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Abstract:  
 
Rotifers (Brachionus plicatilis), commonly used at first feeding in commercial fish hatcheries, carry a 
large bacteria load. Because they are relatively poor in essential fatty acids, it is common practice to 
enrich them with fatty acids, including arachidonic acid (AA). This study aims to determine whether 
prey enrichment with AA may act as a prebiotic and modify the microbial community composition 
either in AA-enriched rotifer cultures or in larval-rearing water using winter flounder 
(Pseudopleuronectes americanus) as a larval fish model. AA enrichment modified the bacterial 
community composition in both the rotifer culture tanks and the larval-rearing tanks. We observed an 
increase in the number of cultivable bacteria on TCBS (thiosulfate–citrate–bile salts–sucrose) agar, 
used as a proxy for the abundance of Vibrio sp. The results suggest that AA may also play an indirect 
role in larval health. 
 
Keywords: bacterial community ; rotifers ; arachidonic acid enrichment ; Vibrio sp. ; prebiotic 
 
 
 
Résumé:  
 
Les rotifères (Brachionus plicatilis), fréquemment utilisés comme première source alimentaire dans les 
piscicultures commerciales, portent une charge bactérienne importante. Parce qu’ils sont relativement 
pauvres en acides gras essentiels, il est de pratique courante de les enrichir en acides gras, 
notamment en acide arachidonique (AA). Cette étude vise à déterminer si l’enrichissement des proies 
à l’AA peut agir comme prébiotique et modifier la composition de la communauté microbienne non 
seulement dans les cultures de rotifères enrichies à l’AA, mais aussi dans l’eau d’élevage des larves, 
en utilisant la plie rouge (Pseudopleuronectes americanus) comme modèle de larves de poisson. 
L’enrichissement en AA a modifié la composition de la communauté microbienne tant dans les bassins 
de culture de rotifères que dans les bassins d’élevage des larves. Un accroissement du nombre de 
bactéries cultivables sur la gélose TCBS (thiosulfate – citrate – sels biliaires – sucrose), utilisée pour 
estimer l’abondance de Vibrio sp., a également été observé. Les résultats suggèrent que l’AA peut 
aussi jouer un rôle indirect dans la santé des larves. 
 

http://dx.doi.org/10.1139/cjm-2012-0564
http://pubs.nrc-cnrc.gc.ca/
http://archimer.ifremer.fr/
mailto:karine_lemarchand@uqar.ca


P
le

as
e 

no
te

 th
at

 th
is

 is
 a

n 
au

th
or

-p
ro

du
ce

d 
P

D
F 

of
 a

n 
ar

tic
le

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n 

fo
llo

w
in

g 
pe

er
 re

vi
ew

. T
he

 d
ef

in
iti

ve
 p

ub
lis

he
r-

au
th

en
tic

at
ed

 v
er

si
on

 is
 a

va
ila

bl
e 

on
 th

e 
pu

bl
is

he
r W

eb
 s

ite
 

 2 

Mots-clés : communauté bactérienne ; rotifères ; enrichissement en acide arachidonique ; Vibrio sp. ; 
prébiotique  
 
 
 
1. Introduction 

The aquatic environment contains beneficial and neutral bacterial strains as well as a plethora of 
obligate and opportunistic bacterial pathogens that could represent a significant constraint on the 
commercial production of fish and shellfish. Over the last decade, the aquaculture industry has greatly 
increased its productivity and is now a major economic activity in many countries. The intensive 
rearing of marine larvae requires the addition of natural or artificial food sources to seawater. This 
activity could easily introduce numerous bacteria and, as a consequence, modify the microbial 
communities in the rearing environment or in organisms (Munro et al. 1994). Moreover, some 
production facilities use disinfection 
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processes that may lead to the proliferation of opportunistic bacteria (Olafsen 2001), including 44 

pathogens such as Vibrio (Schulze et al. 2006; Skjermo and Vadstein 1993). The gut microbial 45 

communities of adult fish and fish resistance to infections will be greatly influenced by pioneer bacteria 46 

in the diet and ambient water of developing larvae (Lubzens et al. 1985; Munro et al. 1994; Nicolas 47 

1989; Ringø and Birkbeck 1999). 48 

 49 

In commercial marine fish hatcheries, the rotifers Brachionus plicatilis and Brachionus rotundiformis 50 

are commonly used at first feeding (Haché and Plante 2011). Without the proper enrichment, rotifers are 51 

not suitable as live prey in intensive aquaculture since they do not contain all the essential nutrients 52 

required to sustain larval growth and promote survival (Castell et al. 2003). Because rotifer cultures 53 

carry a large bacterial load (Haché and Plante 2011; Skjermo and Vadstein 1993), they represent a 54 

significant vector for bacterial transmission in larval cultures. A direct relationship has been 55 

demonstrated between the bacterial flora found in the larvae and that in the live food (Munro et al. 56 

1994). Commercial rotifer enrichments have also been shown to impact the bacterial load and the 57 

bacterial community composition in live prey (Haché and Plante 2011; Høj et al. 2009) as well as in 58 

larval fish cultures (Seychelles et al. 2011). 59 

 60 

In a previous study, we demonstrated that arachidonic acid (AA) plays a crucial role in larval winter 61 

flounder Pseudopleuronectes americanus development and that AA enrichment could modify bacterial 62 

colonization of the intestinal lumen in this species (Seychelles et al. 2011). The present study focuses on 63 

the effect of AA enrichment in rotifer cultures on the bacterial communities present in the hatchery 64 

environment, especially in terms of total bacterial abundance, community composition, and the 65 
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occurrence of specific pathogens such as Vibrio sp. in the rearing seawater of both rotifers and winter 66 

flounder larvae fed with this live prey. 67 

 68 

Materials and methods 69 

 70 

Rotifer culture 71 

Experiments were conducted at the UQAR–ISMER aquaculture facility (Pointe-au-Père, 48° 27' N; 68° 72 

32' W, Quebec, Canada) from April to August 2006. Rotifers (Brachionus plicatilis) were cultured in six 73 

replicate 18 L tanks at 20–25°C using aerated, filtered (0.2 μm) seawater at a salinity of 27 ± 1. Rotifers 74 

were fed daily with a microalgal paste (final concentration: 3 × 106 cell.ml-1) composed of a mixture of 75 

three non-viable microalgae (Nannochloropsis occulata, Pavlova lutheri, and Isochrysis galbana, v/v/v) 76 

and a commercial enrichment (Culture Selco Plus, INVE Aquaculture, Belgium) as a complementary 77 

protein source. Of the six replicates, three received an additional artificial supplement of AA (Sigma-78 

Aldrich #10931-1G) at a ratio of 1 µg for 106 phytoplankton cells after dilution in ethanol (Seguineau et 79 

al. 2005). The flagellates I. galbana and P. lutheri are good sources of docosahexaenoic DHA; P. lutheri 80 

contains a high relative proportion of eicosapentaenoic acid (EPA); and the chlorophyceae N. occulata is 81 

a good source of EPA and AA (Brown et al. 1997). Microalga culture conditions are described in 82 

Seychelles et al. (2011). Rotifer culture tanks were sampled on days 4, 15, and 26 to determine the fatty 83 

acid composition of rotifers and to describe the bacterial community present in rotifer-rearing seawater.  84 

 85 

Larval culture  86 

Detailed protocols for larval culture and sampling are given in Seychelles et al. (2011). Briefly, newly 87 

hatched (day 0) winter flounder larvae were reared in three replicate 57 L cylindro-conical polyethylene 88 
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tanks for each dietary treatment. Flounder larvae were fed rotifers from day 4 to 26 post hatching. After 89 

day 26, the fish larvae needed larger-sized food and the experiment ended. 90 

 91 

Rotifers were given in excess, and their density was adjusted three times a day to 5 rotifers.ml-1. Larval 92 

tanks were supplied with filtered (10 µm) seawater (salinity 27 ± 1) and maintained at 10°C under a 93 

12h:12h light:dark photoperiod; aeration provided upwelling water circulation. During the day, the water 94 

intake was closed and the same microalgal paste used for rotifer enrichment was added to the larval 95 

rearing tanks (final concentration: 0.7 × 106 cells.ml-1) to provide the pseudo-green water conditions 96 

required for larval rearing. During night, water flow resumed and allowed for the complete renewal of 97 

tank water. Flounder larvae were sampled just before lights-on and the first meal to ensure that stomachs 98 

were empty. Sampling was done at mouth opening (day 4) and on days 15 and 26 for dry weight 99 

determination. At the end of the rotifer-feeding period (day 26), 10 larvae per larval tank (total of 30 in 100 

the AA-enriched treatment and 20 in the control treatment) were fixed with 10% formaldehyde (≥ 24 h 101 

at ambient temperature) for light microscopy observations. Fixed larvae were dehydrated in an 102 

ascending series of ethanol solutions and embedded in methacrylate resin for histological observation, as 103 

described in Seychelles et al. (2011). The same sampling periods were used for bacterial analyses in 104 

larval-rearing seawater.  105 

 106 

Rotifer fatty acid composition 107 

At days 4, 15, and 26, two samples of 20 000 rotifers were collected from each tank and pre-rinsed with 108 

filtered seawater (0.2 µm) on a 50 µm net before being filtered onto pre-combusted (450°C) GF/C filters 109 

(25 mm) for fatty acid analysis. As described in Seychelles et al. (2011), fatty acid profiles were 110 

determined on a Varian CP3900 gas chromatograph (Varian, Canada) equipped with a ZB-wax fused 111 
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silica capillary column (20 m × 0.18 mm internal diameter × 0.18 μm film thickness; Supelco) after 112 

extraction following Folch et al. (1957); fatty acid methyl esters were obtained by acid catalyzed 113 

transesterification with 2% (v/v) H2SO4 in methanol at 100°C. 114 

 115 

Total bacteria abundance  116 

Total bacteria abundance was determined in the rotifer-rearing seawater and in the larval-rearing 117 

seawater on days 4, 15, and 26. All samplings were done early in the morning, before the addition of 118 

enrichment to the rotifer tanks or before the addition of green water and food to the larval tanks. 119 

Additional samples were taken of seawater before it entered the rearing tanks (“source seawater”) at the 120 

beginning of the experiment (day 0) and on days 4, 15, and 26 to determine the natural bacterial 121 

abundance. Each sampling included two 4 ml aliquots of seawater fixed in 2% formaldehyde (final 122 

concentration; pH 7). Samples were frozen at -80°C until further analyses. Total free bacteria (TB) were 123 

enumerated using an EPICS ALTRA™ cell sorting flow cytometer (Beckman-Coulter Inc., Mississauga, 124 

ON, Canada) equipped with a laser emitting at 488 nm. Fluorescent beads (Fluoresbrite YG 1 µm 125 

microspheres, Polysciences™) were systematically added to each sample as an internal standard to 126 

normalize cell fluorescence emission and light scatter values. For the analysis of bacterial abundance, 127 

frozen samples were thawed and two subsamples of 1 ml were half-diluted in TE 10X buffer (100 mM 128 

Tris-HCl, 10 mM EDTA, pH 8). A 1 ml volume of the resulting diluted sample was stained with 0.25 µl 129 

of SYBR Green I nucleic acid gel stain (Ci = 10,000X, Invitrogen, Inc.), incubated for 10 min at room 130 

temperature in the dark, and analyzed for 180s. To calculate bacterial cell abundances, the volume 131 

analyzed was calculated by weighing samples before and after each run. This volume was corrected for 132 

a dead volume of 50 μl (the water volume taken from the sample tube but not counted when data 133 

acquisition is stopped). 134 
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 135 

TB were detected in a plot of green fluorescence recorded at 530 ± 30 nm (FL1) versus side angle light 136 

scatter (SSC). Bacteria with high, very high, and low nucleic acid content (HNA, VHNA, and LNA 137 

subgroups, respectively) were discriminated by gating the FL1-versus-SSC plot, and the abundances of 138 

all subgroups were determined (Lebaron et al. 2001). For the purpose of this study, TB abundance was 139 

used to describe the bacterial community distribution, and %HNA (the ratio of HNA cells to TB) was 140 

used to describe the physiological structure of the bacterial community, as has been suggested by 141 

different studies (Gasol and del Giorgio 2000; Gasol et al. 1999; Lebaron et al. 2001) 142 

 143 

Bacteria cultivable on TCBS 144 

Bacteria forming colonies (colony forming units, CFU) were enumerated in triplicate from day 4 to 26 145 

after 24 to 48h of incubation at room temperature in the dark on TCBS agar (thiosulfate–citrate–bile 146 

salts–sucrose; Merck KgaA, Germany). Cultures on TCBS agar were used to estimate the number of 147 

Vibrio sp. in the samples (Buller 2004). Only colonies with the characteristics of Vibrio sp. (good 148 

growth, yellow colonies with halo) were counted, but because no definite identification was made of the 149 

colonies, the expression “CFU on TCBS” will be used to refer these counts. 150 

 151 

Bacteria colonizing larvae 152 

Fixed larvae were dehydrated in an ascending series of ethanol solutions and embedded in methacrylate 153 

resin. Tissues were sectioned (3 μm thickness) with a Supercut Reichert-Jung model 2050 (Cambridge 154 

Instruments GMbH, Germany). Sections were mounted onto glass slides, stained with the Gram Staining 155 

kit (Sigma #77730), and photographed at 1000X (Olympus BX41, Japan). The occurrence of bacteria 156 

was determined and quantified in gut lumen, gills, and skin. Bacterial density was randomly calculated 157 
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within the intestinal lumen (number of bacteria.mm-2), and the ratio “area occupied by bacteria/total 158 

tissue area” was calculated on three histological gill and fin sections for each larva using the Image Pro 159 

Plus software (Media Cybernetics, Canada). 160 

 161 

Bacterial community characterization 162 

Bacterial community composition was analyzed from larva- and rotifer-rearing seawater and from 163 

source seawater. Samples (200 ml) were filtered on polycarbonate membranes (0.2 µm pore size, 25 mm 164 

diameter); the filters were then cut and transferred to sterile 1.5 ml tubes containing 840 µl of lysis 165 

buffer (40 mM EDTA, 50 mM Tris, pH 8, 0.75 M sucrose) and 50 µl of lysozyme (20 mg.ml-1), and 166 

incubated for 45 min at 37°C (Ghiglione et al. 2005). Next, 100 µl of sodium dodecyl sulfate solution 167 

(10%) and 10 µl of proteinase K (20 mg.ml-1) were added to each sample and incubated at 55°C for 60 168 

min. Total DNA extraction was then performed using a classic phenol–chloroform–isoamyl alcohol 169 

(25/24/1) protocol. PCR amplification of the 16S rDNA gene was then performed using a Mastercycler 170 

epS (Eppendorf) thermal cycler following the method proposed by Schäfer and Muyzer (2001). Three 171 

PCR amplifications were performed on each DNA sample to overcome the effect of PCR biases 172 

(Perreault et al. 2007). Amplicons were then purified with MinElute (QIAGEN) columns according to 173 

the manufacturer’s instructions and stored at -20°C prior to analysis by denaturing gradient gel 174 

electrophoresis (DGGE). DGGE was performed using a DGGE-4001-Rev-B (C.B.S. Scientific 175 

Company, CA, USA) system according to Schäfer and Muyzer (2001). Gels were stained with a half-176 

diluted solution of SYBR Green I (10,000X, Molecular Probes, Oregon) for 1 h according to the 177 

manufacturer’s instructions. Gels were photographed under UV light, and DGGE profiles were analyzed 178 

using an AlphaImager HP (Alpha-Innotech). The number of bands, corresponding to different 179 

operational taxonomic units (OTU), was determined, and the comparison between DGGE fingerprints 180 
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was performed using the Phoretix 1D Pro software (TotalLab Limited, Nonlinear Dynamics, Newcastle 181 

upon Tyne, UK) on the basis of a similarity matrix using Jaccard’s index (Bourne et al. 2006; Clarke 182 

1993). 183 

 184 

Statistical analyses 185 

All statistical analyses were done using STATISTICA software version 6.0 (Statsoft, USA) with α = 186 

0.05. Data normality was examined using the Kolmogorov-Smirnov test and homoscedasticity tested 187 

with the Brown-Forsythe test (Zar 1999). Differences between treatments were tested using a one-way 188 

ANOVA (rotifer diet, D) or a two-way repeated ANOVA (rotifer diet and sampling time, T). For 189 

subsequent multiple comparisons, Tukey tests or Tukey tests for unequal n were performed when 190 

appropriate. Data related to CFU counts on TCBS in source seawater were square-root transformed. The 191 

Games & Howell test was used when heteroscedasticity was observed. 192 

 193 

Results 194 

 195 

Rotifer enrichment 196 

The level of AA in enriched rotifers was three-fold higher than that in control rotifers. Other essential 197 

fatty acids (EPA and DHA) and total fatty acids were similar for the two diets (Table 1).   198 

 199 

Bacterial communities 200 

In source seawater, TB abundance was similar from day 0 to 15 and was 1.3-fold higher on day 26 (T: p 201 

< 0.001, F = 11.12, df = 3) (Table 2). TB abundance was 10,000-fold higher in rotifer cultures than in 202 

larval-rearing seawater on days 4 and 15 and 1,000-fold higher on day 26. TB abundance in larval tanks 203 
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followed the same pattern as that observed in source seawater, with similar values from day 4 to 15 and 204 

a significant increase (1.2-fold higher) on day 26 (T: p < 0.001, F = 9.17, df = 3) (Table 2). Conversely, 205 

TB abundance in rotifer tanks reached a higher level and dropped significantly on day 26 (T: p < 0.001, 206 

F = 9.32, df = 2) in the two treatments (D, D × T: p > 0.05) (Table 3). 207 

 208 

Bacterial communities in rotifer-rearing seawater and in larval-rearing seawater had different 209 

proportions of HNA, LNA, and VHNA subpopulations (Fig. 1-2). HNA and LNA bacterial 210 

subpopulations were observed in the rearing seawater of all tanks during the experiment (Fig. 1-2), but 211 

the percentage of HNA cells was lower in rotifer-rearing seawater than in larval-rearing seawater 212 

(Tables 2-3). On day 26, the VHNA subpopulation was four-fold higher in the control larval tanks than 213 

in the AA-enriched tanks (Table 2). No VHNA subpopulation was detected in the source seawater.  214 

 215 

DGGE fingerprint patterns indicated marked differences in the bacterial community composition in 216 

larval- and rotifer-rearing seawater. The number of OTUs in source seawater ranged between 19 on day 217 

4 and 12 on day 26. OTUs were more numerous in the larval-rearing seawater, with 25 on day 4 and 16 218 

on day 26, independent of the diet. In AA-enriched rotifer rearing seawater, only 9 OTUs were observed 219 

on day 4 and 10 on day 26. In the rearing seawater of control rotifers (no AA enrichment), the number of 220 

OTUs was slightly higher, with 12 on day 4 and 13 on day 26. 221 

 222 

The cluster analysis of DGGE fingerprints (Fig. 3) indicated that control and AA-enriched rotifer-223 

rearing seawater samples were clustered according to the AA-enrichment procedure and that bacterial 224 

community composition in the rotifer-rearing seawater was poorly correlated with the bacterial 225 

community composition in the corresponding larval-rearing seawater, as indicated by the relatively large 226 
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distance (> 0.75). The bacterial community composition was similar in the source seawater and in larval 227 

tanks receiving non-enriched rotifers throughout the experiment. On day 4, the bacterial community 228 

composition was similar in larval-rearing seawater for the two different larval diets (control and AA-229 

enriched), and the bacterial community composition in the larval tanks receiving the AA-enriched diet 230 

was very similar to that of the source seawater (Jaccard's distance 0.31). On day 26, the distance 231 

increased (0.68) between AA-enriched and control samples, whereas control and seawater source 232 

samples had a similar bacterial community composition (0.44).  233 

 234 

CFU counts on TCBS in source seawater were low and similar from day 0 to 15 (0.6 ± 0.7 CFU.ml-1) 235 

but slightly higher on day 26 (2.2 ± 0.3 CFU.ml-1) (D: p < 0.001, F = 20.35, df = 3). A similar pattern 236 

was observed in AA-enriched larval tanks, where CFU counts peaked on day 26 (D × T: p < 0.001, F = 237 

943.77, df = 3) at a level 35-fold higher than observed in source seawater. CFU counts in control larval 238 

tanks slightly increased on day 26 and was 5-fold higher than the count observed in source seawater on 239 

days 0 and 4 (Fig. 4A). CFU counts were 3- to 14-fold higher in rotifer cultures than the highest count 240 

observed in larval tanks. In AA-enriched rotifer tanks, the count peaked on day 15 and was more than 241 

twice as high (D × T: p < 0.001, F = 24.44, df = 2) on days 15 and 26 compared to control rotifer tanks 242 

(Fig. 4B). 243 

 244 

Histological observations in larval intestinal lumen, gills, and skin revealed no significant difference in 245 

bacterial colonization between larval groups at the end of the experiment (day 26). Bacterial densities in 246 

control larvae and larvae fed AA-enriched rotifers were respectively 2.5×103 ± 2.3×103 and 247 

2.3×103 ± 2.5×103 bacteria mm-2 in intestinal lumen, 28.5 ± 35.8% and 34.5 ± 48.6% of the gill area, 248 

and 16.3 ± 16.3% and 11.7 ± 8.5% of the fin area. Fish larvae from both treatments exhibited similar 249 
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total lengths (5.36 ± 0.55 mm), widths (1.07 ± 0.15 mm), and dry weights (0.083 ± 0.035 mg.larva-1) at 250 

the end of the experiment. 251 

 252 

Discussion 253 

 254 

The AA enrichment process did not affect TB abundance in either rotifer or larval tanks during the 26 255 

days of the experiment. Bacterial concentrations in rotifer tanks were four orders of magnitude greater 256 

than in larval tanks, where TB abundances (~105 cells.ml-1) corresponded to concentrations generally 257 

reported in seawater from the St. Lawrence Estuary. In this experiment, TB abundances were expressed 258 

as total counts and not as CFU counts, but considering that a maximum of 10% of total marine bacteria 259 

are cultivable, our results are similar to those reported by Skerjmo and Valdstein (1993) and Haché and 260 

Plante (2011) in their commercially enriched rotifer cultures. The differences observed between 261 

seawater in larval tanks and rotifer culture tanks could be attributed to the dissolved organic matter 262 

(DOM) supply (Nagata 2000) associated with the grazing of algae by rotifers, which may enhance 263 

bacterial degradation and as a consequence promote bacterial multiplication. This is confirmed by the 264 

higher percentage of VHNA bacteria cells in rotifer cultures than in source seawater. VHNA cells are 265 

identified by their high fluorescence and their high amount of nucleic acids. These results indicate that 266 

around 50% of bacterial cells are highly productive in these cultures. In larval fish cultures, VHNA 267 

bacteria cells were only detected after day 15 (~ 10% of total cells) while they were observed in rotifer 268 

cultures throughout the experiment. Nishimura et al. (2005) found a negative correlation between 269 

%VHNA and chlorophyll a concentration. The late appearance of VHNA bacteria in larval tanks could 270 

be explained by the daily water renewal, which reduced the availability of DOM at the beginning of the 271 

larval rearing. Since VHNA cells were not observed in source seawater, these cells were probably 272 
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transferred from rotifer to larval cultures and actively contributed to changes in the larval tank 273 

microflora. Nevertheless, considering only TB abundances and community structure, AA enrichment 274 

produced no significant modifications of the bacterial community in rotifer- or larval-rearing seawater. 275 

 276 

In contrast, CFU counts on TCBS agar sharply increased in both rotifer and larval-rearing seawater with 277 

AA enrichment. The TCBS medium is used to identify bacteria of the genus Vibrio, which are 278 

ubiquitous in the marine environment and potentially important pathogens of marine and brackish-water 279 

fish (Reed and Francis-Floyd 1996). Since only low concentrations of these bacteria were observed in 280 

the source seawater during the experiment, the increase in CFU counts on the TCBS medium in our 281 

cultures was probably due to our experimental culture conditions, which included the addition of live 282 

food in the tanks. Although the microbial communities associated with live food can be very different 283 

between marine fish hatcheries (Skjermo and Vadstein 1993), most bacteria identified in rotifer cultures 284 

have been from the Vibrionaceae family, which includes two important genera of fish pathogens, 285 

Aeromonas and Vibrio. Other notable fish pathogens identified were Moraxella and Flavobacterium 286 

(Rombaut et al. 2001; Verdonck et al. 1994). Because larvae were not uniformly distributed in rearing 287 

tanks (patchy distribution) and the tiny dead larvae decomposed very rapidly in sea water, we were not 288 

able to compare mortality rates in the different larval treatments and to correlate them with the increase 289 

in bacteria cultivable on TCBS agar. However, the increase in bacteria cultivable on TCBS agar did not 290 

alter larval development: both groups (AA-enriched and non- enriched food sources) had similar growth 291 

(used as proxy for larval health) and similar bacterial colonization in their tissues, despite strong inter-292 

individual variations. This has also been observed in the intestines of goldfish Carassius auratus (Asfie 293 

et al. 2003; Sugita et al. 1988), carp Cyprinus carpio, and tilapia Oreochromis mossambicus (Asfie et al. 294 

2003). Thus though AA enrichment may enhance the development of bacteria that are cultivable on 295 
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TCBS agar, these bacteria did not seem pathogenic for winter flounder larvae under our culture 296 

conditions. 297 

 298 

The cluster analysis of the DGGE fingerprint patterns of the larval rearing water over 26 days confirms 299 

that winter flounder larvae are exposed to different bacteria before feeding on day 4 and after the onset 300 

of exogenous feeding on days 15 and 26. Since bacterial populations representing at least 1% of the total 301 

community can be detected by PCR-DGGE (Muyzer and Smalla 1998), this method is a good tool for 302 

characterizing bacterial populations present during early life stages of fish larvae in hatcheries 303 

(Brunvold et al. 2007). Our results demonstrated that the bacterial community composition developed 304 

differently in rotifer and larval-rearing seawater through the experiment. Furthermore, we observed a 305 

change in the bacterial community composition between the beginning and the end of the experiment 306 

(day 4 and 26). Brunvold et al. (2007) demonstrated a similar change in the bacterial community 307 

associated with hatchery cod larvae, corresponding to the onset of exogenous feeding and a relatively 308 

stable bacterial community during larval feeding on rotifers. In the present experiment, the number of 309 

OTUs decreased in all larval treatments, with a reduction of 9 OTUs from day 4 to day 16 without any 310 

effect related to the diet. Since a reduction of 7 OTUs was observed in the source seawater, the decrease 311 

in the larval-rearing seawater may be partly explained by the source seawater. There were fewer OTUs 312 

in rotifer seawater samples than in source seawater: only 9 and 12 OTUs were observed on day 4 in AA-313 

enriched and control rotifer tanks, respectively. While the number of OTUs did not change in rotifer 314 

tanks, DGGE fingerprints indicate a modification of the community composition: only 6 and 7 OTUs 315 

were common to the day 4 and day 16 samples in AA-enriched and control rotifer tanks, respectively 316 

(data not shown). At the end of the experiment, only 6 OTUs were common to AA-enriched and control 317 

rotifer tanks out of the 23 OTUs that were present. Thus even though slight modifications were observed 318 
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in the larval rearing seawater of larvae fed enriched rotifers, the AA enrichment seems to interact with 319 

the bacterial community in rotifer tanks. The DGGE fingerprint cluster analysis revealed a marked 320 

distance between water samples from rotifer and larval tanks, which suggests that even if some bacteria 321 

were introduced with rotifers, these bacteria did not become dominant in the bacterial community of the 322 

larval tanks. 323 

 324 

The proliferation of bacteria in intensive aquaculture systems may be responsible for poor growth and 325 

mass mortality of marine fish larvae. Essential fatty acids provided in the diet could protect larvae by 326 

modulating the immune response via AA and EPA. The antibacterial effect of a given fatty acid is 327 

influenced by its structure and shape, with unsaturated fatty acids tending to have greater potency at low 328 

concentrations (Kabara 1978; Kanai and Kondo 1979; Nieman 1954) than saturated fatty acids with the 329 

same carbon chain length (Desbois and Smith 2010; Knapp and Melly 1986; Kodicek 1949). For 330 

example, AA is more toxic for gram-positive bacteria than for gram-negative species, such as bacteria of 331 

the genus Vibrio. The gram-negative species sensitive to AA have a more permeable outer membrane 332 

than other negative species (Knapp and Melly 1986). In our study, AA enrichment may have contributed 333 

to the development of AA-resistant bacteria species cultivable on TCBS, especially in rotifer cultures. 334 

Such bacterial resistance or growth inhibition has been observed in vitro on Escherichia coli and 335 

Pseudomonas aeruginosa strains challenged with gamma-linoleic acid, DHA, and AA (Giamarellos-336 

Bourboulis et al. 1994, 1995). The gut microflora of adult fish and the fish’s resistance to infections are 337 

greatly influenced by the pioneer bacteria in the diet and in the ambient rearing water of the developing 338 

larvae. However, we observed no difference in larval development with or without AA enrichment of 339 

the rotifers after 26 days of experimentation, suggesting no positive or negative effects for larvae. 340 

 341 
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In conclusion, we previously demonstrated that AA plays a crucial role in winter flounder larval 342 

development and that AA enrichment could modify bacterial colonization of the intestinal lumen in this 343 

species (Seychelles et al. 2011). The present study demonstrates that AA also modifies the nature of the 344 

bacterial communities present both in prey (rotifers) and in larval-rearing water. The next step would be 345 

to precisely identify which bacteria are positively and negatively affected by the addition of AA and to 346 

test if they can directly alter larval health or if they could act as prebiotics. 347 

 348 
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Table 1  Selected fatty acid composition (mean ± SD) of rotifers fed control and AA-enriched diets. Asterisks indicate a significant 

difference between the two diets. AA: Arachidonic acid; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; SFA: 

saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. 

 

  
Control 
rotifers 

AA-enriched 
rotifers 

Summary of ANOVA results 

Fatty acid proportions  
(% TFA) and ratio   

 

AA 0.9 ± 0.2 3.0 ± 0.9* D: p < 0.001; D  T: p > 0.05 

EPA 3.7 ± 0.6 3.7 ± 0.9 All NS 

DHA 2.7 ± 0.5 2.7 ± 0.6 T: p < 0.01; D  T: p > 0.05 

SFA 21.6 ± 0.9 22.3 ± 1.4* D, T: p < 0.01; D  T: p > 0.05 

MUFA 55.5 ± 2.7* 53.2 ± 3.5 D, T: p <0.01; D  T: p > 0.05 

PUFA 22.9 ± 2.4 24.5 ± 2.8* D, T: p <0.01; D  T: p > 0.05 

DHA:EPA 0.7 ± 0.1 0.8 ± 0.2 All NS 

Total fatty acids (mg g-1) 19.5 ± 6.8 25.8 ± 8.9 All NS 

       D: diet; T: sampling time; D  T: interaction between D and T; NS: not significant.  
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Table 2 Concentrations of total free bacteria (TB) and bacteria with high (HNA) and very high (VHNA) nucleic acid contents in 

fish culture water and source seawater (sampled prior to use in the larval tanks).  

 

 
TB  

(×10
5
 bacteria.ml

-1
) 

 HNA  

(×10
5
 bacteria.ml

-1
) 

(%HNA) 

 

VHNA  

(×10
4
 bacteria.ml

-1
) 

(%VHNA) 

Sample Day 4 Day 15 Day 26  Day 4 Day 15 Day 26  Day 4 Day 15 Day 26 

SW 2.70±0.26 2.84±0.26 3.63±0.58  2.10±0.22 

(77.52) 

2.15±0.18 

(75.61) 

2.91±0.40 

(80.27) 

 ND ND ND 

CLT 2.58±0.15 2.94±0.29 3.42±0.07  2.28±0.12 

(78.53) 

2.20±0.38 

(74.64) 

2.65±0.19 

(72.21) 

 ND 2.47±0.01 

(8.38) 

5.71±0.20 

(15.53) 

AA-LT  2.90±0.17 2.95±0.39 3.67±0.14  2.05±0.12 

(79.23) 

2.16±0.22 

(73.55) 

2.56±0.06 

(74.96) 

 ND ND 1.41±0.12 

(4.12) 
SW: Source seawater; CLT: Control larval tanks; AA-LT: AA-enriched larval tanks; ND: not detected 
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Table 3 Concentrations of total free bacteria (TB) and bacteria with high (HNA) and very high (VHNA) nucleic acid contents in 

rotifer culture water. 

 

TB  

(×10
9
 bacteria.ml

-1
) 

 HNA  

(×10
9
 bacteria.ml

-1
) 

(%HNA) 

 

VHNA  

(×10
9
 bacteria.ml

-1
) 

(%VHNA) 

Sample Day 4 Day 15 Day 26  Day 4 Day 15 Day 26  Day 4 Day 15 Day 26 

CR 16.47±2.39 20.44±12.56 4.68±0.47  3.84±1.41 

(23.32) 

8.16±9.69 

(39.94) 

2.17±0.40 

(46.36) 

 10.25±3.48 

(62.25) 

10.64±5.71 

(52.08) 

1.03±0.79 

(22.01) 

AA-R 13.46±6.36 15.52±8.79 3.77±0.20  2.85±2.21 

(21.15) 

6.04±4.89 

(38.93) 

1.72±0.29 

(45.58) 

 7.91±3.57 

(58.74) 

6.89±2.63 

(44.42) 

1.91±0.32 

(50.67) 
CR: Control rotifers; AA-R: AA-enriched rotifers. 
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Figure captions 

 

Figure 1  Flow cytometric dot-plots (FL1/SSC) of source seawater and culture water sampled in 

larval tanks. Reference beads of 1 µm diameter (1), HNA subpopulation (2), LNA subpopulation (3), 

and VHNA subpopulation (4) are indicated. 

 

Figure 2 Flow cytometric dot-plots (FL1/SSC) of culture water sampled in rotifer tanks. Reference 

beads of 1 µm diameter (1), HNA subpopulation (2), LNA subpopulation (3), and VHNA subpopulation 

(4) are indicated. 

 

Figure 3 Dendrogram of the DGGE fingerprint patterns of the microbial community showing the 

distance between bacterial communities from day 0 to 26 in larval rearing water and rotifer cultures. 

SW: source seawater (sampled before being added to larval tanks); AA: water in AA-enriched larval 

tanks; AAR: water in AA-enriched rotifer tanks; CT: water in control larval tanks; and CTR: water in 

rotifer tanks; d: sampling day. The cluster analaysis was based on Jaccard coefficient similarity indices 

and constructed using the Phoretix 1D Pro software (Nonlinear Dynamics, Newcastle upon Tyne, UK).  

 

Figure 4 A) CFU counts on TCBS in control and AA-enriched larval tanks. B) CFU counts on 

TCBS in rotifer tanks. Counts are expressed as CFU.ml-1 ± SD. Different letters indicate significant 

differences among sampling times or diets. 
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