










to the benthic habitat and/or a noctumal feeding behaviour (Kawamura and Ishida, 1986). 

Even though no studies have been conducted on the rod photoreceptor formation in win ter 

flounder, we may hypothesize that winter flounder show a retinal development similar to 

that in J apanese flounder during their life history. 

Our work did not indicate marked changes in the feeding success of juvenile winter 

flounder in different turbidity conditions. In pelagic fish, turbidity has often been 

considered to impair feeding behaviour and feeding success by decreasing visual feeding 

ability (Lepomis macrochirus, Gardner, 1981; Oncorhynchus tshawytscha , Gregory and 

Northcote, 1993). Gardner (1981) showed that turbidity levels (60, 120, and 190 NTU) had 

a significant effect on the mean total number of daphnia eaten per fish in bluegills (Lepomis 

macrochirus) . For fish (75.3 mm), the mean number of daphnia consumed dec1ined by 

almost 20% at 60 NTU to 50% at the highest turbidity level. Suspended sediment also 

modifies the foraging activities and visual ability in bluegills. The relationship observed 

between turbidity and the reaction distance of bluegills to daphnia prey declined log-

linearly when turbidity increased (Vinyard and O'Brien, 1976). This situation was similar 

for juvenile chinook (Oncorhynchus tshawytscha) on Artemia prey (Gregory and 

Northcote, 1993) and for lake trout (Salvelinus namaycush) (Confer et al., 1978). Studies 

examining the effects of turbidity on the feeding of flatfish species are scarce. In contrast to 

our own results, Moore and Moore (1976) showed that turbidity reduced the ability of large 

European flounders (Platichthys flesus) to detect highly mobile epibenthic prey and 

increased the pursuit time before prey capture. Nevertheless, small flounders cOllld detect 

Asellus aquaticus sp. of size 1.0 cm as efficiently as larger individllals regardless of the 
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turbidity (Moore and Moore, 1976). Moreover, they were able to find prey as small as 0.10 

and 0.20 cm in clear and turbid water, respectively. Moore and Moore (1 976) took into 

account the spatial distribution of prey in the water column, the degree of concealment by 

prey, the different degrees of motility and abilities to escape predation of prey speci es, and 

the turbidity. As sm aIl flounders could detect prey over a relatively large area, it is not 

surprising that the proportion of stomachs containing food remained high. Nevertheless, the 

degree of motility of different prey modifies the reaction distance and the encounter rate 

between predator and prey, which influence feeding success. The maximum distance that 

European flounder of aIl sizes could see Gammarus pulex and the time required to swim to 

the prey was identical to that of A. aquaticus , regardless of water conditions (Moore and 

Moore, 1976). However, fish were able to catch prey in only 80% of the G. pulex trials 

compared to 100% for A. aquaticus . For the highly motile Eurydice pulchra, flounders of 

all sizes were able to catch this prey only 3 to 4% of the times that it appeared within visual 

range. This study may presume that prey motility was the most important factor, decreasing 

the feeding ability of fish in turbid conditions. 

Our study demonstrated that turbidity conditions (54 to 353 NTU) did not disturb 

the feeding success ofjuvenile winter flounder considering the high percentage (92% ± 9.7) 

of feeding fish and the percentage of the digestive tract area fiUed with food . Juveniles aiso 

seemed to feed equally weIl in turbid or in clear conditions. However, the turbidity 

significantIy influenced the IOD index: a higher IOD index was observed in clear water (0 

to 54 NTU) than in turbid conditions (54 to 353 NTU). The IOD index takes into account 

the filled area of the digestive system and the intensity of colouration. In fact, the intensity 

35 



of colouration varies as a function of the quantity of Artemia nauplii prey ingested: a pale 

colouration indicates an empty stomach or one with few prey while a dark colouration 

indicates a stomach that is full or contains a larger number of prey. This index is a good 

indicator of the volume of food in the digestive tract due to a more precise evaluation of 

stomach fullness. Studies have demonstrated that estuarine pelagic fish, especiall y larval 

and juvenile forrns, may actively seek out turbid waters in the natural field (Bruton, 1979; 

Blaber and Blaber, 1980; Cyrus and Blaber, 1987a). Gradall and Swenson (1982) provided 

evidence of an active preference of turbid over cIear conditions in juvenile brook trout 

(Salvelinus fontinalis) and creek chub (Semotilus atromaculatus), whereas Cyrus and 

Blaber (1987b) showed the preference of Monodactylus argenteus to intermediate turbidity 

(10-80 NTU). In contrast, Rhabdosargus holubi, Acanthopagrus berda, Pomadasys 

commersonni, and Terapon jarbua were not disturbed by turbidity levels higher than 80 

NTU (Cyrus and Blaber, 1987b). Nevertheless, differences among study conc lusions may 

simply result from the levels ofturbidity, species, life stages, and habitat examined. 

Boehlert and Morgan (1985) observed a higher feeding rate in Pacific herring 

larvae (Clupea pallasi) in turbid conditions than in clear water conditions. This increase 

was explained by an enhancement of the visual contrast between a predator and its prey. 

Larvae responded faster to the presence of prey against a turbid background than in cIear 

water conditions. We may presume that contrast enhancement, induced by turbidity, could 

enable juvenile winter flounder to detect brine shrimp nauplii prey more quickly. 

Moreover, brine shrimp, which are relatively slow-moving prey, may not be able to escape 

rapidly from the limited field of vision of the juvenile winter flounder. Juveniles could then 
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appear to have an advantage in turbid conditions compared to clear water conditions. 

However, in our experimental set-up, brine shrimp nauplii moved rapidly due to the airlift 

system that maintained the sediments in suspension. Thus it may be that feeding SLlccess in 

our experiment was not influenced by the reduced swimming capacity of brine shrimp 

nauplii . Moreover, Tanaka et al. (1989) reported that juvenile Japanese flounder migrated 

up in the water column if prey were less abundant on the sea bottom. In the previous study, 

juveniles were located in light conditions that were optimal for feeding. We may assume 

that juveniles can then change their feeding behaviour to compensate for a reduced visual 

field and move into the better-illuminated surface layers to feed more efficiently. In our 

present study, the probability of prey detection by juvenile winter flounder resulting from 

the volume searched or the reaction distance was not impaired by turbidity, considering the 

high percentage of feeding fish. Nevertheless, some studies on turbidity effects also show 

the influence of prey assemblages thatmay vary in density, species composition, motility, 

and size distribution. 

Gardner (1981) observed that turbidity did not have a significant effect on the size 

selectivity patterns exhibited by bluegills. However, turbidity may then alter taxon 

selectivity by planktivorous fish, causing fish to capture only more slowly moving prey 

types. Moreover, the reaction distance can be modified due to the density of prey 

introduced during the experiment. In fact, a high prey density decreases the search time for 

fish and consequently increases the encounter rate and the feeding success. We may also 

presume that the prey density used during our experiment did not influence the feeding 

behaviour of juvenile winter flounder. To our knowledge, no studies have been conducted 

37 



on the reaction distance in juvenile flatfishes. However, it has been previously noted that 

turbidity in pelagic fish could negatively modify the encounter rate and reaction distance 

between a predator and its prey (Vinyard and O'Brien, 1976; Barrett et al. , 1992). The 

contrast degradation theory predicts that the visibility of objects that can be seen at a large 

distance in clear water will be disproportionately reduced in turbid water compared to that 

of objects that are visible at a shorter distance in clear water (De Robertis et al. , 2003). 

Contrast degradation has an effect similar to fog, which can greatly diminish long-range 

visibility without having a large short-range effect (Lythgoe, 1979; De Robertis et al. , 

2003). Miner and Stein (1993) noted that the reaction distance of bluegill larvae declined 

with an increasing lev el of turbidity (Howick and O'Brien, 1983; O'Brien, 1987). Studies 

on pelagic fish have also suggested that the probability of prey detection was proportional 

to the reaction distance (Confer and Blades, 1975; Hairston et al., 1982). The search 

volume or reaction distance of juvenile winter flounder could be expected to decrease with 

increasing turbidity. However, a reduced reaction distance may not result in reduced 

feeding ability. In fact, when reaction distance is short, there are fewer suspended particles 

between predator and prey to reflect light and interfere with detection. De Robertis et al. 

(2003) demonstrated that high turbidity significantly decreased prey consumption by chum 

salmon (Oncorhynchus keta) and walleye pollock (Theragra chalcogramma) , two 

planktivores, at a higher illumination level but not at a lower one. Prey will be more visible 

at a shorter distance in a lower illumination level, and this will reduce the effects of contrast 

degradation. In addition, Gregory and Levings (1996) demonstrated that encounter rate or 

reaction distance during turbidity treatments may not be sufficiently limiting to cause a 

reduction in capture rates due to experimentaI container size. 
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Flatfish adaptation is principally the ability of juveniles or adults to bury themselves 

in sediments and their faculty to mi mie sediment colour and appearance (Pearcy, 1962). 

Nevertheless, earlier in their life cycle, i.e., at the end of metamorphosis, the newl y settled 

winter flounder are translucent, due to a lack of pigmentation, and are also more likely to be 

detected by predators. The risk of predation on juvenile winter flounder should be lower in 

turbid than in clear water, with the visual contrast of translucent juvenile winter flounder 

enhanced by a full digestive tract. In the laboratory, wh en juveniles were maintained on the 

clay substratum, we could easily distinguish the feeding fish by the stomach colouration. 

Juveniles could then have a higher potential risk of predation and may act and feed 

accordingly. Several studies have suggested that sorne pelagie fish species may use 

turbidity as a coyer against predators (for reviews: Miller, 1979; Bruton, 1985, Gregory, 

1991 ; Gregory and Northcote, 1993). Gregory (1993) showed that juvenile chinook may 

also reduce their predator avoidance behaviour in turbid conditions. Moreover, 

V andenbyllaardt et al. (1991) suggested that differential retinal development between 

piscivorous walleye and their minnow prey makes foraging in turbid conditions more 

successful for predators. 

Our study demonstrated equally ihat juvenile size did not modify the feeding success 

of juvenile winter flounder neither the percentage of the digestive tract area filled with 

Artemia . We have tested the influence ofjuvenile size in clear water conditions to eliminate 

the potential risk of a turbidity effect. 
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In summary, results from our study indicate that turbidity did not induce significant 

reductions in the percentage of feeding juvenile winter flounder and in the percentage of the 

area of the digestive system containing food. Nevertheless, the IOD index was higher in 

clear conditions compared to turbid conditions. These results support the hypothesis that 

turbidity can be viewed as an advantage for juvenile flounder due to the decrease of 

predation pressure on them and to a decrease in their reaction distance, which allows better 

prey detection. 

40 



CONCLUSION GÉNÉRALE 

Dans le but de répondre à l'objectif de notre étude, nous avons déterminé l'effet de la 

turbidité sur le pourcentage de juvéniles de plie rouge s'alimentant, sur le pourcentage de 

remplissage des estomacs, ainsi que sur l'indice lOD (aire d'alimentation x intensité de 

coloration). Notre étude indique que la turbidité n'a que peu d'effet sur le succès 

d'alimentation des juvéniles de plie rouge (Pseudo pleuronectes americanus). La turbidité 

n'a pas eu d'effet significatif sur la proportion de juvéniles s'alimentant, ni sur le degré de 

remplissage des estomacs. En revanche, l'indice lOD des juvéniles est significativement 

plus élevé en absence qu'en présence de turbidité. La turbidité pourrait ainsi agir sur le 

nombre de proies ingérées. Toutefois, l' indice lOD ne semble pas être modifié par les 

niveaux croissants de turbidité. Les résultats démontrent donc que la turbidité 

n'influencerait que dans un mode bimodal (absence-présence) la capacité des juvéniles à 

capturer les proies vivantes présentes dans le milieu. 

Cette étude semble donc très importante dans le cadre d'une éventuelle gestion de l'habitat 

naturel de poissons nectobenthiques. 
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