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Abstract 24 

Organisms inhabiting coastal waters naturally experience diel and seasonal physico-25 

chemical variations. According to various assumptions, coastal species are either considered to 26 

be highly tolerant to environmental changes or, conversely, living at the thresholds of their 27 

physiological performance. Therefore, these species are either more resistant or more sensitive, 28 

respectively, to ocean acidification and warming. Here, we focused on Crepidula fornicata, an 29 

invasive gastropod that colonized bays and estuaries on northwestern European coasts during 30 

the 20th century. Small (< 3 cm in length) and large (> 4.5 cm in length), sexually mature 31 

individuals of C. fornicata were raised for 6 months in three different pCO2 conditions (390, 32 

750 and 1400 µatm) at four successive temperature levels (10, 13, 16 and 19°C). At each 33 

temperature level and in each pCO2 condition, we assessed the physiological rates of 34 

respiration, ammonia excretion, filtration and calcification on small and large individuals. 35 

Results show that, in general, temperature positively influenced respiration, excretion and 36 

filtration rates in both small and large individuals. Conversely, increasing pCO2 negatively 37 

affected calcification rates, leading to net dissolution in the most drastic pCO2 condition (1400 38 

µatm) but did not affect the other physiological rates. Overall, our results indicate that C. 39 

fornicata can tolerate ocean acidification, particularly in the intermediate pCO2 scenario. 40 

Moreover, in this eurythermal species, moderate warming may play a buffering role in the 41 

future responses of organisms to ocean acidification.  42 

 43 

Keywords: calcification, coastal system, invasive species, metabolism, mollusk, pCO2, 44 

temperature 45 

 46 

 47 

 48 
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Introduction 49 

Predictions indicate that coastal ecosystems will be strongly affected by ocean 50 

acidification and warming, currently two of the most prominent anthropogenic processes 51 

influencing marine life (Harley et al. 2006). Due to the increase in atmospheric CO2 partial 52 

pressure (pCO2), pH in surface waters is predicted to decline by 0.06 to 0.32 units and sea 53 

surface temperatures to increase by 1.0 to 3.7°C by the end of the century, depending on the 54 

Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway 55 

considered (Stocker et al. 2013). Modifications in seawater carbonate chemistry due to ocean 56 

acidification lead to a decrease in carbonate ion concentrations (CO3
2-) (Orr et al. 2005) and a 57 

reduction in the calcium carbonate saturation state (Ω), which regulates the thermodynamics of 58 

calcium carbonate (CaCO3) precipitation (Feely et al. 2009). In estuarine and coastal waters, 59 

pH is more variable than in the open ocean due to intense biological and biogeochemical 60 

processes (Andersson and Mackenzie 2011). In these habitats, ocean acidification and warming 61 

will shift the baselines, exacerbate natural variations in pH and temperature, and probably 62 

threaten the communities living there (Waldbusser and Salisbury 2013). 63 

Mollusks constitute a major taxonomic group in estuarine and coastal waters in terms 64 

of community structure and ecosystem functioning (Gutiérrez et al. 2003). Because most marine 65 

mollusk taxa accumulate significant amounts of CaCO3 to form protective external shells, they 66 

may be sensitive to the changes in pH and carbonate chemistry induced by ocean acidification 67 

(for review, see Gazeau et al. 2013), although recent studies have shown that some species 68 

could be resistant to elevated pCO2 (Range et al. 2011; Ries et al. 2009). Along with direct 69 

impacts on calcification, high CO2 concentrations may also have indirect effects on metabolism 70 

by disturbing the extracellular acid-base equilibrium, leading to general internal acidosis 71 

(Melzner et al. 2009). These potential shifts in acid-base homeostasis have the potential to 72 

change organisms’ energy balance (Pörtner et al. 2005).   73 
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In mollusks, the effects of elevated pCO2 and/or decreased pH alone are highly species-74 

specific (see review in Gazeau et al. 2013), and depend on species sensitivity and any existing 75 

compensation mechanisms (Michaelidis et al. 2005). To better estimate future ocean 76 

acidification effects on mollusk species, various physiological processes have been studied in 77 

bivalves and gastropods such as respiration (Beniash et al. 2010; Bibby et al. 2007), excretion 78 

(Fernandez-Reiriz et al. 2011; Liu and He 2012), feeding (Fernandez-Reiriz et al. 2012; 79 

Marchant et al. 2010), immune response (Bibby et al. 2008; Matozzo et al. 2012) and protein 80 

or enzyme production (Matozzo et al. 2013; Tomanek et al. 2011). However, few studies have 81 

simultaneously assessed the responses of more than three physiological processes to ocean 82 

acidification and warming. The concomitant increase in seawater temperature and pCO2 are 83 

likely to affect mollusk metabolism because, in addition to changes in gas solubility and the 84 

proportion of carbon species (Zeebe 2011), temperature also strongly affects physiological and 85 

biochemical reactions (Cossins and Bowler 1987). Because warming can modulate the 86 

metabolism responses to ocean acidification (Ivanina et al. 2013; Melatunan et al. 2013), 87 

investigations of both pH and temperature effects are valuable for understanding the responses 88 

of mollusks in the future ocean. 89 

 One of the most abundant and widespread shelled mollusks on the French northwestern 90 

Atlantic and Channel coasts is the slipper limpet Crepidula fornicata, Linnaeus 1758 91 

(Blanchard 1997). This gastropod native to the northeastern American coast was introduced in 92 

Europe at the end of the 19th century, mainly via oysters imported for farming (Blanchard, 93 

1995). It then colonized European coasts from southern Sweden to southern France, becoming 94 

invasive in some places (Blanchard 1997). C. fornicata lives in shallow sites, especially in bays 95 

and estuaries where it can reach very high densities of more than 1000 individuals per m2 96 

(Blanchard 1995). This species is known to be highly robust to environmental stress, in 97 

particular temperature and salinity (Diederich and Pechenik 2013; Noisette et al. 2015), 98 
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parameters that have diel and seasonal variations in these coastal habitats. Established C. 99 

fornicata populations have largely affected biodiversity and ecosystem functioning in terms of 100 

sediment modifications (Ehrhold et al. 1998), changes in faunal assemblages (De Montaudouin 101 

et al. 1999) and trophic structure (Chauvaud et al. 2000). This species also affects benthic 102 

biogeochemical cycles by enhancing filtration, metabolic activities, CaCO3 production, and the 103 

recycling of nutrients and dissolved carbon back into the pelagic ecosystem (Martin et al. 2006; 104 

Martin et al. 2007; Ragueneau et al. 2002) 105 

Although C. fornicata is likely highly tolerant to environmental fluctuations, the 106 

combined effects of decreased pH and increased temperature may push this species away from 107 

its physiological optimum. Thus the objective of this work was to quantify the respiration, 108 

ammonia excretion, filtration and calcification responses of small and large specimens of C. 109 

fornicata in different temperature and pCO2
 conditions. Investigating the physiology of this key 110 

engineer in some coastal ecosystems in a context of climate change is one way to better 111 

understand the sensitivity of this species and its potential future ecological impact.   112 

 113 

Methods 114 

 115 

Sampling site and in situ conditions 116 

C. fornicata stacks were collected by SCUBA divers on 30 November 2011, in Morlaix 117 

Bay (northwestern Brittany, France), at the “Barre des Flots” site (3°53.015'W; 48°40.015'N) 118 

at approximately 11 m depth. No temporal series of abiotic parameters were available for this 119 

exact location. However, variations in the physico-chemical parameters (surface 120 

measurements) at a station (called Estacade), located approximately 10 km from the Barre des 121 

Flots site, were obtained from the Service d’Observation des Milieux LITorraux (SOMLIT) 122 

between 2010 and 2013, with a sampling step of 15 days. Between October 2010 and March 123 
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2013, temperature varied between 8.1°C (January 2011) and 16.5°C (August 2011) with mean 124 

values (± SE) of 10.1 ± 0.2°C in winter, 12.7 ± 0.4°C in spring and 15.8 ± 0.02°C in summer.  125 

In Morlaix Bay (2009 to 2011), phytoplankton groups (> 5µm), the most important food 126 

resource of C. fornicata (Decottignies et al. 2007), were mainly dominated by planktonic 127 

diatoms in concentrations varying between 10 to 300 cells mL-1 (depending on the season) and 128 

dinoflagellate species that were found at lower abundances (ca. 25 cells mL-1; Leroy 2011). 129 

 130 

Biological material 131 

C. fornicata forms stacks of several individuals in which each individual adheres to the 132 

dorsal surface of the shell of the subjacent partner in the stack. It is a protandrous 133 

hermaphrodite, meaning that the small individuals at the top of the stacks are generally males 134 

and the large ones at the bottom, females (Coe 1936). After sampling, stacks were brought 135 

directly to the Station Biologique de Roscoff where they were kept in natural, unfiltered 136 

seawater for 6 weeks at a temperature gradually lowered to 10°C, reflecting the seasonal drop 137 

in temperature between autumn and winter. Sexually mature individuals (more than 1 cm in 138 

length) were selected and separated into two class sizes: small individuals (29.5 ± 0.9 mm 139 

length) from the top of the stack and larger ones (45.4 ± 0.6 mm length) from the bottom. They 140 

were separated from the stack and individually labeled with tags glued on their shell. Empty 141 

subjacent shells, whose soft tissue was removed, served as substratum for the sampled live 142 

individuals. Other empty shells whose size was similar to that of the substratum shell of live 143 

individuals were also selected for flux corrections (see part “Metabolic rates and O:N ratios” 144 

below). All the shells were gently brushed to remove epibionts without altering periostracum 145 

layer. 146 

Length (in mm), volume (in mL) and tissue dry weight (DW in g) of the live individuals 147 

were determined for each incubated specimen at the end of the whole experiment. Length was 148 
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measured with calipers, volume was estimated as the volume of seawater moved when 149 

individual was immersed and DW was determined after drying fresh samples at 60°C for 48 h.  150 

 151 

Experimental conditions  152 

Single small and large individuals, along with their substratum shell, were randomly 153 

distributed into nine 10 L aquaria with 10 individuals of each class size per each aquarium. 154 

Empty shells were also distributed into nine other 10 L aquaria (4 shells per aquarium). At the 155 

beginning of the experiment, pH was gradually decreased over 2 weeks by 0.02 pH unit per day 156 

from 8.1 until the different pH treatments were reached. C. fornicata individuals and empty 157 

shells were then subsequently held for 24 weeks (12 January to 27 June 2012) in three pCO2 158 

treatments selected according to the recommendations in Barry et al. (2010): (1) 390 µatm (pHT 159 

= 8.07) represented current pCO2, (2) 750 µatm (pHT = 7.82) corresponded to the elevated pCO2 160 

level predicted by the IPCC for the end of the century (Solomon et al. 2007) and (3) 1400 µatm 161 

(pHT = 7.56) represented a pCO2 five-fold higher than preindustrial pCO2 (280 µatm) also 162 

predicted for 2100 (Stocker et al. 2013). pCO2 was adjusted by bubbling CO2-free air (current 163 

pCO2) or pure CO2 (elevated pCO2) in three 100 L header tanks supplied with unfiltered 164 

seawater pumped directly from the foot of the Station Biologique de Roscoff. Each of the three 165 

pCO2 treatments had six replicate 10 L aquaria, three for live organisms and three for empty 166 

shells. They continuously received CO2-treated seawater at a rate of 9 L h-1 (i.e. a renewal rate 167 

of 90% h-1) from the header tanks. pCO2 was monitored and controlled by an offline feedback 168 

system (IKS Aquastar, Karlsbad, Germany) that regulated the addition of gas in the header 169 

tanks. The pH values of the IKS system were adjusted from daily measurements of pHT in the 170 

18 aquaria using a pH meter (826 pH mobile, Metrohm AG, Herisau, Switzerland) calibrated 171 

with Tris HCl and 2-aminopyridine HCl buffers (Dickson et al. 2007). 172 
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In each pCO2 treatment, temperature was raised from 10 to 19°C with an incremental 173 

step of 3°C. The first three temperature levels (10 to 16°C) simulated the natural change in 174 

temperature from winter to summer in Morlaix Bay whereas the last level (19°C) corresponded 175 

to a temperature increase of 3°C predicted for the end of the century (Solomon et al. 2007). C. 176 

fornicata individuals were held for three weeks at each temperature before carrying out the 177 

metabolic measurements (see below). This acclimation time was long enough to overcome the 178 

immediate stress response (Meistertzheim et al. 2007). Temperature was maintained at (1) 10°C 179 

(1st trial period) from 16 January to 12 February 2012; (2) 13°C (2nd trial period) from 27 180 

February to 25 March 2012; (3) 16°C (3rd trial period) from 9 April to 6 May 2012, and (4) 181 

19°C (4th trial period) from 21 May to 27 June 2012. Between two temperature levels, 182 

temperature was gradually increased by 0.2°C day-1 over two weeks. The 18 aquaria were 183 

placed in thermostatic baths in which temperature was regulated to within ± 0.2°C using 184 

submersible 150 to 250 W heaters controlled by the IKS system. 185 

Three independent 10 L aquaria named “control” were maintained at 10°C under 186 

ambient pH (with no pCO2 control) until the end of the experiment in order to estimate a 187 

potential bias on metabolism induced by the mesocosm experiment over time. Each aquarium 188 

contained 10 small and 10 large slipper limpets on their substratum shell and was supplied with 189 

the same seawater sourced from the header tanks. They were kept in a thermostatic bath 190 

regulated at 10°C by an aquarium chiller (TC5, TECO®, Ravenna, Italy). 191 

In addition to the natural phytoplankton found in the unfiltered seawater, all slipper 192 

limpets were fed twice a week with a stock solution composed of the diatom Chaetoceros 193 

gracilis (~ 15 × 106 cells mL-1) and the dinoflagellate Isochrysis affinis galbana (~ 26 × 106 194 

cells mL-1); 400 mL of this microalgal mix was added to each aquarium at each feeding. 195 

Seawater flow was stopped for 2 h when organisms were fed and filtering actively. During this 196 

feeding time, pH variation did not exceed 0.05 units. 197 
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Individuals that did not adhere to their substratum shell and that showed no reaction 198 

when their foot was stimulated were counted as dead and removed from the tanks. Mortality 199 

reached only 8% at the end of the experiment among all pCO2 conditions. 200 

 201 

Seawater parameter monitoring 202 

Seawater parameters were monitored throughout the experiment. pHT and temperature 203 

were recorded daily in each of the 21 aquaria (18 + 3 controls) using a pH meter (826 pH 204 

mobile, Metrohm AG, Herisau, Switzerland) as described above. Total alkalinity (AT) was 205 

measured at each trial period by 0.01 N HCl potentiometric titration on an automatic titrator 206 

(Titroline alpha, Schott SI Analytics, Mainz, Germany). Salinity was also measured at each trial 207 

period with a conductimeter (LF 330/ SET, WTW, Weilheim, Germany). Seawater carbonate 208 

chemistry, i.e. dissolved inorganic carbon (DIC), pCO2 and the saturation state of aragonite 209 

(ΩAr) were calculated for each pCO2 level and temperature with CO2SYS software (Lewis and 210 

Wallace 1998) using constants from Mehrbach et al. (1973) refitted by Dickson & Millero 211 

(1987). 212 

 213 

Metabolic rates and O:N ratios 214 

Metabolic rates were assessed at each temperature level after a four-day starvation 215 

period and after the shells were gently cleaned to remove biofilm-forming organisms. Two 216 

small and two large individuals were selected per aquarium. They were incubated individually 217 

in 185 mL (small) and 316 mL (large) acrylic chambers (Engineering & Design Plastics Ltd, 218 

Cambridge, UK) filled with seawater from their respective aquaria. They were put on a plastic 219 

grid above a stirring bar (speed 100 rpm.), which ensured water homogeneity. Chambers were 220 

placed in their original aquaria for incubation to keep the temperature constant. Incubations 221 

were carried out in dark for 2 to 10 h, depending on temperature and limpet size, to maintain 222 
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oxygen saturation above 80% until the end of the incubation. At each temperature period, empty 223 

shell incubations were carried out to correct individual rates for fluxes related to the substratum 224 

shell. Blank incubations containing only seawater from the aquarium also helped to correct 225 

fluxes for any microbiological activity in seawater. 226 

Oxygen concentrations were measured at the beginning and the end of the incubation 227 

period with a non-invasive fiber-optics system and reactive oxygen spots attached to the inner 228 

wall of the chambers (FIBOX 3, PreSens, Regensburg, Germany). Spots were calibrated at the 229 

beginning of each trial period with 0% and 100% oxygen buffers. Seawater was sampled for 230 

ammonium (NH4
+) concentration and AT measurements with 100 mL syringes at the beginning 231 

of the incubation, directly in the aquaria just after the chambers were closed, and at the end of 232 

the incubation, in the incubation chamber itself. Samples were filtered through 0.7 μm 233 

Whatman GF/F filters into 100 mL glass bottles and fixed with reagent solutions for ammonium 234 

or poisoned with mercuric chloride (0.02% vol/vol; Dickson et al. 2007) for AT measurements. 235 

Vials were stored in the dark pending analysis. NH4
+ concentrations were then determined using 236 

the Solorzano method (Solorzano 1969) based on spectrophotometry at a wavelength of 630 237 

nm (spectrophotometer UV-1201V, Shimadzu Corp, Kyoto, Japan). AT (in µEq L-1) values 238 

were determined by 0.01 N HCl potentiometric titration on an automatic titrator (Titroline 239 

alpha, Schott SI Analytics, Mainz, Germany) and by using the Gran method (non-linear least-240 

squares fit) applied to pH values from 3.5 to 3.0 (Dickson et al. 2007). 241 

Respiration (in µmol O2 g
-1 DW h-1; equation [1]) and excretion (in µmol NH4

+ g-1 DW 242 

h-1; equation [2]) were directly calculated from oxygen and ammonium concentrations, 243 

respectively. Net calcification (in µmol CaCO2 g
-1 DW h-1; equation [3]) was estimated using 244 

the alkalinity anomaly technique (Smith and Key 1975) based on a decrease in AT by 2 245 

equivalents for each mole of CaCO3 precipitated (Wolf-Gladrow et al. 2007). As ammonium 246 
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production increases alkalinity in a mole-per-mole ratio (Wolf-Gladrow et al. 2007), the 247 

alkalinity variation was corrected by the ammonium flux to calculate CaCO3 fluxes.  248 

[1]   R =
ΔO2×V 

Δt × DW
                    249 

[2]   E =
ΔNH4

+×V 

Δt × DW
   250 

[3]   Gn = −
(ΔAT−ΔNH4

+ ) × V)

2 × Δt × DW
 251 

where ΔO2 (in µmol O2 L
-1) is the difference between initial and final O2 concentrations; Δ 252 

NH4
+ (in µmol NH4

+ L-1) is the difference between initial and final NH4
+ concentrations; ΔAT 253 

is the difference between initial and final total alkalinity (µmol Eq L
-1); V (in L) is the volume 254 

of the chamber minus C. fornicata volume; Δt (in h) is the incubation time and DW (in g) is the 255 

soft tissue dry weight of incubated C. fornicata. 256 

In addition, oxygen consumption of the individuals maintained at 10°C during the 257 

experiment were assessed on six small and six large individuals at each trial period, following 258 

the technique described above. These “controls” tested if mesocosm conditioning induced 259 

metabolic stress over time. 260 

 The O:N ratio, which corresponds to the amount of oxygen consumed for nitrogen 261 

excreted, was calculated from respiration and excretion rates except for the experiments run at 262 

10°C for which rates were too low to obtain significant data. Generally, the O:N ratio is 263 

considered a common indicator of the proportion of the three metabolic substrates 264 

(carbohydrates, lipids and proteins) used in energy metabolism (Mayzaud and Conover 1988). 265 

The atomic ratio of oxygen uptake and excreted nitrogen was calculated following the equation 266 

[4] based on Thomsen & Melzner (2010):  267 

[4]: O:N = R / E 268 

where R is the respiration rate used as a proxy of the quantity of oxygen consumed by the 269 

individual and E, the excretion rate representing the concentration of nitrogen excreted. 270 
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 271 

Filtration rates 272 

 At each trial period, the filtration rate of three small and three large slipper limpets per 273 

pCO2 condition (i.e. 1 individual per size per aquarium) was determined by calculating 274 

clearance rates (Coughlan 1969). To do so, 10 and 20 mL of a microalgae mix (C. gracilis, T. 275 

affinis galbana, 1:1) were added to the small and large chambers (same as for metabolic 276 

measurements), respectively, using a 10 mL syringe equipped with a thin tube. The mean initial 277 

concentration of the mix was 1 200 000 ± 310 000 cell mL-1. In parallel, control incubations 278 

containing only microalgae were carried out to check that phytoplankton cells did not multiply 279 

significantly during the incubation. Water from the chambers was sampled with the syringe 280 

every 15 min until the water became totally clear (around 2 h). Samples were immediately fixed 281 

with 25% glutaraldehyde and frozen at -80°C pending analyses (Marie et al. 1999). The number 282 

of microalgal cells in each sample was then determined on 200 µL aliquots using flux cytometry 283 

(Cell Lab QuantaTM, SC, Beckman Coulter, USA). Filtration rates (F, in mL SW g-1 DW min-284 

1) were calculated following equation [5]: 285 

[5]   F =  V ×
ln[𝐶𝑖]− ln[𝐶𝑓] 

Δt × DW
 286 

where [Ci] and [Cf] (in cell mL-1) were respectively the initial and final cell concentrations in 287 

the chamber water; V (in L) is the volume of the chamber minus individual C. fornicata volume; 288 

Δt (in h) is the incubation time and DW (in g) is the tissue dry weight of the individual 289 

incubated. 290 

 291 

Statistical analyses 292 

All statistical analyses were performed using the R software, version 2.15.0 (R Core 293 

Team 2013). Normality and homoscedasticity were checked using Kolmogorov-Smirnov’s test 294 

and Levene’s test, respectively, before each statistical test. Spatial pseudoreplication effect was 295 
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first tested by considering “aquarium” as a random factor (p-value < 0.05). Then, statistical 296 

analyses were simplified to two-way ANOVAs with repeated measurements on the same 297 

individual through the four trial periods (different temperature levels) separately for small and 298 

large individuals. These analyses were performed for the four physiological rates (respiration, 299 

excretion, calcification and filtration) and the O:N ratio, assuming pCO2 and temperature as 300 

fixed factors. Student-Newman-Keuls (SNK) post hoc tests were applied to identify differences 301 

among treatments with a confidence level of 95% when ANOVA showed significant results. In 302 

parallel, any changes in the respiration rate of individuals constantly maintained at 10°C 303 

through time were assessed using a non-parametric Friedman test for repeated measurements, 304 

separately for small and large slipper limpets. All results are given as mean ± standard error 305 

(SE). 306 

 307 

Results 308 

 309 

Seawater parameters 310 

The mean temperature and carbonate chemistry parameters among the pCO2 and 311 

temperature conditions are presented in Table 1. Temperature was stable at each trial period 312 

with a variability lower than 0.5°C. The different pCO2 levels remained close to the selected 313 

values of 390, 750 and 1400 µatm except at 19°C where all pCO2 increased from the baseline 314 

(+ 100-200 µatm). AT ranged from 2365 ± 2 to 2422 ± 2 µEq kg-1. ΩAr decreased by less than 315 

1 only in the 1400 µatm pCO2 condition. Salinity varied between 34.2 ± 0.1 and 35.1 ± 0.1 316 

among the different pCO2 and temperature levels with no effect of the temperature increase on 317 

salinity. 318 

 319 

Respiration, excretion and O:N ratio 320 
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Respiration and excretion rates changed significantly with temperature, but not with 321 

pCO2, in small and large individuals (Figure 1, Table 2). After pooling results for all pCO2 322 

conditions, mean respiration rates in small C. fornicata increased from 3.78 µmol O2 g
-1 DW h-323 

1 at 10°C to 11.76 µmol O2 g
-1 DW h-1 at 19°C. In large individuals, the lowest mean respiration 324 

rate was recorded at 10°C (4.82 µmol O2 g
-1 DW h-1) whereas rates did not differ from 13 to 325 

19°C with a mean value of 11.50 µmol O2 g
-1 DW h-1. Oxygen fluxes measured on empty shells 326 

represented only 4% of the whole organism fluxes measured and decreased only slightly with 327 

temperature. 328 

Mean excretion rates calculated among pCO2 conditions for small C. fornicata 329 

individuals gradually increased from 0.15 µmol NH3 g
-1 DW h-1 at 10°C to 1.47 µmol NH3 g

-1 330 

DW h-1 at 19°C. Excretion rates of large individuals showed a parabolic trend with an increase 331 

from 10°C (0.16 µmol NH3 g
-1 DW h-1) to 16°C (1.34 µmol NH3 g

-1 DW h-1) followed by a 332 

decrease at 19°C (0.74 µmol NH3 g-1 DW h-1). The ammonium fluxes of empty shells 333 

represented less than 1% of the fluxes estimated for whole organisms and were higher at 10°C 334 

than at the other temperature levels (rates practically nil).  335 

O:N ratios varied greatly, ranging from 2.86 to 31.68 with a mean value of 12.91 ± 0.56. 336 

They varied with pCO2 or temperature according to size (Table 2, Figure 2). In small C. 337 

fornicata individuals, O:N ratios were the highest at 750 µatm and similar between 380 and 338 

1400 µatm. In large individuals, the O:N ratios varied with temperature and were significantly 339 

higher at 16°C. 340 

 341 

Filtration  342 

Temperature significantly affected filtration rates in both small and large individuals 343 

(Figure 1, Table 2). In small C. fornicata, mean filtration rates among pCO2 were similar 344 

between 10 and 16°C (25.50 mL g-1 DW min-1), but increased at 19°C (54.30 mL g-1 DW min-345 
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1). pCO2 alone did not affect the filtration rate but the interaction of pCO2 and temperature was 346 

significant (Table 2, p-value < 0.001). At 19°C, filtration rates increased significantly with the 347 

increase in pCO2. In large individuals, mean filtration rates increased gradually from 10°C (5.43 348 

mL g-1 DW min-1) to 19°C (25.78 mL g-1 DW min-1) without any effect of pCO2 conditions.  349 

 350 

Calcification  351 

Calcification rates were significantly affected by pCO2 increase in both small and large 352 

individuals but not by temperature (Figure 1, Table 2). Pooling all temperature levels together, 353 

mean calcification rates were similar at pCO2 of 390 µatm (1.88 and 1.63 µmol CaCO3 g
-1 DW 354 

h-1 in small and large individuals, respectively) and 750 µatm (1.02 and 0.60 µmol CaCO3 g
-1 355 

DW h-1 in small and large, respectively), but significantly lower at 1400 µatm pCO2 (-2.53 and 356 

-1.77 µmol CaCO3 g
-1 DW h-1 in small and large individuals, respectively). In the highest pCO2 357 

condition (1400 µatm), net calcification rates were negative, corresponding to dissolution. 358 

Although the interaction between pCO2 and temperature was not significant for either small or 359 

large limpets, pCO2 response appeared to vary as a function of temperature, particularly at 1400 360 

µatm. In this drastic pCO2 condition, organisms globally dissolved at 10, 13 and 16°C and 361 

calcified (or dissolved less) at 19°C. 362 

Calcification rates decreased with the decrease in the mean aragonite saturation state 363 

(ΩAr) which correlated with pCO2 increase (Figure 3). When ΩAr decreased below the threshold 364 

of 1, calcification rates were always negative reflecting a dissolution process. At the 750 and 365 

1400 µatm pCO2 conditions, ΩAr was higher at 19°C than at the other temperature levels 366 

because the saturation state increases with temperature.  367 

 368 

Mesocosm controls 369 
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In the aquaria maintained at 10°C throughout the entire experiment, temperature was 370 

stable over the first weeks of the experiment and slowly increased from 8 April to the end of 371 

the experiment until reaching a mean of 12.4°C between 21 April and 15 June because we had 372 

technical problems with the chiller (Table 1). Respiration in small individuals showed high 373 

variation over time (Figure 4, white bars) but no time effect was detected (Friedman test, df = 374 

3, χ² = 6.6, p = 0.086, n = 6). Conversely, respiration rates of large individuals increased 375 

throughout the experiment (Figure 4, gray bars) with a significant time effect (Friedman test, 376 

df = 3, χ² = 9.4, p = 0.024, n = 6). 377 

 378 

Discussion 379 

An increase in temperature affected three of the four physiological processes assessed 380 

on small and large C. fornicata individuals. In particular, respiration and ammonia excretion 381 

rates clearly increased along the tested temperature gradient. In contrast, increases in pCO2 382 

affected only net calcification of the slipper limpets. Interestingly, the coupled effect of 383 

temperature and pCO2 improved the rate of calcification in the most drastic conditions, 384 

particularly in small individuals. 385 

 386 

Temperature effect 387 

The respiration (0.6 - 34.6 µmol O2 g
-1 DW h-1) and excretion rates (-2 - 4.4 µmol NH3 388 

g-1 DW h-1) measured at 390 µatm pCO2 in small and large C. fornicata individuals ranged 389 

metabolic rates recorded in situ in the Bay of Brest in northwestern France (4 to 45 µmol O2 g
-390 

1 DW h-1 and 0.5 to 2.3 µmol NH3 g
-1 DW h-1; Martin et al. 2006). Both rates increased with 391 

temperature in small and large individuals regardless of pCO2. Although respiration rates 392 

gradually increased with temperature in small C. fornicata individuals, they only increased from 393 

10°C to 13°C, remaining stable at higher temperatures in large C. fornicata. This increase is a 394 



17 

 

common response due to the rate-enhancing effects of temperature on physiological and 395 

biochemical reactions in ectotherms (Cossins and Bowler 1987). The intensity of respiratory 396 

and excretory processes were also dependent of body size. The respiration and excretion rates 397 

of small individuals were higher than those of large individuals because the metabolic rate (per 398 

unit biomass) decreases with increasing individual size (Parsons et al. 1984; Von Bertalanffy 399 

1951). Small individuals have higher energy consumption because they grow faster than the 400 

large individuals (Von Bertalanffy 1964).  401 

 The filtration rates measured in small and large C. fornicata fall into the range of 402 

maximum feeding rates calculated by Newell and Kofoed (1977) in C. fornicata between 11 403 

and 20°C (18 to 41 mL g-1 min-1; 15°C acclimated individuals). Rates were higher in small than 404 

in large individuals because, again, small organisms feed more actively per unit body mass 405 

(Sylvester et al. 2005). Filtration rates increased with temperature as previously described in 406 

other studies (Newell and Kofoed 1977). In small individuals, rates were constant between 10 407 

and 16°C and increased only at 19°C while they increased regularly with temperature in the 408 

large individuals. In Calyptraeidae, small individuals — i.e. males with low mobility — utilize 409 

two feeding strategies: grazing with radula and filtration with gills (Navarro and Chaparro 410 

2002). Therefore, small individuals may have supplemented their diet between 10 and 16°C by 411 

grazing. For the increased energy requirements at 19°C, small slipper limpets may also increase 412 

their filtration rate to meet these supplementary needs. In large sedentary individuals (usually 413 

females), filtration is the only feeding mechanism (Navarro and Chaparro 2002) and filtration 414 

rate increases with temperature to help cover the higher energy needs. 415 

Surprisingly, temperature did not affect calcification rates although an increase was 416 

expected in response to the increase in metabolism and energy requirements (Martin et al. 417 

2006). Because mollusk shell production is an energetically costly process (Gazeau et al. 2013), 418 

the absence of any change in calcification rates may be due to food limitation during the 419 
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experiment, especially at elevated temperatures (16 and 19°C). At these temperatures, 420 

providing additional food only twice a week may not have been sufficient to support maximal 421 

individual shell growth under pH stressful conditions. If food had been provided more regularly 422 

and/or in higher quantities, C. fornicata calcification may not be potentially restricted and 423 

individuals may have better mitigated the effect of high pCO2 (Thomsen et al. 2014). Future 424 

experiments should include measuring integrated shell growth at each temperature level to 425 

determine the food effect more completely.  426 

Mesocosm experiments cannot perfectly reproduce in situ conditions such as natural 427 

diet or tidal cycles. This may lead to an increased stress for the organisms grown in these 428 

systems (Bibby et al. 2008). The mesocosm effect on organisms was tested through O2 429 

consumption measurements in individuals kept ca constant temperature throughout the 430 

experiment (“controls”). The respiration rates did not change over time in small individuals, 431 

whereas the respiration in large individuals increased slightly in correlation with a +2°C 432 

temperature increase from the beginning to the end of the experiment, because of technical 433 

problems with the chiller. Although food may have constituted a bias, particularly in the one-434 

off calcification response to temperature, the absence of strong changes in respiration rates in 435 

“controls”, unexceptional metabolic rates ranging those measured in situ and very low mortality 436 

during the experiment (only 8%) all suggest the absence of any acute mesocosm effect on the 437 

other physiological traits of C. fornicata.   438 

 439 

pCO2 effect 440 

In contrast to temperature, pCO2 did not affect C. fornicata respiration or excretion rates 441 

regardless of size. Other studies have underlined a lack of any pCO2 effect on bivalve and limpet 442 

respiration (Dickinson et al. 2012; Fernandez-Reiriz et al. 2012; Marchant et al. 2010), although 443 

some mollusk species exposed to high pCO2 levels have shown metabolic depression (i.e. 444 
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decrease in oxygen uptake) to compensate — albeit often drastic — pCO2 increases 445 

(Michaelidis et al. 2005; Navarro et al. 2013). Responses of ammonia excretion to high pCO2 446 

in mollusks are also specific: increase in ammonia excretion can occur under elevated pCO2 447 

(Fernandez-Reiriz et al. 2011; Langenbuch and Pörtner 2002; Range et al. 2014) while some 448 

bivalves show opposing trends (Liu and He 2012; Navarro et al. 2013). The increase in 449 

ammonia excretion under increased pCO2 conditions can be interpreted as an internal pH 450 

regulatory mechanism, sometimes based on protein catabolism (Fernandez-Reiriz et al. 2012; 451 

Thomsen and Melzner 2010). In our study, neither change in excretion rates nor in O:N ratios 452 

calculated were detected between  the 390 and 1400 µatm conditions. This similarity indicates 453 

that potential intracellular pH regulation of C. fornicata was not induced by enhancing protein 454 

metabolism (Fernandez-Reiriz et al. 2012). Thus, the potential for metabolic resistance of C. 455 

fornicata to elevated pCO2 is likely due to another effective acidosis-buffering system, such as 456 

the increase in internal HCO3
- concentrations (Gutowska et al. 2010; Michaelidis et al. 2005) 457 

or higher H+ excretion (Melzner et al. 2009; Pörtner et al. 2005).  458 

Similarly to the respiration and excretion processes, filtration rates did not change as a 459 

function of pCO2 in either small or large C. fornicata in our study. Filtration responses with 460 

respect to pCO2 depend most of the time on the presence of metabolic depression (Fernandez-461 

Reiriz et al. 2011; Liu and He 2012; Navarro et al. 2013). The absence of variation in filtration 462 

rates at the different pCO2 levels indicates that the quantity of food ingested by C. fornicata did 463 

not vary either. Food is known to interact with other stressors, such as pCO2, and significantly 464 

influence metabolic responses (Melzner et al. 2011; Pansch et al. 2014). Quality or quantity 465 

changes in the diet can even worsen the condition of invertebrates (Berge et al. 2006; Vargas et 466 

al. 2013). Although our microalgal mix did not perfectly match the natural diet of C. fornicata 467 

(Barillé et al. 2006; Decottignies et al. 2007), the diatoms and dinoflagellate microalgae 468 

provided in the experiment correspond to the main taxa present in Morlaix Bay, assuming a 469 



20 

 

nutritional quality close to the natural diet.  However, we cannot assure that the quantity of food 470 

was not a limiting factor in our experiment. To be sure that microalgae supplied would not 471 

represent a bias, the slipper limpets should be fed ad libitum which represented a technical issue 472 

on a 6 month experiment.  473 

In our study, net calcification was similar between 390 and 750 µatm pCO2 and strongly 474 

decreased at 1400 µatm pCO2 regardless of size, which is a common response in mollusks 475 

(Beniash et al. 2010; Melatunan et al. 2013; Range et al. 2011). This pattern contrasts with that 476 

reported in Ries et al. (2009), with a parabolic response in C. fornicata calcification with the 477 

highest rates observed at 600 µatm pCO2. The stability of calcification rate at 750 µatm pCO2 478 

(compared to 390 µatm pCO2) may be due to the biological control of the calcification process 479 

and/or the presence of the periostracum, the organic layer covering the crystalline layers of the 480 

shell. This organic layer has been predicted to play a great role in maintaining shell integrity of 481 

mollusks in elevated pCO2 conditions (Ries et al. 2009) and to protect them from dissolution in 482 

CaCO3-undersaturated waters (Huning et al. 2013). Moreover, mollusks may be able to 483 

maintain extrapallial fluid in chemical conditions favoring CaCO3 precipitation at the 484 

calcification site, even if external seawater pCO2 is high (Hiebenthal et al. 2013). Regulation 485 

of enzymes involved in the calcification process, such as chitinase (Cummings et al. 2011) or 486 

carbonic anhydrase (Ivanina et al. 2013), may also help maintain calcification in high pCO2
 487 

conditions. In our study, at 1400 µatm, calcification rates dropped, perhaps due to physiological 488 

changes in the internal acid-base balance affecting shell deposition (Waldbusser et al. 2011) or 489 

to an eroded and/or damaged periostracum (pers. obs.). Degradation of this protective layer may 490 

lead to higher vulnerability of the shell to external dissolution processes (Range et al. 2012; 491 

Ries et al. 2009), which occurs not only in dead shells but also in live animals (Harper 2000). 492 

Furthermore, chemical dissolution increased with an increase in pCO2 and a correlated decrease 493 
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in ΩAr; the combined effect led to a decrease in net calcification rates observed in both small 494 

and large C. fornicata individuals at high pCO2 conditions. 495 

 496 

Combined effects of temperature and pCO2 497 

In the range of pCO2 and temperatures tested, the interaction of these two variables had 498 

no negative effect on C. fornicata respiration and excretion rates. As a eurythermal species even 499 

coping with high temperature in some bays during summer (e.g. Bassin d’Arcachon in 500 

southwestern France; De Montaudouin et al. 1999), C. fornicata can have an optimal 501 

temperature of 19°C or higher (Diederich and Pechenik 2013; Noisette et al. 2015). Thus, 19°C 502 

may not constitute a real thermal stress and not transgress the metabolic optimal threshold for 503 

this species. Increase in temperature is predicted to enhance sensitivity to high pCO2 levels 504 

beyond the optimal temperature of the species and close to its upper limit of thermal tolerance 505 

(Pörtner and Farrell 2008). However, at the cold side of a species optimal temperature, warming 506 

can increase resilience to ocean acidification (Gianguzza et al. 2014). Therefore, an increase in 507 

temperature may actually improve tolerance to pCO2 increases in C. fornicata. 508 

Calcification rates of both small and large C. fornicata showed a positive trend with 509 

temperature in the most drastic pCO2 conditions (1400 µatm). Temperature-mediated increases 510 

in metabolism and feeding rates may potentially offset reductions in calcification rates caused 511 

by high pCO2 conditions (Melzner et al. 2011; Thomsen et al. 2014). In addition to this 512 

physiological effect, moderate warming can mediate the effects of ocean acidification by the 513 

chemical effect on seawater chemistry (Kroeker et al. 2014). Temperature affects CO2 solubility 514 

in seawater as well as the equilibrium coefficients governing carbonate chemistry (Millero 515 

2007). As shown in our study, the saturation state of aragonite was greater in warmer water 516 

than in colder water for a given pCO2, thereby enhancing calcification and reducing the 517 

dissolution processes in the high pCO2 conditions. These results highlight the importance of 518 
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considering the physiological and geochemical interactions between temperature and carbonate 519 

chemistry when interpreting species’ vulnerability to ocean acidification. A better 520 

understanding of how warming influences species’ responses to high pCO2 levels through both 521 

direct (e.g. increases in metabolic rates) and indirect pathways (e.g. changes in carbonate 522 

chemistry) is thus necessary. 523 

 524 

Conclusion 525 

A trade-off between stressors may affect the physiology of organisms in an unexpected 526 

way (Kroeker et al. 2014). In our case, C. fornicata appeared to be able to tolerate slight 527 

increases in pCO2 but its calcification was affected by drastic conditions with a positive effect 528 

of temperature, thereby mitigating any ocean acidification effects. This outcome highlights the 529 

need of multistressor studies to understand the future of marine species in a context of climate 530 

change in which different physico-chemical factors vary in different ways. Furthermore, our 531 

results indicate that some species can be highly tolerant to future pCO2 increases. C. fornicata 532 

tolerance likely stems from mechanisms that allow it to acclimate or adapt to environmental 533 

fluctuations in its habitat (Clark et al. 2013), because species living in environments with large 534 

abiotic variations tend to have high phenotypic plasticity, allowing them to survive in stressful 535 

conditions (Somero 2010). This capacity to resist decreases in pH may reinforce the ecological 536 

role of C. fornicata populations in the ecosystems in which they are established, even under 537 

projected future conditions anticipated due to climate change. 538 

 539 

  540 

 541 

 542 

 543 
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Tables 

Table 1: Mean seawater temperature and parameters of the carbonate system in each pCO2 

treatment (3 aquaria per treatment) and at each trial period (i.e. temperature level). The pHT 

(pH on the total scale) and total alkalinity (AT) were measured whereas the other parameters 

were calculated. Mean AT calculated for each trial period (n = 3 for controls 10°C and 19 < n < 

30 for other condition pCO2 conditions) and pCO2 condition was used for the calculations. 

pCO2, CO2 partial pressure; DIC, dissolved inorganic carbon and Ω Ar, saturation state of 

seawater with respect to aragonite. 

  Temperature pHT pCO2 AT DIC ΩAr 

   (°C)  (µatm) (µEq kg-1) (µmol C kg-1)  

 n Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

              

1st trial period (10°C) 

390 µatm 23 9.7 0.2 8.14 0.01 322 7 2365 2 2138 4 2.47 0.04 

750 µatm 23 9.8 0.2 7.82 0.01 729 19 2368 2 2270 4 1.33 0.03 

1400 µatm 23 9.5 0.2 7.55 0.03 1486 75 2376 2 2366 11 0.78 0.08 

control 10°C 40 9.2 0.2 8.19 0.02 288 17 2370 3 2115 8 2.73 0.07 

              

2nd trial period (13°C) 

390 µatm 27 12.9 0.2 8.12 0.02 356 25 2418 2 2167 8 2.76 0.07 

750 µatm 27 13.0 0.1 7.81 0.01 781 20 2416 2 2304 3 1.48 0.03 

1400 µatm 27 12.8 0.1 7.53 0.01 1557 43 2422 2 2405 4 0.82 0.02 

control 10°C 41 11.0 0.1 8.18 0.01 297 12 2419 2 2152 5 2.88 0.05 

              

3rd trial period (16°C) 

390 µatm 28 15.9 0.1 8.08 0.01 376 10 2379 5 2126 5 2.80 0.05 

750 µatm 28 16.1 0.1 7.82 0.00 748 8 2369 5 2238 2 1.66 0.01 



30 

 

1400 µatm 28 16.0 0.1 7.55 0.01 1492 19 2380 5 2345 2 0.94 0.01 

control 10°C 42 11.4 0.1 8.23 0.01 253 6 2376 4 2083 5 3.13 0.05 

              

4th trial period (19°C) 

390 µatm 23 18.4 0.5 8.02 0.01 450 10 2391 2 2152 5 2.70 0.05 

750 µatm 23 18.6 0.5 7.77 0.01 858 19 2395 3 2266 4 1.68 0.04 

1400 µatm 23 18.4 0.5 7.51 0.01 1652 41 2394 2 2359 4 0.96 0.03 

control 10°C 23 12.4 0.1 8.20 0.01 280 12 2393 1 2107 8 3.07 0.08 
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Table 2: Summary of two-way repeated measurements ANOVAs followed by Student-Newman-Keuls post hoc tests testing the effect of pCO2, 1 

temperature and their interaction on Crepidula fornicata physiology. Numbers in bold indicate significant p-values and values with different letters 2 

are significantly different at p < 0.05. 3 

  Two-way repeated measurements ANOVAs  Post hoc SNK tests 

  Factors  Factors 

  pCO2  Temperature  pCO2 x Temperature  pCO2 (µatm)  Temperature (°C) 

  df F p  df F p  df F p  390 750 1400  10 13 16 19 

                      

Small individuals                      

Respiration  2 1.685   0.219    3 14.530   < 0.001 6 1.893   0.103        a b b c 

Excretion  2 0.386   0.686    3 5.840   0.002    6 1.257   0.296        a a,b b b 

Filtration  2 0.271   0.766    3 15.439   < 0.001 6 5.996   < 0.001     a a a b 

Net calcification  2 6.705   0.008    3 1.849   0.152    6 2.307   0.050    a a b      

O:N ratio  2 4.944   0.022    2 2.214   0.127    4 0.382   0.819    a b a      

                      

Large individuals                      

Respiration  2 0.377   0.692    3 8.398   < 0.001 6 0.523   0.788        a b b b 

Excretion  2 0.563   0.581    3 17.850   < 0.001 6 0.371   0.893        a b c b 

Filtration  2 1.593   0.236    3 19.311   < 0.001 0 2.012   0.083        a b b c 

Net calcification  2 13.615   < 0.001 3 0.878   0.459    6 0.911   0.496    a a b      

O:N ratio  2 0.739   0.494    2 20.714   < 0.001 4 1.728   0.170        - a b a 

  4 
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Figures 5 

 6 

Figure 1: Individual respiration, ammonia excretion, filtration and net calcification rates in the three pCO2 7 

treatments (shaded in grey) at 10, 13, 16 and 19°C for small (< 3 cm in length) and large (> 4.5 cm in 8 

length) C. fornicata individuals. Different letters above bars or before pCO2 caption indicate significant 9 

differences between temperature or pCO2 conditions, respectively. Results are expressed as mean ± 10 

standard error, n = 6 individuals. 11 

 12 

Figure 2: O:N ratios for the three pCO2 treatments (shaded in grey) at 13, 16 and 19°C for small and large 13 

C. fornicata individuals. Different letters above bars or before pCO2 caption indicate significant differences 14 

between temperature or pCO2 conditions, respectively. Results are expressed as mean ± standard error, n = 15 

6 individuals. 16 

 17 

Figure 3: Mean net calcification rates as function of aragonite saturation state, in the three pCO2 treatments 18 

(shaded in grey), at 10 (), 13 (), 16 () and 19°C () for all C. fornicata individuals (n = 12 19 

individuals). 20 

 21 

Figure 4: Respiration rates in the control treatment (10°C) for the different trial periods (i.e. temperature 22 

levels) for single small (white bars) and large (grey bars) C. fornicata individuals. Results are expressed as 23 

mean ± standard error, n = 6 individuals. 24 

 25 
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