1	Prey exoskeletons influence the course of gastric evacuation in
2	Atlantic cod Gadus morhua L.
3	
4	
5	C. S. COUTURIER* [†] , N. G. ANDERSEN [‡] , C. AUDET [§] AND D. CHABOT [*]
6	
7	
8	*Ministère des Pêches et des Océans, Institut Maurice-Lamontagne, C.P. 1000, Mont-
9	Joli, QC, Canada, G5H 3Z4, ‡National Institute of Aquatic Resources, Technical
10	University of Denmark, North Sea Science Park, P. O. Box 101, DK-9850 Hirtshals,
11	Denmark, and §Institut des sciences de la mer de Rimouski, Université de Québec à
12	Rimouski, 310 Allée des Ursulines, Rimouski QC, Canada, G5L 3A1
13	
14	
15	Running headline:
16	GASTRIC EVACUATION OF CRUSTACEAN PREY
17	
18	
19	†Author to whom correspondence should be addressed. Tel.: (+47) 22855785; Fax: (+47)
20	22856041; email: christinecouturier@imbv.uio.no; present address: Physiology
21	Programme, Department of Molecular Biosciences, University of Oslo, 0316 Oslo,

22 Norway

23 ABSTRACT

24 This study examined the effects of prey exoskeleton characteristics on gastric evacuation 25 patterns in Atlantic cod Gadus morhua. Three distinct stages were highlighted in the 26 gastric evacuation of crustacean prey characterized by a robust exoskeleton. The 27 expectation that the three shrimps species (Pandalus borealis, Pandalus montagui and *Eualus macilentus*) and the crab *Chionoecetes opilio* were evacuated from the stomach 28 29 at different rates was confirmed. The duration of all stages increased with increasing ash 30 (and carbonate) content of the fresh prey. It was concluded that thickness, chemical 31 composition and morphology of the prey exoskeleton all affected gastric evacuation: 32 duration of initial delay, overall evacuation rate and a decreased evacuation rate at the 33 end of the process. The power exponential function (PEF), with its shape parameter, 34 described well the course of evacuation for these prey types, especially the initial delay. 35 However, the PEF does not allow describing evacuation by the current stomach content 36 mass independently of meal size, which limits its usefulness in estimating consumption 37 rates of wild G. morhua. To predict and describe gastric evacuation of prey with a robust 38 exoskeleton, it is therefore suggested to expand the square root function with an initial 39 lag phase, coupled to the mechanistically based cylinder model of gastric evacuation. 40

41

42 Key words: carbonate and ash contents; crustacean prey; energy content; integument43 thickness and morphology.

44

45 **INTRODUCTION**

46

47

Understanding trophic relationships, including consumption rates of predators, is an 48 49 important component of the science supporting ecosystem-based fisheries management. 50 Bioenergetics models use an energy-balance approach to estimate food consumption 51 based on the energy required for growth, reproduction, and metabolism. Apportion of 52 consumed energy among prey species is subsequently accomplished according to the 53 mass contribution and energy density of the prey in stomachs that are representatively 54 sampled in the field (Benoit-Bird, 2004). Alternatively, the stomach contents data are 55 combined with gastric evacuation rates to determine prey consumption rates using more 56 or less explicit feeding patterns (Elliott & Persson, 1978; Sainsbury, 1986; Jarre et al., 57 1991) or assuming that on average over time ingestion rate equals gastric evacuation rate 58 (Bajkov, 1935; Jones, 1978; Pennington, 1985). Often, the energy requirement of the 59 predator is not known and only the second approach can be used. In addition, the prey 60 composition in the stomach does not necessarily reflect the consumed one because of 61 differential evacuation rates (Karlsen & Andersen, 2012), which may be especially 62 pronounced for fishes preying on fish and crustacean prey (Bromley, 1994). In this case, 63 knowledge about the nature of evacuation of different prey types is, therefore, decisive to 64 avoid excessive bias even when using the bioenergetics approach to estimate food 65 consumption and prey mortality rates (Andersen, 2001; Andersen & Beyer, 2005a). 66 67 68 Although there have been some attempts at estimating the gastric evacuation rate in the

69 field (e.g. Arrhenius & Hansson, 1994; Worischka & Mehner, 1998; Darbyson et al.,

70 2003; Rindorf, 2004), most determinations of gastric evacuation rates have been obtained 71 in the laboratory using a variety of methods (Talbot, 1985; Bromley, 1994). The majority 72 of these studies focussed on commercial species, especially Atlantic cod Gadus morhua 73 L. 1758 (Tyler, 1970; Jones, 1974; MacDonald et al., 1982; dos Santos & Jobling, 1988; 74 Temming & Herrmann, 2003; Andersen, 2012). The most examined factors affecting 75 gastric evacuation rate are predator size, meal size, prey type and temperature (Bromley, 76 1994). The influence of prey characteristics (size, shape, energy density and resistance to 77 digestive processes) have also been described (Jobling, 1987; dos Santos & Jobling, 78 1991; Singh-Renton & Bromley, 1996; Andersen, 2001, 2012; Karlsen & Andersen, 79 2012). Including these prey characteristics, the simple, mechanistically founded cylinder 80 model suggested by Andersen & Beyer (2005a,b) is the only gastric evacuation model at 81 present that is able to predict properly the evacuation of ingested prey fish. Based on 82 surface considerations, it describes evacuation of ingested prey by the square root of their 83 current mass in the stomach. Further, interactive effects on evacuation rate of size, shape, 84 energy density and resistance to digestion of individual prey are inherent features of the 85 model and have been validated by Andersen & Beyer (2005b, 2007) and Karlsen & 86 Andersen (2012). However, a critical assumption is that the individual prey is considered 87 as having constant energy density and resistance to the digestive processes throughout. 88 While prey fish generally fulfil the proviso about prey homogeneity (Andersen & Beyer, 89 2005a), crustaceans with a robust exoskeleton that initially delays the digestive processes 90 are evidently heterogeneous regarding their resistance to digestion. Crustaceans make up 91 a large proportion of the diet of many piscivorous fishes. For instance, shrimp, in 92 particular the northern shrimp Pandalus borealis Krøyer 1838, and snow crab Chionoecetes opilio Krøyer 1838 are important prey species of G. morhua in the Gulf of 93

94 St. Lawrence, Canada (Waiwood & Majkowski, 1984; Savenkoff *et al.*, 2006; Chabot *et al.*, 2008).

- 96
- 97

98 Depending on the amounts of chitin and minerals (mostly calcium carbonate),

99 invertebrate exoskeletons may be very robust (Welinder, 1974) and act as a chemical and

100 physical barrier against the actions of gastric juices and grinding by gastric muscular

101 contractions (Jones, 1974; MacDonald *et al.*, 1982; Bromley, 1994). Andersen (2001)

102 confirmed that the evacuation rate of brown shrimp *Crangon crangon* with a relatively

tough exoskeleton is slower than that of fish prey of similar energy density. In contrast,

104 krill Meganyctiphanes norvegica (Sars 1857) characterized by a thin, flexible integument

105 was evacuated at the same rate as fish, which suggests that the digestion rate depends on

thickness, composition and morphology of the armour (dos Santos & Jobling, 1992;

107 Andersen, 1999). Evacuation of prey with a tough exoskeleton is typically characterized

108 by an initial period in which decomposition of the prey progresses slowly, followed by a

second phase of a significantly higher evacuation rate (dos Santos & Jobling, 1992;

110 Bromley, 1994; Berens & Murie, 2008).

111

112

To date, gastric evacuation of different crustacean prey types have never be compared
and explained by the nature of the exoskeleton. Using crustacean prey with different
levels of armour, the aim of the present study was to examine how the course of gastric
evacuation (gastric evacuation pattern) is related to prey exoskeleton characteristics.
Four characteristics were quantified (chitin, ash, carbonate contents and energy density)
and two functions were used to describe evacuation of the crustacean meals in *G*.

119	<i>morhua</i> . The power exponential is a flexible function, which enables a mathematical
120	description of initial impediment of gastric evacuation due to prey armament (Elashoff et
121	al., 1982; dos Santos, 1990). The general power function (Temming & Andersen, 1994;
122	Andersen, 1998) was used to examine the overall deviation of the observed evacuation
123	patterns from that of a homogeneous prey (the square root function).
124	
125	
126	
127	MATERIALS AND METHODS
128	
129	
130	PREDATOR FISH AND PREY
131	
132	
133	Gadus morhua were trawled in the Baie des Chaleurs, Québec (48° 21' N; 64° 24' W) in
134	July 2002. They were kept indoors under natural photoperiod and artificial light (< 22
135	lux) in 13 m ³ tanks at the Maurice-Lamontagne Institute, Mont-Joli (Québec, Canada).
136	Water temperature (2–11° C) and salinity (25-31) followed the natural cycle of the water
137	intake. Gadus morhua were fed twice a week with a maintenance ration of capelin
138	Mallotus villosus (Müller 1776) corresponding to c. 3 % of body mass per meal.
139	
140	
141	Four types of prey representing a gradient in their integument resistance to digestion
142	were used: three species of shrimp having a relatively thin exoskeleton (P. borealis,
143	striped pink shrimp Pandalus montagui Leach 1814, Greenland shrimp Eualus

144	macilentus Krøyer 1841) and C. opilio with a fairly robust exoskeleton. Shrimps were
145	caught in the St Lawrence estuary (48° 29' N; 68° 50' W) in October 2002. They were
146	stored at -80° C. Juvenile <i>C. opilio</i> were caught from April to June 2002 in the Baie
147	Sainte-Marguerite, Gulf of St Lawrence (50° 07' N; 66° 38' W). They were kept alive in
148	730 l tanks at $4.0 \pm 0.2^{\circ}$ C and fed twice a week with chopped <i>M. villosus</i> and <i>P</i> .
149	borealis, sometimes with the addition of two species of krill (Euphausia pacifica Hansen
150	1911 and <i>M. norvegica</i>) kept frozen at -20° C.
151	
152	
153	The size of the experimental prey was chosen from the size of prey found in G. morhua
154	stomachs collected in the field (D. Chabot, unpubl. data). Experimental meals consisted
155	of whole specimens, weighed and measured individually (E. macilentus were not
156	measured).
157	
158	
159	EXPERIMENTAL SET-UP AND PROTOCOL
160	
161	
162	The experimental set-up consisted of twelve circular 7301 tanks (diameter 1.15 m, depth
163	0.70 m). The tanks were supplied with sand-filtered recirculated sea water $(1-2 \ l \ min^{-1})$.
164	The water temperature was maintained at $4.0 \pm 0.2^{\circ}$ C and continuous air bubbling
165	ensured oxygen saturation close to 100 %. Each tank was divided into two compartments
166	by plastic netting. Each compartment contained one cod, providing 24 cod per
167	experiment.
168	

One month before the beginning of the experiments, *G. morhua* of similar size (Table I)
were transferred into experimental tanks to acclimatize to the experimental conditions.
Here, they were trained for at least two weeks to feed voluntarily on the experimental
prey.

174

175

176 Four experiments were completed using one prey type per experimental meal. Shrimps 177 were thawed just before meal preparation. Dos Santos (1990) showed that frozen prey 178 tend to be evacuated slightly more rapidly than fresh ones, but he did not find any 179 significant difference for shrimps. Pre-test showed that snow crabs could not be offered 180 alive as they were hiding away in the experimental tanks, between the plastic netting and 181 the drain pipe. Thus, prior to be offered to cod, snow crabs were plunged into fresh water 182 and killed by osmotic shock without being damaged (unlike freezing, which tends to 183 make the legs brittle). All prey were gently dabbed to remove excess water prior to 184 weighing. Additional meals were prepared and refrozen at -80° C for subsequent 185 analyses of prey composition.

186

187

188 *Gadus morhua* were fed their meal (t = 0 h) and at predetermined time intervals (t = 6, t)

189 12, 24, 48, 72, 96, 120, 144 h) their stomach contents were recovered by dissection or by

190 stomach flushing following anaesthetization (metomidate hydrochloride, 5×10^{-3} g l⁻¹).

191 Stomach flushing was realised with a Tygon[®] tubing (ID = 5 mm, OD = 7 mm)

192 connected to a sea water supply system (c. 1.4 l min^{-1}). The tubing was introduced into

193 the cod stomach while the fish was held inclined above a filter (mesh size $120 \,\mu$ m). The

194	stomach content was collected, rinsed under fresh water, gently dabbed on a paper towel
195	and frozen at -80° C for later analyses on composition. The fish was then weighed and
196	measured. It was generally used for more than one experiment and a minimum of two
197	weeks was allowed for recovery between experimental trials.
198	
199	
200	Preliminary tests were performed to confirm the efficiency of stomach flushing.
201	Moreover, to ensure that recovery was complete during the evacuation experiments, the
202	number of ingested prey items was noted and flushing was continued until all prey were
203	recovered.
204	
205	
206	PREY COMPOSITION
207	
208	
209	Preserved meals and stomach contents were dried 72 h at 65° C or freeze-dried 48 h to
210	determine their water content. Tests showed no difference between these two techniques.
211	Energy density of dried samples was determined by bomb calorimetry (PARR 1261;
212	www.parrinst.com). Values obtained were corrected for carbonates content (Paine, 1966)
213	as well as nitric acid produced during combustion (Golley, 1961). Ash content was
214	determined by weighing the remains of the sample after 24 h at 500° C (Atkinson &
215	Wacasey, 1976). Carbonate content was determined as the difference in mass after an
216	additional 5 h of heating at 900° C (Paine, 1966).
217	
218	

219	Chitin content was assayed on whole prey (stomach contents did not provide enough
220	material to allow any assay). Chitin was determined in 2012 on <i>P. borealis</i> and <i>P.</i>
221	montagui captured in summer of 2011 and kept alive until the determinations, and on C.
222	opilio captured in 2012, frozen at sea and processed shortly after. No E. macilentus were
223	available for chitin determination. The chitin assay method of Spinelli et al. (1974) was
224	modified by Martin Poirier (ABK Gaspésie Inc., Quebec). Briefly, samples were dried
225	and reduced to powder by pestle, deproteinated in a 2 % NaOH solution during 90 min at
226	90° C, and then filtered and demineralised using a 5 % HCl solution during 16 h at
227	ambient temperature. After another filtration, samples were rinsed with acetone to
228	remove lipids and dried at 105° C during 16 h. Chitin content was the difference in mass
229	before and after the treatments.
230	
231	
232	Water, ash, carbonate and chitin contents were expressed as percentages of wet mass and
233	transformed before statistical analyses (arcsine of the square root values; Sokal & Rohlf,
234	1995). Differences between prey types were tested using one-way ANOVA followed by
235	post-hoc comparison (Tuckey HSD). Significance was accepted at $P < 0.05$. The
236	relationship between ash and carbonate contents was determined by linear regression.
237	
238	
239	GASTRIC EVACUATION PATTERNS
240	

242 Gastric evacuation of the four prey species was described by two functions that 243 previously have been used to describe heterogeneous prey. The power exponential 244 function 245 $S_t = S_0 2^{-(\eta t)^{\varphi}}$ 246 (1)247 248 is able to describe deviations from an exponential evacuation including an initial slow 249 evacuation, which is particularly relevant for prey with a robust exoskeleton (dos Santos 250 & Jobling, 1992). S_0 (g) is the mass of the ingested meal, S_t (g) is the recovered stomach content mass, and t (h) is the elapsed time. The two parameters η and φ determine the 251 252 evacuation rate (η^{-1} represents the time at which S_0 has halved) and the shape of the 253 evacuation curve ($\varphi = 1$: simple exponential evacuation; $\varphi > 1$: initial delay of 254 evacuation; $\varphi < 1$: initial acceleration). 255 256 257 The shape of the evacuation curve described by the general power function 258 $S_t = [S_0^{1-\alpha} - (1-\alpha)\rho t]^{(1-\alpha)^{-1}} ; \quad 0 \le t \le S_0^{1-\alpha} (1-\alpha)^{-1} \rho^{-1}$ 259 (2)260 261 depends on the shape (power) parameter α , while ρ is the rate parameter. An estimate of 262 α close to 0.5 (the square root version) obtained by use of this function to data on 263 evacuation of a prey indicates that the prey can be considered homogeneous as regards 264 the prey characteristics influencing evacuation rate. Lower values have been obtained 265 from crustacean prey with a robust exoskeleton as well as gadoid fish prey with a large,

fat liver. In contrast, higher values were estimated from small fish prey with a large

proportion of easily digestible parts relative to their more compact trunk (Andersen &Beyer, 2005*b*).

271	The parameters of equations (1) and (2) were estimated by non-linear regression (the
272	iterative Marquard method; SAS Institute Inc.; <u>www.sas.com</u>) with the modifications for
273	the general power function as described by Andersen (1998). The data set from each
274	experiment was truncated at the time of first occurrence of an empty stomach (Andersen,
275	1984; Olson & Mullen, 1986).
276	
277	
278	The goodness of fit of two evacuation functions were evaluated using r^2 values.
279	Candidate functions were compared using Akaike Information Criteria corrected for
280	small sample size (AICc) and normalized relative likelihoods w (Akaike weights;
281	Burnham & Anderson, 2002). As a general rule of thumb, the confidence set of candidate
282	functions (analogous to a confidence interval for a mean estimate) include those with w_i
283	within 10 % of the highest, where w_i is interpreted as the weight of evidence
284	(probability) that model i is the best approximating model given the data and set of
285	candidate models . AICc denotes the amount of information lost when using a model to
286	approximate the "true" model and is estimated as $n \ln(\text{RSS } n^{-1}) + 2kn(n - k - 1)^{-1}$
287	(adjusting for small sample sizes), where n is the number of observations, RSS the
288	residual sums of squares from the non-linear regression, and k the number of parameters
289	(including the error term). $w_i = \exp(-0.5\Delta_i)[\sum \exp(-0.5\Delta_i)]^{-1}$, where $\Delta_i = AICc_i - \Delta_i$
290	$AICc_{min}$ and $AICc_{min}$ is the lowest AICc value obtained (for a detailed explanation of the
291	methods, see Burnham & Anderson, 2002)

RESULTS PREY COMPOSITION Contents of water and ash differed between shrimp and crab, but were relatively similar among the three species of shrimp. Hence, the water content was significantly different among prey types ($F_{[3,37]} = 29.2$; P<0.001), being the lowest in C. opilio (Table II). Ash and carbonate contents also varied significantly among prey species (ash: $F_{[3,37]} = 3658$; P < 0.001; carbonate: $F_{[2,22]} = 1341$; P < 0.001). The contents of ash and carbonates in C. opilio were three times higher than the contents found in the three shrimp species. Among the latter, P. borealis and P. montagui had similar ash and carbonate contents, which were higher than those of E. macilentus (Table II). A strong linear relationship was obtained between ash and carbonate contents using the values from the three species: $C_c = 0.39A_c - 0.27$ where C_c and A_c are carbonate and ash contents (% wet mass) ($r^2 = 0.998$, P < 0.001, n =25).

(3)

318	The energy densities of the prey species used in the present study differed ($F_{[3,37]} = 34$;
319	P < 0.001). The energy density of <i>C. opilio</i> was lower than that of the three shrimp
320	species, which showed similar values. The chitin content was measured for three prey
321	species and they differed significantly ($F_{[2,29]} = 426.6$; $P < 0.001$): the chitin content of <i>C</i> .
322	opilio was twice as high as that of the two shrimp P. borealis and P. montagui, but P.
323	borealis had a slightly but significantly lower chitin content than P. montagui.
324	
325	
326	CHANGES IN STOMACH CONTENT COMPOSITION DURING EVACUATION
327	
328	
329	The remaining amount of material in the stomach after 72 h of evacuation was usually
330	insufficient to perform analyses of the composition.
331	
332	
333	The water content of all prey increased slightly during the first 6 h in the stomach (Fig.
334	1a). Subsequently, the water content kept increasing slightly during digestion for C.
335	opilio and P. borealis but not for E. macilentus and P. montagui. Larger changes were
336	observed for the ash content, which decreased exponentially in the stomachs with C .
337	opilio (Fig. 1b) dropping sharply to half of the initial value within 48 h and decreasing
338	more slowly during the remainder of the evacuation period. The ash content in fresh
339	shrimp was substantially lower as described above, and it decreased at a much lower rate
340	during evacuation.
341	

512	
343	The decrease in carbonate of stomach contents (not shown) was similar to that of ash
344	content. Accordingly, the relationship between these two variables remained strong in
345	the stomachs ($r^2 = 0.98$, $n = 57$):
346	
347	$C_c = 0.38A_c - 0.03 \tag{4}$
348	
349	
350	The energy density of shrimp decreased about 1 kJ g^{-1} during the first 12 h of
351	evacuation, and levelled off until the shrimp was completely evacuated (Fig. 1c). Data on
352	crab fluctuated around the initial value and were more variable, probably due to scarce
353	data.
354	
355	
356	GASTRIC EVACUATION PATTERNS
357	
358	
359	Gastric evacuation of C. opilio lasted more than 144 h (Fig. 2). An initial period of 24 h
360	with no significant evacuation was followed by an exponential decrease of the remaining
361	prey mass. At the final stage of evacuation, the stomach contents were principally
362	composed of soft pieces of exoskeleton that were most likely composed of chitin. A
363	confirmatory assay was, however, not performed. For the three species of shrimp, the
364	first empty stomach appeared 96 h after food intake (Fig. 3).
365	
366	

367	For all prey, r^2 values for the power exponential function were higher than the
368	corresponding ones obtained by use of the general power function because the former
369	function was able to describe the initial delay of evacuation (Table III). Accordingly, the
370	normalized relative likelihood w of the general power function was below 10 % of the
371	value obtained by use of the power exponential (crab, $< 1\%$; shrimp, $< 3-6\%$; shrimp
372	combined, < 0.01 %). So, there was a strong weight of evidence in favour of the power
373	exponential function being the best explanatory model for all species (Table III).

375

376 The estimates of the shape parameter φ in the power exponential function were 377 significantly higher than 1 (95% C.I. in Table III) for all crustacean prey (i.e. gastric 378 evacuation was initially delayed relative to a pure exponential decay function). The species specific estimates of φ were significantly different (ANOVA: $F_{3.59} = 3.29$; P <379 380 0.05). Subsequently, post hoc comparison (Tuckey HSD) showed that the value 381 estimated from C. opilio was significantly different from those obtained from the three 382 shrimp species indicating a longer lasting initial delay for evacuation of the crab prey. 383 The estimates of the rate parameter η obtained from shrimp prev were likewise similar, 384 and they were significantly higher than the value estimated from crab. Moreover, the estimates of η^{-1} indicated that half the meal is evacuated within 20–24 h for shrimp prey, 385 386 whereas 57 h was needed for the crab. The value of the shape parameter φ was positively 387 correlated with initial contents of ash and carbonate in the prey.

388

389

390 The shape parameter α of the general power function was negative for *C. opilio* pointing

to the long delay period and the poor performance of the general power model to

392	describe the course of evacuation (Fig. 2). In contrast, this function with a power value
393	around 0.5 (square root) gave a fair description of evacuation of the individual shrimp
394	species (Table III and Fig. 3).

396

397 **DISCUSSION**

398

399

400 This study confirmed the expectation that the three shrimps and C. opilio were evacuated 401 from the stomach at different rates by G. morhua. These prey differ in energy density 402 that is known to influence evacuation rate negatively (Windell, 1966; Grove et al., 1978; 403 dos Santos & Jobling, 1988; Andersen, 1999). However, C. opilio had the lowest energy 404 density and should have been evacuated most rapidly if energy density was the only prev 405 characteristic influencing the evacuation rate. In contrast, the protecting effect of the 406 heavy exoskeleton of C. opilio is expected to delay the evacuation relative to that of 407 shrimp. The shrimps were totally evacuated in c. 72 h, whereas it took twice as long for 408 C. opilio to be evacuated. Hopkins & Larson (1990) obtained similar results. They 409 compared gastric evacuation patterns of four prey types in black and yellow rockfish Sebastes chrysomelas (Jordan & Gilbert 1881), including two prey species with 410 411 exoskeleton, the purple shore crab *Hemigrapsus nudus* (Dana 1851) and the Franciscan 412 bay shrimp Crangon franciscorum Stimpson 1856. In their study, the shrimp was 413 evacuated in 30 hours, whereas the crab was evacuated in 50 hours, but no data on prey 414 energy density was provided. 415

416

The present data demonstrated three distinct stages of evacuation of prey with an
exoskeleton. In the first stage, the evacuation was slow, presumably because the
exoskeleton prevented stomach enzymes from attacking the prey (dos Santos & Jobling,
1992; Bromley, 1994). Then, the gastric evacuation rate increased significantly, and in
the final stage of evacuation, the evacuation slowed down again.

422

423

424 In the first stage of evacuation, the exoskeleton probably has a dual effect on digestion of 425 the prey. Pepsin and other gastric enzymes are activated in an acidic environment 426 (Jobling, 1986). During fasting, pH of the gastric juice is neutral but decreases after 427 intake of food because of HCl secretion. The buffer capacity of carbonates contained in 428 the exoskeleton might raise the pH value and delay enzyme activation, which would 429 explain partly why the delay in the first stage of evacuation seems to be directly correlated with prey carbonate (and ash) contents. To rigorously test this hypothesis, pH 430 431 should be measured in stomach contents during evacuation, which was impossible in this 432 study, because stomach flushing was used to collect stomach contents. 433 434

The other property of the exoskeleton is the barrier effect (Bromley, 1994). It protects the
rest of the body from the digestive processes in the stomach, and evacuation seems to
begin when breaks occur in the more fragile parts of the exoskeleton, such as the joints.
Once gastric juices have penetrated into the internal soft tissues, the digestion and,
subsequently, the evacuation rate rapidly increases. For prey without exoskeleton like
fish, gastric evacuation begins as soon as the prey is ingested (dos Santos & Jobling,
1992). The initial delay in evacuation of shrimps only lasted for a few hours (Fig. 3). As

442 described above, the shrimp exoskeleton is less resistant (lower ash and chitin contents) 443 than in crab. It was observed that the cephalothorax of shrimp was separated from the 444 abdominal part early in the course of digestion (~6 h). This separation made digestion of 445 flesh possible after only a short lag. The situation was different for C. opilio, which did 446 not appear to be altered much during the first 24 h following ingestion (Fig. 2); this could 447 be related to the thicker exoskeleton merged to form a compact carapace and/or to the 448 carbonate heavy encrustations that harden the exoskeleton and perhaps delay enzyme 449 activation by their buffering action as described above. The latter is also indicated by the 450 significant loss of carbonate and ash contents to around half the value of fresh crab 451 during this initial stage of evacuation (Fig. 1). The present results confirm that energy-452 poor minerals, as estimated by ash contents, are quickly evacuated from the stomach 453 (Hopkins & Larson, 1990).

454

455

456 In the second stage of evacuation, the evacuation rate of crab was significantly lower 457 than that obtained from combined data on the three shrimp species as reflected in the 458 estimates of the power exponential rate parameter η (Table III). The rates for crab and shrimp were 0.26 g h^{-1} and 0.45 g h^{-1} at the time of halving of the prey body mass, and 459 0.26 g h⁻¹ and 0.51 g h⁻¹ at their respective maximum values. The energy densities of the 460 461 prey were quite similar after the initial stage of evacuation (Fig. 1). This could be 462 explained by the initial heavy loss of carbonates in C. opilio. The high level of 463 carbonates in fresh C. opilio also explain the low energy density of these (Table II). 464 Therefore, differences in energy density could not explain the differential evacuation 465 rates in the second stage of evacuation, which seems to be caused by prey specific 466 resistance to digestion (Andersen, 2001). Whereas the compact carapace of the crab only

gradually opened up and did not fragment until late in the evacuation period, the
exoskeleton of shrimp quickly broke up in smaller fragments leaving larger surfaces of
the inner soft tissues exposed to the enzymatic and mechanical processes in the stomach.

471

472 In the final stage of evacuation, mainly chitin was recovered from the stomach. The 473 chitin contents of remaining prey in the stomachs were not quantified. However, 474 visually, it appeared that for both shrimp and crab prey, remains of chitin was the last 475 evacuated prey component. Dissecting stomachs from bluegill sunfish, Lepomis 476 macrochirus Rafinesque 1819, Windell (1966) also observed that other organic matter in 477 the exoskeleton was digested first, whereas chitin stayed longer in the stomach, i.e. until 478 the pieces were small enough to pass through the pylorus as chitin was considered a non-479 digestible material. However, the gastric mucosa of some fish, including G. morhua, 480 secretes chitinases and chitobiases to hydrolyse chitin in β -N-acetyl-D-glucosamine 481 (Danulat & Kausch, 1984). Thus, G. morhua can digest chitin, but the process is likely 482 slower than for the other prey constituents. At the end of the evacuation, only pieces of 483 softened exoskeleton parts without minerals remained in the stomach. The slow digestion 484 of chitin explains why the estimated evacuation curves level off in the final stage of 485 evacuation and, therefore, are of an exponential nature subsequent to the initial delay. 486

487

488 The duration of all stages increased with increasing ash (and carbonate) content of the 489 fresh prey. Increasing proportionally to the ash content, the duration of the first stage 490 was, however, most affected as indicated by the higher estimate of the shape parameter φ 491 of the power exponential function obtained from crab as compared to those for shrimps

492 (Table III). Estimates of φ for brown shrimp *Crangon crangon* (L. 1758) fed to whiting 493 Merlangius merlangus (L. 1758) (data from Andersen, 2001) and blue-leg swimming 494 crab Liocarcinus depurator (L. 1758) fed to G. morhua (N. G. Andersen, unpubl. results) 495 corroborated the present findings (Fig. 4). Together with an estimate of 1.33 obtained 496 from *P. borealis* by dos Santos & Jobling (1992), values between 1.30 and 1.60 for *C*. 497 *crangon* were in line with the estimates of 1.45–1.53 obtained from the three shrimp 498 species in the present study. The estimated value 3.15 of the shape parameter for L. 499 *depurator* of 9.6 g body mass was higher than the estimate of 2.13 obtained from C. 500 opilio (Fig. 4). This may be ascribed to the three times larger body mass of L. depurator 501 and the consequently thicker carapace. Accordingly, Berens & Murie (2008) found φ 502 values of 2.28 to 3.07 for iridescent swimming crab Portunus gibbesii (Stimpson 1859) 503 ranging from 2.8 g to 11.7 g body mass and fed to gag Mycteroperca microlepis (Goode 504 & Bean 1879).

505

506

507 Estimates of the shape parameter φ obtained from experiments on *M. merlangus* 508 evacuating krill *M. norvegica* with low ash content, small body size (0.20 g) and a thin 509 flexible exoskeleton (data from Andersen, 2001) were generally lower (1.09–1.26) than 510 those obtained from shrimp (Fig. 4). The values were in most cases significantly higher 511 than 1, which in terms of the power exponential function indicated an initial delay of 512 evacuation. This was not obvious as demonstrated by, for example, evacuation data on 513 *M. norvegica* from which a value of 1.26 ± 0.14 (estimate ± 95 % C.I.) was obtained for 514 φ [Fig. 5(a)]. Similarly, data on lesser sandeel Ammodytes tobianus L. 1758 of 4.0 g body 515 mass fed to G. morhua from Andersen (2012) produced values between 1.19 and 1.27, 516 all significantly higher than 1 (Fig. 4). This prey fish is particularly homogeneous as

517	regards prey characteristics influencing evacuation rate (Andersen & Beyer, 2005 <i>a</i>), and
518	it is consistently evacuated according to the square root function without an initial delay.
519	This was also the case for the data on <i>A. tobianus</i> as exemplified by the data subset that
520	gave the value 1.25 ± 0.13 (estimate ± 95 % C.I.) of φ [Fig. 5(b)]. The evacuation of <i>M</i> .
521	norvegica likewise closely followed the square root function suggesting that this prey
522	type can be considered homogeneous [Fig. 5(a)]. Thus, whereas the evacuation curve
523	described by the power exponential function deviated significantly from that of the
524	simple exponential with regard to an initial delay, it was not necessarily so when it was
525	compared with the square root function (Fig. 5). Values of φ significantly higher than 1,
526	should therefore not uncritically be interpreted as an initial delay of evacuation.
527	
528	
529	In conclusion, resistance of the exoskeleton (thickness, composition or morphology) was
530	the prey characteristic differentiating the crustacean prey. This was reflected in the
531	duration of the initial delay of evacuation as well as in the overall evacuation rate. The
532	remnants of robust exoskeletons furthermore slowed down the evacuation process
533	towards the end of evacuation relative to what should be expected from the course of the
534	square root function. These effects of robust exoskeletons provided an exponential
535	course of evacuation with an initial delay that was well described by the power
536	exponential function.
537	
538	
539	Unfortunately, unlike the square root function, the power exponential function cannot
540	describe evacuation by the current mass of stomach contents and, in particular, it cannot
541	work independently of meal size (dos Santos & Jobling, 1995). The general power model

542 with a shape parameter close to that of the square root function provided, however, a 543 reasonable description of the evacuation of shrimp (Table III and Fig. 3). This was in 544 accordance with the results of Andersen & Beyer (2005b), who successfully used the 545 cylinder model to predict evacuation of mixed meals composed of shrimp and fish prey. 546 Nevertheless, it is evident that the longer lasting initial delay of evacuation of C. opilio (and probably crab and lobster in general) due to its thick carbonate encrusted carapace, 547 548 should be considered in mathematical descriptions of evacuation patterns and rates. This 549 may be realized by ignoring the very low evacuation rates of minor contents of chitin at 550 the end of evacuation and splitting the course of evacuation into two stages: an initial 551 period with slow evacuation (if appropriate data are available for the quantification) or, 552 alternatively, with no evacuation at all, followed by a period of faster evacuation, 553 probably according to the square root function. Surface considerations, prey 554 characteristics and the square root function being inherent features, the cylinder model of 555 gastric evacuation (Andersen & Beyer, 2005b) should qualify for the purpose. 556 557 558 The present study was due to financial support from the Canadian Strategic Science Fund 559 and the EU funding agency through the Gadolife project "Growth dynamics and 560 regulation of energy allocation in gadoids of different life strategies and in different 561 environments". The authors would like to thank B. Sainte-Marie, Y. Lambert, R. Miller, 562 B. Chenard, M. Péloguin, S. Champagne and Luc Beaudin from the Maurice 563 Lamontagne Institute for their technical help and assistance. 564 565

566 **References**

569	Andersen, N. G. (1984). Depletion rates of gastrointestinal content in common goby
570	(Pomatoschistus microps (Kr.)). Effects of temperature and fish size. Dana 3, 31-42.
571	
572	
573	Andersen, N. G. (1998). The effect of meal size on gastric evacuation in whiting. Journal
574	of Fish Biology 52, 743–755. doi: 10.1006/jfbi.1997.0617
575	
576	
577	Andersen, N. G. (1999). The effects of predator size, temperature, and prey
578	characteristics on gastric evacuation in whiting. Journal of Fish Biology 54, 287-301.
579	doi: 10.1006/jfbi.1998.0865
580	
581	
582	Andersen, N. G. (2001). A gastric evacuation model for three predatory gadoids and
583	implications of using pooled field data of stomach contents to estimate food rations.
584	Journal of Fish Biology 59, 1198–1217. doi: 10.1006/jfbi.2001.1731
585	
586	
587	Andersen, N. G. (2012). Influences of potential predictor variables on gastric evacuation
588	in Atlantic cod Gadus morhua feeding on fish prey: parameterization of a generic model.
589	Journal of Fish Biology. doi: 10.1111/j.1095-8649.2011.03195.x
590	
591	

592	Andersen, N. G. & Beyer, J. E. (2005 <i>a</i>). Gastric evacuation of mixed stomach contents
593	in predatory gadoids: an expanded application of the square root model to estimate food
594	rations. Journal of Fish Biology 67, 1413–1433. doi: 10.1111/j.1095-8649.2005.00835.x
595	
596	
597	Andersen, N. G. & Beyer, J. E. (2005b). Mechanistic modelling of gastric evacuation in
598	predatory gadoids applying the square root model to describe surface-dependent
599	evacuation. Journal of Fish Biology 67, 1392–1412. doi: 10.1111/j.1095-
600	8649.2005.00834.x
601	
602	
603	Andersen, N. G. & Beyer, J. E. (2007). How are prey fishes of multiple meals evacuated
604	from the stomach of a piscivorous fish? Journal of Fish Biology 71, 219–234. doi:
605	10.1111/j.1095-8649.2007.01486.x
606	
607	
608	Arrhenius, F. & Hansson, S. (1994). In situ food consumption by young-of-the-year
609	Baltic Sea herring <i>Clupea harengus</i> : a test of predictions from a bioenergetics model.
610	Marine Ecology Progress Series 110, 145–149.
611	
612	
613	Atkinson, E. G. & Wacasey, J. W. (1976). Caloric values of zoobenthos and
614	phytobenthos from the Canadian Artic. p. 24: Department of the environment, fisheries
615	and marine service, research and development directorate.
616	

617	
618	Bajkov, A. D. (1935). How to estimate the daily food consumption of fish under natural
619	conditions. Transactions of the American Fisheries Society 65, 288–289.
620	
621	
622	Benoit-Bird, K. J. (2004). Prey caloric value and predator energy needs: foraging
623	predictions for wild spinner dolphins. Marine Biology 145, 435-444.
624	
625	
626	Berens, E. J. & Murie, D. J. (2008). Differential digestion and evacuation rates of prey in
627	a warm-temperate grouper, gag Mycteroperca microlepis (Goode & Bean). Journal of
628	Fish Biology 72, 1406–1426.
629	
630	
631	Bromley, P. J. (1994). The role of gastric evacuation experiments in quantifying the
632	feeding rates of predatory fish. Reviews in Fish Biology and Fisheries 4, 36-66.
633	
634	
635	Burnham, K. P. & Anderson, D. R. (2002). Model selection and multimodel inference: a
636	practical information-theoretic approach. New York, USA: Springer.
637	
638	
639	Chabot D., Sainte-Marie B., Briand K. & Hanson J.M. (2008). Atlantic cod and snow
640	crab predator-prey size relationship in the Gulf of St. Lawrence, Canada. Marine
641	Ecology Progress Series, 363 , 227–240.

6	4	3
6	4	3

644	Danulat, E. & Kausch, H. (1984). Chitinase activity in the digestive tract of the cod,
645	Gadus morhua (L.). Journal of Fish Biology 24, 125–133.
646	
647	
648	Darbyson, E., Swain, D. P., Chabot, D. & Castonguay, M. (2003). Diel variation in
649	feeding rate and prey composition of herring and mackerel in the southern Gulf of St
650	Lawrence. Journal of Fish Biology 63, 1235–1257.
651	
652	
653	Elashoff, J. D., Reedy, T. J. & Meyer, J. H. (1982). Analysis of gastric emptying data.
654	<i>Gastroenterology</i> 83 , 1306–1312.
655	
656	
657	Elliott, J. M. & Persson, L. (1978). The estimation of daily rates of food consumption for
658	fish. Journal of Animal Ecology 47, 977–991.
659	
660	
661	Golley, F. B. (1961). Energy values of ecological materials. <i>Ecology</i> 42 , 581–584.
662	
663	
664	Grove, D. J., Loizides, L. G. & Nott, J. (1978). Satiation amount, frequency of feeding
665	and gastric emptying rate in Salmo gairdneri. Journal of Fish Biology 12, 507-516.
666	

668	Hopkins, T. E. & Larson, R. J. (1990). Gastric evacuation of three food types in the black
669	and yellow rockfish Sebastes chrysomelas (Jordan and Gilbert). Journal of Fish Biology
670	36, 673–681.
671	
672	
673	Jarre, A., Palomares, M. L., Soriano, M. L., Sambilay, V. C. & Pauly, D. (1991). Some
674	new analytical and comparative methods for estimating the food consumption of fish.
675	ICES Marine Science Symposia 193, 99–108.
676	
677	
678	Jobling, M. (1986). Mythical models of gastric emptying and implications for food
679	consumption studies. Environmental Biology of Fishes 16, 35-50.
680	
681	
682	Jobling, M. (1987). Influences of food particle size and dietary energy content on
683	patterns of gastric evacuation in fish: test of physiological model of gastric emptying.
684	Journal of Fish Biology 30 , 299–314.
685	
686	
687	Jones, R. (1974). The rate of elimination of food from the stomachs of haddock
688	Melanogrammus aeglefinus, cod Gadus morhua and whiting Merlangius merlangus.
689	Journal du Conseil international pour l'Exploration de la Mer 35 , 225–243.
690	
691	

692	Jones, R.	(1978)	. Estimates	of food-co	nsumption	of haddock	(Melanogrammus
-----	-----------	--------	-------------	------------	-----------	------------	----------------

693 *aeglefinus*) and cod (*Gadus morhua*). Journal du Conseil international pour

- 695
- 696
- 697 Karlsen, J. D. & Andersen, N. G. (2012). Does the cylinder model of gastric evacuation
- 698 predict observed evacuation of mixed meals of prey of contrasting geometries in a
- 699 piscivorous fish? Journal of Fish Biology 80, 166–180. doi: 10.1111/j.1095-
- 700 8649.2011.03160.x
- 701
- 702
- 703 MacDonald, J. S., Waiwood, K. G. & Green, R. H. (1982). Rates of digestion of different
- 704 prey in Atlantic cod (Gadus morhua), ocean pout (Macrozoarces americanus), winter
- 705 flounder (Pseudopleuronectes americanus), and American plaice (Hippoglossoides
- 706 *platessoides*). *Canadian Journal of Fisheries and Aquatic Sciences* **39**, 651–659.
- 707

- 709 Olson, R. & Mullen, A. (1986). Recent developments for making gastric evacuation and
- 710 daily ration determinations. *Environmental Biology of Fishes* **16**, 183–191.
- 711
- 712
- Paine, R. T. (1966). Endothermy in bomb calorimetry. *Limnology and Oceanography* 11,
 126–128.
- 715
- 716

⁶⁹⁴ *l'Exploration de la Mer* **38**, 18–27.

717	Pennington, M. (1985). Estimating the average food consumption by fish in the field
718	from stomach contents data. Dana 5, 81–86.
719	
720	
721	Rindorf, A. (2004). Estimation of evacuation rates in the field. Journal of Fish Biology
722	65, 262–281. doi:10.1111/j.1095-8649.2004.00450.x
723	
724	
725	Sainsbury, K. J. (1986). Estimation of food consumption from field observations of fish
726	feeding cycles. Journal of Fish Biology 29, 23–36.
727	
728	
729	dos Santos, J. (1990). Aspects of the eco-physiology of predation in Atlantic cod (Gadus
730	morhua L.). Ph. D. Thesis, University of Tromsø, Norway.
731	
732	
733	dos Santos, J. & Jobling, M. (1988). Gastric emptying in cod, Gadus morhua L.: effects
734	of food particle size and dietary energy content. Journal of Fish Biology 33, 511–516.
735	
736	
737	dos Santos, J. & Jobling, M. (1991). Factors affecting gastric evacuation in cod, Gadus
738	morhua L., fed single-meals of natural prey. Journal of Fish Biology 38, 697-713.
739	
740	

741	dos Santos, J. & Jobling, M. (1992). A model to describe gastric evacuation in cod
742	(Gadus morhua L.) fed natural prey. ICES Journal of Marine Science 49, 145–154.
743	
744	
745	dos Santos, J. & Jobling, M. (1995). Test of a food consumption model for the Atlantic
746	cod. ICES Journal of Marine Science 52, 209–219.
747	
748	
749	Savenkoff C., Castonguay M., Chabot D., Fréchet A., Hammill M.O. & Morissette L.
750	(2006). Main prey and predators and estimates of mortality of Atlantic cod (Gadus
751	morhua) in the northern Gulf of St. Lawrence during the mid-1980s, mid-1990s, and
752	early 2000s. Canadian Technical Report of Fisheries and Aquatic Sciences, 2666, vi +
753	32.
753 754	32.
753 754 755	32.
753 754 755 756	32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey
753 754 755 756 757	32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49 , 703–
753 754 755 756 757 758	 32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49, 703–713.
753 754 755 756 757 758 759	 32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49, 703–713.
753 754 755 756 757 758 759 760	 32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49, 703–713. Sokal, R. R. & Rohlf, F. J. (1995). <i>Biometry: the principles and practice of statistics in</i>
753 754 755 756 757 758 759 760 761	 32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49, 703–713. Sokal, R. R. & Rohlf, F. J. (1995). <i>Biometry: the principles and practice of statistics in biological research</i>. New York, USA: W.H. Freeman and Company.
753 754 755 756 757 758 759 760 761 762	 32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49, 703–713. Sokal, R. R. & Rohlf, F. J. (1995). <i>Biometry: the principles and practice of statistics in biological research</i>. New York, USA: W.H. Freeman and Company.
753 754 755 756 757 758 759 760 761 762 763	 32. Singh-Renton, S. & Bromley, P. J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. <i>Journal of Fish Biology</i> 49, 703–713. Sokal, R. R. & Rohlf, F. J. (1995). <i>Biometry: the principles and practice of statistics in biological research</i>. New York, USA: W.H. Freeman and Company.

764	Spinelli, J., Lawrence, L. & Wieg, D. (1974). Composition, processing, and utilization of
765	red crab (Pleuroncodes planipes) as an aquacultural feed ingredient. Journal of the
766	Fisheries Research Board of Canada 31 , 1025–1029.
767	
768	
769	Talbot, C. (1985). Laboratory methods in fish feeding and nutritional studies. In Fish
770	Energetics: new perspectives (Tytler, P. & Calow, P., eds.), pp. 125-154. Baltimore,
771	Maryland: The Johns Hopkins University Press.
772	
773	
774	Temming, A. & Andersen, N. G. (1994). Modelling gastric evacuation without meal size
775	as a variable. A model applicable for the estimation of daily ration of cod (Gadus
776	morhua L.) in the field. ICES Journal of Marine Science 51, 429–438.
777	
778	
779	Temming, A. & Herrmann, JP. (2003). Gastric evacuation in cod, prey-specific
780	evacuation rates for use in North sea, Baltic sea and Barents sea multi-species models.
781	Fisheries Research 63, 21–41.
782	
783	
784	Tyler, A. V. (1970). Rates of gastric emptying in young cod. Journal of the Fisheries
785	Research Board of Canada 27, 1177–1189.
786	
787	

788	Waiwood, K. G. & Majkowski, J. (1984). Food consumption and diet composition of
789	cod, Gadus morhua, inhabiting the southwestern Gulf of St. Lawrence. Environmental
790	Biology of Fishes 11, 63–78.
791	
792	
793	Welinder, B. S. (1974). The crustacean cuticle - I. Studies on the composition of the
794	cuticle. Comparative Biochemistry and Physiology 47, 779–787.
795	
796	
797	Windell, J. T. (1966). Rate of digestion in the bluegill sunfish. Investigations of Indiana
798	Lakes & Streams 7, 185–214.
799	
800	
801	Worischka, S. & Mehner, T. (1998). Comparison of field-based and indirect estimates of
802	daily food consumption in larval perch and zander. Journal of Fish Biology 53, 1050-
803	1059.
804	