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RÉSUMÉ 

Les études paléomagnétiques sont fondamentales à la compréhension des variations 

temporelles et spatiales du champ magnétique terrestre et des mécanismes de la géodynamo 

qui le génère. Les signaux des directions et intensité paléomagnétiques sont également 

souvent utilisés pour améliorer la chronostratigraphie et faciliter les corrélations 

stratigraphiques entre les enregistrements. En plus des analyses paléomagnétiques standards, 

des données de magnétisme environnemental du sédiment ont été obtenues. Ces propriétés 

reflètent les processus environnementaux ayant affecté le sédiment de la source au puits, et 

sont donc des proxys particulièrement utiles pour la reconstruction des environnements 

passés.  

Le golfe de l’Alaska est un lieu clé pour les études paléomagnétiques et de 

magnétisme environnemental. Les séquences sédimentaires obtenues-ici ont une haute 

résolution temporelle, apportant des informations sur la dynamique méconnue du lobe nord-

ouest de l’inlandsis de la Cordillère (NCIS), ainsi que la possibilité d’obtenir des 

enregistrements paléomagnétiques provenant d’une région sous-échantillonnée. L’objectif 

général de cette étude est de construire un enregistrement paléomagnétique qui va permettre 

une étude détaillée de la dynamique du champ magnétique terrestre, ainsi que de l’évolution 

de la NCIS à travers le Pléistocène supérieur et l’Holocène. Pour répondre à cet objectif, deux 

des sites de forage de l’expédition IODP 341 dans le golfe de l’Alaska en 2013 ont été 

étudiés : le site U1418 du cône sous-marin Surveyor à une profondeur de 3667 m, et le site 

U1419 situé sur le haut du talus continental à une profondeur de 687 m. Les 64,6 premiers 

mètres de l’enregistrement du site U1418 ont été étudié, tandis que l’entière section de 112 

m CCSF-A du site U1419 a été étudiée. 

Dans le premier chapitre, les paramètres magnétiques environnementaux du site 

U1419 sont analysés. Combinées aux images digitales obtenues par CT-scan et aux 

estimations de densité, les propriétés magnétiques du sédiment sont utilisées comme un 

moyen de reconstruire la dynamique du lobe nord-ouest de l’inlandsis de la Cordillère au 

cours des derniers ~54 000 ans (cal BP). Les résultats indiquent que le golfe de l’Alaska 

aurait expérimenté une alternance entre des conditions de haute productivité et des conditions 

glaciaires au cours du début et du milieu du stage isotopique marin 3 (52 700 - 42 700 cal yr 

BP). Ce chapitre suggère aussi que la progression vers des conditions de maximum glaciaire 

aurait débuté aussi tôt que 41 800 cal yr BP et aurait duré jusqu’à 14 700 cal yr BP, donnant 

une période glaciaire étendue éventuellement nommée le « dernier maximum glaciaire de 



xii 

 

l’Alaska ». Les fluctuations de la marge glaciaire auraient été plus complexes à partir de 25 

000 cal yr BP avant la déglaciation à 18 000 cal yr BP. 

Le chapitre 2 met l’accent sur l’enregistrement paléomagnétique du site 1419 et 

introduit le modèle d’âge du site 1418. Les résultats démontrent que l’enregistrement n’est 

pas optimal pour l’étude de la paléointensité, en particulier à cause d’une minéralogie 

magnétique complexe et de processus post-dépôt. Cependant, les paramètres de direction 

semblent avoir été affectés seulement à un faible degré, et nous soutenons que l’inclinaison 

mesurée à 20 mT correspond à la meilleure estimation d’inclinaison possible. L’inclinaison 

du site U1419 mesurée en laboratoire a été comparée aux données obtenues à bord du navire 

sur les carottes U1419 et U1418 et à celles obtenues lors du sondage préliminaire du site 

U1419, le tout indiquant une bonne corrélation globale entre ces différents enregistrements 

du golfe de l’Alaska. La comparaison avec d’autres enregistrements régionaux indique que 

l’inclinaison du site U1419 a capté un signal géomagnétique régional, l’intervalle entre 15 

000 et 30 000 cal yr BP étant la partie la plus robuste de l’enregistrement.  

Finalement, le chapitre trois fait état de l’enregistrement paléomagnétique du site 

U1418. À ce site, le vecteur paléomagnétique complet (inclinaison, déclinaison et 

paléointensité) a été reconstruit pour les derniers 27 000 ans (cal BP), apportant de nouvelles 

informations aux données paléomagnétiques du golfe de l’Alaska. La comparaison de 

l’inclinaison et de la déclinaison avec d’autres enregistrements régionaux indique que ce site 

a capté les variations paléomagnétiques séculaires à l’échelle régionale. La correspondance 

de l’inclinaison entre les sites U1418 et U1419 a permis d’ajuster le modèle d’âge du site 

U1418 et d’augmenter la précision des limites d’âges sur ce site… La comparaison de 

l’intensité normalisée avec les enregistrements régionaux et globaux suggère qu’un signal 

global a pu être enregistré, mais que les variations à l’échelle du millénaire nécessitent plus 

de précisions.  

Les trois chapitres de cette thèse se complémentent et apportent de nouvelles 

informations concernant l’histoire glaciaire du golfe de l’Alaska, ainsi que des 

enregistrements paléomagnétiques robustes et précis qui pourront favoriser les corrélations 

stratigraphiques régionales. 

 

Mots clés : Paléomagnétisme, magnétisme environnemental, inlandsis de la 

Cordillère, golfe de l’Alaska, Pacifique nord-est, Pléistocène supérieur, Holocène 

 

 

  



  

ABSTRACT 

Paleomagnetic studies are key in order to understand the temporal and spatial 

complexities of Earth’s magnetic field and it’s driving mechanism the geodynamo. Records 

of paleomagnetic directions and/or intensity are also frequently used to improve 

chronostratigraphy and to facilitate stratigraphic correlation between records. Obtained along 

with most standard paleomagnetic analyses, is information on the sediment’s rock magnetic 

properties. These properties reflect the environmental processes that the sediment has gone 

through from source to sink and are, therefore, useful proxies for reconstructing past 

environments.  

The Gulf of Alaska is a key location for paleomagnetic and environmental magnetic 

studies. The sedimentary sequences found here are of high temporal resolution, offering 

insights to the poorly constrained dynamics of the northwestern lobe of the Cordilleran Ice 

Sheet (NCIS), as well as the possibility to obtain paleomagnetic records from an under-

sampled region of the world. The general objective of this study is to construct a 

paleomagnetic record that will permit a detailed study of the Earth’s magnetic field dynamics, 

as well as the evolution of the NCIS through the late Pleistocene and Holocene. To achieve 

this objective, two of the drill Sites from the 2013 IODP Expedition 341 in the Gulf of Alaska 

were studied. Site U1418 from the upper Surveyor Fan at a water depth of 3667 m, and Site 

U1419 from the upper continental slope at a water depth of 687 m. The uppermost 64.6 

meters of the spliced record were studied at Site U1418, whereas the entire splice of 112 m 

CCSF-A was studied at Site U1419. 

In the first chapter, the environmental magnetic record of Site U1419 is explored. 

Along with CT scans and density estimates, the sediment’s magnetic properties are used as 

a means of reconstructing the dynamics of the northwestern lobe of the Cordilleran Ice Sheet 

for the past ~54,000 cal yr BP. Results indicate that the Gulf of Alaska may have experienced 

conditions alternating between high productivity and glacial conditions during early and mid- 

Marine Isotope Stage 3 (52,700-42,700 cal yr BP). This chapter also suggests that the build-

up to glacial maximum conditions may have started as early as 41,800 cal yr BP and lasted 

until 14,700 cal yr BP; an extended glacial period tentatively named the Alaskan LGM. More 

complex ice front dynamics are suggested from 25,000 cal yr BP before deglaciation from 

18,000 cal yr BP.  

Chapter two focuses on the paleomagnetic record of Site U1419 and introduces the 

U1418 age model. Results show that the record is not suitable for paleointensity studies, most 

likely due to a complex magnetic mineralogy and post-depositional processes. However, the 

directional record seems to have been affected only to a minor degree and we argue that the 

inclination as measured at 20 mT is the most reliable inclination estimate. Site U1419 
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inclination was compared to the U1419 and U1418 shipboard inclinations as well as the 

U1419 site survey core, showing a general agreement between these Gulf of Alaska records. 

Comparison with other regional records indicate that the U1419 inclination record has 

captured a regional geomagnetic signal, with the interval between 15,000 and 30,000 cal yr 

BP being the most robust part of the record.  

In chapter three, the paleomagnetic record of Site U1418 is studied. At this Site, the 

full paleomagnetic vector (inclination, declination, and paleointensity) was recreated for the 

past 27,000 cal yr BP, adding new perspectives on the paleomagnetic records of the Gulf of 

Alaska. Comparisons of U1418 inclination and declination to other regional records indicate 

that this site has captured regional scale paleomagnetic secular variations. The similarity 

between Site U1418 and U1419 inclination allowed an adjustment of the U1418 age model, 

increasing the resolution of this Site’s age constraints. Comparing the U1418 normalized 

intensity to regional and global records suggest that a long-term global signal may have been 

recorded, whereas millennial-scale variability needs further constraints. 

The three chapters of this thesis compliment and build upon each other, and provide 

new information regarding the glacial history of the Gulf of Alaska, as well as a robust and 

well-constrained paleomagnetic record that will aid in regional stratigraphic correlation.  

 

Keywords: Paleomagnetism, environmental magnetism, Cordilleran Ice Sheet, Gulf of 

Alaska, northeast Pacific, late Pleistocene, Holocene 
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GENERAL INTRODUCTION 

BACKGROUND 

Paleomagnetism 

Direct observations of Earth’s magnetic field extend back four centuries but were not 

systematically organized until the global network of Magnetic Observatories was initiated by 

Weber and Gauss in the 1840s (e.g., Jackson et al., 2000; Hulot et al., 2010). At present, 

several observatories and satellites constantly monitor changes in the field both on Earth and 

from space. Paleomagnetism, the study of field changes in the past, is based on analyses of 

volcanic rocks, archeological artefacts and sediments, and has become an extensive field of 

research (e.g., Channell, 1999; Guyodo & Valet, 1999; Gallet et al., 2002, 2009; ; Laj et al., 

2004, 2014; Panovska et al., 2018; Korte et al., 2019) and is important in order to improve 

our understanding of, for example, the geodynamo, links between terrestrial and solar 

processes, as well as to establish robust chronologies and allow correlation of different proxy 

records within a region. 

 

Marine sediments and paleomagnetic records 

Because of their continuity, sediment records are especially convenient for long-term 

studies of variations in Earth’s magnetic field at a specific location (Tauxe, 1993). In order 

for sediments to be used as a paleomagnetic archive, it is assumed that they record the 

intensity and direction of the magnetic field at their time of deposition; the natural remanent 

magnetization (NRM). However, the exact timing and depth of the acquisition of 

magnetization in marine sediments is not completely understood, and is also affected by 

mineral magnetic properties such as the type of mineral, the magnetic grain size and 

concentration (e.g., Levi & Banerjee, 1976; Tauxe, 1993), and the quality and preservation 
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of the magnetic signal can be altered by post-depositional (biogenic, chemical and diagenetic) 

processes (Karlin & Levi, 1983; Clement et al., 1996; Walczak et al., 2017). Due to these 

effects on magnetic acquisition and preservation in sediments, the quality of the archived 

magnetic signal and recorded intensity may vary down-core.  

The intensity and direction of the surface geomagnetic field varies spatially and 

temporally over timescales of seconds to thousands of years. Variations in the field occurring 

during periods of stable polarity are termed paleomagnetic secular variations (PSV), with 

anomalously large changes in the magnetic field direction, beyond the normal range of PSV, 

termed geomagnetic excursions. These are defined by a deviation of the virtual geomagnetic 

pole (VGP) of more than 40-45° from the geographic pole (e.g., Gubbins, 1999; Roberts, 

2008; Valet et al., 2008; Laj & Channell, 2015; Lund, 2018).  

These changes in direction and relative intensity of the Earth’s magnetic field through 

time make paleomagnetic records useful as a chronological tool. Some excursions are 

frequently used as stratigraphic markers; for example, the Laschamp excursion at ~41 ka 

(e.g., Laj et al., 2000; Guillou et al., 2004; Lund et al., 2005; Lascu et al., 2016) and the less 

constrained Mono Lake excursion at 30-34 ka (e.g., Liddicoat & Coe, 1979; Kent et al., 2002; 

Laj et al., 2014; Lund et al., 2017a). On a regional scale, directional changes within the 

normal range of paleomagnetic secular variations can be used as a means of correlations (e.g., 

Barletta et al., 2008; Walczak et al., 2017; Caron et al., 2018; Deschamps et al., 2018; Reilly 

et al., 2018). Although correlation of relative paleointensity records may be less 

straightforward, the use of such records in stratigraphy is already well established and records 

from several different areas of the globe have been stacked in order to create solid 

stratigraphic references (e.g., the global Sint-200 by Guyodo & Valet, 1996; Sint-800 by 

Guyodo & Valet, 1999; GLOPIS-75 by Laj et al., 2004; Sint-2000 by Valet et al., 2005; and 

PISO-1500 by Channell et al., 2009).  

Another application of RPI records and stacks is their inverse relationship to 

cosmogenic nuclide production rates; at times when the geomagnetic field is stronger, it acts 

as an efficient shield around the Earth, and fewer cosmic rays enter the upper parts of the 

atmosphere, and less cosmogenic isotopes (e.g., 10Be, 14C, 26Al, 36Cl) are produced (e.g., 
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Masarik & Beer, 1999; Beer et al., 2002; Valet, 2003; Stoner & St-Onge, 2007; Valet et al., 

2014).  Because this shielding takes place in space, it reflects the global geomagnetic field 

and an inverse correlation between a given RPI record and cosmogenic nuclide production 

rates can, therefore, confirm if the RPI record reflects global-scale geomagnetic field 

variations (e.g., Stoner et al., 2000; St-Onge et al., 2003; Thouveny et al., 2004; Ménabréaz 

et al., 2011, 2012; Nowaczyk et al., 2013) .  

In addition to their role as stratigraphic aids allowing comparisons of different proxy 

records within a region, paleomagnetic records are important for improving our 

understanding of the temporal and spatial variations in the Earth’s magnetic field. For 

example, the influence of high-latitude flux lobes on PSV records (e.g., Stoner et al., 2013; 

Walczak et al., 2017), and the regional expression of secular variations and excursions (e.g., 

Lund, 2018; Panovska et al., 2018). Constraining the dynamics of such features, as well as 

their spatial and temporal variability is key to increased understanding of the geodynamo 

(e.g., Bloxham 2000; Stoner et al., 2013; Lund et al., 2016). 

 

Pacific paleomagnetic records 

Although most paleomagnetic studies are focused on the North Atlantic (Fig. 1), some 

paleomagnetic studies have been carried out in the Pacific Ocean during the past few decades. 

Records from the south (e.g., Kok & Tauxe, 1999) and the equatorial Pacific (Valet & 

Meynadier, 1993; Laj et al., 1996; Verosub et al., 1996; Yamazaki & Oda, 2005) span time 

periods of up to 4 Ma, with a few higher-resolution Pacific studies focusing more on the past 

0-70 ka years (e.g., Lund et al., 2006, 2017b ). Paleomagnetic studies from the western North 

Pacific comprise mainly Brunhes and older paleointensity records (Yamazaki, 1999; 

Yamazaki & Kanamatsu, 2007), as well as the RPI stack NOPAPIS-250 which spans the past 

250 kyr (Yamamoto et al., 2007). The 1992 ODP Leg 145 covered most of the North Pacific 

with a drilling transect from Japan to Canada (Rea et al., 1995; Weeks et al., 1995). Sites 883 

and 884 from this ODP Leg were drilled in the southern Gulf of Alaska and formed the basis 

of a composite paleointensity curve spanning the past 200 kyr (Roberts et al., 1997). More 

recently, Walczak et al. (2017) studied the high-resolution deglacial and Holocene 
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paleomagnetic records of cores EW0408-79JC and EW0408-85JC from the Gulf of Alaska 

and from this constructed the north-east Pacific sedimentary inclination anomaly stack 

(NEPSIAS). Included in this stack were also other, independently dated, regional records 

from Alaska, Oregon and Hawaii, indicating that a common, regional inclination signal has 

been captured in these records.   

 

 

 

Figure 1: Distribution of sedimentary inclination, declination and intensity records 

(modified from Panovska et al., 2018). 

 

Environmental magnetism 

Iron-bearing minerals have great potential to record the environmental processes they 

go through both before and after deposition. Such environmental processes include soil 

formation, weathering, erosion, transport, accumulation and diagenesis of sediments. 

Furthermore, the mode of erosion and transportation (i.e. wind, ice, and water) will also leave 
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traces in the sediment which can provide information on past climatic and environmental 

conditions (Thompson & Oldfield, 1986). Looking into rock magnetic properties can 

therefore be very useful in paleoclimate studies. Even very small quantities of magnetic 

minerals can be detected with magnetic measurement systems, and such analyses are usually 

non-destructive, efficient and sensitive to minute amounts of magnetic grains (e.g., Verosub 

& Roberts, 1995; Dekkers, 1997; Liu et al., 2012). Rock magnetic properties that often are 

used include low-field magnetic susceptibility (kLF), anhysteretic remanent magnetization 

(ARM), isothermal remanent magnetization (IRM), and saturation isothermal remanent 

magnetization (SIRM). These are parameters usually measured during standard 

paleomagnetic studies and are therefore routinely obtained. Additionally, hysteresis 

parameters and IRM acquisition curves are useful parameters easily obtained from small 

sample sizes.  

Mineral magnetic properties have successfully been used in sedimentological, 

paleoceanographic and paleoclimatic studies, and have proven to be a useful correlative and 

stratigraphic tool for use in sediment cores (e.g., Robinson, 1986; Robinson et al., 1995; 

Stoner et al., 1996; Kissel et al., 1999; Lisé-Pronovost et al., 2014; Dorfman et al., 2015). 

For example, magnetic susceptibility can reflect core lithostratigraphy and thereby contribute 

to identifying glacial vs. interglacial (high vs. low magnetic susceptibility) layers, 

corresponding to periods of high/low ice-rafted debris (IRD) input and low/high carbonate 

productivity, respectively (Robinson, 1986). Magnetic susceptibility, ARM and IRM have 

been used to identify and correlate IRD layers to Heinrich-layers (Thouveny et al., 2000). In 

the Baffin Bay, studies of mineralogical assemblages and lithofacies have resulted in an 

improved understanding of the dynamics of the Greenland, Innuitian and Laurentide Ice 

Sheets through the 115 ka (Simon et al., 2014), while Hatfield et al. (2013) used mineral 

magnetic properties, with special focus on grain-size specific magnetic variations to 

distinguish sediment provenance in marine sediment cores from the northern North Atlantic. 

In the southern Alaskan region, the complex geological setting can be advantageous when 

determining provenance of marine sediments. Cowan et al. (2006) investigated the mineral 

magnetic signal of the sediment in three glaciated southern Alaskan fjords and found distinct 



6 

 

differences in the magnetic signal depending on source region. For example, PSD magnetite 

is characteristic for the Yakutat terrane, whereas fine PSD hysteresis parameters and low 

magnetic susceptibility is typical for the Chugach terrane. Furthermore, magnetic 

susceptibility was found to be especially useful in distinguishing the provenance of IRD 

layers as the different source areas have distinct magnetic expressions (Cowan et al., 2006).  

 

 

 

 

Figure 2: Diagram showing the different forcings, sources, processes and environments that 

influence magnetic grains and can be investigated using the techniques of environmental 

magnetism (modified from Verosub & Roberts, 1995). 
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The Gulf of Alaska 

Geologic setting  

The Gulf of Alaska (GoA) is located in the subarctic northern Pacific Ocean, off the 

southern Alaska coast (Fig. 3). The St. Elias Mountains dominate the southeastern coast of 

Alaska and is the highest coastal mountain range in the world with its >6000 m.a.s.l peaks 

(e.g., Meigs & Sauber, 2000; Bruhn et al., 2004). In addition to glacial erosion, the St. Elias 

Mountains are subject to the harsh maritime climate of the North Pacific; including heavy 

storms and precipitation that are thought to have a great influence on the denudation on the 

windward side of the orogen (Meigs & Sauber, 2000). 

The North Pacific continental margin in the Gulf of Alaska is between approx. 25 and 

100 km wide and has an average water depth of 140 m. The bathymetry on the shelf is 

dominated by several cross-shelf troughs or sea valleys, e.g., the Hinchinbrook and Yakutat 

Sea Valleys, and the Kayak and Bering Troughs. These troughs formed over time during 

glacial maxima when glaciers from the northwestern lobe of the Cordilleran Ice Sheet 

reached the shelf edge (Carlson et al., 1982; Elmore et al., 2013; Montelli et al., 2017). The 

sedimentary sequence on the shelf is assumed to be 5 km thick consisting of glacimarine 

sediments deposited through the past 6 Ma (Molnia & Carlson, 1978; Jaeger et al., 1998). At 

the foot of the continental slope, extending into the Alaskan Abyssal Plain, is the massive 

Surveyor Fan which occupies an area of 3.42 x 105 km2 with a sedimentary volume of 6.8 x 

105 km3 (Reece et al., 2011). This fan system started developing in the Miocene and the 

combination of an active orogen and periods of intense glaciation (Lagoe et al., 1993; Berger 

et al., 2008; Montelli et al., 2017) has ensured a high flux of sediment to the Surveyor Fan 

through the past ~20 Ma leaving a sedimentary sequence existing mostly of terrigenous 

sediment (Reece et al., 2011). The most dominating morphological feature of the Surveyor 

Fan is the Surveyor Channel; a 700 km long and up to 500 m deep incision cut out by 

reoccurring turbidity currents (Ness & Kulm, 1973). This channel feeds sediment to the lower 

part of the Surveyor Fan and was formed around ~1 Ma and has expanded during shelf edge 

glaciations since (Reece et al., 2011).  

 



8 

 

Climate and oceanography  

The Alaska Current (AC) is a branch of the Pacific subarctic gyre and flows westward 

in the ocean basin of the GoA (Fig. 3). As the AC reaches the Kenai Peninsula, it turns south-

west and continues along the North Pacific margin and the Alaska Peninsula as the Alaskan 

Stream (Reed & Schumacher, 1986). On the continental shelf is the Alaska Coastal Current 

(ACC) which is driven westward along the coast by winds and freshwater runoff from the 

glaciers and rivers of southern Alaska (Royer, 1982; Stabeno et al., 1995, 2004). The GoA is 

primarily a downwelling system, but as winds relax in summer, short periods of upwelling 

can occur (Stabeno et al., 2004). Stabeno et al. (2004) found that the El-Niño Southern 

Oscillation (ENSO) has an effect on the coastal climate of the GoA in that it controls 

wintertime precipitation which in turn is determining the timing of freshwater runoff. The 

Pacific Decadal Oscillation (PDO) is thought to have some impact on the weather 

(temperature and winds) in the GoA, but these signatures are very weak (Stabeno et al., 

2004).  

 

  

Glacial history and paleoceanography  

During past glaciations, local glaciers formed in the mountain ranges of southern 

Alaska and in the eastern Rocky Mountains, and coalesced in the intermediate lowlands to 

form the regional ice cap known as the Cordilleran Ice Sheet; extending from Washington in 

the south, to Yukon in the north, and the Bering Sea in the northwest (e.g., Fulton, 1991). 

The northwestern lobe of the Cordilleran Ice Sheet (NCIS) covered the southern coast of 

Alaska, bordering on and extending into the Gulf of Alaska (Kaufman & Manley, 2004). 

Alpine glaciations may have occurred in this region as early as 7 Ma (Lagoe et al., 1993) 

with the first biofacies indicative of tidewater glaciation in the western Gulf of Alaska 

encountered between 6.7 and 5 Ma (Lagoe et al., 1993), and the first IRD in the central GoA, 

observed at 3.5 Ma (Rea & Schrader, 1985). Glaciation around the Gulf of Alaska increased 

with Northern Hemisphere cooling around 2.5 Ma (Glacial Interval B; Lagoe et al., 1993; 

Berger et al., 2008) with the most extensive Cordilleran Ice Sheet recently dated to ~2.64 Ma 
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(Hidy et al., 2013), approximately consistent with the first occurrence of IRD at IODP Exp. 

341 distal Surveyor Fan drill Site U1417 at approx. 2.58 Ma (Gulick et al., 2015). Further 

glacial intensification occurred after the mid-Pleistocene transition (MPT) after ~1 Ma 

(Glacial Interval C) with glacial advances reaching the GoA shelf edge (Berger et al., 2008; 

Montelli et al., 2017), forming cross-shelf troughs (e.g., the Hinchinbrook and Yakutat Sea 

Valleys, and the Kayak and Bering Troughs) that dominate the present day bathymetry of the 

GoA shelf (Carlson et al., 1982; Elmore et al., 2013).  

In contrast to elsewhere in Alaska, little is known regarding the early Wisconsinan 

extent of the Cordilleran Ice Sheet around the Gulf of Alaska (Kaufman & Manley, 2004; 

Kaufman et al., 2011). Pre-LGM erosional surfaces have been observed in seismic data from 

the GoA shelf indicating repeated shelf-wide glacial advances occurring since the mid-

Pleistocene (Elmore et al., 2013; Montelli et al., 2017). The Last Glacial Maximum occurred 

around 23 - 20 kyr ago (Mann & Peteet, 1994; Clapperton, 2000), when several NCIS outlet 

lobes reached the GoA shelf edge. Ice flow to the shelf edge is thought to have been 

concentrated in cross-shelf troughs (e.g., Bering Trough, Yakutat Sea Valley) with the shelf 

areas between troughs possibly remaining ice-free (Elmore et al., 2013). De Vernal & 

Pedersen (1997) suggested that oceanographic conditions during the LGM were cold with 

freezing winter conditions and low biogenic fluxes. Based on a foraminiferal oxygen isotope 

record from the GoA, Praetorius & Mix (2014) suggested that cold and/or salty conditions 

prevailed in the period between 18 and 16 cal ka BP and that the peak input of IRD occurred 

between 17.5-16.5 cal ka BP. Glacial stagnation occurred from 16.9 cal ka BP, with glacial 

retreat starting from 16.6 cal ka BP (Davies et al., 2011) and shortly followed by a warming 

and/or freshening of surface waters (Praetorius & Mix, 2014). By 14.7 cal ka BP, glaciers 

had retreated from the shelf into fjords and onto land (Clapperton, 2000; Davies et al., 2011). 

For the Bølling-Allerød interstadial, de Vernal & Pedersen (1997) and Barron et al. (2009) 

found indications for a warming in the GoA with laminated sediments and increased surface 

water productivity. However, according to Addison et al. (2012), the Bølling-Allerød winters 

may have been cooler than modern winters with seasonal sea ice. During the Younger Dryas 

(12.9 – 11.7 kyr BP), glaciers re-advanced in southern Alaska (e.g., Briner et al., 2002) and 
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sea-surface temperatures were once again cool and/or more saline (Davies et al., 2011). From 

10-8 cal ka BP, the GoA cooled followed by a gradual warming (Praetorius & Mix, 2014) 

and increasing surface ocean productivity after 8 kyr BP (de Vernal & Pedersen, 1997). 

During the Little Ice Age (LIA, AD ~1200 – 1900), glaciers advanced again (e.g., Barclay et 

al., 2001; Calkin et al., 2001; Elmore et al., 2013) and have been retreating since (Arendt et 

al., 2002).  

 

Figure 3: Overview map of the Gulf of Alaska and the IODP Exp. 341 drill Sites (note that 

Site U1417 is located to the south and not included). Estimated LGM maximum extent from 

Kaufman et al., 2011. AC= Alaska Current; ACC= Alaska Coastal Current. 
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PROJECT SETTING AND CONTEXT 

As discussed above, paleomagnetic records have several useful and important 

applications. However, to facilitate a deeper understanding of the temporal and spatial 

variability of the Earth’s magnetic field and its significance for our knowledge about the 

geodynamo, studies from different parts of the world are needed. Records of high temporal 

resolution with robust, independent chronologies are especially in demand, not only to allow 

studies on paleomagnetic variability, but also to improve and calibrate stratigraphic 

correlations between different proxy records. The North Atlantic region has been the main 

focus of most paleomagnetic studies (Fig. 1) and improving the global coverage of PSV and 

RPI records is, therefore, key in order to constrain the spatial and temporal complexity of the 

geomagnetic field. 

The Gulf of Alaska is an excellent location for high-resolution paleoclimate and 

paleomagnetic studies; the combination of the coastal St. Elias Mountains and the highly 

erosive glacial systems of southern Alaska has ensured a large flux of terrestrial material to 

the gulf over millions of years, creating a sedimentary archive with high temporal resolution. 

This allows detailed studies of the dynamics of the northwestern lobe of the Cordilleran Ice 

Sheet through time and an opportunity to constrain glacial variations prior to and during the 

LGM. Furthermore, the terrestrial, fine-grained material rich in magnetic minerals deposited 

in the GoA should allow studies of changes in the geomagnetic field on millennial timescales 

and may provide records comparable to the best North Atlantic paleomagnetic records. 

 

 

International Ocean Drilling Program (IODP) Expedition 341 

The International Ocean Drilling Program (IODP) Expedition 341 took place from 

May 29th to July 29th, 2013 in the Gulf of Alaska, onboard the JOIDES Resolution. The 

Expedition expects to contribute to the understanding of several of the complexities 

remaining in Neogene climate research and the main objectives of Expedition 341, as stated 

in the scientific prospectus (Jaeger et al., 2011), are to  
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• “Document the tectonic response of an active orogenic system to late Miocene 

to recent climate change; 

• Establish the timing of advance and retreat phases of the northwestern 

Cordilleran Ice Sheet to test its relation to dynamics of other global ice sheets; 

• Implement an expanded source-to-sink study of the complex interactions 

between glacial, tectonic, and oceanographic processes responsible for 

creation of one of the thickest Neogene high-latitude continental margin 

sequences; 

• Understand the dynamics of productivity, nutrients, freshwater input to the 

ocean, and surface and subsurface circulation in the northeast Pacific and their 

role in the global carbon cycle; and 

• Document the spatial and temporal behavior during the Neogene of the 

geomagnetic field at extremely high temporal resolution in an under-sampled 

region of the globe”  

 

The expedition successfully retrieved more than 3 km of sediment cores from five 

drilling sites in the GoA continental margin and the adjacent Surveyor Fan (Fig. 3). Multiple 

holes were drilled at every site to ensure a complete sedimentary record. At each site, the 

different holes were tied together using shipboard measurements of various sedimentary 

physical properties (e.g., magnetic susceptibility, color, density, etc.) in order to construct 

one continuous stratigraphic record (splice). Biostratigraphic, micropaleontological and 

paleomagnetic analyses during the expedition confirmed that the cores cover the Miocene 

through Pliocene, Pleistocene and Holocene epochs and that some sites have exceptional 

sedimentation rates (>380 cm/ka). The Pleistocene sequence is especially thick, indicating 

that the sediment flux to the GoA was very high during this period. This creates an excellent 

foundation for further analyses to investigate the climatic, paleomagnetic and tectonic 

changes of the Pleistocene in high resolution (Jaeger et al., 2014). Sites U1418 and U1419 

will be the focus of this thesis and are briefly described below. 

 



  13 

 

 

Figure 4: The St. Elias Mountains (left; photo credit J. Jaeger), and the JOIDES Resolution 

(right; photo credit A. Sakaguchi). 

 

Site U1418 (58°46.6095′N, 144°29.5777′W) is located at a water depth of 3667 m, in 

the upper part of the Surveyor Fan (Fig. 3). Six holes (A-F) were drilled at this Site, and a 

core splice of approximately 271 m was created based on the holes A and C-E. Shipboard 

biostratigraphic and paleomagnetic analyses suggest that this sedimentary sequence covers 

the past ~1 Myr, providing unique insight to this region’s paleomagnetic, climatic, and 

tectonic history (Jaeger et al., 2014). Long-term sedimentation rates (since the mid 

Pleistocene transition) at Site U1418 have been estimated to 81 cm/kyr (Gulick et al., 2015), 

but are likely to have been much higher on shorter timescales. The upper 64.6 meters of the 

U1418 splice were analyzed as part of this PhD project, focusing on the late Pleistocene and 

Holocene. 

Site U1419 (59°31.9297′N, 144°8.0282′W) is located at a water depth of 687 m, on 

the upper continental slope between the mouths of the Kayak and Bering cross-shelf troughs; 

two troughs that are thought to have been formed curing the last glacial maximum (e.g., 

Carlson et al., 1982; Fig. 3). Five holes (A-E) were drilled at this Site and together make up 

the core splice of 112 m. Preliminary analyses revealed exceptional sedimentation rates of 

up to 380 cm/kyr covering the late Pleistocene through Holocene (Jaeger et al., 2014). The 

entire splice from Site U1419 was analyzed in this PhD project.  
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RESEARCH OBJECTIVES 

The overall objective of this thesis is to, based on the Gulf of Alaska sedimentary sequence, 

construct a paleomagnetic record that will permit a detailed study of the Earth’s geomagnetic 

field dynamics, as well as the evolution of the northwestern Cordilleran Ice Sheet during the 

late Pleistocene and Holocene in the Gulf of Alaska. 

 

Specific objective 1 – The Gulf of Alaska environmental magnetic record 

The first objective of this thesis is to investigate the dynamics of the northwestern 

Cordilleran Ice Sheet (NCIS) during the late Pleistocene and Holocene using the 

environmental magnetic record of Site U1419.  How do the changes in magnetic properties 

(e.g., magnetic susceptibility, grain size and mineralogy) reflect changes such as advance and 

retreat phases of the NCIS? What were the dynamics of the NCIS prior to, and during the 

LGM? How does the U1419 record complement or add to our current understanding of the 

glacial history of this region? 

 

Specific objective 2 – The Gulf of Alaska paleomagnetic records  

The second objective is to reconstruct late Pleistocene and Holocene geomagnetic 

variability from the Gulf of Alaska core Sites U1418 and U1419. From these high-resolution 

records, paleomagnetic directions (inclination and declination) and relative paleointensity 

will be studied, where permitted, in order to detail millennial-scale geomagnetic variations. 

How do these records compare with other, independently dated, regional records? What are 

pronounced similarities or differences? How do these records compare with North Atlantic 

records and global stacks? What do the Gulf of Alaska paleomagnetic records indicate about 

the nature of the geomagnetic signal in the northeast Pacific, and what does that reveal about 

geomagnetic field dynamics? 
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METHODS 

In order to achieve the objectives of this thesis, u-channels were sampled from the 

presumed pristine center of split cores from the spliced records of Sites U1418 and U1419 

(Fig. 5). The sampling took place over a period of two weeks in March 2014 at the IODP 

Gulf Coast Repository at Texas A&M University in College Station, Texas, USA. A total of 

166 u-channels were sampled from Site U1418, of which 53 were analyzed for this PhD 

project. At Site U1419, 97 u-channels were sampled, all of which were analyzed. In core 

composite depth below seafloor (CCSF-A), this is equivalent to a 66 m long record at Site 

U1418, and the entire splice record of 112 m at Site U1419.  

Continuous paleomagnetic analyses and magnetic susceptibility measurements were 

performed at the Paleomagnetism and Marine Geology Laboratory at the Institut des sciences 

de la mer de Rimouski (ISMER) in Rimouski, Canada, and at the Paleo- and Environmental 

Magnetism Laboratory at Oregon State University (OSU), USA. Discrete magnetic analyses 

were performed at ISMER. Detailed CT imagery and density information was obtained from 

each u-channel at Institut national de la recherche scientifique, Centre Eau Terre 

Environnement (INRS-ETE) in Québec City, Canada. Details of these measurements and the 

treatment of the data obtained is explained in more depth in each chapter. An overview of 

laboratory analyses performed and parameters obtained is presented in Table 1. 
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Figure 5:  Sampling of u-channels at the IODP Gulf Coast Repository at Texas A&M 

University in College Station in March 2014. 
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Table 1: Overview of methods used during this PhD. 
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THESIS OVERVIEW 

This thesis is divided into three chapters where each chapter represents one research 

paper. Chapter one corresponds to the first objective and is based on Site U1419. Chapters 

two and three relate to the second objective through studies of Site U1419 and U1418, 

respectively.  

 In chapter one, the environmental magnetic record from shelf Site U1419 is 

interpreted in terms of the glacial dynamics of the north. This high-resolution Site provides 

insights to the environmental conditions in the Gulf of Alaska during early Marine Isotope 

Stage 3 (MIS3), as well as the early onset of full glacial conditions.  

Velle, J.H., St-Onge, G., Stoner, J.S., Walczak, M.H., Mix, A.C., Jaeger, J.M. and Forwick, 

M. A late Pleistocene environmental magnetic record of northwestern Cordilleran Ice Sheet 

dynamics based on IODP Expedition 341 drill Site U1419 in the Gulf of Alaska. In prep. 

Chapter two explores the high-resolution inclination record from Site U1419. With 

its high resolution and detailed age model (Walczak et al., in prep), this Site provides a new 

late Pleistocene inclination record with features that appear to be regionally consistent. This 

paper also presents the preliminary radiocarbon age model for Site U1418. 

Velle, J.H., Walczak, M.H., Reilly, B., St-Onge, G., Stoner, J.S., Fallon, S. and Forwick, M. 

A high-resolution late Quaternary inclination record from IODP Expedition 341 drill Site 

U1419 in the Gulf of Alaska. In prep. 

In the third chapter, the full paleomagnetic vector of Surveyor Fan Site U1418 is 

reconstructed and compared to other regional records. A comparison between Sites U1418 

and U1419 allows for further development of the U1418 age model presented in chapter two 

and speaks to the advantage of using paleomagnetic records in stratigraphic correlation.  

Velle, J.H., St-Onge, G., Stoner, J.S., Walczak, M.H. and Forwick, M. High-resolution 

paleomagnetic secular variation and relative paleointensity in the Gulf of Alaska: constraints 
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on the late Pleistocene and Holocene stratigraphy of IODP Expedition 341 Site U1418. In 

prep. 

 Finally, the conclusions of this thesis are presented. This general discussion will focus 

on the main results from the three chapters, their implications and limitations, as well as 

future perspectives.   

 

CONTRIBUTIONS AND COLLABORATIONS 

My contribution towards the three chapters of this thesis has been performing the analyses 

and writing the three chapters. My supervisors G. St-Onge, J. Stoner and M. Forwick have 

carefully reviewed several iterations of the chapters included in this thesis. The three chapters 

have also benefitted greatly from the contributions of the co-authors. M. Walczak and A. Mix 

carried out the radiocarbon analyses and constructed the U1418 and U1419 age models, with 

support from S. Fallon. B. Reilly organized and stacked the shipboard data used in chapters 

two and three. J. Jaeger provided useful insights and comments on chapter one.  

During the course of my PhD, I have participated in several regional workshops and 

meetings (GEOTOP, ArcTrain) as well as international conferences (European Geosciences 

Union, American Geophysical Union, International Sedimentological Congress, Association 

francophone pour le savoir) where I presented results from my three chapters. My 

contributions at these conferences are outlined below. Furthermore, participation in the 

second Expedition 341 post-cruise meeting and field trip on the Washington coast provided 

me with context for this project and allowed me to meet my collaborators. For the course 

Nouveaux développements en océanographie (OCE 92505), I attended the Institute of Rock 

Magnetism (IRM) summer school at the University of Minnesota, USA. During my PhD, I 

also participated in the Maria S. Merian Leg 46 in the St. Lawrence Estuary and Gulf, the 

Labrador Sea and Hudson Strait. 

 



20 

 

RESEARCH COMMUNICATION 

Articles in preparation 

Velle, J.H., St-Onge, G., Stoner, J.S., Walczak, M.H., Mix, A.C., Jaeger, J.M. and Forwick, 

 M. A late Pleistocene environmental magnetic record of northwestern Cordilleran 

 Ice Sheet dynamics based on IODP Expedition 341 drill Site U1419 in the Gulf of 

 Alaska. This manuscript will shortly be re-submitted to Quaternary Science Reviews. 

Velle, J.H., Walczak, M.H., Reilly, B., St-Onge, G., Stoner, J.S., Fallon, S. and Forwick, M. 

 A high-resolution late Quaternary inclination record from IODP Expedition 341 drill

 Site U1419 in the Gulf of Alaska. This manuscript will shortly be submitted to Earth 

 and Planetary Science Letters. 

Velle, J.H., St-Onge, G., Stoner, J.S., Walczak, M.H. and Forwick, M. High-resolution 

 paleomagnetic secular variation and relative paleointensity in the Gulf of Alaska: 

 constraints on the late Pleistocene and Holocene stratigraphy of IODP Expedition 341 

 Site U1418. This manuscript will be submitted to Earth and Planetary Science 

 Letters.  

 

Conference contributions 

Velle, J.H., St-Onge, G., Stoner, J.S., Mix, A., Walczak, M., Reilly, B. & Forwick, M., 2018. 

 A high-resolution late Quaternary paleomagnetic secular variation record from IODP 

 Expedition 341 drill Site U1418 in the Gulf of Alaska. 20th International 

 sedimentological congress (ISC), August 13 to 17, Québec City, Canada. Talk.  

Velle, J.H., St-Onge, G., Stoner, J.S., Mix, A., Walczak, M. & Forwick, M., 2018. Late 

 Pleistocene and Holocene environmental magnetic record of the northwestern 

 Cordilleran Ice Sheet dynamics based on IODP Expedition 341 drill Site U1419 in 

 the Gulf of Alaska. European Geosciences Union (EGU), April 8 to 13, Vienna, 

 Austria. Poster. 
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Velle, J.H., St-Onge, G., Stoner, J.S., Mix, A., Walczak, M. & Forwick, M., 2017. A 56,000-

 year environmental magnetic record of the northwestern Cordilleran Ice Sheet 

 dynamics based on IODP Expedition 341 drill Site U1419 in the Gulf of Alaska. 

 GEOTOP annual student meeting, March 24 to 26, Forêt Montmorency, Québec, 

 Canada. Talk. 

Velle, J.H., St-Onge, G., Stoner, J.S., Mix, A., Walczak, M., Asahi, H. & Forwick, M., 2016. 

 Ultra-high resolution late Pleistocene paleomagnetic secular variation records from 

 the Gulf of Alaska (IODP Exp. 341 Sites U1418 and U1419). American Geophysical 

 Union  (AGU) Fall Meeting, December 12 to 16, San Francisco, California, USA. 

 Poster. 

Velle, J.H., St-Onge, G., Stoner, J.S. & Forwick, M., 2015. Paleomagnetism and magnetic 

 properties of IODP Exp. 341 Site U1418. IODP Expedition 341 2nd Post-Cruise 

 Meeting, November 16 to 18, Friday Harbor, Washington, USA. Poster.  

Velle, J.H., St-Onge, G., Stoner, J.S., Forwick, M. & IODP Expedition 341 Shipboard 

 Scientists, 2015. Stratigraphie du golfe de l’Alaska au cours de l’Holocène et du 

 Pléistocène supérieur : résultats préliminaires des sites U1418 et U1419 de l’IODP. 

 Association francophone pour le savoir (ACFAS), May 25 to 29, Rimouski, Québec, 

 Canada. Poster. 

Velle, J.H., St-Onge, G., Stoner, J.S., Forwick, M., Mix, A., Davies, M. & IODP Exp. 341 

 shipboard scientists, 2015. Late Pleistocene and Holocene Paleomagnetic Records 

 from the Gulf of Alaska: Preliminary Results of IODP Expedition 341 Sites U1418 

 and U1419. American Geophysical Union (AGU) Joint Assembly, May 3 to 7, 

 Montréal, Québec, Canada. Poster. 

Velle, J.H., St-Onge, G., Stoner, J.S., Forwick, M. & IODP Expedition 341 Shipboard 

 Scientists, 2015. Paleomagnetic record from the Gulf of Alaska: Preliminary results 

 of IODP Expedition 341. GEOTOP annual student meeting, February 13 to 14, 

 Jouvence, Québec, Canada. Poster. 
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Velle, J.H., St-Onge, G., Stoner, J.S., Forwick, M. & IODP Expedition 341 Shipboard 

 Scientists, 2014. Paleomagnetism and paleoceanography in the Gulf of Alaska. 

 GEOTOP annual student meeting, March 14 to 16, Pohénégamook, Québec, Canada. 

 Poster. 
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CHAPTER 1 

A LATE PLEISTOCENE ENVIRONMENTAL MAGNETIC RECORD OF 

NORTHWESTERN CORDILLERAN ICE SHEET DYNAMICS BASED ON 

IODP EXPEDITION 341 DRILL SITE U1419 IN THE GULF OF ALASKA 

 

1.1 SUMMARY OF CHAPTER 1 

In the first chapter, the environmental magnetic record of Site U1419 is explored in 

order to improve our understanding of the evolution of the northwestern Cordilleran Ice 

Sheet. The robust age control and high temporal resolution of the U1419 record provides new 

information about glacial dynamics in this region through the past ~54,000 years. 

This chapter, titled “A late Pleistocene environmental magnetic record of 

northwestern Cordilleran Ice Sheet dynamics based on IODP Expedition 341 drill Site 

U1419 in the Gulf of Alaska” was written by me under the guidance of my supervisor, 

Guillaume St-Onge, and my co-supervisors Joe Stoner (Oregon State University) and 

Matthias Forwick (The Arctic University of Norway) who revised several versions of this 

paper. Maureen Walczak and Alan Mix (Oregon State University), and John Jaeger 

(University of Florida) contributed with comments and suggestions on a later version of the 

manuscript.  As first author, I performed the analyses, treated and interpreted the data, and 

wrote the paper. My three supervisors contributed greatly to the realization of this paper 

through assistance in the lab, help with interpreting data, and comments on the text. Maureen 

Walczak and Alan Mix constructed the age model that they kindly shared with me. Guillaume 

St-Onge, Joe Stoner, Matthias Forwick, Maureen Walczak, Alan Mix, and John Jaeger (co-

chief scientist) were all part of the shipboard science party during IODP Expedition 341.  
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ABSTRACT 

The 112 m long spliced record from International Ocean Drilling Program (IODP) 

Expedition 341 continental slope Site U1419 in the Gulf of Alaska was analyzed for physical 

and magnetic properties in order to better understand the evolution and dynamics of the 

northwestern Cordilleran Ice Sheet’s southern margin during the late Pleistocene. All u-

channels were analyzed with a high-resolution CT scanner for the visualization of 

sedimentary structures and for density estimation. Magnetic measurements include the 

stepwise AF demagnetization procedure used to study magnetic remanences (natural and 

laboratory induced), magnetic susceptibility, IRM acquisition curves, and hysteresis loops. 

These analyses provide information on the sediment’s magnetic properties, including 

magnetic concentration, grain size, and mineralogy. The high-resolution radiocarbon age 

model for Site U1419 (Walczak et al., in prep)  puts the base of the spliced record at ~54,000 

cal yr BP. Results indicate that early to mid- Marine Isotope Stage (MIS) 3 was characterized 

by alternating environmental conditions similar to those previously observed for the deglacial 

transition (Bølling-Allerød and Younger Dryas), where high productivity intervals 

characterized by very low magnetic concentration and high coercivity, alternate with periods 

of stronger glacial influence characterized by high magnetic concentration and low 

coercivity. The transition into glacial maximum conditions started at ~ 41,800 cal yr BP and 

lasted until approx. 18,000 cal yr BP. This interval, tentatively named the “Alaskan LGM”, 

was characterized by average sedimentation rates of 250 cm/kyr, that at times exceeded 800 

cm/kyr, and persistently high magnetic susceptibility indicating high input of terrigenous 

material and ice rafted debris (IRD). Larger amplitude variations in magnetic properties from 

~25,000 cal yr BP appear to reflect complex sediment transport dynamics at the ice front that 

could represent several advance and retreat phases of the ice sheet before sustained 

deglaciation from around 16,800 cal yr BP. 
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1.3 INTRODUCTION 

Magnetic minerals in sediments reflect the environmental processes they go through 

both before and after deposition, e.g., soil formation, weathering, and mode of erosion, 

transport, and accumulation, as well as diagenetic processes (e.g. Thompson & Oldfield, 

1986). Modern magnetic measurement methods can detect small quantities of magnetic 

minerals within a sample and small changes between samples, and such analyses are usually 

non-destructive and efficient, making insights into past climatic and environmental 

conditions easily accessible (e.g., Verosub & Roberts, 1995). In the North-Atlantic region, 

the magnetic susceptibility signature of sediment cores has been used as a method for 

identifying glacial vs. interglacial (high vs. low magnetic susceptibility) layers, 

corresponding to periods of high/low Ice-Rafted Debris (IRD) input and low/high carbonate 

productivity, respectively (Robinson et al., 1995; Stoner et al., 1996). In addition to magnetic 

susceptibility, rock magnetic properties such as anhysteretic remanent magnetization (ARM) 

and isothermal remanent magnetization (IRM) have also been used in identification of IRD 

and Heinrich Layers (Robinson et al., 1995; Stoner et al., 1996; Thouveny et al., 2000). Using 

a combination of magnetic properties (e.g., hysteresis parameters) the provenance of 

mineralogical assemblages can be determined, providing information on, for example, past 

changes in deep-sea circulation (Kissel et al., 1999, 2009) and ice sheet dynamics (e.g., 

Simon et al., 2014; Hatfield et al., 2016). Compared to the North-Atlantic region, 

environmental magnetic studies of the North Pacific Ocean are scarce. Cowan et al. (2006) 

investigated the mineral magnetic signal of the sediment in three glaciated southern Alaskan 

fjords to develop provenance tracers for the southern Alaskan margin. The study found that 

no single magnetic parameters can be used to distinguish between different sources, but that 
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a combination of several parameters can be used as tracers to specific southern Alaskan 

terranes.  

During past glaciations, the Gulf of Alaska was surrounded by an extensive ice cover 

constituting the northwestern Cordilleran Ice Sheet (NCIS). The proximity to the large 

moisture source of the North Pacific in combination with the mountainous topography of 

southern Alaska provided favorable conditions allowing mountain glaciers from the Aleutian 

Range in the west, the Alaska Range in the north, and the Kenai, Chugach, Wrangell and St. 

Elias Mountains in the south to coalesce and form the NCIS (e.g., Fulton, 1991; Lagoe et al., 

1993; Kaufman & Manley, 2004). With the intensification of Northern Hemisphere 

glaciations, the NCIS expanded into the Gulf of Alaska initiating repeated shelf edge 

glaciations from approx. 1 Ma (Berger et al., 2008; Gulick et al., 2015; Montelli et al., 2017). 

Although the ice cover surrounding the Gulf of Alaska (GoA) was the most extensive in 

Alaska, very little is known regarding the extent of the NCIS’ southern margin prior to the 

Last Glacial Maximum (LGM). Even during the LGM, advance and retreat cycles into the 

GoA are poorly constrained and little evidence exists of the timing and dynamics of this 

portion of the NCIS (e.g., Kaufman & Manley, 2004; Kaufman et al., 2011). Post-LGM and 

Holocene environmental and oceanographic conditions have been the subject of several 

studies and are better constrained (e.g. de Vernal & Pedersen, 1997; Barron et al., 2009; 

Davies et al., 2011; Addison et al., 2012; Praetorius et al., 2015). The 17,400-year high-

resolution record of U1419 site survey core EW0408-85JC details the changing 

environments on the GoA shelf edge during the deglacial transition and Holocene (Davies et 

al., 2011). This study builds upon the characterization of magnetic properties and 

sedimentary environments of Davies et al. (2011) and Walczak et al., (2017), and extends the 

record back to approx. 54,000 cal yr BP. Taking advantage of a detailed radiocarbon age 

model (Walczak et al., in prep) that defines extremely high rates of sediment accumulation, 

combined with physical and rock magnetic properties, we provide unique information on 

glacial dynamics and sedimentary environments of the southern Alaskan margin at an 

unprecedented temporal resolution. 
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1.4 STUDY AREA 

Geological and oceanographic setting 

The Gulf of Alaska is located in the subarctic northern Pacific Ocean, off southern Alaska 

(Fig. 6). Modern sediment supply to the GoA is dominated by terrigenous material sourced 

from the southern Alaskan coast, specifically by the Copper River, the Bering and Malaspina 

glaciers, and rivers and tidewater glaciers draining the Saint Elias Mountains (Fig. 6; e.g., 

Molnia & Carlson, 1978; Jaeger et al., 1998). These drainage areas cover a complex 

geological setting, including the Yakutat, Prince William, Chugach, and Wrangelia terranes, 

as well as the Craig sub-terrane (Silberling et al., 1994). Active mountain building in southern 

Alaska in combination with periods of intense glaciation have ensured a large flux of 

sediment to the GoA (e.g., Berger et al., 2008; Gulick et al., 2015; Montelli et al., 2017), with 

long-term sedimentation rates in the Bering Trough (Site U1421; Fig. 6) estimated to as much 

as 5-10 m/kyr (Montelli et al., 2017), and  200-300 cm/kyr on the slope (Sites U1419 and 

U1420; Fig. 6; Gulick et al., 2015). 

The oceanographic setting in the GoA is dominated the Alaska Current (AC), a 

branch of the Pacific subarctic gyre that flows westward in the ocean basin of the GoA. As 

the AC reaches the Kenai Peninsula, it turns south-west and continues along the North Pacific 

margin and the Alaska Peninsula as the Alaskan Stream. On the continental shelf is the 

Alaska Coastal Current (ACC) which is driven westward along the coast by winds and 

freshwater runoff from the glaciers and rivers of southern Alaska (Fig. 6; Royer, 1982; 

Stabeno et al., 1995, 2004). 
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Figure 6: Map of the Gulf of Alaska with Site U1419 (yellow star) and other Expedition 341 

drill Sites (red circles). The estimated LGM extent (from Kaufman & Manley, 2004) is 

outlined with an orange dashed line. The location of Site U1419 also marks the location of 

core EW0408-85JC mentioned in the text.  

 

 

The northwestern Cordilleran Ice Sheet (NCIS) 

In contrast to elsewhere in Alaska, the early Wisconsinan extent of the Cordilleran Ice 

Sheet around the GoA is poorly constrained (Kaufman & Manley, 2004; Kaufman et al., 

2011). Seismic studies of the Bering Trough show a dynamic history of the Bering Glacier, 

the largest outlet glacier of the NCIS, with at least three shelf-break advances since the onset 

of the last glacial cycle (Montelli et al., 2017). The Last Glacial Maximum occurred around 

23-20 kyr ago (Mann & Peteet, 1994; Mann & Hamilton, 1995; Clapperton, 2000), when 

several NCIS outlet lobes reached the GoA shelf edge. Ice flow to the shelf edge is thought 

to have been concentrated in cross-shelf troughs (e.g., Bering Trough, Yakutat Sea Valley) 
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with the shelf areas between troughs possibly remaining ice-free (Elmore et al., 2013). De 

Vernal & Pedersen (1997) suggested that oceanographic conditions during the LGM were 

cold with freezing winter conditions and low biogenic fluxes. Marine terminating glaciation, 

as recorded by high rates of IRD delivery to the margin, and cold/salty marine conditions 

prevailed until ~17 cal ka BP, when glaciers showed early signs of stagnation (Davies et al., 

2011; Davies-Walczak et al., 2014). By ~16.5 cal ka BP, glacier retreat had fully commenced, 

accompanied by warming regional surface waters (Davies et al., 2011; Praetorius et al., 

2015). By 14.7 cal ka BP, glaciers had retreated from the shelf into fjords and onto land 

(Clapperton, 2000; Davies et al., 2011). For the Bølling-Allerød interstadial, de Vernal & 

Pedersen (1997) and Barron et al. (2009) found indications for a warming in the GoA with 

laminated sediments and increased surface water productivity. However, according to 

Addison et al. (2012), the Bølling-Allerød winters may have been cooler than modern winters 

with formation of seasonal sea ice. During the Younger Dryas (12.9-11.7 kyr BP), glaciers 

re-advanced in southern Alaska (e.g., Briner et al., 2002) and sea-surface temperatures were 

once again cool and/or more saline (Davies et al., 2011; Praetorius et al., 2015). A cooling in 

the GoA from 10-8 cal ka BP was followed by a gradual warming (Praetorius et al., 2015) 

and increasing surface ocean productivity after 8 kyr BP (de Vernal & Pedersen, 1997). 

During the Little Ice Age (LIA, AD ~1200-1900), glaciers advanced again (e.g., Calkin et 

al., 2001; Elmore et al., 2013) and have been retreating since (Arendt et al., 2002). 

 

1.5 METHODS 

Coring and sampling 

The International Ocean Drilling Program (IODP) Expedition 341 took place in the 

Gulf of Alaska from May 29th to July 29th, 2013, onboard the JOIDES Resolution. The 

expedition successfully retrieved more than 3 km of sediment cores from five drilling sites 

on the GoA continental margin and the adjacent Surveyor Fan (Jaeger et al., 2014). Five 
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holes at Site U1419 (59°31.9297′N; 144°8.0282′W) were drilled at a water depth of 687 

meters, on the continental slope between the mouths of the Kayak and Bering cross-shelf 

troughs (Fig. 6). Based upon shipboard measurements of various sedimentary physical 

properties (e.g., magnetic susceptibility, color, density, etc.) a continuous stratigraphic record 

(splice) consisting mostly of sections from holes D and E, but also using holes A, B and C, 

was established. The depth scale used in this paper is the composite depth below seafloor, or 

CCSF-A, which assumes that the mudline in the first core section of one hole (U1419B-1H-

1A) is the sediment/water interface and allows direct comparison with other measurements 

made at 1-cm intervals.  This depth scale is, however, not corrected for sediment expansion 

during coring as in CCSF-B (c.f. Jaeger et al., 2014). The splice of Site U1419 comprises the 

sediment between 0 m CCSF-A (mudline) and 112.1 m CCSF-A. 

The u-channel sampling was performed at the IODP Gulf Coast Repository at Texas 

A&M University in College Station, Texas, USA. U-channels were sampled from the 

presumably pristine center of split cores using plastic liners with cross-sections of 2x2 cm 

and lengths up to 1.5 meter. A high density of clasts and compacted sediment prevented the 

sampling of the intervals between 86.08–89.3 m CCSF-A, 90.2–91.6 m CCSF-A, and the 

very bottom of the splice from 111.4–112.1 m CCSF-A. 

 

Physical properties 

Information on the sediment’s physical properties (density), internal structures, and 

possible coring and/or sampling deformation was obtained using a Siemens SOMATOM 

Definition AS+ 128 CT scanner at Institut national de la recherche scientifique, Centre Eau 

Terre Environnement (INRS-ETE) in Québec City, Canada. The scanner is capable of 

detecting density changes as small as 0.1%. Its source/detector rotates in a helicoidal motion 

around the sample, creating high-resolution (sub-millimeter) images from each rotation. 

Images were acquired at 0.4 mm intervals with 0.2 mm overlap from one image to another. 

CT-number profiles were derived for each image and these reflect density changes within the 
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sediment (e.g., Stoner & St-Onge, 2007; Fortin et al., 2013). The CT-numbers are presented 

using the Hounsfield scale (HU units; Hounsfield, 1973), spanning from -1024 (density of 

air) to 3071 HU, where 0 HU is the density of water (e.g., Duchesne et al., 2009; Fortin et 

al., 2013). 

 

Continuous magnetic measurements 

Remanence measurements were performed using 2G EnterprisesTM model 755-

1.65UC superconducting rock magnetometer at the Paleomagnetism and Marine Geology 

Laboratory at Institut des sciences de la mer de Rimouski (ISMER) in Rimouski, Canada, 

and at the Paleo-and Environmental Magnetism Laboratory at Oregon State University 

(OSU), USA. Stepwise alternating field (AF) demagnetization was used to study the natural 

remanent magnetization (NRM) and laboratory remanent magnetizations. Paleomagnetic 

results from this study will be presented elsewhere. The u-channel measurements were 

performed at 1 cm intervals and have a response function with a width at half height of 7-8 

cm (Oda & Xuan, 2014). Therefore, the first and last 5 cm of each u-channel were excluded 

to reduce the edge effect associated with section breaks (Weeks et al., 1993).  

Anhysteretic remanent magnetization (ARM) was obtained by implementing a DC 

biasing field (0.05 mT) on the alternating field (100 mT). Isothermal remanent magnetization 

(IRM) and saturated isothermal remanent magnetization (SIRM) were induced by using a 2G 

pulse magnetizer with intensities of 300 and 950 mT, respectively. The u-channels were 

measured and subsequently demagnetized using peak AF fields of 10, 20, 25, 30, 35, 40, 45, 

50 and 60 mT for ARM and IRM, and 0, 10, 30, and 50 mT for SIRM.  

Low-field magnetic susceptibility (kLF) analyses were performed in three iterations 

using a three second measurement period at increments of 1 cm with a Bartington MS2 u-

channel loop sensor on a purpose-built automated tracking system at Oregon State 
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University, USA. Repeated measurements generated the same result for all u-channels, and 

the values reported in this paper are a mean of three iterations. 

 

Discrete magnetic measurements 

Small, discrete samples were collected from the base of each u-channel and analyzed 

with a Princeton Measurement Corporation MicroMag 2900 alternating gradient force 

magnetometer (AGM) at ISMER to obtain information on the sediment’s hysteresis 

properties, including coercivity (Hc), coercivity of remanence (Hcr), saturation 

magnetization (Ms), and saturation remanence (Mr). The para/diamagnetic contribution in 

the samples were corrected for using the MicroMag AGM software. These properties reveal 

information on the sediment’s magnetic mineralogy and grain size (e.g., Day et al., 1977; 

Dunlop et al., 2002a, 2002b; Peters & Dekkers, 2003). 

 

Constructed ratios as environmental magnetic proxies 

The remanent magnetizations ARM and IRM, as well as low-field magnetic 

susceptibility (kLF) are parameters that reflect the concentration and grain size(s) of the 

magnetic material within the sample. Similarly, the ARM susceptibility (kARM) is indicative 

of magnetic grain size and concentration and is obtained by normalizing the ARM by the 

biasing field. kARM is more sensitive to single domain (SD) and smaller pseudo-single domain 

(PSD) grains and, along with magnetic susceptibility (kLF), which is more sensitive to larger 

grains (PSD and MD), the kARM/kLF ratio and a kARM versus kLF plot can therefore be used as 

an indicator of relative variations in magnetic grain-size (Banerjee et al., 1981; King et al., 

1982, 1983; Verosub & Roberts, 1995; Geiss & Banerjee, 2003). Mrs/Ms and Hcr/Hc are 

also useful parameters for magnetic grain size, especially if the sediment is known to consist 

mainly of magnetite and/or titanomagnetite (Day et al., 1977; Tauxe, 1993; Stoner et al., 
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1996; Stoner & St-Onge, 2007). The median destructive field (MDF) was determined using 

the AF demagnetization data and corresponds to the AF required to reduce the initial 

remanent magnetization by half. The MDF (MDFARM) gives insight into the coercivity of the 

magnetic minerals activated and can, therefore, be used to investigate the sediment’s 

magnetic mineralogy and grain-size. The interpretation of the constructed ratios assumes a 

magnetic mineralogy dominated by magnetite (e.g., Banerjee et al., 1981). 

 

Age model 

The age model for Site U1419 (Fig. 7) is presented by Walczak et al. (in prep) and is based 

on both radiocarbon dates from Site U1419 as well as on gamma-ray attenuation bulk density 

(GRA) tie-points to the independently dated site survey core EW0408-85JC (Fig. 6) within 

the Holocene (Davies-Walczak et al., 2014). BChron (Haslett & Parnell, 2008) was used to 

generate an age model informed by all planktic foraminiferal dates, although the ΔR value 

was allowed to vary reflecting the paired benthic radiocarbon data available for this Site. 

Changes in surface ocean reservoir age were estimated using a simple one-dimensional 

vertical circulation box model assuming modern mixing (calculated as diffusion) with an 

input watermass age at 800-1000 m depth informed by the benthic ages. These results were 

then used to generate a time transient site-specific estimate of the ΔR value, averaging 330 ± 

260 years over the past ~45,000 cal yr BP (Walczak et al., in prep). All dates were converted 

to calendar ages using the MARINE 13 calibration curve (Reimer et al., 2013). 
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Figure 7: Age model for Site U1419 (Walczak et al., in prep). Blue circles indicate 

radiocarbon dated intervals from Site U1419. Red circles indicate GRA tie-points to core 

EW0408-85JC and TC (cf. Fig. 6). Sedimentation rates (cm/kyr) averaged over 500 years 

below. 

 

1.6 RESULTS 

Physical properties and lithology 

Based on the magnetic properties observed in this study, the Site U1419 splice is 

divided into three units. The CT density of the Site is presented in Fig. 8, and selected CT 

images with representative lithologies are shown in Figure 9. Table 2 summarizes the 
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lithology and magnetic properties of the units. Lithologies for Units I and II are based on the 

lithofacies as described by Penkrot et al., 2018. Lithology for Unit III is described here. 

The density of Unit III, in the lowest part of the measured section (111.5-92.5 m CCSF-

A), varies between 1050 and 1650 HU. The lithology is characterized as a diamict with 

varying clast content, and three intervals of lower-density (1050-1200 HU) massive or 

stratified mud with scattered clasts, as well as a shorter (~60 cm) interval of laminated mud 

(Jaeger et al., 2014). The boundary to the overlying Unit II (92.5-6.3 m CCSF-A) is defined 

by an abrupt shift to a higher density (between 1100 and 1700 HU) diamict. With some 

variations in density and clast content, from clast-poor to clast-rich, this general lithology 

continues throughout Unit II, although occasionally interrupted by shorter intervals of lower-

density (1100-1200 HU) stratified or laminated mud with few clasts (at 76.6-75.7, 71.2-70.7, 

and 42.9-42.6 m CCSF-A), as well as intervals of stratified sands and/or diamict (cf. Penkrot 

et al., 2018). Unit I (6.3-0 m CCSF-A) is divided into two subunits; Unit Ib (6.3-4.0 m CCSF-

A) and Unit Ia (4.0-0 m CCSF-A). The lowermost ~72 cm of Unit Ib are characterized by 

low-density, laminated mud without clasts or macrofossils (approx. 45 cm; Fig. 9), overlain 

by a high-density layer containing very few clasts (approx. 12 cm), followed by another 

interval of sub-laminated mud (approx. 15 cm). The remaining part of Unit Ib as well as Unit 

Ia are generally characterized by lower density (800-1100 HU) massive mud (cf. Penkrot et 

al., 2018). Four 10 - 25 cm thick layers of somewhat higher density (1000-1100 HU) occur 

within Unit Ia, some of which contain small clasts (Fig. 9). 
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Table 2: Depth, age, selected magnetic parameters and lithology characteristic for the units 

and facies described in the text. 

aAges from Walczak et al., in prep. bLithofacies from Penkrot et al., 2018. *Range presented 

instead of mean due to large fluctuations within unit (see text). 

 

 

 

 

 

 

 

 

 

Figure 8 (next page): Site U1419 magnetic remanence (ARM, IRM and SIRM) and 

magnetic susceptibility (kLF), kARM/kLF, hysteresis properties, MDFARM, and CT density 

against CCSF-A depth in meters. Magnetic proxies are indicated in top panels, and units 

referred to in the text are indicated in side panels. Facies described in the text are indicated 

in different colors. 

 

 

Unit Depth 

(m CCSF-A) 

Age  

(cal kyr BP)a 

ARM 

(10-3 A/m) 

IRM 

(A/m) 

KLF  

(10-5 SI) 

MDFARM 

(mT) 

Lithologyb 

Ia 0.0-4.0 Present-6.2 69 ± 18 4 ± 0.9 31 ± 8 35 ± 1 Massive mud 

Ib 4.0-6.3 6.2-14.7 11 ± 6 1 ± 0.08 16 ± 7 30-50* Laminated 

II 6.3-92.5 14.7-41.8 30 ± 10 4 ± 1 46 ± 10 29 ± 3 Diamict, sandy 

diamict, 

stratified diamict 

III 92.5-111.5 41.8-54.0 15 ± 8 2 ± 1 25 ± 15 38 ± 10  

 F3   ~27 ~4 ~50 ~26 Diamict 

F2   ~16 ~2 ~27 ~35 Diamict 

F1   ~9 ~1 ~10 ~55 Laminated/ 

stratified 
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Magnetic properties 

Fig. 8 presents a compilation of the laboratory magnetic remanence data, properties, 

and constructed ratios of the sediment sequence of Site U1419. Table 2 presents mean 

magnetic properties for each unit and facies described in the text. 

Unit III. Unit III (111.5-92.5 m CCSF-A) is characterized by generally weak magnetic 

remanence with mean intensities of 0.015 ± 0.008 A/m for ARM, 1.77 ± 1.39 A/m for IRM, 

and 1.82 ± 1.41 A/m for SIRM. Lower magnetic susceptibilities (mean of 25.3 10-5 ± 14.7 x 

10-5 SI) are also observed. Generally high values for MDFARM (mean of 37.9 ± 9.9 mT) 

indicate higher coercivity than in the overlying units. Changes in magnetic properties 

generally occur at the same depth intervals within this unit and are grouped into three 

different facies. The largest peaks in magnetic remanence and susceptibility are observed at 

the base of the record, between 111-109 m CCSF-A, and are coincident with lower MDFARM 

than observed in the rest of Unit III and defines facies 3 (F3). Facies 2 (F2) contains peaks 

in magnetic susceptibility (~40 x 10-5 SI) between 105-103, 101-99, and 97-94.7 m CCSF-A 

that coincide with stronger remanence intensities and lower coercivity. Facies 1 (F1) is 

characterized by magnetic susceptibility lows (between 8 and 10 x 10-5 SI) at 109-105, 103-

101, 99-97, and 94.7-93.9 m CCSF-A that are concurrent with similar lows in magnetic 

remanence, and peaks in MDFARM (between 50 and 60 mT). The kARM/kLF ratio (Fig. 8) 

suggests that there are small variations of magnetic grain size with the alternations, and that 

F1 intervals are magnetically finer grained. Large amplitude variations are observed in the 

hysteresis parameters Hcr/Hc and Mr/Ms (Fig. 8) that appear to reflect the changes observed 

from u-channel data. However, the sampling resolution in this interval is too low to determine 

if these changes are precisely synchronous. The shapes of the hysteresis loops from this unit 

are consistent with magnetite (Fig. 10; Tauxe et al., 1996). Hysteresis data from Unit III are 

scattered in the PSD and MD regions of the Day plot (Fig. 10). A Banerjee et al. (1981) plot 

(Fig. 11) suggests that Unit III samples vary in magnetic grain size from 0.2 to over 5 µm 

using the King et al. (1983) calibrations (Fig. 11). 
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Figure 9: U-channel CT scan images from Site U1419 showing examples of different 

lithologies observed in Site U1419 and described in the text. Brighter/darker intervals reflect 

higher/lower density, respectively. The arrow indicates the transition between Unit II and 

Unit Ib at 6.3 m CCSF-A. 

 

 

Unit II. The transition to Unit II (from 92.5 m CCSF-A) is marked by a more than two-

fold increase in magnetic remanences with means of 0.03 ± 0.01 A/m for ARM, 4.32 ± 1.35 

A/m for IRM, and 4.34 ± 1.34 A/m for SIRM. Similarly, magnetic susceptibility is 
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consistently higher, (mean of 46 x 10-5 ± 10 10-5 SI) in Unit II. kARM/kLF with a mean of 1.75 

± 0.44 is generally lower and with less variability, as is MDFARM 28.9 ± 2.8 mT. The 

hysteresis parameters Hcr/Hc and Mr/Ms are similar to those of Unit III, but with less 

variability (Fig. 8). Hysteresis loops from this unit display a shape typical of magnetite (Fig. 

10; Tauxe et al., 1996). Hysteresis data in Unit II plot parallel to, but slightly above, the PSD-

MD magnetite mixing line (Dunlop, 2002a, 2002b) in a Day et al. (1977) plot (Fig. 10). In 

the Banerjee et al. (1981) plot (Fig. 11), using the calibration of King et al. (1983), most 

samples from Unit II plot between 0.2 µm to over 5 µm, with a few samples plotting below 

0.2 µm.  

Smaller-amplitude variations in magnetic properties than in Unit III are observed 

throughout Unit II, with some covariation observed between the different magnetic 

properties. Magnetic susceptibility peaks above the Unit II mean (around 50-60 x 10-5 SI) 

tend to correspond with MDFARM values slightly below the mean (25-27 mT), as well as with 

increases in kARM/kLF (varying between 1.75 and 2.7), at 74.2-73.0, 66.9-66.8, 60.4-58.6, and 

52.8-51.6 m CCSF-A with the two latter intervals being especially pronounced in kARM/kLF 

(Fig. 8). Other variations within Unit II include a large increase in MDFARM (up to 40-45 

mT), coincident with a decrease in magnetic susceptibility (down to ~30 x 10-5 SI) and 

concentration parameters, between 71.2 and 70.7 m CCSF-A.  

Larger fluctuations in magnetic properties are observed above approx. 31 m CCSF-A. 

Peaks in kARM/kLF (2-2.5) coincide with intervals of somewhat lowered magnetic remanence 

and susceptibility (35-40 x 10-5 SI), as well as somewhat higher MDFARM (30-35 mT), at 

31.0-28.8, and 22.6-20.0 m CCSF-A (Fig. 8). Between 16.8 and 15.9 m CCSF-A, a drop in 

remanent magnetizations is concurrent with a decrease in magnetic susceptibility (down to 

~10 x 10-5 SI), an increase in MDFARM to 40-45 mT, as well as an increase in kARM/kLF (up 

to 2.5). At 15.1 m CCSF-A, kARM/kLF increases further, reaching the highest values observed 

within Unit II, varying between 2.7 and 3.7. High kARM/kLF is maintained until 6.8 m CCSF-

A. In the same interval, magnetic susceptibility is close to the mean (between 40 and 50 x 

10-5 SI), whereas MDFARM is slightly above the Unit II mean varying around 30 mT. 
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Figure 10: Day plot (Day et al., 1977) with mixing lines from Dunlop (2002a, 2002b) of all 

Site U1419 discrete samples divided into units as described in the text. Selected hysteresis 

loops representative for each unit are presented below. 

 

Unit I. Unit Ib (from 6.3-4.0 m CCSF-A) is characterized by weak remanent 

magnetization intensities; mean of 0.011 ± 0.006 A/m for ARM, 1.15 ± 0.088 A/m for IRM, 

and 1.18 ± 0.089 A/m for SIRM, as well as lower magnetic susceptibility (mean of 16 10-5 ± 

7.37 x 10-5 SI) and mean kARM/kLF of 1.65 ± 0.44. From 6 to 5 m CSF-A, the MDFARM is high 
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(40-50 mT). From 5 to 4 m CCSF-A, MDFARM decreases to ~30 mT, indicating a shift from 

a higher- to lower coercivity magnetic mineralogy. Hysteresis data from Unit Ib plots in the 

multi-domain (MD) region (Fig. 10). Assuming a magnetite dominated mineralogy, the 

Banerjee et al. (1981) plot (Fig. 11), using the King et al., (1983) calibration, indicates coarser 

magnetic grain size (> 0.2 µm) of the samples from Unit Ib (Fig. 11) compared to the 

overlying Unit Ia. Unit Ia (4.0-0 m CCSF-A) is characterized by higher magnetic remanence 

intensities with mean values of 0.069 ± 0.018 A/m for ARM, 4.42 ± 0.952 A/m for IRM, and 

4.43 ± 0.949 A/m for SIRM. Comparatively high kARM/kLF mean values of 5.69 ± 1.089 are 

observed, with moderate MDFARM of 35.1 ± 1.4 mT (Fig. 8). The magnetic susceptibility in 

this interval is relatively high with a mean of 30.8 x 10-5 ± 7.61 x 10-5 SI. Hysteresis data 

from this interval plot within the pseudo-single domain (PSD) region of the Day et al. (1977) 

plot (Fig. 10; Day et al., 1977; Dunlop, 2002a, 2002b). In the Banerjee et al. (1981) plot (Fig. 

11), using the King et al. (1983) calibrations, Unit Ia plots within the magnetic grain size 

limit of 0.2 µm. Hysteresis loops from this unit display a shape typical of magnetite (Fig. 10; 

Tauxe et al., 1996). 

 

 

 

 

 

 

 

Figure 11 (next page): Anhysteretic susceptibility of the U1419 units plotted against 

magnetic susceptibility (King et al., 1982) as a proxy for magnetic grain size (given a 

magnetite mineralogy). Magnetic grain size boundaries are based on synthetic samples from 

Banerjee et al. (1981) and the plot is adapted from Geiss & Banerjee (2003).  Insert shows 

samples from 6.3-4.0 m CCSF-A in Unit Ib. 
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Chronostratigraphy 

According to the age model (Walczak et al., in prep) the base of the splice (and Unit III) 

at 112 m CCSF-A corresponds to ~54,000 cal yr BP. Sedimentation rates in the lowermost 

part of the splice vary between 44 and 240 cm/kyr when averaged over 500 years (Fig. 7). 

The mean sedimentation rates for this interval (54,000-41,800 cal yr BP) are 113 ± 63 cm/kyr, 

with the highest rates observed between 43,000 and 42,500 cal yr BP, and the lowest rates 

between 52,000 and 51,500 cal yr BP.  Unit II spans the interval from 41,800 to 14,700 cal 

yr BP (92.5-6.3 m CCSF-A), and sediment accumulation rates within this unit range between 

16 and 835 cm/kyr. The highest rates occur in the upper parts of the Unit II between 18,000 

and 17,500 cal yr BP, and the lowest from 15,5000 cal yr BP to the top of Unit II at 14,700 
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cal yr BP (Fig. 7). The mean sedimentation rates for the entire Unit II are 250 ± 166 cm/kyr. 

Unit I spans the time period from ~14,700 cal yr BP to the present (6.3 m CCSF-A to 

mudline) with sediment accumulation rates varying between 5 and 113 cm/kyr (Walczak et 

al., in prep.; Fig. 7). 

 

1.7 DISCUSSION 

Unit III - Period of alternating conditions (54,000 to 41,800 cal yr BP) 

The large changes in magnetic properties within Unit III (Fig. 8) are also associated 

with variations in lithology as indicated by Figure 9. The magnetic facies within this unit are 

broken into series of sub-facies (from older to younger; a, b, c, d). Both facies 2 and facies 3 

are associated with diamict lithologies (Jaeger et al., 2014), although higher clast content and 

densities are observed in facies 3. In contrast, facies 1 is accompanied by lower-density 

massive or stratified mud with scattered clasts, including a laminated interval (F1d; 94.7-

93.9 m CCSF-A; Penkrot et al., 2018). The lithology of the lowermost facies 1 interval (F1a; 

109-105 m CCSF-A) differs somewhat from others (F1b, F1c, F1d) as sediment density is 

slightly higher and more clasts are present. Magnetic properties are, however, similar enough 

for them to be characterized as the same facies (Fig. 8 and 9). All intervals of facies 1 and 2 

have higher coercivities (MDFARM > 30 mT) than found for most of the drilled sequence that 

has MDFARM typically < 30 mT, whereas facies 3 characteristics are similar to much of the 

overlying sedimentary package (Unit II; Fig. 8). Superimposed on these larger scale 

variations are alternations between F1 with much higher coercivities (MDFARM of 38-55 mT) 

and F2 with moderately higher coercivities (MDFARM 30-35 mT).  

Facies 3 marks the base of the U1419 splice and predates the local last glacial 

maximum. The high concentration of magnetic material and low coercivity in combination 

with a clast-rich diamict suggest that F3 represents a glacimarine environment with frequent 

ice rafting. In general, this interval is very similar to the overall characteristics of the 
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overlying Unit II and, along with its high density (1500-1600 HU), is likely to have been 

rapidly deposited. Facies 3 is interpreted to reflect glacial proximal deposits, perhaps the final 

stages and/or retreat of an ice sheet as the magnetic signature is similar to that observed in 

the deglacial transition prior to the Bølling-Allerød (Davies et al., 2011).  

The magnetic signature of facies 1 is comparable to those observed in the lowermost 

part of Unit Ib (6.3-5.6 m CCSF-A), suggesting that they may represent similar 

environmental conditions. Davies et al. (2011) described the lithology and Walczak et al. 

(2017) described the magnetic characteristics of this interval in the U1419 site survey core 

EW0408-85JC (between 831 and ~745 centimeters below seafloor). The lithology contains 

both laminated and sub-laminated intervals, separated by a ~12 cm (37 cm in EW0408-85JC) 

interval of massive, slightly higher density mud with clasts consisting mostly of terrigenous 

silt and clay, with the presence of opal and calcium carbonate (Davies et al., 2011). Based on 

detailed radiocarbon dating (Davies et al., 2011; Davies-Walczak et al., 2014), this layer was 

interpreted to represent cool and/or saline surface waters and regional glacier re-advance 

corresponding to the Younger Dryas, with the laminated interval below and the sub-

laminated interval above representing warmer and highly productive conditions of the 

Bølling-Allerød and early Holocene, respectively. Both the magnetic properties and the 

lithology of F1 are comparable to these intervals, indicating that facies 1 may have been 

deposited in environments similar to that of the warm Bølling-Allerød or early Holocene. 

The occurrence of IRD throughout F1, unlike that of the Bølling-Allerød interval, indicates 

that tidewater glaciers were present, but that the drill Site was relatively distal to the glacier 

terminus. The presence of tidewater glaciers may also be indicated by the higher 

sedimentation rates observed in F1 intervals (65-166 cm/kyr) than that found for the Bølling-

Allerød by Davies et al. (2011) of 25 ± 12 cm/kyr. The high coercivity (45-55 mT; Fig. 8) of 

facies 1 intervals, especially F1b and F1c, and laminations associated with facies 1d, may 

reflect magnetic diagenesis associated with benthic anoxia, as observed by Davies et al. 

(2011) and Walczak et al. (2017) in the younger analogue.  
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The magnetic characteristics of facies 2 intervals and the fact that they are associated 

with diamict lithologies suggest that they are likely related to an increased input of 

terrigenous material to the drill Site, representing glacimarine depositional environments 

with frequent ice rafting. The generally lower amplitude of the F2 intervals suggest that they 

may have been deposited during more moderate or distal glacial conditions compared to F3 

and Unit II, but more proximal than facies 1. Alternating with facies 1, facies 2 might have 

been deposited in environments comparable to that of the Younger Dryas, as observed by 

Davies et al. (2011).  

Between 42,700 and 41,800 cal yr BP (93.9 and 92.5 m CCSF-A), concentration-

dependent parameters, magnetic grain size and density increase approaching values typical 

to that of Unit II. This short period is interpreted as an intensification, or buildup, of glacial 

conditions to the prolonged period of glaciation observed in Unit II. 

 

Unit II - The Alaskan LGM (41,800 -14,700 cal yr BP) 

The high magnetic concentration within this unit is consistent with an almost 

continuous flux of terrigenous sediments to the core Site, both in the form of IRD and 

material deposited from suspension settling. The lithology of Unit II is interpreted as a glacial 

diamict (Penkrot et al., 2018) with a persistently high input of ice rafted debris, and sediment 

accumulation rates of up to 835 cm/kyr when averaged over 500 years (Walczak et al., in 

prep; Fig. 7). These conditions are generally sustained throughout most of Unit II (until 

14,700 cal yr BP) leading to the interpretation that this interval represents a prolonged period 

of glacial conditions, here referred to as the “Alaskan LGM” (Fig. 12). The high 

sedimentation rates indicate that the glacier front may have been close to the shelf edge 

throughout this interval.  Based on the proximity of Site U1419 to the Bering Trough (Fig. 

6) and seismic evidence of past shelf-edge glaciations (Berger et al., 2008; Elmore et al., 

2013; Montelli et al., 2017), it is reasonable to assume that the glacier front was proximal to 
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the core Site for some duration of the Alaskan LGM, perhaps from as early as 41,800 cal yr 

BP, when the magnetic signal changed drastically. 
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Figure 12 (previous page): Sedimentation rates (Walczak et al., in prep) and selected 

magnetic properties plotted against age in cal yr BP. Enlarged y axis for kARM/kLF in Unit II 

in grey. Events discussed in the text are indicated in different colors. Upper panel shows 

division of the marine isotope stages (MIS), and the lower panel details the glacial history as 

interpreted from the U1419 sedimentary record. 

 

 

One interval characterized as laminated mud/ooze with dispersed clasts (Penkrot et 

al., 2018) and lowered density (1000-1100 HU), coincides with lower magnetic 

concentrations and higher coercivity at approx. 36,900 cal yr BP (71.2-70.7 m CCSF-A; Fig. 

8 and 12). This interval resembles the F1 intervals within Unit III. However, its magnetic 

concentrations are slightly higher and coercivity is lower than in the F1 intervals. Penkrot et 

al. (2018) proposed that these particular laminated sediments represent an interval of 

warming and increased productivity during an otherwise glacially dominated time period.  

Intervals with higher magnetic concentration, lower coercivity, and finer magnetic 

grain size occur in the early parts of the Alaskan LGM, at approx. 38,400 cal yr BP (74.2-

73.0 m CCSF-A), 34,900 cal yr BP (66.9-66.8 m CCSF-A), 33,500 cal yr BP (60.4-58.6 m 

CCSF-A), and 30,900 cal yr BP (52.8-51.6 m CCSF-A; Fig. 12). These intervals coincide 

with clast-poor diamict lithologies (Penkrot et al., 2018) and may reflect small-scale 

oscillations in the ice front, giving rise to temporal changes in sediment transport and/or 

sediment provenance. The two youngest intervals at 33,500 and 30,900 cal yr BP are 

characterized by notably finer magnetic grain sizes that may be associated with increased 

input of especially fine-grained material, perhaps from increased meltwater input or a 

different sediment source (Fig. 12). Previous studies of coastal Alaska sediments have shown 

distinct variations in magnetic properties depending on provenance (Cowan et al., 2006; 

Carlson et al., 2017), indicating that the magnetic variations observed throughout U1419 may 

be linked to changes in sediment source, although defining these different provenances is not 

possible based solely on the data presented here.  
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Larger amplitude variations in magnetic parameters are observed between ~25,000 

and 16,000 cal yr BP. Intervals of finer magnetic grain sizes, higher coercivity and low 

magnetic susceptibility occur between 24,700 and 23,600 cal yr BP (31.0-28.8 m CCSF-A), 

between 20,900 and 20,000 cal yr BP (22.6-20.0 m CCSF-A), and between 18,000 and 

16,800 (16.6-7.5 m CCSF-A; Fig. 12). The two older intervals correlate with lithologies of 

clast-poor diamict with some layers of sandy diamict, whereas the younger is characterized 

by clast-poor and stratified diamict (Penkrot et al., 2018). The increased variability in 

magnetic properties and lithology from ~25,000 cal yr BP may reflect a number of advance 

and retreat phases that could have influenced the provenance of the magnetic material, 

indicating complex ice-front dynamics and sedimentation during a time previously described 

as the LGM in southern Alaska (Mann & Peteet, 1994; Mann & Hamilton, 1994). An 

especially pronounced event of low susceptibility and high coercivity occurs at 18,000 cal yr 

BP (16.6-15.9 m CCSF-A; Fig. 12). With no significant changes observed in density or 

lithology (cf. Penkrot et al., 2018) at this particular interval, it could reflect a short-lived pulse 

of sediment from a different source region characterized by lower-susceptibility material. 

Directly following this susceptibility low, from 18,000 to 16,800 cal yr BP (15.9-7.5 m 

CCSF-A), finer magnetic grain size along with the highest sedimentation rates (mean of 500 

± 264 cm/kyr; Walczak et al., in prep) are interpreted to represent initial disintegration of the 

NCIS’ southern margin in the GoA followed by deglaciation and retreat of the ice margin as 

outlined by Davies et al. (2011) and Walczak et al. (2017). 

 

The Gulf of Alaska record in a regional and global context 

Environmental fluctuations in the North Pacific Ocean have been linked to 

corresponding events both in the North Atlantic as well as in the Southern Ocean suggesting 

that there may be a combined influence of the two on the North Pacific, with Southern Ocean 

signals superimposed on North Atlantic atmospheric teleconnections (e.g. Mix et al., 1999; 

Davies et al., 2011). Using the U1419 magnetic susceptibility record as a proxy for glacial 
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activity (high kLF, high activity, and low kLF, low activity) allows a tentative comparison of 

the GoA record to Greenland (NGRIP Community Members, 2004) and Antarctic (EPICA 

Community Members, 2010) δ18O ice core records (Fig. 13), and, thus, an assessment of 

relative timing in glacial and environmental events across the Antarctic, North Atlantic and 

North Pacific.  

Facies 3 may be associated with the glacial termination of the pre-LGM shelf-wide 

glacial advance as recorded in GoA seismic studies (Elmore et al., 2013; Montelli et a., 2017). 

These advances are thought to have been at least as extensive as the LGM, reaching the shelf 

edge and with ice flow not only constrained to the submarine troughs, but possibly extending 

laterally resulting in a wider ice cover (Elmore et al., 2013), most likely also affecting the 

western portion of the Bering/Malaspina shelf close to the U1419 drill Site. Elsewhere in 

Alaska, the penultimate glaciation is defined by the geomorphological evidence existing 

beyond the well-defined and well-dated LGM limits. Age determination and regional 

correlation of the penultimate glaciation is difficult, and presumed ages vary from MIS 6 to 

MIS 4 (Kaufman et al., 2011). In the northern and western Alaska Range, 10Be dates of 

several moraines indicate moraine stabilization (glacial retreat) around 60-50 ka, at the end 

of MIS 4 or beginning of MIS3 (Briner et al., 2005; Briner & Kaufman, 2008; Dortch et al., 

2010; Matmon et al., 2010).  

The alternating environmental conditions subsequent to facies 3 observed in the GoA 

correspond to early and mid- MIS3 and may be cautiously correlated to similar δ18O 

fluctuations observed in the NGRIP Greenland ice core record. The U1419 age model 

(Walczak et al., in prep) is very well-constrained from 40,000 cal yr BP, allowing a 

comparison of the GoA record to the Antarctic and Greenland δ18O ice core records (Fig. 

13). Although a one-to-one relationship is not obvious, the shift toward larger-amplitude 

variations in magnetic properties in the GoA at ~25,000 cal yr BP coincides with the warming 

observed in the Greenland and Antarctic ice core records, from approx. 24-23 ka. 
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Figure 13: Comparison of Antarctic (EDML in blue; EPICA Community Members, 2010) 

and Greenland (NGRIP in green; NGRIP Community Members, 2004) oxygen isotope 

records on the AICC2012 chronology (Veres et al., 2013) and the U1419 magnetic 

susceptibility record (black). Note the reversed Y-axes on the oxygen isotope records. 

Interpretation of the U1419 record are marked in colors as in Fig. 12. Heinrich stadials (HS) 

for reference are marked on the oxygen isotope records in grey. 
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1.8 CONCLUSIONS 

The final stages/retreat of a pre-LGM glaciation may have been recorded at the base of 

the U1419 spliced record, as facies 3. MIS3 in the GoA was characterized by fluctuating 

environmental conditions between warmer and more productive environments, similar to that 

observed in the Bølling-Allerød and the early Holocene (facies 1), and more glacially 

influenced environments similar to that of the Younger Dryas (facies 2).  The build-up to full 

glacial conditions commenced at approx. 42,700 cal yr BP with glacier-proximal conditions 

prevailing at the core Site from 41,800 cal yr BP. This Alaskan LGM lasted until 14,700 cal 

yr BP. It was characterized by high sedimentation rates of up to 835 cm/kyr, and smaller-

scale fluctuations in the ice front extent, sedimentary dynamics, and environmental 

conditions prior to ~25,000 cal yr BP. More complex ice front dynamics of repeated advance- 

and retreat phases, perhaps with multiple lithogenic sediment sources, dominated the last half 

of the Alaskan LGM after ~25,000 cal yr BP. Deglaciation may have started around 18,000 

cal yr BP and was sustained from approx. 16,800 cal yr BP. 
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CHAPTER 2 

A HIGH-RESOLUTION LATE QUATERNARY INCLINATION RECORD 

FROM IODP EXPEDITION 341 DRILL SITE U1419 IN THE GULF OF 

ALASKA 

 

2.1 SUMMARY OF CHAPTER 2 

In the second chapter, the U1419 inclination record is presented. The study suggests 

that the inclination record between 15,000 and 30,000 cal yr BP is the most robust, reflecting 

regional scale paleomagnetic secular variations. This chapter also presents a preliminary age 

model for Exp. 341 Site U1418. 

This chapter, titled “A high-resolution late Quaternary inclination record from IODP 

Expedition 341 drill Site U1419 in the Gulf of Alaska” was written by me under the guidance 

of my supervisor, Guillaume St-Onge, and my co-supervisors Joe Stoner (Oregon State 

University) and Matthias Forwick (The Arctic University of Norway) who revised several 

versions of this paper. As first author, I performed the analyses, treated and interpreted the 

data, and wrote the paper. My three supervisors contributed greatly to the realization of this 

paper through assistance in the lab, help with interpreting data, and comments on the text. 

Maureen Walczak (Oregon State University) contributed with the U1419 age model and 

associated information. With the help of Stewart Fallon (Australian National University), she 

also performed the radiocarbon analyses and constructed the U1418 age model. Brendan 

Reilly (Oregon State University) constructed the U1418 and U1419 shipboard stacks used in 

this study. Guillaume St-Onge, Joe Stoner, Matthias Forwick, and Maureen Walczak were 

all part of the shipboard science party during IODP Expedition 341.  
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ABSTRACT 

International Ocean Drilling Program (IODP) Expedition 341 in the Gulf of Alaska 

drilled the continental slope at Site U1419, recovering an exceptionally expanded 

sedimentary record covering the late Pleistocene and Holocene. The natural and laboratory-

induced magnetic remanences of u-channels from the 112-meter-long spliced record were 

studied using the stepwise AF demagnetization procedure. Along with magnetic 

susceptibility, these parameters provide information about the magnetic properties of the 

sediment; including magnetic mineralogy, concentration, and grain size. Hysteresis loops 

were obtained on 95 discrete samples to assess their magnetic domain state and coercivity, 

and IRM acquisition curves were obtained for nine discrete samples for additional 

information on the magnetic mineralogy of the sediment. Due to the influence of magnetic 

mineralogy, lithology, depositional and post-depositional processes, the record is not suitable 

for paleointensity studies. However, these factors seem to have influenced the inclination 

record only to a minor extent and, with removal of intervals influenced by the environmental 

signal and by sampling and/or coring deformation, we are left with a robust geomagnetic 

signal. We argue that the inclination as measured after the 20 mT demagnetization step alone 

is the most accurate inclination estimate. The high resolution of the record (sedimentation 

rates in some intervals < 800 cm/yr) in combination with a detailed age model (Walczak et 

al., in prep) provides a unique opportunity to resolve centennial to millennial scale 

paleomagnetic secular variations (PSV). Comparing the U1419 inclination record to other 

Gulf of Alaska and western North American records shows several inclination features in 

common. Especially the similarity to IODP Exp. 341 Site U1418 demonstrates that a regional 

geomagnetic signal has been captured at Site U1419, and that the interval between 15,000 

and 30,000 cal yr BP is the most robust part of the record. In addition to the U1419 inclination 

record, this paper presents the preliminary age model for IODP Exp. 341 Surveyor Fan Site 

U1418. The age model is based on 23 radiocarbon dates as well as 18 magnetic susceptibility-

based tie-points to Gulf of Alaska core EW0408-87JC (Praetorius et al., 2015). The age 

model indicates that Site U1418 is similar temporal resolution to that of Site U1419, with 

sedimentation rates exceeding 1000 cm/kyr in some intervals. Together, the U1419 
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inclination record and U1418 age model offer a new regional correlation tools to this 

generally under-sampled region of the world.  

 

Keywords: Inclination, paleomagnetic secular variation, North Pacific, Alaska, late 

Pleistocene 

 

2.3 INTRODUCTION 

Paleomagnetic secular variations (PSV) of the Earth’s magnetic field recorded in 

geological archives provide regional expressions of dynamo activity (e.g., Lund, 2018; Korte 

et al., 2019a), while the variations observed provide a pattern that can be used for regional 

correlation and stratigraphic dating at millennial (Reilly et al., 2018) and in some cases 

centennial resolution (e.g., Lund, 1996; Stoner et al., 2007; Ólafsdóttir et al., 2013). 

Obtaining high-resolution PSV records with robust, independent age control is therefore 

essential to improve our understanding of geomagnetic change and temporally calibrating 

stratigraphic correlations. 

The continuity of marine records makes them especially useful for paleomagnetic 

studies. Records from previously and/or presently glaciated margins are of particular interest 

as sedimentation rates are often high, thereby preserving geomagnetic change at high 

temporal resolution. Furthermore, the supply of fine-grained terrigenous material to glacial 

proximal core sites facilitate the generation of high-quality paleomagnetic records with 

mineral magnetic properties suitable for paleomagnetic studies (e.g., Tauxe, 1993).  Being 

surrounded by present and previous ice sheets, the North Atlantic region is well represented 

when it comes to paleomagnetic studies with many high-quality records preserved (e.g., 

Channell, 1999; Stoner et al., 2007; 2013; Lund et al., 2017c). However, to improve our 

understanding of geomagnetic field dynamics that may be regional in scale, independently 

dated records from many other parts of the world are needed. 
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Paleomagnetic directional records from the Pacific sector are mainly obtained from the 

equatorial and western Pacific Ocean (e.g., Richter et al., 2006; Lund et al., 2017b) in the 

Pleistocene, and from the Arctic Alaskan margin (e.g., Lisé-Pronovost et al., 2009; Lund et 

al., 2016; Deschamps et al., 2017) and North American lakes (e.g., Verosub et al., 1986; Peng 

& King, 1992; Geiss & Banerjee, 2003) in the Holocene, with recent records building on 

prior data continuing these into the Pleistocene (Lund et al., 2017a; Reilly et al., 2018). In 

the Gulf of Alaska, one previous paleomagnetic study has been carried out on core EW0408-

79JC and U1419 site survey core EW0408-85JC (Walczak et al., 2017). These two sites 

yielded a 17,400-year record of PSV and, together with other northeast Pacific records, 

formed the basis for the NEPSIAS inclination anomaly stack. Comparisons of the NEPSIAS 

stack to northern North Atlantic records demonstrated important connections between these 

directional records that offers important insights to the North American and 

Euro/Mediterranean flux lobes, as well as opening up for PSV correlations over longer 

distances (Walczak et al., 2017).  In this study, we build upon the PSV record of Walczak et 

al. (2017) and extend the inclination record back to ~45,000 cal yr BP. We demonstrate that 

even in complex environments, the high lithogenic flux and accumulation rates associated 

with glacial proximal environments, when combined with robust high-resolution 

chronological control, can provide geomagnetic insights and stratigraphic tuning targets 

rarely obtained. 

 

2.4 METHODS 

Coring and u-channel sampling 

The International Ocean Drilling Program (IODP) Expedition 341 took place in 2013 

in the Gulf of Alaska, onboard the JOIDES Resolution. Site U1419 (59°31.9297′N; 

144°8.0282′W) consists of five holes that were drilled on the upper continental slope between 

the mouths of the Kayak and Bering cross-shelf troughs (Fig. 1), at a water depth of 687 
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meters. A continuous record (splice) consisting mostly of sections from holes D and E (and 

to some extent from holes A, B and C), was established based on shipboard measurements 

of sedimentary physical properties (e.g., magnetic susceptibility, color, density, etc.). The 

composite depth below seafloor, or CCSF-A, depth scale is used in this paper and assumes 

that the mudline in the first core section of one hole (U1419B-1H-1A) is the sediment/water 

interface. This depth scale allows direct comparison with other measurements made at 1-cm 

intervals but is not corrected for sediment expansion during coring as in CCSF-B (c.f. Jaeger 

et al., 2014). The splice of Site U1419 comprises the sediment between 0 m CCSF-A 

(mudline) and 112.1 m CCSF-A. 

U-channels were sampled from the presumably pristine center of the archive halves of 

split cores using 2x2 cm cross-section plastic liners with lengths of up to 1.5 meter at the 

IODP Gulf Coast Repository at Texas A&M University in College Station, Texas, USA. 

Highly compacted sediment and an abundance of clasts prevented the sampling of the 

intervals between 86.08–89.3 m CCSF-A, 90.2–91.6 m CCSF-A, as well as the very bottom 

of the splice from 111.4–112.1 m CCSF-A. 

 

Physical properties 

All u-channels were scanned using a Siemens SOMATOM Definition AS+ 128 CT 

scanner at Institut national de la recherche scientifique, Centre Eau Terre Environnement 

(INRS-ETE) in Québec City, Canada, for information on the sediment’s physical properties 

(density) and internal structures. High-resolution (sub-millimeter) images were obtained for 

each 0.4 mm, with 0.2 mm overlap from one image to another. For each image, CT-number 

profiles reflecting density changes within the sediment were derived (cf. Fortin et al., 2013).   
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Figure 14: Overview of the Gulf of Alaska with IODP Expedition 341 drill Sites indicated. 

Site U1419 is indicated by a yellow star. This also marks the location of U1419 of site survey 

core EW0408-85JC mentioned in the text. The Surveyor Fan Site U1418 is indicated by a 

red triangle. This also marks the location of core EW0408-87JC mentioned in the text. 

 

Continuous magnetic measurements 

Remanence measurements were performed using 2G EnterprisesTM model 755-

1.65UC superconducting rock magnetometer at the Paleomagnetism and Marine Geology 

Laboratory at Institut des sciences de la mer de Rimouski (ISMER) in Rimouski, Canada, 

and at the Paleo-and Environmental Magnetism Laboratory at Oregon State University 

(OSU), USA. Stepwise alternating field (AF) demagnetization was used to study the natural 

remanent magnetization (NRM) and laboratory remanent magnetizations, all at 1 cm 

intervals. All archive core halves were measured and demagnetized up to 20 mT onboard the 

JOIDES Resolution as part of routine shipboard measurements (Jaeger et al., 2014). Any 

difference between the 0 mT and 20 mT steps seen in the u-channel measurements at ISMER 
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and OSU therefore correspond to a viscous remanent magnetization acquired by the sediment 

after its initial shipboard measurement. All u-channels were subsequently demagnetized 

using peak AF incremented at 5 mT steps from 20 to 70 mT and 10 mT steps from 70 to 100 

mT. The anhysteretic remanent magnetization (ARM) was obtained by implementing a DC 

biasing field (0.05 mT) on the alternating field (100 mT), and the isothermal remanent 

magnetization (IRM) and saturated isothermal remanent magnetization (SIRM) were induced 

by using a 2G pulse magnetizer with intensities of 300 and 950 mT, respectively. For ARM 

and IRM, the u-channels were measured and subsequently demagnetized using peak AF 

fields of 10, 20, 25, 30, 35, 40, 45, 50 and 60 mT, whereas peak AF fields of 0, 10, 30, and 

50 mT were used for SIRM. The magnetometers have response functions of 7-8 cm (Oda & 

Xuan, 2014), therefore, the first and last 5 cm of each u-channel were excluded to reduce the 

edge effect associated with section breaks (Weeks et al., 1993). Due to lack of azimuthal 

orientation during coring, declinations were rotated to a core mean of zero and then 

additionally rotated to align across the spliced core sections  

ARM susceptibility (kARM) was obtained by normalizing the ARM by the biasing field 

and is indicative of the concentration of ferrimagnetic material in the sample, while being 

biased to smaller magnetic grain sizes (Banerjee et al., 1981). The median destructive field 

(MDF) is based on the AF demagnetization data and is defined as the AF required to reduce 

the initial remanent magnetization by half. Due to the initial shipboard NRM measurements 

and demagnetization (up to 20 mT), the calculation of MDFNRM is not straightforward, 

therefore the MDF of ARM (MDFARM) is used instead as an indicator of coercivity of the 

remanence carriers. 

Magnetic susceptibility is the magnetic response of a material to an applied magnetic 

field and is used as an indication of the concentration of magnetic (or magnetizable) material 

within a sample (Hatfield and Stoner, 2013). Analyses of the low-field magnetic 

susceptibility (kLF) were performed at the Paleo-and Environmental Magnetism Laboratory 

at Oregon State University (OSU), USA. Each u-channel was measured three times using a 

three second measurement period at increments of 1 cm with a Bartington MS2 u-channel 
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loop sensor on a purpose-built automated tracking system. Similar results were obtained for 

each measurement of each u-channel, and the mean of the three iterations is reported here. 

 

Discrete magnetic measurements 

The Princeton Measurement Corporation MicroMag 2900 alternating gradient force 

magnetometer (AGM) at ISMER was used to obtain information on the sediment’s hysteresis 

properties; coercivity (Hc), coercivity of remanence (Hcr), saturation magnetization (Ms), 

and saturation remanence (Mr), all of which are indicators of magnetic mineralogy and grain 

size (e.g. Day et al., 1977). Analyses were performed on small discrete samples collected 

from the base of each u-channel (approx. every 150 cm). The para- and diamagnetic 

contribution in the samples were corrected for using the MicroMag AGM software. IRM 

acquisition curves were obtained from ten selected samples, using a final field of 1 T with 

measurement increments of 25 mT. 

 

Age models 

The U1419 age model (Walczak et al, in prep) is based on radiocarbon dates from Site 

U1419 and gamma-ray attenuation bulk density (GRA) correlations to the independently 

dated U1419 site survey core EW0408-85JC (cf. Fig. 14) within the Holocene (Davies-

Walczak et al., 2014). BChron (Haslett & Parnell, 2008) was used to generate an age model 

based on all planktic foraminiferal dates, with ΔR values set to reflect the paired benthic 

radiocarbon data available for this Site. A simple one-dimensional vertical circulation box 

model, assuming modern mixing (calculated as diffusion) with an input watermass age at 

800-1000 m depth informed by the benthic ages, was used to estimate changes in surface 

ocean reservoir age. These results were then used to generate a time transient site-specific 

estimate of the ΔR value, averaging 330 ± 260 years over the past ~45,000 cal yr BP. All 
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dates were converted to calendar ages using the MARINE 13 calibration curve (Reimer et 

al., 2013). 

Sediment samples from Site U1418 were sieved at 150 µm and picked for benthic and 

planktonic foraminifera, with care taken to avoid infaunal benthic species (as per methods 

reported for U1419 site survey core EW0408-85JC in Davies-Walczak et al., 2014).  

Radiocarbon analyses were performed at Australian National University (ANU) at the Single 

Stage Accelerator Mass Spectrometry (SSAMS) Lab in the Research School of Earth 

Sciences (Fallon et al., 2010). Instrument reproducibility over the course of the project was 

tracked via the analysis of 32 unleached aliquots of the 18,200 14C years TIRI/FIRI turbidite 

standard (Guilderson et al., 2003); individual dates averaged 18,210 ± 50 14C years (1-σ)  and 

ranged from 18,110 to 18,300 14C years with individual reported errors of between 45-70 14C 

years. The Bayesian age model for U1418 was generated via an evaluation of all available 

planktic foraminiferal dates (23) and magnetic susceptibility-based tie-points to core 

EW0408-87JC (cf. Fig. 14; Table 3; Praetorius et al., 2015) in the age modeling program 

BChron (Haslett & Parnell, 2008). Ages were calibrated using the MARINE 13 calibration 

curve (Reimer et al., 2013) and a ΔR of 470 ± 80, encompassing the range of regional modern 

observations (McNeely et al., 2006). 

 

Table 3: Radiocarbon dates from Site U1418 and EW0408-87JC 

Site Sample name 

Mean 

depth 

CCSF-A 

(m) 

Age 14C 

(years) 

Age 14C 

error 

σ1 

Calibrated 

age  

(cal yr BP) 

Calibrated 

age error 

σ1 

EW0408-87JC EW0408_87JC_38-40P 0.29 1640 15 704 16 

EW0408-87JC EW0408_87JC_207-210P 1.60 8520 20 8505 28 

EW0408-87JC EW0408_87JC_244-246P 1.91 10715 20 11221 14 

EW0408-87JC EW0408_87JC_249-251P 1.94 10740 40 11244 34.5 

EW0408-87JC EW0408_87JC_254-256P 1.96 10975 30 11734 73.5 

EW0408-87JC EW0408_87JC_266-268P 2.11 11090 25 11952 43 

EW0408-87JC EW0408_87JC_280-282P 2.28 11695 30 12695 20.5 
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EW0408-87JC EW0408_87JC_300-302P 2.40 12460 40 13427 33.5 

EW0408-87JC EW0408_87JC_328-330P 2.65 13170 40 14195 54.5 

EW0408-87JC EW0408_87JC_340-342P 2.74 13330 45 14595 154.5 

EW0408-87JC EW0408_87JC_380-382P 3.07 13830 30 15475 74 

U1418 U1418C_1H3_16-20P 3.18 13923 79 15626 137 

EW0408-87JC EW0408_87JC_419-422P 3.31 14290 40 16145 50 

EW0408-87JC EW0408_87JC_458-462P 3.61 14560 70 16499 110.08 

EW0408-87JC EW0408_87JC_490-494P 3.86 14840 70 16952 105.5 

EW0408-87JC EW0408_87JC_539-542P 4.41 14930 60 17085 82 

EW0408-87JC EW0408_87JC_918-922P 8.09 15060 45 17272 74 

U1418 U1418D_2H3_16-20P 8.16 15167 49 17424 63.5 

EW0408-87JC EW0408_87JC_1000-1004P 9.15 15020 50 17212 82 

U1418 U1418C_2H3_116-120P 14.17 15180 118 17422 154.5 

EW0408-87JC EW0408_87JC_1447-1450 16.14 15445 40 17753 57.5 

U1418 U1418C_2H5_16-20P 16.17 15416 98 17718 114 

U1418 U1418D_3H3_6-10P 18.30 15440 79 17745 96 

U1418 U1418D_3H5_96-100P 22.20 15454 71 17760 86 

U1418 U1418C_3H5_46-50P 26.14 15787 51 18122 70.5 

U1418 U1418D_4H2_86-90P 28.15 15826 51 18172 91.5 

U1418 U1418D_4H5_36-40P 32.153 16470 53 18841 43.5 

U1418 U1418C_4H3_96-100P 34.193 16565 53 18922 47 

U1418 U1418D_5H2_26-30P 38.145 17790 59 20411 73.5 

U1418 U1418D_5H4_145-148P 42.145 18455 63 21244 97.5 

U1418 U1418D_5H6_26-30P 44.145 18804 117 21715 137 

U1418 U1418D_6H3_46-50P 50.201 19923 146 22932.5 188.66 

U1418 U1418C_6H4_86-90P 56.15 22092 91 25577 87.5 

U1418 U1418D_9H3_86-90P 80.192 28323 190 31282 102 

U1418 U1418E_2H2_71-75P 90.162 34517 402 37959 573 

U1418 U1418E_2H3_120-124P 92.162 37203 536 40914 514.08 

U1418 U1418E_2H5_21-25P 94.162 42871 1073 45351 959.08 

U1418 U1418A_11H5_76-80P 108.226 53278 4059 55670 4055.9 

U1418 U1418C_15H1_62-66P 110.174 51253 3114 53688.5 3096.08 

U1418 U1418C_17H1_146-150P 122.223 48036 2062 50422 2058.24 

U1418 U1418D_14H5_106-110P 138.224 50268 2740 52606 2691 
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2.5 RESULTS 

Chronostratigraphy 

The age model for Site U1419 (Walczak et al., in prep) puts the base of the splice record 

at ~54,000 cal yr BP. When averaged over 500 years, sedimentation rates at this Site vary 

between 5 and 835 cm/kyr. The lowest rates are observed in the Holocene and deglacial 

portion of the record, after 16,500 cal yr BP, with a mean of 36.6 ± 25.6 cm/kyr. Prior to 

~16,000 cal yr BP, sedimentation rates vary between 43.5 and 835 cm/kyr with a mean of 

210 ± 135 cm/kyr. The highest rates (835 cm/kyr) are observed between 18,000 and 17,500 

cal yr BP (Walczak et al., in prep).  

In the U1418 age model, six dates older than ~40,000 cal yr BP exist and these are 

somewhat conjectural. Two dates from 90.2 and 92.2 m CCSF-A give ages of 37,960 ± 573 

and 40,910 ± 514 cal yr BP, respectively. From this, the age model puts 40,000 cal yr BP at 

91.5 m CCSF-A. Due to the uncertainties associated with dates > 40,000 cal yr BP, 

sedimentation rates were calculated for the age model below 40,000 cal yr BP only. The 

sedimentation rates were estimated assuming constant sedimentation between age 

constraints. For the interval between 20,000 and 11,000 cal yr BP (37 to 1.9 m CCSF-A), 

sedimentation rates were calculated between U1418 radiocarbon dates and a few selected 

EW0408-87JC tie-points only due to several overlapping tie-points and dates (cf. Fig. 15). 

Sedimentation rates at Site U1418 vary between 15 and 4179 cm/kyr, with a drastic shift in 

rates occurring at ~17,000 cal yr BP. Prior to 17,000 cal yr BP, sedimentation rates vary 

between 67 and 4179 cm/kyr with a mean of 1132 ± 1372 cm/kyr. The highest rates are 

observed between 18,000 and 17,000 cal yr BP. After 17,000 cal yr BP mean sedimentation 

rates drop to a mean of 31 ± 14 cm/kyr.   
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Figure 15: Left: U1419 age model (Walczak et al., in prep.) and sedimentation rates. Red 

circles indicate GRA tie-points to core EW0408-85JC and TC whereas blue circles are 

calibrated ages from Site U1419. Right: U1418 age model with sedimentation rates for the 

past 40,000 cal yr BP. Red circles indicate magnetic susceptibility tie-points to core EW0408-

87JC (Praetorius et al., 2015) and blue circles indicate calibrated ages from U1418. Note the 

difference in Y axes, both for depth and sedimentation rates. 

 

Lithology 

Sediments at Site U1419 are dominated by their proximity to a temperate tidewater 

glacial system, with clast-poor diamict being the most commonly observed lithofacies 

(Jaeger et al., 2014; Penkrot et al., 2018). In contrast, post glacial sediment in the upper 6.3 

m CCSF-A of the splice are characterized by lower density (800-1100 HU) massive muds 

with two discrete intervals of laminated and sub-laminated mud without clasts (Walczak et 

al., 2017; Velle et al., in prep). The remainder of the splice is characterized by variations of 

the diamict lithofacies, including clast-poor to clast-rich diamict, sandy diamict, and stratified 
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diamict (Penkrot et al., 2018) which are all generally associated with higher densities (1100-

1700 HU). A few intervals of lower-density (1100-1200 HU) stratified or laminated muds 

with few clasts are observed at 76.6-75.7, 71.2-70.7, and 42.9-42.6 m CCSF-A (Velle et al., 

in prep), likely reflecting more pelagic depositional conditions. 

 

Magnetic remanence and directions 

NRM, ARM, and IRM all show decreasing intensities with depth.  The highest NRM 

intensities after 20 mT AF demagnetization are found in the upper 4 m CCSF-A, 

corresponding to the Holocene (Walczak et al., 2017), with mean values of ~ 0.04 A/m ± 

0.01 A/m. Significant variability in NRM intensities are observed below, with the lowest 

values of < 4 x 10-4 A/m between 4.0 - 6.3 m, ~0.002 A/m between 15.9 - 16.6 m, and < 4 x 

10-5 A/m between 97 - 109.2 m CCSF-A (Fig. 16). The overall trend of reduced intensity 

with depth is illustrated by NRM intensities averaged over 20 m intervals, that decrease from 

0.018 ± 0.014 A/m for the 0 to 20 m interval to 0.004 ± 0.003 A/m from 60 to 80 m CCSF-

A interval.   

As noted above, the laboratory remanent magnetizations show a similar trend with high 

intensities in the upper 4 m CCSF-A; with values of 0.069 ± 0.018 A/m for ARM, 4.42 ± 

0.952 A/m for IRM, and 4.43 ± 0.949 A/m for SIRM (because of the similarities, we discuss 

them as IRM below). IRM intensities remain generally high through the measured sequence 

with mean values of 4.34 ± 1.34 A/m between 6.3 and 92.5 m CCSF-A. Much lower values 

(mean of 1.5 ± 0.02 A/m) are found from 92.5 to 109 m CCSF-A with a return to higher 

values of ~5 A/m at the base (between 109 and 111 m CCSF-A; Fig. 16). In contrast to kLF 

and IRM, ARM intensities, like NRM intensities, decrease with depth from a mean of 0.04 

± 0.02 A/m from 0 to 20 m to a mean of 0.02 ± 0.007 A/m from 60 to 80 m CCSF-A. Intervals 

with distinct weak ARM (0.007-0.01 A/m), and IRM and SIRM (0.1-1.0 A/m) are observed 

between 4.0 and 6.3 m CCSF-A, 15.9 and 16.6 m CCSF-A, and between 97 and 109 m CCSF-

A (Fig. 16).  
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Figure 16: U1419 natural remanent magnetization (NRM) with all AF demagnetization steps 

with the 20 mT demagnetization step highlighted in red as it is described in more detail in 

the text. Note that the NRM is plotted on a log scale. Laboratory remanences (ARM, IRM, 

and SIRM) as measured before demagnetization, and the maximum angular deviation (MAD) 

values for the entire range of demagnetization steps. 

 

Vector end-point diagrams (Zijderveld plots; Zijderveld, 1967; Fig. 17) document 

variably well resolved magnetizations that are in general best defined when using the lowest 

demagnetization steps.  Principle component analysis, following the approach outlined by 

Kirshvink (1980), allow calculation of component magnetizations over various ranges of 

demagnetization steps while calculating the goodness of fit relative to a straight line using a 
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statistic know as maximum angular deviation values (MAD; e.g., Khokholov and Hulot, 

2016). The upper ~ 5 m, corresponding to the Holocene, are associated with MAD values < 

5° whereas higher MAD values of 5-20°are found between 5-6 m CCSF-A, corresponding to 

the Bølling-Allerød (Davies et al., 2011). Relatively low MAD values of 5-10° are found to 

a depth of 15 m CCSF-A, with MAD values variable (2.2-45°) and increasing with depth. 

Lower values are generally associated with higher remanence intensities. Using various 

subsets of demagnetization steps, Figure 18 shows that MAD values are reduced using ranges 

restricted to the lower coercivity steps, with little changes in inclination. MAD values based 

on low coercivity steps (20-40 mT) are mostly < 10° above 30 m CCSF-A, varying around 

10° down to 70 m CCSF-A, and > 10° from 70 m CCSF-A to the base of the splice. MAD 

values are lowest (mean of 15.6° ± 10°) when using the lowest coercivity 20-40 mT interval, 

compared to those derived from a broader range or when using higher coercivity AF 

demagnetization steps. MAD values increase as intensities decrease, both down core and at 

the meter level, suggesting that higher AF demagnetization steps are adding noise rather than 

signal to our directional reconstructions. This is consistent with a mixed magnetic 

assemblage (see below) where the quality magnetization is dominantly held by the low 

coercivity ferrimagnetic component that reduces in concentration with depth, a classic signal 

for progressive reductive diagenesis (Stoner et al., 2003; Rowan et al., 2009; Walczak et al., 

2017). This is supported by shipboard sulfate that decline to near zero by 23 m CCSF-A 

(Jaeger et al., 2014). Therefore, the NRM directions captured from lowest coercivity 

demagnetization steps are likely to be the most reliable (Fig. 18).  

 

 

 

Figure 17 (next page): Vector end-point diagrams (Zijderveld, 1967) from four 

representative intervals of Site U1419 are displayed in top panels. AF demagnetization steps 

in mT are indicated in grey in panel A. Open circles represent projections on the vertical 

plane, and closed circles the horizontal plane. Corresponding demagnetization plots are 

displayed below. 
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Component inclinations (Fig. 18) captured from various demagnetization step intervals 

and inclination measured after the 20 mT AF demagnetization step vary around the expected 

geocentric axial dipole (GAD = 73.6°) inclination for the site latitude. Large-scale inclination 

patterns are similar (Fig. 18) and the most prominent features can be recognized across the 

different steps used for PCA analysis. For example, steep inclinations at 20 and 32 m CCSFA, 

and the interval of shallow variability between 75 and 85 m CCSF-A. Component 

inclinations calculated from broader and/or higher ranges of AF demagnetization steps 

display more variability, as well as an increased occurrence and amplitude of shallow 

inclination intervals compared to that observed when measured after the 20 mT 

demagnetization step alone. The mean of the 20 mT inclination (66.4° ± 18°) is closer to 

GAD than the mean values of the component inclinations (means between 59° and 63°). The 

largest differences between the 20 mT and PCA inclinations occur during shallow inclination 

intervals that often coincide with highest MAD values and low NRM intensities, suggesting 
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that higher AF demagnetization steps are introducing increased noise to the directional 

reconstruction. We, therefore, use the NRM after 20 mT AF demagnetization as our preferred 

directional record from this Site.  

 

 

Figure 18: Selection of PCA ranges for U1419 inclination and MAD values, all with a 40-

point smoothing. The inclination as measured at 20 mT highlighted in red as it is described 

in more detail in the text. 

 

As noted above, the 20 mT inclination is generally GAD-like, with larger amplitude 

variations that include shallow and even negative inclinations more frequently observed 

below 96 m CCSF-A (Fig. 18). An abrupt shift to shallow (0-30°) and negative (-30°) 

inclination is observed between 96.9 and 99.5 m CCSF-A and corresponds to a shift in the 
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splice from one hole to another and general uncertainty in whether a continuous record was 

recovered (Jaeger et al., 2014). The descriptive information report (DESC; IODP database) 

confirms drilling disturbance at that depth. This is further corroborated by the CT scans and 

it is, therefore, reasonable to assume that these shallow and reversed inclinations result from 

sediment deformation. Similarly, the shallow inclination values (30-50°) at the very top of 

the splice, between 0 and 1.3 m CCSF-A, are excluded due to soft sediment coring and 

sampling deformation, as noted in the u-channel sampling notes. 

 

Magnetic mineralogy, grain size, and concentration 

The magnetic susceptibility of the sediments at Site U1419 varies between 8 x 10-5 SI 

and 65 x 10-5 SI, with generally higher values observed between 6.3 and 92.5 m CCSF-A 

(mean of 46 x 10-5 SI ± 10 x 10-5 SI). Notably lower magnetic susceptibility values between 

8 and 16 x 10-5 SI are observed in the intervals 4-6.3, 93.9-94.7, 97.0-99., 101-103, and 105-

109 m CCSF-A (Fig. 19).  

Aside from in a few intervals, the MDFARM generally varies around 30 mT. The low 

intensity intervals at 109-105, 103-101, 99-97, and 94.7-93.9 m CCSF-A are associated with 

high > 50 mT MDFARM values. Whether these high coercivity phases are masked by high 

ferrimagnetic concentrations in other intervals is not apparent. All but two IRM acquisition 

curves saturated by 300 mT, further indicating a ferrimagnetic, likely (titano-) magnetite 

mineralogy (Fig. 20). Two samples from around 103 m CCSF-A did not saturate at 1 T, 

indicating a higher coercivity magnetic minerals such as e.g., hematite, are present in the low 

intensity and high MDFARM intervals (Fig. 19). 
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Figure 19: U1419 inclination measured at 20 mT with the GAD latitude (73.6°) indicated in 

red; rotated declination as measured at 20 mT, magnetic susceptibility (kLF), ARM 

susceptibility (kARM), and MDF of ARM. Details from CT images displaying characteristic 

lithofacies are shown on the right. Red asterisks mark intervals that are disregarded due to 

disturbance either during drilling or u-channel sampling. 

 

Hysteresis parameters are consistent with a mixture of magnetic grain sizes that fall 

within the pseudo-single domain (PSD) to multi-domain (MD) regions of a Day et al. (1977) 

plot, parallel to the Dunlop, (2002a, 2002b) magnetite mixing lines (Fig. 20). Higher 

coercivity ratios for any given Mr/Ms than expected for magnetite can be driven many factors 

including distributions of magnetic grain-sizes and mineralogies (Roberts et al., 2018).  

MDFARM (Fig. 19) illustrates down-core variations in coercivity, suggesting that there may 
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be a mixture of magnetic mineralogies. Samples plotting in the MD field are typically found 

below 60 m CCSF-A, but also occur in the low-intensity interval between 4.5 and 6.3 m 

CCSF-A, and at higher intensity intervals at ~27.3 and ~51.4 m CCSF-A. The largest scatter 

in hysteresis data are observed in samples from below 92.5 m CCSF-A. 

 

 

Figure 20: Panel A: Day plot (Day et al., 1977) with theoretical mixing lines from Dunlop 

(2002a, 2002b) of all Site U1419 discrete samples. Panel B: Selected IRM acquisition curves. 

Panel C: Selected hysteresis loops. 
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2.6 DISCUSSION 

Natural remanent magnetization and directional record 

Variable NRM intensities and the quality of magnetization as measured by the MAD 

values at Site U1419 are likely a result of an intricate interplay of lithology, magnetic 

mineralogy, depositional and post-depositional processes (diagenesis).  This is illustrated, for 

example, by the downcore decrease in NRM intensity (Fig. 16) typical of reduction 

diagenesis (Karlin & Levi, 1983). In addition, difficulties in retrieving and sampling coarse-

grained sediments may also have influenced the record. As a result, Site U1419 does not 

fulfill the criteria generally considered necessary to derive reliable relative paleointensity 

records (Tauxe, 1993; Stoner & St-Onge 2007). However, as Site U1419 has an exceptional 

radiocarbon chronology, a rarity for late Pleistocene paleomagnetic records and with 

sedimentation rates high enough to resolve centennial to millennial scale PSV, records of 

directional variability could facilitate a deeper geomagnetic understanding. The lack of 

precise dating often limits our ability for spatial comparison (e.g., Panovska et al., 2018) and 

as a result our understanding of the dynamics involved in geomagnetic change (Walczak et 

al., 2017). 

Intervals of especially low remanence intensity (<0.001 A/m) coincide with intervals 

of low susceptibility, high coercivity as indicated by the MDFARM (Velle et al., in prep), and 

laminated sediment (Penkrot et al., 2018; Fig. 19) that sometimes also coincide with shallow 

inclinations. These intervals are characterized by a reduced influx of lithogenic sediment and 

increased productivity similar to that observed at the site’s location during the Bølling-

Allerød and earliest Holocene (Davies et al., 2011; Walczak et al., 2017; Velle et al., in prep). 

Benthic hypoxia led to non-steady state reduction diagenesis that adversely affected the 

magnetic mineralogy of a few intervals (Walczak et al., 2017), while most of the core 

preserved a reliable paleomagnetic record. In U1419, the most prominent of these intervals 

are associated with large-amplitude variations in magnetic concentration and coercivity from 

92.5-111.5 m CCSF-A where shallow/negative inclinations occur during laminated and 
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stratified sediment intervals (Fig. 19). Sediments between 96 m CCSF-A and the base of the 

splice at 111.5 m CCSF-A, are therefore excluded from further interpretation. According to 

the age model (Walczak et al., in prep), this puts the base of the interpreted sequence at 

approx. 43,200 cal yr BP.  

The presence of magnetite is indicated by hysteresis loops and IRM acquisition curves 

(Tauxe et al., 1996; Fig. 20), while the low coercivity implied by the AF demagnetization of 

the NRM and shown by the MDFARM suggests that (titano-) magnetite is the main remanence 

carrier. It is therefore our contention, that despite a weak NRM due to a low and variable 

concentration of (titano-) magnetite, the preserved remanence provides a reliable inclination 

estimate on millennial timescales. This is further supported by the inclination varying around 

the GAD through the entire record (Fig. 19). We contend that the preservation of 

paleomagnetic information results from ice proximal conditions providing a high 

concentration of fine-grained terrigenous material that buffers the system against diagenetic 

transformation, while resulting in great sedimentation rates exceeding 1 m /kyr, and at times 

8 m/kyr (Walczak et al., in prep). The latter significantly reduces the interference of 

sedimentary-driven noise, commonly millimeter to decimeter in scale, on the recording and 

preservation of paleomagnetic secular variation features that occur on centennial/millennial 

time scales, and at these sedimentation rates extend over meters. Declination, however, is 

more difficult to work with, as these heterogenous sediments can give rise to core barrel 

rotation. While a zero-mean assumption, commonly used to align cores for declination, is 

also problematic when the 9.5 m length of a core may only be a few thousand years. 

Declination is therefore excluded from further interpretation.    

 

Regional comparisons 

The fidelity of the U1419 PSV record can be assessed by comparison, first to the 

shipboard data as this controls for sampling and coring deformation, the latter as the 

shipboard data was stacked. Furthermore, the record was compared to other, independently 
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dated, regional records. Due to the high sedimentation rates and the sedimentary noise in the 

U1419 inclination record, a 40-point smoothing was used on intervals with sedimentation 

rates >80 cm/kyr in order to highlight the overall trend in the record. 

The U1419 shipboard inclination record is based on all recovered sediments after 20 

mT AF demagnetization (Jaeger et al., 2014) that were stacked using a Gaussian weighted 

running mean with full width at half maximum (FWHM) of 10 cm with edge effects and 

noted intervals of coring disturbance removed. Although the shipboard data was measured 

on half core sections that include deformation around the liner (cf. Acton et al., 2002), the 

stacking procedure reduces random noise, while reinforcing the common signal. The u-

channel data collected from the pristine central part of what was deemed to be the best section 

should preserve the cleanest high-resolution record and agreement between the two 

represents an important step in reconstructing the geomagnetic signal. The comparison 

between the U1419 shipboard and u-channel inclinations in Figure 21 illustrates the general 

agreement between the two records. Shallow inclinations in the upper 1.3 m of the u-channel 

record are not observed in the shipboard data reflecting deformation during u-channel 

sampling from the extremely soft and water laden uppermost sediments. Additional intervals 

of shallow inclination below ~70 m CCSF-A may also result from u-channel sampling 

difficulties in sand and/or clasts rich and/or high density lithofacies (Jaeger et al., 2014; 

Penkrot et al., 2018; Velle et al., in prep). Some intervals (86.08–89.3, 90.2–91.6, and 111.4–

112.1 m CCSF-A; Fig. 21) could not be sampled with u-channels due to these issues. 

 

 

Figure 21 (next page): Comparison of U1419 shipboard inclination stack (see description 

in the text) and U1419 u-channel inclination as measured at 20 mT. The expected geocentric 

axial dipole inclination for the site latitude (GAD = 73.6°) is indicated with the grey 

horizontal line. Red asterisks mark intervals that are disregarded due to disturbance either 

during drilling or u-channel sampling. Note that the figure includes the lowermost part of the 

splice (below 96 m CCSF-A) which has been excluded from further comparison. 
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The Holocene and deglacial portion of the U1419 inclination record was compared to 

the shipboard inclination stacks from Sites U1418 (Fig. 14) and U1419, U1419 site survey 

core EW0408-85JC (Walczak et al., 2017), and the Northeast Pacific sedimentary inclination 

anomaly stack (NEPSIAS; Walczak et al., 2017). NEPSIAS is based on lake sediment 

records from Alaska, Oregon, and Hawaii, as well as the Gulf of Alaska (EW0408-85JC). 

The comparison in Figure 22 shows that U1419 inclination features can be correlated to other 

regional records for the deglacial and Holocene, for example, the transition from shallow to 

steeper inclinations at 16,000 to 15,000 cal yr BP (c to b in Fig. 22). Distinctions between 

the records may be attributed to difference in resolution and chronology, especially for the 

more distal Site U1418 which only has a few meters of post-glacial deposits (Jaeger et al., 

2014). Differences between Site U1419 and the site survey core EW0408-85JC may reflect 

lithologic (variable sedimentation rates and processes) and sampling noise in this lower 

accumulation rate part of the record. Lithologic differences between these two sites such as 
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varying thickness of the laminated and sub-laminated intervals have been noted previously 

(Velle et al., in prep). The overall similarity noted in Figure 22 and, especially, with the 

NEPSIAS stack that covers an area of over 30° latitude and longitude (Walczak et al., 2017) 

indicates that Site U1419 captures regional scale PSV during this time interval. 

 

 

Figure 22: Comparison of the U1419 inclination (in black) to U1419 site survey core 

EW0408-85JC (in blue; Walczak et al., 2017), U1418 shipboard data (in purple), and the NE 

Pacific sedimentary inclination anomaly stack (NEPSIAS in red; Walczak et al., 2017). 

Letters are added to facilitate discussion. Note that the upper 1.3 meters of U1419 are 

removed due to sampling deformation (see text) and that u-channel edges are removed. 
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Beyond the past 16,000 years, Site U1419 inclination can be compared to the other 

high-resolution site drilled during Exp 341. Surveyor Fan Site U1418 (Fig. 14; Jaeger et al., 

2014) inclination record is based on stacking of the shipboard derived inclination record of 

all holes drilled using a Gaussian weighted running mean with full width at half maximum 

(FWHM) of 10 cm after edge effects and intervals noted as sediment deformation were 

removed. Long-term sedimentation rates for Site U1418 have been estimated to 81 cm/kyr 

based on the Matuyama-Brunhes reversal (Gulick et al., 2015).  However, radiocarbon dates 

show that late Pleistocene sedimentation rates were much higher (< 4179 cm/kyr; Fig. 15). 

A 5-point smoothing filter was applied to the U1418 data in intervals with sedimentation 

rates > 100 cm/kyr (i.e. after 17,000 cal yr BP). The deeper water depths (3677 m) of this 

Site on the upper Surveyor Fan and the lower organic carbon content may have spared this 

record from the same reductive diagenetic influences as sulfate remains above zero to ~83 m 

CCSF-A, whereas at  Site U1419 this transition happens at ~23 m CCSF-A (Jaeger et al., 

2014). Figure 23 shows that the two records on their own timescales are strikingly similar 

with the smoothed records being almost identical back to 25,000 cal yr BP.  Apparent 

similarities are observed after 25,000 cal yr BP as well, with slight chronological offsets. The 

record is consistent with high-quality Holocene observations suggesting that PSV reflects 1 

to 3 kyr long deviations from a GAD (Thompson, 1973).  To facilitate discussion, prominent 

changes in inclination are denoted with blue letters (Fig. 23). It should be noted that 

transitions from either steep or shallow inclination are often abrupt followed by centennial 

to millennial variations of lower amplitude. Agreement between the records is less on these 

timescales. For example, the steep inclination features f at ~19,700 cal yr BP and k at ~25,000 

cal yr BP are separated by intervals of shallow, low amplitude variability that is reasonably 

consistent across the two records. More discrepancies between U1419 and U1418 are 

observed after 30,000 cal yr BP, reflecting present chronological uncertainties and 

sedimentary and/or sampling induced paleomagnetic noise in these complex ice-proximal 

sedimentary environments, as well as the progressive diagenetic alteration of the (titano-) 

magnetite recorder at Site U1419. Similar PSV features across these records indicate that 
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U1419 has captured a largely reliable and well-dated inclination record for the Gulf of Alaska 

for the last 40 kyr.  

Figure 23: Comparison of the U1419 inclination record (with 40-point smoothing on 

intervals with sedimentation rates > 80 cm/kyr) and Expedition 341 Surveyor Fan Site U1418 

shipboard inclination stack (with 5-point smoothing on intervals with sedimentation rates > 

100 cm/kyr). Both records are plotted on their own individual age models with dates marked 

in blue and red circles (cf. Fig. 15). Inclination features are indicated with letters in blue to 

facilitate discussion; note that letters are continued from Figure 22. 

 

Comparisons of U1419 inclination between 14,000 and 35,000 cal yr BP with the 

independently dated Western North America PSV stack (WNAM17; Reilly et al., 2018; Fig. 

24) relocated to the Gulf of Alaska using a GAD approximation provide a larger regional 

perspective.  The WNAM17 stack is based on PSV data from Fish Lake (Utah, US), Bear 

Lake (Utah/Idaho, US), and Bessette Creak (British Columbia, Canada). The overall pattern 

of the inclination records as well as individual features (e.g., feature f at ~19,700 cal yr BP) 

can be recognized at Site U1419 and in the WNAM17 stack (Fig. 24). Furthermore, the 

gradual transition from shallow to steeper inclinations from g to f and from e to d, as well as 

the more abrupt transition from c to b are recognized in both U1419 and the WNAM17 stack. 
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The similarity between U1419 u-channel inclination with independently dated Site U1418, 

and the WNAM17 stack suggests regional geomagnetic consistency, implying that much of 

the PSV record is driven by large-scale components of the geomagnetic field (Walczak et al., 

2017).  More records will be needed to determine if the differences observed in Figure 24 are 

a result of paleomagnetic/chronological noise or smaller scale geomagnetic signals that differ 

over such a vast region.   

 

Figure 24: Comparison of the Site U1419 inclination record (40-point smoothing on 

intervals with sedimentation rates > 80 cm/kyr) with the Site U1418 shipboard inclination 

stack (with 5-point smoothing on intervals with sedimentation rates > 100 cm/kyr) and the 

Western North America inclination stack WNAM17 (relocated to the Gulf of Alaska using a 

GAD approximation; Reilly, et al., 2018), all on their individual age models. Letters are 

continued from figures 22 and 23 to facilitate discussion. Note that intervals identified as 

disturbed and/or deformed in the U1419 record are removed (cf. Fig. 19) 



106 

 

U1419 inclination record 

After evaluation of the U1419 inclination and comparison with independently dated 

regional records and stacks, the interval between 15,000 and 30,000 cal yr BP resolves a 

robust geomagnetic signal of at least regional importance. Among the most prominent 

features in the U1419 record are abrupt transitions from shallow to steep inclination, o to n, 

m to l, g to f and from steep to shallow inclinations k to j, and f to e (Fig. 23). These are also 

recognized in the U1418 shipboard record (Fig. 23), and m possibly in the WNAM17 stack, 

although those records are of lower resolution and less well resolved (Fig. 24). The transition 

of 22.3° from feature o at 30,980 cal yr BP (53.6 m CCSF-A) to feature n at 52.0 m CCSF-

A occurs over ~290 years. The lowest point of feature m (43.8°) occurs at 41.4 m CCSF-A 

at an age of ~28,000 cal yr BP and the recovery to the steeper feature l (82-83°) occurs over 

1.3 meters, or ~900 years. The abrupt transition from k to j (Fig. 23) occurs at 31.8 m CCSF-

A, at 25,200 cal yr BP where the inclination drops from 83° to 62° over 70 cm or ~480 years. 

The steep feature f is recognized in the Gulf of Alaska records, as well as in the western North 

America stack (Fig. 24). In the U1419 record, the steepest inclination values (84.2°) of 

feature f are observed at 19.6 m CCSF-A at 19,700 cal yr BP. The transition to shallow 

inclinations at e occurs over a period of ~950 years (or 1.1 meters CCSF-A) to the shallowest 

inclination (58.2°) observed at 18.5 m CCSF-A at ~18,750 cal yr BP (Walczak et al., in prep). 

Features m, k, and f are followed by relatively abrupt transitions in inclination in the U1419 

record, with rates of change between 0.03 and 0.07 degrees/year, although we can assume 

that these rates are a minimum due to sedimentary and u-channel smoothing. These rates are 

comparable to those found for non-excursional intervals during the late Pleistocene in 

sediment cores from the western North Atlantic Ocean, of approximately 0.08 degrees/year 

(Lund et al., 2005), suggesting that the GAD field is no more stable in the North Pacific than 

in other locations (McElhinny et al., 1996). These rates are, however, much lower than those 

observed from southwestern US archaeomagnetic data of 0.23 degrees/year associated with 

the last shallow to steep inclination transition ~ 1000 years ago (Hagstrum & Blinman, 2010) 

suggesting that we may still be looking at a low pass filtered geomagnetic signal.  
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Excursions are generally defined by anomalous PSV with deviation of virtual 

geomagnetic pole (VGP) more than 40-45° from axis of rotation (e.g., Merrill, et al., 1998). 

Two well-established excursions exist within the time interval explored in this study; the 

Laschamp excursion at ~41 ka, and the less well constrained Mono Lake excursion (34-30 

ka; e.g., Laj & Channell, 2015; Valet et al., 2008; Lund et al., 2017a, 2017b). Despite the 

increased influence of the environmental signal on some parts of the record in this interval 

(below ~70 m CCSF-A, or 36,400 cal yr BP), the high resolution of the Sites would be 

expected to resolve any geomagnetic excursions. Shallow inclinations are observed between 

80.4 and 75.6 m CCSF-A (~39,800-39,000 cal yr BP), and at 60.1 m CCSF-A and 55.1 m 

CCSF-A (~33,100 and ~31,300 cal yr BP, respectively). However, according to the sampling 

notes, these intervals contain coarser sediments as well as rocks that had to be removed to 

facilitate u-channel sampling. It is, therefore, more likely that they represent noise, as they 

are also short in duration, rather than geomagnetic field behavior associated with the 

Laschamp or Mono Lake geomagnetic excursions.  

The lack of clear representations of these events at such high-resolution sites remains 

somewhat of an enigma. Both paleomagnetic data compilations (Panovska et al., 2018) and 

field models (Korte et al., 2019b) have found the Laschamp excursion to be less pronounced 

in the Pacific Hemisphere compared to in the Atlantic Hemisphere, possibly related to 

generally low sedimentation rates (Panovska et al., 2018). This is, however, not the case for 

Site U1419 where sedimentation rates between 40,000 and 42,000 cal yr BP are 

approximated to ~400 cm/kyr (Walczak et al., in prep). Regardless, a first of its kind record 

of PSV is resolved, that should facilitate a better understanding of the geomagnetic dynamics 

that give rise to excursions and geomagnetic change in general. 

 

2.7 CONCLUSIONS 

In this study, we show that IODP Site U1419 on the Alaskan slope, despite lithologic 

complexity due to its ice-proximal location and reduction diagenesis due to high productivity, 
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still preserves a reliable directional PSV record, providing a rare, well-dated and high-

resolution record of inclination changes over the last ~43,000 years. This results from great 

sedimentation rates allowing millennial scale geomagnetic features to be extended over 

meters and a high flux of fine grained terrigenous material that buffers the paleomagnetic 

signal and results in its preservation despite the sulfate/methane transition occurring at 15 m 

CCSF-A. Comparisons with shipboard data, other Gulf of Alaska drill sites and those from 

the broader northeastern Pacific/western North American region (NEPSIAS, WNAM17) 

reveal what are apparently common inclination features captured in independently dated 

records over the past 35,000 years. Based on the local and regional comparisons, the 

inclination between 15,000 and 30,000 cal yr BP is regarded as the most robust part of the 

record. The PSV record captures abrupt transitions from shallow to steep (or vice versa) states 

with lower amplitude variability in between. Comparisons suggest that millennial scale 

changes are regional in nature and therefore reflect large scale geomagnetic dynamics, but it 

is too early to determine whether the observed abrupt transitions are a regional feature or 

only locally apparent. With a well-resolved age model, this Site provides an exceptional 

target for comparison to facilitate a better understanding of the geomagnetic field. The 

preliminary U1418 age model suggests that this Site is of similar resolution to that of Site 

U1419, with some intervals of even higher sedimentation rates (>1000 cm/kyr). This new 

age model provides further stratigraphic constraints on the Gulf of Alaska records and allows 

for robust PSV-based regional correlation for records that cannot be as well dated. 
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CHAPTER 3 

HIGH-RESOLUTION PALEOMAGNETIC SECULAR VARIATION AND 

RELATIVE PALEOINTENSITY IN THE GULF OF ALASKA: CONSTRAINTS 

ON THE LATE PLEISTOCENE AND HOLOCENE STRATIGRAPHY OF IODP 

EXPEDITION 341 SITE U1418 

 

3.1 SUMMARY OF CHAPTER 3 

In the third chapter, the 27,000-year paleomagnetic record of Surveyor Fan Site U1418 

is explored. At this high-resolution Site, the full paleomagnetic vector of inclination, 

declination, and paleointensity is recreated to better understand the geomagnetic signal of the 

northeastern Pacific region and to establish a robust paleomagnetism-based correlation tool 

for this region.  

This chapter, titled “High-resolution paleomagnetic secular variation and relative 

paleointensity in the Gulf of Alaska: Constraints on the late Pleistocene and Holocene 

stratigraphy of IODP Expedition 341 Site U1418” was written by me under the guidance of 

my supervisor, Guillaume St-Onge, and my co-supervisors Joe Stoner (Oregon State 

University) and Matthias Forwick (The Arctic University of Norway) who revised several 

versions of this paper. Maureen Walczak (Oregon State University) constructed both the 

U1418 and U1419 age models that she kindly provided me with, along with any associated 

information. As first author, I performed the analyses, treated and interpreted the data, and 

wrote the paper. My three supervisors contributed greatly to the realization of this paper 

through assistance in the lab, help with interpreting data, and comments on the text. 

Guillaume St-Onge, Joe Stoner, Matthias Forwick, and Maureen Walczak were all part of 

the shipboard science party during IODP Expedition 341.  

Results from this chapter were presented at the annual GEOTOP student meetings in 

Pohénégamook (2014; poster) and Jouvence (2015; poster), at the American Geophysical 
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Union Joint Assembly in Montréal (2015; poster), at the Association francophone pour le 

savoir (ACFAS) meeting in Rimouski (2015; poster), at the IODP Expedition 341 2nd post-

cruise meeting in Friday Harbor (2015; poster), at the American Geophysical Union Fall 

meeting in San Francisco (2016; poster), and at the International Sedimentological Congress 

in Québec City (2018; talk). 

 

3.2 HIGH-RESOLUTION PALEOMAGNETIC SECULAR VARIATION AND 

RELATIVE PALEOINTENSITY IN THE GULF OF ALASKA: 

CONSTRAINTS ON THE LATE PLEISTOCENE AND HOLOCENE 

STRATIGRAPHY OF IODP EXPEDITION 341 SITE U1418 

Velle, Julie Heggdala,b* ; St-Onge, Guillaumea,b ; Stoner, Joseph S.b,c ; Walczak, Maureenc & 

Forwick, Matthiasd 

 

aCanada Research Chair in Marine Geology, Institut des sciences de la mer de Rimouski 

(ISMER), Université du Québec à Rimouski, Rimouski QC, G5L 3A1, Canada 

bGEOTOP Research Center, Montreal QC, Canada 

cCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis 

OR97331, United States 

dDepartment of Geosciences, UiT The Arctic University of Norway in Tromsø, Tromsø, 

9037, Norway 

*Corresponding author: Julie.Velle@uqar.ca 

 

ABSTRACT 

During the 2013 International Ocean Drilling Program (IODP) Expedition 341 in the 

Gulf of Alaska, a sedimentary record was retrieved from the upper Surveyor Fan Site U1418. 
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The upper 64.6 m of the splice were sampled with u-channels, all of which were analyzed 

with a high-resolution CT scanner for the visualization of sedimentary structures and 

identification of drilling and/or sampling deformation. All u-channels were subject to 

magnetic susceptibility measurements, as well as to the AF demagnetization procedure for 

studies of the natural and laboratory induced magnetic remanences, and information about 

the magnetic properties of the sediment. Furthermore, hysteresis loops were obtained from 

54 discrete samples for additional insights to the magnetic domain state and coercivity of the 

sediment. The U1418 age model (cf. Velle et al., in prep) puts the base of the studied 

sedimentary sequence at 27,000 cal yr BP. Analyses show a generally high and stable 

concentration of pseudo-single domain (PSD) magnetite that carries a well-defined magnetic 

remanence (MAD < 5°). The paleointensity proxy was constructed using the slope method 

on the 25-60 mT AF demagnetization steps of NRM/IRM. Adjustments to the U1418 age 

model were made through comparison with the inclination record of the independently dated 

Exp. 341 Site U1419, increasing the resolution of the age constraints for the paleomagnetic 

record. Comparisons of the U1418 inclination and declination record to other directional 

records indicate that Site U1418 has captured regional-scale paleomagnetic secular 

variations. Comparisons of Site U1418 relative paleointensity to other records on 

independent age models are, at this point, less conclusive although there are some indications 

that long-term global geomagnetic intensity trends have been recorded. Along with 

previously published PSV records from the Gulf of Alaska, Site U1418 aids in defining 

robust millennial-scale paleomagnetic secular variations (PSV) that permit regional 

comparison of records. Furthermore, the addition of a high-resolution relative paleointensity 

(RPI) record from this Site provides a first step in defining paleomagnetic intensity from the 

northeast Pacific.  

 

Keywords: Paleomagnetic secular variation, relative paleointensity, North Pacific, Alaska, 

late Pleistocene 

 



122 

 

3.3 INTRODUCTION 

The continuity of marine records makes them attractive targets for paleomagnetic 

studies, both for regional stratigraphic correlations as well as for improving our 

understanding of geomagnetic field variations. Reconstructions of either parts of, or the full 

paleomagnetic vector (inclination, declination, and relative paleointensity; RPI), are proven 

correlation tools, improving chronology of sedimentary sequences and allowing regional 

comparisons of proxy records (e.g., Barletta et al., 2008; Ólafsdóttir et al., 2013; Deschamps 

et al., 2018). Paleomagnetic records also allow exploration of the temporal and spatial 

patterns of Earth’s magnetic field, with new observations suggesting that millennial-scale 

dynamics may be comparable over large spatial scales (Stoner et al., 2013; Walczak et al., 

2017). High-resolution records accompanied by robust chronologies are, therefore, crucial to 

both empower and assess such observations. 

Many high-resolution late Pleistocene paleomagnetic studies have been carried out in 

the North Atlantic, with the northeast Pacific the focus of only few such studies (cf. 

Panovaska et al., 2018). Most previous paleomagnetic studies from the North Pacific region 

are either from lower-resolution records, spanning hundreds of thousands to millions of years 

(e.g., Weeks et al., 1995; Roberts et al., 1997; Yamamoto et al., 2007), or Holocene records 

from western North America (Verosub et al., 1986; Hagstrum & Champion, 2002) and 

Hawaii (Peng & King, 1992).  A few recent studies are crossing into the Pleistocene from 

western North America (e.g., Lund et al., 2017; Reilly et al., 2018) and the northeastern 

Pacific (Walczak et al., 2017; Velle et al., in prep), and are beginning to define paleomagnetic 

secular variations (PSV) in this region. However, as sedimentary records are often smoothed, 

not often continuous, often affected by lithologic and diagenetic variability and rarely well-

dated, additional studies are needed to accurately define and assess the regional expressions 

of the geomagnetic field. 

Periods of intense glaciations have resulted in a high flux of fine-grained terrigenous 

sediment to Gulf of Alaska (Jaeger et al., 2014; Gulick et al., 2015), providing the opportunity 
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to develop high-quality paleomagnetic records preserving geomagnetic changes at high 

temporal resolution. Detailed radiocarbon-based age models available from the Gulf of 

Alaska (Davies et al., 2011; Davies-Walczak et al., 2014; Praetorius et al., 2015; Walczak et 

al., in prep) allow the age evolution of these geomagnetic records to be examined with high 

temporal certainty. In this study, we further the exploration of the Gulf of Alaska 

paleomagnetic record (Walczak et al., 2017; Velle et al., in prep) by adding a high-resolution 

full vector paleomagnetic reconstruction of late Pleistocene sediments from Integrated Ocean 

Drilling Program (IODP) Site U1418.  This record provides an improved understanding of 

regional PSV and RPI records and through correlation, enhancements to its chronology. 

 

3.4 SITE SETTING 

The Gulf of Alaska 

The Gulf of Alaska (GoA) is located in the eastern North Pacific Ocean, off southern 

Alaska (Fig. 25). The oceanographic setting in the basin of the GoA is dominated by the 

westward flowing Alaska Current (AC), a branch of the Pacific subarctic gyre. The Alaska 

Coastal Current (ACC) flows westward on the continental shelf and is driven by a 

combination of winds and freshwater runoff from southern Alaska glaciers and rivers (Royer, 

1982; Stabeno et al., 1995, 2004). Rivers (e.g., the Copper River) and glaciers (e.g., Bering 

and Malaspina glaciers) are the main transport paths of sediment to the Gulf of Alaska (e.g., 

Molnia & Carlson, 1978; Jaeger et al., 1998). The geological terranes of southern Alaska 

include the Yakutat, Prince William, Chugach, and Wrangelia terranes, as well as the Craig 

sub-terrane (Silberling et al., 1994). Erosion of the active orogen the St. Elias Mountains on 

the southern Alaskan coast has ensured a high flux of sediment to the GoA, especially during 

periods of expanded glaciation. This has resulted in the extensive Surveyor Fan with a 

sedimentary volume of 6.8 x 105 km3 that extends from the foot of the continental slope into 

the Alaskan Abyssal Plain (Reece et al., 2011). 
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Figure 25: Location of IODP Expedition 341 drill Sites in the Gulf of Alaska. Site U1418 

is indicated with a yellow star. Site U1418 also marks the location of core EW0408-87JC 

mentioned in the text. 

 

IODP Expedition 341 drill Site U1418 

International Ocean Drilling Program (IODP) Expedition 341 took place in 2013 in the 

Gulf of Alaska (GoA) onboard the JOIDES Resolution. More than 3 km of sediment cores 

from five drill sites on the continental margin and Surveyor Fan were retrieved during the 

expedition (Jaeger et al., 2014). Site U1418 (58°46.6095′N, 144°29.5777′W) is located on 

the upper portion of the Surveyor Fan at a water depth of 3667 m (Fig. 25). Six holes (A to 

F) were drilled at this Site, recovering a total of 819 m of early Pleistocene to Holocene 

sediment. Long-term sedimentation rates (since the mid-Pleistocene transition) at the Site 

were estimated to 81 cm/kyr (Gulick et al., 2015), but are likely to have been much higher 

during specific shorter time intervals.  
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The sediment at Site U1418 is generally characterized by interbedded silt and color-

banded mud, with lonestones occurring below 3 m CSF-A. Intervals of diatom-bearing to 

diatom rich mud, volcanic ash, and graded sand beds also occur sporadically throughout. The 

Pleistocene to Holocene sediment supply to Site U1418 is thought to be mainly settling and 

overbank deposits from sediment gravity flows from the adjacent channels on the Surveyor 

Fan, as well as dropstones from iceberg and/or sea-ice rafting (Jaeger et al., 2014). 

 

3.5 METHODS 

U-channel sampling 

The u-channel sampling was performed at Texas A&M University at the IODP Gulf 

Coast Repository in College Station, Texas, USA. Plastic liners (u-channels) with cross-

sections of 2x2 cm and lengths up to 1.5 meter were sampled in the splice record from the 

center of the archive halves of split cores. The continuous splice record is based on shipboard 

measurements of physical properties and magnetic susceptibility using mainly sections of 

holes C and D, with a few sections from holes A and E. The splice studied here only contains 

u-channels from cores C and D. The composite depth below seafloor (CCSF-A) depth scale 

is used in this study and assumes that the mudline in core U1418C-1H is the sediment/water 

interface (Jaeger et al., 2014). The upper 64.6 m CCSF-A (53 u-channels) of Site U1418 are 

the focus of this study. 

 

Continuous magnetic measurements 

Remanence measurements were performed using the 2G Cryogenic u-channel 

magnetometers at marine geology and paleomagnetism laboratory at Institut des sciences de 

la mer de Rimouski (ISMER) in Rimouski, Canada, and at the Paleo-and-Environmental 
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Magnetism Laboratory at Oregon State University, USA. The u-channel magnetometers 

measure at 1 cm intervals and have response functions with a width at half height of 7-8 cm 

(Oda & Xuan, 2014). In order to reduce edge effects associated with section breaks, the first 

and last 5 cm of each u-channel were excluded (Weeks et al., 1993). As part of routine 

shipboard measurements, archive core halves were measured and demagnetized up to 20 mT 

onboard the JOIDES Resolution (Jaeger et al., 2014). Therefore, differences between the 0 

mT and 20 mT steps observed in the u-channel measurements at OSU and ISMER correspond 

to a viscous remanent magnetization acquired by the sediment after its initial shipboard 

measurement. 

The stepwise alternating field (AF) demagnetization procedure was used to study the 

natural remanent magnetization using the following demagnetization steps: 0 and 20 mT, 

from 20 to 70 mT with 5 mT increments, and from 70 to 100 mT with 10 mT increments. 

The characteristic remanent magnetization (ChRM) was determined using principal 

component analysis and the least-square line-fitting method (Kirschvink, 1980) available in 

the Mazaud spreadsheet (Mazaud, 2005). The anhysteretic remanent magnetization (ARM) 

was obtained by implementing a DC biasing field (0.05 mT) on the alternating field (100 

mT). Normalizing the ARM with the biasing field results in the anhysteretic susceptibility 

(kARM) and provides information on magnetic grain size and concentration (e.g., Stoner et al., 

1996). Isothermal remanent magnetization (IRM) and saturated isothermal remanent 

magnetization (SIRM) were induced by using a 2G pulse magnetizer with intensities of 300 

and 950 mT, respectively. The u-channels were subsequently demagnetized and measured 

using the AF demagnetization procedure at peak AF fields of 0, 10, 20, 25, 30, 35, 40, 45, 

50, 60, and 80 mT for ARM and IRM, and 0, 10, 30, and 50 mT for SIRM.  

The relative paleointensity (RPI) estimate is obtained by normalizing the intensity of 

the NRM by the intensity of a laboratory induced magnetization (e.g., ARM, IRM). The 

normalizer should activate the same range of magnetic particles that holds the NRM intensity 

(Levi & Banerjee, 1976) and should not be coherent with the normalized intensity (Tauxe, 

1993). Two methods of normalization were explored in this study; the slope method (Tauxe 
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et al., 1995) and the ratio method (e.g., Stoner et al., 2000; Barletta et al., 2008; Lisé-

Pronovost et al., 2013; Caron et al., 2018). The first determines the slopes of the NRM vs. 

the normalizer of the selected AF demagnetization interval, while the latter is constructed by 

averaging the normalized NRM over the selected range of AF demagnetization steps.  

Low-field magnetic susceptibility (kLF) was measured using a Bartington MS2 u-

channel loop sensor on an automated tracking system at Oregon State University, USA. Each 

u-channel was measured with three iterations of 1 cm increments. The values reported in this 

paper are means of the repeated measurements. Magnetic susceptibility is a measure of the 

concentration of magnetizable material within the sample and can be used in combination 

with other magnetic properties as a measure of, for example, relative variations in magnetic 

grain size. kARM/kLF is one such parameter which varies inversely with magnetic grain size 

(Thompson & Oldfield, 1986; Stoner et al., 1996). 

 

Discrete magnetic measurements 

Fifty-four discrete samples were collected from the base of each u-channel (approx. 

every 1.5 meters) and measured using a Princeton Measurement Corporation MicroMag 2900 

alternating gradient force magnetometer at ISMER. Any para- and diamagnetic contributions 

in the samples were corrected using the MicroMag AGM software. The AGM analyses 

provide information on the hysteresis properties of the sediments, including coercivity (Hc), 

coercivity of remanence (Hcr), saturation magnetization (Ms), and saturation remanence 

(Mr). These properties are useful indicators of magnetic mineralogy, as well as for magnetic 

grain size if the sediment is mainly magnetite/titanomagnetite (e.g., Day et al., 1977; Tauxe 

et al., 1996; Dunlop, 2002a, 2002b). 
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CT scanning 

Information on the physical properties of the sediments (density), internal structures, 

and possible coring and/or sampling deformation was gathered from CT-scans of all u-

channels. The scanning was performed at Institut national de la recherche scientifique, 

Centre Eau Terre Environnement (INRS-ETE) in Québec City, Canada, using a Siemens 

SOMATOM Definition AS+ 128 CT scanner. The scanner is capable of detecting density 

changes as small as 0.1% and its source/detector rotates 360° around the sample, creating 

high-resolution (sub-millimeter) images from each rotation. Images were obtained at 

intervals of 0.4 mm, with 0.2 mm overlap from one image to the next. Furthermore, CT-

number profiles reflecting density changes in the sediment were derived for each image (cf. 

Fortin et al., 2013). 

 

Age model 

The U1418 age model (Velle et al., in prep) is based on 23 radiocarbon dates from Site 

U1418, as well as 18 magnetic susceptibility-based tie-points to core EW0408-87JC (cf. Fig. 

25; Praetorius et al., 2015). The Bayesian age model for U1418 was generated in BChron 

(Haslett & Parnell, 2008) via an evaluation of all available planktic foraminiferal dates. Ages 

were calibrated using the MARINE 13 calibration curve (Reimer et al., 2013) and a ΔR of 

470 ± 80, encompassing the range of regional modern observations (McNeely et al. 2006). 
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3.6 RESULTS 

Chronology 

The date closest to the base of the studied sedimentary sequence (64.6 m CCSF-A) is 

25,580 ± 88 cal yr BP at 56.15 m CCSF-A (Fig. 26). The next date in the U1418 age model 

is 31,280 ± 102 cal yr BP at 80.19 m CCSF-A. The age model dates the base of the studied 

sequence at approx. 27,600 cal yr BP. Sedimentation rates were calculated for the age model 

< 40,000 cal yr BP, assuming constant sedimentation between age constraints. Due to several 

overlapping dates and tie-points in the time interval between 20,000 and 11,000 cal yr BP 

(37-1.9 m CCSF-A), sedimentation rates were calculated between U1418 radiocarbon dates 

and a few selected EW0408-87JC tie-points only.  

Between 30,000 and 19,000 cal yr BP, sedimentation rates (Fig. 26) vary between 220 

and 500 cm/kyr, whereas they vary from 600 and 4200 cm/kyr between 19,000 and 17,000 

cal yr BP. After 17,000 cal yr BP, sedimentation rates rapidly drop to < 100 cm/kyr, reaching 

a low of 15 cm/kyr between 12,000 and 8,500 cal yr BP.  Thus, the upper 4 meters CCSF-A 

of the record span the past 17,000 years, while the lowermost ~60 meters CCSF-A span only 

an additional 10,000 years. 
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Figure 26: U1418 age model (Velle et al., in prep). Blue circles indicate radiocarbon dated 

levels of Site U1418. Red circles indicate magnetic susceptibility-based tie-points to the 

independently dated Gulf of Alaska core EW0408-87JC (Praetorius et al., 2015). 

 

Physical properties and lithology 

The upper 3.9 m CCSF-A of Site U1418 is characterized by massive sediment with 

some bioturbation and macrofossils. Below this depth, the remainder of the studied U1418 

sequence consists of laminated and stratified sediments with scattered clasts, as well as some 

shorter (5-60 cm) intervals of more massive, low-density sediment with clasts (Fig. 27). No 

change in the general lithology is observed in the studied sequence. Intervals of coring and/or 

u-channel sampling deformation are identified between 3.77-3.89 m CCSF-A, 4.79-4.88 m 
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CCSF-A, and 6.10-6.35 m CCSF-A. These intervals have been excluded from further 

interpretation. 

 

 

Figure 27: Natural remanent magnetization (NRM) with AF demagnetization steps 

displayed in colors ranging from black (0 mT) to grey (100 mT); anhysteretic remanent 

magnetization (ARM, isothermal remanent magnetization (IRM), and saturated isothermal 

remanent magnetization (SIRM) as measured before demagnetization (at 0 mT); magnetic 

susceptibility (kLF) with a 20-point smoothing (black); and kARM/kLF with a 20-point 

smoothing (blue). In a dominantly magnetite magnetic mineralogy, kARM/kLF is inversely 

correlated with magnetic grain size (Thompson & Oldfield, 1986). On the right are three 

examples of CT-scans showing lithologies typical for Site U1418. 

 

Magnetic mineralogy, concentration, and grain size 

Three hysteresis curves from representative intervals are shown in Figure 28 and 

display the shape typical of magnetite (Tauxe et al., 1996). In the Day plot (Day et al., 1977), 

all samples lie in the pseudo-single domain (PSD) range. All but three samples plot parallel 
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to but slightly above the theoretical PSD-MD magnetite mixing line of Dunlop (2002a, 

2002b), suggesting the presence of a higher-coercivity magnetic mineral.  

The low-field magnetic susceptibility (kLF) of the U1418 sediment varies between 10 

and 100 x 10-5 SI with a mean of 40 ± 10 x 10-5 SI (Fig. 27). Somewhat higher values are 

observed between 26 and 44 m CCSF-A with three distinct peaks (~50-80 x 10-5 SI) around 

28, 35, and 42 m CCSF-A. Similar profiles are observed for the remanent magnetizations, 

especially NRM and ARM, indicating that there are some down-core variations in the 

concentration of magnetic grains.  

The constructed ratio kARM/kLF varies inversely with magnetic grain size (in a magnetite 

mineralogy; Banerjee et al., 1981; King et al., 1982, 1983; Geiss & Banerjee, 2003) and 

indicates an assemblage of magnetically finer grains at the very top of the record (0-3.5 m 

CCSF-A), as well as between 49.5-58.5 m CCSF-A. Furthermore, the presence of finer 

magnetic grain sizes is indicated around 28, 35, and 42 m CCSF-A, concurrent with highs in 

magnetic concentration. This suggests that sediments in these intervals could be sourced from 

a different terrane group in this very active sediment dispersal system (Silberling et al., 1994; 

Cowan et al., 2006). Anhysteretic susceptibility (kARM) plotted against magnetic 

susceptibility (kLF) is another grain-size proxy (given a magnetite mineralogy; Fig. 28; 

Banerjee et al. ,1981; King et al., 1982). Using the King et al. (1983) calibrations, magnetic 

grain-size plots between 0.1 and 1 µm, with some, mostly higher-susceptibility, samples 

plotting between 1 and 5 µm. In summary, the magnetic parameters collectively indicate that 

the U1418 sediment consist of a generally high concentration of PSD magnetite. 
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Figure 28: A: Day plot (Day et al., 1977) with theoretical mixing lines from Dunlop (2002a, 

2002b) of all Site U1418 discrete samples. B: Anhysteretic susceptibility (kARM) plotted 

against magnetic susceptibility (kLF; King et al., 1982) as a proxy for magnetic grain size 

(given a magnetite mineralogy). Magnetic grain size boundaries are based on synthetic 

samples from Banerjee et al. (1981) and the plot is adapted from Geiss & Banerjee (2003). 

C: Selected hysteresis loops representative of Site U1418. 
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Paleomagnetic directions 

Vector end-point diagrams (Zijderveld, 1967) show that a strong, stable characteristic 

magnetization (ChRM) can be defined between 25-60 mT after the removal of a weak viscous 

component at the 20 mT AF demagnetization step (Fig. 29). The component directions were 

calculated using principal component analysis (Kirschvink, 1980) in a spreadsheet developed 

by Mazaud (2005), with associated mean maximum angular deviation (MAD) values of 1.6 

± 0.9°. The ChRM inclination (Fig. 30) is generally shallower than the expected geocentric 

axial dipole (GAD; 73°) inclination for the Site latitude, apart from in the upper ~3 m CCSF-

A, intervals with steeper inclination between 34 and 36 m CCSF-A (75-89°), and in the 

lowermost part of the studied record from 56 m CCSF-A to the base at 64.6 m CCSF-A (80-

89°; Fig. 30).  

 

Figure 29: Vector end-point diagrams (Zijderveld, 1967) with corresponding 

demagnetization plots from four representative intervals of Site U1418. Open (closed) circles 

represent projections on the vertical (horizontal) plane. 
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Due to a lack of azimuthal orientation during drilling, the declination was first rotated 

to a core mean of zero before it was aligned across spliced core sections. At the base of the 

studied sequence, between 58 and 64.6 m CCSF-A, the initial rotation was insufficient and 

additional corrections were applied. Some of the shifts in declination are concurrent with 

more abrupt changes and steeper inclinations, such as at 2.4, 35, and below 56 m CCSF-A. 

 

 

Figure 30: Characteristic remanent magnetization (ChRM) inclination and declination as 

defined between the 25-60 mT AF demagnetization steps, and maximum angular deviation 

(MAD) values for the complete range of AF demagnetization steps (orange) and for the 

ChRM range 25-60 mT (black). Declination has been rotated to a mean of zero. All 

parameters are shown with a 20-point smoothing indicated in bold. 

 

 



136 

 

Remanent magnetization and normalized intensity 

The NRM as measured at 20 mT (demagnetized at AF of 20 mT during expedition)  

varies between 0.005 and 0.12 A/m with a mean of 0.04 ± 0.02 A/m. Intervals of generally 

stronger remanence (0.05-0.1 A/m) are observed in the uppermost ~4.8 m CCSF-A of the 

record, as well as between 27 and 43 m CCSF-A. Three prominent peaks of remanence are 

also found within this interval; at approx. 28, 35 and 42 m CCSF-A (Fig. 27). The ARM 

profile is generally similar to that of the NRM. The mean intensity for the ARM as measured 

at 0 mT is 0.06 ± 0.03 A/m with the highest values (0.16-0.18 A/m) occurring, as also 

observed in the NRM, in the upper 4.8 m CCSF-A of the record, as well as at 28, 35, and 42 

m CCSF-A and, additionally, around 50 and 55 m CCSF-A. Due to the similarities between 

the IRM imparted at 0.3 T and the SIRM imparted at 0.95 T, the two are reported as IRM in 

this paper. The IRM varies between 1.2 and 16 A/m with a mean of 4.7 ± 2 A/m. Although 

not as large in amplitude as in the NRM and ARM, intensity peaks are observed at the same 

depths of 28, 35, and 42 m CCSF-A.  

Several studies have suggested a series of criteria to be fulfilled in order to validate the 

normalized intensity as a reliable paleointensity proxy (e.g., Levi & Banerjee, 1976; Tauxe, 

1993; Stoner & St-Onge, 2007). The magnetic remanence should be carried by stable PSD 

magnetite in the grain size range of 1-15 µm, and the concentration of magnetic material in 

the sample should not vary by more than one order of magnitude throughout the record. 

Furthermore, a strong, single component magnetization should be determined using the 

stepwise AF demagnetization procedure and resulting MAD values should be below 5°. 

Moreover, the chosen normalizer should not be coherent with the normalized record. A final 

step is to compare the normalized record with other regional and global records, and this will 

be explored in section 3.6 below. 

To estimate paleointensity, four normalization approaches were explored using the 25-

60 mT demagnetization range; the slopes of NRM/ARM and NRM/IRM, as well as the ratios 

of NRM/ARM and NRM/IRM (Fig. 31). Linear correlation coefficients (R) were determined 
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for the slopes and display values close to unity (>0.9) for both NRM/ARM and NRM/IRM, 

indicating well-defined slopes. ARM slope and ratio yielded similar results, whereas more 

discrepancies are observed between the IRM-based paleointensity proxies. Correlation 

between the paleointensity proxy and the normalizer used, NRM/ARM ratio (r2 = 0.37), 

NRM/ARM slope (r2 = 0.26), and NRM/IRM ratio (r2 = 0.30), suggest that some influence 

of magnetic mineral concentration and/or grain size remains in the normalized record. 

However, for the NRM/IRM slope, there is no observed correlation with the normalizer (r2 

= 0.03). ARM as a normalizer may be influenced by down-core variations in magnetic grain-

size as higher ARM intensities are observed in intervals of finer magnetic grain sizes. 

Therefore, ARM may overcorrect the NRM in these intervals. The NRM/IRM slope shows 

the least correlation between the normalized record and the normalizer and is therefore used 

as our preferred paleointensity proxy. One interval in this proxy (50-51 m CCSF-A) displays 

highly variable values (between 0 and 0.04) as well as relatively low R values (~0.5). This is 

most likely related to a change in magnetic concentration at this depth and is an artefact of 

the normalization. This interval is therefore removed from the normalized intensity record. 

Based on the results presented above, Site U1418 fulfils the criteria for paleointensity 

reconstruction using the NRM/IRM slope as the paleointensity proxy. 

 

 

 

 

 

 

Figure 31 (next page): U1418 NRM normalized over the 25-60 mT AF demagnetization 

steps by ARM (left) and IRM (right) using the ratio method (black) and the slope method 

(blue). The R value of the slope method is displayed in grey. Scatter plots show the 

correlation between the normalized intensity and the normalizer used with the corresponding 

r2 value. 
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3.7 DISCUSSION 

Chronostratigraphy 

The similarity between Site U1418 shipboard inclination stack and Site U1419 u-

channel inclination record was used to support the validity of the PSV record (Velle et al., in 

prep). Comparing the u-channel ChRM inclination from Site U1418 as presented in this paper 
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with Site U1419 inclination over the interval between 27,600 and 16,000 cal yr BP (Fig. 32) 

additionally supports that PSV is recorded and presents an opportunity to assess and 

potentially even improve the U1418 age model. The U1419 age model (Walczak et al., in 

prep) is based on GRA tie-points to its site survey core EW0408-85JC/TC that is constrained 

by 44 radiocarbon dates (Davies-Walczak et al., 2014) in the deglacial and Holocene, as well 

as radiocarbon dates from U1419 (Walczak et al., in prep).  

 

 

Figure 32: U1418 inclination compared with Exp. 341 drill Site U1419 inclination (Velle et 

al., in prep), both on their respective age models. Blue circles indicate radiocarbon dated 

intervals and red circled indicate tie-points to core EW0408-87JC for Site U1418, and tie-

points to core EW0408-85JC for Site U1419 (Walczak et al., in prep). Tie-points between 

the two inclination records are indicted with dashed lines. 
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If we assume that both sites have the same geomagnetic history and recorded PSV with 

similar fidelity and temporal offsets relative to radiocarbon dates, then the U1419 extremely 

well-resolved age model can constrain U1418 age model using PSV correlation. This is 

especially important in the less well-constrained interval between ~30,000 and 18,000 cal yr 

BP in U1418, which is also the most robust portion of the U1419 inclination record (cf. Velle 

et al., in prep). A total of seven tie-points (Table 4; Fig. 32) were developed between U1418 

and U1419 inclination features for the interval between 26,000 and 18,000 cal yr BP. The 

adjusted age model (Fig. 33) speaks to the efficiency of PSV as a regional chronostratigraphic 

tool, while presumably more accurately constraining the region’s geomagnetic history. Due 

to the substantial change in sedimentation and sedimentation rates of almost two orders of 

magnitude between ~17,000 and 16,000 cal yr BP, the paleomagnetic record will be 

considered in two parts; from 0 to 16,000 cal yr BP, and from 16,000 to 28,000 cal yr BP. 

 

Table 4: Tie-points to the U1419 age model (Walczak et al., in prep). 

 

Tie-

point 

U1418 

depth 

CCSF-A 

(m) 

U1418 age 

(cal yr BP) 

U1418 (cal 

yr BP) -σ1 

U1418 (cal 

yr BP) +σ1 

U1419 age 

(cal yr BP) 

U1419 (cal 

yr BP) -σ1 

U1419 (cal 

yr BP) +σ1 

T1 30.33 18,564 18,449 18,668 18,763 18,705 18,842 

T2 36.26 19,719 19,417 19,996 20,191 20,107 20,289 

T3 40.35 20,855 20,678 21,020 20,601 20,526 20,678 

T4 47.25 22,360 22,079 22,635 21,990 21,946 22,040 

T5 49.38 22,753 22,501 22,950 22,220 22,144 22,144 

T6 52.5 23,999 23,521 24,593 24,179 24,036 24,314 

T7 55.43 25,225 24,753 25,422 24,952 24,831 25,076 
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Figure 33: U1418 age model (in black) with tie-points to the U1419 age model (Walczak et 

al., in prep) via U1419 inclination (green diamonds). Adjusted age model and sedimentation 

rates are indicated in red. 

 

Paleomagnetic secular variations (PSV) 

When viewed on age (Fig. 34), it is evident that the shallow inclinations persisting over 

10-15 meters (cf. Fig. 30) are, in fact, inclination features occurring over 1000-3000 years 

such as those typically observed in the Holocene (Thompson, 1973), but captured at 

extremely high temporal resolution. In Figure 34, the U1418 u-channel inclination is 

compared with the U1418 shipboard inclination as measured at 20 mT (in purple) and with 

other regional records of similar resolution, mostly from the Gulf of Alaska (Walczak et al., 

2017; Velle et al., in prep), as well as northeastern Pacific and western North America 
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inclination stacks (Walczak et al., 2017; Reilly et al., 2018). Thirteen inclination features 

correlated across the different records are highlighted in Figure 34A and B, although more 

are observed. Similarities between the Gulf of Alaska records are especially pronounced, 

particularly in the higher resolution intervals >17,000 cal yr BP, where the sequence of 

features I1 through I10 are recognized in both U1418 and U1419 (Fig. 34B). This would be 

expected as these records are only ~80 km apart and should have recorded the same 

geomagnetic field. Additionally, some of these variations are similar to those observed in the 

recent WNAM North American PSV stack when relocated to the Gulf of Alaska using a 

dipole assumption (Reilly et al., 2018). The consistency between the three records in Figure 

34B generally supports that these records have captured regional geomagnetic dynamics, 

although there are differences that will require further exploration. Especially pronounced in 

all these records is the steep inclination feature I8 around 19,500 cal yr BP (36-34 m CCSF-

A in U1418) suggesting that this is a robust regional geomagnetic feature. In the deglacial-

Holocene portion of the records (Fig. 34A), features I11, I12, and I13 are recognized in all 

of the Gulf of Alaska records, as well as in the NEPSIAS inclination stack (Walczak et al., 

2017). This stack is based on records from Alaska to Hawaii and, thereby, further suggest 

that the U1418 record has captured regional-scale paleomagnetic inclination variations also 

in the Holocene.   

Some discrepancies are observed between the U1418 shipboard and U1418 u-channel 

declination records (Fig. 34A and B). For example, is the shipboard declination generally 

less variable than the u-channel declination, especially evident in the deglacial and Holocene 

portion of the record (Fig. 34A). In the 16-28 ka interval (Fig 34B), large-scale variability is 

observed in the shipboard declination between 18,000 and 17,000 cal yr BP, whereas only 

minor variability is observed in the shipboard data. This is likely due to a number of factors, 

including deformation associated with half-core measurements compared with u-channels 

coming from the pristine central part of the core, the stacking and rotation approach used in 

the shipboard declination record, and differences in magnetometer response functions and, 

as a result, resolution. Comparing the U1418 declination with EW0408-85JC from the Gulf 

of Alaska (Walczak et al., 2017) and the WNAM western North America PSV stack (Reilly 
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et al., 2018) shows that five features can be correlated across the different records (Fig. 34A 

and B). Although less than that observed for the U1418 inclination, these tie-points indicate 

that the U1418 declination may also reflect a regional geomagnetic signal. 

 

Figure 34: Comparison of Site U1418 ChRM (25-60 mT) inclination and declination with 

U1418 shipboard inclination as measured at 20 mT (Velle et al., in prep), U1418 shipboard 

declination stack, Site U1419 (Velle et al., in prep), EW0408-85JC (Walczak et al., 2017), 

the Western North America PSV stack rotated to the Gulf of Alaska using a GAD 

approximation (WNAM; Reilly et al., 2018), and the northeastern Pacific sedimentary 

inclination anomaly stack (NEPSIAS; Walczak et al., 2017) for the time periods 0-16 cal kyr 

BP (A) and 16-28 cal kyr BP (B). PSV features are numbered to facilitate discussion. A 40-

point smoothing has been applied to parts of the U1418 record where sedimentation rates 

exceed 100 cm/kyr. 
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Paleointensity 

As mentioned above, the final step in assessing the quality of a paleointensity proxy is 

to compare it with other regional, independently dated records of similar resolution. 

However, at this point in time there are no regionally comparable records. Figure 35B shows 

the U1418 normalized intensity compared to records from the western Pacific (MD98-2181; 

Stott et al., 2002), the southern Chile margin (ODP Site 1233; Lund et al., 2006), and an RPI 

stack (scaled to VADM) based on 15 globally distributed marine and lacustrine records 

(Channell et al., 2018). The resolution of the records included in the overall RPI stack 

(sedimentation rates between 19 and 66 cm/kyr) as well as likely smoothing during the 

stacking process (Channell et al., 2018), only allows a very general comparison with Site 

U1418. However, similarities are observed in the trend of the two records, especially the 

gradual increase in intensity from the base of the compared interval towards approx. 16,000 

cal yr BP (Fig. 35B). Site U1418 may also contain the intensity high observed between 18 

and 15 ka (17,000 to 15,000 cal yr BP in U1418), as well as the subsequent “notch” between 

14 and 13 ka (15,000 and 14,000 cal yr BP in U1418), as detailed in Channell et al. (2018). 

The long-term similarities between these two records suggests that Site U1418 may have 

captured global geomagnetic field changes. However, on millennial timescales, no clear 

correlation is observed, suggesting that a global-scale signal may not be applicable at these 

time intervals.  The deglacial-Holocene portion of the U1418 record was compared to records 

from the Arctic, namely the Chukchi and Beaufort Seas (Barletta et al., 2008; Deschamps et 

al., 2018; Fig. 35A), as well as the “overall” RPI record (Channell et al., 2018). Despite the 

lower resolution of this time interval, the U1418 paleointensity proxy displays some 

similarities to the RPI records from the Arctic, especially the Beaufort Sea record 02PC 

(Deschamps et al., 2018).  
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Figure 35: Comparison of Site U1418 normalized intensity (NRM/IRM slope) with other 

regional intensity records; HLY0501-05JPC (Barletta et al., 2008), 02PC (Deschamps et al., 

2018), ODP Site 1233 (Lund et al., 2006), MD98-2181 (Stott et al., 2002), and the “overall” 

RPI record scaled to VADM (including the Iberian margin records and globally distributed 

marine and lakustrine records; cf. Channell et al., 2018) for the time periods 0-16 cal kyr BP 

(A) and 16-28 cal kyr BP (B). A 40-point smoothing has been applied to parts of the U1418 

reord where sedimentation rates exceed 100 cm/kyr. 

 

Geomagnetic shielding has been suggested as the main control on the long-term (~2000 

years; Beer et al., 2002) production rate of cosmogenic isotopes. Several studies have found 

inverse correlations between paleointensity and production rates (e.g., Stoner et al., 2000; St-

Onge et al., 2003), whereas other records, such as the RPI record from the Black Sea 

(Nowaczyk et al., 2013), show less correlation in detail. Assuming that the flux of 10Be 

measured in an ice core reflects the production rate of 10Be, then the inverse record should 

reflect changes in the dipole intensity (e.g., Masarik & Beer, 1999).  In Figure 36, the highest 

resolution portion of the U1418 paleointensity proxy record is compared to the 10Be flux 

record from the Greenland Summit ice cores, plotted on the GICC05 time scale (Muscheler 
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et al., 2004). Similar to what was observed from the Black Sea, little inverse correlation is 

found. 

The resolution of the U1418 RPI record provides an opportunity to study millennial-

scale geomagnetic dynamics. However, the lack of regional and global records with similar 

resolution to compare with, makes it problematic to determine whether the U1418 

paleointensity proxy represents regional or global variations in Earth’s magnetic intensity.  It 

is evident that more high-resolution records are needed in order to resolve millennial-scale 

geomagnetic variability, and Site U1418 represents a start.   

 

 

Figure 36: Comparison of the highest resolution interval (16-28 cal kyr BP) of the Site 

U1418 normalized intensity (NRM/IRM slope) and the Greenland 10Be flux record 

(Muscheler et al., 2004). A 40-point smoothing has been applied to parts of the U1418 record 

where sedimentation rates exceed 100 cm/kyr. Note the reversed Y axis for the Greenland 
10Be flux record.  
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3.8 CONCLUSIONS 

The high temporal resolution of Site U1418 presents a unique opportunity to study the 

full paleomagnetic vector in the northeast Pacific during the past ~27,000 cal yr BP. 

Comparisons between the U1418 PSV record and other Gulf of Alaska, western US and 

regional stacks show several apparent common features, indicating that Site U1418 has 

captured regional-sale PSV. Especially consistent are U1418 inclination features with those 

of Site U1419, supporting the interpretation of the U1419 inclination (Velle et al., in prep), 

which was derived only from the 20 mT AF demagnetization step, as a regional geomagnetic 

signal. Furthermore, the U1418 age model can be improved through inclination-based 

correlations to Site U1419. Site U1418 normalized intensity was based on the NRM/IRM 

slope of the 25-60 mT AF demagnetization steps but shows little correspondence to other 

RPI records or to the Greenland 10Be flux record. More records of similar resolution are 

needed in order to determine the local, regional, or global characteristics of paleomagnetic 

variations in this region. 

 

3.9 ACKNOWLEDGEMENTS 

We thank R. Muscheler for sharing the Greenland 10Be flux data. Expedition 341 was 

carried out by the Integrated Ocean Drilling Program (IODP). We thank the IODP-USIO and 

the captain and crew of the R/V JOIDES Resolution. Special thanks are due to the staff at the 

IODP Gulf Coast Repository, especially L. LeVey and P. Rumford, as well as B. Reilly and 

T. Hansen for their help during u-channel sampling. We are grateful to Q. Beauvais, M.-P. 

St-Onge and A.M. Ross for help in the lab. This study was possible thanks to a GEOTOP 

scholarship to the first author, as well a Natural Sciences and Engineering Council of Canada 

Discovery Grant to G. St-Onge. 

 



148 

 

3.10 REFERENCES 

Banerjee, S.K., King, J. & Marvin, J., 1981. A rapid method for magnetic granulometry 

 with applications to environmental studies. Geophysical Research Letters, 8(4), pp. 

 333-336, doi: 10.1029/GL008i004p00333 

Barletta, F., St-Onge, G., Channell, J.E.T., Rochon, A., Polyak, L. & Darby, D., 2008. 

 High-resolution paleomagnetic secular variation and relative paleointensity records 

 from the western Canadian Arctic: implication for Holocene stratigraphy and 

 geomagnetic field behavior. Canadian Journal of Earth Sciences, 45 (11), pp. 1265-

 1281, doi: 10.1139/E08-039 

Beer, J., Muscheler, R., Wagner, G., Laj, C., Kissel, C., Kubik, P.W. & Synal, H-.A., 

 2002. Cosmogenic nuclides during Isotope Stages 2 and 3. Quaternary Science 

 Reviews, 21, pp. 1129-1139, doi: 10.1016/S0277-3791(01)00135-4 

Caron, M., St-One, G., Montero-Serrano, J.C., Rochon, A., Georgiadis, E., Giraudeau, 

 J. &  Masse, G., 2018. Holocene chronostratigraphy of northeastern Baffin Bay 

 based on radiocarbon and palaeomagnetic data. Boreas, 48, pp. 147-165, doi: 

 10.1111/bor.12346 

Channell, J.E.T., Hodell, D.A., Crowhurst, S.J., Skinner, L.C. & Muscheler, R., 

 2018. Relative paleointensity (RPI) in the latest Pleistocene (10-45 ka) and 

 implications for deglacial atmospheric radiocarbon. Quaternary Science Reviews, 

 191, pp. 57-72, doi: 10.1016/j.quascirev.2018.05.007 

Cowan, E.A., Brachfeld, S.A., Powell, R.D. & Schoolfield, S.C., 2006. Terrane-specific 

 rock magnetic characteristics preserved in glacimarine sediment from southern 

 coastal Alaska. Canadian Journal of Earth Sciences, 43(9), pp. 1269-1282, doi: 

 10.1139/e06-042 



  149 

 

Davies, M.H., Mix, A.C., Stoner, J.S., Addison, J.A., Jaeger, J., Finney, B. & Wiest, J., 

 2011. The deglacial transition on the southeastern Alaska Margin: Meltwater input, 

 sea level rise, marine productivity, and sedimentary anoxia. Paleoceanography, 26, 

 PA2223, doi: 10.1029/2010PA002051 

Davies-Walczak, M., Mix, A.C., Stoner, J.S., Southon, J.R., Cheseby, M. & Xuan, C., 

 2014. Late Glacial to Holocene radiocarbon constraints on North Pacific Intermediate 

 Water ventilation and deglacial atmospheric CO2 sources. Earth and Planetary 

 Science Letters, 397, pp. 57-66, doi: 10.1016/j.epsl.2014.04.004 

Day, R., Fuller, M. & Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: 

 Grain-size and compositional dependence. Physics of the Earth and Planetary 

 Interiors, 13, pp. 260-267, doi: 10.1016/0031-9201(77)90108-X 

Deschamps, C.E., St-Onge, G., Montero-Serrano, J.C. & Polyak, L., 2018. 

 Chronostratigraphy and spatial distribution of magnetic sediments in the Chukchi and 

 Beaufort seas since the last deglaciation. Boreas, 47 (2), pp. 544-564, doi: 

 10.1111/bor.12296 

Dunlop, D. J., 2002a. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. 

 Theoretical curves and tests using titanomagnetite data, Journal of Geophysical 

 Research, 107 B3, 2056, doi:10.1029/2001JB000486. 

Dunlop, D. J., 2002b. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. 

 Application to data for rocks, sediments, and soils, Journal of Geophysical Research, 

 107 B3, 2057, doi:10.1029/2001JB000487. 

Fortin, D., Francus, P., Gebhardt, A.C., Hahn, A., Kliem, P., Lisé-Pronovost, A., 

 Roychowdhury, R., Labrie, J., St-Onge, G. & the PASADO Science Team, 2013. 

 Destructive and non-destructive density determination: method comparison and 

 evaluation from the Laguna Potrok Aike sedimentary record. Quaternary Science 

 Reviews, 71, pp. 147-153, doi: 10.1016/j.quascirev.2012.08.024 



150 

 

Geiss, C.E. & Banerjee, S.K., 2003. A Holocene-Late Pleistocene geomagnetic inclination 

 record from Grandfather Lake SW Alaska. Geophysical Journal International, 153,

 pp. 497-507, doi: 10.1046/j.1365-246X.2003.01921.x 

Gulick, S.P.S., Jaeger, J.M., Mix, A.C., Asahi, H., Bahlburg, H., Belanger, C.L., Berbel., 

 G.B.B., Childress, L., Cowan, E., Drab, L., Forwick, M., Fukumura, A., Ge, S., 

 Gupta, S., Kioka, A., Konno, A., LeVay, L.J., März, C., Matsuzaki, K.M., 

 McClymont, E.L., Moy, C., Müller, J., Nakamura, A., Ojima, T., Ribeiro, F.R., 

 Ridgway, K.D., Romero, O.E., Slagle, A.L., Stoner, J.S., St-Onge, G., Suto, I., 

 Walczak, M.D., Worthington, L.L., Bailey, I., Enkelmann, E., Reece, R. & 

 Swartz, J.M., 2015. Mid-Pleistocene climate transition drives net mass loss from 

 rapidly uplifting St. Elias Mountains, Alaska. PNAS, 112(49), pp. 15042-15047, doi: 

 10.1073/pnas.1512549112 

Hagstrum, J.T. & Champion, D.E., 2002. A Holocene paleosecular variation record from 

 14C dated volcanic rocks in western North America. Journal of Geophysical 

 Research, 107  B1, doi: 10.1029/2001JB000524, 2002 

Haslett, J. & Parnell, A., 2008. A simple monotone process with application to radio-

 carbon-dated depth chronologies. Journal of the Royal Statistical Society Series C 

 Applied Statistics, 57(4), pp. 399-418, doi: 10.1111/j.1467-9876.2008.00623.x 

Jaeger, J.M., Nittrouer, C.A., Scott, N.D & Milliman, J.D., 1998. Sediment accumulation 

 along glacially impacted mountainous coastline: north-east Gulf of Alaska. Basin 

 Research, 10, pp. 155-173, doi: 10.1046/j.1365-2117.1998.00059.x 

Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., & the Expedition 341 Scientists, 2014. Proc. 

 IODP, 341, College Station, TX (Integrated Ocean Drilling Program). 

King, J., Banerjee, S.K., Marvin, J. & Özdemir, Ö., 1982. A comparison of different 

 magnetic methods for determining the relative grain size of magnetite in natural 



  151 

 

 materials: some results from lake sediments. Earth and Planetary Science Letters, 59, 

 pp. 404-419, doi: 10.1016/0012-821X(82)90142-X 

King, J., Banerjee, S.K. & Marvin, J., 1983. A new rock-magnetic approach to selecting 

 sediments for geomagnetic paleointensity studies: application to paleointensity for 

 the last 4000 years. Journal of Geophysical Research, 88 B7, pp. 5911-5921, doi: 

 10.1029/JB088iB07p05911 

Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic 

 data. Geophysical Journal International, 62(3), pp. 699-718, doi: 10.1111/j.1365-

 246X.1980.tb02601.x 

Levi, S. & Banerjee, S.K., 1976. On the possibility of obtaining relative paleointensities 

 from lake sediments. Earth and Planetary Science Letters, 29, pp. 219-226, doi:  

 10.1016/0012-821X(76)90042-X 

Lisé-Pronovost, A., St-Onge, G., Gogorza, C., Haberzettl, T., Preda, M., Kliem, P., 

 Francus, P. & Zolitschka, B., 2013. High-resolution paleomagnetic secular 

 variations and relative paleointensity since the Late Pleistocene in southern South 

 America. Quaternary Science Reviews, 71, pp. 91–108, doi: 

 10.1016/j.quascirev.2012.05.012 

Lund, S.P., Stoner, J.S. & Lamy, F., 2006. Late Quaternary paleomagnetic secular 

 variation and chronostratigraphy from ODP Sites 1233 and 1234. In: Tiedmann, R., 

 Mix, A.C., Richter, C. & Ruddiman, W.F. (eds), Proceedings of the Ocean Drilling 

 Program, Scientific Results, Volume 202.  

Lund, S.P., Benson, L., Negrini, R., Liddicoat, J. & Mensing, S., 2017. A full-vector 

 paleomagnetic secular variation record (PSV) from Pyramid Lake (Nevada) from 47-

 17 ka: Evidence for the successive Mono Lake and Laschamp Excursions. Earth and 

 Planetary Science Letters, 458, pp. 120-129, doi: 10.1016/j.epsl.2016.09.036 



152 

 

Masarik, J. & Beer, J., 1999. Simulation of particle fluxes and cosmogenic nuclide 

 production in the Earth’s atmosphere. Journal of Geophysical Research, 104 D10, 

 pp. 12,099-12,111, doi; 10.1029/1998JD200091 

Mazaud, A., 2005. User-friendly software for vector analysis of the magnetization of long 

 sediment cores. Geochemistry Geophysics Geosystems, 6(12), pp. 1525-2027, doi: 

 10.1029/2005GC001036 

McNeely, R., Dyke, A.S. & Southon, J.R., 2006. Canadian marine reservoir ages, 

 preliminary data assessment, Open File 5049, Geological Survey of Canada, Ottawa. 

Molnia, B.F. & Carlson, P.R., 1978. Surface sedimentary units of northern Gulf of Alaska 

 continental shelf. The American Association of Petroleum Geologists Bulletin, 62(4), 

 pp. 633-643  

Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G.M., You, F. & 

 Kubik, P.W., 2004. Changes in the carbon cycle during the last deglaciation as 

 indicated by the comparison of 10Be and 14C records. Earth and Planetary Science 

 Letters, 219, pp. 325- 340, doi: 10.1016/S0012-821X(03)00722-2 

Nowaczyk, N.R., Frank, U., Kind, J. & Arz, H.W., 2013. A high-resolution paleointensity 

 stack of the past 14 to 68 ka from Black Sea sediments. Earth and Planetary Science 

 Letters, 384, pp. 1-16, doi: 10.1016/j.epsl.2013.09.028 

Oda, H. & Xuan, C., 2014. Deconvolution of continuous paleomagnetic data from pass-

 through magnetometer: A new algorithm to restore geomagnetic and environmental 

 information based on realistic optimization. Geochemistry, Geophysics, Geosystems, 

 15, pp. 3907-3924, doi: 10.1002/2014GC005513. 

Ólafsdóttir, S., Geirsdóttir, Á., Miller, G.H., Stoner, J.S. & Channell, J.E.T., 2013. 

 Synchronizing Holocene lacustrine and marine sediment records using 

 paleomagnetic secular variation. Geology, 41 (5), pp. 535–538, doi: 

 10.1130/G33946.1 



  153 

 

Panovska, S., Constable, C.G. & Brown, M.C., 2018. Global and regional assessment of 

 paleosecular variation activity over the past 100 ka. Geochemistry, Geophysics, 

 Geosystems, 19, pp. 1559-1580, doi: 10.1029/2017GC007271 

Peng, L. & King, J.W., 1992. A Late Quaternary geomagnetic secular variation record from 

 Lake Waiau, Hawaii, and the question of the Pacific nondipole low. Journal of 

 Geophysical Research, 97 B4, pp. 4407-4424, doi: 10.1029/91JB03074 

Praetorius, S.K., Mix, A.C., Walczak, M.H., Wolhowe, M.D., Addison, J.A. & Prahl, 

 F.G., 2015. North Pacific deglacial hypoxic events linked to abrupt ocean warming. 

 Nature, 527, pp. 362-366, doi: 10.1038/nature15753 

Reece, R.S., Gulick, S.P.S., Horton, B.K., Christeson, G.L. & Worthington, L.L., 2011. 

 Tectonic and climatic influence on the evolution of the Surveyor Fan and Channel 

 system, Gulf of Alaska. Geosphere, 7, pp. 830-844, doi: 10.1130/GES00654.1 

Reilly, B.T., Stoner, J.S., Hatfield, R.G., Abbott, M.B., Marchetti, D.W., Larsen, D.J., 

 Finkenbinder, M.S., Hillman, A.L., Kuehn, S.C. & Heil, C.W., 2018. Regionally 

 consistent western North America paleomagnetic directions from 15 to 35 ka: 

 Assessing chronology and uncertainty with paleosecular variation (PSV) 

 stratigraphy,  Quaternary Science Reviews, 201, pp. 186-205, doi: 

 10.1016/j.quascirev.2018.10.016 

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, 

 C.E.,  Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.M., Guilderson, T. 

 P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D.L., Hogg, 

 A.G.,  Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., 

 Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, 

 C.S. M. and van der Plicht, J., 2013. IntCal13 and Marine13 Radiocarbon Age 

 Calibration Curves 0– 50,000 Years cal BP, Radiocarbon, 55(4), pp. 1869–1887 



154 

 

Roberts, A.P., Lehman, B., Weeks, R.J., Verosub, K.L. & Laj, C., 1997. Relative 

 paleointensity of the geomagnetic field over the last 200,000 years from ODP Sites 

 883 and 884, North Pacific Ocean. Earth and Planetary Science Letters, 152, pp. 11-

 23, doi: 10.1016/S0012-821X(97)00132-5 

Royer, T.C., 1982. Coastal fresh water discharge in the Northeast Pacific. Journal of 

 Geophysical Research, 87 C3, pp. 2017-2021, doi: 10.1029/JC087iC03p02017 

Silberling, N.J., Jones, D.L., Monger, J.W.H., Coney, P.J., Berg, H.C., and Plafker, 

 George, 1994. Lithotectonic terrane map of Alaska and adjacent parts of Canada, In: 

 Plafker, George, and Berg, H.C., eds., The Geology of Alaska: Geological Society of 

 America, 1 sheet, scale 1:2,500,000 

Stabeno, P.J., Reed, R.K. & Schumacher, J.D., 1995. The Alaska Coastal Current: 

 Continuity of transport and forcing. Journal of Geophysical Research, 100 C2, pp. 

 2477-2485, doi: 10.1029/94JC02842 

Stabeno, P.J., Bond, N.A., Hermann, A.J., Kachel, N.B., Mordy, C.W. & Overland, J.E., 

 2004. Meteorology and oceanography of the northern Gulf of Alaska. Continental 

 Shelf Research, 24, pp. 859-897, doi: 10.1016/j.csr.2004.02.007 

Stoner, J.S., Channell, J.E.T. & Hillaire-Marcel, C., 1996. The magnetic signature of 

 rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North 

 Atlantic Heinrich layers. Paleoceanography, 11(3), pp. 309-325, doi: 

 10.1029/96PA00583 

Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C. & Kissel, C., 2000. Geomagnetic 

 paleointensity and environmental record from Labrador Sea core MD95-2024: Global 

 marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth and 

 Planetary Science Letters, 183, pp. 161-177, doi: 10.1016/S0012-821X(00)00272-7 

Stoner, J.S. & St-Onge, G., 2007. Magnetic stratigraphy in paleoceanography: reversal, 

 excursion, paleointensity and secular variation. In: Hillaire-Marcel, C. & De Vernal, 



  155 

 

 A. (eds) Proxies in Late Cenozoic Paleoceanography, Elsevier, pp. 99-138, doi: 

 10.1016/S1572-5480(07)01008-1  

Stoner, J.S., Channell, J.E.T., Mazaud, A., Strano, S. & Xuan, C., 2013. The influence 

 of high-latitude flux lobes in the Holocene paleomagnetic record of IODP Site U1305 

 and the northern North Atlantic. Geochemistry Geophysics Geosystems, 14(10), pp. 

 4623-4646, doi: 10.1002/ggge.20272 

St-Onge, G., Stoner, J.S. & Hillaire-Marcel, C., 2003. Holocene paleomagnetic records 

 from the St. Lawrence Estuary, eastern Canada: centennial- to millennial-scale 

 geomagnetic modulation of cosmogenic isotopes. Earth and Planetary Science 

 Letters, 209, pp. 113-130, doi: 10.1016/S0012-821X(03)00079-7 

Stott, L., Poulsen, C., Lund, S.P. & Thunell, R., 2002. Super ENSO and global climate 

 oscillations at millennial time scales. Science, 297, pp. 222-226, doi: 

 10.1126/science.1071627 

Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: 

 Theory and practice. Reviews of Geophysics, 31(3), pp. 319-354, doi: 

 10.1029/93RG01771 

Tauxe, L., Pick, T. & Kok, Y.S., 1995. Relative paleointensity in sediments: a Pseudo-

 Thellier Approach. Geophysical Research Letters, 22, pp. 2885–2888, doi: 

 10.1029/95GL03166 

Tauxe, L., Mullender, T.A.T. & Pick, T., 1996. Potbellies, wasp-waists, and 

 superparamagnetism in magnetic hysteresis. Journal of Geophysical Research, 

 101 B1, pp. 571-583, doi: 10.1029/95JB03041 

Thompson, R., 1973. Palaeolimnology and palaeomagnetism. Nature, 242, pp. 182-184, doi: 

 10.1038/242182a0 



156 

 

Thompson, R. & Oldfield, F., 1986. Environmental magnetism. Allen and Unwin, 

 Winchester, Mass. 

Velle, J.H., Walczak, M.H., Reilly, B., St-Onge, G., Stoner, J.S., Fallon, S. & Forwick, 

 M., in prep. A high-resolution late Quaternary inclination record from IODP 

 Expedition 341 drill Site U1419 in the Gulf of Alaska 

Verosub, K.L., Mehringer Jr, P.J. & Waterstraat, P., 1986. Holocene secular variation in 

 western North America: Paleomagnetic record from Fish Lake, Harney County, 

 Oregon. Journal of Geophysical Research, 91 B3, pp. 3609-3623, doi: 

 10.1029/JB091iB03p03609 

Walczak, M.H., Stoner, J.S., Mix, A.C., Jaeger, J., Rosen, G.P., Channell, J.E.T., 

 Heslop, D. & Xuan, C., 2017. A 17,000 yr paleomagnetic secular variation record 

 from the southeast Alaskan margin: Regional and global correlations, Earth and 

 Planetary Science Letters, 473, pp. 177-189, doi: 10.1016/j.epsl.2017.05.022 

Walczak, M.H., Mix, A.C., Fallon, S., Cowan, E.,  Praetorius, S., Du, J., Hobern, T., 

 Padman, J., Fifield, K., Stoner, J.S., Haley, B., in prep, Coupled changes in 

 Northeast Pacific ventilation and Cordilleran Ice Sheet discharge may precede 

 Heinrich Events. Science 

Weeks, R.J., Laj, C., Endignoux, L., Fuller, M., Roberts, A., Manganne, R., Blanchard, 

 E. & Goree, W., 1993. Improvements in long-core measurement techniques: 

 applications in palaeomagnetism and palaeoceanography. Geophysical Journal 

 International, 114, pp. 651-662, doi: 10.1111/j.1365-246X.1993.tb06994.x 

Weeks, R.J., Roberts, A.P., Verosub, K.L., Okada, M. & Dubuisson, G.J., 1995. 34 

 Magnetostratigraphy of upper Cenozoic sediments from Leg 145, North Pacific 

 Ocean.  In: Rea D.K., Basov, I.A., Scholl, D.W. & Allan, J.F. (eds.), Proceedings of 

 the Ocean Drilling Program, Scientific Results, Vol. 145  



  157 

 

Yamamoto, Y., Yamazaki, T., Kanamatsu, T., Ioka, N. & Mishima, T., 2007. Relative 

 paleointensity stack during the last 250 kyr in the northwest Pacific. Journal of 

 Geophysical Research, 112, B01104, doi: 10.1029/2006JB004477 

Zijderveld, J.D.A., 1967. Demagnetisation of rocks: Analysis of results, In: Collinson, D. 

 et al., (eds) Methods in Palaeomagnetism, pp. 254–286, Elsevier, New York. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

GENERAL CONCLUSION 

Introduction 

The study of IODP Exp. 341 drill Sites U1418 and U1419 as presented in the previous 

three chapters, permitted the overall objective of this thesis to be achieved; “to construct a 

paleomagnetic record that will permit a detailed study of the Earth’s geomagnetic field 

dynamics, as well as the evolution of the northwestern Cordilleran Ice Sheet during the late 

Pleistocene and Holocene in the Gulf of Alaska”. The latter part of the objective was achieved 

in chapter one, where the magnetic and physical properties of the U1419 sediment sequence 

were used to reconstruct the advance and retreat of the northwestern Cordilleran Ice Sheet. 

The paleomagnetic aspect of the objective was achieved in chapters two and three through 

studies of both Sites U1418 and U1419. Below, the main conclusions from each chapter will 

be summarized and discussed in terms of the objectives and the specific questions posed, 

their implications, and limitations. Following this, a section is dedicated to viewing all three 

chapters together, before the final paragraphs outline perspectives of future work.  

 

Chapter 1 

In chapter one, the study of physical and magnetic properties of the sediment at site 

U1419 was used to achieve the first objective and to answer the specific questions raised in 

connection with the Gulf of Alaska glacial history. The main question asked was; How do 

the changes in magnetic properties (e.g., magnetic susceptibility, grain size and mineralogy) 

reflect changes such as advance and retreat phases of the NCIS? The use of magnetic 

susceptibility in paleoenvironmental studies and reconstructions of glacial variability is well-
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established (e.g., Andrews et al., 1995; Robinson et al, 1995; Stoner et al., 1996; Jessen et 

al., 2010). At Site U1419, magnetic susceptibility (kLF) was used as a proxy for changes in 

input from land, i.e. glacial activity, where high (low) kLF indicates high (low) glacial activity. 

It is likely that some of the variations in magnetic susceptibility observed at Site U1419 are 

related to the sediment source as well, as some southern Alaskan geological terranes are 

characterized by lower magnetic susceptibility (Yakutat and Chugach terranes; Cowan et al., 

2006). Such changes in sediment provenance may be observed in the U1419 record as smaller 

variations in magnetic susceptibility (e.g., within Unit II). The large-scale changes in 

susceptibility, as those observed at Unit breaks, are, however, interpreted to relate to the 

amount of terrigenous material either through glacial advance or retreat. Although the main 

changes in glacial dynamics may have been interpreted from the magnetic susceptibility 

record, it is the combination of magnetic properties that informs on the details of the record. 

For example, facies 1 intervals are characterized by low magnetic susceptibility in 

combination with high coercivity (MDFARM), somewhat finer magnetic grain sizes 

(kARM/kLF; Banerjee/King plot), and generally lower magnetic concentration (magnetic 

remanences). Together with lithology and density, these characteristics have proven useful 

in identifying different depositional environments. Integral to the interpretation of the facies 

observed at Site U1419, was also the availability of lithological and rock magnetic analogues 

of more recent and well-constrained events, such as the Bølling-Allerød, via the studies of 

Davies et al. (2011), Davies-Walczak et al. (2014), Praetorius et al. (2015), and Walczak et 

al. (2017).  

Another question related to the first objective was; What were the dynamics of the 

NCIS prior to, and during the LGM? The observation of sediment with physical, lithologic, 

and magnetic properties similar to that of the LGM at the base of the U1419 (facies 3) was 

tentatively interpreted to represent the final stages of a retreat of a pre-LGM glaciation 

occurring until 52,700 cal yr BP. In fact, the transition from this event (facies 3) to the 

following facies 1 interval is also similar to that observed for the final stages of the LGM and 

the deglacial transition observed between ~17,000 and 14,000 cal yr BP both in the U1419 

record and in the site survey core EW0408-85JC (Davies et al., 2011).  Early to mid- MIS 3 
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(52,700-42,700 cal yr BP) was characterized by environmental conditions similar to those 

previously observed for the deglacial transition (Bølling-Allerød and Younger Dryas) where 

high productivity intervals with very low magnetic concentration and high coercivity 

alternate with periods of stronger glacial influence characterized by high magnetic 

concentration and low coercivity. Following this period of alternating conditions, an increase 

in concentration parameters was interpreted to indicate a build-up of glacial conditions until 

41,800 cal yr BP. With, what appears as, only minor variations in sedimentation and ice-front 

variability, this period lasted until approximately 25,000 cal yr BP, after which the ice front 

may have become more dynamic as suggested by larger amplitude variations in magnetic 

properties. The highest sedimentation rates observed (835 cm/kyr) and what may be a short-

lived pulse of sediment from a different source region characterized the onset of deglaciation 

at 18,000 cal yr BP. Similar to observations made by Davies et al. (2011), IRD disappeared 

and laminations were deposited from 14,700 cal yr BP, indicating that glaciers had retreated 

onto land, or, at least, behind fjord sills. The glacial dynamics as interpreted from the 

environmental magnetic studies of Site U1419 are tentatively outlined in Figure 37 in order 

to summarize the conclusions from chapter one.  
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Figure 37: From the left: Site U1419 magnetic susceptibility and sedimentation rates 

(averaged over 500 years; Walczak et al., in prep), tentative interpretation of the ice front’s 

position based on Site U1419, and a summary of the glacial history as interpreted from Site 

U1419. 

 

The final question for the first objective was; How does the U1419 record 

complement or add to our current understanding of the glacial history of this region? As 

outlined in the introduction, the glacial history of the southern margin of the NCIS is 

incomplete both prior to and during the LGM. Although evidence exists for pre-LGM glacial 

advances to the shelf edge (e.g., Elmore et al., 2013; Montelli et al., 2017), the timing and 

extent of these are poorly constrained. The results from chapter one adds information on the 
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history of late Quaternary glacial dynamics in this region. If facies 3 truly does reflect the 

final stages of a pre-LGM shelf edge advance, this may correspond to some of the seismically 

inferred pre-LGM shelf-wide glaciations and possibly also to the regionally significant 

glaciation in Alaska with glacial retreat ages falling within MIS4/MIS3 (cf. Kaufman et al., 

2011). Although Site U1419 alone is not enough to determine that facies 3 represent the final 

stages of an earlier glaciation, it is the first step towards constraining the pre-LGM glacial 

history in the Gulf of Alaska. Another new element to the glacial history is the period of 

alternating conditions between 52,700 and 42,700 cal yr BP. Although a parallel has been 

drawn between facies 1 and the Bølling-Allerød/early Holocene, and between facies 2 and 

the Younger Dryas, it is evident from the higher presence of clasts and the higher 

sedimentation rates that glaciers were a stronger influence at the core site during the 

early/mid MIS 3 than during the Bølling-Allerød, Younger Dryas, and early Holocene. 

Perhaps the ice sheet was at a “tipping point” during this time, fluctuating between more and 

less active stages, before the build-up to the full glacial conditions. The main contribution of 

chapter one is the observation of the prolonged glacial period, the Alaskan LGM, that may 

have commenced as early as 41,800 cal yr BP and lasted until the onset of laminated sediment 

at 14,700 cal yr BP. It is surprising that proximal glacial conditions prevailed for such an 

extended period of time. The LGM has previously been estimated between 23,000 and 14,700 

cal yr BP (e.g., Mann & Peteet, 1994; Mann & Hamilton, 1995; Clapperton, 2000; Davies et 

al., 2011). With the results from chapter one, the onset of the Gulf of Alaska glacial maximum 

could be extended back to ~40,000 cal yr BP. However, the most dynamic period of the 

glacier front remains similar to the old estimates of the LGM, between ~25,000 and 18,000 

cal yr BP. 

An important limitation of chapter one is the lack of control samples from the 

different geological terranes of southern Alaska. With a set of such samples available, rock 

magnetic analyses may have allowed a sediment provenance study similar to that of Cowan 

et al. (2006) from the southern Alaska coast. This data could provide more detailed 

constraints on the dynamics and activity of different outlets of the NCIS. With the 

information available from chapter one, we have to assume that Site U1419 reflects the 
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general activity of the Bering Ice Stream only, as the drill Site is located adjacent to the 

Bering Trough. Although chapter one presents a general overview of glacial activity close to 

Site U1419, future provenance studies from IODP Exp. 341 working groups will shed more 

light on the glacial history of this region.  

 

Chapter 2 

In chapter two, the paleomagnetic record at Site U1419 was explored to achieve the 

second objective of the thesis, namely, to reconstruct late Pleistocene and Holocene 

geomagnetic variability from the Gulf of Alaska. Results from this chapter revealed that the 

Site is not suitable for paleointensity studies. This was inferred from the very weak remanent 

magnetization and complex magnetic mineralogy, likely resulting from a combination of the 

ice-proximal setting of the Site, and post-depositional processes such as reduction diagenesis 

related to periods of increased productivity (cf. chapter one). Nonetheless, Site U1419 seems 

to have preserved a reliable inclination record that, through careful evaluation and removal 

of disturbed and unreliable intervals, reflects regional-scale geomagnetic change. It was 

shown in this chapter that using the inclination as measured after the 20 mT AF 

demagnetization step alone provides the most reliable inclination estimate for Site U1419, as 

including higher demagnetization steps in a traditional characteristic remanent magnetization 

(ChRM) added noise rather than signal to the record. The high temporal resolution of the Site 

and the detailed age model (Walczak et al., in prep) provides a unique opportunity for 

regional stratigraphic correlation. Another result from the second chapter is the age model 

for Site U1418. Along with 23 radiocarbon dated intervals from the U1418 splice record, 18 

tie-points based on magnetic susceptibility to the site survey core EW0408-87JC (Praetorius 

et al., 2015) allow the past ~40,000 cal yr BP to be fairly well constrained. This, in turn, 

permitted a detailed comparison between Site U1419 u-channel and Site U1418 shipboard 

inclination records, further supporting the recording of a regional geomagnetic signal at these 

Sites. An additional outcome from this chapter is the demonstration of the advantage of using 
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shipboard records; both to check for u-channel sampling disturbance in intervals that are 

difficult to sample (e.g., soupy mudline sediments, or clast-rich diamict), and for 

comparisons to other sites that have yet to be sampled for u-channels or analyzed. 

Furthermore, chapter two illustrates that “imperfect” records such as Site U1419 should not 

be immediately dismissed as they may still provide useful paleomagnetic records. 

One of the specific questions related to the second objective was; How do these 

records compare with other, independently dated, regional records? What are pronounced 

similarities or differences? Site U1419 inclination was compared to other regional 

independently dated records from the Gulf of Alaska (EW0408-85JC and Site U1418), and 

the regional PSV stacks NEPSIAS (including records from Alaska, Oregon and Hawaii) and 

WNAM (British Columbia, Utah and Idaho). A total of 16 inclination features could be 

correlated across these records, with 10 of them being consistent across the broader 

northeastern Pacific/western North American region. Pronounced differences between these 

records relate to differences in temporal resolution. Although the high temporal resolution of 

Site U1419 provides a unique opportunity to study geomagnetic field changes in detail, it is 

also somewhat of an obstacle for comparison as few other regional records have similar 

resolutions. Especially pronounced similarities are the features g through b that are observed 

in all the Gulf of Alaska records, as well as in the WNAM17 inclination stack (Reilly et al., 

2018). This sequence of features occurs between ~21,000 cal yr BP (g) and 15,000 cal yr BP 

(b) in portions of the age models constrained by both radiocarbon dates as well as tie-points 

to the site survey cores. The most prominent feature in this sequence is the steep feature f at 

19,700 cal yr BP that is presumably observed in the WNAM17 stack as well. Feature f and/or 

the entire sequence of features from g to b provides a robust stratigraphic marker in regional 

correlation for other records that have less age control.  

Another question investigated in the second chapter was; What do the Gulf of Alaska 

paleomagnetic records indicate about the nature of the geomagnetic signal in the northeast 

Pacific, and what does that reveal about geomagnetic field dynamics? One observation made 

from the second chapter is the apparent lack of recordings of the Laschamp (41 ka) and Mono 
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Lake (34-30 ka) excursions in the U1419 record. These events are often recognized in 

paleomagnetic records from around the world (e.g., Laj et al., 2000; Nowaczyk et al., 2012; 

Lisé-Pronovost et al., 2013; Lund et al., 2017a, 2017b). From the U1419 results alone, it is 

not clear whether the lack of the Laschamp and Mono Lake at Site U1419 is related to the 

quality of the record in these intervals, or if these events are recorded with a different 

signature in the northeast Pacific region, or a combination of the two. Another finding from 

this chapter relates to the several abrupt transitions observed in the inclination record either 

from steep to shallow, and from shallow to steep inclinations. These transitions of ~20-40° 

occur over periods of less than ~1000 years indicating that PSV rates of change are similar 

to late Pleistocene rates observed in the North Atlantic (Lund et al., 2005). As stated in 

chapter two, this implies that there is no more stability to the GAD field in the Pacific than 

elsewhere (e.g., Peng & King, 1992; McElhinny et al., 1996), at least on the timescales 

investigated at Site U1419. The timescales and persistence of these features may be 

constrained by further studies Pacific paleomagnetic records and other Exp. 341 drill Sites. 

 

Chapter 3 

Chapter three also concerns the second objective of reconstructing late Pleistocene 

and Holocene geomagnetic variability from the Gulf of Alaska. In order to achieve this 

objective, the paleomagnetic record of Surveyor Fan Site U1418 was explored. At this Site, 

a strong, single component magnetization is carried by a generally down-core stable magnetic 

mineralogy dominated by PSD magnetite. The characteristic remanent magnetization was 

defined between the AF demagnetization steps of 20 and 60 mT. The similarities between 

Site U1418 shipboard and U1419 u-channel inclinations were demonstrated already in 

chapter two, but in the third chapter the resemblance is further substantiated by the 

comparisons between U1418 u-channel data and Site U1419. The striking similarities 

between these two records provide an opportunity to increase the resolution of the U1418 

age model through inclination tie-points to the U1419 age model (Walczak et al., in prep). 
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Seven tie-points were made between the ages of 26,000 and 18,000 cal yr BP, and the U1418 

age model and sedimentation rates were adjusted accordingly. On this new age model, Site 

U1418 inclination and declination were compared to other regional directional records, 

suggesting a total of 13 and five similar features for inclination and declination, respectively. 

The relative paleointensity proxy from Site U1418 was developed using the slope method of 

NRM/IRM and was compared with previously published RPI records, as well as with the 

Greenland 10Be flux record. However, the local, regional, global (and, likely, combination) 

intensity signal recorded at Site U1418 remains undetermined.  

One of the specific questions asked in relation to the second objective was; How do 

these records compare with other, independently dated, regional records? What are 

pronounced similarities or differences? Both the U1418 inclination and declination records 

display similarities to other Gulf of Alaska and regional records, suggesting that this Site 

captured regional-scale inclination variability. As for Site U1419, the high resolution of Site 

U1418 provides a challenge when it comes to regional comparisons. Relative paleointensity 

records from the broader Pacific region were selected for comparison to U1418 based on 

their temporal resolution. In the Holocene and deglacial, two Arctic records were used, 

whereas equatorial and south Pacific records were selected for the late Pleistocene portion. 

For the late Pleistocene, millennial-scale paleointensity features were not definitively 

recognized across the compared records, whereas more similarities were observed for the 

Holocene. These ambiguities led to the postulation that a global or broader-regional 

geomagnetic intensity signal may not be applicable on millennial-scale variability. However, 

as Site U1418 is, per now, the only normalized intensity record available at this temporal 

resolution within this region, it is not possible to verify the validity of the record.  

Another question posed in the context of the second objective was; How do these 

records compare with North Atlantic records and global stacks? The U1418 normalized 

intensity was also compared to an RPI stack composed of globally distributed marine and 

lacustrine records from, amongst others, the Iberian Margin, the Scotia Sea, Patagonia, the 

Bermuda Rise, South Atlantic Ocean, and France (Channell et al., 2018). Interestingly, this 
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comparison shows that the U1418 paleointensity record may have captured global-scale 

intensity trends over longer timescales, i.e. 5,000-10,000 years. There may be millennial-sale 

variations similar across these records that the lower resolution RPI stack does not reveal. 

This, again, highlights the use for more high-resolution records.  

 

The Gulf of Alaska records 

The study of rock magnetic properties of Site U1419 provides a deeper understanding 

of the paleomagnetic record from this Site. Having the overview that chapter one provides of 

the variations in sedimentary environments, offered a more complete understanding of 

factors that may have complicated the U1419 paleomagnetic record; e.g., the clast-rich 

diamict that may have made u-channel sampling difficult, the high sedimentation rates related 

to the ice proximal location of the site, and the periods of higher productivity and reductive 

diagenesis. All this information was obtained from the environmental magnetic analyses of 

the first chapter and was brought into consideration while working on the second chapter. 

This addresses the advantage and importance of rock and environmental magnetic analyses 

prior to the treatment and interpretation of paleomagnetic data.   

The second and third chapters are both important constituents in achieving the second 

objective, and the two largely built upon and supported each other. In chapter two, using the 

U1418 shipboard inclination on its own age model was integral in supporting the 

interpretation of Site U1419 as a regional geomagnetic signal, as the noise and uncertainties 

related to this Site complicated interpretations. In chapter three, the roles were reversed when 

the detailed age model of Site U1419 was used to enhance the U1418 age model through 

correlations of inclination features, thereby improving the chronology of the U1418 age 

model. This, in turn, allowed for a more detailed comparison of the U1418 record to other 

regional records. The use of these two records through chapters two and three speak to the 

strength of using PSV as a regional correlative tool. Together, these two records, both with 

similar high temporal resolution and individual age constraints, make up a robust inclination 
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record from the Gulf of Alaska that is especially well-defined between 30,000 cal yr BP and 

the present. With the addition of declination and paleointensity from the third chapter, a 

record of the full paleomagnetic vector is available from the Gulf of Alaska, providing a first 

step towards defining the late Pleistocene and Holocene geomagnetic variability in the 

northeast Pacific.  

 

Perspectives 

As mentioned previously, the addition of rock-magnetic and geochemistry-based 

provenance studies to the U1419 record would provide a more detailed understanding of 

NCIS dynamics as well as sedimentary processes at this Site. Furthermore, an environmental 

magnetic study of Site U1418, similar to that of chapter one, could add a spatial perspective 

to the glacial history reconstruction. With the high temporal resolution of these Sites and the 

well-resolved age models available, there is potential for a detailed Gulf of Alaska glacial 

history record to be developed. With this, one of the main objectives of IODP Expedition 

341 can be achieved; namely, to “establish the timing of advance and retreat phases of the 

northwestern Cordilleran Ice Sheet to test its relation to dynamics of other global ice sheets”. 

Such a comparison can provide new insights to the possible synchronicity between the large 

Pleistocene ice sheets and the understanding of the driving mechanisms behind global 

millennial-scale climatic cycles and the role of orbital and/or greenhouse gas forcing (cf. 

Jaeger et al., 2011).  

With regards to the paleomagnetic records, continued u-channel analyses on Site 

U1418, below 64 m CCSF-A, would be of great interest as this could help verify or disprove 

the U1419 inclination record in this interval (i.e. the record older than ~30,000 cal yr BP). 

As U1419 is the only high-resolution inclination record from this region, there are no 

comparable records that can aid in defining the geomagnetic signal at this Site prior to 30,000 

cal yr BP. Continued Site U1418 u-channel studies could resolve the remaining questions 

regarding the lack of observations of the Laschamp and Mono Lake geomagnetic excursions 
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at Site U1419 and whether this is related to the quality of the record, or if there are regional 

differences in the recording of such events. Furthermore, Site U1418 and U1419, along with 

other IODP Exp. 341 Sites, can define the geomagnetic signal for the northeast Pacific 

beyond the past ~30,000 cal yr BP, and form the potential for a robust regional paleomagnetic 

reference record. 
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