Collections de documents électroniques

Parametric bootstrap estimators for hybrid inference in forest inventories


Téléchargements par mois depuis la dernière année

Plus de statistiques...

Fortin, Mathieu et Manso, Rubén et Schneider, Robert (2018). Parametric bootstrap estimators for hybrid inference in forest inventories. Forestry, 91 (3). p. 354-365.

[thumbnail of Mathieu_Fortin_et_al_novembre2017.pdf]
Télécharger (283kB) | Prévisualisation


In forestry, the variable of interest is not always directly available from forest inventories. Consequently, practitioners have to rely on models to obtain predictions of this variable of interest. This context leads to hybrid inference, which is based on both the probability design and the model. Unfortunately, the current analytical hybrid estimators for the variance of the point estimator are mainly based on linear or nonlinear models and their use is limited when the model reaches a high level of complexity. An alternative consists of using a variance estimator based on resampling methods (Rubin, D. B. (1987). Multiple imputation for nonresponse surveys. John Wiley & Sons, Hoboken, New Jersey, USA). However, it turns out that a parametric bootstrap (BS) estimator of the variance can be biased in contexts of hybrid inference. In this study, we designed and tested a corrected BS estimator for the variance of the point estimator, which can easily be implemented as long as all of the stochastic components of the model can be properly simulated. Like previous estimators, this corrected variance estimator also makes it possible to distinguish the contribution of the sampling and the model to the variance of the point estimator. The results of three simulation studies of increasing complexity showed no evidence of bias for this corrected variance estimator, which clearly outperformed the BS variance estimator used in previous studies. Since the implementation of this corrected variance estimator is not much more complicated, we recommend its use in contexts of hybrid inference based on complex models. -- Keywords : Estimator bias; Variance estimator; Estimate of the total; Horvitz-Thompson estimator; Log grade; Lumber recovery model.

Type de document : Article
Validation par les pairs : Oui
Information complémentaire : Voici la version suivant la révision par les pairs, mais précédant la mise en page officielle d’un article publié dans Forestry. La version finale et authentifiée est disponible en ligne : et This is a pre-copyedited, author-produced version of an article accepted for publication in Forestry following peer review. The version of record is available online at: and
Version du document déposé : Post-print (version corrigée et acceptée)
Départements et unités départementales : Département de biologie, chimie et géographie
Déposé par : DIUQAR UQAR
Date de dépôt : 24 janv. 2020 15:51
Dernière modification : 01 févr. 2021 15:48

Actions (Identification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt