
Research Paper

1Penkrot et al.  |  IODP Site U1419GEOSPHERE  |  Volume 14  |  Number 4

Multivariate modeling of glacimarine lithostratigraphy combining 
scanning XRF, multisensory core properties, and CT imagery: 
IODP Site U1419
Michelle L. Penkrot1, John M. Jaeger1, Ellen A. Cowan2, Guillaume St-Onge3, and Leah LeVay4

1Department of Geological Sciences, University of Florida, Gainesville Florida 32611-2120, USA
2Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, USA
3Institut des sciences de la mer de Rimouski (ISMER), Canada Research Chair in Marine Geology, Université du Québec à Rimouski and GEOTOP, Rimouski, QC G5L 3A1, Canada
4International Ocean Discovery Program, Texas A&M University, College Station, Texas 77845, USA

ABSTRACT

Marine sediments preserve archives of glacier behavior from many proxies, 
with lithofacies analysis providing direct evidence of glacial extent and 
dynamics. Many of these lithofacies have corresponding physical and geochem-
ical properties that may be identified through quantitative, nondestructive log-
ging properties. This study applies supervised and unsupervised classification 
to downcore logging data to attempt to model temperate glacimarine facies, 
which are independently identified via visual lithofacies analysis based on core 
photographs, digital X-radiography, and computed tomography scans. We test 
the limits of these methods by modeling both broad glacial and interglacial and 
small-scale variations in Late Pleistocene (<60,000 yr) glacier extent leading 
into the Holocene deglaciation for a temperate ice stream at Integrated Ocean 
Drilling Program Site U1419 in the Gulf of Alaska. Multi-meter–scale mud and 
diamict lithofacies interpreted as non-glacial versus glacial conditions can be 
modeled with both methods using downcore physical property logging data 
(b* color reflectance, magnetic susceptibility, and natural gamma-ray activ-
ity) augmented with scanning X-ray fluorescence (XRF) elemental abundance 
(Ca, Zr, Si, K, Rb, and Al). Physical properties are most useful for delineating 
decimeter-meter–scale variations in composition and clay content, whereas 
scanning XRF elements best capture differences in sand versus clay content 
and composition at decimeter-centimeter scales. Neither classification tech-
nique can model the observed small-scale variations in diamict facies using 
elemental abundance from higher-resolution scanning XRF or from physical 
properties. Comparison of unsupervised cluster model results with observed 
lithofacies allows for identification of three different glacial conditions at Site 
U1419—ice-proximal, fluctuating, and retreating. For small-scale variations in 
glacial extent, cluster model results are best used as complementary data to 
image-based lithofacies identification rather than as a replacement.

INTRODUCTION

Variations in ice sheet and glacier extent are a dynamic component of 
Earth’s climate system. Study of glacial dynamics during major climate tran-
sitions helps establish ice sheet “tipping points” (Lenton et al., 2008; Kriegler 

et al., 2009) and for predicting how modern ice sheets and glaciers may re-
spond to our warming climate. The marine sediment record provides a highly 
detailed archive of glacial dynamics through a combination of glacial extent 
proxies, such as lithofacies, biogenic carbonate chemistry, productivity, and 
mass accumulation rates (Andersen et al., 1996; Andrews and Principato, 2002; 
Naish et al., 2009; Ó Cofaigh et al., 2013). Of these proxies, lithofacies analysis 
provides one of the most direct records of glacial extent because spatial and 
temporal variations are recorded as spatial transitions in facies. The transition 
between glacial and interglacial states is interpreted from lithofacies across 
the globe (e.g., Henrich et al., 1989; Peterson et al., 2000), with the most obvi-
ous examples from glaciated continental margins (Ó Cofaigh and Dowdeswell, 
2001). Open-water, nonglacial conditions most often result in accumulation of 
homogeneous, bioturbated mud with a varying biogenic component, whereas 
glacial conditions are recognized by heterolithic facies with abundant lone-
stones. In particular, temperate glacimarine strata contain evidence of abun-
dant ice rafting, gravity flows, and meltwater-derived sediment that provide a 
wide potential range of distinctive lithofacies throughout a glacial-interglacial 
cycle (Powell and Cooper, 2002) (Fig. 1).

Glacimarine lithofacies are typically recognized in outcrop and core 
through visual lithostratigraphic logging, which can be augmented using more 
quantitative methods. Visual core descriptions (VCDs) are based on sediment 
texture, composition, color, and physical and biogenic sedimentary structures. 
Computed tomography (CT) scan images and X-radiographs contribute de-
tails on subtle features within cores (Cnudde and Boone, 2013). Although CT 
imagery is ideal for identification and description of a myriad of glacimarine 
sedimentary features (Boespflug et al., 1995; Gagnoud et al., 2009; St-Onge 
and Long, 2009; Davies et al., 2011; Tarplee et al., 2011), this technology is ex-
pensive and/or of restricted availability. Fortunately, many of the same visual 
features also have corresponding physical and geochemical properties that 
may be identified through quantitative nondestructive logging properties 
such as natural gamma radiation, color reflectance, bulk density, magnetic 
susceptibility, elemental concentration, etc. Logging data have been used 
to identify major end-member lithologies through supervised (e.g., support 
vector machine [SVM]; Hall, 2016) and unsupervised classification techniques 
(e.g., cluster analysis) for continental shelf environments (Inwood et al., 2013), 
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trench sediments (Tudge et al., 2009), and glacial sediments (Williams et al., 
2012; Hunze et al., 2013). Classification techniques using multivariate data are 
powerful analytical tools in the geosciences because they provide a quantita-
tive, objective, and reproducible approach to lithofacies analysis (Davis, 2002; 
Dubois et al., 2007).

In this study, we attempt to model temperate glacimarine lithofacies 
using supervised and unsupervised classification techniques applied to 
downcore logging data. Model results are validated through comparison 
to  lithofacies identified from a visual facies analysis of core photographs, 
CT scans, and X-radiographs. The goal is to test the limits of these classifica-
tion techniques in identifying lithofacies representing both glacial and inter
glacial, and small-scale variations in glacier extent within heterogeneous 
diamict for a temperate glacial setting in the Gulf of Alaska, Integrated Ocean 
Drilling Program (IODP) Site U1419 (Fig. 2). Based on the shipboard age 
model, IODP Site U1419 extends back to the Late Pleistocene (<60,000 yr; 
Jaeger et al., 2014) and contains a last glacial maximum (LGM) to Holocene 
deglaciation sequence based on comparison with a neighboring well-dated 
core (Davies et  al., 2011). These modeling techniques may identify subtle 
lithofacies variations and provide an alternative to using costly CT scans 
and/or X-radiographs to highlight features not otherwise observable from 
split core surfaces during VCD. Integration of scanning XRF data also informs 
on downcore compositional changes that are geochemical rather than visual 
and are typically observed in smear slides. Classification analyses also pre

sent a reproducible approach to categorizing core properties. A secondary 
objective is to test how different types of core logging data (i.e., physical 
properties versus elemental composition) and classification routine (e.g., 
supervised discriminant and SVM; unsupervised hierarchical versus model 
clustering) affect the classification analysis results. Previous studies using 
cluster analysis to identify glacial lithofacies used wireline downhole logging 
data (Williams et al., 2012; Hunze et al., 2013), which are not always collected 
in association with coring. This study tests the ability of logging data that are 
commonly collected on sediment cores (i.e., magnetic susceptibility, natural 
gamma radiation, color, scanning X-ray fluorescence) to predict lithofacies. 
When applying classification techniques to geologic data, there is still ambi-
guity over which method provides the most valid results (Templ et al., 2008); 
thus this study applies common classification techniques to evaluate their 
utility in glacimarine studies.

METHODS

CT Imagery and Digital X-Radiography

Computed tomography (CT) scan images and X-radiographs of sediment 
cores allow for a detailed, nondestructive view of the entire core (e.g., St‑Onge 
et al., 2007); this view is useful for identifying textural features such as sedi
mentary structures (Van Daele et  al., 2014), bioturbation (Gagnoud et  al., 
2009), variations in sediment density (Ashi, 1997), and ice-rafted debris (IRD; 
Andrews and Principato, 2002; Jennings et al., 2018). Computed tomography 
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Figure 1. Schematic diagram of glacimarine sedimentation typically found at temperate glacier-
ocean interfaces. Lithology can be used as a proxy for the relative proximity of glacier terminus 
to core site. Stratified diamicts (A) are deposited proximally from increased sedimentation from 
meltwater discharge. Massive bioturbated muds (B) are created when the terminus is distal and 
sedimentation rates are low. Modified from Ó Cofaigh and Dowdeswell (2001). X-radiographs 
from Cowan et al. (1997) and Jaeger and Nittrouer (2006).
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Figure 2. Regional bathymetric map of the Gulf of Alaska offshore of the Bering Glacier showing 
the location of Sites U1419, U1420, and U1421 drilled by Integrated Ocean Drilling Program 
(IODP) Expedition 341. Dashed line represents the estimated maximum ice extent during the 
last glacial maximum (LGM) from Kaufman and Manley (2004).
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scan images are cross-sectional slices of the core volume (Ketcham, 2005); 
while X-radiographs present an integrated view of the whole volume imaged.

U-channels from Site U1419 composite splice sections (Jaeger et al., 2014) 
were scanned at the Institut National de Recherche Scientifique–Eau Terre 
Environnement (INRS-ETE, Quebec City, Canada) using a Siemens SOMATOM 
Definition AS+ 128 CAT-scanner with a current range of 300 mA and a voltage 
of 140 kV. X-radiograph images were collected on the archive halves of Site 
U1419 at the IODP Gulf Coast Repository at Texas A&M University using a digi
tal X-ray panel and veterinary X-ray unit (Walsh et al., 2014) on core sections 
that required additional imaging of a wider field of view to better discriminate 
features.

Downcore Logging

Downcore logging data are collected directly on whole and half-round core 
sections. This study uses downcore logging data commonly collected during 
and after IODP expeditions: physical properties and scanning X-ray fluores-
cence (XRF) elemental data.

Physical Properties

Physical properties were rapidly measured shipboard to relate with core 
lithology (Jaeger et al., 2014). Three of these properties—b* color reflectance, 
volume-normalized magnetic susceptibility (MS), and volume-normalized 
natural gamma radiation (NGR)—are used in this study as cluster model inputs. 
Magnetic susceptibility in a sediment core is a measure of how magnetized 
the sediment becomes when exposed to an external magnetic field (Hatfield 
et al., 2013). It is often used as a proxy for changes in sediment composition and 
lithology (Blum, 1997; Jessen et al., 2010). Regionally in the Gulf of Alaska, MS 
has been shown to covary with grain size; low MS values are found in clay-rich 
sediment and high MS values with sandy and silty sediments (Fig. 3; Cowan 
et al., 2006; Jaeger and Kramer, 2014; Walczak et al., 2017). NGR is naturally 
occurring gamma-ray radiation derived from K, U, and Th (Blum, 1997). It is 
a common tool used for interpreting lithology because K and Th are gener-
ally concentrated in clay minerals; thus, high NGR values indicate a more clay-
rich lithology (Blum, 1997). Both MS and NGR data sets used in this study are 
volume normalized to account for variable filling of core liners (Walczak et al., 
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Figure 3. Downcore properties from core 
EW0408-85JC co-located with Site U1419. 
(A) Computerized tomographic (CT) scans 
where warm colors (yellow and red) indi-
cate higher densities, and cooler colors 
(blue and purple) indicate lower densi-
ties. (B) Green-blue pixel intensity values 
from line-scan red-green-blue (RGB) color 
imagery; (C) biogenic silica concentra-
tion; (D)  volume magnetic susceptibility; 
(E–F) elemental ratios from inductively 
coupled plasma–mass spectrometry data. 
Modified from Barron et al. (2009), Davies 
et al. (2011), and Addison et al. (2012).
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2015). The b* color reflectance represents sediment color on the International 
Commission on Illumination (CIE) color space; blue (negative) to yellow (posi
tive) scale (Blum, 1997). Within Site U1419, sediment with higher b* values ap-
pears greener in core photographs. Variations in color reflectance have been 
correlated with lithologic changes primarily due to changes in productivity (Vidal 
et al., 1998; Peterson et al., 2000; Nederbragt et al., 2006; Pan and Chen, 2013), 
with higher b* values (greener) associated with periods of increased diatom pro-
ductivity (Nederbragt and Thurow, 2001; Debret et al., 2006; Debret et al., 2011). 
At Site U1419, quantitative color from RGB values of digital line scan images of 
core EW0408 85JC shows this relationship of greener sediments with higher 
biogenic silica concentrations (Fig. 3; Addison et al., 2012). Magnetic susceptibil-
ity and NGR are measured on an 8-cm- and 10-cm-long whole-core volume and 
b* every 2 cm on the split core surface (Jaeger et al., 2014).

Scanning X-Ray Fluorescence

Scanning XRF elemental data were collected approximately every 2  cm, 
post-cruise on the Site U1419 composite spliced core (Penkrot et al., 2017a). To 
account for core surface inhomogeneity in grain size and porosity, which affects 
X-ray attenuation (Tjallingii et al., 2007), the scanning XRF data were calibrated 
with the normalized median-scaled method (NMS; Lyle et al., 2012). Ninety-five 
discrete bulk samples representing the full range of lithologies within Site 
U1419 were analyzed for major, minor, and trace elements via fused bead XRF 
analysis (Yamada, 2010; Watanabe, 2015) and an Element 2 inductively coupled 
plasma–mass spectrometer (ICP-MS) (Kamenov et al., 2009) at the University 
of Florida. Analytical uncertainty for all elements is better than ±5%. Normal-
ized scanning XRF data for each element used are available in Supplemental 
File S11. Elements used for classification analysis are restricted to those most 
sensitive to grain-size variations (Al, Ca, K, Si, Rb, and Zr; Rothwell et al., 2006; 
Rothwell and Croudace, 2015). Elemental ratios of these elements successfully 
capture major lithologic changes in core EW0408 85JC (Fig. 3; Barron et al., 
2009). Elements sensitive to changes in provenance (e.g., light rare-earth ele-
ments [LREEs], Sc, Th, etc.; McLennan, 1989; Kaiser et al., 2007) and digenesis 
(e.g., Mo, V, Fe, etc.; Piper, 2001; Barron et al., 2009) are avoided.

Bulk Mineralogy

Bulk-sample X-ray diffraction patterns were collected shipboard for miner-
alogy (Jaeger et al., 2014). Quantitative analyses of these scans were performed 
using the RockJock program in standardless analysis mode (Eberl, 2003).

Lithofacies Classification Analyses

Access to high-level computing and high-resolution sedimentary prop-
erty data have driven many approaches that use machine learning to classify 
sedimentary facies from multivariate data sets. Most attempts have focused 
on classifying bulk sedimentary facies (e.g., mudstone, sandstone, marl, and 

limestone) and have had varying success when models are validated against 
observed lithofacies (Dubois et  al., 2007; Hall, 2016; Sahoo and Jha, 2017). 
Successful attempts occur when there are numerous samples of classified 
data to use in training sets and lithofacies criteria are primarily compositional 
and/or mineralogical, which allows for effective classification by proxies such 
as natural gamma-ray logs (Benaouda et al., 1999; Dubois et al., 2007; Tang 
and White 2008).

The two modeling approaches used are supervised and unsupervised 
classification. In the former, algorithms are supplied with classified training 
data that let the model learn the relationships between the measurements 
and the classes (lithofacies), which are then assigned to unclassified mea-
surements (Benaouda et al., 1999; Davis, 2002; Dubois et al., 2007; Tang and 
White, 2008). Unsupervised classification of lithofacies generally groups, or 
clusters, samples together based on common traits with a goal of maximiz-
ing the difference between groups. A primary limitation of this approach is 
that the number of groups is not known in advance, and interpretation of the 
clusters in terms of controlling factors can be ambiguous (Templ et al., 2008; 
Ellefsen et al., 2014). A potential benefit of applying both approaches is that the 
supervised classification can objectively highlight the parameters or variables 
that best correlate with individual lithofacies, which can later help interpret the 
unsupervised clustering results.

Supervised Classification-Discriminant Analyses

Linear and quadratic discriminant analyses (LDA and QDA) result in classi-
fication boundaries based on the calculation of discriminant scores that assign 
observations to a specific group (Davis, 2002). The LDA scores are calculated 
by finding linear combinations of the independent variables providing linear 
decision boundaries that assume equal covariance of variables in all groups. 
The QDA relaxes the requirement of equal covariance and is able to provide 
more accurate nonlinear, quadratic classification boundaries. Both techniques 
require Gaussian distributions of parameter values within groups; so outliers 
need to be eliminated and the distribution of each variable analyzed for each 
group (lithofacies) to test for normality. In general, QDA is less restrictive than 
LDA, but because it has a larger number of parameters to fit in its calculation, it 
requires larger data sets for the given number of groups and/or variables being 
analyzed. Both techniques use a Bayesian approach to provide a probability of 
group membership.

Supervised Classification-Support Vector Machines

Support vector machines (SVMs) have evolved to be the most flexible 
and used machine learning approach for supervised learning. This popularity 
arises because it requires fewer parameters to be fitted in the model and is 
less restrictive than LDA or QDA. Although as with all regression approaches, 
outliers in the data will reduce model accuracy. Within a SVM, data points are 
projected into higher-dimensional space using the kernel approach, where the 

1Supplemental Materials. Figures S1–S5: Supple-
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tical parameters for the logging data. File S3: Ship-
board collected mineralogy RockJock results. Please 
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points effectively become linearly separable into different classes. The optimal 
hyperplane between the groups (lithofacies) establishes the edges between 
the closest points of the classes, with points falling on the wrong side of the 
classification weighted down to minimize their importance of setting bound
aries. A subset of training points provides the probability of group member-
ship through a computationally expensive cross-validation approach, which in 
the past has been a primary restriction on the use of SVMs.

Unsupervised Cluster Analysis

Clustering is a common multivariate statistical method that is useful for 
grouping observations into homogeneous clusters. Two different clustering 
routines are applied to the downcore logging data—hierarchical clustering and 
model clustering. Both routines have been applied to geochemical and logging 
data (Templ et al., 2008; Hunze et al., 2013; Ellefsen et al., 2014), with no con-
sensus on the ideal clustering technique for these data types.

Hierarchical clustering is based on the multivariate distance between ob-
servations that can be either agglomerative or divisive. In this study, we apply 
an agglomerative approach using Euclidean distances and the Ward method 
(Ward, 1963) of clustering (Templ et al., 2008). This analysis was performed in 
the R programming language using the “hclust” function (R Core Team, 2017).

Model clustering is based on specific models that describe the multivariate 
distribution of the data points forming clusters rather than on the distance 
between observations (Fraley and Raftery, 2002). In this study, we use a modi-
fied mixture-model clustering method from Ellefsen et al. (2014) for geochem-
ical data which is based on a finite mixture model that was first presented 
by Templ et  al. (2008). This analysis was performed in the R programming 
language using the “mclust” function (Fraley et al., 2012).

Supervised Classification Data Preparation

The accuracy of classification data analysis is highly dependent upon the 
intergroup variance of the training data, which requires a robust evaluation of 
how the data fit the assumptions that are part of each analytical technique. Our 
data preparation procedures follow Gorman Sanisaca et  al. (2017), who use 
multivariate sediment data to assign membership to distinctive sources. All data 
preparation is performed using the statistical software R (R Core Team, 2017) and 
is presented in File S1 (footnote 1) for evaluation and implementation by others.

Data preparation involves screening data and then determining the opti-
mal variables for use in classification algorithms. Because we use geochemical 
data in our model, we use preparation techniques appropriate for these closed 
data (i.e., expressed in units that sum to a constant; Davis, 2002; Templ et al., 
2008). Data outliers are removed using the outCoDa function in the robCom-
positions package in R, where outliers are detected based on (robust) Mahala-
nobis distances after an isometric log-ratio transformation of the data (Filz-
moser and Hron, 2008; Templ et al., 2011). This routine identified 28% of data 
as outliers (4661 used/6490 total). We test for any constant or almost constant 

predictors across samples using the function nearZeroVar from the caret pack-
age in R (Kuhn et al., 2017). Multivariate data sometimes contain predictors 
that take a unique value across samples (e.g., zero ppm concentrations), which 
add little discriminatory power to models and/or can complicate model result 
interpretations. A nonparametric Kruskal-Wallis test is used on each variable 
to see if the different lithofacies have unique values that allow for potential dis-
crimination between lithofacies. Data are interrogated for collinearity (r >0.9) 
between variables, which can lead to serious stability problems in discrimi-
nant function analyses (Davis, 2002). A Levene test is used to test for homo-
geneity of variance (Gorman Sanisaca et al., 2017), which showed that several 
parameters (e.g., Ca and Zr) do not meet the LDA requirement of homogene-
ity; therefore, only QDA techniques are used. Closed compositional data are 
opened for classified models using a center-log ratio transform (Templ et al., 
2008). Physical property data were standardized (z-score) to account for differ-
ences in measurement units when calculating distance coefficients (Milligan 
and Cooper, 1988; Kynčlová et al., 2016). Finally, for supervised classification 
models, we use a forward stepwise linear discriminant function approach to 
establish which parameters were most important in separating the lithofacies 
types using the function “greedy.wilks” in the R package klaR (Weihs et al. 
2005). These parameters are then grouped for analyses in QDA and SVM 
models. Supervised model accuracy is evaluated using a cross-validation ap-
proach within the caret package in R (Kuhn et al., 2017). The number of training 
samples among the different lithofacies is balanced to prevent accuracy bias in 
the prediction model toward the most abundant lithofacies.

Unsupervised Clustering Procedure

Three physical properties (b*, MS, and NGR) and six elements (Al, Ca, Si, 
Rb, K, and Zr) were selected to be used as our multivariate cluster model in-
puts. Both clustering routines were run with three different groups of input 
data: group 1 (G1)—physical properties and elemental data inputs (b*, MS, 
NGR, Al, Ca, Si, Rb, K, and Zr); group 2 (G2)—physical properties only (b*, MS, 
and NGR); group 3 (G3)—elemental data only (Al, Ca, Si, Rb, K, and Zr).

Prior to clustering, the input data were rescaled at a 2 cm resolution and 
treated to avoid artifacts. An isometric log-ratio (ilr) transformation was per-
formed using the robCompositions R package (Templ et  al., 2011) on the 
NMS-normalized scanning XRF elements in order to open the data and remove 
the effects of a compositional closed data set (Templ et  al., 2008). Physical 
property data were normalized (z-score). Finally, the input data were trans-
formed into robust (i.e., no outliers) principal components (Templ et al., 2011) 
before clustering to reduce dimensionality, which helps to reduce uncertainty 
encountered while clustering (Fraley and Raftery, 2002), remove correlation 
between input variables, and improve cluster stability (Ellefsen et al., 2014). 
These principal components were then used in hierarchical and modified 
mixture-model clustering routines written in R (File S1 [footnote 1]). For both 
clustering routines and each input variable group, the spatial relationship of 
the resultant clusters is plotted downcore, creating a cluster lithology column.
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RESULTS

Characterization of Observed Lithofacies

Twelve lithofacies are defined for Site U1419 based on shipboard visual 
core descriptions, smear slides, and core photographs supported by post-ex-
pedition digital X-radiography and CT scans. Lithofacies are delineated based 
on sediment texture, color, degree of bioturbation, and sedimentary structures 
(Fig. 4 and Table 1). In general, these lithofacies match those identified ship-
board (Jaeger et al., 2014). However, CT and X-radiograph imagery allows for 
better identification and subclassification of diamict lithofacies than visual 
analysis of split core surfaces.

Diamict lithofacies are the most commonly observed lithofacies in Site 
U1419 (Fig. 4). Site U1419 diamicts are defined as poorly sorted facies contain-
ing >1% by area of clasts greater than 2 mm floating in a fine-grained matrix 
(Jaeger et al., 2014). Clast-poor diamicts contain 1%–5% clasts, and clast-rich 
diamicts contain >5% clasts. Mud with <1% clasts is classified as mud with 
dispersed clasts or lonestones. Stratified diamicts are defined by interlayered 
low-density (assumed to be mud-rich) stratification that ranges from a few mm 
to ~1 cm thick, has diffuse contacts, and is only visible in CT scans. Sandy 
diamict lithofacies are higher density than clast-poor diamicts and tend to have 
sharp lower contacts and gradational upper contacts. Due to their density dif-
ference, they are most easily recognized in the CT scan images, and they tend 
to be relatively thin, ranging from a few cm to ~20 cm. Interstratified massive 
diamicts are defined by 3–20 cm intervals of clast-poor diamict interstratified 
with clast-rich diamict and silt stringers. Clast-rich diamicts containing folded 
and/or crosscut silt stringers are occasionally observed.

Non-diamict lithofacies comprise the remainder of the composite splice. 
Interbedded mud and sand with dispersed clasts are recognized by alternat-
ing very thin to thin, mud and fine sand beds that have sharp bottom contacts 
and gradational upper contacts and <1% clasts. Massive sandy mud with 
dispersed clasts is bioturbated and contains <1% clasts. Laminated mud and 
ooze with dispersed clasts contain mud and/or silt laminae, appear greener 
in color than the surrounding gray diamicts, and contain abundant diatoms 
(Jaeger et al., 2014). Laminated mud lithofacies contain mud and silt laminae 
with gradational contacts. The massive mud facies are green in color, com-
posed mainly of silt and clay, have abundant diatoms (Jaeger et al., 2014), 
and are structureless except for a few preserved burrows that are visible 
only in CT scans. Neither the laminated mud nor massive mud lithofacies 
contain clasts.

Site U1419 Lithostratigraphy

We use these 12 lithofacies to generate a lithostratigraphic section 
at cm-scale resolution for the composite Site U1419 record (Fig. 5A). For 
ease of comparison with our other data sets and cluster analysis testing, 

we condense this high-resolution record into a bimodal mud and diamict 
lithostratigraphy (Fig. 5B) and a diamict-only lithofacies (Fig. 5C). For the 
bimodal mud-diamict lithofacies section, any lithofacies that contain clasts 
are grouped into a general diamict facies, and those lacking lonestones are 
grouped into a general mud facies (Table 2). The mud lithofacies represents 
7% of the composite splice, while the diamict portion is 93% of the core 
(Table 3).

P CT

Clast-poor diamictB

P CT

Stratified diamictD

A Massive mud

CTP

Clast-rich diamict

CTP

FSandy  diamict

CTP

E

Mud w/dispersed clasts

P CT

C

5c
m

Figure 4. Lithofacies identified within U1419 from core photographs and 
computed tomography (CT) images of U-channels collected from the core. 
A–F depicts a section of core photograph (P) and its corresponding com-
puted tomography (CT) image. Computed tomography images are used to 
highlight changes in density (lighter = more dense; darker = less dense), and 
lonestones (clasts) that are not visible in core images. Note scale bar in (A).
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TABLE 1. OBSERVED LITHOFACIES IN U1419

Lithofacies Code Description Core Photograph CT Scan

Massive mud Fm Fine-grained, structureless, silt and clay.
Bioturbated w/some burrows preserved 5 

cm

Laminated mud Fl Mud/silt laminae

Clast-poor 
massive diamict Dmm

1-5% clasts floating in mud 
matrix. Poorly sorted. Denser 

clasts appear lighter in computed 
tomography (CT) imagery.

Clast-poor 
stratified diamict Dms

1-5% clasts floating in mud matrix w/low 
density, fine-grained stratifications that 
range from a few mm to ~1 cm thick.
Stratification contacts appear diffuse.

Sandy clast-poor 
massive diamict sDmm

1-5% clasts floating in sandy mud 
matrix. Poorly sorted. Has higher 
density than surrounding diamict.
Tends to have sharp lower contact 

and gradational upper contact.

Mud/ooze with 
dispersed clasts Fdo

Fine-grained, structureless, silt and 
clay. Green colored, with abundant 

diatoms and few (<1%) clasts

(continued)
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TABLE 1. OBSERVED LITHOFACIES IN U1419 (continued)

Lithofacies Code Description Core Photograph CT Scan

Laminated 
mud/ooze with 
dispersed clasts

Flo Mud/silt laminae with few (<1%) clasts

Interbedded 
mud/sand with 
dispersed clasts

F/Sd

Interbedded mud and fine sand.
Sand layers have sharp bottom 
contact and gradational upper 
contact with few (<1%) clasts

Massive sandy 
mud with 
dispersed clasts

mFSd Bioturbated mud and fine sand 
with few (<1%) clasts

Interstratified 
massive diamict DmmIS

Intervals of clast-poor diamict (1-5% 
clasts) interstratified with intervals of 
clast-rich diamict (>5% clasts) and 
silt stringers. Clast rich interval vary
in thickness from 3 cm to ~20 cm.

Clast-rich 
massive diamict DmmCr >5% clasts floating in mud matrix

Resedimented 
clast-rich diamict rDmmCr

>5% clasts floating in mud matrix 
with evidence of displacement 

and re-deposition
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We further subdivide the diamict portion of the lithostratigraphy at a 
vertical scale that allows for testing of whether the subtle, finer vertical-scale 
lithofacies can be identified using cluster analysis of downcore logging data. 
We focus on the diamict interval because diamict facies comprise a majority 
of the spliced section and contain ten out of the 12 visually observed litho-
facies. In addition, the diamict facies likely contain much of the information 
on spatial variations in glacier extent (e.g., Cowan et al., 1997). We combine 
the ten clast-bearing lithofacies into five simplified lithofacies based on tex-
ture and concentration of lonestones (clasts)—clast-poor massive diamict, 

clast-poor stratified diamict, clast-poor sandy diamict, clast-rich diamict, 
and mud with lonestones, creating a diamict-only lithofacies (Table 4; Figs. 
4B–4F and 5C).

Many of the ten clast-bearing lithofacies display fairly similar logging prop-
erties (Fig. 6; Fig. S1 [footnote 1]), and combining the most texturally similar 
facies allows for greater differentiation of the facies that are modeled through 
classification analysis. The facies that are condensed into overarching groups 
vary subtly, often by features not easily identified by the logging data (e.g., 
bioturbation), and they are interpreted to be deposited under similar glacier 

Clay Silt Sand Gravel

Full Lithostratigraphy
Clay Silt Sand Gravel

Mud-diamict 
lithotratigraphy for 

cluster modeling

Diamict-only
lithotratigraphy for 

cluster modeling
Clay Silt Sand Gravel

A CB

stratified diamict
sandy diamict

clast-poor diamict

clast-rich diamict
mud w/lonestones 

mud 
diamict

laminated mud/ooze with/dispersed clasts
interbedded mud/sand w/dispersed clasts

laminated mud

sandy clast-poor massive diamict
clast-poor stratified diamict
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clast-poor massive diamict

clast-rich massive diamict

massive mud 

mud w/dispersed clasts 
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resedimented clast-rich diamict

massive sandy mud w/dispersed clasts

Figure 5. Lithostratigraphy of spliced 
composite from Site U1419. (A) Full litho-
stratigraphic section containing all facies; 
(B) simplified mud-diamict lithostratig-
raphy; (C) diamict-only lithostratigraphy. 
Simplified lithostratigraphy is created for 
ease of comparison with cluster analyses 
results. Core depth is plotted in meters 
of core composite depth below sea floor, 
method A (CCSF-A) (Jaeger et al., 2014).
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conditions. Additionally, some of these facies are only seen within very small 
intervals a few cm thick (i.e., sandy clast-poor diamict), which alone would be 
aliased by the resolution of the logging properties, which range from 2 to 10 cm.

Downcore Logging Data

The downcore logging data resolve core properties at a range of vertical 
scales that generally correspond with lithostratigraphy (Fig. 7). Sediment color 
reflectance (b*) and MS appear to generally be inversely correlated, with high-
est b* and lowest MS values occurring from 0–6.32 m CCSF-A, and the low-
est b* and highest MS from 6.32–96.64 m CCSF-A. In the lower interval, sev-
eral peaks in b* occur, with values similar to those found in the upper 6.32 m 
CCSF-A of core. Natural gamma radiation values mirror MS with the lowest 
values found in the upper 6.32 m CCSF-A, with higher and relatively consistent 
values observed below.

Aluminum and Si generally covary with average values increasing down-
core. Both K and Rb show highest values in the upper 6.32 m CCSF-A of the 
core and appear to be correlated. A major low in K is observed between 83.2 
and 91.4 m CCSF-A that is not seen in Rb. Calcium displays the most down-
core variability of any of the elements and appears to roughly correlate with 
MS below 6.32 m CCSF-A. Average Ca concentrations decrease toward the 
bottom of the composite splice, with the most variability observed between 
80.7 and 94.4  m CCSF-A. Zirconium is roughly inversely correlated with K 
and Rb, with values showing a stepwise increase at 6.32 m CCSF-A, and then 
steadily decreases until 73.6 m CCSF-A. Between 73.6 and 80.9 m CCSF-A, 
Zr displays high variability, and at 80.9 m CCSF-A, Zr displays a stepwise de-
crease in values.

Logging Properties of Lithofacies

To relate changes in logging properties with visually observed lithofacies, 
we compare the standardized (z-score) value of each logging property to the 
lithofacies (Fig. 6). The median and interquartile ranges of z-scores are calcu-
lated for each logging parameter within each lithofacies (File S2 [footnote 1]). 
Logging properties having positive median z-score values are relatively en-
riched, and those with negative values are relatively depleted, with the abso-
lute value a measure of the degree of deviation from the mean of that property 
for the entire analyzed section (i.e., a value of +1 indicates enrichment at 1σ).

For the bimodal mud-diamict lithostratigraphic grouping (Figs. 6A and 6B), 
the diamict facies has nearly average concentrations of all the logging proper-
ties (i.e., value ~0). In contrast, the mud facies is average for Zr, very enriched 
(~+2σ) in b* (very green) and Rb, moderately enriched (~+1σ) in Ca and K, 
moderately (~–1σ) depleted in Al and Si, and very depleted (~–2σ) in NGR and 
MS (Table 4). Because diamict is 93% of the total described section (Table 3), 

TABLE 2. MUD-DIAMICT LITHOSTRATIGRPAHY FACIES

Lithofacies Codes Description

Mud Fm, Fl No lonestones or obvious glacial input present; green mud, massive and laminated.
Diamict Dmm, Dms, sDmm, F/Sd, mFSd, DmmCr, 

DmmIS, rDmmCR, Fdo, Flo
Few to abundant lonestones present throughout. Ranging from massive to stratified to

laminated with some laminated and massive sandy intervals.

TABLE 3. DISTRIBUTION OF LITHOFACIES OBSERVED IN U1419

Lithology
Thickness

(m)
Length

(%)

Mud-diamict lithostratigraphy

Mud 7.56 7.8
Diamict 89.08 92.2

Diamict-only lithostratigraphy

Massive diamict 56.13 62.2
Stratified diamict 13.25 14.7
Mud with lonestones 2.72 3.0
Sandy diamict 9.46 10.5
Clast-rich diamict 8.76 9.7

TABLE 4. DIAMICT-ONLY LITHOSTRATIGRAPHY FACIES

Lithofacies Codes Description

Clast-poor massive diamict Dmm 1%–5% clasts floating in mud matrix. Poorly sorted.
Clast-poor stratified diamict Dms 1%–5% clasts floating in mud matrix with low-density, fine-grained stratifications that range from a few mm 

to ~1 cm thick. Poorly sorted. Stratification contacts appear diffuse.
Clast-poor sandy diamict sDmm, F/Sd, mFSd Sandy, relatively high density.
Clast-rich diamict DmmCr, DmmIS, rDmmCr >5% clasts floating in mud matrix.
Mud with lonestones Fdo, Flo Fine-grained silt and clay; both massive and laminated with few (<1%) clasts.
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it is understandable its logging properties have standardized values close to 
zero; whereas the mud lithofacies displays greater variability.

For the diamict-only lithostratigraphic grouping, there is more variability 
in the range of standardized logging values within each sublithofacies. In this 
diamict-only interval, clast-rich diamict is the dominant lithofacies, represent-
ing 62.2% of the core, while stratified diamict makes up 14.7%, sandy diamict 
10.5%, clast-rich diamict 9.7%, and mud with lonestones 3.0% (Table 3). Clast-
poor diamicts have a comparatively average composition with slight enrich-

ment in Al, K, and Si and slight depletion of Rb, Ca, and Zr (Fig. 6C). Stratified 
diamicts are defined by moderately enriched K, Rb, and Zr (~+0.5σ) and mod-
erately depleted Si, MS, and NGR (~–0.5σ). Both sandy and clast-rich diamicts 
are compositionally similar, being moderately depleted in b*, Al, K, Rb, and Ca. 
However, sandy diamict is moderately enriched in Zr, while clast-rich diamict 
is moderately enriched in Si, moderately depleted in Al, and very depleted 
in K. Mud with lonestones is moderately enriched in b*, NGR, Si, and Ca, and 
moderately depleted in Al and Zr.

Principal Components

For the unsupervised cluster analysis, we reduce multivariate space by using 
only the first three principal components (PC). Regardless of samples or input 
parameters used in the factor model, PC1 represents 38%–54% of the variability, 
PC2 25%–34%, and PC3 15%–28%, with the three overall representing 90%–100% 
of the total variance (Fig. 8). Physical properties (b*, MS, and NGR) appear most 
useful for delineating variations in composition (b* and MS) and clay content 
(NGR). Elemental data appear to best capture differences in sand versus clay 
content (Ca, Zr, and Si versus K, Rb, and Al) and composition (Ca and Si).

Mud-Diamict Lithostratigraphy

For data groups G1 and G2, PCs 1 and 2 are dominated by parameters that 
tend to follow the relative parameter importance shown in Figure 6A. Mag-
netic susceptibility, NGR, and b* values dominate the variance explained by 
PC1 and PC2 (Figs. 8A and 8B), suggesting that these PCs reflect the relative 
difference in grain size and composition between the mud and diamict litho
facies. For the element-only data group G3, there is a greater variability on the 
composition of each PC (Fig. 8C). PC1 of G3 is largely influenced by Al and Si, 
which are both moderately depleted in the massive mud facies (Fig. 6A). For 
PC2, Ca, Si, and Zr group together and may represent a sandier component; 
whereas Al, Rb, and K group together and may represent a muddier compo-
nent. PC3 is mostly represented by Ca alone, and may represent a nontextural 
(i.e., biogenic) Ca component.

Diamict-Only Lithostratigraphy

For data groups G1 and G2, PC1 is dominated by NGR and b* (Figs. 8D and 
8E), suggesting its variance is explained by differences in grain size and com-
position. Magnetic susceptibility is the dominant variable for PC2 in G1 and 
PC3 in G2, and may represent a difference in sediment composition. PC3 in G1 
and PC2 in G2 are mainly influenced by a b* and NGR grouping, representing 
a muddy, greener, diatom-bearing component. For G3, an Al and K versus Zr 
grouping dominates PC1, suggesting it represents a muddier versus coarser 
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variant (Fig. 8F). Silicon, possibly representing a sand component, largely con-
trols PC2. PC3 is predominately influenced by Ca but not with Si, suggesting it 
is representing biogenic Ca rather than Ca-rich plagioclase.

Supervised Classification Model Results

Quadratic discriminant analysis and SVM model results differ greatly in ac-
curacy between the simpler mud-diamict lithostratigraphy and the more com-
plex diamict-only lithostratigraphy. For the mud-diamict case, both QDA and 
SVM models are 100% accurate with a Cohen’s Kappa value of 1. The Kappa 
statistic is a metric that compares an observed accuracy with an expected ac-

curacy given the relative abundance of that group or lithofacies (Fleiss et al., 
2013). It is a more accurate measure of model performance when there is a 
strong imbalance in the number of observations in a particular class (e.g., 
diamict). In decreasing order of importance in the accuracy of the models are 
NGR, Rb, b*, Al, Si, MS, and Ca (File S1 [footnote 1]).

Neither supervised modeling approach is accurate with the diamict-only 
lithofacies. The Greedy Wilks analysis identified Si and Zr as the parameters 
that explained most of the variance in the diamict-only data set (File S1 [foot-
note 1]). The QDA model is only 44% accurate (Kappa = 0.21), and the SVM 
model is 42% accurate (Kappa = 0.22). In general, both models struggle with 
the nonmassive diamict facies; they successfully classify massive diamict cor-
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Figure 7. Logging data used in cluster models plotted on core composite depth below sea floor, method A (CCSF-A). (A) Simplified lithostratigraphy; (B) shipboard b* 
color reflectance; (C and D) volume-normalized magnetic susceptibility and natural gamma-ray activity, from Walczak et al. (2015); (E–J) scanning XRF elemental data 
calibrated using the normalized median-scaled method (NMS; Lyle et al., 2012).
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rectly but also tend to classify the other lithofacies as massive diamict (File S1 
[footnote 1]). In these models, the relative importance of parameters varies 
for each lithofacies, with b*, Si, and Al being relatively the most important in 
successfully distinguishing between the lithofacies groups.

Unsupervised Clustering Model Results

Clustering using the hierarchical and modified-mixture model techniques 
results in highly variable cluster lithologies that depend on the clustering rou-
tine and input data used (Figs. 9 and 10). A total of 12 cluster-based litholo-
gies are produced—one for each of the input data groups (G1, G2, and G3) 
and clustering routine (hierarchical and modified-mixture model), for both the 
mud-diamict and diamict-only lithostratigraphies. Note that the cluster identi-

fier (e.g., cluster 4), is arbitrarily set by the analysis code and is not consistently 
associated with a particular cluster-based lithology. For this study, we renamed 
the clusters in rank order so that cluster 1 indicates the most common cluster 
and Cluster 5 the least common.

Mud-Diamict Lithostratigraphy

Modeled cluster groupings have varying degrees of similarity with the ob-
served mud-diamict lithostratigraphy. Although each clustering approach can 
create more than two cluster groups, for this first scenario, we limited models 
to two clusters to best compare with the bimodal mud-diamict lithostratigra-
phy. We compare the clustering results with the observed lithofacies by com-
paring the z-score of the variables within each cluster to those of the observed 
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Figure 8 (on this and following page). Ro-
bust principle component analyses (Templ 
et  al., 2011) of logging data divided into 
three groups: G1—physical properties and 
elemental data inputs; G2—physical prop-
erties only; G3—elemental data only. Prior 
to principal component analysis (PCA) 
analysis, magnetic susceptibility (MS), 
natural gamma radiation (NGR), and b* 
values are standardized; elemental data 
are isometric log ratio (ilr) transformed 
(Templ et  al., 2008); (A–C) data for en-
tire spliced composite record; (D–F) data 
for diamict-only section. The first three 
components represent 90%–100% of the 
total variance and are used in subsequent 
cluster analyses. Depth scale is same as 
Figure 7.
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lithofacies. This helps identify which cluster is most similar to the lithofacies 
we are attempting to model (Fig. 11 and Fig. S2 [footnote 1]).

Data groups G1 and G2 have similar cluster modeling results (Fig. 9). Both 
the hierarchical and mixture-model clustering results contain a cluster that is 
related to the mud lithofacies. This cluster contains enriched b*, K, Rb, and Ca, 
and depleted NGR, MS, and Si values that are indicative of the greener, fine-
grained mud lithofacies. The second cluster is composed of average physical 
property values and elemental concentrations that represent the volumetri-
cally dominant diamict facies. Both clustering routines show similar logging 
property enrichment and depletion patterns within the clusters for G1 and G2. 
However, the hierarchical clustering routine reveals more highly enriched or 
more highly depleted logging properties, while the mixture-model clustering 
results show only moderately enriched or moderately depleted properties (Fig. 
S2 [footnote 1]).

G3 cluster results differ greatly from G1 and G2. There is no cluster for 
this model that definitively represents the distinctive mud facies (i.e., enriched 
b*, K, Rb, and Ca and depleted NGR, MS, and Si) (Fig. 9; Fig. S2 [footnote 1]). 
Both hierarchical and mixture-model cluster results contain similar variations 
in logging properties, with one cluster containing moderately enriched Al, 
moderately depleted Zr, and nearly average values for all other logging prop-
erties. Logging properties of the second cluster are opposite, with moderately 
enriched Zr, moderately depleted Al, and nearly average for all other variables.

We observe that the vertical heterogeneity of the logging data produces 
varying amounts of vertical detail represented by each cluster group. Data 
groups G1 and G2, which contain physical property logging data, have less 
downcore variability between clusters than G3, which only utilizes the scan-
ning XRF elemental data. This is illustrated by the fact that G1 and G2 cluster 
lithologies have one cluster that comprises the top 6.32 m CCSF-A core (mud 
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portion of the core), with the second cluster dominating the portion of the 
core below 6.32 m CCSF-A (diamict portion of the core). For G3, there is no 
single cluster that describes the entire top 6.32 m CCSF-A of core, and the 
section of core below 6.32 m CCSF-A frequently alternates between clusters. 
The difference in downcore cluster variance also is evident in the percent-
age of core contained in the dominant cluster (Table 5). There is little dif-
ference between G1 and G2 for the percentage of core section represented 
by the dominant and minor cluster. Within each data group (G1–G3), the 
model-based clustering approach has more downcore variability than hier-
archical clustering (Fig. 9). This is also evident in the cluster percentages, 
where the difference between the two cluster lengths is greater for the G1 
hierarchical clusters (92% versus 8%) than the G1 mixture-model clusters 
(76% versus 24%; Table 5).

Diamict-Only Lithostratigraphy

We suggest that cluster modeling can better resolve the heterolithic nature 
of this site if the number of clusters is increased to reflect the increased number 
of lithofacies and by limiting the input data to only the diamict portion of the 
core. As with the mud-diamict lithostratigraphy, we chose to limit the number 
of cluster groups to match the number of end-member lithologies we are trying 
to model (five). The same three data groups (G1–G3) are used for modeling the 
diamict-only lithostratigraphy. To identify which cluster is most similar to each 
observed lithofacies, the z-score of each logging property within each cluster 
again is compared to the observed diamict lithofacies (Fig. S3 [footnote 1]).

As expected, diamict-only lithostratigraphy modeling results are vertically 
more complex than those for the mud-diamict lithostratigraphy (Fig. 10). The 
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Figure 9. Cluster modeling results for prin-
cipal component analysis (PCA) scores for 
three data groups for the mud-diamict 
simplified lithostratigraphy. To compare 
with bimodal lithofacies, only two clus-
ters are modeled using hierarchical and 
mixture-model clustering. Cluster 1 rep-
resents the most common cluster and 
cluster 2, the least common (Table 5). 
Clusters do not necessarily relate to an ob-
served lithofacies or to a cluster in another 
model. Statistical measures used to eval-
uate the fit between cluster results and 
the observed lithology (Table 7) indicate 
hierarchical modeling of the G1 data set 
provides the closest match to observed 
lithofacies.
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most common cluster from each model result contains relatively average log-
ging properties common to the observed clast-poor diamict that dominates 
this interval of core (Table 5; Fig. S3 [footnote 1]). However, the remaining 
clusters do not contain logging property associations that can be associated 
with the observed lithofacies (Fig. 6). Cluster groups for G1 and G2 hierarchical 
clustering and G3 hierarchical and mixture-model clustering are nearly iden-
tical; while G1 and G2 mixture-model clustering results are distinct (Fig. 10).

DISCUSSION

Our results indicate that it is possible to use supervised and unsupervised 
machine learning models on physical and elemental core logging data to clas-
sify glacimarine lithofacies with varying success. Bimodal mud-diamict litho-

facies interpreted as nonglacial versus glacial conditions can be successfully 
identified using physical properties data augmented with scanning XRF analy-
ses. In both QDA and SVM supervised classification models, the combination 
of these parameters resulted in high accuracy. For unsupervised cluster analy-
sis, the inclusion of scanning XRF elemental abundance with physical property 
data offers only a slight improvement in model success. For the heterolithic 
diamict-only glacimarine lithofacies that are interpreted to represent variations 
in glacier extent, all modeling approaches are less successful; although un
supervised cluster analyses provided slightly better accuracy.

Supervised classification analysis is most useful for discerning between 
lithofacies when the number and types of facies expected is known. When 
using classification analysis as an alternative to CT scans and/or X-radio-
graphs to highlight subtle lithofacies variations, unsupervised cluster analysis 

Clay Silt Sand Gravel

1 2 3 4 5
Cluster

1 2 3 4 5
Cluster

1 2 3 4 5
Cluster

1 2 3 4 5
Cluster

1 2 3 4 5
Cluster

Heir. Heir. Heir.Mix-Mod. Mix-Mod.

G1 G2 G3

A B C D E F G

b*, MS, NGR, Al, 
Ca, K, Si, Rb, Zr b*, MS, NGR

Al, Ca, K, 
Si, Rb, Zr

Mix-Mod.

80
60

40
20

D
ep

th
 (m

 C
C

SF
-A

)
70

60
50

30
20

10
90

1 2 3 4 5
Cluster

Figure 10. Cluster modeling results for 
principal component analysis (PCA) scores 
for three data groups for the diamict-only 
lithostratigraphy. To compare with litho
facies, only five clusters are modeled using 
hierarchical and mixture-model clustering. 
Clusters are presented in rank order, with 
cluster 1 representing the most common 
cluster in each model and cluster 5 the 
least common (Table 5). For each model, 
cluster 1 is colored gray and is comparable 
to the clast-poor diamict lithofacies. The 
other clusters do not necessarily relate 
to a lithology or are comparable between 
models. Statistical measures used to eval-
uate the fit between cluster results and 
the observed lithology (Table 7) indicate 
overall poor correspondence between the 
two. Mixture modeling of the G3 data set 
provides the closest match to observed 
lithofacies, but only weakly.
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is preferable because it does not constrain the model to already known facies. 
The following discussion will primarily focus on interpretation of the unsuper-
vised cluster models, which offers the opportunity to provide new information 
from the natural clustering of the logging data. We contend that the unsuper-
vised cluster modeling results serve as a valuable complementary data set 
alongside visual observations and imaging for lithofacies coding, rather than 
as a replacement for a visual core description and CT scan and/or X-radiograph 
imaging. When cluster-model results are compared to observed lithostratigra-
phy and downcore plots of elemental ratios, a basic record of glacial dynamics 
can be discerned.

Evaluation of Classification Approaches

Both supervised and unsupervised classification approaches were most ac-
curate with the bimodal lithofacies grouping but were less so when applied to 
the diamict-only interval. Quadratic discriminant analysis and SVM performed 
the most accurate classification without misclassification for the bimodal litho-
facies, followed by hierarchical clustering. These three approaches offered the 
most accurate and interpretable results for the mud-diamict models presented 
in this study; whereas either classification approach used for the diamict-only 

models had little influence on the results, with no model able to accurately pre-
dict the diamict-only lithofacies. Unsupervised mixture-model clustering does 
not perform well when differentiating between clusters with uneven number 
of observations, such as those in the mud-diamict lithostratigraphy (Table 3; 
Ertöz et al., 2003). While the clusters within the diamict-only section are not 
completely even, they are more so than the mud-diamict clusters, and so the 
mixture-model clustering performed as well as hierarchical clustering. Overall, 
choice of input data had a greater impact on the clustering results than the 
clustering routine.

When using hierarchical clustering, choosing the appropriate number of 
clusters is critical to model performance, and with little to no a priori informa-
tion on lithofacies, it is difficult to constrain the appropriate numbers of clusters 
(Milligan and Cooper, 1985). However, if the number of expected lithofacies 
within a model can be constrained, hierarchical clustering becomes more use-
ful. When the number of clusters is unknown, mixture-model clustering may be 
a better choice, because the Bayesian information criterion (BIC) can be useful 
for informing on an appropriate number of clusters to select (Fraley and Raftery, 
1998; Raftery and Dean, 2006). Plots of BIC values for models used in this study 
show that our choice of using two and five clusters for our mud-diamict and 
diamict-only lithostratigraphy modeling is appropriate (Fig. S4 [footnote 1]).

Clay Silt Sand Gravel

Cluster
1 2

Heirarchical clustering
b*, MS, NRG, Al, K, Rb

Si, Ca, Zr

Visually Observed LithofaciesModeled Lithofacies Clusters
Establishing cluster lithology

Diamict
MudCluster 2

Cluster 1

Observed
Lithology

Cluster
Lithology

Diamict

−2
−1

0
1

2

Cluster 1

 Mud

−2
0

1
2 Cluster 2

b* NGRMS Al K Rb Si Ca Zr b*NGRMSAl K Rb Si Ca Zr80
60

40
20

0
D

ep
th

 (m
 C

C
S

F-
A

)
70

60
50

30
20

10
0

90

80
60

40
20

0
D

ep
th

 (m
 C

C
S

F-
A

)
70

60
50

30
20

10
0

90

Figure 11. Workflow relating cluster results 
to lithofacies. Box-whisker plots for logging 
data within each cluster group is related 
to data from each lithofacies. The cluster 
having the closest visual correspondence 
between plots is then associated with that 
lithofacies (e.g., cluster 2 with mud), and a 
cluster lithology is created.
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Evaluation of Model Input Data

Physical property logging data are best at capturing end-member lith-
ologies, such as mud and diamict. This is because the greatest variation 
in physical properties between lithofacies is observed at the end-member 
scale (Figs. 3 and 6). The measurement resolution of the physical prop-
erty logging data is too low to resolve thin beds of alternating lithofacies 
and only captures thicker major facies. Magnetic susceptibility and NGR 
measurements represent an average of an 8  cm and 10  cm interval, re-
spectively; while b* and the scanning XRF elemental data are point mea-
surements collected every 2 cm (Jaeger et al., 2014; Penkrot et al., 2017a). 
Some lithofacies within Site U1419 contain beds that are relatively thin—
approximately a few cm (i.e., sandy diamicts) to 10–20 cm (i.e., mud with 
dispersed clasts). These facies are poorly resolved over the 8–10  cm of 
core that are integrated by the MS and NGR measurements, which con-
fines the usefulness of our MS and NGR data sets to simple, end-member 
lithostratigraphies where beds occur on the meter scale rather than the cm 
scale. Cross plots of MS versus b* plotted by observed lithology illustrate 
the ability of the physical properties to better distinguish between the bi-
modal mud-diamict lithofacies than the heterogeneous diamict-only litho-
facies (Fig. S5 [footnote 1]).

Scanning XRF elemental data are most useful in identifying subtle vari-
ations in sediment composition and texture that occur between lithofacies. 
Proxies for both coarse (Zr and Si) and fine-grained (Al, K, and Rb) minerals 
are represented in the elemental data. Out of the three shipboard-measured 
properties utilized in this study, NGR is the only one able to capture changes 
in grain size as a proxy for the relative amount of clay minerals. Lithofacies 
variations within the diamict-only section are primarily defined by differences 
in the amount of coarse grains (i.e., clast-rich diamict versus clast-poor diamict 
versus mud with lonestones); thus the elemental proxies for coarse grains pro-
vide more distinguishing power than NGR.

Inclusion of MS, NGR, and b* with elemental data for diamict-only classifi-
cation did not improve overall accuracy for any method. In cluster analysis, it 
did not create a more accurate model of cluster lithology due to high loading 
scores of the physical properties that may overweight their importance com-
pared to the elemental data (Figs. 8A and 8D). We recognize that this is caused 
by using standardized values for physical properties and log-ratio values for 
elemental data. However, when using mixed data treatment such as this, the 
resulting relationships between variables is not altered, and it is acceptable 
to combine both treatments into a single joint matrix prior to PCA analysis 
(Kynčlová et al., 2016). Both types of classification approaches for the diamict-
only lithofacies that utilized b*, which has higher sampling resolution than MS 
and NGR, along with the elemental data, did not produce results that are able 
to accurately predict the observed lithofacies.

Evaluation of Cluster Model–Lithostratigraphy Relationships

Statistical measures are used to evaluate the fit between the unsupervised 
cluster model results and the observed lithology, while logging property distri-
bution within each cluster allows for a textural and/or compositional interpre-
tation to be made for the cluster. A Pearson’s chi-square test is used to test if 
the downcore position of cluster groups correspond with distinctive lithology 
categories, and Cramér’s V-value is used to test the strength of this relationship 
(Cramér, 1946; Liebetrau, 1983). Cramér’s V-value can vary from 0 to 1, with 
higher values indicating a higher association between cluster and observed 
lithofacies category.

Mud-Diamict Lithostratigraphy

Statistical evaluations for the six mud-diamict cluster models are found in 
Table 6. For all cluster models, a Pearson’s chi-square test results in a p value 
<<0.05, suggesting cluster modeling likely is able to capture the observed tran-

TABLE 5. DISTRIBUTION (IN PERCENT) OF CLUSTERS WITHIN EACH CLUSTERING MODEL

Cluster

G1 G2 G3

Hierarchical Mixture-model Hierarchical Mixture-model Hierarchical Mixture-model

Mud-diamict lithostratigraphy

1 92.0 23.9 8.6 76.4 65.7 60.1
2 7.9 76.1 91.4 23.6 34.3 39.9
Sum 100 100 100 100 100 100

Diamict-only lithostratigraphy

1 47.6 40.3 46.9 43.1 51.9 42.0
2 24.8 24.1 22.5 28.9 24.9 28.4
3 24.1 16.9 28.0 13.6 14.5 15.4
4 3.3 9.4 2.4 13.5 8.7 12.8
5 0.2 9.3 0.2 0.8 0.1 1.4
Sum 100 100 100 100 100 100
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sition in end-member glacial diamict to nonglacial mud lithofacies. The diamict-
to-mud transition is best approximated by the hierarchical clustering approach, 
with data group G1 having the highest Cramér’s V value. Incorporation of the 
scanning XRF data provides only a slight improvement on model fit over the hier
archical clustering of only physical properties (G2). The scanning XRF data only 
model (G3) has the least success. Within the hierarchical cluster models using 
G1 and G2 data, one cluster group contains average logging properties that are 
nearly identical to the diamict lithofacies (Fig. 10). The second cluster group con-
tains an enriched b*, K, Rb, and Ca and depleted NGR, MS, and Si signature that 
is indicative of the more biogenic (green), fine-grained mud lithofacies.

Diamict-Only Lithostratigraphy

Statistical evaluations for the six diamict-only cluster models are found in 
Table 6. For all models, a Pearson’s chi-square test resulted in a p value <<0.05, 
suggesting downcore changes in clusters correspond at this probability level 
with variations in lithofacies. However, within the heterolithic diamict portion 

of the spliced interval, cluster modeling was not successful at direct correlation 
between unique cluster and lithofacies pairs (Table 7). The lack of correspon-
dence also is observed in the Cramér’s V values for the diamict-only cluster 
models, which are much smaller than those for the mud-diamict models. The 
cluster model with the highest Cramér’s V value is the mixture-model cluster-
ing using only scanning XRF elements (data group G3) (Table 6). This cluster 
model is nearly identical to the hierarchical clustering model of the same in-
puts, only having a slightly higher Cramér’s V value.

For the data group G3 mixture-model, cluster 1 contains the largest num-
ber of observations (n = 2294; Table 7). Note that physical property data were 
not used in this model, but we present these values along with the XRF data to 
better describe and interpret cluster groups. Cluster 1 contains average values 
(z-score ~0) for most properties, with moderate enrichment in Al and moderate 
depletion in b*, MS, Ca, and Zr. This indicates that it is likely a finer-grained 
lithology and it bears greatest similarity to the most common lithofacies, a 
clast-poor diamict; these two have a ~74% co-occurrence in core (Table 7). We 
interpret this cluster as a mud-rich, clast-poor diamict.

TABLE 6. CLUSTER MODEL VALIDATION STATISTICS

Data input group Clustering routine Chi-square value Degrees of freedom p value Cramér’s V value

Mud-diamict lithostratigraphy

G1 Hierarchical 6349 9 <<0.05 0.989
Mixture-model 1989 9 <<0.05 0.554

G2 Hierarchical 5982 9 <<0.05 0.960
Mixture-model 2020 9 <<0.05 0.558

G3 Hierarchical 1506 9 <<0.05 0.482
Mixture-model 2024 9 <<0.05 0.559

Diamict-only lithostratigraphy

G1 Hierarchical 619 16 <<0.05 0.161
Mixture-model 424 16 <<0.05 0.133

G2 Hierarchical 596 16 <<0.05 0.158
Mixture-model 559 16 <<0.05 0.057

G3 Hierarchical 2207 16 <<0.05 0.304
Mixture-model 2574 16 <<0.05 0.328

TABLE 7. CLUSTER-LITHOSTRATIGRAPHY RELATIONSHIP

Lithology

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Number of 
observations (%)

Number of 
observations (%)

Number of 
observations (%)

Number of 
observations (%)

Number of 
observations (%)

G3: Mixture-model clustering

Massive diamict 1489 64.9 1200 74.4 403 52.4 371 50.8 43 63.2
Stratified diamict 236 10.3 88 5.5 18 2.3 233 31.9 2 2.9
Mud with lonestones 62 2.7 24 1.5 76 9.9 20 2.7 3 4.4
Sandy diamict 318 13.9 225 13.9 10 1.3 70 9.6 3 4.4
Clast-rich diamict 189 8.2 76 4.7 262 34.1 36 4.9 17 25.0
Observations within cluster 2294 100 1613 100 769 100 730 100 68 100
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Cluster 2 has the next largest number of samples (n = 1613) and is pri-
marily characterized by enrichment primarily in Ca with moderate enrich-
ment of b*, K, and Rb. Based on comparison with the bimodal mud-diamict 
models, this cluster could represent a lithology with an increased biogenic 
component. Bulk mineralogy results from U1419 do not reveal detectable 
amounts (i.e., >3% using RockJock; Eberl, 2003) of calcite, but smear slides 
do contain calcareous microfossils (Jaeger et al., 2014). Another explanation 
for the Ca enrichment could be a change of mineralogy to a more Ca-rich 
plagioclase, which is observed at Site U1419 (File S3 [footnote 1]). Together, 
this leads us to classify this cluster as a Ca-rich diamict. We use the b*/Ca 
ratio to distinguish between a more terrigenous or more biogenic source, 
with values >0.5 suggesting the Ca is more likely derived from a biogenic 
source (Fig. 12A).

Cluster 3 has a smaller number of observations (<15%, n = 769) and is mod-
erately enriched in Si and Zr and depleted in b*, Al, K, Rb, and Ca. Zr and Si 
tend to be found in coarse sediment due to the presence of zircons and quartz 
in this size fraction (Rothwell and Croudace, 2015). The increased Si-rich quartz 

dilutes the relative amount of feldspar and heavy minerals where Al, K, Rb, 
and Ca are found. The coarse-grained texture of this cluster is also reflected in 
the Al/Si ratio, with lower values indicating a higher quartz sand component 
compared to clay (Hoang et al., 2010), and the Zr/Rb ratio, with higher values 
indicating a generally coarser texture (Wang et al., 2011) (Figs. 12B and 12C). 
We classify this as a coarse-grained diamict.

Cluster 4 also has a small number of observations (<15%, n = 730) and is 
highly enriched in Zr, moderately enriched in b*, Rb, and Ca, and depleted in 
NGR, Al, and Si. Depleted NGR and Al and enriched Zr, K, and Rb indicate fewer 
clay minerals and a greater amount of heavy accessory minerals (Blum 1997; 
Totten and Hanan, 1998). High Zr/Si and Zr/K ratios indicate a greater amount 
of heavy minerals in relation to quartz and feldspar (Figs. 12D and 12E). This 
cluster is classified as a heavy-mineral–rich diamict/mud with lonestones.

Cluster 5 has the fewest observations (~1%) and appears sporadically 
downcore (Fig. 10G). As evidenced from the extreme enrichment and/or de-
pletion of scanning XRF logging data (z-score values in excess of ±1–2σ), this 
cluster appears to represent noise and/or outliers.
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Figure 12. Ratios of logging data used in 
the cluster models. (A) b*/Ca; (B) Al/Si; 
(C) Zr/Rb; (D) Zr/Si; (E) Zr/K. Dashed line in 
(A) is proposed demarcation between Ca-
rich terrigenous (plagioclase) and Ca‑rich 
biogenic sediment. Interpretations for the 
other ratios of logging data are included 
(B–E). Comparison between the cluster 
and observed lithofacies associations, with 
interpretations from the ratios of logging 
data, allows for identification of varying 
glacial conditions—retreating (6.32–19.3 m 
CCSF-A), fluctuating (19.3  – 74.85  m 
CCSF-A), ice-proximal (74.85 – 96.64 m 
CCSF-A). Horizontal dashed line represents 
when the Bering glacier began its retreat 
onshore at ~15,000 yr B.P. (Davies et  al., 
2011).
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Interpretation of Classification Model Results

Whereas the supervised classification approach has the benefit of a priori 
knowledge of the potential lithofacies for model validation, it is more likely that 
the physical properties data cannot be prescribed to particular lithofacies. Un-
supervised classification provides relatively unbiased evaluation of property 
grouping and can provide a record of textural and compositional variations 
that vary independently from the visually observed lithofacies. Interpretation 
of model results here focuses on the value-added information derived from 
unsupervised classification models.

Mud-Diamict Lithostratigraphy

Supervised classification models and hierarchical clustering are most suc-
cessful at identifying the bimodal mud-diamict lithofacies because the clast-
free mud has logging characteristics (z-score values) in excess of ±1–2σ when 
compared with the diamict portion of the core (Fig. 6). This makes it easier to 
accurately delineate, using any of the classification approaches, the transition 
from glacial diamict to nonglacial mud at 6.32 m CCSF-A (Fig. 11). This tem-
poral shift from glacially influenced diamict to hemipelagic mud corresponds 
with the regional retreat of outlet glaciers onto land during the last deglacia-
tion (Davies et al., 2011). A benefit of this bimodal classification scheme is that 
it can identify intervals similar to those observed in the Holocene within the 
diamict-dominated portion of the core.

Using the G1 hierarchical clustering results, there are two intervals be-
low 6.32 m CCSF-A that are identified as being similar to the upper Holocene 
section at 9.44 m and 70.79 m CCSF-A (Fig. 11). These intervals may indicate 
periods when regional climate was warm enough for an increase in produc-
tivity, but not for glaciers to fully retreat onshore, as evidenced by continued 
deposition of ice-rafted debris within these intervals. To test this interpretation, 
we compare these two intervals with the more highly resolved VCD (Fig. 4A). 
The interval at 9.44 m CCSF-A is represented by clast-poor diamict, but the 
interval at 70.79 m CCSF-A is represented by mud with lonestones. The interval 
at 9.44 m CCSF-A is very thin, ~2 cm thick, and most likely represents noise 
within the logging data, while the mud with lonestones interval at 70.79 m 
CCSF-A more likely represents a time of relatively higher productivity within a 
glacier-dominated period.

Hierarchical clustering of the G2 physical property only data set (Fig. 9D) 
accurately captures the mud-diamict transition at 6.32 m CCSF-A, but it also 
identifies nine intervals as mud within the diamict portion of the core. Of these 
nine intervals, only four correlate with a green mud with lonestone facies, and 
the other intervals are most likely the result of data noise.

In summary, all classification models can identify a major deglaciation 
event characterized by the transition from diamict to mud, but cluster analysis 
also is able to identify sections of the glacial portion of the core that can be 
isolated for inspection to see if they are more similar to the nonglacial section. 
This biogenic-rich green mud within diamict intervals is important because 

it may represent warming, without a full collapse of the ice margin. Further 
paleoceanographic studies of these intervals are needed to provide insights 
into how glaciers respond to warming climates, helping to understand how 
tipping points for full glacial retreat may be reached.

Diamict-Only Lithostratigraphy

The relatively gradational and subjective differences in the diamict-only 
lithofacies are not ideal for either type of classification analysis. Supervised 
models struggle to more accurately differentiate lithofacies than the unsuper-
vised cluster analysis. Clusters identified from the diamict-only portion of the 
composite splice do not correspond directly with unique visually observed 
facies (Fig. 13). This appears to be a consequence of the data sets used in this 
study. Although ideally chosen to represent textural proxies, all data sets can 
also be interpreted as compositional proxies, whereas the visual core descrip-
tion focuses on macrotexture (i.e., lonestones) and sedimentary structures.

We argue, rather than providing an alternative to using CT scans and/or 
X-radiographs, that the unsupervised cluster analysis results, specifically the 
unsupervised mixture-model clustering, can be used as a compositional com-
ponent that augments the observed visual lithofacies. This can be used to de-
velop robust lithofacies associations within the lithostratigraphy; these asso-
ciations allow for study of temporal variations in glacial conditions. However, 
a highly detailed temporal record of glacial advance and retreat requires input 
from many complimentary records of regional glacial and climatic proxies 
(e.g., IRD mass accumulation rate, δ18O, and sea surface temperature) and is 
beyond the scope of this work. Based on downcore variations in cluster pat-
terns, the diamict-only interval can be separated into three sections—lower 
(74.85–96.64  m CCSF-A), middle (19.3–74.85  m CCSF-A), and upper (6.32–
19.3 m CCSF-A). These sections are distinctive in both clusters and observed 
lithofacies, reflecting variations in sedimentary processes related to glacier 
dynamics.

The lower section (74.85–96.64 m CCSF-A) is primarily defined by two thick 
intervals of cluster 3, interpreted to represent a coarse-grained component, 
which coincides with a clast-rich diamict and a sandy diamict unit, respectively 
(Fig. 13). The greater clast count in the clast-rich diamict is indicative of more 
intense ice rafting (Cowan et  al., 1997), in this case perhaps from a quartz- 
and/or zircon-rich source, while the sandy diamict signifies deposition from 
turbidity currents (Cowan et al., 1999) in a proximal glacial setting (Ó Cofaigh 
and Dowdeswell, 2001). From this, cluster 3 can be interpreted to represent a 
period when the ice stream was relatively proximal to the core location. Thus, 
the core section dominated by these proximal facies, indicate ice-proximal gla-
cial conditions, relative to site U1419 in the Gulf of Alaska (Fig. 13).

The middle section (19.3–74.85 m CCSF-A) is predominately represented 
by cluster 1, the mud-rich, clast-poor diamict. The prevalence of this type of 
diamict suggests a continuous glacial input for this period. However, this sec-
tion is not homogeneous and contains intervals of cluster 2 (Ca-rich) and clus-
ter 3 (coarse-grained) compositions, co-occurring with visually identified mud 
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with lonestones, stratified diamict, and sandy diamict facies. When the Ca-rich 
cluster 2 co-occurs with the mud with lonestones facies, it is interpreted here 
to represent a relatively ice-distal glacimarine environment where productivity 
increases, but when glacial ice has not fully retreated onshore, as evidenced 
from the continued deposition of lonestones (Fig. 13). These intervals also have 
high b*/Ca ratios (>0.5), indicating the high Ca content defining the cluster is 

most likely a biogenic source (Fig. 12A). It is noted that at this co-occurrence, 
cluster 2 comprises a thicker interval than identified solely by the visual litho-
facies, suggesting that ice-reduced conditions persisted for longer than what 
is recorded simply by the visual record. When cluster 2 co-occurs with the 
massive clast-poor diamict or sandy diamict facies, it most likely contains an 
increased amount of terrigenous-sourced Ca from plagioclase. Also within this 
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Figure 13. Workflow relating cluster re-
sults to lithofacies for diamict-only litho-
stratigraphy. Box-whisker plots for logging 
data within each cluster group are com-
pared to data from each lithofacies. Here, 
only the clast-poor diamict can be related 
to a cluster group (#1). The remaining 
cluster groups are interpreted as compo-
sitional modifiers for the different diamict 
sublithofacies. Comparison between the 
cluster and observed lithofacies associa-
tions allows for identification of varying 
glacial conditions—retreating (6.32–
19.3 m CCSF-A), fluctuating (19.3 –74.85 m 
CCSF-A), and ice-proximal (74.85–96.64 m 
CCSF-A).
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middle section, cluster 3 corresponds with a unit of sandy diamict, interpreted 
as gravity flow deposition, indicating a time of relative glacier proximity. Clast-
poor stratified diamicts also are observed in this section, and the mud-rich 
layers that comprise these stratified intervals are interpreted to be the product 
of proximal meltwater plume deposition due to their fine-grained nature, dif-
fuse contacts, and cm-scale thickness (Cowan and Powell, 1991; Cowan et al., 
1997; Ó Cofaigh and Dowdeswell, 2001; Curran et al., 2004; Dowdeswell et al., 
2015). This suggestion of meltwater plume deposition indicates that a temper-
ate ice stream was nearby. The combination of cluster 3, sandy diamict and/or 
clast-poor stratified diamict indicates relative glacier proximity (Fig. 1). The 
switching between lithofacies and clusters associated with relatively proximal 
and distal glacial conditions implies fluctuating glacial conditions with multiple 
occurrences of glacial advance and retreat (Fig. 13).

The upper section (6.32–19.3  m CCSF-A) is mostly represented by the 
cluster 4 (heavy-mineral–rich) composition, with some alternating sections 
of cluster 2 (Ca-rich) (Fig. 13). The visual lithofacies are chiefly clast-poor strati
fied diamict, which transitions into clast-poor massive diamict. The Ca-rich 
cluster 2 appears to primarily be controlled by an increase in a Ca-rich terrige-
nous source, most likely plagioclase (Fig. 12A; File S3 [footnote 1]). The Bering 
Glacier experienced documented periods of highly turbid meltwater discharge 
within the Holocene (Jaeger and Nittrouer, 1999; Jaeger and Kramer, 2014); 
thus high meltwater discharge could entrain and transport heavy minerals to 
the terminus. Therefore, we interpret heavy-mineral–rich cluster 4 to coincide 
with periods of increased meltwater discharge. A complementary or alterna-
tive interpretation is that it reflects a provenance shift to protoliths enriched in 
heavy minerals. The dominance of cluster 4 in this upper section suggests that 
it represents a time of warming, increased meltwater discharge, and retreat-
ing glacial conditions that lead up to the diamict-to-mud transition at 6.3 m 
CCSF-A, ~15,000 yr B.P., when the Bering Glacier began its retreat onshore 
(Fig. 12 and 13; Davies et al., 2011). The start of this interval at 19.3 m CCSF-A 
may correspond with the beginning of regional deglaciation at ca. 19 ka (Clark 
et al., 2009).

Record of Glacial Dynamics in Southeastern Alaska

While this study places basic constraints on glacial dynamics in south-
eastern Alaska based on lithofacies observations and cluster model results 
informed by core geochemical and physical data, full evaluation requires data 
that cannot be derived from this analysis alone. The location of temperate tide-
water glacial termini is controlled by many factors including but not limited 
to sea surface temperature, water depth, rate of ice calving, sedimentation, 
and amount of meltwater production. Thus, a robust record of offshore glacial 
dynamics at IODP site U1419 should integrate a high-resolution chronology 
(Walczak et al., 2016), with an alkenone-based sea surface temperature record, 
ice rafted debris mass fluxes (Sandefur et al., 2015), diatom sea ice records 
(LeVay et al., 2017), foraminifera assemblages (Belanger et al., 2016), and an 
environmental paleomagnetic record of sediment supply and dynamics (Velle 

et al., 2016). Provenance analysis based on an end-member mixing model also 
can add constraints to onshore glacial erosion, which can be correlated to 
records of offshore terminus advance or retreat (Penkrot et al., 2014; Penkrot 
et al., 2017b).

CONCLUSIONS

We are able to recognize a dynamic temperate glacimarine environment 
using visual lithofacies descriptions from core images and CT scans comple-
mented with machine learning models of sediment composition derived from 
downcore logging data. Supervised quadratic discriminant function analysis, 
a support vector machine, and unsupervised cluster modeling are able to iden-
tify transitions in mud-diamict glacimarine lithofacies, whereas model results 
for heterolithic glacial diamict facies are unable to capture the subtle varia-
tions in facies seen in CT scan and/or X-radiograph core images. However, 
cluster modeling results for the diamict portion of the core provide a valuable 
complementary objective record that incorporates both textural and geochem-
ical properties. The primary benefit of the cluster analysis is that it reduces 
noisy multivariate logging data into relatively simple clusters. Interpretation 
of clusters through comparison with logging data ratios, informed by principle 
component analysis, and observed lithofacies associations allows for changes 
in basic glacial condition to be identified. Variations in glacial conditions are 
more clearly observed in downcore changes in clusters than through compar-
ison of multiple logging data ratios.

Twelve glacimarine lithofacies are described that are commonly observed 
in a temperate tidewater glacial system. The dominant lithofacies is a clast-
poor diamict, but facies range from massive bioturbated mud to stratified 
diamicts. Principal component analysis shows that color reflectance (b*), 
magnetic susceptibility, and natural gamma ray logs resolve the major down-
core transitions in lithofacies between mud and diamict, whereas scanning 
XRF data better resolve compositional changes within diamict facies. Physi-
cal properties (b*, MS, and NGR) are most useful for delineating variations in 
composition (b* and MS) and clay content (NGR). Elemental data appear to 
best capture differences in sand versus clay content and heavy-mineral abun-
dance (Ca, Zr, and Si versus K, Rb, and Al) and biogenic contributions (Ca).

Success in using machine learning to classify lithofacies was more influ-
enced by the data used in the model, and the variance of that data between 
lithofacies, than the choice of modeling approach. Supervised modeling tech-
niques and hierarchical clustering produced a more accurate representation of 
glacial and interglacial lithologies than mixture-model clustering. There was 
little difference in success for either supervised or unsupervised approaches 
for the diamict-only lithostratigraphy. Physical properties NGR, b*, and MS are 
most useful for delineating groups or creating clusters that represent the mud 
and diamict end-member lithologies that reflect major variations in composi-
tion. Elemental data (Rb, Al, Zr, Si, and Ca) delineate more subtle variations 
in composition and texture due to their higher sampling resolution than the 
physical properties coupled with the inclusion of elemental proxies for both 
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clay and heavy minerals. Elemental data are beneficial for adding a composi-
tional component to the heterolithic diamict lithofacies.

A temporal record of variations in regional glacial conditions results from 
combining cluster-modeled compositional data with visually observed litho-
facies associations and interpretations of logging ratios. This record reveals 
three general glacimarine settings: ice-proximal glacial conditions within the 
Gulf of Alaska relative to Site U1419; fluctuating glacial conditions with evi-
dence of glacial advance and retreat; and retreating glacial conditions with 
increased meltwater influence that preceded a full glacial retreat onshore in 
the Holocene. Using cluster analysis to highlight compositional variations in-
terpreted to represent meltwater production provides an additional proxy that 
is a less expensive and more time-efficient alternative to using sedimentary 
structures in CT scans and/or X-radiographs for identifying this influence. This 
may have implications for identifying times of past glacial instability for melt-
water-dominated systems such as modern-day Greenland (Ó Cofaigh et al., 
2016), Svalbard (Dowdeswell et al., 2015), Neogene Antarctica (Hambrey and 
McKelvey, 2000), and longer temporal records in the Gulf of Alaska drilled by 
Expedition 341 (Jaeger et al., 2014).
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