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Highlights: 

 The biological effects of marennine were studied on different marine organisms. 

 Marennine is the blue water-soluble pigment produced by the diatom Haslea ostrearia. 

 Blooms of blue Haslea are recorded worldwide. 

 Marine organisms can be exposed to significant amount of marennine during blooms. 

 Marennine significantly affects early developmental stages of the tested organisms. 

 

 

Abstract  

Marennine is a water-soluble blue-green pigment produced by the marine diatom Haslea 

ostrearia. The diatom and its pigment are well known from oyster farming areas as the source of 

the greening of oyster gills, a natural process increasing their market value in Western France. 

Blooms of blue Haslea are also present outside oyster ponds and hence marine organisms can be 

exposed, periodically and locally, to significant amounts of marennine in natural environments. 

Due to its demonstrated antibacterial activities against marine pathogenic bacteria (e.g. Vibrio) 

and possible prophylactic effects toward bivalve larvae, marennine is of special interest for the 

aquaculture industry, especially bivalve hatcheries. The present study aimed to provide new 

insights into the effects of marennine on a large spectrum of marine organisms belonging to 

different phyla, including species of aquaculture interest and organisms frequently employed in 

standardised ecotoxicological assays. Different active solutions containing marennine were 

tested: partially purified Extracellular Marennine (EMn), and concentrated solutions of 

marennine present in H. ostrearia culture supernatant; the Blue Water (BW) and a new process 

called Concentrated Supernatant (CS). Biological effects were meanwhile demonstrated in 

invertebrate species for the three marennine-based solutions at the highest concentrations tested 

(e.g., decrease of fertilization success, delay of embryonic developmental stages or larval 

mortality). Exposure to low concentrations did not impact larval survival or development and 

even tended to enhance larval physiological state. Furthermore, no effects of marennine were 

observed on the fish gill cell line tested. Marennine could be viewed as a Jekyll and Hyde 

molecule, which possibly affects the earliest stages of development of some organisms but with 
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no direct impacts on adults. Our results emphasize the need to determine dosages that optimize 

beneficial effects and critical concentrations not to be exceeded before considering the use of 

marennine in bivalve or fish hatcheries.  

 

Key words: diatom; Haslea ostrearia; marennine; marine organisms; natural bioactive 

compound  

 

1. Introduction 

Haslea ostrearia is a cosmopolitan marine pennate diatom that synthesizes and releases a water-

soluble blue-green pigment called marennine. This species can bloom erratically in oyster ponds 

in Western France (Baie de Marennes-Oléron, Baie de Bourgneuf), a phenomenon that has long 

been known to be responsible for the greening of oyster gills. This phenomenon is of economic 

interest for the French oyster farming industry as the market value of green oyster is significantly 

increased (by 20 to 30 %) due to changes in the organoleptic properties of the oysters and the 

scarcity of the product, blooms in ponds being an erratic phenomenon. In the last decade, new 

species of blue Haslea have been discovered, some of them producing marennine-like pigments 

chemically distinct from the originally described marennine molecule (Gastineau et al., 2012a, 

2016). Blooms of blue Haslea are also observed in natural environments, such as in the 

Mediterranean Sea and East coast of the USA (Figure 1). Moreover, oysters with green gills have 

long been observed worldwide, e.g., in Great Britain (Sprat, 1667), Denmark (Petersen, 1916), 

the USA (Mitchell and Barney, 1917) and Australia (Hallegraeff and Mouget, personal 

communication). Furthermore, the greening of gills has been reported in other organisms, such as 

polychaetes, crabs, littorina, mussels (Ranson, 1927), sea-anemones (Gaillon, 1820), scallops and 

cockles (Gastineau et al., 2018), illustrating that many marine organisms can be exposed to blue 

Haslea populations and marennine-like pigments not only in artificial (oyster) ponds, but also in 

natural environments. 

Although our knowledge of the blue Haslea biodiversity has recently increased, little is 

known about the chemical properties of marennine and marennine-like pigments or their 
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functions for the microalgae. Marennine is thought to be produced via a cytoplasmic synthesis 

pathway (Nassiri et al., 1998) and transiently accumulates at the cell apices (intracellular form of 

the pigment, IMn). Marennine is excreted from the cells, possibly by exocytosis via small 

vesicles, which collapse and release an extracellular form of marennine (EMn). The two forms of 

the pigment differ in their UV-visible spectral characteristics and molecular mass (Pouvreau et 

al., 2006b). Marennine is a complex molecule composed of glycosidic units (Gastineau et al., 

2014) attached to one or various aromatic rings (Pouvreau et al., 2006b). A protocol to obtain a 

purified form of EMn or IMn has been developed (Pouvreau et al., 2006c) and several authors 

have proposed different methods to estimate marennine concentration in solution, despite 

incomplete knowledge of its chemical structure (Pouvreau et al., 2006a; Robert et al., 2002). 

Various studies have demonstrated that marennine (as purified molecule or raw extract) 

has multiple biological activities, such as antioxidant (Pouvreau et al., 2008), antiproliferative 

(Carbonnelle et al., 1998; Gastineau et al., 2012), antiviral (Bergé et al., 1999; Gastineau et al., 

2012) and antibacterial (Falaise et al., 2016; Gastineau et al., 2014, 2012). It has also been shown 

that marennine possesses allelopathic properties, limiting the growth of various microalgae 

(Pouvreau et al., 2007; Prasetiya et al., 2016). The biological activities of marennine are species- 

and even strain-dependent in the case of bacteria (Falaise et al., 2016), suggesting that marennine 

could act on specific molecular targets. Tests conducted with Gram-negative bacteria have 

demonstrated activity of the marennine-like pigment produced by Haslea provincialis (Gastineau 

et al., 2016) and marennine produced by H. ostrearia, on the lipopolysaccharidic cell membrane 

of Escherichia coli (Tardy-Laporte et al., 2013) and of Vibrio splendidus (Bouhlel et al., 2018), 

rendering it more rigid.  

In line with these results, particularly those demonstrating the capacity of marennine to 

limit the proliferation of certain pathogenic marine bacteria (Falaise et al., 2016; Gastineau et al., 

2012, 2014), further research has confirmed the protective effect of marennine on the giant 

scallop (Placopecten magellanicus) and blue mussel (Mytilus edulis) larvae when challenged 

with V. splendidus (Turcotte et al., 2016). The same study also revealed that a 20 d (day) 

exposure of mussel larvae to low concentrations of marennine (0.1 µg mL-1) provided a 

significantly higher survival rate than the control, although exposure to higher concentrations of 

marennine (1 µg mL-1) resulted in 100 % larval mortality. Even brief exposure to marennine has 
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been demonstrated to result in behavioural, physiological and biochemical changes that were still 

present eight weeks after exposure (Prasetiya et al., 2017).  

These results underpin the interest to further study the effects of marennine on early 

developmental stages of marine organisms, to identify which are possibly sensitive to marennine, 

as well as defining exposure concentrations and durations that would be beneficial to species of 

aquaculture interest. The present work presents a broad panel of experiments conducted to 

provide an overview of the biological effects of marennine solutions on various marine organisms 

belonging to different phyla. The organisms were selected based on aquaculture interest or their 

established role in ecotoxicological model assays. Different solutions containing marennine, 

prepared from H. ostrearia culture supernatants, were used in the exposures: the purified EMn 

(Pouvreau et al., 2006c), the Blue Water (BW; (Turcotte et al., 2016) and a newly patented 

Concentrated Supernatant (CS; see Materials). Although EMn represents the most purified form 

of marennine currently available, BW and CS are of particular interest if the use of marennine-

based solutions is considered at larger scales than laboratory experiments due to their easier and 

cheaper method of production. Marennine exposures were conducted on embryos and/or larvae of 

the mollusc M. edulis, the crustacean Chthamalus bisinuatus, the chordate Pseudopleuronectes 

americanus and the echinoderms Sphaerechinus granularis and Paracentrotus lividus. The 

effects of the blue pigment solutions were also investigated in vitro on the fish gill cell line 

RTgill-W1, on the oyster Crassostrea gigas haemocytes, and on prokaryotic models with bacteria 

of the genus Vibrio, providing a broad view of the diversity of marennine effects on marine 

organisms. 

  

2. Materials and Methods 

Purified form of extracellular marennine (EMn), Blue Water (BW) and Concentrated Supernatant 

(CS) were all obtained from H. ostrearia culture supernatant (Table 1), but the process to obtain 

BW and CS is faster and has a better yield in comparison with purified EMn. BW and CS are not 

purified marennine per se, but they allow preparing concentrated solutions of marennine needed 

to run dose-response experiments between Haslea pigment and target organisms. Experiments 

are presented in the Results section in the following order: 1) Experiments using the BW 

solution, 2) CS solution, and 3) purified EMn solution.  
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2.1. Preparation of the purified extracellular marennine (EMn), Blue Water (BW) and 

Concentrated Supernatant (CS) 

The Blue Water (BW) and purified extracellular marennine (EMn) were produced at the Station 

aquicole de Pointe-au-Père (Québec, Canada) and provided by the Institut des sciences de la mer 

de Rimouski-Université du Québec à Rimouski (ISMER-UQAR; Québec, Canada). The 

production process of BW and purified EMn were previously described (Turcotte et al., 2016; 

Pouvreau et al., 2006c). Briefly, H. ostrearia strains (NCC 136), isolated from Bourgneuf Bay 

(France) and provided by NCC (Nantes Culture Collection), were cultured in 100 L 

photobioreactors until the extracellular marennine concentration reached a maximum of 6 to 8 µg 

mL-1. Marennine concentration was determined on cell-free culture supernatant (filtered through 

Sarstedt 0.2 μm syringe filters) using a spectrophotometer (Cary 100 Bio UV-Visible, Agilent 

Technologies) and the Beer-Lambert’s equation (ε677=12.13 L g-1cm-1) as proposed by Pouvreau 

et al. (2006c). The BW was then obtained by concentration of the culture supernatant containing 

EMn by ultrafiltration (double cut off 3-30 kDa; (Turcotte et al., 2016). To obtain the purified 

EMn, the BW was further treated by an anion-exchange chromatography process and the fraction 

collected was dialyzed and freeze-dried (Pouvreau et al., 2006c). BW and purified EMn were 

stored in the dark at 4 °C and -20 °C respectively. Concentrated Supernatant (CS) was produced 

in the Mer Molécule Santé (MMS) and Institut des Molécules et Matériaux du Mans (IMMM) 

laboratories (Le Mans, France). A strain of H. ostrearia (NCC 495) was batch cultured in 500 mL 

Erlenmeyers flask containing 250 mL of autoclaved sea water prepared from a commercial sea 

salt mix (Instant Ocean, Aquarium Systems®; pH 7.6 ± 0.2; salinity 32) with an enrichment 

solution as described in Mouget et al. (2009). Microalgal cultures were maintained in a 16 °C 

temperature-controlled room at an irradiance of 200 μmol photon m−2 s−1, with illumination 

provided by cool-white fluorescent tubes in a 14/10 h light/dark cycle. At the beginning of the 

stationary growth phase the culture supernatant containing EMn was collected by decantation of 

the microalgal cells and subsequent vacuum filtrations through 15 µm (150 mm Filter paper, 

Fisher Scientific®) and 1.2 µm (37 mm glass microfiber filters, Whatman®). Filtered culture 

supernatant was collected in 1 L glass bottles and the EMn was then concentrated using an 

innovative technique recently patented (patent n°: 1872316). The resulting solution was then 

dialyzed using a 2 kDa dialysis membrane (Spectra/Por®6, Spectrum®). Dialysis tubes were 

placed in ultra-pure water tanks for 3 d under agitation with the water changed every 24 h. The 
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dialyzed solution was then ultra-filtered (double cut-off 1 kD-30 kDa; Kros Flo® Research IIi 

TFF System and Kros Flo® Automatic Backpressure valve, Spectrum®) and further concentrated 

by evaporation with a Rotavapor (Vacuum controller CVC2, Vacuubrand®; Rotary Elevator, 

Heating Bath Hei-Vap, Base Hei-Vap ML Adv/Pre, Heidolph®). The pH of the resulting CS was 

neutralized if required to 7.5 ± 0.2 by addition of NaOH 0.1 M. The CS was stored one week in 

the dark at 4 °C until use. The concentration of marennine in the CS was determined using a 

spectrophotometer and the Beer-Lambert equation (ε669=17.2 L g-1cm-1) as proposed by (Robert 

et al., 2002). UV-Vis spectra of the different marennine based solutions were conducted using 

quartz cuvettes with 1 cm path length (UV/Vis Lambda 25 Perkin Elmer spectrophotometer, UV 

Winlab software). 

 

2.2. Exposure of the mussel Mytilus edulis larvae to BW  

Adult mussels were obtained in summer 2017 from a farm in the Magdalen Islands (47° 25’N, 

61° 50’W, Quebec, Canada), characterized by pure M. edulis populations (Myrand et al., 2009) 

and conditioned for spawning in the Station aquicole de Pointe-au-Père (ISMER-UQAR; 

Québec, Canada) facilities for one month. Mussels were maintained in 180 L tanks in 1 μm 

filtered seawater at 20 °C flowing at 1 L min-1 and were continuously fed with a mixture of 

Pavlova lutherii, Isochrysis galbana, and Nannochloropsis oculata (ratio 1:1:1) supplied with a 

peristaltic pump at constant flow to maintain food load at 0.5 mg L-1 as described in Hennebicq et 

al. (Hennebicq et al., 2013). Before spawning, a dozen individuals were removed from the tank 

and washed by gently rubbing the shell with a brush and diluted bleach and finally rinsed with 

filtered, UV sterilized sea water. Spawning was induced by successive thermal shocks from 10 to 

25 °C. Fertilized eggs were transferred to 60 L tanks at densities of 10 eggs µL-1 and embryos 

were maintained at 18 °C for 48 h. D-larvae were collected by filtration of the water through a 20 

µm mesh screen and transferred to 60 L rearing tanks at densities of 10 D-larvae mL-1. Every 2-3 

d, tanks were washed and sterilized and the larvae fed with a mixture of P. lutherii, I. galbana 

and Chaetoceros gracilis  at a final concentration of 90 cells µL-1 (30 cell µL-1 for each 

component of the diet; Turcotte et al., 2016).  

 M. edulis embryos were collected prior to the transfer to the embryogenesis tank, and D-

larvae prior to the transfer to the rearing tank (48h post fertilization). Veliger larvae were 

collected in the rearing tanks (14 d post fertilization) by filtration of the water through a mesh 
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screen. Embryos and larvae were exposed to BW in 12-well flat bottom sterile microplates with 

each well containing 3 mL of diluted BW and 10-15 embryos or 10-15 larvae per well. Five 

concentrations of marennine from BW were tested: 0, 0.1, 0.5, 1 and 5 µg mL-1. Marennine 

concentration from BW was estimated as described in section 2.1 and Table 1. BW was syringe-

filtered through 0.2 µm and diluted in sterile sea water. Microplates were kept in a controlled 

temperature room at 18 °C without addition of food during the time of the experiment. The 

mortality of embryos and veliger larvae was assessed using a light microscope (Olympus BX41; 

W. Carsen Co., Ltd., Don Mills, ON, Canada) coupled to a digital camera (Evolution VF Color, 

MediaCybernetics, Silver Spring, MD, USA). The percentages of swimming and motionless D-

larvae were assessed by observation of the microplates using an inverted microscope (Axiovert 

100, Zeiss). Larval size was measured with Image Pro-Express (Media Cybernetics) after 

addition of formaldehyde to the wells. A minimum of 10 larvae were counted per well with at 

least 3 wells per concentration tested.  

 

2.3. Exposure of the barnacle Chthamalus bisinuatus larvae to BW 

Experiments were conducted in June 2015 in the Center for Marine Biology of Sao Paulo 

University (CEBIMar/USP; Sao Paulo, Brazil). Spawners were harvested by collecting rock 

fragments in the intertidal zone of Calhetas Beach (23°49’ 28”S, 45°25’11”W). The fragments 

were transferred to the laboratory and placed in seawater pumped from the adjacent bay, as 

described in Kasten and Flores (Kasten and Flores, 2013). A light source was placed above the 

tanks containing the breeders to recreate the natural photoperiod. Broodstock was submerged for 

30 min every 12.4 h to simulate the natural effect of the tide and stimulate spawning. After a first 

submersion, the water used to submerge the broodstock was siphoned and filtered to harvest the 

larvae. The larvae were placed in filtered seawater and isolated using a dissecting microscope to 

obtain a number of larvae sufficient to run the experiment. Larvae were placed individually in the 

wells of a 96-well microplate in 2 mL of seawater containing 0, 0.05 or 0.1 µg mL-1 of marennine 

from BW without food to test only the potential toxicity of BW. The BW was prepared and the 

concentration estimated as described in section 2.1 (Table 1). Four larvae were tested at each 

concentration. The microplate was placed on a stirring plate and no food was provided during the 

experiment. Larvae were observed once a day and survival recorded over 9 d. The experiment 

was repeated once with spat from a different production. 
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2.4. Exposure of the winter flounder Pseudopleuronectes americanus larvae to BW 

Larvae were reared as described by (Khemis et al., 2003) in 57 L cylindro-conical polyethylene 

tanks and fed rotifers from d 4 to d 26 (Fraboulet et al., 2010). Rotifers were fed a cocktail of 

microalgal concentrates (1:1:1 N. oculata: I. galbana: P. lutherii, Instant algae, REED 

Mariculture) and a SELCO food supplement (1 g M-1 rotifers, INVE Aquaculture Nutrition, 

Gransville, UT, USA). The larvae were kept in green water (addition of N. oculata culture 

directly to basins). From d 2 to d 14, two concentrations of marennine from BW were tested on 

the larvae, 0.05 and 0.1 µg mL-1, with three tanks per treatment (n = 3). BW preparation, as 

described in section 2.1 (Table 1), was added to the tanks in the morning, when water flow was 

cut to feed the larvae. Water flow was restarted at the end of the day (for a total of about 8 h of 

exposure) and BW was gradually evacuated from the tanks with the flow of water outlet. A dose 

of BW was given every two days, for a total of seven treatments per tank for the duration of the 

experiment. Procedures were the same for the control treatments, without the addition of BW in 

the control tanks. The effect of BW treatment on bacterial load and larval size was evaluated on d 

2, d 6, d 10, and d 14, and the size and physiological condition (assessment of energy reserves) of 

the larvae were determined at the end of the experiment, i.e. at d 14 (12 d of treatment). Standard 

length was measured on formaldehyde-preserved larval pictures as described in (Hjörleifsson and 

Klein-MacPhee, 1992) using a dissecting microscope (Olympus SZ61) coupled to a digital 

camera (Evolution VF; Media Cybernetics) and Image Pro-Plus measurement software 5.0 

(Media Cybernetics). Lipids were extracted in a 2:1 mixture of dichloromethane: methanol 

according to (Folch et al., 1957), the lipid classes (triglyceride [TAG], sterol [ST], acetone 

mobile polar lipids [AMPL], and phospholipids [PL]) concentrations were quantified by TLC-

FID as described by (Parrish, 1987), and chromatograms analyzed using PeakSimple v3.21 

software (SRI Inc.). To estimate the potential effect of BW on bacterial load in rearing water, 

bacterial analyzes were carried out using a flow cytometer on water samples taken from the tanks 

and frozen with glutaraldehyde according to (Seychelles et al., 2011). 

 

2.5. Exposure of the sea urchins Sphaerechinus granularis and Paracentrotus lividus to EMn and 

CS 
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A first series of assays were conducted in May 2016 with purified EMn on S. granularis and P. 

lividus, model animals frequently used for in vivo ecotoxicological bioassays (Buttino et al., 

2016; Pinsino et al., 2010). Sea urchins were collected in the Brest area (France) and obtained 

from the Centre de Ressources Biologiques Marines (CRBM) at the Roscoff Biological Station 

(Roscoff, France). Other experiments on sea urchins were run in March 2017 using CS rather 

than purified EMn due to its limited production, and the species S. granularis because it is 

available throughout the year.  

Marennine-based solutions were prepared by weighing purified EMn freeze-dried powder 

or after the estimation of CS concentration as described in section 2.1 (Table 1). Solutions were 

diluted in 0.22 μm Millipore-filtered seawater (FSW) and the final solutions were syringe filtered 

through 0.2 µm. Sea urchin spawning was induced by intracoelomic injection of 0.1 M 

acetylcholine. Eggs were collected in FSW, rinsed twice by centrifugation (2.000 g, 2 min) and 

re-suspended in FSW for a final 2 % (v/v) egg solution containing 0.1 % (v/v) glycine. Sperm 

was kept dry at 4 °C until use. Experiments took place in a temperature-controlled room at 16 °C. 

Effects of purified EMn and CS were first assessed on fertilization. Eggs were transferred 

to a 24-well culture plate and incubated during 10 min in marennine-based solutions prior to 

addition of sperm. Solutions at different concentrations were added in wells containing 1 mL of 

the egg suspension. Only FSW was added for the control condition. pH strips were used to ensure 

that the pH did not vary between wells of the different concentrations tested. For fertilization, 50 

µL of dry sperm was diluted in 1 mL of FSW shortly before use and 4 μL of diluted sperm added 

per mL of egg suspension. Observation of the culture plate under phase contrast inverted 

microscopy allowed the determination of the fertilization rate by counting at least 60 eggs per 

well (n = 3 wells per concentration tested). For experiments conducted with CS, unfertilized eggs 

exposed to the highest CS concentrations were rinsed 3 times in FSW using a benchtop centrifuge 

for 5 to 10 seconds and exposed to sperm for fertilization as described above. Two hours post 

fertilization, eggs exposed to CS were fixed on a DNA fluorescent stain (Hoechst fixative: 

Bisbenzymide 0.1 µg mL-1; methanol 75 %, glycerol 25 %) and observed under a fluorescence 

microscope (ApoTome, Zeiss). 

The effects of CS were also assessed post fertilization (kinetics of first cleavage and early 

embryonic development). For fertilization, diluted sperm was added in a 50 mL tube containing 

25 mL of eggs suspended in FSW (2 % (v/v) egg suspension). When egg batches exhibited 
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greater than 90 % fertilization, sperm was removed by centrifugation in Heraeus Labofuge 

centrifuge (2.000 g, swinging bucket rotor 2 min). Fertilized eggs were transferred to a 24-well 

plate and CS solutions at 1; 10; 50 and 100 µg mL-1 added 10 min post fertilization. The 

percentage of dividing eggs was determined under phase contrast inverted light microscope; at 

least 60 eggs per well were counted. Three different sea urchin couples were used to replicate the 

experiment. For the “washed” condition, embryos from 3 wells per concentration tested were 

rinsed 6 h post fertilization as described earlier. Culture plates were maintained under constant 

agitation at 16 °C and embryos were observed 8, 48 and 72 h post fertilization with a Leica DMi8 

inverted microscope and pictures acquisition done with LASX software. For each observation 

time, a 75 µL sample of each well was transferred to a glass slide and pictures of the 

developmental stages predominantly observed were taken. For post hatching developmental 

stages, a 1 µL drop of Janus green was added to the samples. Bright Field microscopy technique 

(BF) was applied for embryos 8 h post fertilization and a Differential Interference Contrast 

technique (DIC) for embryos 48 h and 72 h post fertilization.  

 

2.6. Exposure of Vibrio species to BW and CS 

Experiments were conducted during spring 2018 in MMS laboratory (Le Mans, France). BW and 

CS were prepared as described in section 2.1 (Table 1), and the concentration of marennine was 

determined with spectrophotometric measurements using the Beer-Lambert law with the specific 

extinction coefficient (ε677=12.13 L g-1cm-1) proposed by (Pouvreau et al., 2006b). CS and BW 

were diluted with sterile ultra-pure water. Salinity and pH were adjusted by addition of NaCl and 

0.1 M of NaOH or HCl (pH 7.5 ± 0.2; salinity 32) and the solutions were then syringe-filtered 

through 0.22 µm (Sarstedt). The three Vibrio strains tested, Vibrio chagasii (strain 8T3_5), Vibrio 

crassostreae (strain 8T2_1) and Vibrio sp. (strain 7G1_11) were previously identified (Bruto et 

al., 2017) and kindly provided by the Laboratory of Integrative Biology of Marine Models 

(CRBM/Roscoff, France). Bacterial strains were kept at -80 °C in 25 % glycerol, inoculated in 

Mueller Hinton Broth (MHB) + 1 % NaCl (pH 7.5 ± 0.2; salinity 32) and incubated overnight at 

25 °C. Isolations were done on Petri dishes containing agar prepared with Nutrient Agar (Biokar) 

+ 2.3 % NaCl (pH 7.5 ± 0.2; salinity 32). The plates were incubated at 25 °C for one day. The 

antibacterial activity of BW and CS was assessed according to a method described in the Clinical 

and Laboratory Standards Institute (CLSI) antimicrobial microdilution guidelines (Clinical and 
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Laboratory Standards Institute (CLSI), 2012). The day prior to the experiment, three different 

colonies per Petri dish were inoculated in broth media and grown overnight at ambient 

temperature. Wells of a 96-well sterile microplate with cover and flat bottom were filled with 50 

µL of either CS or BW at a final concentration of 10 µg mL-1 (or sterile saline water for the 

controls) and 50 µL of a bacterial inoculate. A negative control was also run with sterile saline 

water and broth media without bacteria to ensure that no contamination occurred during the 

experiment. To prepare the bacterial inoculate the optical density (OD) of the broth culture was 

measured at 630 nm (V-10 Plus Onda Spectrophotometer), the OD was adjusted to 0.1 by 

dilution in MHB + 1 % NaCl and the solution was then further diluted by 1/100 as recommended 

by the CLSI guidelines (Clinical and Laboratory Standards Institute (CLSI), 2012). Microplates 

were inserted in a microplate spectrophotometer (xMark Bio-Rad) for a 20 h run at ambient 

temperature. Growth was managed with microplate Manager 6 Software by taking the OD in 

each well every 30 min at 600 nm.  

 

2.7. Exposure of fish gill cell lines to EMn 

Experiments took place in August 2017 at the Institute for Marine and Antarctic Studies (IMAS; 

Hobart, Australia). The gill epithelium cell line RTgill-W1 was obtained from the American Type 

Culture Collection (ATTC; and originally isolated from the Rainbow trout Oncorhyncus mykiss). 

The cell line was maintained and exposures to purified EMn conducted as described in Dorantes-

Aranda et al. (2011) in conventional 96-well plates. Gill cells were seeded into a flat-bottom 96-

well plate (655180, Greiner) at 2.5 x 105 cells mL-1 in L-15 medium (L-1518, Sigma) and allowed 

to attach for 48 h in the dark. Confluence of cell cultures was verified 12 h before experimental 

exposure and the L-15 medium replaced by L-15/ex (Schirmer et al., 1997). The concentration of 

the original purified EMn solution was estimated (540 µg mL-1 in 50 % methanol) as described in 

section 2.1 (Table 1), and the solution was diluted in L-15/ex by factors of 1 x 10-1, 5 x 10-2, 1 x 

10-2, 5 x 10-3, 1x 10-3, 5 x 10-4 and 1 x 10-4, yielding final exposure concentrations of 0-54 µg mL-

1. Methanol was added to all dilutions to achieve a constant final MeOH concentration of 5 % 

across all treatments, including the non-toxic control (L-15/ex). Gill cells were exposed to these 

solutions for 2 h at 20 ± 1 ˚C in the dark (quadruplicate wells per concentration). After the 

exposure, wells were rinsed twice with saline phosphate buffer (100 µL per well) and incubated 

for a further 2 h in the dark with 100 µL of 5 % resazurin viability stain in L-15/ex medium. 
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Metabolic reduction of resazurin to resorufin by the gill cells was measured in a microplate 

reader (Fluostar Omega, BMG Labtech) at excitation and emission wavelengths of 540 and 590 

nm, respectively. Results are expressed as percentage viability of the nontoxic control (5 % 

MeOH in L-15/ex). 

 

2.8. Exposure of the oyster Crassostrea gigas haemocytes to EMn 

Pacific oysters C. gigas were harvested in 2015-2016 in the hatchery of Laboratoire de 

Génétique et de Pathologie des Mollusques Marins (LGPMM; La Tremblade, France) in 

raceways supplied with a constant flow of seawater enriched with phytoplankton (Skeletonema 

costatum, Tetraselmis suecica, I. galbana and C. gracilis). They were maintained in safe 

conditions, free of known infectious pathogens. The shell of 20 adult oysters was broken with 

metal clamps and haemolymph withdrawn from the adductor muscle sinus (1 to 1.5 mL of 

haemolymph per oyster) using 1 mL sterile plastic syringes equipped with a needle (0.90 mm x 

25 mm). The haemolymph of the different individuals was pooled, filtered through 60 µm nylon 

mesh and held on ice to prevent haemocyte aggregation (Auffret and Oubella, 1997). Haemocytes 

were observed under light microscopy using a Malassez-cell. Haemocytes were then exposed to 

different concentrations of purified EMn: 0, 1, 50 and 100 µg mL-1. The purified EMn was 

obtained as described in section 2.1 (Table 1) and the solutions were prepared by weighing of the 

EMn dried powder on an analytical balance (Sartorius Entris®) and by dilution on sterile sea 

water. Purified EMn solutions were added to the haemolymph (1:1 ratio) for a final haemocyte 

concentration of 2.104 cells mL-1. Haemocytes were exposed to EMn during 1, 3 or 6 h and 

mortality was quantified using 200 µL of cell suspension. Cells were incubated in the dark for 30 

min on ice with 50 µL of Propidium Iodide (PI, 1.0 g L-1, Interchim), a fluorescent DNA/RNA-

specific dye that only permeates through the membranes of dead cells and stains the nucleic 

acids. Haemocyte samples were analyzed with flow cytometry using an EPICS XL 4 (Beckman 

Coulter) and red fluorescence following the protocol of (Morga et al., 2009). Based on size 

discrimination, only haemocytes were taken into account with 5.000 events counted per sample. 

Results were depicted as cell cytograms and reported as log scale fluorescence levels. Data were 

analyzed with Flowing Software 2.  

 

2.9. Statistics 
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Statistical analyses were run using SigmaPlot 12.3 software for Windows. Differences between 

treatments were assessed with One-Way or Two-Ways ANOVAs. Normality was tested by the 

Shapiro-Wilk test and the assumption of homoscedasticity of variance with Fisher’s test (F-test) 

and/or verified visually by the spread of residuals, as suggested by (Quinn and Keough, 2002). 

Post hoc Tukey’s pairwise multiple comparison tests were used to determine differences between 

means. Unless specified, alpha value used was 0.05.  

 

3. Results 

3.1. Differences in the solutions containing the extracellular marennine  

BW and CS presented the same UV-Vis spectral characteristics in comparison with purified EMn 

(Pouvreau et al., 2006b), with one peak around 670 nm in the visible region and two others in the 

UV region around 250 and 320 nm. Different coefficients of extinction were used to assess the 

extracellular marennine concentration depending on the preparation and concentration process 

and on the series of experiments (summarized in Table 1). Despite a difference in calculated 

concentrations of about 30-40 % resulting from the use of either the apparent extinction 

coefficient proposed by (Robert et al., 2002) or the one proposed by (Pouvreau et al., 2006a), the 

solutions tested had comparable concentration ranges and activities as described below. 

 

3.2. Effects of BW on Mytilus edulis larvae 

After a 48 h exposure of embryos to BW, the percentage of larvae that reached the D-larval stage 

and the mortality rate were assessed (Figure 2A). The three lowest concentrations tested did not 

delay larval development; however, when embryos were exposed to 1 µg mL-1 of BW, the 

percentage of D-larvae was significantly lower (22 ± 1 % of D-larvae compared to 52 ± 2 % for 

the control; p-value = 0.026). Exposure to 1 µg mL-1 significantly increased the mortality rate, 

with 47 ± 1 % of mortality while no mortality was recorded in control condition. Exposure to 1 

µg mL-1 of BW significantly delayed the development with a D-larvae mean length of 88 ± 7 µm 

compared to 122 ± 1 µm for the control (p-value <0.001; Figure 2B). At 5 µg mL-1, none of the 

embryos survived after a 48 h exposure to BW (Figure 2A).  

In a second series of experiments, D-larvae were exposed to BW in order to assess the 

effects on larval swimming (Figure 3A). After 24 h in BW, the percentage of swimming larvae 
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exposed to 1 µg mL-1 was significantly lowered (80 ± 9 % compared to 100 ± 0 % for the control; 

p-value <0.001). D-larvae exposed to 5 µg mL-1 of BW were totally motionless, with the velum 

highly coloured with marennine (Figure 3B). After 72 h in BW, the percentage of swimming D-

larvae exposed to 1 µg mL-1 of BW decreased significantly in comparison with the day one with 

only 45 ± 2% of swimming larvae (p-value 0.012).  

When veliger larvae were exposed over a 5 d period to BW (Figure 4A), a significant 

increase in mortality was only observed at a concentration of 5 µg mL-1, with 64 ± 7 % of dead 

veliger larvae compared to 7 ± 6 % of mortality in control (p-value <0.001). Larval length only 

differed for treatments of 0.5 and 1 µg mL-1 compared to 5 µg mL-1 of BW (Figure 4B; p-values 

0.036 and 0.030 respectively).  

 

3.3. Effect of BW on the barnacle Chthamalus bisinuatus larvae  

The survival rate of C. bisinuatus larvae was measured at two concentrations of BW, 0.05 and 0.1 

µg mL-1 over a 9 d period, the maximum period to maintain barnacle larvae without food. At both 

concentrations, exposure to BW had no significant effect on C. bisinuatus larval survival rate in 

comparison with the control (Figure 5; p-value 0.1427).  

 

3.4. Effect of BW on the winter flounder Pseudopleuronectes americanus larvae   

The addition of BW at 0.05 and 0.1 µg mL-1 had no effect on larval growth (p-value 0.287). 

Indeed, the three groups experienced a growth of 0.1 mm d-1 from d 2 to d 14 (Figure 6A). The 

bacterial load remained comparable in all treatments (p-value 0.868), demonstrating that, at such 

concentration, marennine had no impact on bacterial development in fish rearing tanks (Figure 

6B). Energy reserves in larvae treated with marennine seemed to increase with 4.6 ± 0.7 µg larva-

1 under 0.1 µg mL-1 of BW exposure vs 3.9 ± 0.7 µg larva-1 for the control, but the difference 

from the control was not significant due to the high variability among tanks (total lipids, p-value 

0.1092; triacyglycerol/sterol (TAG/ST) ratio, p-value 0.0767). However, the larvae showing the 

highest lipid content, and the only ones containing TAG, were sampled from the marennine 

treated tanks (Figure 6C). 

 

3.5. Effects of CS and purified EMn on Sphaerechinus granularis and Paracentrotus lividus  
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A first series of experiments was conducted on the sea urchins S. granularis and P. lividus to 

assess if purified EMn had an effect on fertilization and first cleavage of the egg. In both species, 

fertilization was totally blocked at 50 and 100 µg mL-1 and the phenotypes of embryos exposed to 

10 µg mL-1 were either delayed in comparison with the control or abnormal (e.g., flattened). Four 

different incubation periods were tested, from 0 to 20 min prior to the addition of purified EMn, 

but the effects on fertilization were similar. A 10 min incubation of sperm prior to fertilization 

was also conducted, but the fertilization rate remained unaffected with 100 % fertilization 

observed even when sperm was incubated in EMn at 100 µg mL-1 (data not shown). It was 

checked if purified EMn prevented fertilization or if the absence of fertilization membrane 

around the eggs was caused by an effect of EMn on the elevation of fertilization membrane steps. 

To do so, a calcium ionophore (i.e., a chemical that can activate echinoderm eggs by a release of 

intracellular calcium ions and inducing the membrane elevation (Steinhardt and Epel, 1974)) was 

added in EMn incubated eggs. For all concentrations of EMn tested, from 1 to 100 µg mL-1, the 

calcium ionophore induced the egg activation demonstrating that purified EMn did not interfere 

with the elevation of the fertilization membrane steps (data not shown).  

Incubation of S. granularis eggs with CS prior to the addition of sperm also exhibited a 

dose-dependent effect on fertilization (Figure 7A). Exposure to 10 µg mL-1 significantly lowered 

the fertilization success with 85 ± 8 % of fertilization compared to 99 ± 2 % for the control 

condition (p-value 0.032). When eggs were incubated in 50 µg mL-1, no fertilization occurred 

although the sperm was highly active around the eggs (Figure 7B). When eggs previously 

exposed to 50 µg mL-1 of CS were rinsed and removed in FSW without CS, the fertilization rate 

was similar to the control condition (p-value 0.58) demonstrating that the effect of CS on S. 

granularis eggs and fertilization was reversible (Figure 7A).  

Incubation of newly fertilized S. granularis eggs with CS demonstrated a dose dependent 

effect on the kinetics of first cleavage (Figure 8A) and on the early embryonic development 

(Figures 8B-C). The two lower concentrations tested, 1 and 10 µg mL-1, had no effect on the 

kinetics of first cleavage: as for the control, divisions started 95 min post fertilization with 

embryos dividing symmetrically and synchronously, and at 180 min post fertilization all embryos 

reached at least the 2-cell stage. At higher incubation concentrations, a dose-dependent effect of 

CS was observed with fewer dividing eggs, asymmetrical and asynchronous divisions. At 180 

min post fertilization, less than 85 % and 50 % of embryos incubated in 50 and 100 µg mL-1 of 
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CS, respectively, started to divide and the others quickly degenerated. Similar observations were 

made for the 3 series of experiments.  

Eight hours post fertilization, embryos of the control and those incubated in the presence 

of CS (1 and 10 µg mL-1) reached the blastula stage (Figure 8B) while cell division for embryos 

incubated in 50 and 100 µg mL-1 was quickly halted after a few and incoherent divisions or no 

division at all. Twenty-four hours post fertilization, the gastrula stage was observed for the 

control embryos and those exposed to 1 µg mL-1 while embryos incubated in 10 µg mL-1 were 

still at the blastula stage and did not hatch (data not shown). Forty-eight hours post fertilization, 

embryos incubated in 1 and 10 µg mL-1 exhibited a dose dependent developmental delay with 

embryos still at the blastula stage and at the early prism stage, respectively, while control 

embryos reached the late prism stage (Figure 8C). Three days post fertilization, the early pluteus 

stage was observed in controls while the early prism stage and hatched blastula stage were 

observed in those incubated in 1 and 10 µg mL-1 of CS, respectively. Washed embryos were able 

to recover; embryos initially exposed to 1 µg mL-1 presented similar developmental stages to the 

control, 48 and 72 h post fertilization and the development of embryos initially exposed to 10 µg 

mL-1 and rinsed 6 h post fertilization was still slightly delayed in comparison with the control but 

more advanced than in embryos incubated in the CS.   

 

3.6. Antibacterial effects of BW and CS on Vibrio species 

This series of experiments aimed to compare the antibacterial activity of two different solutions 

of marennine, BW and CS. The bacteria V. chagasii, V. crassostreae and V. sp. were exposed to 

10 µg mL-1 of BW and CS for 20 h and relative growth inhibition in comparison with the control 

was estimated (Figure 9). Vibrio sp was the most sensitive strain with 37 ± 2 % and 40 ± 1 % of 

growth inhibition when exposed to 10 µg mL-1 of BW and CS, respectively. The growth of V. 

chagasii exposed to BW and CS also decreased significantly, with percent inhibition as a fraction 

of the control of 9 ± 1 % (p-value <0.001) and 6 ± 2 % (p-value 0.003), respectively. V. 

crassostreae was the least sensitive strain, although growth was also significantly lower than in 

controls when exposed to BW (5 ± 2 % of inhibition, p-value 0.034) and to CS (6 ± 2 % of 

inhibition, p-value 0.020). For each strain tested, growth inhibition induced by BW was 

statistically similar to the growth inhibition induced by CS (p-values >0.05) indicating that the 

two different solutions had similar antibacterial effects at 10 µg mL-1.  
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3.7. Effects of EMn on fish gill cell line RTgill-W1 

After 2 h exposure to purified EMn, marennine showed no significant effect on fish gill cell 

viability in the concentration range tested (0-54 µg mL-1). 

 

3.8. Effects of EMn on Crassostrea gigas haemocytes 

After an exposure of C. gigas haemocytes to 1 µg mL-1 of purified EMn, the percentage of lysed 

cells was not significantly different from the control, 6 ± 1 % compared to 5 ± 1 %, respectively 

(Figure 10). The percentage of lysed haemocytes increased in a dose dependent way at 50 (8 ± 1 

%, p-value 0.009) and 100 µg mL-1 (10 ± 1 %; p-value < 0.001). Different durations of exposure 

were tested (1, 3 and 6 h) without any difference observed in number of lysed cell suggesting that 

the effects on haemocytes result from the immediate contact with the BW (data not shown).  

 

4. Discussion 

This work represents a broad panel of experiments conducted in different laboratories to study 

the biological effects of marennine on various marine model organisms of aquaculture interest. 

The results confirm that independently of the mode of preparation, solutions containing 

marennine can exert biological activities, ranging from growth inhibition of pathogens to the 

death of bivalve larvae. The effects observed depend on the species, the life cycle stage and 

concentrations of marennine used. The results are summarized in Table 2 and raise two questions 

regarding: 1) limitations of the study due to diversity of marennine solutions tested, and 2) 

interpretation of data in view of importance of these biological activities for the marine 

environment and potential applications in aquaculture. 

 

4.1. Limitations of the study 

This work brings together the results of different experiments, conducted over a three-year 

period, in different laboratories and using three different marennine-based solutions (purified 

EMn, BW and CS), as well as different methods to quantify marennine concentrations. Moreover, 

cultures of H. ostrearia were grown on different media, which also may have impacted 
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marennine production and quality. The first series of experiments using purified EMn and CS 

exposed against S. granularis and P. lividus, showed similar effects on sea urchin egg 

fertilization. Furthermore, growth inhibition induced by BW and CS was comparable within the 

same Vibrio species at 10 µg mL-1. We conclude that biological activity was not impaired related 

to marennine production conditions.  

The concentration ranges tested could vary by about 30-40 %, depending on the 

extinction coefficient used. Various marennine quantification methods have been published so 

far, using an extinction coefficient determined from raw extract (Robert et al., 2002) or purified 

marennine (Pouvreau et al., 2006a), or weighing of purified marennine dried powder (Prasetiya et 

al., 2017; Turcotte et al., 2016 and Gastineau et al., 2012, respectively). As the absolute quality 

and quantity of the pigment in different solutions could not be clearly assessed without a 

complete characterization of this pigment, our results provided a range of concentrations showing 

biological activities against various marine organisms. While the higher concentrations (50 and 

100 µg mL-1) provide clues about doses with deleterious effects, the lower concentrations (from 

0.01 to 10 µg mL-1) are more ecologically relevant. In natural environments, marennine 

measurements indicate a range of 1-10 µg mL-1 (Turpin et al., 2001), and natural blooms of blue 

Haslea have been recorded worldwide (Figure 1). Haslea blooms are regularly observed in Calvi 

Bay (Corsica, France) as part of seaweed surveys. These blooms, which mostly occur in spring, 

result in the development of a blue-green biofilm at the surface of the thallus of seaweeds (i.e., 

Padina, Halopteris, Acetabularia), on short turfs, and to a lower extent on sediments and rocks 

(STAtion de REcherche Sous-marines et Océanographique - STARESO and Liège University; V. 

Demoulin, D. Sirjacobs, S. Gobert and P. Lejeune, personal communications). Blue Haslea can 

display very large patches reaching several square meters and be observed at depths ranging from 

2 to 8 meters. Such extensive blooms are also annually recorded from November through March 

in central and southern coastal estuaries of North Carolina (USA), in particular along the central 

coast from lower Core Sound westward across the lower North River estuary and Back Sound to 

the western portions of Bogue Sound. These blooms of a blue Haslea possibly different from H. 

ostrearia do not seem to be associated with the development of biofilms on Padina sp. thalli, 

however they cause a wide-spread greening of oysters, which could underpin emerging green 

oyster industries in the USA (N. Lindquist, personal communications).  
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Thus it can be inferred that, at the microenvironment scale, high concentrations of 

marennine could be encountered, and that many marine organisms can periodically and locally 

face acute marennine exposure. All laboratory experiments to study biological activity of 

marennine lasted hours or days, and the cumulated effect of long-lasting exposure to low 

concentrations of marennine has not yet been tested. Greening of oyster gills can be viewed as a 

cumulative, longer term effect. According to green oyster producers, the greening in oyster ponds 

can occur in a matter of days, depending on Haslea growth and density. In the laboratory, EMn 

rather than IMn was preferentially responsible for greening, which proved to be time dependent 

and long-lasting (Gastineau et al., 2018, 2014). However, green oysters have also been observed 

in natural open environments, in absence of any record of Haslea blooms, for instance in oyster 

leases in Australia (New South Wales and Tasmania). This means that marennine could have 

biological activities in the long-term, from subacute and chronic exposure, and further work is 

required to better assess the impact of this pigment in the natural environment.  

 

4.2. The unpredictable “Jekyll and Hyde”, good and bad nature of marennine  

On the one hand, our results showed that exposure to the tested marennine solutions could lead to 

adverse effects against many marine animals, depending on the exposure dose. Concentrations 

from 1 µg mL-1 significantly lowered the survival rate of M. edulis embryos and locomotion of 

the D-larvae. Significantly higher mortality rates were observed for veliger larvae exposed to 5 

µg mL-1 of BW while no mortality was recorded at 1 µg mL-1, which contrasts with results of a 

previous study where exposure of veliger larvae to 1 µg mL-1 of BW led to 100 % mortality, but 

the duration of that experiment was 4 times longer, 20 d vs 5 d (Turcotte et al., 2016). Significant 

dose-response effects of marennine were also observed with the sea urchin model. While high 

concentrations (50 and 100 µg mL-1) resulted in a total blockage of fertilization and embryonic 

development, lower concentrations (1 and 10 µg mL-1) of CS induced a developmental delay of 

S. granularis embryos. Previous works also have demonstrated the effects of a water-soluble 

extract of the diatom Thalassiosira rotula on cell division of the sea urchin P. lividus, with a 

blockage of cell division at the higher doses tested and a delay and abnormal development of 

embryos at lower doses (Buttino et al., 1999). Also, intact diatom cells of six different species 

could inhibit the egg first cleavage of the sea urchins Strongylocentrotus droebachiensis and 

Echinus acutus (Gudimova et al., 2016). Most interestingly, our results indicated that even at 
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high concentrations, the effects of CS on fertilization and embryonic development were 

reversible after rinsing the eggs or embryos. This confirms previous observations of the effects of 

water-soluble diatom extracts against various marine invertebrates, including the sea urchin 

Psammechinus miliaris (Caldwell et al., 2002).  

The present results could suggest an inability of marennine to bind tightly at the cell 

surface if considering the reversible effects observed in sea urchins, and to penetrate the cell and 

exert irreversible damages given the high molecular weight of the molecule (> 10 kDa; Pouvreau 

et al. 2006b). Marennine could however link to cell surface or membrane receptors and trigger 

stress responses or even apoptotic signals by inducing changes in cell metabolism. Furthermore, 

the variability of BW and CS effects observed at both the interspecific and intraspecific levels on 

the three Vibrio species tested, but also those previously shown with V. aestuarianus, V. 

coralliilyticus and V. tubiashii strains (Falaise et al., 2016) could reflect differences in membrane 

receptor affinities and in mechanisms of action. Such variability should be considered before 

application of marennine in aquaculture as an antibacterial agent. However, more data is 

necessary to confirm these hypotheses.  

On the other hand, despite observed deleterious effect at the higher concentrations tested, 

very low concentrations (0.05 and 0.1 µg mL-1) of BW did not exhibit a negative effect on the 

barnacle C. bisinuatus survival nor on the winter flounder P. americanus. Both flounder growth 

rate and bacterial load in the water remained unaffected throughout the marennine exposure (0.05 

and 0.1 µg mL-1), and physiological condition (energetic reserves) improved in response to 

marennine treatment. These results compare with no observable effect of marennine (0-54 µg L-1) 

on the viability (metabolic activity) of the rainbow trout gill cell line RTgill-W1. Although the 

gill cell line exposure was conducted for only 2 h, results provide a strong indication that 

marennine does not impair fish gill function at the concentration ranges tested here. These results 

are further supported by (Turcotte et al., 2016) who demonstrated that low exposure to BW (0.1 

µg mL-1) enhanced survival and physiological condition of M. edulis and P. magellanicus larvae. 

In addition, our results showed that low concentrations of EMn (1 µg mL-1) did not present a 

cytotoxic effect against haemocytes of adult oysters. Even though cytotoxic effects were 

evidenced at the highest concentrations (50 and 100 µg mL-1), the point of inflection could not be 

determined with the concentration range tested. However, it should be emphasized that even after 
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centuries of production of green oysters, no negative impacts on adult oysters, nor green oyster 

consumers have been reported. 

Despite the fact that diatoms are traditionally considered a high quality food source 

enhancing growth and survival of many marine organisms, they can produce secondary 

metabolites that function as grazing deterrents (Ianora and Miralto, 2010). Most of these 

secondary metabolites are polyunsaturated fatty acids (PUFAs) and polyunsaturated aldehydes 

(PUAs) with a special focus on oxylipins (Caldwell, 2009). Effects of diatom aldehydes on 

reproductive and fertilization success or embryonic development of various organisms such as 

crustaceans, echinoderms or arthropods have been widely studied (Caldwell, 2009; Ianora and 

Miralto, 2010). Aldehyde production is a diatom chemical defense strategy to limit growth of 

their grazers (Ban et al., 1997; Pohnert, 2005), but other studies reported the absence of a 

correlation between diatom aldehyde and reproductive biology and early development of marine 

invertebrates, suggesting the involvement of other unidentified diatom metabolites (Poulet et al., 

2006; Wichard et al., 2008). Unlike aldehydes, that are likely to exert their activity following 

diatom cell destruction and ingestion, the water-soluble marennine may target a larger spectrum 

of marine organisms and not only diatom grazers.  

 

In conclusion, the present work demonstrates that H. ostrearia supernatant containing marennine 

represents a biologically active water-soluble solution with potential effects on various marine 

organisms. More studies are required to better estimate the long term impacts of blue Haslea 

blooms in natural environments, facilitated by laboratory studies, investigating chronic exposure 

to low concentrations of marennine. If the use of H. ostrearia supernatant is considered in 

hatcheries as a preventive or curative anti-infectious agent, concentrated solutions such as BW or 

CS could be of interest in order to control the delivered marennine doses. It is likely that the 

adverse effects of marennine only target the early and more succeptable fragile developmental 

stages such as embryos and larvae, depending on the exposure concentration, whereas adults 

remain unaffected.  
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List of Tables and Figures (in order of apparition in the text): 

Figure 1. Underwater pictures of natural blue Haslea blooms forming biofilms observed A) in macro-

algae Padina sp. in the Mediterranean sea, Corsica (France) and B) on sediments in the Beaufort Strait, 

North Carolina (United States).  

 

 

 

Figure 2. Exposure of the mussel Mytilus edulis embryos to different concentrations (µg mL-1) of Blue 

Water (BW) over a 48 h period. A) Percentage of embryos that reached the D-larval stage (grey bars) and 

percentage of mortality (black bars). B) Length of the larvae that reached the D stage (µm). Values are 

means ± SE (n=3). Error bars with different lower case letters are significantly different.  
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Figure 3. Exposure of the mussel Mytilus edulis D-larvae to different concentrations (µg mL-1) of Blue 

Water (BW). A) Percentage of swimming D-larvae exposed during 24 h (light grey bars) and 72 h (dark 

grey bars) to BW. Values are means ± SE (n=6). Error bars with different lower case letters are 

significantly different. B) Observation of D-larvae of the control condition (left picture) and exposed to 5 

µg mL-1 of BW (right picture) after 24 h under light invert microscopy. D-larvae exposed to 5 µg mL-1 of 

BW were totally motionless with marennine agglutinated on the velum (arrow). Scale bars: 100µm.  
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Figure 4. Mussel Mytilus edulis veliger larvae exposed to different concentrations (µg mL-1) of Blue 

Water (BW) over a 5 d period. A) Percentage of veliger larvae mortality and B) veliger larvae mean length 

after BW exposure. Values are means ± SE (n=3). Error bars with different lower case letters are 

significantly different.   
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Figure 5. Percentage of mortality of the barnacle Chthamalus bisinuatus larvae exposed to different 

concentrations (µg mL-1) of Blue Water (BW) over a 9 d period. Results are means ± SE (n=4).  
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Figure 6. Winter flounder Pseudopleuronectes americanus larvae exposed to different concentration (µg 

mL-1) of Blue Water (BW) over a 14 d period. A) Mean lengths (mm) of P. americanus larvae. B) 

Bacterial load (bacteria mL-1) in larval tanks and C) larval energy reserves: percentages of triglyceride 

(TAG), sterol (ST), acetone mobile polar lipids (AMPL), and phospholipids (PL) and TAG/ST ratio.  

Results are means ± SE (n=3).  

 

 

  Figure 7. Sea urchin Sphaerechinus granularis eggs exposed to different concentrations (µg mL-1) of 

Haslea ostrearia Concentrated Supernatant (CS) before fertilization. A) Fertilization rate and B) 

observation under phase contrast (left panels) and fluorescence (right panels) microscopy (Gx400) of S. 

granularis eggs of the control condition (upper raw) and exposed to CS at 50 µg mL-1 (lower raw) 2 h post 

exposure to CS. Eggs were fixed in a DNA fluorescent stain (Hoechst fixative) to observe cell nuclei of 

the control dividing egg and spermatozoa agglutinated around the unfertilized egg exposed to 50 µg mL-1 

of CS. Values in A) are means ± SE (n=3). Error bars with different lower case letters are significantly 

different.  Scale bars in B): 25 µm.  

 

ACCEPTED M
ANUSCRIP

T



 

34 
 

 

Figure 8. Exposure of newly fertilized sea urchin Sphaerechinus granularis eggs to different 

concentrations (µg mL-1) of concentrated supernatant (CS) of Haslea ostrearia culture. A) Kinetic of first 

cleavage of S. granularis eggs exposed to the CS 10 min post fertilization. B) Observation of S. granularis 

embryos under phase contrast microscopy 8 h post exposure to CS (Gx200) and C) 48 h (top raw) and 72 

h (lower raw) post exposure to the CS (Gx400). Embryos of the “unwashed” conditions were still 

incubated in the CS while embryos of the “washed” condition were rinsed 6 h post exposure to the CS. 

The kinetics of first cleavage presented in A) is representative of 3 replicate experiments. Views in B) and 

C) are representative of the observed stages, scale bars: 50 µm.  
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Figure 9. Relative growth inhibition of the bacteria Vibrio chagasii, Vibrio crassostreae and Vibrio sp. 

exposed to 10 µg mL-1 of Blue Water (BW) and 10 µg mL-1 of Concentrated Supernatant (CS) over a 24 h 

period. Values are means ± SE (n=3).  
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Figure 10. Percentage of viable oyster Crassostrea gigas hemocytes exposed to different concentrations 

(µg mL1-) of purified Extracellular Marennine (EMn). Values are means and SE (n=6).   
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Table 1. Summary of the marennine based solutions and marine organisms used in the present study  

 

Marennine 
based 

solutions 
Production 

process 
UV-visible 

spectra  
Method of 

quantification 
Marine organisms 
tested and studied 

effect 

Blue Water 
(BW) 

Ultrafiltration of H. 
ostrearia culture 

medium (3-30kDa)  

ε
677

=12.13 L g
-

1
cm

-1 
 

(Pouvreau et al. 
2006c)  

Mussel M. edulis, 
barnacle C. bisinuatus 
and winter flounder P. 

americanus: 
Larval survival and/or 

development 

Bacterial species of the 
Vibrio genus:  

Bacterial growth 

Concentrated 
Supernatant 

(CS) 
Innovative process 

being patented   

ε
669

=17.2 L g
-

1
cm

-1
 (Robert et 

al. 2002) 

Bacterial species of the 
Vibrio genus: Bacterial 

growth 

ε
677

=12.13 L g
-

1
cm

-1 
 

(Pouvreau et al. 
2006c)  

Sea urchin S. granularis:  
Fertilization, early 

embryonic development 

Purified 
Extracellular 
Marennine 

(EMn) 

- Ultrafiltration of H. 
ostrearia culture 

medium (3-30kDa) 
-  Anion-

Exchange 
chromatogr

aphy 
-  Dialysis & 

freeze-
drying 

(Pouvreau et al. 
2006c) 

Adapted from 
Pouvreau et al. 

(2006) 

ε
677

=12.13 L g
-

1
cm

-1 
 

(Pouvreau et al. 
2006c)  

Preliminary assays with 
EMn on the sea urchins 

S. granularis and P. 
lividus: 

Fertilization 
Oyster C. gigas 

haemocytes: 
Cytotoxicity 

Weighing of the 
purified EMn 
dried powder 

Fish gill cell line: 
Cytotoxicity 
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Table 2. Summary of the marennine based solutions effects on the marine organisms tested  

 

 

 

Marennine based 
solutions 

Marine 
organisms tested Summary of the observed effects 

Blue Water 
(BW) 

Mussel M. edulis 

Higher mortality and developmental delay for embryos 

from 1 µg mL
-1 

Higher mortality for veliger larvae from 5 µg mL
-1 

Decreased of motility for D-larvae from 1 µg mL
-1 

No observed effects at 0.1 µg mL
-1
 and 0.5 µg mL

-1
  

Barnacle C. 
bisinuatus 

No observed effect  on larval survival at 0.1 µg mL
-1
 and 

0.5 µg mL
-1

  

Winter flounder P. 
americanus  

No observed effect on larval and development at 0.1 µg 

mL
-1
 and 0.5 µg mL

-1
  

Bacterial species 
of the genus Vibrio 

Growth inhibition at 10 µg mL
-1 

Similar effects observed with BW solutions and CS 
solutions 

Concentrated 
Supernatant 

(CS) 
Sea urchin S. 

granularis 
Decreased of the fertilization rate from 10  µg mL

-1 
and 

delay of the embryonic development from 1 µg mL
-1 

Reversible effects after rinsing the eggs and/or the 
embryos 

Similar effects on fertilization observed with CS 
solutions ad EMn solutions on S. granularis and P. 

lividus 
Purified 

Extracellular 
Marennine 

(EMn) 

Sea urchins S. 
granularis and P. 

lividus 

Fish gill cell line 
Rtgill-W1 No observed effect on cell viability from 0 to 54 µg mL

-1 
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Oyster C. gigas 
haemocytes No observed effect up to 1 µg mL

-1
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