

reduced light penetration in the water column during the sea ice covered period (Carmack 

et al. 2004, 2006, Sakshaug 2004, Hill & Cota 2005). Yet, algal cells, mainly pennate 

diatoms (Michel et al. 1996, Gosselin et al. 1997, Gradinger 1999, von Quillfeldt et al. 

2003), entrained in the newly formed ice at the time of its formation (Garrison et al. 1989, 

Gradinger & Ikavalko 1998, Riedel et al. 2007), initiate an ice algal bloom during early 

spring (Michel et al. 2006). Variable ice thickness and snow coyer on top of first-year sea 

ice produce spatial patchiness in ice algal biomass on Arctic shelves (Gosselin et al. 1986, 

Mundy et al. 2005). Ice algae in first-year sea ice are considered a seasonally important 

5 



food source for sorne pelagie copepods (Runge & Ingram 1988, Conover & Siferd 1993, 

Michel et al. 1996, Hattori & Saito 1997) and amphipods (Werner 2000), and also support 

sympagic micro- and meiofauna (Nozais et al. 2001, Michel et al. 2002). 
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Ice algal blooms are usually terminated during ice melt in spring, often resulting in an 

abrupt export of ice bound material to the underlying water column (Tremblay et al. 1989, 

Michel et al. 1996,2002, Fortier et al. 2002, Lalande et al. 2007). Since the timing of the 

ice melt and break-up may vary significantly between years (e.g. Barber & Hanesiak 2004), 

the sinking export of ice algal material may not parallel the annual cycle of pelagie 

herbivorous zooplankton (i.e. "mismatch" scenario; Wassmann 1998), notably calanoid 

copepods in Arctic waters (Dawson 1978, Hirche & Mumm 1992, Richter 1995, Hirche 

1997, Madsen et al. 2001). Under such a scenario, the sinking export of ice algae may 

represent a seasonally important input of organic material to the benthic communities 

(Carey 1987, Renaud et al. 2007b). 

Unimpeded light penetration to the water column after the ice break-up, a stratified 

water column formed by melt water and high nutrient concentrations following winter 

mixing, generally promote a pelagic diatom bloom in spring, i.e. ice edge bloom (Sakshaug 

& Skjoldal 1989, Strass & Nothig 1996, Head et al. 2000, Rat'kova & Wassmann 2002). 

This intense primary production event often leads to nitrate or silicic acid depletion in the 

surface mixed layer on Arctic shelves (Tremblay et al. 2002a, 2006a, Carmack et al. 2004, 

Hill & Cota 2005), accompanied by increased sinking export of primary-produced material 
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(Wassmann et al. 2004 and references therein). Yet, herbivorous grazing activity may be 

considerable during spring phytoplankton blooms reducing the sinking export of 

primary-produced material (Andreassen & Wassmann 1998, Olli et al. 2002, Juul-Pedersen 

et al. 2006, Tremblay et al. 2006b). 

Phytoplankton production in summer on Arctic shelves generally remains limited by 

nitrate and silicic acid, following the spring diatom bloom (Tremblay et al. 2002b, Carmack 

et al. 2004, Hill & Cota 2005). Nutrient depletion in the surface mixed layer often leads to a 

seasonal phytoplankton succession, from a diatom dominated spring bloom to a dominance 

of flagellates, which have no requirement for silicic acid and higher nutrient affinity than 

diatoms, during summer and fall on Arctic shelves (Bursa 1963 , Heiskanen & Keck 1995, 

Booth & Smith 1997, Rat'kova et al. 1998, Lovejoy et al. 2002, Hill et al. 2005). 

Calanoid copepods are abundant during summer on Arctic shelves and shelf-slopes 

(Madsen et al. 2001, Pasternak et al. 2002, Ringuette et al. 2002, Hirche & Kosobokova 

2003 , Riser et al. 2007), while copepod nauplii and protozooplankton may become 

dominant towards the fall. At that time, various species of adult copepods descend to depth 

to overwinter, as seen in Disko Bay, Greenland (Madsen et al. 200]). Zooplankton may 

therefore utilize much of the phytoplankton biomass in summer. A phytoplankton bloom 

may occur in the fall due to vertical mixing with deeper nutrient-rich waters during 

increased wind activity (e.g. Klein et al. 2002, Arrigo & Dijken 2004). According to 

predicted climate-change scenarios, a retreating multi-year sea ice coyer may expose the 



shelf-break to seasonally ice-free conditions and increased wind effect, thus promoting 

upwelling ofnutrient-rich waters from the central Arctic basins onto the Arctic shelves 

(Carmack & Chapman 2003). 

Ice algae initiate the primary production season in response to increasing Iight levels, 

after winter, on the Canadian Beaufort Sea Shelf (Carmack & Macdonald 2002). Homer & 

Schrader (1982) reported an increase in ice algal production and biomass from March until 

the onset of ice melt in early-June 1979 (reaching ca. 63 mg C m-2 d- I and 
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>26 mg chlorophyll a m-2, respectively), with ice algal production comprising about two-

thirds of the total primary production (i.e. ice algal, phytoplankton and benthic microalgae). 

An increase in the sinking export of particulate organic carbon (POC) during ice melt in 

May and June was observed during two separate studies in 1987 and 2004 (O'Brien et al. 

2006, Forest et al. 2007). Phytoplankton production, after the ice break-up, was reported to 

increase until late-July (reaching ca. 200 mg C m-2 d- I
) , when nitrogen became limited in 

the surface mixed layer (Cannack et al. 2004). Subsequent summer phytoplankton 

production (between ca. 40 to 100 mg C m -2 d- I
) was concentrated deeper (20 to 40 m), 

where nutrient concentrations were higher (Carmack et al. 2004). The presence of the 

Mackenzie River plume, in summer, has been shown to induce higher sinking export of 

POC near the river outlet (ca. 80 mg C m-2 d- I at 213 m; O 'Brien et al. 2006). Satellite 

images of the Cape Bathurst Polynya, in the Amundsen Gulfregion, showed occurrence of 

two distinct phytoplankton blooms (Arrigo & Dijken 2004). A spring bloom followed the 



sea ice retreat, while a later and often stronger phytoplankton bloom was reported in fall, 

though timing and intensity of the blooms varied interannually (Arrigo & Dijken 2004). 

Pelagic-benthic coupling 

9 

Gravitational vertical export, i.e. sinking export, of organic material is the principal 

transport pathway linking pelagic primary production with the benthos. Yet, a multitude of 

biogeochemical transformational processes affect the organic material during its transport, 

heterotrophic degradation generally being the most pronounced (Boyd & Trull 2007). As 

such, sinking algal cells may be subjected to bacterial degradation (Smith et al. 1995, 

Grossart & Simon 2007) and viral cell lysis (Suttle 2005) but, often more importantly, to 

zooplankton grazing (Turner 2002 and references therein). Transformation ofthe sinking 

organic material during sinking generally follows a non-linear trend with depth, often 

explained by a power law function (Buesseler et al. 2007), as first described by Martin et al. 

(1987). High abundance and activity of zooplankton and bacteria in the surface and 

subsurface layer, along with differential solubilisation of organic material (Smith et al. 

1992, Hoppe et al. 1993), are considered the main reasons for the exponential attenuation in 

sinking export of organic material with depth (Boyd & Trull 2007 and references therein). 

The residence time of the sinking material within the pelagos determines the time 

available for transformational pro cesses to affect the material in transit (Schnack-Shiel & 

Isla 2005 , Riser et al. 2007). Aggregation of ice algal (Riebesell et al. 1991) and 



phytoplankton (Ki0rboe et al. 1996) cells is a key process that may increase their sinking 

velocity, and is often enhanced during high cell concentrations and in the presence of 

transparent exopolymeric partic1es (TEP) (En gel 2003, Grossart et al. 2006). Yet, these 

aggregates may at the same time improve the availability of organic material to 

mesozooplankton, by increasing the size of food partic1es (Ki0rboe 2001). 
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The copepod dominated mesozooplankton community, in Arctic waters, generally 

congregates within the euphotic zone where the phytoplankton cell concentrations are 

highest during spring and summer (Richter 1995, Madsen et al. 200 l, Pasternak et al. 2002, 

Astthorsson & Gislason 2003, Hirche & Kosobokova 2003, Riser et al. 2007). Fecal pellets 

may at times comprise a significant fraction of the organic material sinking from the 

euphotic zone towards the benthos in Arctic waters (Gonzâlez et al. 1994, Riebesell et al. 

1995, Urban-Rich et al. 1999, Riser et al. 2002, Sampei et al. 2004, Juul-Pedersen et al. 

2006). Although fecal pellets represent the waste product of zooplankton grazing activity 

they may have a high organic content, particularly during periods ofhigh food availability 

(Penry & Frost 1991, Turner 2002). Still, herbivorous grazing translates into a loss of 

primary-produced organic material to assimilation (Conover 1966, Landry et al. 1984, 

M011er et al. 2003) and leaking of dissolved organic material to the surrounding water 

(Strom et al. 1997, M011er & Nielsen 200 l, M01ler et al. 2003). In spite of the generally 

high sinking velocity of fecal pellets, i.e. a short residence time in the pelagos (Turner 

2002), their ingestion (coprophagy) and/or fragmentation (coprohexy) may be effective in 



reintroducing egested material into the pelagic food web (Sampei et al. 2004, Riser et al. 

2007 and references therein). 

Il 

Advective processes may disrupt the pelagic-benthic coupling in a particular area, by 

horizontally exporting or importing material. As such, benthic and intermediate nepheloid 

layers, i.e. partic1e-rich layers, are important in transporting resuspended and sinking 

material from the continental shelves onto the continental sI opes (McPhee-Shaw 2006 and 

references therein). Cross-shelftransport has been reported during long-term studies of 

sinking export on the Canadian Beaufort Sea Shelf (O'Brien et al. 2006, Forest et al. 2007). 

While these advective processes for the most part occur below the stratum studied in this 

study, they are part of the pelagic-benthic coupling and will influence the sequestration of 

material. Nevertheless, the sediments on the Canadian Beaufort Sea Shelf still retain a c1ear 

signal of input trom the Mackenzie River (Macdonald et al. 1998, Carmack & Macdonald 

2002). Moreover, a tight pelagic-benthic coupling was suggested during a study of the 

benthic carbon demand on the Canadian Beaufort Sea shelf/slope, indicating that the carbon 

demand of the sediment communities accounted ca. 60 % of the annual new primary 

production, i.e. primary production based on allochthonous nutrients, in this region 

(Renaud et al. 2007a). 
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Research objectives 

Due to the challenges posed by ongoing climate change and the need to understand 

the sequestration of organic material in the ocean, much effort has gone into studying 

long-term time series of sinking export at depth. Consequently, processes affecting the 

sinking export of particulate material in the mesopelagic zone are not as weIl understood 

nor quantified (e.g. Boyd & Tru Il 2007). Yet, sinking export in this part of the water 

column will most likely be strongly affected by the predicted increase in pelagic primary 

production due to climate change. lt is therefore imperative to obtain a better understanding 

of the biogeochemical processes affecting the organic material in transit through the 

mesopelagic zone towards the benthos. 

As part of the Canadian Arctic Shelf Exchange Study (CASES), "an international 

effort under Canadian leadership to understand the biogeochemical and ecological 

consequences of sea ice variability and change on the Mackenzie Shelf' 

(http: //www.cases.quebec-ocean.ulaval.ca). the main objective ofthis study was to assess 

the sinking export of particulate material from the euphotic zone in the Canadian Beaufort 

Sea. This has only been investigated once before in this area, using short-term deployments 

(5 d) of particle interceptor traps moored just above the bottom (at ca. 10 m) on the Alaskan 

Beaufort Sea Shelf (Carey 1987). The only other sedimentation studies in this are a have 

focused on long-term sinking export of particulate material at depth on the Canadian 

Beaufort Sea shelf and slope (O'Brien et al. 2006, Forest et al. 2007). 



13 

The first chapter focuses on seasonal changes in the sinking export of particulate 

organic material under first-year sea ice, throughout the productive season of ice algae, 

from Iate winter to spring melt. The objectives of this chapter were three-fold. Our first 

objective was to estimate the sinking export of particulate material under first-year sea ice, 

at a Iandfast station, prior to ice algal production (Iate winter), for the duration of the 

productive season (early spring) and during spring ice melt. Our second objective was to 

evaluate changes in the magnitude of the sinking export and in the composition of the 

sinking organic material , after its release from the ice and during descent to depth. Our 

third objective was to quantify the daily loss of the standing biomass in the bottom sea ice 

and upper part of the water column through sinking. It was hypothesized that the sinking 

export of organic material would increase during spring melt and that ice algal material 

would dominate the organic material exported from the sea ice. 

In the second chapter, the influence of the Mackenzie River on the sinking export of 

particulate material and on the composition ofthis material on the adjacent shelfwas 

evaluated. In order to tackle the influence of the Mackenzie River on the sinking export of 

particulate material , we studied the layer immediately under the surface halocline as weil as 

the sedimentation signal recorded at deeper depths (down to 150 m) along two separate 

transects under the influence of the river plume. lt was hypothesized that the river plume 

would induce higher sinking export of particulate organic material and would affect the 

composition of the sinking material. 
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The third chapter examines the sinking export of organic material from the euphotic 

zone in the Canadian Beaufort Sea. The objectives of this chapter were to assess spatial 

variations in the magnitude of the sinking export of particulate organic material in this area. 

A second objective was to characterize any patterns in the cell composition of the collected 

sinking material. The third objective was to make a comparison between the magnitude of 

sinking export of particulate organic material during the sea ice covered and subsequent 

ice-free periods at a landfast sea ice station. Tt was hypothesized that the Canadian Beaufort 

Sea would display spatial and seasonal differences in the sinking export ofparticulate 

organic material. Tt was also hypothesized that the comparative assessment at the landfast 

sea ice station would show higher sinking export of particulate organic material during 

ice-free conditions, when phytoplankton material may be exported from the euphotic zone. 
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CHAPITRE 1 

SEASONAL CHANGES IN THE SINKING EXPORT OF PARTICULATE 

MATERIAL, UNDER FIRST-YEAR SEA ICE ON THE MACKENZIE SHELF 

(WESTERN CANADIAN ARCTIC) 

RÉSUMÉ 

La sédimentation du matériel particulaire a été étudiée sous couvert de glace de 
première année, de la fin de la période hivernale à la fonte printanière, sur le plateau du 
Mackenzie, dans l'Arctique canadien. Des pièges à particules à court terme ont été 
déployés à l, 15 et 25 m sous la glace, à 16 occasions consécuti ves entre le 23 février et le 
20 juin 2004. Des analyses de chlorophylle a (chI a), phaeopigments, carbone particulaire 
total (TPC), carbone et azote organique particulaire (POC et PON) et silice biogénique 
(BioSi) ont été effectuées sur le matériel collecté dans les pièges. Les flux verticaux de 
chI a et de BioSi ont augmenté de façon consistante entre le ] 9 mars et le début de la fonte 
printanière (26 mai). Par la suite, ces flux ont augmenté considérablement (maxima de 2.0 
et 90.4 mg m-2 d- J

, respectivement). La contribution des cellules de grande taille (>5 )lm) à 
la sédimentation de la chI a totale a aussi augmenté après le 19 mars (passant d ' environ 
60 % à 90 %), reflétant une augmentation de la contribution des diatomées à l'exportation 
verticale du matériel algaJ. En accord avec ce résultat, une relation linéaire significative 
entre le taux de sédimentation de la chI a à 1 m et la biomasse chlorophyllienne dans la 
glace, a été observée. En moyenne, près de la moitié (46 %) de la chI a exportée à 1 m a été 
perdue dans les 25 premiers mètres de la colonne d'eau. Le POC constituait la composante 
principale des flux de TPC (91 %) pendant toute la durée de l'étude. Les fl ux de POC, 
relativement stables jusqu'au début de la fonte printanière (valeurs médianes de 21.0 et 
24.6 mg m-2 d- J à 1 m), ont par la suite augmenté considérablement (maximum de 
522 mg m-2 d- J

). Les rapports POC:chl a étaient élevés (étendue de 75.8 à 3474 g:g à 1 m), 
indiquant une contribution significative de matériel non-algal aux flux verticaux de POc. 
Les taux quotidiens de perte par sédimentation de la chI a, du POC et du PON, présents 
dans la glace et à l'interface glace-eau (premier mètre de la colonne d'eau), ont varié de 
façon saisonnière et étaient plus élevés pendant la période hivernale. Au cours de la période 
de quatre mois couverte par cette étude, les flux verticaux de chI a, POC et PON , mesurés à 
1 m sous la glace, étaient de 31.3 mg m-2

, 7.2 mg C m-2
, et 1.3 mg N m-2

, respectivement. 
Les résultats de cette étude montrent que la matière organique est exportée de façon 
continue de la glace de première année, de l'hiver jusqu'à la fin du printemps. 
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ABSTRACT 

The sinking export ofparticulate material under landfast first-year sea ice was studied 
from the winter period to spring melt on the Mackenzie Shelf, western Canadian Arctic. 
Short-term partic\e interceptor traps were deployed at 1, 15 and 25 m under the ice on 16 
consecutive occasions from 23 February to 20 June 2004. The sinking material was 
analysed for chlorophyll a (chI a), phaeopigments, total particulate carbon (TPC), 
particulate organic carbon and nitrogen (POC and PON) and for biogenic silica (BioSi). 
The sinking fluxes of chI a and BioSi increased steadily after 19 March and until the onset 
of spring melt (26 May), after which these sinking fluxes increased considerably (maxima 
of 2.0 and 90.4 mg m-2 d- I, respectively). The contribution of large algae (>5 )lm) to the 
total chI a sinking flux also increased after 19 March (from ca. 60 % to 90 %), reflecting an 
increasing contribution of diatoms to the sinking export of algal material. Accordingly, 
chI a sinking fluxes at 1 m showed a significant linear relationship with bottom ice chI a 
biomass. On average, almost half (46 %) of the chI a exported at ] m was lost in the upper 
25 m. POC was the main component of the TPC sinking fluxes (91 %) throughout the 
study. POC sinking fluxes remained fairly stable until the onset of spring melt (median 
values of 21.0 and 24.6 mg m-2 d-I at 1 m), after which a considerable increase was 
observed (maximum of 522 mg m-2 d-I). High POC:chl a ratios (ranging from 75.8 to 
3474 g:g at 1 m) indicated a significant contribution of non-al gal material to the sinking 
POc. The daily sin king loss rates of ch] a, POC and PON from the sea ice and interfacial 
layer (top 1 m of the water column) varied seasonally and were highest during the winter 
period. Over the 4-month duration of this study, underice sinking fluxes of chI a, POC and 
PON at 1 m were 31.3 mg m-2, 7.2 g C m-2 and 1.2 g N m-2, respectively. These results 
illustrate the continuous downward sinking export of organic material under landfast ice, 
from winter throughout late spring. 
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1.1 Introduction 

The sinking export of organic material at the termination of phytoplankton blooms is 

a key process by which primary-produced material from surface waters is transferred to the 

benthos (e.g. Turner 2002). ln ice-covered seas, where sea ice primary production precedes 

the phytoplankton bloom, the sinking of organic material from the sea ice may provide an 

early source of material for benthic communities (e.g. McMahon et al. 2006). ln the Arctic 

Ocean, most sea ice primary production takes place in first-year sea ice, which is primarily 

found on shelf areas. Arctic continental shelves make up more than half (53 %; Jakobsson 

2002) of the total are a of the Arctic Ocean and adjacent seas. On these shallow shelves, 

higher annual primary production (phytoplankton and ice algal production) is found 

compared to the central Arctic Ocean (e.g. Gosselin et al. ] 997). lce algal chlorophyll a 

(chI a) biomass in the bottom layer of Arctic first-year sea ice may vary considerably 

between areas, and may reach concentrations of 250 mg m-2 (Smith et al. 1990). Although 

light and nutrient conditions have been observed to limit ice algal production (e.g. Gosselin 

et al. 1990), the production period of ice algae typically extends until they are released from 

the sea ice at the time of spring ice melt (e.g. Michel et al. 1996). 

Ice algal communities in the Arctic have been shown to be directly grazed upon by 

pelagic copepods and amphipods (e.g. Werner 2000, Fortier et al. 2002) and, to a lesser 

extent, by sympagic fauna (Nozais et al. 200], Michel et al. 2002). Still, the bulk of the ice 

algal biomass is mainly released into the water column at the time of spring ice melt 

(Tremblay et al. ] 989, Michel et al. 1996,2002, Fortier et al. 2002). Melnikov (1998) did, 



however, suggest an export of material from the sea ice during ice growth, as a result of 

episodic brine drainage. Based on this study, Lavoie et al. (2005) applied a continuous 

export of ice algae from the sea ice throughout the period of ice algal development, when 

modelling ice algal growth and decline in Arctic first-year sea ice. 
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Primary-produced particulate organic material (POM) may either sink directly as 

intact algal cells or be diverted to the pelagic heterotrophic food web (e.g. Wassmann 1998, 

Turner 2002), which affects the composition of the sinking material. The sinking of intact 

algal cells may result in better preservation of the sinking POM (e.g. Turner 2002), though 

sorne loss usually occurs during sinking (e.g. release of dissolved material and dissolution). 

Algal cells released from the sea ice may either sink as intact cells or form aggregates, 

which may increase their sinking velocities and therefore decrease their residence time in 

the pelagic zone (e.g. Wassmann 1998). The other export pathway, through the 

heterotrophic food web, affects both the quantity and composition of the sinking particulate 

organic materia1 (e.g. Turner 2002), and a considerably reduced amount of the ingested 

carbon may be reintroduced to the water column as fecal material (e.g. M011er et al. 2003). 

The efficiency of the heterotrophic food web in utilizing the sinking material is thought to 

depend largely on the timing and rate of release of the material from the sea ice in relation 

to the seasonal presence of grazers (e.g. Michel et al. 1996, F ortier et al. 2002). In northern 

Baffin Bay, ca. 75 % of the bottom first-year sea ice carbon biomass was observed sinking 

as intact algal cells (at 1 m un der the sea ice; Michel et al. 2002), whiJe ca. 60 % of the ice 

algal production was estimated to be channelled through pelagic herbivores in Resolute 
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Passage, Canada (Michel et al. ] 996). Sinking ice algae are believed to provide a seasonally 

important food source for the pelagic (e.g. Michel et al. 1996, Werner 2000, Fortier et al. 

2002) and benthic (e.g. McMahon et al. 2006) communities. 

The Mackenzie shelf in the western Canadian Arctic co vers an area of ca. 

60 x ] 03 km2 (defined by the 200 01 isobath) and generally experiences a landfast inshore 

first-year sea ice cover from December to May-June and drifting pack ice on the outer-shelf 

during winter (Carmack & Macdonald 2002). Primary production on the Mackenzie shelf 

has been estimated at 12 to 16 g C 01-2 
il (Carmack et al. 2004), and ice algae are 

estimated to account for < 15 % of the annual primary production (Homer & Schrader 

1982, Macdonald et al. 1998). Tce algae have been observed forming dense mats on the 

under-surface of the sea ice on the Mackenzie Shelf, which were later dislodged from the 

sea ice during spring melt and sea ice break-up (Macdonald et al. 1998). These events could 

result in a large proportion of organic material reaching the benthos unutilized, if exceeding 

the grazing capacity of the pelagic heterotrophic food web. Tndeed, Seuthe et al. (2007) 

showed that the underice copepods in Franklin Bayon the Mackenzie Shelf increased their 

grazing activity from March to May 2004. Studies of sinking fluxes under the sea ice on the 

Mackenzie Shelf are from long-term sediment trap moorings (O'Brien et al. 2006, Forest et 

al. 2007). From these studies, the annual particulate organic carbon (POC) sinking flux was 

estimated to vary between 1.7 - 5.8 g C 01-2
/ (deployment depths ranging [rom 

118 - 21301; O'Brien et al. 2006) and 1.0 - 1.7 g C 01-2 
il (depth of200 01 ; Forest et al. 

2007) on the Mackenzie Shelf. 
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The present study investigated the seasonal changes in the sinking flux of particulate 

material under first-year sea ice on the Mackenzie Shelf during late winter and spring 2004. 

Our first objective was to estimate underice sinking fluxes of particulate material during the 

period of ice growth and prior to the period of ice algal production, in contrast to the later 

productive season and the period of ice melt. The duration of this study ensured that the 

entire productive season of ice algae was covered, and that a complete seasonal time-series 

of underice sedimentation, from late winter to spring melt was obtained. Our second 

objective was to evaluate depth-related changes in underice sinking fluxes of organic 

material and in the composition of the sinking material , after its release from the ice into 

the water column. Our third objective was to quantify sinking export processes with respect 

to the standing biomass of chI a, POC and particulate organic nitrogen (PON) in the bottom 

sea ice and the upper part of the water column. 

1.2 Materials and methods 

1.2.1 Sampling 

Underice sampling was conducted at a landfast first-year sea ice station (ca. 250 !TI 

water depth) in Franklin Bay, western Canadian Arctic (Fig. 1). This study was carried out 

onboard the Canadian research ice-breaker CCGS Amundsen during the overwintering 

period of the Canadian Arctic ShelfExchange Study (CASES). From 23 February to 

20 June 2004, sinking fluxes of particulate material from the sea ice were studied using 

parti cIe interceptor traps deployed at l, 15 and 25 m from the under-surface of the ice. Two 
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identical particle interceptor trap arrays, fixed to a tripod on the sea ice, where deployed in 

relatively close proximity (ca. 50 m) on 16 consecutive occasions (Table 1). The ice holes 

through which the sediment traps were deployed were covered by wooden plates and snow 

to prevent increased Iight penetration. During the initial part of the study, from 23 February 

to 13 April, the deployment time was, on average, 7.8 ± 0.8 days (n = 6). From 13 April to 

20 June, the deployment time was reduced to an average of 6.2 ± 0.4 days (n = 8), in 

response to higher sinking fluxes, except for two deployments of 4.0 and 15.2 days on 

26 May and 30 May, respectively. The particle interceptor traps were constructed of PVC 

(Polyvinyl Chloride) cylinders closed at one end, with an internai diameter of 10 cm and an 

aspect ratio (height:diameter) of7. The sampling with particle interceptor traps was carried 

out in accordance with JGOFS protocols (Knap et al. 1996) and recommendations by 

Gardner (2000). Prior to deployment, the particle interceptor traps were filled with 0.22 flm 

filtered seawater previously col!ected at 200 m, to ensure that the higher density parti cIe 

free water would remain within the traps during deployment. No preservative or poison was 

added to the filtered seawater prior to deployment. Upon recovery, the entire sample 

volume of the particle interceptor traps was transported back to the laboratory onboard the 

CCGS Amundsen for chI a, phaeopigments, total particulate carbon (TPC), POC, PON, and 

biogenic silica (BioSi) analyses. 
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Banks Island -

o 50 100 

Fig. 1. Location of the sampling station (indicated by star) in Franklin Bayon the 
Mackenzie Shelf, western Canadian Arctic. For comparison, the positions of sediment trap 
moorings CA-04 and CA-07 of Forest et al. (2007) and SS-l of O'Brien et al. (2006) are 
shown. Water depth is in meter 

Surface water sampI es were collected at 1 m using a SL Niskin bottle. During a 

parallel study on sea ice microbial communities in the same area, the bottom 4 cm of ice 

cores were collected using a Mark Il manual ice corer (9 cm internaI diameter, Kovacs 

Enterprises), as described in detail in Riedel et al. (2006). lee core samples were collected 

at two sites representative of high and low snow coyer, although results from the two sites 

were later averaged for the present study. The surface water and ice core samples were 

brought back to the laboratory on board the ship for chI a, POC, PON and salinity analyses. 
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Table 1. Sampling periods, dates of deployment and recovery, and duration of the underice 
deployments of particle interceptor traps in Franklin Bay, western Canadian Arctic, in 2004 

Period Saml2ling date Duration 
Deployment Recovery (d) 

Winter 23 February 03 March 8.7 
03 March Il March 7.8 
11 March 19 March 7.9 

Early 19 March 27 March 8.0 
spnng 27 March 05 April 8.9 

05 April 13 April 7.9 
13 April 19 April 6.0 
19 April 25 April 6.0 
25 April 01 May 6.0 
01 May 07 May 6.0 
07 May 14 May 7.0 
14 May 20 May 6.0 
20 May 26 May 6.0 

Melt 26 May 30 May 4.0 
30May 14 June 15.2 
14 June 20 June 6.3 

1.2.2 Analyses 

In the laboratory onboard the ship, the total volume of the traps was measured, 

pre-screened on a 425 )lm mesh to remove larger swimmers, and transferred into dark 

containers. The samples were gently mixed before subsampling for analyses. 

Total chi a and total phaeopigments were measured in duplicate on 100-500 ml 

subsamples filtered on Whatman GF/F 25 mm filters. Starting on 27 March, size-

fractionated chi a and phaeopigments (>5 )lm) were measured on sampi es filtered on 

Nuclepore polycarbonate 5 )lm membranes. The filters and membranes were extracted in 

10 ml of90 % acetone during 24 h at 4°C in dark conditions and analyzed on a Turner 

Designs 10AU fluorometer, using 90 % acetone as a blank. Chi a and phaeopigments 



concentrations were estimated according to Parsons et al. (1984). The fluorometer was 

calibrated before and after the expedition, using a pure chI a extract (from 

Anacystis nidulans; Sigma Chemicals). 
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TPC, POC and PON were measured in duplicate on 100-1000 ml subsamples which 

were filtered on pre-combusted (450°C during 24 h) Whatman GF/F 21 mm filters. The 

filters were dried at 60°C during 24 h, pelletized and stored until later analysis on a Perkin-

Elmer Model 2400 CHN Analyzer. POC was obtained by acidifying filters in a dessicator 

saturated with HCI fumes during 24 h, thereby removing any inorganic carbon, before 

analysis on the CHN Analyzer. POC was sampled from 5 April onwards. Analysis ofnon-

acidified filters produced values ofTPC and PON. 

BioSi was measured in duplicate on 100-500 ml subsamples. The subsamples were 

filtered on 0.6 /-tm Nuclepore polycarbonate membranes using an ali-plastic filtration 

system, and were dried at 60°C for 24 h. BioSi was measured by extraction in 0.2 M NaOH 

at 95°C for 45 min. Extracted subsamples were then analyzed using a colorimetric reaction 

involving the formation of a silicomolybdate complex, which was spectrophotometrically 

determined at 810 nm (Varian Inc. CARY 100 BIO) (adapted from Ragueneau & Tréguer 

1994 and Conley 1998). 

The same methods as described above were used to determine chI a, POC and PON 

concentrations from surface water samples and meIted ice cores. Surface water salinity was 



determined using a Guildline Model 8400B Autosal salinometer. Before filtration, the 

bottom sea ice samples were processed as described in Riedel et al. (2006). 

1.2.3 Calculations and statistical analyses 

Sinking fluxes were calculated using the following equation: 

Sinking flux (mg m-2 d- I
) = (Ctrap * Ytrap) / (Atrap * Tdep) (1) 

where Ctrap is the concentration of the measured variable in the particle interceptor trap 
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(mg m-3
) , Ytrap is the volume of the particle interceptor trap sample (m\ Atrap is the particle 

interceptor trap surface area (m2
) and Tdep is the deployment time (d). 

The daily loss rate of suspended material due to sinking export at 1 m was estimated 

using the following equation: 

Daily loss rate (% d- I
) = Sinking flux / Cn! * 100 (2) 

where sinking flux at 1 m is from equation (1) and Cnt is the integrated concentration of the 

variable considered (mg m-2
) in the bottom sea ice and water column above the particle 

interceptor trap depth. Because of the missing chI a sinking flux at ] mon 20 June, the 

chI a daily loss rate on that day was estimated using the chI a sinking flux measured at 

15 m. 

The seasonal time-series of sinking flux data was tested for significant differences 

between selected reference periods using Kruskal- Wallis tests (Sokal & Rohlf 198]), and 



between depths using Friedman's method for Randomized Blocks (Sokal & Rohlf 1981). 

Linear regression analyses between variables are simple linear regressions (Model J) and 

reduced major axis (model II) regressions (Sokal & Rohlf 1981); the latter takes into 

account measurement errors for both dependent and independent variables. Regression 

slopes were compared using analysis of covariance (Sokal & Rohlf 1981). 

1.3 Results 
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The sampling period covered three distinctive time periods, which have been defined 

as winter, early spring and melt period, as wi Il be referred to in the next sections (Table 1). 

The winter period extended from 23 February to 19 March and was characterized by 

continuous sea ice growth from 1.4 to 1.6 m (Fig. 2a) and little changes in ice al gal biomass 

(average of 0.20 ± 0.34 mg chI a m-2
; Fig. 2c). The early spring period, from 19 March to 

26 May, showed continuing sea ice growth with ice thickness increasing from 1.6 to 2.0 m 

and an increase in ice algal biomass from 0.55 to 22.3 mg chI a m-2. During the melt period, 

from 26 May to 20 June, a decrease in sea ice thickness from 2.0 to 1.6 m and a decrease in 

surface salinity from 31.2 to 5.4 were observed (Fig. 2a, b), along with a decrease in the ice 

algal biomass from 22.3 to 1.4 mg chI a m-2 (Fig. 2c). 
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Fig. 2. Seasonal changes in (a) sea ice thickness, (b) surface salini ty and (c) sea ice 
ch lorophyll a (chi a) concentrations, from 23 February to 20 June 2004. ln (a) and (c), 
values were averaged from sites with high and low snow cover during deployment periods 
of parti cie interceptor traps. Error bars represent standard deviations. Vertical dashed lines 
represent reference periods as described in Table 1 

Sinking fluxes measured under the sea ice showed a general seasonal increase during 

the sampling period (Fig. 3a-d, Table 2). Chi a and BioSi sinking fluxes both showed a 

significant increase [rom winter to early spring and to the melt period (Kruska l-Walli s, 

p < 0.05 and p < 0.05, respectively; Fig. 3a, b, Table 2) . During winter, chi a and BioSi 

sinking fluxes remained low (median values of 0.01 and:s 0.80 mg m-2 d-I at ail depths, 

respectively), whi le a steady increase was observed during early spring reaching 0.23 and 
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5.8 mg m-2 d- I at 1 mon 26 May, respectively. During the fo11owing melt period, chI a 

sinking fluxes increased 7 to 9-fold, reaching 2.0 and 0.97 mg m-2 d- I at 15 and 25 m, 

respectively (unfortunately data are not available at 1 mon 20 June). BioSi sinking fluxes 

increased 7 to 13-fold at a11 depths during the melt period, reaching 37.9, 90.4 and 

72 .0 mg m-2 d-I at 1, 15 and 25 m, respectively, on 20 June. Throughout the study chI a 

sinking fluxes decreased significantly with depth, on average, by 46.2 ± 18.5 % from 1 to 

25 m (Friedman ' s method, p < 0.001), while BioSi sinking fluxes remained stable with 

depth (Friedman 's method, p > 0.05 ; Table 2). Sinking fluxes of phaeopigments increased 

significantly with depth throughout the study (Friedman ' s method, p < 0.05; Table 2) . 

TPC and POC showed para11el seasonal sinking flux patterns throughout the study 

(Fig. 3c, d, Table 2), which differed from chi a and BioSi. Missing POC data points from 

23 February to 27 March were extrapolated from the strong linear correlation between the 

measured sinking fluxes ofTPC and POC (Fig. 4), using the measured TPC sinking flux 

values. Sinking fluxes ofTPC and POC remained rather stable during the winter (median 

values of27 .0 and 24.6 mg m-2 d- I at 1 m, respectively) and early spring (median values of 

24.4 and 21.0 mg m -2 d- I at 1 m, respectively) periods. During the melt period, TPC sinking 

fluxes increased 9 to 18-fold (maximum values of 539.9, 312.8 and 185.5 mg m-2 d- I at l , 

15 and 25 m, respectively, on 20 June) and POC increased 7 to 21-fold (maximum values 

of 521.7, 214.5 and 188.6 mg m-2 d- I at l, 15 and 25 m, respectively, on 20 June). TPC and 

POC sinking fluxes did not show any significant change with depth during the study period 

(Friedman's method, p > 0.05 and p > 0.05 , respectively; Table 2). Throughout our study, 
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POC was the main component of the TPC sinking fluxes making up ca. 91 % of the sinking 

TPC (Fig. 4). 
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Fig. 3. Seasonal changes in sinking fluxes of (a) chlorophyll a (chI a), (b) biogenic silica 
(BioSi), (c) total particulate carbon (TPC) and (d) particulate organic carbon (POC) at 1, 15 
and 25 III under the sea ice, from 23 February to 20 June 2004. Data points represent 
particle interceptor trap recovery dates. The open data points in (d) are POC values 
estimated from the linear relationship between POC and TPC. Vertical dashed lines 
represent reference periods as described in Table 1 



Table 2. Summary of sinking flu xes and composition ratios of the sinking material in partic\e interceptor traps at 1, 15 and 
25 m during three sampling periods. POC sinking fluxes from 23 February to 27 March were estimated from the linear 
regression between POC and TPC sinking fluxes (Fig. 4). ChI a and phaeopigment sinking fluxes at 1 m on 20 June are 
missing. Median and range of values are given. Number of deployments for each period (n) is shown 

Period Depth Chi a Phaeopigments BioSi TpC l'OC pOC:chl a POC:BioS i pON:BioSi pOC:pON Chi a:total pigments 
(m) (mg m·2 d" ) (mg m·2 d" ) (mg m" d" ) (mg m" d" ) (mg m" d" ) (g:g) (mol:mol) (mol: mol) (mol:mol) (%) 

Winter 0.0 1 0.002 0.79 27.0 24.6 2 11 3 72.8 14.0 4.5 88.5 
23 Feb- 19 Mar 0.01-0.02 0.001-0.002 0.64-0.85 2 \. 8-28 .1 19.8-25.6 1380-3474 68.6-76.1 12 .5 -14.6 4.2-5.0 78.0-95 .2 
(n = 3) 

15 0.0 1 0.002 0.64 20.7 18.8 1678 69.8 13.8 4.3 9\.1 
0-0.02 0.002-0.002 0.56-0.70 17.4-25.4 15.9-23. 1 1035-8425 66.4-78.1 13.6-16.3 3.5-4.9 64.9-9 1.5 

25 0.0 1 0.003 0.73 2 \.6 19.7 4766 73.8 15.2 4.2 60.4 
0-0.0 1 0.00 1-0.005 0.63-0.75 17.1-30.2 15.6-27.4 1651-7045 49.2-73.8 10.0- 15.9 4.0-5.0 55 .9-8 1.4 

Ear1y spring 0. 17 0.004 4. 1 24.4 2 \.0 11 0.9 1 \.0 2.5 4.2 98. 1 
19 Mar- 26 May 0.05-0 .27 0-0.05 1.3-6.6 17.5-30.3 14.7-25.0 75.8-459.6 7.2-40.2 1. 1-8.0 3. 1-7.9 70.5- 100 
(n = 10) 

15 0. 11 0.02 3.6 21.3 20. 1 15 \.0 10.1 2. 1 4.6 85 .7 
0.04-0.23 0-0.09 1.0-9.4 12.2-35.7 11.2-29.9 124.3-468.9 6.6-48.6 1.2- 10.3 3.2-7.5 46.5 -1 00 

25 0.09 0.03 4.1 19.0 19.2 194.8 9.7 2.0 5.6 76.0 
0.03-0.24 0-0. 13 1.2- 11 .8 16.0-27.8 16.1 -25.7 106. 1-628 .1 3.8-3 8.4 0.46-8.0 4. 1-9.7 41.7-94.9 

Melt 0.39 0 9 .1 8 \.0 123.5 209.8 32 .1 3.4 9.8 100 
26 May- 20 Jun 0.38-0.39 0-0 7.4-37.9 4 \.6-539.9 37.8-521.7 97.9-32 \.6 9.7-39.0 0.74-4.8 5.7- 11.2 100-100 
(n = 3) 

15 0.53 0.02 14.3 66.2 57.8 109.2 9.4 0.77 10.5 96.6 
0.23-2.0 0.008-0.39 6.4-90.4 42.4-312.8 39.3-2 14.5 107.5- 173.4 5.5- 14.2 0.59- 1.1 8.0- 11 .3 83.6-98.5 

25 0.35 0.02 10.6 46.6 42.3 134.9 6.2 0.59 1 \.0 84.7 
0.12-0.97 0.0 1-0.58 5.9-72.0 15.3-1 85.5 15.8-188.6 121.7- 194.5 6. 1-9.3 0.43-0.73 9.1- 12.3 62.6-97. 1 

w o 
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Fig. 4. Linear regression of POC sinking flux versus TPC sinking flux at a il depths, from 
particle interceptor trap deployments under the sea ice, from 5 April to 20 June 2004. Solid 
lines represent the simple linear regression (model 1): y = 0.91x + 1.0; r2 = 0.97; p < 0.001 

The contribution of chI a from large algae (>5 ).lm) to the total chi a sinking flux 

increased during early spring from initial values of 57.4,62.3 and 66.5 % at 1, 15 and 25 m, 

respectively, on 27 March to median values of87.7, 91.2 and 89.0 %, respectively, after 

13 April (Fig. 5a). The percent contribution of chI a from large algae (>5 ).lm) did not 

change significantly with depth during the entire sampling period (Friedman 's method, 

p > 0.05). The percent chI a in total pigments showed sorne variabi lity, but no significant 

seasonal trends (Kruskal -Walli s, p > 0.05), with median values of97 .6, 91 .3 and 76.0 % at 

1, 15 and 25 m, respectively, throughout the entire sampling period (Fig. 5b). The percent 

contribution of ch i a to total pigments sinking fluxes decreased significantly with depth 

throughout the study (Friedman ' s method, p < 0.001; Table 2). 
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Fig. 5. Seasonal changes in (a) percent contribution of large cells (>5 !lm) to the 
total chlorophyll a (chi a) sinking flux and (b) percent chi a in total pigments (chi a + 
phaeopigments) in particle interceptor traps at l, 15 and 25 m under the sea ice, from 
23 February to 20 June 2004. Data points represent particle interceptor trap recovery dates. 
Vertical dashed lines represent reference periods as described in Table 1 

Parallel seasonal patterns were observed in the POC:chl a, POC:BioSi and 

PON:BioSi ratios of the sinking material throughout the study (Fig. 6a-c, Table 2). High 

ratios during the winter period (median values 2113 g:g, 72.8 and 14.0 mol:mol at 1 m, 

respectively) were followed by a decrease during the initial part of the early spring period 

(median values 110.9 g:g, 11.0 and 2.5 mol:mol at 1 m during early spring, respectively). 

The POC:chl a and POC:BioSi ratios remained rather stable after 13 April, while the 



PON:BioSi ratio showed a moderate decrease. Ali three ratios increased at 1 m from 

14 June and onwards. A significant increase in the POC:chl a ratio was observed with 

depth throughout the study (Friedman 's method, p < 0.01), while the POC:BioSi ratio 

showed no change and the PON:BioSi ratio showed a decrease with depth (Friedman's 

method, p > 0.05 and p < 0.05, respectively; Table 2). 
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The POC:PON molar ratios of the sinking material remained rather stable prior to the 

melt period (median values of 4.5 and 4.2 at 1 m during the winter and early spring periods, 

respectively; Fig. 6d, Table 2). During the melt period, the POC:PON molar ratio at 25 m 

continuously increased to 12.3 on 20 June, while the ratios at 1 and 15 m peaked at ca. 1 1.2 

on 30 May and then decreased to 6 - 8 on 20 June. The POC:PON ratio at 25 m was 

generally higher during early spring, although no significant change was observed with 

depth throughout the study (Friedman's method, p > 0.05; Table 2). 

Linear regressions between chI a and BioSi sinking fluxes showed strong 

relationships at each sampling depth, with significantly increasing regression sI opes with 

depth (analysis of covariance, p < 0.01; Fig. 7a). A significant linear relationship (r2 = 0.51 , 

P < 0.01) was observed between the sinking flux of chI a at 1 m and the chI a biomass in 

the bottom ice (Fig. 7b). However, a stronger correlation (r2 = 0.77, P < 0.001) was found 

wh en excIuding the two maximum sea ice chI a biomass values observed on 7 May and 

26 May (> 16 mg chI a m-2
). 
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Fig. 6. Seasonal changes in the ratios of (a) particulate organic carbon (POC) to 
chlorophyll a (chI a), (b) POC to biogenic silica (BioSi), (c) particulate organic nitrogen 
(PON) to BioSi and (d) POC to PON in particle interceptor traps at l, 15 and 25 m under 
the sea ice, from 23 February to 20 June 2004. Data points represent particle interceptor 
trap recovery dates. The open data points in (a), (b) and (d) are POC values estimated from 
the Iinear relationship between POC and TPC. Vertical dashed lines represent reference 
periods as described in Table 1. In (b), (c) and (d), horizontal dashed lines represent the 
ratios of 7.1, 1.1 and 6.6 of Redfield et al. (1963) 
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Fig. 7. Linear regressions (a) of biogenic silica (BioSi) sinking flux versus chlorophyll a 
(chI a) sinking flux at 1, 15 and 25 m, from particle interceptor trap deployments under the 
sea ice, from 23 February to 20 June 2004, and (b) of chI a sinking flux at 1 m versus chI a 
concentration in the sea ice bottom from 23 February to 14 June 2004 (sinking flux data not 
available on 20 June). ln (a), lines represent reduced major axis (modellI) regressions 
using BioSi flux data < 15 mg m-2d-) (open symbols not inc\uded in regression lines) at: 

2 2 1 m: x2= 41.54x) + 0.81; r = 0.96; p < O.OOl , 15m: x2= 56.56x ) + 1.00; r = 0.91 ; 
p < O.OOl and 25m: x2= 62.16x) + 2.16; r2 = 0.93; p < O.OOl. In (b), the sol id line 
represents reduced major axis (modellI) regression for ail data points: 
X2 = 0.018x) + 0.038; r2 = 0.51; P < 0.01 and the dashed line represents reduced major axi s 
(modelll) regression for ice algal biomasses < 16 mg chI a m-2: X2 = 0.026x) + 0.019; 
r2 = 0.77; P < 0.001. Open circles represent data points > 16 mg chi a m-2 
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Daily sinking losses of chI a, POC and PON from the sea ice and interfaciallayer 

(top 1 m of the water column) showed parallel seasonal patterns throughout the study 

(Fig. 8). The daily loss rates of chi a, POC and PON decreased during winter and early 

spring, from maximum rates of 5.3,25.4 and 35.0 % d- I to minimum rates of 1.0,2.0 and 

4.2 % d- I
, respectively. A subsequent increase was observed during the melt period, 

reaching daily loss rates of 4.2, 14.3 and 13.6 % d- I for chi a, POC and PON, respectively. 

1 15 29 
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May 

Cl) -40 cu 
'-
Cf) 
CI) 

30 
0 
>-

7 21 
June 

Fig. 8. Seasonal changes in the daily sinking loss rate of chlorophyll a (chI a), and 
particulate organic carbon and nitrogen (POC and PON) at 1 m under the sea ice, from 
23 February to 20 June 2004. Data points represent particle interceptor trap recovery dates. 
Vertical da shed lines represent reference periods as described in Table 1 

1.4 Discussion 

1.4.1 Seasonal variations in underice sinking fluxes 

This study started during winter (23 February), at a time when bottom ice algal 

biomass was still very low (Fig. 2c). Little algal material was collected by the underice 
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particle interceptor traps before early spring, as shown by the low chi a 

« 0.02 mg chi a m-2 d-I) and BioSi sinking fluxes « 1 mg m-2 d-I). To our knowledge, only 

one other study estimated the sinking export of organic material near Franklin Bay during 

winter, using long-term sediment traps deployed at 145 m (O'Brien et al. 2006, their station 

SS-I; Fig. 1). These authors reported low chi a « 0.003 mg chi a m-2 d-I) and BioSi 

« 1 0 mg BioSi m-2 d- I) sinking fluxes from December to March. 

The fairly constant POC fluxes (median values of 21.0 and 24.6 mg m-2 d-I at 1 m; 

Fig. 3d, Table 2) until the onset of spring melt indicate negligible seasonal change in the 

sinking export ofPOC. Although O'Brien et al. (2006) observed strong seasonality in POC 

sinking fluxes on the Mackenzie Shelf, they reported POC sinking fluxes < 10 mg C m-2 d-I 

at 145 m under the sea ice near Franklin Bay (their station SS-I; Fig. 1), during April 1987 

and From November 1987 to March 1988. Forest et al. (2007) reported comparable POC 

sinking fluxes at 200 m, From October 2003 to May 2004, on the Mackenzie Shelf slope 

« 15 mg C m-2 d-I at their station CA-04 and CA-07; Fig. 1), with episodic events ofPOC 

advection From the shelf onto the shelf-slope during winter and spring. Despite differences 

in sampling depths between our and these studies, these observations show that underice 

sinking export of POC does take place on the Mackenzie Shelf during the winter. 

Several studies looking at temporal changes in underice sinking fluxes of organic 

material have shown increasing sinking fluxes in response to the release of material From 

the sea ice during spring melt (Carey 1987, Tremblay et al. 1989, Michel et al. 1996, 



Fortier et al. 2002). Melnikov (1998) suggested that ice algae are released From the ice 

during winter through brine drainage during ice growth, in the western Weddell Sea. 

Furthermore, Carey (1987) suggested that the carbon sinking flux measured near the 
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bottom in the vicinity ofNarwhal Island (southwestern Beaufort Sea), from mid-April to 

end-May, primarily originated From the productive ice communities prior to ice melt. 

During the present study, ice thickness continuously increased until the onset of spring ice 

melt, indicating that any release of organic material from the ice during that period would 

be linked to brine drainage rather than melt processes. An early coupling between ice 

communities and the underlying water column, prior to spring ice melt, could be of 

seasonal importance for pelagic herbivores, as suggested by Melnikov (1998), as weil as for 

the benthic community as suggested by Renaud et al. (2007b). 

The increasing pelagic grazing activity of copepods observed by Seuthe et al. (2007) 

during the winter-spring transition in Franklin Bay, although linked to pelagic primary 

production, may have been supplemented with sinking ice algal material. Indeed, 

microscopie observations of fecal pellets in sediment traps showed that they contained 

frustules ofpennate diatoms (L. Seuthe unpubl. data), the most abundant algal group in the 

bottom surface of the ice in April-May (M. R6zaIlska pers. comm.). During our study, 

bottom ice algal concentrations were, on average, more than 2 orders of magnitude higher 

than phytoplankton concentrations at 1 m, indicating that any phytoplankton contribution to 

sinking algae would be minimal. 
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Assuming that the POC sinking flux measured during the winter period in the present 

study would have been the same throughout the preceding winter months, we can estimate 

that ca. 3.5 g C m-2 would have been exported through sinking from November to the end 

ofMarch. This POC sinking flux estimate for the winter period is almost one order of 

magnitude higher than that reported by O'Brien et al. (2006) near Franklin Bay for 

November to March « 0.5 g C m-2 at 145 mat their station SS-l), and compares with their 

annual POC sin king flux estimate (ca. 4 g C m-2
) . The discrepancy between our results and 

those obtained from by O'Brien et al. (2006) is likely explained by transformation and loss 

processes affecting the organic material during its descent to deep waters. This aspect will 

be discussed in more details in the next section. In addition, the different methods and 

interannual and spatial differences between the two studies probably also contributed to the 

observed discrepancy. 

The fairly constant POC sinking fluxes prior to spring meIt compared to the observed 

changes in chI a and BioSi fluxes suggests a non-algal origin of the sinking POC during 

winter. This indeed is supported by the high POC:chl a ratios and the POC:BioSi and 

PON:BioSi molar ratios which were considerably higher than Redfield ratios (7.1 and 1.1, 

respectively; Redfield et al. 1963), during the winter period (Fig. 6a-c). The POC sinking 

fluxes during the winter period did not appear to be related to the sinking of senescent algae 

or herbivorous fecal material , as evidenced by negligible sinking fluxes of phaeopigments 

(:S 0.002 mg m-2 d- I
; Table 2) and low POC:PON molar ratios compared to those reported 

for copepod fecal pellets (33.2; Daly et al. 1999). Qualitative microscopie analysis of the 
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sin king material collected during winter revealed large amounts of gelatinous material to 

which detritus were attached, possibly transparent exopolymeric partic\es (TEP). TEP 

produced by diatoms have been show to have high C:N molar ratios (26; Engel & Passow 

2001). This, in combination with the low abundance of sea ice diatoms during winter does 

not support that the TEP in the sinking material would have originated from diatoms. 

Bhaskar et al. (2005) report low C:N molar ratios (2.4) in bacterial exopolymeric 

substances (EPS). The transparent Coomassie Stained Particles (CSP), first described by 

Long & Azam (1996), can be produced by marine bacterioplankton and Iikely have a high 

nitrogen content due to their protein composition (Radié et al. 2006). Bacteria also have 

low C:N ratios (3 .2; Lee & Fuhrman 1987). We thus surmise that bacteria-mediated sinking 

fluxes contributed significantly to the export of organic material during winter. 

The initial increase in underice chI a and BioSi sinking fluxes coincided with the 

increasing bottom ice chI a biomass, suggesting a coupling between sinking fluxes under 

the sea ice and ice algal biomass. Indeed, a significant relationship between sinking fluxes 

and ice algal biomass was observed during the present study (Fig. 7b). This relationship 

was found to be stronger at lower ice algal biomass concentrations. The higher and more 

variable data points in the regression plot represent measurements obtained towards the 

onset of spring melt, indicating a stronger relationship between sinking fluxes and ice algal 

biomass during winter and in early spring. 



The POC:chl a ratios during early spring (median value of 110.9 g:g; Table 2) were 

higher than the ratio typically considered for healthy algal cells (40 g:g; Lorenzen 1968), 

but were within the range reported for ice algae (ca. 15 - 180 g:g; Gosselin et al. ] 990). 

When using the POC:chl a ratio for the bottom ice algae during our study (44 g:g; 
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A. Riedel pers. comm.), then the estimated sinking export ofPOC explained by al gal cells 

would, on average, be 7.5 mg C m-2 d- I or 37.8 % of the observed POC sin king flux during 

early spring. This indicates that a significant part of the POC sinking flux was explained by 

algal cells during early spring. Diatoms appeared to become a seasonally increasing 

fraction of the algal sinking flux, as supported by the increase in the contribution of chI a 

>5 flm to the total chI a sinking flux, the increasing BioSi sinking flux and the decreasing 

POC:BioSi and PON:BioSi ratios during early spring. Indeed, increasing sinking fluxes of 

algal cells, dominated by the pennate diatoms Nitzschiafrigida and Navicula spp., were 

observed from March to May (from 3.2 to 118.0 x 106 cells m-2 d- I at 1 m; A. Tatarak pers. 

comm.). These two species were also dominant in the ice assemblage (M. Rozanska pers. 

comm.). 

Analyses of vertical sections of ice cores showed that, on average, 95 % ofthe total 

chI a biomass in complete ice cores was found in the bottom 4 cm (A. Riedel pers. comm.). 

Therefore, the initial melting of the bottom section of the sea ice would presumably result 

in a higher release of organic material as compared to later melt further up in the vertical 

ice profile . During the spring melt period, sinking fluxes of organic material increased 

significantly in response to the onset of spring ice melt after 26 May. This initial and rapid 
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increase in sinking fluxes was observed in ail the measured variables, suggesting that ail 

ice-bound material in the bottom ice was rapidly released. The coincident increase in the 

POC:chl a, POC:BioSi and PON:BioSi ratios at 1 m suggest that not only ice algal cells, 

but other organic material previously retained within the sea ice, was released during the 

melt period. The increase in sinking export of chI a observed during the melt period (from 

0.23 to 2.0 mg chI a mo2 dol at 15 m; data from 1 m not available on 20 June) is comparable 

to increases reported during spring ice melt in Resolute Passage (from < 0.1 to 

2.3 mg chI a mo2 dol at 15 m in May and June; Michel et al. 1996) or southeastem Hudson 

Bay (from < 0.2 to 0.56 mg chI a mo2 dol at 30 m; Tremblay et al. 1989). Moreover, the 

sinking export of ice algal material at 1 m integrated over the spring melt period 

(19.9 mg chI a mo2; data not shown) exceeded the sinking export at 1 m integrated over the 

winter and early spring periods (11.4 mg chI a mo2; data not shown). Hence, the bulk of the 

sea ice biomass was released during the spring melt, although the earlier sinking export of 

ice algal material may still be of seasonal importance to the pelagic (Melnikov 1998) and 

benthic (Renaud et al. 2007b) communities. 

1.4.2 Depth-related changes in the composition ofthe sinking material 

The rationale for deploying multiple particle interceptor traps at successive depths 

under the sea ice was to assess the initial changes in the amount and composition of the 

sinking flux of particulate material. Throughout the study, almost half of the chI a was lost 

from the sinking particulate material within the upper 25 m, as seen in the decreasing chI a 
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sinking fluxes with depth (Fig. 3a, Table 2). Assuming that there was no loss of material 

due to advective processes, this loss of chi a during sinking would have been caused by 

grazing and/or degradation. The constant sinking fluxes of BioSi, TPC and POC with depth 

support that the loss of chI a was not due to advective processes, since these variables 

would presumably have been equally affected by advection. Several studies have shown 

that the heterotrophic food web may be capable of assimilating a considerable proportion of 

the ice algal biomass after its release from the ice (Carey 1987, Tremblay et al. 1989, 

Michel et al. 1996, Fortier et al. 2002). These studies ail show variability in the amount and 

composition of the sinking organic material in Arctic coastal areas, due to differences in the 

pelagic heterotrophic food web structure (e.g. Fortier et al. 2002). During our study, 

grazing and subsequent transformation of chi a to phaeopigments (Fig. Sb, Table 2) 

appeared to take place in the surface 25 m. Increasing copepod grazing rates were observed 

in April and May (Seuthe et al. 2007), adding support to a possible grazing loss of the 

sinking algal material. 

The increasing POC:PON ratio of the sinking material with depth (Fig. 6d, Table 2), 

although not statistically significant, could also indicate herbivorous grazing. The 

POC:PON molar ratios were, however, weil below the Redfield ratio at ail depths until late 

in the season (26 May; Fig. 6d), and therefore do not provide a c1ear indication of grazing 

(e.g. Daly et al. 1999). ln addition, copepods are for the most part limited to ingesting large 

cells (e.g. Frost 1972), such that grazing on the sinking algal material would likely result in 

a reduction of the large chI a size fraction (>5 /lm) with depth. During the present study, no 
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change in the relative contribution of chI a size fractions with depth was observed, thus 

suggesting a minor influence of large grazers on the sinking material. Moreover, the 

constant POC sinking fluxes with depth do not indicate a significant loss of sinking organic 

carbon within the upper water column (upper 25 m). An alternate explanation for the 

increasing POC:PON ratio of the sinking material with depth would be preferential 

remineralization ofPON compared to POCo Active microbial communities associated with 

the sinking material (see previous section) would certainly favor such a pathway. The high 

daily loss rate ofPON, compared to POC, indicates a higher sinking export of the PON 

found in the sea ice and surface waters (upper 1 m). 

Strong relationships between BioSi and chI a (Fig. 7a) and BioSi and total pigments 

(data not shown) were observed at ail depths, with regression slopes increasing 

significantly with depth . These trends were expected since BioSi is subject to dissolution 

rather than biological degradation, although bacterial activity has been shown to increase 

the rate ofBioSi dissolution (Bidle & Azam 1999). Diatom frustules are often found 

undigested in herbivorous copepod fecal pellets after passing through the digestive tract 

(Turner 2002), as observed during the present study (L. Seuthe unpubl. data). The constant 

BioSi sinking fluxes with depth therefore reflect that diatom frustules were preserved, 

either as intact diatom cells or empty frustules, in the material sinking in the upper water 

column. This sinking export of BioSi from the sea ice and the lack ofremineralization in 

upper water column (upper 25 m) reflect a removal of silicic acid from the euphotic zone. 

Unless silicic acid is replenished into the euphotic zone, this removal of BioSi may in tum 



contribute to a limitation of sea ice or pelagic diatom production, a process previously 

described during open-water conditions in the North Water Polynya (NOW; Michel et al. 

2002). 

The spring ice melt (after 26 May) did not only result in increased sinking fluxes of 

particulate material , but also in changes to the composition of the sinking material. The 

higher POC:chl a, POC:BioSi and PON:BioSi ratios at 1 m compared to other depths 
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(Fig. 6a-c), resulted from a more moderate increase in the chi a and BioSi sinking fluxes 

compared to those ofPOC and PON at 1 m. The freshening of the surface layer during the 

melt period (Fig. 2b) could explain the differences in the composition of the material 

collected at 1 m compared to other depths. Selective retenti on ofparticles with different 

densities, with low-density particles being retained above a pycnocline, could come into 

play. The high POC:chl a and POC:BioSi in the particulate material collected above the 

pycnocline do not suggest a selective retenti on of algal cells in the surface layer, as this 

would lower the se ratios. However, algal and/or bacterial produced EPS released from the 

sea ice during melt could remain suspended above the pycnocline, due to their low density 

(Azetsu-Scott & Passow 2004), thus explaining higher POC:chl a and POC:BioSi ratios of 

the material collected in the surface layer. Under such a scenario, i.e . with the pycnocline 

acting as a barrier to the sedimentation of certain particles, vertical changes in sinking 

fluxes would not directly reflect the transformation of the sinking material with depth but 

rather differential sinking of particles. A freshening of the surface layer only occurred 

during the melt period (Fig. 2b) and the thermocline remained for the most part below the 
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deployment depths (Forest et al. 2007), which suggests that vertical changes in sinking 

fluxes observed during winter and early spring were linked to depth-related transformation 

of the sinking material. 

1.4.3 Loss of biomass through sin king export 

The overall decreasing trend in the daily loss of chi a until the spring ice melt 

(Fig. 8), indicates that the seasonal increase in sea ice chI a biomass was not matched 

equally by the increasing chI a sinking export. The parallel seasonal patterns in the sinking 

loss of chi a, POC and PON suggests that these variables were c10sely linked and Iikely 

reflected the sinking export of algal material. Michel et al. (2002) observed comparable 

daily sinking loss rates of chI a (up to 10 % d- I
) and POC (5 to 22 % d- I

) at 1 m under 

first-year sea ice in northern Baffin Bay during April and May. During the present study, 

between 1.0 and 5.3 % of the chI a biomass, 2.0 and 25.4 % of the POC biomass and 4.2 

and 35.0 % of the PON biomass was exported daily from the sea ice and interfaciallayer 

through sinking. In the course ofthis 4-month study, an estimated 31.3 mg chI a m-2, 

7.2 g C m-2 (POC) and 1.2 g N m-2 (PaN) was exported through sinking at 1 m under the 

first-year sea ice in Franklin Bay. In comparison, the underice sinking export of poe 

during a 54 d spring study in Resolute Passage was 11 - 12 g C m-2 at 15 m, ofwhich most 

(8 - Il g C m-2
) remained suspended during the period of study (Michel et al. 1996). These 

poe sinking export values are considerably higher than the estimate reported by O'Brien et 

al. (2006) from April to May (ca. 0.5 g C m-2 at 145 m; their SS-I station), which may be 
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related to a high degradation of the organic material during sinking to depth. A benthic 

study on the Mackenzie Shelf reports an annual benthic carbon demand of ca. 12.1 g C m-2 

(ca. 231 m water depth ; Renaud et al. 2007a), which falls in the same range as our estimate 

of carbon sinking export. 

1.5 Conclusion 

This study showed a tight coupling between the sinking export of algal material and 

the biomass ofice algae, especially during winter and at the beginning of the early spring 

period. The observed coupling between ice biomass and sinking export suggests that ice 

algae can provide a potential food source for the pelagic and benthic communities weil 

before the onset of spring melt. The decreasing sinking fluxes of chI a with depth (46 % 

from 1 to 25 m), showed a considerable loss ofpigmented biomass from the sinking 

particulate organic material after its release from the ice. Diatoms comprised a seasonally 

increasing fraction of the sinking algal material during early spring, as indicated by the 

increasing fraction of large chi a (>5 )lm) and BioSi sinking fluxes. In contrast with the 

seasonally increasing sinking fluxes of chi a and BioSi , POC sinking fluxes remained 

rather stable until the onset of spring melt. A large part of the sinking POC appeared to be 

non-algae related, as suggested by the high POC:chl a ratios. The onset of spring melt 

resulted in a considerable increase in sinking fluxes of pigmented and non-pigmented 

material, indicating a non-selective release of particulate organic material from the sea ice. 

However, our results also suggest retention of sorne of the released particulate material 
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within the low sali nit y surface layer (between 1 and 15 m) formed at the time of ice melt. 

Our daily loss rate estimates showed that highest sinking losses ofbiomass occurred during 

late winter. 
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CHAPITRE 2 

INFLUENCE OF THE MACKENZIE RIVER PLUME ON THE SIN KING 

EXPORT OF PARTICULATE MATERIAL ON THE SHELF 

RÉSUMÉ 

Nous avons étudié l' influence du fleuve Mackenzie sur l'exportation verticale de la 
matière particulaire organique et inorganique, sur le plateau du Mackenzie, dans l'Arctique 
canadien. Des pièges à particules à court terme ont été installés sous la halocline à trois 
stations réparties dans l'axe transversal du plateau continental, à l'automne 2002, et à trois 
stations réparties le long de ce plateau, à l 'été 2004. Au cours de ces deux périodes 
d'échantillonnage, le patron spatial de variation des flux verticaux du carbone organique 
particulaire (POC) et de la chlorophylle a (chI a) était semblable à celui de la biomasse 
chlorophyllienne dans le panache du fleuve Mackenzie. Les taux de sédimentation 
maximum du matériel organique particulaire ont été observés aux stations fortement 
influencées pas le panache du fleuve (sédimentation maximale du POC à 25 m de 
98 mg C m-2 d-I et 197 mg C m-2 d- I en 2002 et 2004, respectivement). La composition 
biogéochimique du matériel qui sédimente a varié de façon saisonnière; les cellules 
phytoplanctoniques et les pelotes fécales contribuaient considérablement au flux vertical en 
période estivale, alors que les détritus dominaient le flux vertical à l'automne. De plus, 
l' assemblage phytoplanctonique du matériel qui sédimente a présenté une succession 
saisonnière, passant d ' une dominance de diatomées à l'été à une dominance de flagellés et 
dinoflagellés à l'automne. La présence de la diatomée d'eau douce Eunotia sp. dans 
l'assemblage phytoplanctonique du matériel qui a sédimenté directement sous le panache 
du fleuve indique une contribution fluviale à l'exportation verticale du matériel organique 
sur le plateau. Toutefois, l'augmentation des flux verticaux de chi a et de silice biogénique 
avec la profondeur indique aussi une exportation verticale de phytoplancton présent dans la 
colonne d'eau, sous le panache du fleuve, au cours de l'été et de l'automne. Le broutage, 
surtout par les copépodes et, de façon moindre, par les appendiculaires, semble avoir pris 
place dans une couche bien définie sous le panache du fleuve, particulièrement en période 
estivale. Ces résultats montrent que le fleuve Mackenzie influence la quantité ainsi que la 
composition du matériel qui sédimente sur le plateau continental en été et à l'automne. 
Toutefois le fleuve Mackenzie ne constitue pas la seule source de matériel qui sédimente en 
profondeur, aux stations sous l' influence de son panache. 
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ABSTRACT 

We examined the influence of the Mackenzie River plume on sinking fluxes of 
particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-
term particle interceptor traps were deployed under the halocline at 3 stations across the 
shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During 
the two sampling periods, the horizontal pattern in sinking fluxes of particulate organic 
carbon (POC) and chlorophyll a (chI a) paralleled that in chI a biomass within the plume. 
Highest sinking fluxes of particulate organic material occurred at stations strongly 
influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m-2 d- I 

and 197 mg C m-2 d-I in 2002 and 2004, respectively). The biogeochemical composition of 
the sinking material varied seasonally with phytoplankton and fecal pellets contributing 
considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. 
AIso, the sinking phytoplankton assemblage showed a seasonal succession from a 
dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence 
of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river 
plume indicates the contribution of a phytoplankton community carried by the plume to the 
sinking export of organic material. Yet, increasing chI a and biogenic silica (BioSi) sinking 
fluxes with depth indicated an export of phytoplankton from the water column below the 
river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser 
extent by appendicularians, appeared to occur in a well-defined stratum underneath the 
river plume, particularly during summer. These results show that the Mackenzie River 
influences the amount and the composition of the sinking material on the shelf in summer 
and fa 11 , but does not constitute the only source of material sinking to depth at stations 
influenced by the river plume. 

• 
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2.1 Introduction 

The Arctic Ocean covers an are a of9534 km2 and comprises ca. 4 % of the surface 

area of the worId's oceans (Jakobsson 2002). Nonetheless, the Arctic Ocean en compasses 

ca. 20 % (5025 km2
) of the world ' s continental shelfareas (Stein & Macdonald 2004). 

Hence, the shallow continental shelfregions constitute a major part of the Arctic Ocean, 

making up ca. 53 % of its total surface are a (Jakobsson 2002). The Arctic Ocean receives a 

large seasonal freshwater discharge from rivers (3299 km3 il; Stein & Macdonald 2004), 

equivalent to ca. II % of the global runoff (Shiklomanov 1998), bringing along organic and 

terrigenous material. Though a large part of the material carried by the ri vers sediments in 

the deltas and estuaries (Carson et al. 1999), river discharge is considered to be the most 

important source ofterrigenous material to the Arctic Ocean (Stein & Macdonald 2004). 

Riverine freshwater discharge may in sorne areas form distinctive plumes carrying material 

onto and beyond the nearshore continental shelfregions (Dittmar & Kattner 2003). The 

direction and extent of the river plumes are generally controlled by the Coriolis force, wind 

forcing, currents and tide (e.g. Fong & Geyer 2002). 

Particulate inorganic and organic material associated with river plumes may instigate 

aggregation and subsequent sedimentation, which may increase vertical sinking fluxes in 

the plume area (Hamm 2002). The heterotrophic food web may utilize part of the 

particulate organic material discharged by Arctic rivers (e.g. Parsons et al. 1989, O 'Brien et 

al. 2006) but, to a high degree, this material is often preserved in the marine sediments due 

to its refractory nature Ce.g. Dittmar & Kattner 2003). Arctic ri vers generally display a 
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strong seasonality, with the highest freshwater and sediment discharge onto the continental 

shelf areas during spring ("freshet") and summer (Stein & Macdonald 2004). 

Most Arctic shelves experience a seasonallandfast sea ice cover and a rubble ice field 

can be present at the inner-shelf, often separated from offshore drifting pack ice by a flaw 

lead (e.g. Carmack & Macdonald 2002). Sea ice affects the seasonal primary production on 

shelf areas by generally sustaining ice algae production during spring, and restricting 

pelagic primary production due to light limitation (Sakshaug & Skjoldal 1989). 

The phytoplankton production cycle in Arctic coastal are as experiencing seasonal sea 

ice cover generally shows an initial pelagic "ice-edge bloom" during break-up (Sakshaug & 

Skjoldal 1989), which may be followed by one or more pelagic summer or fall blooms (e.g. 

Arrigo & Dijken 2004). Pelagic primary production accounts for the majority of the annual 

primary production on Arctic continental shelves (Stein & Macdonald 2004); although ice 

algal production is thought to represent a seasonally important source of organic material 

for pelagic grazers. Arctic river plumes may sustain a high phytoplankton biomass and 

production (e.g. Parsons et al. 1988, Springer & McRoy 1993, Garneau et al. 2006), 

particularly some distance trom the river mouth where nutrient concentrations are high and 

turbidity is low (e.g. Parsons et al. 1988). 

Vertical sinking export constitutes the main transport pathway for supplying the 

benthos with particulate organic material originating from pelagic primary production (e.g. 
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Wassmann 1998). The particulate organic material may either sink directly as intact 

phytoplankton cells or be diverted through the pelagic heterotrophic food web. Grazing by 

herbivorous zooplankton resuIts in the degradation of photosynthetic pigments (e.g. 

Welschmeyer & Lorenzen 1985) and carbon loss during assimilation (M0ller et al. 2003). 

Subsequent repackaging of egested material into fecal pellets, especially by copepods and 

appendicularians, may reduce further degradation and increase the sinking velocity of the 

material (Turner 2002). On Arctic shelves, the quality and quantity of the particulate 

material exported to the benthos therefore depend on allochthonous input (e.g. riverine 

di scharge), pelagic and ice-associated primary production as weil as heterotrophic activity. 

The Mackenzie Shelf co vers ca. 120 km in width (offshore) and ca. 530 km in length 

comprising an area of ca. 6.0 x 104 km2 (Carmack et al. 2004). The shelf receives 

249 - 333 km3 of freshwater annually from the Mackenzie River (Dittmar & Kattner 2003), 

most ofwhich is discharged from May to September (Macdonald et al. 1998). The highest 

discharge of freshwater is usually observed from early May to early July, which is also the 

time of the largest terrigenous sediment discharge (O'Brien et al. 2006). Although the 

Mackenzie River constitutes the fourth largest Arctic river in regards to freshwater 

discharge, it represents the largest in terms of sediment discharge, delivering ca. 127 Mt of 

sediment (Macdonald et al. 1998), or an estimated 1.8 - 2.1 Mt of particulate organic 

carbon (POC) annually (Dittmar & Kattner 2003). Coastal erosion (ca. 5.6 Mt il on the 

entire shelf; Macdonald et al. 1998) and resuspension (O'Brien et al. 2006) of sediment 

material may be of seasonal local importance, but the Mackenzie River remains the major 



contributor of sediments to the shelf. The Beaufort Sea Gyre is the major offshore surface 

cUITent, flowing to the west (anti-cyclonic) along the Mackenzie Shelf, while a cyclonic 

deeper undercuITent has been observed flowing to the northeast nearer the shelf edge 

(Pickart 2004). 
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The main objective ofthis study was to evaluate the influence of the Mackenzie River 

on the magnitude of the sinking export and on the composition of the sinking material on 

the shelf. In order to address this objective, we studied spatial and vertical patterns of 

sedimentation at stations located on two transects, i.e. perpendicular to the coastline across 

the shelf and parallel to the coastline along the shelf edge. We also evaluated the 

composition of the sinking material, especially the contribution of fecal pellets and 

phytoplankton algal cells to the sinking material. The sinking export of particulate material 

was determined immediately under the surface halocline and at deeper depths, in order to 

capture the signature of the Mackenzie Ri ver on the vertical export of material. It was 

hypothesized that the presence of the river plume would induce higher sinking fluxes of 

particulate organic material and would affect the composition of the sinking material. 

2.2 Materials and methods 

2.2.1 Study area 

The sampling stations visited during fall 2002 were positioned along a cross-shelf 

transect perpendicular to the coastline, from the shallow inner-shelf station (43 mat St. 65) 
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to the outer-shelf station (77 m at St. 66) and the deeper shelf-slope station (1280 m at 

St. 49; Fig. 1 and Table 1). When the Mackenzie Shelfwas revisited during summer 2004, 

sampling was conducted at three stations (St. 906, St. 803 and St. 708) located along a 

transect parallel to the coastline (along-shelf), with fairly constant water depth (ranging 

from 236 to 280 m) . The Mackenzie River plume has been observed to extend up to 

400 km offshore during summer (Carmack & Macdonald 2002), and may veer in different 

directions depending on the Coriolis force, wind direction and currents (O ' Brien et al. 

2006) . During this study, the Mackenzie River plume extended northeastward along the 

coastl ine during fall 2002 (Garneau et al. 2006; see section 2.4.1) and northwestward 

during summer 2004, as per SeaWiFS image (Fig. 2). It is worth noticing that St. 708 was 

covered by sea ice two da ys prior to sampling, according to the SeaWiFS image. 

72°N 

71 °N 

~An:;;;;wsen 
• »<f Gult 

70 0 N 

69°N 

135°W 1300 W 125°W 120' W 

Fig. 1. Location of sampling stations on the Mackenzie Shelf, Arctic Canada. Open circles 
and close circles represent sampling stations visited during fall 2002 and summer 2004, 
respectively. Lines show the cross-shelf and along-shelf transects formed by the sampling 
stations. Contour depths in meters 
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0.3 1.0 5.0 30.0 100.0 

TSM 

Fig. 2. Sea-viewing Wide Field-of-View Sensor (SeaWiFS) image depicting the 
distribution of sea ice (grey color) and total suspended material (TSM, color scale) within 
the open-water are a on 28 June 2004 (courtesy of S. Bélanger and P. Larouche). Circles 
represent sampling stations visited during summer 2004. The 200 m isobath is indicated 

2.2.2 Sampling 

The sampling program was conducted onboard the Canadian research ice-breakers 

CCGS Pierre Radisson between 28 September and 5 October 2002 and CCGS Amundsen 

between 30 June and 8 July 2004 during the Canadian Arctic Shelf Exchange Study 

(CASES). At each sampling station, CTO profiles were performed with a SBE-911 + 

SeaBird profiler equipped with a Seapoint fluorometer. During fall 2002, additional CTD 

profiles were conducted in ca. 10 km increments along the cross-shelftransect. 
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Sinking fluxes ofparticulate material were measured using free-drifting partic\e 

interceptor traps deployed at multiple depths ranging from 25 to 150 m, depending on water 

depth (Table] and Fig. 3). Consequently, due to the shallow water depth at the shelf 

stations (43 and 77 m at St. 65 and St. 66, respectively), no data are available at depths 

>25 mat St. 65 and only two deployment depths (25 and 50 m) are available at St. 66 

(Table 1). 

Duplicate partic\e interceptor traps were deployed at each depth to ensure that enough 

particulate material was collected for analyses. The free-drifting trap array was equipped 

with a wave dampening device made of a series of 7 buoys of which 3 were submerged. 

Partic\e interceptor traps were constructed ofPVC (Polyvinyl Chloride) cylinders c\osed at 

one end, with an internai diameter of 10 cm and an aspect ratio (height:diameter) of 7. The 

free-drifting trap array was fitted with a CAST ARGOS Drifter (Sei mac Smart Cat 

PTT/GPS transmitter) for long-range satellite tracking and a Novatech Designs Ltd. RF-

700C 1 radio beacon for short-range positioning. 

The partic\e interceptor trap sampling was carried out in accordance with JGOFS 

protocols (Knap et al. 1996) and recommendations by Gardner (2000). Filtered (0.22 !lm) 

seawater, collected weil below the deployment depths, was added to the partic\e interceptor 

traps prior to deployment to ensure that the higher density partic\e-free water remained 

inside the traps. 
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Table  1.  Characteristics  of free-drifting  particle  interceptor  trap  deployments  during  fail 2002  and  summer  2004  Table 1. Characteristics of free-drifting partic\e interceptor trap deployments during fa11 2002 and summer 2004 

Station Deployment Duration De2lo~ment Recove!}' Distance Average Water Deployment 
date Latitude Longitude Latitude Longitude travell ed speed depth depth 

(d) (ON) (OW) (ON) (OW) (km) (cm S' I) (m) m) 
49 28 Sep 2002 1.0 7 1 ° 27.60' 133° 43.90' 71 ° 32. 15' 133° 40.43' 8.2 9.5 1280 25,50,75, 100, 125, 150 
65 1 Oct 2002 1.0 70° 06.75' 133° 28.03' 70° 05.05' 133° 32.33' 4.9 5.7 43 25 
66 5 Oct 2002 0.9 70° 50.45' 133° 38.45' 70° 50.20' 133° 32.00' 4.2 5.4 77 25,50 
708 30 Jun 2004 1.3 71 ° 02.77' 133° 46.31' 71 ° 03.66' 133° 43 .34' 2.3 2. 1 236 25, 50, 75, 100, 125, 150 
906 3 Ju l 2004 1.5 70° 01.10' 138° 34.57' 69° 50. 10' 138° 21.96' 2 1.9 16.9 280 25,50, 75, 100, 125, 150 
803 8 Jul 2004 1.0 70° 39.94' 135° 37.89' 70° 38.60' 135° 54. 14' 10. 1 11.7 243 25, 50, 75, 100, 125, 150 

VI 
00 
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Upon recovery, the particle interceptor traps were fitted with a c\ean lid and set aside 

for sedimentation during 8 h in a cold-room (O°C) onboard the ship. After the 

sedimentation period the supernatant was gently removed, the remaining trap sample was 

pre-screened (425 )lm) to remove large swimmers, and the volume was measured. 

Duplicate partic\e interceptor trap sampi es from each depth were pooled together in dark 

containers for subsampling and analyses. 

2.2.3 Analyses 

The particle interceptor trap samples from different depths were gently mixed before 

subsampling for various analyses. Subsamples (100 - 250 ml) for fecal pellet and 

phytoplankton identification and enumeration were taken first to ensure minimal 

disturbance of the collected material. Fecal pellet sampi es were preserved with 2 % (v/v) 

buffered formaldehyde, while phytoplankton sampi es were preserved with 1 % (v/v) acidic 

Lugol 's solution for later analyses. Fecal pellets were counted and the dimensions of each 

pellet were measured (Iength and width), using a Carl Zeiss inverted microscope 

(100 x magnification). Fecal pellets were classified according to type (cylindrical or 

elliptical) and their condition (intact or broken). The volume of intact cylindrical fecal 

pellets was calculated using the equation for a cylinder with half-spherical ends, while the 

volume ofbroken cylindrical fecal pellets was calculated as cylinders. The volume of the 

intact elliptical fecal pellets was calculated using the equation for an ellipsoid. No broken 

elliptical fecal pellets were observed. Phytoplankton identification and enumeration were 



performed on 5 - 100 ml subsamples, using a Leica DM IRB inverted microscope 

(400 x magnification). 
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Chlorophyll a (chI a) and phaeopigments were measured on 50 - 200 ml subsamples 

filtered onto Whatman GF/F 25 mm filters. The filters were extracted in 90 % acetone for 

24 h in cold dark conditions (4°C). After extraction, the samples were analyzed on a Turner 

Designs 10AU fluorometer, using 90 % acetone as a blank. Pigment concentrations in the 

samples were calculated according to Parsons et al. (1984). 

Total particulate carbon (TPC) and particulate organic carbon (POC) and nitrogen 

(PON) were measured on 50 - 700 ml subsamples filtered onto pre-combusted (450°C for 

24 h) Whatman GF/F 21 mm filters. After filtration, the filters were dried at 60°C for 24 h 

before being stored in separate Petri dishes for later analysis on a Perkin Elmer Model 2400 

CHN Analyzer. POC was measured on filters which had been acidified during 24 h in a 

dessicator saturated with HCI fumes, thereby removing any inorganic carbon. 

Biogenic and lithogenic silica (BioSi and LithoSi) were measured on 50 - 250 ml 

subsamples filtered onto 0.6 flm Nuc\epore polycarbonate membranes, dried at 60°C for 

24 h, and stored in cryovials for later analysis. BioSi was extracted in 0.2 M NaOH at 95°C, 

and sequential extraction was performed at 10, 15,20,30,45,60 and 90 min. BioSi in the 

subsamples was measured using a colorimetric reaction involving the formation of a 

silico-molybdate complex and spectrophotometric determination at 810 nm (Varian lnc. 
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CARY 100 BIO) (adapted from Conley 1998, Ragueneau & Tréguer 1994). The slope of 

silicic acid concentrations in sequential subsamples was used to correct for the presence of 

LithoSi in the samples. LithoSi was subsequently measured on the same membranes using 

hydrofluoric acid extraction for 48 h and a similar colorimetrie reaction procedure as for 

BioSi (adapted from Conley 1998, Ragueneau & Tréguer 1994). 

2.2.4 Calculations and statistical analyses 

Sinking fluxes of the measured variables were ca\culated using the equation of the 

JGOFS protocol (Knap et al. 1996): 

Sinking flux (mg m-2 d- I
) = (Ctrap * Ytrap) / (Atrap * Tdep) 

where Ctrap is the concentration of the measured variable in the particle interceptor trap 

(mg m-3
) , Ytrap is the volume of the particle interceptor trap sample (m\ Atrap is the particle 

interceptor trap surface are a (m2
) and Tdep is the deployment time (d). 

Fecal pellet volumes were converted into fecal pellet based carbon (FPC), using a 

volume to carbon conversion factor of 0.057 pg C )lm- I for cylindrical fecal pellets (i.e. 

copepod fecal pellets) and 0.042 pg C )lm- I for elliptical fecal pellets (i.e. appendicularian 

fecal pellets) (Gonzâlez et al. 1994). 

Sinking flux data at depths >25 m, during summer 2004 (Table 1), was tested for 

significant differences between stations using Kruskal-Wallis tests (Sokal & Rohlf 1981). 

The lack or low number of deployments at depths >25 m, during fall 2002 (Table 1), at the 



inner-shelf (n = 0 at St. 65) and outer-shelf stations (n = 1 at St. 66) prevented statistical 

analyses between stations along the cross-shelf transect. 

2.3 Results 

CTD profiling along the cross-shelftransect, during fall 2002, showed a continuous 

halocline at ca. 20 m, which was formed by the low-salinity Mackenzie River plume 
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(Fig. 3a, c). The halocline was strongest at the inner-shelf and outer-shelf stations (St. 65 

and St. 66), compared to the shelf-slope station (St. 49). Salinity profiles obtained on the 

along-shelftransect, during summer 2004, also showed a halocline at ca. 20 m (Fig. 3b, d). 

The salinity at 25 m was between 29.1 and 30.9 in 2002 and between 30.3 and 30.5 in 

2004. In situ fluorescence profiling above the halocline (20 m), showed that chI a biomass 

increased towards the center of the river plume, during the two sampling periods (average 

of 0.3 , 0.5 and 0.1 fJg rI at <20 mat St. 65, St. 66 and St. 49, in fall 2002 ; 0.7, 0.2 and 

0.1 fJg rI at <20 m at St. 906, St. 803 and St. 708, in summer 2004; data not shown). 
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Fig. 3. Salinity profiles (a, c) across the shelf (fal1 2002) and (b, d) along the shelf edge 
(summer 2004); (a, b) down to 300 m and (c, d) down to 50 m. Black circles represent 
particle interceptor trap deployment depths and grey dots represent CTD profiling depths in 
10 m increments 

Sampling along the cross-shelftransect, during fal1 2002, showed higher chI a sinking 

fluxes at the inner-shelf and outer-shelf stations at 25 m (0.08 and 0.09 mg m-2 d- I at St. 65 

and St. 66, respectively) and at depths >25 m (0.15 mg m-2 d- I at St. 66, data not available 

from St. 65), compared to the shelf-slope station (0.02 and 0.03 mg m-2 d- I at 25 m and 

>25 m, respectively, at St. 49; Fig. 4a). During summer 2004, the highest chI a sinking 

fluxes were observed at St. 906 at al1 depths and decreased significantly (Kruskal-Wallis, 

p < 0.01 ; at depths >25 m) northeastwardly on the along-shelftransect (Fig. 4b). ChI a 

sinking fluxes at depths >25 m were higher than at 25 m at al1 stations during 2002 and 

2004. 
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Fig. 4. Spatial variations of (a, b) sinking flux of chlorophyll a (chI a) and (c, d) percent 
contribution of chI a to total pigment (i.e. chI a + phaeopigments) sinking flux at 25 m and 
>25 m during (a, c) fall 2002 and (b, d) summer 2004. Mean ± standard deviation are 
shown for depths >25 m. n.d. = no data 

The contribution of chI a to total pigments in the particulate material collected at 

25 m increased from inshore to offshore, during fall 2002 (from 23.0 to 58.2 %; Fig. 4c). 

SimiIarIy, at depths >25 m the chI a contribution to total pigments was higher at the 

shelf-slope station (41. 7 % at St. 49) than at the outer-shelf station (29.2 % at St. 66). On 

the along-shelftransect, during summer 2004, the contribution of chI a to total pigments at 

25 m progressively decreased northeastwardly (from 76.4 to 46.1 %; Fig. 4d). At depths 

>25 m, the percent contribution of chI a in total pigments was significantly 

(Kruskal-Wallis, p < 0.01) lower at St. 708 than at St. 906 and St. 803 (Fig. 4d). The chI a 
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contribution to total pigments was lower at depths >25 m than at 25 m at all stations on the 

along-shelf transect. 
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Fig. s. Spatial variations of (a, b) sinking flux of biogenic silica (BioSi) and (c, d) percent 
contribution of BioSi to total silica (i.e. BioSi + LithoSi) sinking flux at 25 m and >25 m 
during (a, c) fall 2002 and (b, d) summer 2004. ln (a) and (c), data are not available at 
St. 49. Mean ± standard deviation are shown for depths >25 m. n.d. = no data 

Only two stations were sampled for BioSi and LithoSi in fall 2002. The outer-shelf 

station (St. 66) showed higher sinking fluxes of BioSi at 25 m, compared to the inner-shelf 

station (St. 65; Fig. 5a). The only available BioSi sinking fluxes at depths >25 m, during 

fall 2002, are from the outer-shelf station (St. 66; Fig. 5a). At 25 m, the contribution of 

BioSi to total silica sinking fluxes was higher at the outer-shelf station (St. 66) than at the 

inner-shelf station (St. 65; Fig. 5c). During summer 2004, high BioSi sinking fluxes were 
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measured at St. 906 (98.8 mg m-2 d- I and 138.3 mg m-2 d- I at 25 and >25 m, respectively; 

Fig. 5b). However, fluxes at depths >25 m were not significantly different among stations 

(Kruskal-Wallis, p = 0.36; Fig. 5b). BioSi sinking fluxes were higher at depths >25 m than 

at 25 m, and the difference was most evident at St. 803 and St. 708 (Fig. 5b). The 

contribution of BioSi to total silica sinking fluxes showed no clear trend along the shelf 

transect during summer 2004 (Fig. 5d). 

poe sinking fluxes at 25 m were highest at the inner-shelf and outer-shelf stations 

during fall 2002 (75.5 and 97.6 mg m-2 d- I at St. 65 and St. 66, respectively; Fig. 6a). 

Similarly, poe sinking fluxes at depth >25 m were higher at the outer-shelf station 

(70.2 mg m-2 d- I at St. 66), compared to the shelf-slope station (10.1 mg m-2 d- I at St. 49). 

Sinking fluxes of poe at depths >25 m were lower than the fluxes measured at 25 m during 

fall 2002. During summer 2004, the highest poe sinking flux at 25 m was observed at 

St. 906 (197.3 mg m-2 d- I
), whereas St. 803 and St. 708 showed comparable sinking fluxes 

(37.5 and 51.1 mg m-2 d- I
, respectively; Fig. 6b). Average poe sinking fluxes at depths 

>25 m decreased northeastwardly on the along-shelftransect (from 165.1 to 

100.1 mg m-2 d- I
), although this trend was not statistically significant (Kruskal-Wallis, 

p = 0.28). The poe contribution to TPC sinking fluxes was 83.] and 88.2 % at the 

inner-shelf (St. 65) and outer-shelf (St. 66) stations during 2002, while TPC values are not 

available for the shelf-slope station (St. 49; data not shown). During 2004, the poe 

contribution to TPC sinking fluxes ranged from 65.9 to 83.9 % along the transect (data not 

shown) . 
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Fig. 6. Spatial variations of (a, b) sinking flux of particulate organic carbon (POC) and 
(c, d) ratio of POC to particulate organic nitrogen (PON) in the sinking material at 25 m 
and >25 m during (a, c) fall 2002 and (b, d) summer 2004. ln (c), data are not available at 
St. 49. Mean ± standard deviation are shown for depths >25 m. n.d. = no data 

The POC:PON molar ratios of the sinking particulate material collected at 25 m, 

during fall 2002, were comparable to the Redfield ratio (6.6 mol:mol; Redfield et al. 1963) 

at the shelf stations (7.9 and 6.7 at St. 65 and St. 66, respectively; Fig. 6c). PON values are 

not available for the shelf-slope station (St. 49). ln contrast, the POC:PON molar ratio 

measured at 25 m on the along-shelftransect were above the Redfield ratio at St. 906 (11.5) 

and below the Redfield ratio at St. 803 and St. 708 (4.1 and 5.2 mol:mol , respectively; 

Fig. 6d). At depths >25 m, comparable (Kruskal-Wallis, p = 0.30) POC:PON molar ratios 

were observed at ail stations on the along-shelftransect (ranging from 7.8 to 9.4; Fig. 6d). 
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Fig. 7. Spatial variations of (a, b) ratio of particulate organic carbon (POC) to chlorophyll a 
(chI a) in the sinking material at 25 m and >25 m and (c, d) sinking flux of carbon-based 
(FPC) fecal pellets at 25 m and 50 m during (a, c) fall 2002 and (b, d) summer 2004. ln (a) 
and (b), mean ± standard deviation are shown for depths >25 m. n.d. = no data 

The POC:chl a ratios of the sinking material at stations across the shelf (Fig. 7a) 

showed trends similar to those ofPOC (Fig. 6a). At 25 m, POC:chl a ratios were highest at 

the inner and outer-shelf stations (1000 and 1109 g:g at St. 65 and St. 66, respectively; 

Fig. 7a), whereas at depths >25 m comparable POC:chl a ratios were observed at the 

outer-shelfand shelf-slope stations (460.2 and 375.4 g:g at St. 66 and St. 49, respectively). 

In contrast, at stations along the shelf, during summer 2004, the trends in the POC:chl a 

ratios were opposite to those in POC (Fig. 6b), as they increased at ail depths 
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northeastwardly along the transect (from 184.0 to 801.2 and from 167.0 to 717.8 g:g at 25 

and >25 m, respectively; Fig. 7b). 

Sinking fluxes ofFPC at 25 m decreased from 8.6 to 0.17 mg m-2 d- I along the 

transect during fa1l2002 (Fig. 7c), and from 21.1 mg m-2 d- I at St. 906 to 7.4 and 

9.1 mg m-2 d- I at St. 803 and St. 708, respectively, during summer 2004 (Fig. 7d). FPC 

sinking fluxes at 50 m were 2 times higher than at 25 m during fall 2002 (ranging from 3.8 

to 0.36 mg m-2 d- I
) and 2-5 times higher during summer 2004 (ranging from 20.5 to 

57.0 mg m-2 d- I
). Cylindrical fecal pellets were the main contributors to FPC at all stations 

and depths during fall 2002 (ranging from 75.6 to 100.0 %; data not shown) and summer 

2004 (ranging from 71.9 to 99.2 %; data not shown). 

Sampling along the cross-shelftransect, during fall 2002, showed the highest sinking 

fluxes ofphytoplankton cells at the inner-shelfstation (325.7, 7.7 and 

27.2 x 106 cells m-2 d- I at St. 65, St. 66 and St. 49, respectively; Fig. 8a). Flagellates, 

especially flagellates <5 /lm, were the most abundant phytoplankton cells collected along 

the cross-shelftransect (ranging from 74.4 to 93.7 %), although dinoflagellates, primarily 

Gymnodinium and Gyrodinium spp., contributed increasingly to the sinking assemblage 

across the shelf(from 5.1 to 19.9 %; Table 2). Diatoms comprised a minor fraction of the 

phytoplankton sinking flux along the cross-shelftransect (ranging from l.2 to 9.4 %; 

Table 2). The freshwater diatom, Eunotia sp., was found in the material collected at 25 m at 

the inner-shelf station (St. 65) in fall 2002. During summer 2004, a strong decrease in 
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phytoplankton cell sinking fl uxes was observed northeastwardly on the along-shelftransect 

(from 569.8 x 106 cell s m-2 d- I at St. 906 to 132.5 x 106 cells m-2 d- ' at St. 708; Fig. 8b). 

D iatoms, primarily the pennate diatoms Fragilariopsis cylindrus and Navicula vanhoeffenii 

and the centric diatom Chaetoceros spp., were the main contributors to the sin king cell 

assemblage, though their combined contribution decreased northeastwardly on the 

along-shelftransect (from 73 .9 to 51.3 %; Table 2). In contrast, flage llates, mainly 

flage llates <5 /lm, contributed increasingly to sinking fluxes of phytoplankton cells 

northeastwardly along the transect during summer 2004 (from 25.8 to 46.8 %; Table 2). 
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Fig. 8. Spatial variations in the sinking flux of (a, b) phytoplankton cell s of various 
taxonomie groups and (c, d) empty diatom frustules and centric diatom spores during (a, c) 
fall 2002 and (b, d) summer 2004 at 50 m (25 m at St. 65). ln (c), no spores were observed 
in fa ll 2002 
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Table 2. Percent contribution of phytoplankton taxonomic groups and dominant taxa in the 
sinking material coIlected at 50 m (25 m at St. 65) during faH 2002 and summer 2004. A 
dominant taxon is defined as the species or genus representing a minimum of 15 % total 
phytoplankton abundance at one station 

2002 2004 
Phytoplankton groups/species St. 65 St. 66 St. 49 St. 906 St. 803 St. 708 
Centric diatoms 0.0 7.8 0.8 29.7 13 .2 6.7 

Chaetoceros spp. 0.0 1.0 0.0 22.8 9.8 2.6 

Pennate diatoms 1.2 1.6 3.2 44.1 51.8 44.6 
Fragilariopsis cylindrus 0.0 0.3 0.0 17.0 32.0 27.9 
Navicula vanhoeffenii 0.0 0.0 0.3 17.8 8.3 15.1 

Dinoflagellates 5.1 16.2 19.9 0.3 0.0 1.9 
Gymnodinium/Gyrodinium spp. 5.1 15.9 18.4 0.3 0.0 1.9 

Flagellates «5 /lm) 80.9 49.7 60.0 23 .1 30.1 42.0 

Flagellates (>5 /lm) 12.8 24.7 16.2 2.7 4.9 4.8 

During fa Il 2002, the highest sinking fluxes of empty diatom frustu les were observed 

at the inner-shelf station (5.1 x 106 cells m -2 d- I at St. 65), equally comprised of empty 

centric and pennate diatom frustu les (Fig. 8c). At the outer-shelf and shelf-slope stations 

the sinking fluxes of empty diatom frustu les were mainly explained by centric diatoms 

(0.93 and 1.8 x 106 cells m-2 d- I at St. 66 and St. 49, respectively; Fig. 8c). No diatom 

spores were observed in the sinking assemblage during faIl 2002 (Fig. 8c). Sampling on the 

along-shelftransect, during summer 2004, showed decreasing sinking fluxes of empty 

diatom frustules northeastwardly along the transect (from 203.1 x 106 ceIls 111 -2 d- I at 

St. 906 to 56.5 x 106 cells m-2 d- I at St. 708; Fig. 8d). Pennate diatom frustules, such as 

Fragilariopsis cylindrus, were the most abundant of the identified frustules and represented 



the majority of the empty diatom frustules (> 73 %), at ail stations on the along-shelf 

transect. Centric diatom spores were present in the collected material at ail stations on the 

along-shelftransect, with a maximum sinking flux observed at St. 803 (Fig. 8d). 

2.4 Discussion 
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Predicted consequences of global warming in Arctic continental shelfregions include 

increased river runoff as a result of increasing precipitation on land (e.g. Peterson et al. 

2002). The Mackenzie River already discharges more suspended material than any other 

river flowing into the Arctic Ocean (Stein & Macdonald 2004), and previous studies have 

established the major influence ofthis river on sediment and carbon fluxes on the adjacent 

shelf (e.g. Macdonald et al. 1998, O'Brien et al. 2006). This study provides new insights 

into the influence of the Mackenzie River on the sinking fluxes and composition of 

particulate material sedimenting on the shelf during the ice-free period. 

Although the sampling was carried out in two different years and during different 

seasons (fall of2002, summer of2004), the study was designed such that the transects 

would intercept at the shelf-slope (near the 200 m isobath; Fig. 1), thus aiming for potential 

comparisons between transects. While it is not our intent to rule out interannual variability 

in sinking fluxes of particulate material (see sections 2.4.1 and 2.4.2), results from the two 

sampling periods will be brought together to discuss seasonal changes in the composition of 

the material exported vertically on the shelf(see sections 2.4.2 and 2.4.4). 



In this study, cylindrical parti cIe interceptor traps with a high aspect ratio (7) were 

used to assess sinking fluxes in the study area, as trap aspect ratios >3 are recommended 

(Gardner 1980, Hargrave & Burns 1979, Taguchi et al. 1993, BaIe 1998), in particular in 

dynamic environments (e.g. current velocities up to 20 cm S-I; White 1990). Estimated 

sinking fluxes ofPOC, using similar free-drifting particle trap arrays in the North Water 

Polynya (NOW), were in very good agreement with POC sinking flux estimates using the 

234Thp38U disequilibrium method (Tremblay et al. 2006b). 

2.4.1 Effeet of the river plume on the magnitude of sinking fluxes 
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The river plume observed during fall 2002 likely originated further to the southwest 

and extended along the coastline into the sampling area, as suggested by Garneau et al. 

(2006). The sampling transect therefore covered a cross-section of the river plume, with a 

decreasing influence of the river wh en progressing offshore along the transect (Fig. 3a, c). 

Similarly, the along shelftransect sampled during summer 2004 covered a partial 

cross-section of the northwestwardly extending river plume, with a decreasing influence of 

the river plume from St. 906 to St. 708 (Fig. 2 and 3b, d). The shallowest particle 

interceptor trap deployments (25 m) were in close proximity to the halocline along the two 

transects, with the intent of collecting particulate material exported from the river plume. 

lndeed, the freshwater pennate diatom Eunotia sp. found in the sinking material collected at 

the inner-shelf station (at 25 mat St. 65), clearly indicated phytoplankton that had been 



transported onto the shelfby the river plume and subsequently exported to the underlying 

water column. 
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The presence of a phytoplankton community carried by the river plume was 

supported by the high chI a biomass in surface waters, particularly at the stations strongly 

influenced by the plume (St. 65 and St. 66 during 2002, St. 906 during 2004). The spatial 

trend observed in fall 2002, with a high river plume chI a biomass at the shelf stations, 

agrees with the spatial trend reported during two parallel studies focussing on surface water 

sampI es collected along the cross-shelftransect during the same period. During these 

studies, higher POC (Wells et al. 2006) and chI a (Garneau et al. 2006) concentrations in 

the surface waters, i.e. above the halocline, were found at the stations strongly influenced 

by the river plume (St. 65 and St. 66) compared to the shelf-slope station (St. 49). In 

addition, Wells et al. (2006) established, based on similarity ofbiochemical variables, that 

the surface water on the cross-shelftransect corresponded to Mackenzie River water. 

The presence of the river plume influenced the magnitude of the sinking flux of 

particulate organic material during both fall 2002 and summer 2004, as reflected by higher 

fluxes of chI a and POC at 25 m at the stations strongly influenced by the plume 

(Figs. 4a, band 6a, b). The chI a biomass within the river plume therefore appeared to be 

coupled with the magnitude of sinking fluxes ofparticulate organic material to the 

underlying water column during both sampling periods. River plumes are usually 

associated with high concentrations of particulate organic material (e.g. Dittmar & Kattner 
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2003, Dagg et al. 2004), but mixing with sUITounding seawater may dilute the biomass 

along the extent of the river plume (e.g. Dagg et al. 2004). During our sampling, dilution 

effects on the river plume biomass Iikely explain the lower suspended chI a concentrations 

(St. 49 during 2002, St. 708 during 2004) and lower sinking fluxes ofparticulate organic 

material towards the periphery of the river plume (Figs. 4a, band 6a, b). In addition, our 

results show that the direct sinking of algal biomass from the surface layer to deeper waters 

in nearshore areas is likely to contribute to the removal ofbiomass from the river plume as 

it extends offshore. 

While there was overall similarity in the spatial trends of particulate organic material 

sinking fluxes along the two transects (i.e. higher sinking fluxes ofPOC and chI a at 

stations strongly influenced by the river plume), a seasonal difference in the magnitude of 

fluxes was observed at the stations strongly influenced by the river plume. A previous study 

in one of the major channels in the Mackenzie Delta, the East Channel, showed increasing 

chI a concentrations from June to August (from ca. 2 to 5 ~g rI) followed by a decrease in 

September (to ca. 1 ~g rI ; Anema et al. 1990), which agrees with the higher chI a biomass 

observed in the river plume in summer than in the fall during our study. As a corollary, the 

higher sinking fluxes ofparticulate organic material from the halocline during summer (at 

St. 906) compared to fall (St. 65 and St. 66), can be linked to seasonal changes in river 

plume biomass. 
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The influence of the Mackenzie River plume on sinking fluxes on the shelftherefore 

depends on seasonal differences in the concentration of particulate organic material in the 

discharged river water and how strongly a particular are a is influenced by the plume. 

Moreover, the seasonal magnitude offreshwater discharge may influence the extent of the 

Mackenzie River plume (Carmack & Macdonald 2002). 

2.4.2 Effect of the river plume on the composition of the sinking material 

In the next section, we will discuss the influence of the Mackenzie River plume on 

the biogeochemical composition of the material exported from surface waters. While the 

presence of the river plume appeared to induce higher sinking fluxes of chi a and POC 

during the two sampling years and seasons, the effect of the plume on the composition of 

the exported material varied between sampling years. For this reason, the following 

discussion will address processes influencing the biogeochemical composition of the 

material for each sampling period separately. 

Fall of2002 

During faH 2002, the particulate material exported from surface waters (25 m) at the 

shelf stations strongly influenced by the river plume showed a high particulate organic 

content, as POC dominated the TPC sinking export (83.1 and 88.2 % at St. 65 and St. 66, 

respectively; data not shown). This is in contrast with the very high (> 95 %; Fig. Sc) 

contribution ofLithoSi to the total particulate silica in the sinking material collected 

undemeath the river plume at those stations. This high LithoSi contribution to the exported 



material along the cross-shelftransect can be explained by a combination oflow BioSi 

sinking fluxes « 15 mg m-2 d-I; Fig. Sa) and high LithoSi fluxes (320.7 and 
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282.4 mg m-2 d-I at St. 65 and St. 66, respectively; data not shown). The measured BioSi 

sinking fluxes were lower than fluxes reported during spring and summer in the NOW 

using similar short-term parti cie interceptor traps (ca. 50 - 800 mg m-2 d-I at 50 m; Michel 

et al. 2002), while they compared with sinking fluxes reported during fall of 1987 on the 

Mackenzie Shelf edge using long-term moorings (ca. 5 - 30 mg m-2 d-I at 128 and 145 m; 

O ' Brien et al. 2006). The LithoSi contribution to the total silica sinking fluxes measured in 

the present study compare with those (> 90 %) reported by O'Brien et al. (2006) at the 

Mackenzie shelf edge in fall of 1987. Low sinking fluxes of intact diatom cells, empty 

diatom frustules and the lack ofhighly silicified diatom spores (Hargraves & French 1983) 

during fall 2002 (Fig. 8a, c) explain the low BioSi fluxes. LithoSi usually originates from 

terrestrial soils and sediments, and as a consequence may be abundant in river plumes 

containing a high terrestrial sediment load (e.g. Dagg et al. 2004). To our knowledge, 

particulate LithoSi has not been documented for the Mackenzie River, however, O'Brien et 

al. (2006) reported an increased contribution ofLithoSi , i.e. decreased contribution of 

BioSi to total silica, resulting from the influence of the Mackenzie River plume and during 

episodes of resuspension or coastal erosion. While no indication of resuspended material 

was apparent at our deployment depths, it is possible that, during the fall, resuspended 

material was introduced into the river plume closer to the river. The similarity between the 

POC :PON and POC:chl a ratios measured in the material sinking from the river plume 

during our fall sampling (POC:PON ranging from 6.7 - 7.9 mol:mol , POC:chl a ranging 
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from 527.3 to 1109 g:g; Fig. 6c and 7a) and those reported by Wells et al. (2006) in the 

river plume (POC:PON ranging from 5.4 to 6.8 mol:mol, POC:chl a ranging from 312.5 to 

1250 g:g) lends further support to a close coupling between the river plume and the 

material sinking undemeath the halocline. 

The river plume had a distinct signature reflected in the biogeochemical composition 

of the material sinking out of surface waters, with high POC:chl a ratios and a low percent 

contribution « 30 %; Fig. 4c) of chI a to total sinking pigments during fall. Accordingly, 

estimates of the percent contribution of algal-based carbon to the total POC sinking fluxes, 

using a POC:chl a ratio of 40 g:g (Lorenzen 1968) at the shelf stations give values :s 4 %, 

thus reflecting a minor contribution of algae to the sinking flux of organic material from the 

river plume in fall. In contrast, at the shelf-slope station (St. 49), the percent contribution of 

algal-based carbon to total POC sinking fluxes estimated using the same carbon conversion 

factor, was somewhat higher (7.6 %). These values are conservative estimates, as 

POC:chl a ratios may vary considerably depending on the physiological condition of the 

phytoplankton cells (e.g. up to 221 g:g in nutrient deficient cells; Stramski et al. 2002). In 

addition, zooplankton fecal pellets contributed only a small fraction of the POC sinking 

flux from surface waters (25 m) at the shelf stations (11.4 and 2.3 % at St. 65 and St. 66; 

data not shown). Therefore, neither algal-based material nor fecal pellets were major 

contributors to the POC sinking out of surface plume waters during fall. 
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Garneau et al. (2006) showed the importance of partic1e-attached prokaryotes in 

surface waters along the cross-shelftransect in faH 2002. Microscopie observations of our 

sampI es showed abundance of amorphous detritus which, together with bacteria, likely 

comprised a large part of the POC exported from the river plume. Interestingly, the 

POC:PON ratio of the material sinking out of the river plume did not significantly depart 

from the Redfield ratio (6.6 mol:mol; Redfield et al. 1963) although various constituents 

other than algae contributed to the exported material. Marine bacterioplankton generaHy 

have a low POC:PON ratio (e.g. down to 3.8 mol:mol; Vrede et al. 2002), which would 

have contributed to lowering the POC:PON ratio in the collected material, while fecal 

peHets, with their high POC:PON ratios (e.g. up to 33.2; Daly et al. 1999), would have 

increased the ratio. 

Copepods were the main grazers along the cross-shelftransect in fall, and they may 

have been grazing on material within the river plume, as indicated by the fecal pellets 

collected directly underneath the plume (at 25 m; Fig. 7c). Mesozooplankton communities 

have been reported to develop within river plumes (e.g. Dagg et al. 2004), whereas 

zooplankton underneath the plume can make diurnal migrations to graze on the abundant 

organic material in the plume (e.g. Pagona et al. 1993). Whether the fecal pellet exported 

from the surface layer reflected the grazing activity of a river plume community or 

zooplankton migrating daily to the river plume can not be inferred from our results. Yet, the 

fecal pellet flux directly underneath the river plume, and the higher chI a concentrations 

and FPC fluxes at the shelf stations (St. 65 and St. 66), lend support to the hypothesis that 



the particulate organic material within the river plume provided a food source for grazers 

during fall. 

Summer of 2004 

80 

Similarly as during faH 2002, the particulate material coHected underneath the river 

plume in summer 2004 was dominated by organic material , as shown by the high organic 

carbon contribution to total carbon (POC ranging from 65.9 to 83.9 % ofTPC; data not 

shown). However, in summer 2004, BioSi dominated the total silica sinking export 

(average of 60.2 %; Fig. 5d). The dominance of diatoms (51.3 - 73.9 %; Table 2), the 

abundance of empty diatom frustules and the presence of resting spores in the sinking 

assemblages would ail contribute to explain the high BioSi sinking fluxes. Estimates of 

algal-based carbon using the same POC:chl a conversion factor as above, point to a percent 

contribution from algal cells to the total POC sinking export from surface waters ranging 

from 20.5 to 7.0 % in a northeastwardly direction (at 25 mat St. 906 and St. 708, 

respectively). As during fall, these are conservative estimates as considerably higher 

POC:chl a ratios have been observed for phytoplankton cel1s. These results, together with 

the decreasing POC:chl a ratios towards the river plume (ca. 200 g:g at St. 906), clearly 

indicate that the signature from the chI a biomass within the plume was recorded in the 

sinking material at 25 m and at greater depth (e.g. Fig. 7b). 

The declining trend in FPC sinking fluxes away from the river influence, at 25 m and 

50 m (Fig. 7d), points to higher grazing activity in the plume area. At the river plume 
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station (St. 906), the percent POC explained by fecal pellets was 10.7 % at 25 m, while 

fecal pellets contributed 19.6 and 17.8 % at 25 m at St. 803 and St. 708, respectively (data 

not shown). Overall, it is estimated that fecal pellets and algal cells contributed 31.1 % of 

the total POC sinking export at 25 mat the river plume station (St. 906), and 33.0 and 

24.8 % at St. 803 and St. 708, respectively. Amorphous detritus therefore appear to have 

been an important component of the particulate organic material exported during summer, 

considering that our estimate does not include the contribution of diatom resting spores. In 

addition, amorphous detritus appeared to contribute an increasing fraction of the POC 

sinking fluxes towards the periphery of the river plume (at St. 708). 

Interestingly, the drastic decrease in POC sinking fluxes from the surface water (at 

25 m) between the river plume station (St. 906) and the other stations (St. 803 and St. 708; 

Fig. 6b) was paralleled by a decrease in the POC:PON ratio along the transect (Fig. 6d). 

The high POC:PON ratio at the river plume station (11.5 mol:mol at St. 906; Fig. 2) agrees 

with the high ratios reported from the river water in the fall (ca. 13.0 - 16.5 mo1:mol ; Wells 

et al. 2006). In contrast, the low POC:PON ratios at St. 803 and St. 708 (4.1 and 

5.2 mol:mol, respectively; Fig. 6d), which were weil below the Redfield ratio (6.6 mol:mol; 

Redfield et al. 1963), may have been due to particle-attached bacteria in the sinking 

material, as suggested for the fall period (see previous section). 

AItogether, these results show a seasonal succession in the biogeochemical 

composition of the particulate material exported from Mackenzie River plume, from a 
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significant contribution of phytoplankton and fecal pellets during summer to material 

dominated by amorphous detritus during fall. In addition, the influence of the river plume 

on the biogeochemical composition of the exported material is largely concentrated to areas 

strongly influenced by the plume, as the plume signature decreases progressively towards 

its periphery. 

2.4.3 Pelagie export and transformation of sinking material 

The presence of the river plume also influenced the magnitude of the sinking fluxes 

of organic material at depths below the halocline, as reflected by highest sinking fluxes of 

chi a and POC at the stations strongly influenced by the plume during fall 2002 (St. 65 and 

St. 66) and summer 2004 (St. 906) (Figs. 4a, band 6a, b). The Mackenzie River plume has 

previously been reported to induce high sinking fluxes of particulate organic material at 

depth (213 m) on the shelfin the summer of 1987, using long-term moorings (near our 

St. 906; O'Brien et al. 2006). 

The higher chI a sinking fluxes at depths >25 m than at 25 m during the two sampling 

periods (Fig. 4a, b) are interpreted in terms of downward export of phytoplankton below 

the river plume as, without the introduction of new material , sinking fluxes of organic 

material are expected to decrease with depth (e.g. Sarmiento & Gruber 2006). Similarly, 

increasing BioSi fluxes with depth (Fig. Sa, b) indicate that diatom-based material , i.e. 

intact algal cells or feces containing diatoms, contributed to this sinking export of 

phytoplankton below the river plume. 
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Zooplankton was grazing on particulate organic material below the river plume in 

summer and faH , as reflected by the higher FPC sinking fluxes at 50 m, than at 25 m, in fal1 

and summer (Fig. 7c, d). Stil1, the contribution offecal pel1ets from zooplankton located 

below the river plume was higher during summer, compared to in fal1, as seen by the more 

pronounced increase in FPC sinking fluxes from 25 m to 50 m in summer. Copepods were 

the main grazers in summer and faH, as FPC sinking fluxes were predominantly comprised 

of cylindrical fecal pel1ets. This grazing on the sinking particulate organic material below 

the river plume was also reflected in the increasing proportion ofphaeopigments with depth 

occurring at most stations (Fig. 4c, d) and the decreasing POC sinking fluxes with depth 

during fall (Fig. 6a). This shift took place within a wel1-defined depth stratum at each 

station (from 25 to 50 m at St. 49, St. 803 and St. 708, and from 25 to 100 m at St. 906; 

data not shown), indicating production of fecal pel1ets in these depth strata. The grazing 

activity below the river plume (from 25 to 50 m) could also explain the increasing 

POC:PON ratios with depth (except for St. 906; Fig. 6c, d) , as herbivorous fecal pel1ets 

have a high POC:PON ratio (e.g. Daly et al. 1999). 

The FPC contribution to POC sinking fluxes at 50 m at St. 708 on 30 June 2004 

(24.4 %; data not shown), corresponds with results (ca. 20 %) reported during July 2004 in 

a paral1el study using long-term sediment trap moorings at 200 m at a nearby station on the 

upper-slope of the Mackenzie Shelf (Forest et al. 2007). FPC sinking fluxes during summer 

(20.5 - 55.9 mg C m-2 d- I; Fig. 7d) were comparable to fluxes reported during June and July 

in the NOW (ca. 25 - 75 mg C m-2 d-I; Caron et al. 2004), but considerably higher than 



fluxes reported at the deeper nearby station in July 2004 (ca. 2 mg m-2 d- I; Forest et al. 

2007). In contrast, during fall 2002 the measured FPC fluxes (0.17 - 8.6 mg C m-2 d- I at 
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25 m and 50 m; Fig. 7c) were comparable to those reported by Forest et al. (2007) in 

October 2003 (ca. 2 mg m-2 d- ' , similar to their July 2004 value), but were considerably 

lower than the values reported in August and September in the NOW (ca. 100 mg C m-2 d-' ; 

Caron et al. 2004). The high fecal pellet sinking fluxes in the NOW relates to a high 

primary production and a high transfer rate of primary-produced material through the 

herbivorous food web in this area during spring and summer (Mei et al. 2003). 

The size range of cylindrical fecal pellets collected during summer and fall (width 

ranging from ca. 20 - 100 !lm ; data not shown) indicates the presence of small copepods as 

weil as of large Calanus spp. (Riser et al. 2002). This corresponds with the species 

composition observed by Forest et al. (2007) on the Mackenzie Shelf, where Oithona 

similes, Microcalanus pygmaeus and Cyclopina sp. showed the highest abundance, whereas 

the larger Calanus hyperboreus and C. glacialis comprised the highest biomass during 

October 2003 and June 2004. 

Although appendicularian feces contributed much less to FPC fluxes on the shelfthan 

copepods (0.83 - 28.1 and 0 - 24.4 % during summer and fall, respectively; Fig. 7c, d) , their 

presence in the sinking biomass reflects a utilization of particles smaller than those 

effectively grazed by copepods (Urban et al. 1992). Our results thus reflect two distinct 

pathways of export of organic material to pelagie grazers, i.e. large cells being grazed by 



copepods and small «5 !lm) cells, which were particularly abundant in the material 

collected during fall (Table 2), being transferred to appendicularians. 
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The observed FPC sinking fluxes (at 50 m) represent a higher POC ingestion by 

grazers, as only a small fraction of the POC removed from suspension by the grazers is 

reintroduced into the water column as FPC (ca. 15 % ofPOC for Calan us spp.; M011er et 

al. 2003). These authors, found high DOC production, due to sloppy-feeding (49 % ofPOC 

removed from suspension) and leakage from fecal pellets (6 % ofPOC removed from 

suspension) using 14C-labeled phytoplankton as tracers, which may have been 

underestimated in other studies. Using the value from M011er et al. (2003), it is estimated 

that 136.5 - 372.4 mg m-2 d- I ofalgal-based POC was removed from suspension by grazers 

in summer and 3.0 - 57.5 mg m-2 d- I in the fall. These grazing estimates are equivalent to 

5.4 - 86.0 % and 0.8 - 7.0 % of the integrated algal-based POC biomass above 50 m (25 m 

at St. 65) in summer and fall , respectively, based on in situ fluorescence and a POC:chl a 

ratio of 40 g:g for algae (Lorenzen 1968). Although these grazing estimates are subject to 

change if using a different percent removal from suspension by grazing and/or different 

POC:chl a values, the relative values clearly indicate higher grazing pressure in summer 

than in fall. The dominance of smaller phytoplankton cells «5 !lm) in the fall and/or the 

fact that large arctic copepods of the genus Ca/anus descend to deeper waters late in the 

season in preparation for their diapause (Hirche 1998), would explain the lower grazing 

activity in fall. In contrast, smaller copepods may remain active during the entire or part of 
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the win ter period, and have been reported to graze on the early ice algae production during 

the winter-spring transition (e.g. Runge & Ingram 1988). 

2.4.4 Species composition of the sinking assemblage 

The comparable sinking fluxes of particulate organic material from the surface 

waters, i.e. chI a, BioSi and POC fluxes at 25 m (Figs. 4a, b; 5a, band 6a, b), towards the 

periphery of the river plume during fall 2002 (St. 49) and summer 2004 (St. 803 and 

St. 708), together with the community succession observed in the trap material, lend 

support to discuss the datasets in terms of seasonal trends. 

In addition to the seasonally higher sinking fluxes ofparticulate organic material at 

the station strongly influenced by the river plume in summer (St. 906) than in fall (St. 65 

and St. 66; see section 2.4.1), there was also a transition from a higher contribution of 

algal-based material in summer towards a higher contribution of amorphous detritus and 

degraded material in the faU. Microscopic analyses of the coUected particulate material 

reflected comparable ranges of phytoplankton cell sinking fluxes in faU 2002 (ranging from 

7 to 326 x 106 cells m-2 d- I
; Fig. 8a) and summer 2004 (ranging from 133 to 

569 x 106 cells m-2 d- I
; Fig. 8b). The low phytoplankton cell sinking flux at the outer-shelf 

station (St. 66) where the river plume influence was strong, in the fall, may reflect an 

underestimation of cell numbers due to the high degree of aggregation of the collected 

material. The sinking fluxes of phytoplankton cell numbers observed during our study are 

comparable to values reported during open-water conditions in Frobisher Bay 



(280 X 106 cells m-2 d- 1
; Hsiao 1987), on the shelfofnorthern Spitsbergen (ca. 

42.7 x 106 ceIls m -2 d- 1
; Andreassen et al. 1996) and foIlowing the early phytoplankton 

bloom in the NOW (ca. 500 x 106 ceIls m-2 d- 1
; Caron et al. 2004). 
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The mismatch between comparable phytoplankton cell sinking fluxes, by numbers, 

and different chI a fluxes during summer and fall was likely explained by the seasonal 

change in phytoplankton ceIl composition in the collected material. The larger diatom cells 

which dominated the sinking assemblage during summer, would have a higher chI a 

content per cell than the small flagellates which dominated in the fall (Table 2), thus 

leading to higher chI a sinking fluxes in summer (Fig. 4b). The seasonal succession 

observed in the sinking cell assemblage, from a dominance of diatom cells during 

summer to a dominance of flagellates and dinoflagellates during fall (Fig. 8a, band 

Table 2), resembles the seasonal progression commonly found in Arctic coastal waters (e.g. 

Rat'kova et al. 1998). As diatoms become nutrient limited during summer, the smaller 

flagellates and dinoflagellates take over, in part due to their higher nutrient uptake 

efficiency, i.e. ability to take up nutrients at low nutrient concentrations (e.g. Aksnes & 

Egge 1991), and their lack of requirement for silicic acid, which may become limiting at 

the end of diatom blooms (e.g. Dale et al. 1999). The presence of diatom resting spores in 

the sinking particulate material during summer (Fig. 8d), suggests that the diatom 

community may have been nutrient limited, as the production of resting spores has been 

linked to nutrient limitation (Hargraves & French 1983). Overall, despite the influence of 

the river plume on phytoplankton sinking export, the seasonal change in the cell 



composition of the sinking assemblage during summer and fall indicates a species 

succession comparable to other Arctic coastal regions (e.g. Rat'kova et al. 1998). 

2.5 Conclusion 
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The presence of the Mackenzie River plume increased the sinking fluxes of chI a and 

POC in the underlying water column, reflecting a spatiallink between the plume biomass 

and the magnitude of downward sinking fluxes of organic material. In addition, seasonal 

changes in the magnitude of sinking fluxes of organic material were Iinked to the presence 

of the river plume, as high summer biomass in the river plume biomass induced higher 

sinking fluxes than in fall. Seasonal changes in the biogeochemical composition of the 

material exported from the river plume were also observed, as phytoplankton and fecal 

pellets contributed significantly to the sinking material during summer while amorphous 

detritus dominated during fall. The presence of the river plume clearly influenced the 

composition of the sinking assemblage as the freshwater diatom Eunotia sp. was observed 

in the material sinking out of the surface water during fall. Yet, in spite of the influence of 

the river plume, the sinking phytoplankton assemblage appeared to follow a seasonal 

succession similar to that observed in other Arctic coastal regions, with a dominance of 

diatoms in summer and offlagellates and dinoflagellates in the fall. Accordingly, our 

results showed increasing chI a and BioSi sinking fluxes with depth, which indicate that 

phytoplankton cells produced under the halocline in both seasons supplemented the export 

of material from the river plume. Grazing activity, mainly by copepods, had a significant 
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impact on the biogeochemical composition of the sinking material , in particular during 

summer. Overall, these results provide valuable information on the effects of a river plume 

on the magnitude and biogeochemical composition of sinking fluxes on an Arctic shelf. 

This study emphasizes that various processes, including the presence of river plumes 

together with production and grazing in the water column, determine the sinking export of 

organic material on Arctic shelves. 
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CHAPITRE 3 

SINKING EXPORT OF PARTI CULA TE ORGANIC MA TERIAL FROM THE 

EUPHOTIC ZONE IN THE EASTERN BEAUFORT SEA 

RÉSUMÉ 

Cette étude présente une couverture extensive de la sédimentation de la matière 
organique particulaire sous la zone euphotique, dans le secteur est de la mer de Beaufort. 
Des pièges à particules dérivants à court terme ont été déployés, généralement à 50 m, au 
cours de l'automne 2002 et 2003, et à l'été 2004. Les différentes régions de la zone 
d'échantillonnage, i.e. la polynie du Cap Bathurst ainsi que le plateau et le talus continental 
du Mackenzie, ont présenté des taux de sédimentation de la chlorophylle a (chi a) et du 
carbone organique particulaire (POC) comparables à l' automne, alors que des différences 
régionales ont été observées en période estivale. Les deux régions ont montré un patron 
général de décroissance saisonnière dans les taux de sédimentation. Les taux maximum de 
sédimentation de la chI a et du POC au cours de cette étude ont été observés au cours de 
l'été (3.6 et 258.4 mg m-2 d-I, respectivement). Une forte rétention de la biomasse 
suspendue a été observée au cours de cette étude, i.e. de faibles taux de perte de la chI a et 
du POC (ca. 1 % d-I en moyenne) ont été mesurés. Toutefois, la sédimentation du POC 
comptait en moyenne pour la moitié de la production primaire particulaire, tout au long de 
cette étude. Le zooplancton, surtout les copépodes, a joué un rôle important dans la 
sédimentation de la matière organique particulaire, et ce particulièrement dans la polynie du 
Cap Bathurst. Un groupement basé sur la composition de l'assemblage des protistes du 
matériel qui sédimente a révélé une succession saisonnière, celle-ci prévalant sur les 
différences spatiales et interannuelles entre les stations échantillonnées dans le secteur est 
de la mer de Beaufort. Les flagellés étaient dominants, alors que la contribution des 
diatomées, dominées par Fragilariopsis cy lindrus, a diminué au cours de la saison. La 
présence des diatomées de glace Nitzschia frigida et Navicula vanhoefJenü dans le matériel 
qui a sédimenté au cours de l'été, a indiqué un apport de matériel organique provenant de la 
glace de mer. Les résultats de pièges à particules déployés à une station de glace de rive au 
cours de la période englacée et en période d'eau libre, ont révélé l'importance de considérer 
l' exportation sous glace Uusqu ' à 115.4 mg C m-2 d-I pour le POC) dans les estimations de 
sédimentation sur le plateau continental arctique. 
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ABSTRACT 

This study presents an extensive spatial and seasonal coverage of the sinking export 
of particulate organic material below the euphotic zone in the eastem Beaufort Sea. 
Free-drifting short-term particle interceptor traps were deployed, generally at 50 m, during 
fall 2002 and 2003 and summer 2004. The different regions of the sampling area, i.e. the 
Cape Bathurst Polynya and the Mackenzie shelf and sI ope, showed comparable ranges in 
the sinking export of chlorophyll a (chI a) and particulate organic carbon (POC) in fall , 
while regional differences were observed in summer. The two regions showed a general 
decreasing trend in sinking fluxes towards fall. The highest chI a and POC sinking fluxes 
during this study were therefore recorded during summer (3.6 and 258.4 mg m-2 d- I, 
respectively). A high retention of suspended biomass was observed throughout this study, 
i.e. low daily loss rates of suspended chI a and POC (both averaging ca. 1 % d-I) were 
observed. Still , the POC sinking export accounted for, on average, half of the particulate 
primary production throughout this study. Zooplankton, primarily copepods, played an 
important role in the sinking export of particulate organic material, particularly in the Cape 
Bathurst Polynya. A c1uster-based analysis of the sinking protist cell assemblage revealed a 
seasonal succession that prevailed over spatial and interannual differences between the 
stations sampled in the eastem Beaufort Sea. Flagellates dominated throughout the study 
area, while diatoms, dominated by Fragilariopsis cylindrus, showed a decreasing 
contribution to the sinking protist cell assemblage towards fall. The presence of the sea ice 
related pennate diatoms Nitzschia frigida and Navicula vanhoeffenii in the material 
collected during summer reflected an input of organic material from the sea ice. Results 
from particJe interceptor traps deployed at a landfast sea ice station during ice-covered and 
ice-free conditions showed the importance of taking into account underice sinking fluxes 
(up to ] 15.4 mg C m-2 d-I for POC) for sinking export estimates on Arctic shelves. 
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3.1 Introduction 

The extent and thickness of the sea ice co ver have changed in the Northem 

Hemisphere during the last three decades; these changes are thought to be a consequence of 

the ongoing global warrning trend (IPCC 2007). The extent of multi-year sea ice, primarily 

found in the central Arctic Ocean, has been decreasing by ca. 7 % per decade since 1978 

(IPCC 2007), as multi-year sea ice is being replaced by seasonal first-year sea ice in many 

areas (e.g. Belchansky et al. 2005). Moreover, the number and size of sea ice flaw leads and 

polynyas in the Arctic Ocean is expected to increase if the climate change trend continues 

(ACiA 2005). Consequently, the duration and extent of seasonally ice-free areas is 

expected to increase in the Arctic Ocean, in particular in the coastal regions (ACIA 2005, 

IPCC 2007). 

Changes in sea ice dynamics may have impacts on marine productivity and 

ecosystem structure, especially on Arctic continental shelves (e.g. Grebmeier et al. 2006) 

which comprise a large part of the Arctic Ocean (i.e. 53 % of the total surface area; 

Jakobsson 2002). An increase in the duration and extent of ice-free areas is likely to 

improve conditions for phytoplankton production in the Arctic Ocean, due to increased 

light availability in the upper water column (ACIA 2005). Phytoplankton production 

already contributes ca. 75 to >97 % of the total annual primary production (i.e. ice algal and 

phytoplankton production) on Arctic shelves (Subba Rao & Platt 1984, Legendre et al. 

1992, Gosselin et al. 1997). 
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Spring phytoplankton production on Arctic shelves, which is often dominated by 

diatoms, is generally associated with the moving ice edge during spring melt, as the upper 

water column is stabilized via the halocline formed by released melt water (e.g. Sakshaug 

& Skjoldal 1989, Carmack et al. 2006). Ice edge blooms or spring blooms in polynyas are 

often terminated by nutrient limitation within the surface mixed layer (e.g. Sakshaug & 

Skjoldal 1989, Carmack et al. 2006, Tremblay et al. 2006a). Nutrient limitation often 

induces a succession in phytoplankton species, from diatoms to flagellates and 

dinoflagellates (e.g. Rat'kova et al. 1998, Dale et al. 1999, Hill et al. 2005). Flagellates and 

dinoflagellates generally have higher uptake efficiency for nitrate and phosphate than 

diatoms (e.g. Dale et al. 1999). In addition, they are not dependent on the availability of 

silicic acid which may limit diatom production during summer (e.g. Dale et al. 1999). A 

phytoplankton bloom can occur during fall in Arctic areas, as wind mixing can reintroduce 

nutrients into the surface mixed layer (e.g. Klein et al. 2002, Arrigo & Dijken 2004, 

Carmack et al. 2006). 

Primary-produced organic material may be vertically exported to the benthos as intact 

algal cells, or it may be diverted through the pelagie heterotrophic food web (e.g. Turner 

2002, Wassmann et al. 2006). Sinking of intact algal cells generally conveys organic 

material of a high quality to the benthos, while algal material diverted through the 

heterotrophic food web results in a reduced sinking export of organic material of usually 

lesser quality (e.g. Turner 2002). Herbivorous grazers, particularly copepods, may at times 

effectively graze on suspended algal material in sorne Arctic areas (e.g. Michel et al. 1996, 
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Fortier et al. 2002, Forest et al. 2007). Fecal pellets from herbivorous grazers may therefore 

at times represent an important component of the vertically exported organic material (e.g. 

up to ca. 60 % ofPOC sinking fluxes; Juul-Pedersen et al. 2006). A potential increase in 

the annual primary production in the Arctic Ocean associated with climate changes (ACIA 

2005), accompanied by changes in the pelagic heterotrophic food web (Grebmeier et al. 

2006), will likely result in changes to the pelagic-benthic coupling on the Arctic continental 

shelves. 

This study investigates spatial and temporal variability in the sinking export of 

organic material from the euphotic zone in the eastem Beaufort Sea. The objectives ofthis 

study were to (1) asses spatial variations in the magnitude of sinking export of organic 

material from the euphotic zone in the eastem Beaufort Sea, (2) characterize any patterns in 

the composition of the sinking material within the sampling area, especially with respect to 

protist cell assemblages, and (3) make a comparison between the magnitudes of sinking 

export of particulate organic material during sea ice covered and subsequent ice-free 

conditions at a land fast sea ice station. A first hypothesis was that the eastem Beaufort Sea 

would display spatial and seasonal differences, from spring to faIl , in the magnitude of 

sinking ofparticulate organic material. Tt was also hypothesized that higher sinking fluxes 

of organic material would be observed during ice-free conditions, than during landfast ice 

coyer, as phytoplankton may be exported from the euphotic zone. 



3.2 Materials and methods 

3.2.1 Study area 

This study was conducted during a multi-year sampling program of the Canadian 

Arctic ShelfExchange Study (CASES) in the eastern Beaufort Sea, during fall 2002 and 

2003 and summer 2004 (Table 1 and Fig. 1). The sector of the Beaufort Sea studied here 
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co vers two distinctive regions, i.e. the Mackenzie shelf and slope and the Cape Bathurst 

Polynya. The Mackenzie shelf extends ca. 120 km offshore and ca. 530 km along the 

Tuktoyaktuk peninsula until the Cape Bathurst peninsula (ca. 6.0 x 104 km2
; Carmack et al. 

2004; Fig. 1). Landfast first-year sea ice generally covers the inshore part of the Mackenzie 

shelf (until the ca. 20 m isobath) from December to May/June (Canllack & Macdonald 

2002). A flaw lead system which separates the landfast sea ice from offshore drifting 

pack-ice generally develops into the recurring Cape Bathurst Polynya protruding into the 

Amundsen Gulf(Barber & Hanesiak 2004). The polynya generally starts forming during 

May, and the sea ice continues to retreat during summer leading to largely ice-free 

conditions in the Amundsen Gulfby August (Barber & Hanesiak 2004). A five year 

satellite study of the area showed two distinctive phytoplankton blooms generally occurring 

each year within the polynya, with sorne interannual variability in the timing and intensity 

ofthese blooms (Arrigo & Dijken 2004). An initial spring bloom is typically observed in 

May, while an often more intense fall bloom takes place in September. The Mackenzie 

shelf is strongly influenced by the Mackenzie River, which has the highest sediment 

discharge of the ri vers entering the Arctic Ocean (Macdonald et al. 1998). The Mackenzie 
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River has been shown to have a strong influence on sinking fluxes ofparticulate material in 

the plume are a (Macdonald et al. 1998, O'Brien et al. 2006, see Chapter 2). 

Fig. 1. Location of the sampling stations in eastern Beaufort Sea, in fall 2002 and 2003 and 
summer 2004. Depth contours in meters 

3.2.2 Sampling 

Sampling was carried out from the icebreakers CCGS Pierre Radisson (in 2002) and 

CCGS Amundsen (in 2003 and 2004). Sinking fluxes ofparticulate material were measured 

using short-term (1.03 ± 0.34 d, n = 21; Table 1) free-drifting deployments of particle 

interceptor traps. Partic1e interceptor traps were deployed at 50 m, except at the shallow 

stations 65 and 83 , and at station 106 where traps were deployed at 25 m and 75 m, 

respectively. The free-drifting trap deployments were ail below the euphotic zone which is 

defined in the present study as the depth receiving 1 % of surface irradiance. At the open 

water stations, the depth of the euphotic zone ranged from Il to 60 m, with an average of 

35 m (S. Brugel pers. comm.). 



Table 1. Characteristics of free-drifting particle interceptor trap deployments during 2002, 2003 and 2004 

Region Station Deployment Duration DeElo~ment Recover~ Average 
date Latitude Longitude Latitude Longitude speed 

(d) (ON) (OW) (ON) (OW) (cm S- I) 

Cape Bathurst Polynya 24 23 Sep 2002 1.2 70° 47.50' 12r 37.20' 70° 44.00' 127° 45.00' 7.7 
Mackenzie slope 49 28 Sep 2002 1.0 71 ° 27.60' 133° 43.90' 71 ° 32.15' 133° 40.43' 9.5 
Mackenzie she lf 65 1 Oct 2002 1.0 70° 06.75' 133° 28.03' 70° 05 .05' 133° 32 .33' 5.7 
Mackenzie shelf 66 5 Oct 2002 0.9 70° 50.45' 133° 38.45' 70° 50.20' 133° 32 .00' 5.4 
Cape Bathurst Polynya 83 6 Oct 2002 1.1 71 ° 15.80' 128° 31.70' 71 ° 12.24' 128° 11 .95' 14.1 
Cape Bathurst Polynya 101 9 Oct 2002 0.8 70° 44.10' 124° 14.30' 70° 42 .10' 124° 14.30' 5.3 
Cape Bathurst Polynya CA I5 9 Oct 2003 0.6 71 ° 32.77' 126° 59.53' 71 ° 32.02' 126° 49.09' 12.1 
Cape Bathurst Polynya CA06 Il Oct 2003 0.5 70° 35.45' 127° 13.94' 70° 38.09' 127° 09.90' 12.6 
Cape Bathurst Polynya CA 18 13 Oct 2003 0.3 70° 38.6 1' 123° 07.46' 70° 37.04' 123° 09.94' 12.7 
Cape Bathurst Polynya 108 6 Jun 2004 1.6 70° 37.90' 123 ° 10.30' 70° 25.40' 123° 25.60' 18.0 
Cape Bathurst Polynya 117 9 Jun 2004 1.5 70° 54.70' 125° 34.80' 70° 54.80' 125° 43.40' 4.0 
Cape Bathurst Polynya 406 15 Jun 2004 1.2 71 ° 17.30' 127° 40.00' 71 ° 25 .10' 127° 43 .70' 14.0 
Cape Bathurst Polynya 303 18 Jun 2004 1.3 70° 47.50' 127° 00.00' 70° 44.00' 126° 58 .80' 5.8 
Mackenzie shelf 708 30 Jun 2004 1.3 71 ° 02.77' 133° 46.3 1' 71 ° 03.66' 133° 43.34' 2. 1 
Mackenzie shelf 906 3 .lui 2004 1.5 70° 01. 10' 138° 34.57' 69° 50. 10' 138° 2 1.96' 16.9 
Mackenzie shelf 803 8 .lui 2004 1.0 70° 39.94' 135° 37.89' 70° 38.60' 135° 54. 14' 11.7 
Frankl in Bay 200 (1) 16 lu i 2004 1.0 70° 02.53' 126° 18.20' 69° 57.50' 126° 12.72' I l.4 
Cape Bathurst Polynya 309 18 l ui 2004 1.1 71 ° 07.40' 125° 50.66' 71 ° 07.25' 126° 13.90' 14.6 
Cape Bathurst Polynya 206 1 Aug 2004 0.6 70° 19.30' 124° 50.43' 70° 18.99' 124° 52.24' 2.4 
Frankli n Bay 200 (2) 6 Aug 2004 1. 1 70° 02 .30' 126° 13.20' 70° 00.90' 126° 09.50' 3.7 
Cape Bathurst Polynya 106 9 Aug 2004 1.0 70° 35 .00' 122° 37.80' 70° 34.80' 122° 38.10' 0.5 

Distance 
travelled 

(km) 
8.0 
8.2 
4.9 
4 .2 
13.4 
3.7 
6.3 
5.5 
3.3 

24.9 
5.2 
14.5 
6.5 
2.3 

21.9 
10.1 
9.9 
13.9 
1.3 
3.5 
0.4 

Water 
depth 
(m) 
165 

1280 
43 
77 
72 

535 
409 
258 
570 
483 
400 
170 
255 
236 
280 
243 
235 
395 
94 

23 1 
521 

\0 
--l 
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Duplicate partic\e interceptor traps were deployed at the sampling depth. A wave 

dampening device comprised of a series of 7 floaters, of which 3 were submerged, was 

arranged on the free-drifting trap arrays. The submerged floaters increased water resistance 

of the array thereby reducing the vertical movement of the partic\e interceptor traps 

attached to the drifting line. The particle interceptor traps were made of PVC (polyvinyl 

chloride) cylinders closed at one end, with an internaI diameter of 10 cm and an aspect ratio 

(height:diameter) of7. A CAST ARGOS drifter buoy (Seimac Smart Cat PTT/GPS 

transmitter) and a Novatech Designs Ltd. RF-700Cl radio beacon were used to track the 

position of the free-drifting trap arrays. 

Sampling by partic\e interceptor traps was carried out in accordance with JGOFS 

protocols (Knap et al. 1996) and recommendations by Gardner (2000). The partic\e 

interceptor traps were filled with filtered (0.22 )lm) seawater collected at depths >200 m 

prior to deployment, to ensure that the higher density partic\e-free water remained inside 

the traps. Upon recovery, the free-drifting partic\e interceptor traps were fitted with a c\ean 

lid and set aside for sedimentation during 8 h in a cold-room (ODC) onboard the ship. The 

supernatant was gently removed after the sedimentation period and the remaining sample 

was pre-screened (425 )lm) to remove large swimmers. Dupl icate particle interceptor trap 

sampI es were pooled together, their volume measured, and the samples were stored in dark 

containers for analyses. 



99 

Particle interceptor traps were also deployed at a landfast first-year sea ice station in 

Franklin Bay (station 200; Fig. 1) on 16 consecutive occasions from 23 February to 20 June 

2004. The trap array was fixed to the sea ice with traps deployed at 25 m under the sea ice 

during, on average, 7.8 ± 0.8 days (n = 6) from 23 February to 13 April and 6.2 ± 0.4 days 

(n = 8) from 13 April to 20 June, except for two deployments of 4.0 and 15.2 days on 

26 May and 30 May, respectively. Upon recovery, the entire volume of the underice 

parti cIe interceptor traps were pre-screened (425 !lm) to remove large swimmers and 

measured, and was stored in black containers for analyses (see Chapter 2 for further 

details). 

Sampling of the suspended material was carried out at each station with a rosette 

sampler equipped with 12 L bottles (OceanTest Equipment) deployed at 3-8 depths within 

the upper 50 m. 

3.2.3 Analyses 

Trap sampI es were gently mixed prior to subsampling. To ensure minimal 

disturbance of the collected material , samples for microscopic examination were taken first. 

Subsamples for fecal pellet (100-250 ml) and protist (100-250 ml) analyses were preserved 

with 2 % (v/v) buffe red formaldehyde and 1 % (v/v) acidic Lugol's solution, respectively. 

Enumeration and measurement (Iength and width) of fecal pellet dimensions were later 

conducted using a Carl Zeiss inverted microscope (100 x magnification). Fecal pellets were 

c1assified according to type (i.e. cyl indri cal or elliptical) and condition (i.e. intact or 
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broken). The volume of intact and broken cylindrical fecal pellets was calculated using the 

equation for a cylinder with half-spherical ends and for a cylinder, respectively. The 

volume of intact elliptical fecal pellets was calculated using the equation for an ellipsoid; 

no broken elliptical fecal pellets were observed during the present study. Fecal pellet based 

carbon (FPC) was estimated using a volume to carbon conversion factor of 0.057 pg C Ilm-I 

for cylindrical fecal pellets (i.e. copepod fecal pellets) and 0.042 pg C Ilm-I for elliptical 

fecal pellets (i.e. appendicularian fecal pellets) (Gonzalez et al. 1994). Identification and 

enumeration ofphytoplankton and other protists were conducted using a Leica DM IRB 

inverted microscope (400 x magnification), according to the method of Lund et al. (1958). 

For each sample, a minimum of 300 cells were counted. 

Chlorophyll a (chi a) and phaeopigments were measured on subsamples (50-200 ml) 

filtered onto Whatman GF/F 25 mm glass fiber filters. Pigments were extracted in 90 % 

acetone for 24 h in cold dark conditions (4°C). Samples were then analyzed on a Turner 

Designs 10AU fluorometer, using 90 % acetone as a blank. The pigment concentration in 

the samples was calculated in accordance with Parsons et al. (1984). 

Total particulate carbon (TPC) and particulate organic carbon (POC) were measured 

on subsamples (50-900 ml) filtered onto precombusted (450°C for 24 h) Whatman GFIF 

21 mm filters. The filters were dried at 60°C for 24 h and stored in separate Petri dishes. 

Filters for POC determination were acidified during 24 h in a dessicator saturated with HCI 

fumes, thereby removing any inorganic carbon. Analyses were conducted on a Perkin-



101 

Elmer Model 2400 CHN Analyzer. POC analysis could not be conducted at several stations 

in the Cape Bathurst Polynya during the study because of insufficient collection of material 

in the short-term particle interceptor traps (stations CA 15 and CA 18 during fall 2003; 

stations 108, 117 and 303 during summer 2004). Missing POC data at these stations were 

extrapolated from the measured TPC sinking fluxes , using the strong linear regression 

between sinking fluxes ofPOC and TPC at other stations (y = 0.84x + 1.69; r2 = 0.87; 

P < 0.001). Unfortunately TPC and POC data are missing from station 406. 

The water samples for suspended material were analysed for chi a and POC, although 

different sample volumes were used (S. Brugel pers. comm.). 

During the trap deployment period, particulate phytoplankton production was 

measured at 5 optical depths (100,50,25, 10 and 1 % of surface irradiance) with the 14C 

uptake method in accordance with JGOFS protocols (Knap et al. 1996) (S. Brugel pers. 

comm.). After 24 h on-deck in-situ simulated incubation, samples were filtered onto 

Whatman GFIF filters. The filters were placed in borosilicate scintillation vials and 

acidified ovemight with 0.5 N HCI , in order to remove 14C that was not incorporated (Lean 

& Bumison 1979). Scintillation cocktail was then added to the vials . The vials were stored 

in the dark for 24 h before being counted on a Packard Tri-Carb 2900 TR Liquid 

Scintillation Analyzer. Particulate primary production corrected for dark uptake was 

calculated according to Knap et al. (1996). 



3.2.4 Calculations and statistical analyses 

The sinking flux of the measured variables was calculated using the following 

equation: 

Sinking flux (mg m-2 d- 1
) = (Ctrap * Vtrap) / (Atrap * Tdep) (1) 
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where Ctrap (mg m-3
) is the concentration of the measured variable in the particle interceptor 

trap, Vtrap (m3
) is the volume of the particle interceptor trap sample, Atrap (m2) is the particle 

interceptor trap surface area and Tdep (d) is the deployment time. 

The daily loss rate of suspended chi a and POC biomass in a given depth stratum due 

to sinking export was estimated using the following equation: 

Daily loss rate (% d- 1
) = Sinking flux / ent * 100 (2) 

where sinking flux is from equation (1), at 50 m generally and C int is integrated biomass of 

chI a and POC in the upper 50 m generally, estimated using chi a and POC concentrations 

measured at 3-8 depths in the 0 to 50 m stratum. The export-ratio was ca\culated as the 

ratio of the POC sinking flux at a given depth (at 50 m, except for stations 65 , 83 and 106) 

to the particulate phytoplankton production integrated over the euphotic zone depth. This 

ratio is dimensionless. 

A group-average linkage cluster analysis was performed to determine similarities in 

the sinking protist cell assemblage (including empty diatom frustules and diatom spores) 

between stations, based on a Bray-Curtis similarity matrix computed on the logarithmic 

transformed (Log (x + 1)) sinking cell numbers (Field et al. 1982, Legendre & Legendre 
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1998). The difference between groups of sampling stations, at an arbitrarily level of 

similarity selected to obtain four groups, was tested using Analysis of Similarities (one-way 

ANOSIM; Legendre & Legendre 1998). The Global R value obtained provided an absolute 

measure ofhow separated the groups were on a scale of 0 (indistinguishable) to 1 (aH 

similarities within groups are greater than similarities between groups) (Clarke & Gorley 

2001). The cluster analysis and ANOSIM were performed using the PRIMER software 

package (Clarke & Gorley 2001). 

Differences between two or more average values of sinking fluxes in groups, of 

varying sample sizes, were analysed using a one-way ANOY A (Sokal & Rohlf 1981). 

3.3 Results 

Figure 2 shows the chI a and POC sinking fluxes measured in the two sampling 

regions, i.e. the Cape Bathurst Polynya and the Mackenzie shelf and slope, in the eastem 

Beaufort Sea, during faH 2002 and 2003 and summer 2004. The sinking fluxes of chI a and 

POC were comparable in both regions during faH 2002 and 2003 (Fig. 2a-d and Table 2). 

The sinking fluxes ofboth chI a and POC were higher during summer 2004 (Fig. 2e, fand 

Table 2) than during faH 2002 and 2003 (Fig. 2a-d and Table 2). ln addition, the sinking 

fluxes ofPOC in summer 2004 were generaHy higher on the Mackenzie shelf and slope 

than in the Cape Bathurst Polynya region (Fig. 2e, f and Table 2). The highest chI a and 

POC sinking fluxes recorded throughout this study were respectively measured at 
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station 303 in the Cape Bathurst Polynya and at station 906 on the Mackenzie shelf during 

summer 2004. 

Cluster analysis of the sinking assemblage of autotrophic and heterotrophic protists 

(inc1uding empty diatom frustules and resting spores), at each sampling station, showed 

significant (one-way ANOSIM, similarity level = 43 %, Global R = 0.76, P < 0.001) 

similarity between the stations sampled in the eastem Beaufort Sea (Fig. 3). Based on the 

species composition of the sinking assemblage, four groups of stations were obtained. One 

group comprised stations visited during June 2004 (Group 1: stations 108, 117,406 and 

303), while the stations sampled from July to August 2004 formed another distinctive 

group (Group II: stations 708, 906, 803, 309, 106 and 206). The stations sampled in 

September and October 2002 and 2003 formed another group (Group III: stations CA 15, 

CA18, CA06, 83 , 24, 101,49 and 66), except for station 65 (October 2002) which 

constituted a separate group (Group IV). 
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Fig. 2. Spatial variations in sinking fluxes of chlorophyll a (chI a) and particulate organic 
carbon (POC) during (a, b) fa Il 2002, (c, d) fa1I2003, and (e, f) summer 2004 at 50 m (25 m 
at stations 83 and 65 and 75 m at station 106). In (e, f), sinking fluxes exceeding the scale 
shown in the legends are presented above bars 
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Fig. 3. Dendrogram showing four groups of stations obtained from group-average 
clustering of aIl sampling stations, in eastern Beaufort Sea, based on the sinking fluxes of 
protistan œIls at 50 m (25 m at stations 83 and 65 and 75 m at station 106). Groups were 
formed at a similarity level of 43 % (Global R = 0.76, p < 0.001) 

Figure 4 presents the species composition of the sinking protists (including 

autotrophs and heterotrophs), dominant diatom species and empty diatom frustules and 

diatom spores assemblage within the four seasonal groups of stations obtained from the 

cluster analysis. Flagellates were the dominant group of protists in the sinking œil 

assemblage in June and July/ August (52.2 and 50.6 % of œIl numbers, respectively), and 

were even more abundant in September/October (69.1 % of cell numbers; Fig. 4a). Pennate 

diatoms comprised 30.3 and 34.0 % of protists cells, by numbers, in June and July/ August, 

respectively. The maximum contribution of œntric diatoms to the sinking protist cell 

assemblage was observed in July/ August, at which time they made up 12.6 % of œil 

numbers. DinoflageIlates, ciliates and unidentified protists comprised 12.1 % of œil 
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numbers in June, while their contributions were negligible in July/August and 

September/October (comprising 2.4 and 2.5 % of cell numbers, respectively). The diatom 

species composition showed a seasonally decreasing pennate diatom contribution (from 

77.0 to 49.9 % of diatom cell numbers from June to July/August), except at station 65 

(100 % of diatom cell numbers; Fig. 4b). The freshwater pennate diatom Eunotia sp. was 

the only identified diatom species in the material exported from the euphotic zone at 

station 65. The pennate diatom Fragilariopsis cylindrus was the dominant diatom species 

in June and July/ August (36.0 and 50.7 % of diatom cell numbers), although other pennate 

diatoms contributed significantly in June (28.7 % of diatom cell numbers). The pennate 

diatoms Nitzschia frigida and Navicula vanhoeffenii were present in the sinking diatom 

assemblage in June and July/August (together contributing 12.3 and 15.1 % of diatom cell 

numbers), while their contribution was negligible in September/October. Centric diatoms, 

such as Chaetoceros spp., showed a seasonally increasing contribution (from 23.1 to 

50.1 % of diatom cell numbers from June to September/October), except at station 65. 

Average sinking fluxes of empty centric and pennate diatom frustules showed a seasonal 

decrease from June (30.2 and 258.4 x 106 cells m-2 d- I, respectively) to September/October 

(7 .0 and 3.9 x 106 cells m-2 d-I, respectively; Fig. 4c). Centric diatom spores were only 

present in July/ August and September/October, and showed seasonally decreasing average 

sinking fluxes during these months (8.8 and 2.4 x 106 cells m-2 d- I, respectively). 
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Fig. 4. Average relative abundances of (a) autotrophic and heterotrophic protists, (b) 
dominant diatom taxa, and (c) average sinking fluxes of empty diatom frustules and centric 
diatom spores at 50 m (25 m at stations 83 and 65 and 75 m at station 106), for the four 
groups of stations with similar taxonomic composition in eastem Beaufort Sea. The 
grouping of stations is based on the cluster analysis (see Fig. 3). In (c), bars represent 
standard deviations within each group 
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Figure 5 presents monthly-averaged sinking fluxes of organic material, from March 

to August, at 25 m at the landfast sea ice station in Franklin Bay (station 200). Monthly-

averaged sinking fluxes of chI a increased significantly from March to June (one-way 

ANOVA, P < 0.01) and consistently decreased thereafter (Fig. Sa). Sinking fluxes ofPOC 

under the sea ice did not vary significantly from March to May, but increased rapidly in 

June (Fig. Sb). During the ice-free period (Ju ly and August), POC sinking fluxes remained 

high in July and decreased in August. 
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Fig. 5. Seasonal variations in sinking fluxes of (a) ch lorophyll a (chi a) and (b) particulate 
organic carbon (POC) at 25 m during underice sampling (i .e. March to June) and at 50 m 
during open water sampling (i.e. July and August) at a landfast sea ice station, in Franklin 
Bay (station 200). Monthly-averaged va lues are presented wh en applicable, with bars 
showing minimum and maximum values. n represents number of sampling points during 
each period 
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Table 2 summarizes the sinking fluxes and daily loss rates of chI a and POC together 

with the export-ratios, for each region, and according to the seasonal grouping obtained 

from the cluster analysis. For comparative purposes, this Table also reports observations at 

the landfast first-year ice station in Franklin Bay during the open water period. Seasonally 

decreasing trends in the average chI a sinking fluxes were observed in each region, 

although these trends were not statistically significant. Average sinking fluxes ofPOC did 

not show any clear seasonal trend in the Cape Bathurst Polynya, while a decreasing trend 

was observed on the Mackenzie shelf and sI ope. In Franklin Bay, sinking fluxes of chI a 

and POC decreased from July to August. A seasonally decreasing trend was also observed 

in the daily loss rate of chI a in the Cape Bathurst Polynya and in the daily loss rate of chI a 

and POC on the Mackenzie shelf and slope, although neither of these trends were 

statistically significant. The average daily loss rates ofPOC in the Cape Bathurst Polynya 

showed a significant (one-way ANOVA, p < 0.001) increase from June to July/August. 

Franklin Bay showed a seasonal decrease in the daily loss rates of suspended chI a and 

POC from July to August. The average export-ratios increased significantly (one-way 

ANOVA, p < 0.01) throughout the open water period (i.e. from June to September/October) 

in the Cape Bathurst Polynya, while the export-ratio decreased from July to August in 

Franklin Bay. Primary production was unfortunately not measured on the Mackenzie shelf 

and slope. 



Table 2. Sinking fluxes and dai ly loss rates of ch lorophyll a (ch I a), particu late organic carbon (POC), and export-ratio at 
50 m (25 m at stations 83 and 65 and 75 m at station 106) during open water periods, in eastem Beaufort Sea. The seasonal 
grouping of stations in the Cape Bathurst Polynya and on the Mackenzie shelf and slope is based on the cluster analys is (see 
Fig. 3). A verages and ranges of va lues are presented wh en app licable. NIA: not avai lable 

Sinking flux Dai l;:: loss rate Ex~ort- ratio 

Chi a POC Chi a POC Particulate phytop lankton 
production 

Re ion Period Grou % 
Cape Bathurst June 1 42.8 14.5 
Polynya 2004 18.2-89.3 5.2-21. 1 

Julyl August II 0.13 52.4 0.78 1.3 51.6 
2004 0.05-0.20 36.0-67.0 0.31 - 1.2 1.2- 1.3 40.1-57.8 

September/October lI1 0. 10 58.9 0.43 0.72 65.4 
2002 and 2003 0.05-0.22 37.8-77.5 0.29-0.65 0.37-1.3 4 1.3-79.7 

Mackenzie shelf Ju lyl August II 0.86 156.3 2.8 2.9 NIA 
and slope 2004 0.12-2 .0 84.1-258.4 1.5-3.6 2.7-3. 1 

September/October III 0. 10 42.5 0.54 0.96 NIA 
2002 and 2003 0.04-0. 15 14.8-70.2 0.22-0.86 0.65-1.0 

Station 65 in fa ll IV 0.08 75.5 2.0 1.8 NIA 
2002 

Franklin Bay Ju ly 0.13 113.5 0.78 2.7 97 .2 
2004 

August 0.04 31.9 0.26 0.86 28.8 
2004 

Ali regions Average 0.44 70.7 l.l 1.3 50.1 
0.04-3.6 14.8-258.4 0.26-3.6 0.22-3.1 5.2-97.2 

--------- ----

........ 
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Table 3 presents a summary of sinking fluxes of FPC and their contribution to total 

POC sinking fluxes according to the sa me grouping of stations as that of Table 2. 

Cylindrical fecal pellets were the main contributors to total FPC sinking fluxes in the 

eastem Beaufort Sea throughout the study (averaging 91.4 % of total FPC at ail stations). 

Average sinking fluxes of cylindrical FPC and total FPC showed seasonally decreasing 

trends in the Cape Bathurst Polynya and on the Mackenzie shelf and slope, although these 

trends were not statistical significant. Similarly, the average contribution ofFPC to total 

POC sinking fluxes showed seasonally decreasing trends in the two regions. In Franklin 

Bay, the sinking fluxes ofcylindrical FPC and total FPC, as weil as the contribution ofFPC 

to total POC sinking fluxes, also decreased from July to August. 



Table 3. Sinking fluxes of fecal pellet based carbon (FPC) and contribution of FPC to total particulate organic carbon (POC) 
sinking flux at 50 m (25 m at stations 83 and 65 and 75 m at station 106) during open water periods, in eastem Beaufort Sea. 
The seasonal grouping of stations in the Cape Bathurst Polynya and on the Mackenzie shelf and slope is based on the c1uster 
analysis (see Fig. 3). Averages and ranges ofvalues are presented when app licable 

Sinking flux 
Cylindrica l Elliptical Total FPC contribution to 

FPC FPC FPC POC sinking flux 
Region Period Group (mg m'2 d' l) (mgm'2 d' l) (mg m'2 d' l) (%) 

Cape Bathurst June 1 35.4 0.24 35 .6 33 .7 
Polynya 2004 2.0-84.4 0-0.58 2.4-84.4 13.0-54.5 

luly/August Il 14.9 0.16 15.0 27 .3 
2004 3.6-28.2 0-0.47 3.6-28 .2 10.1-52 .1 

September/October III 3.3 0.55 3.9 6.8 
2002 and 2003 1.9-5.0 0.12-1.3 2.8-6.1 4.3-8.4 

Mackenzie shelf Ju ly/ August Il 11.4 1.1 12.5 8.3 
and slope 2004 7.0-20.1 0.1 -2.1 7.4-2 1.1 5.8- 10.8 

September/October III 1.8 0.29 2.1 3.9 
2002 and 2003 0.27-8.0 0.09-0.57 0.36-8.6 2.4-11 .4 

Station 65 in fa ll IV 8.0 0.57 8.6 Il.4 
2002 

Franklin Bay July 84.0 2.0 86.0 75.7 
2004 

August 7.9 0.07 8,0 25.1 
2004 

Ali regions Average 16.4 0.54 16.9 18.4 
0.27-84.4 0-2 .1 0.36-86.0 2.4-75 .7 

w 
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3.4 Discussion 

3.4.1 Sin king export in the eastern Beaufort Sea 

This multi-year study provides extensive spatial coverage of the sinking export of 

chI a and POC below the euphotic zone in the eastem Beaufort Sea. This sampling program 

covered most of the ice-free season in this area, which generally begins with initial sea ice 

break-up in late-April and lasts until freeze-up commences in late-October (e.g. Carmack & 

Macdonald 2002, Barber & Hanesiak 2004). The two first sampling periods, i.e. 

SeptemberiOctober of 2002 and 2003, indicated that rather stable conditions of sinking 

export of particulate organic material prevailed in the fall, during this study, as comparable 

chI a and POC sinking fluxes were observed in the eastem Beaufort Sea (Fig. 2 and 

Table 2). These similarities also tend to support interannual comparisons within the present 

dataset. The subsequent sampling period, in summer 2004, showed that the highest sinking 

fluxes of chI a and POC occur early during the ice-free period, i.e. June and July/August, in 

the eastem Beaufort Sea. It has previously been shown that two key features, i.e. the Cape 

Bathurst Polynya and the Mackenzie River, which characterize this part of the Beaufort Sea 

(e.g. Carmack & Macdonald 2002), may induce high sinking fluxes ofparticulate organic 

material during spring and summer in this area (O'Brien et al. 2006, see Chapter 2). The 

same has been reported for other Arctic regions, where high sinking fluxes of particulate 

organic material have been Iinked to spring phytoplankton production in polynyas (e.g. 

North Water Polynya (NOW); Amiel et al. 2002, Michel et al. 2002, Caron et al. 2004) and 

increased river discharge during freshet in spring and summer (Dittmar & Kattner 2003 , 
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Stein & Macdonald 2004 and references therein, Carrnack & Wassmann 2006). The highest 

POC sinking export recorded in the eastem Beaufort Sea (station 906; Fig. 2t), during this 

study, was linked to a high sinking export of particulate organic material from the 

Mackenzie River plume in summer (2004), as described in details in a companion study 

(see Chapter 2). 

The POC sinking export values observed throughout our multi-year sampling in 

eastem Beaufort Sea (ranging from 18.2 to 258.4 mg C m-2 d- I
; Table 2) were persistently 

higher than previously reported values from the same shelfslope area « 20 mg C m-2 d- I at 

200 m; Forest et al. 2007) and, for the most part, exceeded values previously reported 

across the same shelf area « 80 mg C m-2 d- I at 118 to 213 m; O'Brien et al. 2006). Both of 

these studies used long-term sediment trap moorings deployed weil below the euphotic 

zone, and their lower values, compared to the present study, may have been due to a loss of 

sinking POC with depth (i.e. vertical flux attenuation) and/or methodological differences 

(i.e. short-terrn versus long-term deployments). However, a study of the benthic carbon 

demand in the eastem Beaufort Sea suggested a tight pelagic-benthic coupling and an 

annual benthic carbon demand of ca. 12.1 g C m-2 on the shelf (Renaud et al. 2007a); this 

estimate exceeds the annual carbon sinking export values from the other two studies on the 

shelf (ca. 1.7 to 5.8 g C m-2
; O'Brien et al. 2006) and shelf slope (ca. 1 g C m-2

; Forest et al. 

2007). From a pan-Arctic perspective, the Beaufort Sea shelf showed a lower POC sinking 

export than reported below the euphotic zone on the extensively studied shelf of the central 

Barents Sea in spring and summer (range: ca. 250 to 850 mg C m-2 d- I
, between 40 and 
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60 m; Wassmann 1989, Wassmann et al. 1990, Olli et al. 2002). Yet, the sinking export 

values in the present study are between values reported from a short-term sediment trap 

study during summer on the Chukchi Sea shelf (depths averages: 129 and 442 mg C m-2 d-I, 

between 30 and 100 m; Lalande et al. 2007), and are generally higher than those reported 

from the Kara Sea shelfand slope in fall (range: 0.5 to 185 mg C m-2 d-I, between 9 and 

360 m; Wassmann et al. 2004), using sediment traps deployed for periods of 1 to 10 days. 

3.4.2 Seasonal and regional sinking export 

A general decrease in the sinking export of chI a was observed in the eastem Beaufort 

Sea towards fall, i.e. from June to September/October (Table 2), indicating a seasonal 

decrease in the export of phytoplankton material from euphotic zone. This seasonal 

decrease occurred mainly during spring in the Cape Bathurst Polynya, as average chI a 

sinking fluxes decreased by one order of magnitude from June to July/ August. The 

seasonally decreasing chI a sinking fluxes also reflected a declining contribution of algal 

cells to POC sinking fluxes (from 121.5 to 6.8 % in June and September/October; data not 

shown), using a POC:chl a ratio of 40 g:g from healthy algal cells (Lorenzen 1968) and the 

average chI a and POC sinking fluxes in this region (Table 2). This agrees with the 

termination of a phytoplankton bloom during July in this region, as suggested by Simpson 

et al. (ms), based on decreasing integrated surface nitrate concentrations and phytoplankton 

biomass. The significantly lower export-ratio in June, compared to the following months 

(Table 2), is consistent with the biomass build-up during a phytoplankton bloom. 

Unfortunately no sampling was carried out on the Mackenzie shelf and sI ope in June, so 
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that we can not conclude on the seasonal trend of the chI a sinking export at that time. 

However, the seasonal decrease in chI a sinking fluxes in this region, from July/ August to 

September/October, was Iinked to a lower sinking export induced by decreased input by the 

river plume in fall compared summer (see Chapter 2). This seasonal decreasing sinking 

export of algal material also represented a halving of the algal contribution to sinking POC 

from luly/August (22.0 %; data not shown) to September/October (9.4 %; data not shown), 

estimated using the same POC:chl a ratio as above and the regional average chi a and POC 

sinking fluxes (Table 2). Thus, the overall seasonal decrease in sinking export of chI a and 

POC in the Cape Bathurst polynya and the Mackenzie shelf appears to have been largely 

driven by different regional processes, i.e. the termination of the phytoplankton bloom and 

the decreasing input From the river. 

The seasonal decrease in chI a sinking fluxes was also paralleled by an increasing 

retenti on of phytoplankton material within the euphotic zone, as evidenced from the 

seasonal decrease in daily loss rates of chi a through sinking (Table 2). Yet, the retention of 

phytoplankton material within the euphotic zone was generally high throughout this study, 

as the daily loss rates of chi a remained low at ail stations « 4.0 % d- I
; Table 2). High 

retenti on within the euphotic zone was also observed for POC (daily loss rates < 3.5 d-I
; 

Table 2). These daily loss rates of POC were generally below those reported in Disko Bay, 

Greenland in spring (from ca. 18 to 3 % d-1at 15 and 100 m; Juul-Pedersen et al. 2006), 

while they compare with values reported in the marginal ice zone in the Barents Sea during 

summer « 4 % d- I at 50 m; Olli et al. 2002). Still , the POC sinking export accounted for a 
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high proportion of the phytoplankton production, in the Cape Bathurst Polynya, in summer 

and fall (> 50 %; Table 2). These results indicate that a negligible fraction of the biomass 

accumulated in the euphotic zone was sinking to the benthos, but that little additional 

biomass accumulation was taking place as more than half of the phytoplankton production 

was exported through sinking. A high transfer of organic material to the pelagie food web 

reduces the sinking export, due to assimilation and remineralization, thus resulting in low 

daily 10ss rates of organic material, as observed in this region. The high fecal pellet sinking 

export in summer supports the strong influence of mesozooplankton on the suspended 

biomass. Grazing or destruction of fecal pellets by mesozooplankton (i.e. coprophagy and 

coprorhexy, respectively) may have further elevated the retention and remineralization of 

organic material in the pelagos, as reported trom the Barents Sea (e.g. Olli et al. 2002, Ri ser 

et al. 2007). 

Concomitant with the seasonal decrease in the sinking export of phytoplankton 

material (chI a), in the eastern Beaufort Sea, zooplankton mediated sinking export, i.e. total 

FPC sinking flux , also decreased (Table 3). A seasonal decrease in the fecal pellet 

contribution to total POC sinking fluxes was also observed towards fall (i.e. from 

Jul y/ August to September/October), suggesting a lower grazing activity later in the season. 

The generally higher FPC contribution to total POC sinking fluxes in the Cape Bathurst 

Polynya, compared to the Mackenzie shelf and slope (Table 3), suggests a higher 

zooplankton grazing activity in this region. However, the landfast sea ice station in Franklin 

Bay showed the highest fecal pellet contribution to total POC sinking fluxes observed 
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during this study (ca. 76 %; Table 3), indicating a high transfer of organic material to 

pelagie grazers. The zooplankton mediated sinking export was primarily due to copepods 

throughout this study, as cylindrical fecal pellets dominated the total FPC sinking fluxes 

(contributing on average ca. 90 %; Table 3). Several Arctic copepod species have been 

shown to descend to depth to overwinter during summer and fall (e.g. Madsen et al. 2001), 

which may explain the seasonal trend in fecal pellet sinking fluxes . The maximum values 

of the fecal pellet contribution to total POC observed throughout this study, particularly in 

the Cape Bathurst Polynya (54.5 %) and in Franklin Bay (75.7 %; Table 3), were 

comparable with or exceeded sorne of the highest values reported from other Arctic areas 

(up to ca. 60 %; Riebesell et al. 1995, Riser et al. 2002, Sampei et al. 2004, Juul-Pedersen 

et al. 2006). OveraIl, these findings indicate a strong regional and seasonal transfer of 

sinking organic material through the large pelagie grazers, primarily copepods; though 

organic material is mainly exported from the euphotic zone as amorphous detritus in the 

eastern Beaufort Sea. This investigation also shows that while the eastern Beaufort Sea has 

a high retention of the suspended biomass, i.e. low daily loss rates of organic material, the 

sinking export of organic material accounts for a high fraction of the primary production in 

summer and fall (i.e. high export ratio). 

3.4.3 Species composition of the sin king material 

The c1uster-based analysis of the composition of the protist cell assemblage sinking 

out of the euphotic zone revealed clear seasonal patterns which prevailed throughout the 

eastem Beaufort Sea (Fig. 3). The sinking protist (i.e. autotrophic and heterotrophic) 
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assemblage from the euphotic zone was characterized by a dominance of flagellates and a 

seasonally decreasing diatom contribution from spring to fall (Fig. 4a). Flagellates often 

dominate during post-bloom conditions in Arctic waters, as diatom cells become nutrient 

limited (e.g. Rat'kova et al. 1998, Dale et al. 1999, Hill et al. 2005). The pennate diatom 

Fragilariopsis cylindrus, which was the dominant diatom species in June and July/August 

throughout the sampling area (Fig. 4b), is often associated with sea ice, aIthough it has been 

found to be abundant and productive in cold marine waters as weil (von Quillfeldt 2004). In 

the NOW polynya, high sinking fluxes of F. cylindrus cells were linked to the spring 

phytoplankton bloom in June (Caron et al. 2004). F. cylindrus was also present in the water 

column during this study (M. Poulin pers. comm.). While the origin of the sinking 

F. cylindrus cells can not be confirmed, it is likely that their presence reflects a sinking 

export of pelagic microalgae. In our study area, a parallel study on ice algal composition 

found Nitzschiafrigida and Navicula vanhoeffenii to be the dominant microalgal species in 

bottom landfast first-year sea ice in Franklin Bay, while F. cylindrus were not abundant 

(M. Rozanska pers. comm.). An input of algae from the sea ice is thus inferred from the 

presence of the pennate diatoms N.frigida and N. vanhoeffenü in June and July/August, 

and their minor contribution to the sinking assemblage in September/October (Fig. 4b). 

These pennate diatoms are considered typically ice algae species (e.g. Sakshaug 2004, 

Michel et al. 2006). 

The increasing contribution of Chaetoceros spp. and other centric diatoms to the 

diatom sinking assemblage, in September/October, is consistent with the seasonal 
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phytoplankton species succession reported in Frobisher Bay (Hsiao 1992) and in the 

sinking diatom assemblage in the NOW polynya (Caron et al. 2004). The fact that centric 

diatom spores were only observed in July/August and September/October (Fig. 4c) agrees 

with nitrate depletion during summer and fall, as suggested by Simpson et al. (ms). The 

production of diatom resting spores has been linked to nutrient limitation (e.g. Hargraves & 

French 1983). Interestingly, empty diatom frustules were an abundant part of the material 

exported from the euphotic zone throughout this study (Fig. 4c), contributing on average 

ca. 3 times as much as intact diatom cells, by numbers (data not shown). A significant 

degradation of diatom cells thus appeared to have occurred within the euphotic zone, 

possibly relating to zooplankton grazing activity. Altogether, the cluster-based analysis 

revealed a general seasonal phytoplankton species succession similar to that of other 

high-Iatitude coastal waters (e.g. Dale et al. 1999). The analysis also revealed the strong 

influence of the Mackenzie River, as already discussed in Chapter 2, since station 65 

formed a distinctive group comprising the freshwater pennate diatom Eunotia sp. 

3.4.4 A landfast sea ice perspective 

In contrast with the adjacent Cape Bathurst Polynya, Franklin Bay is characterized by 

a prolonged landfast first-year sea ice cover. The time-series obtained at this location, from 

March to August, illustrates the importance of landfast spring melt for the sinking export of 

chI a and POC (Fig. 5). The underice sinking export of chI a and POC, during landfast 

spring melt (averaging 0.66 and 115.4 mg m-2 d-I in June, respectively; Fig. 5), was 
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comparable to the highest open water sinking fluxes recorded in the eastem Beaufort Sea, 

during this study (Table 2). 

The sinking fluxes of chI a and POC observed during open water sampling in 

Franklin Bay, in July and August, were comparable with the ranges ofvalues observed in 

the Cape Bathurst Polynya at the same time (i.e. July/August; Table 2). The similarities 

between these two areas suggest that there are large scale consistencies in the sinking 

export of particulate organic material during ice-free conditions in the Amundsen Gulf (i.e. 

Cape Bathurst Polynya and Franklin Bay), which also agrees with the widespread seasonal 

pattern in sinking assemblage observed. 

The transition from ice-covered (i.e. from March to June) to open waters (i.e. in July 

and August) in Franklin Bay (Fig. 5 and Table 2, 3) reveals a seasonal shift in sinking 

export processes. The high chi a and POC sinking export in June, during landfast spring 

melt, was attributed to the release of ice-associated biomass into the underlying water 

column, as described in Chapter 1. A parallel study found that the sinking of ice algae 

during landfast spring melt may represent an important cue for the seasonal increase in 

benthic activity and oxygen demand in Franklin Bay (Renaud et al. 2007b). In contrast, the 

material collected during open water sampling in July reflected a POC sinking export 

largely relating to copepod grazing activity, as FPC comprised the majority of the sinking 

POC (Table 3). It therefore appears that copepods played a key role in the remarkably high 

export ofphytoplankton primary production in July (export-ratio of ca. 97 %; Table 2), 



123 

diverting most of the primary-produced organic material through the pelagic heterotrophic 

food web. Copepod grazing activity and sinking export ofphytoplankton primary 

production, as reflected by FPC sinking fluxes and the export-ratio (Tables 2 and 3), 

decreased substantially from July to August. Overall, the high sinking ex port of released ice 

material during landfast spring melt therefore appeared to have been followed soon after by 

a peak in copepod grazing activity. 

3.5 Conclusion 

The extensive spatial and seasonal study of the sinking export of particulate organic 

material from the euphotic zone, showed comparable chi a and POC sinking fluxes 

throughout the eastem Beaufort Sea in fall. In summer, higher sinking fluxes of POC were 

observed on the Mackenzie shelf and slope than in the Cape Bathurst Polynya. Overall , a 

seasonal decrease was observed in the sinking eXPort of chI a and POC, from spring to fall. 

Daily loss rates of chi a and POC were low throughout this study « 4 % d-'), while the 

Cape Bathurst Polynya showed a high export-ratio ofparticulate phytoplankton production 

during summer (ca. 50 %). Zooplankton played an important, but seasonally decreasing, 

role in the sinking export ofparticulate organic material , particularly in the Cape Bathurst 

Polynya. The cluster-based analysis of the sinking protist cell assemblage revealed seasonal 

groups that prevailed over spatial and interannual differences amongst sampling stations. A 

seasonal succession of microalgal species in the sinking assemblage was observed 

throughout the sampling area. A considerable diatom contribution, dominated by the 
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pennate diatom F. cylindrus, in summer was followed by a dominance offlagellated cells 

towards fall. Still, input from sea ice at the stations visited in summer, was related to the ice 

diatoms N.frigida and N. vanhoeffenii which were present in the collected material in June 

and July. The high chi a and POC sinking fluxes measured during landfast spring melt 

illustrate the importance of inc1uding the spring melt period when studying seasonal 

sinking export in Arctic regions. 
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CONCLUSION GÉNÉRALE 

This study shows patterns of sinking export in the upper water column in different 

environments of the Canadian Beaufort Sea. The seasonal patterns in sinking export 

described under landfast sea ice are likely applicable to other Arctic regions experiencing 

landfast sea ice and relevant to areas of first-year sea ice in general. The strong seasonal 

patterns in the sinking export of particulate material in the Canadian Beaufort Sea and the 

insights into the influence of the Mackenzie River plume are believed to be relevant to 

other Arctic shelves. 

In chapter l, our results showed that the sinking export of organic material was low 

under landfast first-year sea ice during winter. This research provides new information on 

shallow sinking ex port of particulate material during winter, a long period extending from 

freeze-up typically around October/November (e.g. Carmack et al. 2006) to March on 

Arctic shelves, and which remains unstudied using shallow short-term particJe interceptor 

traps. These results also showed a strong coupling between the sinking export of algal 

material underneath landfast sea ice and ice algal biomass was observed during the ice algal 

productive period in spring, thus substantiating the hypothesis of ice-water coupling taking 

place prior to spring ice melt, as proposed in other studies (Carey 1987, Melnikov 1998). 
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These results challenge the view that there is very little export of ice material prior to ice 

melt. The evidence of an early coupling between ice algal biomass and sinking export of 

algal material therefore urges future studies of shallow sinking export to inc1ude the ice 

algal growth period. 

This research also showed an abrupt increase in sinking export of organic material 

during spring ice melt, as reported during previous studies of under-ice sinking export 

(Tremblay et al. 1989, Michel et al. 1996,2002, Fortier et al. 2002). The onset of spring 

melt also reflected a release of material with a different biochemical composition, than 

prior to ice melt. This annual ev en t, i.e. ice melt, is thought to represent an important 

trigger for increased benthic activity during early spring in the Canadian Beaufort Sea (e.g. 

Renaud et al. 2007b). Furthermore, the abrupt release and sinking export of organic 

material , during spring ice melt, exceeded the sinking export of organic material during 

subsequent ice-free condition, as described in Chapter 3. This study therefore connects 

shallow sinking export of organic material across the transition from first-year sea ice coyer 

to ice-free conditions, a transition which may be temporally and spatially displaced on 

Arctic shelves by future climate re1ated changes (e.g. ACrA 2005). 

While sinking ex port of algal material , i.e. chlorophyll a (chI a), biogenic silica 

(BioSi) and algal cells, showed a seasonal increase during the developing ice algal bloom, 

sinking export of particulate organic carbon (POC) remained rather stable prior to the onset 

of spring ice melt. A significant non-algal component sustained the stable POC sinking 
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export. This research also showed that almost half(46 %) of the sinking chI a was lost in 

the first 25 meters, due in part to the degradation of chI a to phaeopigments predominantly 

by herbivorous copepods. These results evidence a significant transformation of the sinking 

pigmented material in the upper most part of the water column under landfast sea ice. 

Chapter 2 showed the strong influence of the Mackenzie River plume on the sinking 

export of particulate material on the shelf and slope. Two sampling transects provided a 

synoptic view of separate sections of the river plume during summer and fall. Seasonal and 

spatial differences in the sinking export of chI a and POC were linked to the chi a biomass 

carried by the river plume, such that the highest sinking export occurred in summer and at 

stations most influenced by the river plume. In addition to the effect of the river plume, our 

results showed that phytoplankton and zooplankton located undemeath the plume 

contributed to the sinking export of organic material at depth. 

This research also showed a strong seasonal ity in the composition of the sinking 

material in the area of the river plume. Aigai based material and fecal pellets contributed 

much in summer, while amorphous detritus dominated in fall. The sinking phytoplankton 

assemblage followed a seasonal species succession, from a dominance of diatoms in 

summer to mainly flagellates and dinoflagellates in fall, similar to the succession observed 

in most high-Iatitude waters. 
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The regional freshwater influence on sorne Arctic shelves in spring and summer, due 

to terrestrial riverine runoff, may increase due to climate related changes (e.g. ACIA 2005 , 

IPCC 2007). While the riverine processes affecting sinking export of particulate material is 

weil understood, regional information on the riverine influence on Arctic shelves is 

incomplete Ce.g. Dittmar & Kattner 2003). This research provides not only regional 

information on the influence of Mackenzie River plume on the sinking export of particulate 

material , but also shows sinking export from the river plume and the water column below. 

These components are inevitably integrated in deeper studies of sinking export. As 

described in Chapter 2, seasonal differences appear not only in the influence of the 

Mackenzie River plume on sinking export of particulate material , but also in the 

contribution from the pelagie food web below the river plume, which may apply to other 

Arctic shelves influenced by river plumes. 

The extensive dataset presented in chapter 3 showed comparable sinking fluxes of 

chI a and POC below the euphotic zone throughout the Canadian Beaufort Sea in fall . The 

seasonally high riverine influence on the sinking export of organic material in summer, as 

shown in chapter 2, induced higher POC sinking fluxes on the Mackenzie shelf and slope 

than in the Cape Bathurst Polynya at that time. An overall seasonal decrease in sinking 

fluxes of chi a and POC below the euphotic zone, from spring to fall, persisted throughout 

the Canadian Beaufort Sea. 
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Regardless of spatial and interannual variability between sampling stations, a strong 

seasonal signature in the species composition of the sinking protist assemblage emerged for 

the study area. These results showed that the phytoplankton species succession generally 

observed in the high-Iatitude waters, from a high diatom contribution in summer towards 

mainly flagellates in fall, prevailed in the sinking material throughout the Canadian 

Beaufort Sea. 

The large scale perspective of sinking export of particulate organic material presented 

in Chapter 3 connects the different environments in Canadian Beaufort Sea, i.e. the 

Mackenzie River plume and the Cape Bathurst Polynya. This chapter shows that while 

these environments may have a strong regional and seasonal impact, large scale 

consistencies may prevail in both the sinking export of particulate organic material and the 

composition of the exported material. Prevailing consistencies may aid in the linkage 

between regional sinking export studies in the Arctic, if similar consistencies can be found 

on other Arctic shelves. 

For future studies, a general aim should be to achieve a better understanding of the 

sinking export and transformation of the sinking material within the mesopelagic zone, as 

stressed in a recent review by Boyd & Trull (2007). In continuation with the present 

findings of a coupling between ice algal biomass and sinking export of algal material prior 

to ice melt, an investigation of the processes driving the ice-water export of algal material , 

e.g. brine drainage, would be valuable. Also, future studies oriented towards determining an 



130 

early sinking export of organic material from first-year sea ice are needed to corroborate 

and assess this in other Arctic regions. The observed increase in the proportion of seasonal 

first-year sea ice in the Arctic Ocean, due to climate related changes, compels to more 

widespread studies of the sinking export prior to and during ice melt, as weil as during the 

sea ice break-up. In addition, further regional studies of the riverine influence on sinking 

export ofparticulate material on Arctic shelves are needed (e.g. Dittmar & Kattner 2003), 

and may become more important with the predicted increases in terrestrial riverine runoff 

due to climate related changes (e.g. ACIA 2005). 
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