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ABSTRACT
In this study, we addressed the issue of model evaluation when long-term monitoring

data are unavailable or inappropriate. More specifically, we fitted a single tree-based growth
model for pure even-aged balsam fir stands and we compared stochastic predictions with
an existing maximum size-density relationship (MSDR). Growth trajectories for plots of
different initial densities and diameter distributions were simulated over a 70-year period
using 500 realizations for each combination of initial density-diameter distribution.

Plots with symmetric diameter distributions showed long-term predictions that were
consistent with the existing MSDR, with only some realizations above the maximum den-
sity. In addition to competition-induced mortality, the model reproduced the senescence
phase in which the trajectories diverge from the MSDR. For the even-aged stands that were
simulated, this phase was initiated when the average tree volume reached 0.2-0.3 m3tree−1,
which roughly corresponded to a dbh (diameter at breast height, 1.3 m from the ground)
between 19 and 23 cm. Initial asymmetric distributions resulted in trajectories that tended
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to flatten out, showing some indications that the slope of the MSDR would be smaller for
those stands.

Although it cannot be generalized, our case study shows that a simple single tree-based
growth model with a distance-independent competition index and no stand density index
can reproduce an existing MSDR. The match between long-term predictions and an existing
MSDR strengthens the confidence in the biological behaviour of the model.

1 INTRODUCTION
In forestry, single tree-based models have become increasingly popular in the

last two decades. Whereas the Prognosis (Stage 1973) and STEMS (Belcher et al.
1982) models were among the very first of their kind in the early 1980s, their num-
ber has dramatically increased so that it would be impossible to list them all today.
Porté and Bartelink (2002) and Fontes et al. (2010) provided extensive lists of single
tree-based models, to which the reader can refer.

Single tree-based models usually include at least a mortality submodel and a
survivor increment submodel. These submodels are fitted on specific intervals of
time (e.g., 5 or 10 years), and predictions for longer time intervals are obtained
by reinserting the predictions into the model as many times as needed. A thorough
evaluation of a single tree-based model is not straightforward since it includes many
issues, both theoretical and empirical (Vanclay and Skovsgaard 1997). At the tree
level, the different components of the model can be separately evaluated using clas-
sical statistical measures such as the average bias and the root mean square error.
The model consistency can then be tested on single growth intervals, as was done
by Pretzsch et al. (2002). However, this kind of evaluation does not ensure the
consistency of plot-level predictions over longer time intervals.

Evaluating plot-level predictions in the long term can be particularly difficult for
two reasons. First, long-term monitoring data are often nonexistent or insufficient.
Secondly, even if such information is available, it is likely that either major natural
or human-made disturbances will have occurred. These disturbances are difficult to
reproduce in the simulations and they contribute a significant amount of uncertainty
to the predictions. Using a classical evaluation based on bias and root mean square
error can be misleading in such a context because the bias can originate from an
improper simulation of the disturbances and not from the model itself.

When the plot-level evaluation cannot be supported by empirical data, it might
be an alternative to test the biological behaviour of the model, as suggested by Oder-
wald and Hans (1993). The characteristic behaviour of even-aged stands is well
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known as their production has been studied since the beginning of the 20th century
and even before (e.g. Meyer 1929). Among other even-aged stand properties, the
maximum size-density relationship (MSDR) has been addressed in many papers
(e.g. Drew and Flewelling 1979; Jack and Long 1996; Monserud et al. 2004; Van-
derSchaaf and Burkhart 2008). The MSDR relies on the assumption of the existence
of a boundary beyond which any increase in average size must be compensated for
by a decline in the number of individuals (Jack and Long 1996). On a log-log scale,
the MSDR is assumed to be linear. Growth trajectories usually show an asymptotic
trend with respect to this line with, eventually, a senescence phase that results in a
departure from the relationship (cf. VanderSchaaf and Burkhart 2008).

Balsam fir (Abies balsamea (L.) Mill) is one of the major commercial species in
the northern United States and in Canada (Frank 1990). In the province of Quebec,
Canada, regular balsam fir-dominated stands are common as a result of the last
spruce budworm outbreak and clearcutting since the beginning of the 20th century
(Grondin et al. 2013). In order to better understand growth dynamics in these stands
following thinning, a long-term experiment was undertaken in 1968 (cf. Pothier
1998).

In this study, we used these long-term monitoring data to fit a single tree-based
model designed for predicting the growth of pure and even-aged balsam fir stands.
Based on a simple architecture, the model was designed to be used either in a
stochastic or a deterministic way. However, the number of plots, the thinnings and a
spruce budworm (Choristoneura fumiferana Clemens) outbreak prevented us from
evaluating the long-term behaviour of the model against empirical data.

The biological behaviour of these stands had already been studied by Bégin
et al. (2001) who fitted a MSDR for pure balsam fir stands using data from four
other experiments. We took advantage of this previously published MSDR to check
the biological consistency of long-term stochastic projections. In addition to this,
we also tested the impact of the initial diameter distribution on growth trajectories.
The discussion provides some insights into this evaluation compared to a previously
published MSDR for balsam fir in Quebec, as well as the impact of the diameter
distribution over the MSDR.
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2 MATERIAL AND METHODS
2.1 STUDY AREA AND DATA

The data we used to fit the components of the single tree-based growth model
were taken from an experiment carried out at Lac Matapedia, located in eastern
Quebec, Canada (48◦36’N, 67◦31’W). This area is part of the balsam fir-yellow
birch bioclimatic domain (Robitaille and Saucier 1998). It originates from a clearcut
that was carried out either in the mid 1930s (Pothier 1998) or in the early 1960s
(Thibault et al. 1995) according to the sources. Some stem analyses taken in 1994
showed no sharp increase in radial growth in the early 1960s, which seems to favour
the mid 1930s as the official date of the harvest. The area is largely dominated by
balsam fir. Red spruce (Picea rubens Sarg.), white spruce (Picea glauca (Moench)
Voss), yellow birch (Betula alleghaniensis Britt.), white birch (Betula papyrifera
Marsh.), pin cherry (Prunus pensylvanica L.f.), mountain ash (Sorbus americana
Marsh.), eastern white cedar (Thuja occidentalis L.) and red maple (Acer rubrum
L.) are the associated species in the study area.

The initial purpose of the experiment was to evaluate the effect of a late pre-
commercial thinning on tree growth. To do this, 32 permanent plots were estab-
lished throughout the study area in 1968. The plots measure 400 m2 in area and all
of the trees within a plot with a dbh greater than 1 cm were numbered. For each of
the trees identified, the species was recorded and the dbh was measured to the near-
est mm. Ten plots were left untouched as a control, whereas two thinning intensities
were tested in the other 22 plots. The first measurement available was immediately
after the pre-commercial thinning in 1968 when the stand was 33 years old (Pothier
1998). The plots were revisited in 1973, 1978, 1983, 1989, 1994, 2000 and 2006.
If some tree heights had been measured in the inventories prior to 1994, they were
unavailable. In 1994, some stem analyses were taken in order to determine the site
index of some plots. From 2000, five study trees were randomly selected in each
plot for height measurements.

Between 1973 and 1983, a spruce budworm outbreak of rare intensity occurred
in the Northeast region (cf. Blais 1983). The damage was so extensive that it
was decided to use pest control means in order to control the outbreak. Pesticides
(aminocarb or fenitrothion) were sprayed in 23 of the 32 plots between 1978 and
1982, inclusively (Thibault et al. 1995; Pothier 1998). In the other nine plots, the
damage was so intense that most trees were dead by 1989 and, consequently, these
plots were abandoned afterwards. In 1994, a regular shelterwood cutting was car-
ried out in nine of the 23 remaining plots. About one third of the stems were har-
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vested which represented slightly more than a quarter of the basal area. The stems
were felled and bunched manually. The evolution of the stand basal area and density
is shown in Table 1.

Table 1. Stand density and basal area at the different measurement dates (min-
imum and maximum values appear in parentheses).

Measurement date Number Density Basal area
of plots (trees ha−1) (m2ha−1)

1968 32
7495 37.1

(4025-15350) (25.0-50.1)

1972 32
6278 42.1

(3875-11250) (32.0-53.4)

1978 32
4945 44.3

(3075-8525) (35.3-53.7)

1983 32
2930 32.9

(300-6550) (4.9-51.0)

1989 32
1848 27.9

(0-4175) (0.0-46.7)
1994

Before shelterwood cutting 23
2317 41.1

(1375-3625) (32.5-49.7)

After shelterwood cuttinga 9
1614 30.2

(1075-2225) (25.8-35.6)

2000 23
1983 39.3

(925-3200) (25.5-52.5)

2006 23
1912 41.5

(950-4225) (26.9-55.7)

a Based solely on the nine plots that were harvested

For the modelling of mortality and survivor growth, the successive measure-
ments were paired in order to create non-overlapping growth intervals of 5 or 6
years. The first measurement provides the initial conditions, whereas the second
measurement shows whether or not the tree survived and provides its diameter
increment if it did. Because some species were rather scarce, a grouping had to
be carried out. Balsam fir accounted for 97% of the observations and it was the
only species that was abundant enough to be considered by itself. We created three
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species groups with the remaining species. Spruce species were grouped together,
as were birch species. Finally, all the other marginal species formed the last group.
Henceforth, we will refer to these species as balsam fir, Picea spp., Betula spp., and
the other species. A summary of the dataset is provided in Table 2.

Table 2. Summary of the dataset (the minimum and maximum values appear in paren-
theses).

Other speciesa Betula spp. Picea spp. Balsam fir
Number of

158 413 414 32599
observations

dbh (cm)
7.9 7.4 10.9 9.8

(1.2-22.5) (2.2-24.1) (1.5-32.1) (1.0-31.5)

balb (m2ha−1)
34.8 34.7 23.2 28.1

(0.0-53.6) (0.0-53.5) (0.0-53.7) (0.0-53.7)
Number of

28 53 70 7672
dead trees
Average dbh 1.2 0.8 2.1 1.2
increment (mm yr−1) (-1.2-4.2) (-1.2-6.3) (-1.0-8.2) (-1.4-8.8)

a Other than Betula spp., Picea spp. and balsam fir
b Basal area of all trees with dbh larger than the subject in the plot

2.2 GROWTH MODEL

The basic components of a growth models are mortality, survivor increment and
recruitment (Vanclay 1994, p.8). There were very few recruits in the dataset, which
was a direct consequence of the stand structure. Actually, only a few recruits were
observed in the last two measurement campaigns of 2000 and 2006 as a result of
the shelterwood cutting. This small number of recruits prevented us from fitting
a recruitment submodel. We focused on the other two components, mortality and
survivor increment, for which we had enough data. However, the absence of the
recruitment component in the growth model limits its scope to even-aged stands.

The survivor increment was defined as the dbh increment during the growth
intervals. We tested two sets of covariates: tree- and plot-level covariates. Tree
species and dbh counted among the tree-level covariates, as well as a distance-
independent competition index, the basal area of the trees with dbh larger than the
subject in the plot. The plot-level covariates were the occurrence of spruce budworm

Page 6



Published in The Forestry Chronicle, Vol. 90(04), p. 503-515

defoliation in the previous or the upcoming growth interval, the length of the interval
(5 or 6 years), plot basal area and stem density, the type of pre-commercial thinning
in 1968 and the occurrence of a shelterwood cutting in 1994.

The way the effects of the spruce budworm defoliation and pesticide sprays
were considered in the submodels deserves further explanation. The 1973-1978
and 1978-1983 intervals were known to be affected by spruce budworm defoliation.
However, for the 1978-1983 interval, Pothier’s (1998) results showed that the effect
of the spruce budworm outbreak was limited in the 23 plots that were protected
between 1978 and 1982. For the sake of simplicity, we considered that the spruce
budworm effect was negligible in those plots during the 1978-1983 growth interval.

Both submodels were evaluated using a 10-fold cross-validation. Prior to the
statistical fitting, the plots were first divided into 10 groups and the submodels were
then fitted 10 times, each time omitting one of the groups. For each fit, population-
averaged predicted values were computed using the data from the plots that were
not used for the fitting. After the 10 iterations, all the observations of the dataset
had a predicted value, and some goodness-of-fit statistics were computed in order
to evaluate each submodel.

2.2.1 Mortality submodel

A generalized linear model was used to model mi jk, defined as a binary variable
whose value is 1 in case tree j in plot i died during interval k, or 0 otherwise. The
mortality submodel can be defined as follows:

Pr(mi jk = 1) = 1− e−exxxi jkβββ+bik
(1)

xxxi jkβββ = β0 +(β1,s +β2,ssbwik−1)dbhi jk +β3dbh2
i jk +β4,sbali jk +β5ln(∆tik)

where sbwik−1 is a dummy variable that takes the value of 1 if plot i suffered
from spruce budworm defoliation in the previous growth interval k−1, dbhi jk is the
diameter at breast height (cm) of tree j in plot i at the beginning of interval k, bali jk

is the basal area (m2ha−1) of all trees with dbh larger than tree j in plot i at the
beginning of interval k, ∆tik is the duration of the time interval (yr), s is the species
group index, such that s = 1,2,3,4, and bik is a growth interval random effect, so
that bik ∼ N(0,σ2

int).

The above model is actually a generalized linear mixed-effects model based on
the complementary log-log link function (cf. McCullagh and Nelder 1989). This
link function offers greater mathematical tractability for the inclusion of time as
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a compound interest effect (Fortin et al. 2008). This submodel accounts for the
occurrence of a spruce budworm outbreak in the previous growth interval as well
as asymmetric competition through the bali jk variable. Including the shelterwood
treatment as well as the pre-commercial thinning treatments in the model caused
some convergence problems. The effects of these variables were further investigated
through Pearson residuals, which indicated that their magnitude was rather small.

Because the model is nonlinear and contains a growth interval random effect,
the computation of population-averaged predictions is not straightforward. Actu-
ally, to obtain E[1− e−exxxi jkβββ+bik

] for a particular tree, it is necessary to compute the
integral of the predictions conditional on the random effect over the distribution of
the random effect, i.e., E[1− e−exxxi jkβββ+bik

] =
∫
(1− e−exxxi jkβββ+bik

)ϕ(bik;σ2
int)dbik where

ϕ(bik;σ2
int) is the probability density function of a normal distribution with mean

0 and variance σ2
int . This integral has no closed-form solution and, consequently,

some numerical integration method must be used. The Gauss-Hermite quadrature
is one of the methods that can be used to obtain unbiased predictions, as reported in
Fortin (2013). An example of this method is annexed to this paper (see Appendix
A).

All the predictions provided by the cross-validation were corrected using the
Gauss-Hermite quadrature in order to obtain population-averaged predictions. The
area under the receiver operating characteristic curve (AUC), which is a well-known
statistic for evaluating such generalized linear models (cf. Lasko et al. 2005), was
calculated from these population-averaged predictions. The final version of this
submodel was fitted with the whole dataset.

2.2.2 Diameter increment submodel

The diameter increment submodel is used to predict the average annual dbh in-
crement (mm·yr−1) for the upcoming 5- or 6-year interval, defined as yi jk. Visual
checks on the distribution of yi jk revealed that it was normally distributed. Conse-
quently, we used a linear mixed-effect model that could be expressed as:

yi jk = wwwi jkγγγ +bi jdbhi jk + εi jk (2)

wwwi jkγγγ = γ0 + γ1,s + γ2dbhi jk + γ3dbh2
i jk + γ4,ssbwik + γ5bali jk

where sbwik is a dummy variable that takes the value of 1 if plot i suffered
from spruce budworm defoliation in the upcoming growth interval k, bi j is a tree
random effect, so that bi j ∼ N(0,σ2

tree), and εi jk is a residual error term, so that
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εi jk ∼ N(0,σ2
res. Note that the interaction between tree dbh and species was tested

in the model but was non significant. Likewise, the effects of the pre-commercial
thinning and the shelterwood cutting were found to be non significant once the
bali jk variable was included and, consequently, these effects were not kept in the
submodel.

2.2.3 Evaluation of short-term plot-level predictions

Before checking the behaviour of the model with respect to long-term projections, it
should be tested whether the projections on a single growth interval are consistent.
To do this, we selected the basal area (m2ha−1) and the stem density (tree·ha−1)
of plot i at the end of interval k as reference variables, defined as Gik and Nik,
respectively. On the basis of submodels 1 and 2, the expectations of Gik and Nik can
be derived as:

E[Gik] = E

[
∑

j
e−exxxi jkβββ+bik 25π(10 ·dbhi jk +∆tik(wwwi jkγγγ +bi jdbhi jk + εi jk))

2

4000000

]
(3a)

E[Nik] = E

[
∑

j
e−exxxi jkβββ+bik

]
(3b)

where e−exxxi jkβββ+bik is actually the balance of probability from the mortality sub-
model, i.e., the probability of survival, and 10 ·dbhi jk+∆tik(wwwi jkγγγ+bi jdbhi jk+εi jk)

is the dbh of tree j in plot i at the end of growth interval k. The factor 25 at the
numerator is an expansion factor to obtain per hectare values, whereas the factor
4000000 at the denominator is required for the conversion from mm2 to m2.

Using 3a and 3b, it can easily be shown that (see Appendix A):

E[Gik] = ∑
j

E
[

e−exxxi jkβββ+bik
]

E[gi jk]

E[Nik] = ∑
j

E
[

e−exxxi jkβββ+bik
]

where

E[gi jk] =
25π

4000000

(
100 ·dbh2

i jk +20 ·dbhi jk∆tikwwwi jkγγγ+

∆t2
ik(wwwi jkγγγ)2 +∆t2

ik(σ
2
treedbh2

i jk +σ2
res)

)
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As mentioned in Section 2.2.1, the term E
[
e−exxxi jkβββ+bik

]
is not straightforward

here because of the interval random effect in xxxi jkβββ . The integral of the conditional
expectation over the distribution of the random effect needs to be calculated in order
to obtain a population-average prediction of survival probability. This was done
using the Gauss-Hermite quadrature numerical integration method (cf. Fortin 2013).
The expectations of the basal area and stem density on single growth intervals were
compared to the observations in terms of bias and relative bias.

2.3 MODEL IMPLEMENTATION AND LONG-TERM PREDICTIONS

In order to facilitate long-term growth simulations, the model was implemented
in the CAPSIS platform (cf. Dufour-Kowalski et al. 2012). To obtain volume pre-
dictions, two other components were added to the model: a height-diameter rela-
tionship (Fortin et al. 2009b) and Honer et al.’s (1983) total volume equations. Note
that the height-diameter relationship in Fortin et al. (2009b) is a general relationship
derived from more than 100 000 height records. Considering the scarcity of height
measurements in our data, it seemed preferable to use this relationship instead of
fitting a new one. Also, it is worth mentioning that we used the total volume here
and not the commercial volume because Bégin et al.’s (2001) MSDR is expressed
in terms of mean total tree volume against stem density. The implementation of
the different model components was done in such a way that the simulator could
be used either in a stochastic or a deterministic mode. We took advantage of this
feature to use the stochastic mode in our long-term simulations.

The stochastic simulations are based on the well-known Monte Carlo technique.
All known sources of uncertainty are simulated: random deviates are drawn (i) from
multivariate normal distributions to reproduce the errors in the parameter estimates,
(ii) from univariate normal distributions to account for the tree and growth interval
random effects as well as the residual errors in the diameter increment submodel,
and (iii) from univariate uniform distributions to determine whether a particular tree
died or survived the growth interval. The variances of the multivariate and univariate
distributions are estimated during the submodel fitting stage.

For a given Monte Carlo realization, the errors in the parameter estimates are
kept constant. A single tree random effect is simulated for each tree. In the mortal-
ity submodel, an interval random effect is drawn before each growth interval. All
model components were implemented with stochastic variability, except Honer et
al.’s total volume equations for which no information on the variance was available
in the original publication.
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Figure 1. Diameter distributions of the 4000-trees·ha−1 plots in the narrow symmetric,
wide symmetric, narrow asymmetric and wide asymmetric sets of plots: normal (a,b) and
log normal (c,d).

To test the behaviour of the growth model with respect to the self-thinning re-
lationship, we first created four sets of four 400-m2 plots with densities of 4000,
6000, 8000, and 10 000 trees·ha−1. The four sets differed in the way tree dbh were
generated in order to test the impact of the diameter distribution on the evolution of
each plot. For the first set, the dbh were randomly drawn from a normal distribution
with a mean of 8 cm and a standard deviation of 1.5 cm. In the second set, the
dbh were also generated from a normal distribution with a mean of 8 cm, but the
standard deviation was extended to 2.5 cm. In the third set, the dbh were drawn
from a log normal distribution with a mean of 2 and a standard deviation of 0.40
on the log-transformed scale. In the fourth set, the dbh were also generated using a
log normal distribution with a mean of 1.95 and a standard deviation of 0.51. These
values on the log-transformed scale were selected in such a way that the means on
the untransformed scale were also close to 8 cm and therefore comparable to the
first two sets. For the sake of clarity, we will refer to these four sets as the narrow
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symmetric, the wide symmetric, the narrow asymmetric and the wide asymmetric
sets. The diameter distribution of the 4000-trees·ha−1 plot in each set is shown in
Fig. 1. For the simulations, we assumed that no spruce budworm defoliation would
occur, i.e., sbwik−1 = 0 and sbwik = 0.

Once the four sets were created, we ran a 500-realization stochastic simulation
over a 70-year period for each plot. At each 5-year growth step, the total volume
of each tree was predicted. These volumes were summed up at the plot level and
then divided by the number of stems in order to obtain the mean tree total volume.
The mean tree total volume was plotted against the stem density for each Monte
Carlo realization and compared with Bégin et al.’s (2001) maximum size-density
relationship for consistency.

Table 3. Maximum likelihood parameter estimates of the mortality submodel.

Parameter Effect Estimate and standard error
β0 Model intercept -12.6145 (1.2091)
β1,1 dbhi jk× Other species -0.4397 (0.0456)
β1,2 dbhi jk× Betula spp. -0.4887 (0.0431)
β1,3 dbhi jk× Picea spp. -0.5177 (0.0285)
β1,4 dbhi jk× Balsam fir -0.5477 (0.0147)
β2,1 dbhi jk× sbwik−1× Other species n/a
β2,2 dbhi jk× sbwik−1× Betula spp. n/a
β2,3 dbhi jk× sbwik−1× Picea spp. 0.9570×10−1 (0.2898×10−1)
β2,4 dbhi jk× sbwik−1× Balsam fir 2.6506×10−1 (0.1087×10−1)
β3 dbh2

i jk 1.4955×10−2 (0.0675×10−2)
β4,1 bali jk× Other species 1.6443×10−2 (0.8656×10−2)
β4,2 bali jk× Betula spp. 1.6753×10−2 (0.7919×10−2)
β4,3 bali jk× Picea spp. 3.7944×10−2 (0.6040×10−2)
β4,4 bali jk× Balsam fir 6.9255×10−2 (0.3782×10−2)
β5 ln(∆tik) 7.3066 (0.7265)

σ2
int

Variance of the growth
0.6869 (0.0925)

interval random effect
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3 RESULTS
3.1 SUBMODEL FIT

The AUC value of the mortality submodel was 0.868, which indicated a rela-
tively good accuracy. The bias resulting from the cross-validation of the diameter
increment submodel was estimated to be +0.04 mm·yr−1, which corresponded to a
relative bias of 3.6%. The maximum and restricted maximum likelihood estimates
of the parameters of both submodels are shown in Table 3 and Table 4.

Table 4. Restricted maximum likelihood parameter estimates of the dbh
increment submodel.

Parameter Effect Estimate and standard error
γ0 Model intercept 1.8390 (0.0439)
γ1,1 Other species -0.4383 (0.3400)
γ1,2 Betula spp. -0.8929 (0.1961)
γ1,3 Picea spp. 1.4867 (0.1350)
γ1,4 Balsam fir n/a
γ2 dbhi jk 0.1116 (0.0057)
γ3 dbh2

i jk -4.2268×10−3 (0.2437×10−3)
γ4,1 sbwik× Other species 0.5324 (0.1306)
γ4,2 sbwik× Betula spp. 0.6123 (0.0779)
γ4,3 sbwik× Picea spp. -0.4542 (0.0794)
γ4,4 sbwik× Balsam fir -0.4053 (0.0096)
γ5,1 bali jk× Other species -3.0270×10−2 (0.8824×10−2)
γ5,2 bali jk× Betula spp. -2.6094×10−2 (0.5316×10−2)
γ5,3 bali jk× Picea spp. -7.1038×10−2 (0.4133×10−2)
γ5,4 bali jk× Balsam fir -4.4480×10−2 (0.0692×10−2)

σ2
tree

Variance of the
1.4822×10−3 (0.0482×10−3)

tree random effect

σ2
res

Variance of the
4.3540×10−1 (0.0429×10−1)

residual error

Mean predicted probabilities of mortality and mean predicted annual dbh incre-
ments as a function of tree dbh and the basal area of trees larger than the subject can
be found in Fig. 2. The mortality patterns were u-shaped with the lowest predicted
probabilities of mortality between 10 and 20 cm in dbh for all species (Fig. 2a).
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On average, the other species had higher probabilities of mortality in the absence
of spruce budworm defoliation. Increases of the competition index bali jk resulted
in higher mortality probabilities (Fig. 2b). The diameter increment predictions fol-
lowed the opposite pattern. They reached a maximum of between 10 and 20 cm
in dbh (Fig. 2c), and the increase of the bali jk variable induced a decrease in the
predicted increments (Fig. 2d). Picea spp. had the largest diameter increments on
average.

Figure 2. Predicted probabilities of mortality and annual dbh increments as a function of
tree dbh (dbhi jk) and basal area for trees whose dbh is larger than the subject (bali jk) (gray
line: Other species, black line: Betula spp., gray dotted line: Picea spp., black dashed line:
Balsam fir; bali jk is set to 10 m2ha−1 in a and c; dbhi jk is set to 15 cm in b and d; no spruce
budworm outbreak in current and previous growth intervals).

3.2 MODEL FIT ON SINGLE GROWTH INTERVALS

The estimated biases in basal area and stem density predictions are shown in
Table 5. Overall, the estimated bias in basal area was less than 1%, whereas the
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one in stem density was slightly larger, with a relative value of 3.2%. The first four
intervals were those with the largest biases, with relative values as large as -17.1%.
The last three intervals had lower relative biases ranging from -1.4% to 7.5%. The
biases in stem density tended to be relatively larger than those in basal area. It also
appeared that the model tended to overestimate growth during the spruce budworm
outbreak while underestimating it during the other intervals.

Table 5. Estimated biases of basal area and stem density predictions on
single growth intervals (relative biases appear in parentheses).

Growth interval
Number of Basal area Stem density

observations (m2ha−1) (trees·ha−1)
1968-1973 32 3.1 (7.4%) 933 (14.9%)
1973-1978 32 2.3 (5.2%) 241 (4.3%)
1978-1983a 32 -5.3 (-16.2%) -497 (-17.1%)
1983-1989a 32 -1.8 (-6.5%) -144 (-7.8%)
1989-1994b 23 0.6 (1.4%) -33 (-1.4%)
1994-2000c 23 1.6 (4.0%) 140 (7.5%)
2000-2006 23 2.8 (6.9%) 100 (6.1%)
All intervals 197 0.3 (0.8%) 106 (3.2%)

a Growth intervals with spruce budworm outbreak
b Prior to the 1994 shelterwood cutting
c Following the shelterwood cutting

3.3 EVALUATION OF LONG-TERM PROJECTIONS AND DIAMETER DISTRI-
BUTION EFFECT

The stochastic simulations of the narrow symmetric set are shown in Fig. 3.
Most Monte Carlo realizations were below the MSDR, except for some of the high-
est initial density (Fig. 3b,c,d). For all plots, the mean total tree volume tended to
increase while the stem density was decreasing.

The decrease in stem density was dependent on the initial densities. For the
two plots with the lowest initial stem densities (Fig. 3a,b), the mean tree volume
increased more rapidly than the stem densities decreased, dragging the different
realizations closer to the MSDR. For the plots with the highest initial stem densities
(Fig. 3c,d), the realizations tended to remain close to the MSDR.

An interesting feature that was observed in the simulations of each plot was the
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Figure 3. Stochastic simulations for four 400-m2 balsam fir plots with initial narrow sym-
metric dbh distributions and different initial stem densities: 4000 (a), 6000 (b), 8000 (c) and
10 000 (d) trees·ha−1 (simulations based on 500 Monte Carlo realizations, solid black line:
mean trend, black dashed line: Bégin et al.’s (2001) maximum size-density relationship).

break up at values between 0.2 and 0.3 m3tree−1. After this point, the total volume
increment appeared to slow down while the decrease in stem density maintained
the same pace. For all four plots, this slowing down induced a divergence from the
MSDR. The simulations with the three other sets showed similar trends.

The mean predicted total tree volumes as a function of the stem density are
compared across the different initial distributions in Fig. 4. The initial asymmetric
dbh distributions resulted in a greater mean total tree volume at the beginning of the
simulations. However, the plots with initial asymmetric dbh distributions tended
to show trajectories that flattened out when compared with those of the symmetric
distributions. Except for the lowest initial density (Fig. 4a), the effect of the variance
was quite small.
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Figure 4. Mean predictions of the mean total tree volume as a function of stem density
for four sets of plots with different diameter distributions and different initial stem densi-
ties: 4000 (a), 6000 (b), 8000 (c) and 10,000 (d) trees·ha−1 (gray line: narrow symmetric,
gray dashed line: wide symmetric, black line: narrow asymmetric, black dotted line: wide
asymmetric, black dashed line: Bégin et al.’s (2001) maximum size-density relationship).

4 DISCUSSION
The Matapedia single tree-based model has a simple architecture: it consists

of two dynamic components and two static ones. Its dynamic components are a
diameter increment submodel and a mortality submodel. These submodels rely
on the same predictors, namely tree dbh and species group, basal area of all trees
with dbh larger than the subject, and the occurrence of spruce budworm defolia-
tion in the previous or the upcoming growth intervals. Coupled with the two other
static components, a height-diameter relationship and Honer et al.’s total tree vol-
ume equation, the model makes it possible to run stochastic growth simulations for
even-aged balsam fir-dominated stands.

Although the individual components of the simulator were independently evalu-
ated, there was no guarantee that the plot-level predictions would be consistent. The
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evaluation over single growth intervals showed that the biases in total basal area and
stem density were relatively small on average (Table 5). Although there was some
evidence that the model might overestimate the growth during spruce budworm out-
breaks and vice versa, the comparison between long-term projections and Bégin et
al.’s MSDR yielded surprisingly good results, as shown in Fig. 3.

These results also showed that the relative density indices are not required to
make consistent predictions with single tree-based models. Actually, using mainly
tree-level variables, we succeeded in reproducing growth trajectories that comply
with the self-thinning law. Monserud et al. (2004) conducted a similar study using
the PROGNAUS model with pure even-aged stands of Norway spruce (Picea abies
L. Karst.) and Scots pine (Pinus sylvestris L.). They concluded that a density-
dependent individual-tree mortality submodel may be sufficient to reproduce the
stand-level behaviour inherent in Reineke’s (1933) rule. Although we did not use
Reineke’s index, our findings are in accordance with their conclusion regarding the
ability of a diameter increment and a mortality submodel to implicitly reproduce
trajectories that closely match Bégin et al.’s (2001) MSDR for pure balsam fir stands
(Fig. 3).

The originality of our study is due to the fact that our simulations were stochas-
tic and not deterministic. If the two submodels properly represent the diameter in-
crement and mortality processes in the population, our stochastic simulations then
reproduce the variability that might be expected in this population. Bégin et al.’s
(2001) modelled the MSDR of pure balsam fir stands in such a way that approx-
imately 95% of the observations would be below the line. Considering that the
simulations included 500 realizations and that only some exceeded Bégin et al.’s
(2001) MSDR (Fig. 3b,c,d), our results seem to be consistent with their relation-
ship, even though the height-diameter relationship and the total volume equation
we used were different from theirs. Further simulations should be run in order to
identify the eventual differences between the relationship that is implicit in our sim-
ulator and Bégin et al.’s MSDR. It would also be interesting to derive an analytic
expression of the MSDR from the submodel specifications. The developments de-
scribed in Section 2.2.3 might eventually be used for that purpose.

In many growth models, fertility is taken into account through a proxy, such as
site index, or some climate or site variables (e.g. Vanclay 1989; Ung et al. 2009).
The Matapedia growth model does not rely on any of these variables. In our pre-
liminary attempts to fit the model components, we specified a plot random effect in
both submodels. A plot random effect is actually an unobserved factor that has a
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systematic and sustained effect on a particular plot (Gregoire 1987). In this context,
we expected that this random effect would account for the variability in fertility. It
turned out that the plot random effect was not significant in neither of the submod-
els. We then tried to fit the submodels with climate variables, such as the mean
annual temperature and precipitation for the 1971-2000 period, but without any
further improvement. The homogeneity of the conditions may explain these unsuc-
cessful attempts in taking fertility into account. All our plots belong to the same
forest type and they are geographically close to each other so that the climate and
soil conditions are similar. In such conditions, Laflèche et al. (2013, p.30) estimated
a site index of 16.6 m at a reference age of 50 years. In this context, the scope of
the model remains limited to even-aged balsam fir-dominated stands growing on
undifferentiated tills in the balsam fir-yellow birch bioclimatic domain in Eastern
Québec.

In these conditions, the Matapedia growth model makes it possible to predict
tree and stand development for dense balsam fir stands that are at least 33 years old
(Pothier 1998). Compared to previous studies, our growth trajectories for low den-
sity stands showed mortality at younger ages even if the stand was still far from the
MSDR (Fig. 3a). Many authors have identified an “imminent competition-induced
mortality zone” as soon as the relative density (density/maximum density for a given
mean tree volume) reaches 0.5-0.6 (Drew and Flewelling 1979; Newton and Weet-
man 1993; Penner et al. 2006). There are two explanations for the fact that mortality
occurred below that threshold in our simulations. Firstly, since those stands have
experienced a spruce budworm outbreak, the model may include some losses even
though pesticides were used to limit the damage. Secondly, the mortality submodel
accounts for all sources of mortality, including the catastrophic mortality due to
factors other than spruce budworm. Some windfalls were observed in the dataset,
and the mortality submodel reproduces these in the simulations. In that sense, the
stochastic simulation includes not only the competition-induced mortality but the
catastrophic mortality as well.

The tendency of the trajectories to become progressively parallel to the MSDR
as the stands grow is in accordance with the stand density management diagram
(SDMD) concepts (cf. Jack and Long 1996). These evolutions are also coherent
with the observed development of balsam stands reported by Penner et al. (2006).
However, the divergence of growth trajectories with the MSDR at older ages can
hardly be predicted with the SDMD alone. This breakup trend that was observed in
all our simulations had also been observed in previous studies. VanderSchaaf and
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Burkhart (2008) defined three phases in the density-dependent mortality stage of
stand development. Phase I occurs when the stand enters the imminent competition
mortality zone. The growth trajectory then exhibits a concave shape on the log-log
scale as it becomes parallel to the MSDR. In phase II, the stand trajectory is linear
since the increase in average tree size is compensated for by a decrease in the num-
ber of individuals. Phase III occurs when residual trees can no longer occupy the
canopy gaps. This causes a divergence from the MSDR. The breakup we observed
in this study is clearly the beginning of the third phase, which is also known as the
senescence period.

In trembling aspen even-aged stands, Pothier et al. (2004) managed to determine
that the senescence period begin around 60 years of age. Our model is not age
dependent but rather size dependent and our simulations were not set to start a
particular age. If we assume that the trees were initially the same age than those at
Lac Matapedia in 1968, the senescence would be begin when the stand reaches 80
years of age in the absence of silvicultural treatment and spruce budworm outbreak.
However, the value is highly hypothetical since the recurrence interval of spruce
budworm outbreaks was around 30 years during the 20th century (Blais 1983).

In terms of size, the senescence phase begins when the mean total tree volume
reaches a value of between 0.2 and 0.3 m3tree−1 in the simulations of the narrow
symmetric plot set. According to Honer et al.’s total volume equation, the mean
total tree volume of 0.2 m3tree−1 is obtained with a balsam fir tree of 19 cm in
dbh and 16 m in height. The value of 0.3 m3tree−1 is obtained with a tree of ap-
proximately 23 cm and 18 m in dbh and height, respectively. When trees become
larger than 25 cm in dbh, the predicted probability of mortality increases, whereas
the annual dbh increment decreases (Fig. 2a,c). This value is a little over 20 cm,
considered by McLintock (1954) to be at risk of wind damage. The decrease in the
dbh increment is not of concern in the sense that smaller dbh increments on larger
trees may still result in similar or even larger basal areas and volume increments
than those of small trees with larger dbh increments. On the other hand, the in-
creasing probability of mortality with dbh for a given competition level (Fig. 2a)
has a much more significant impact: as mortality losses increase and the volume
increment remains the same on survivor trees, it can only be expected that the plot
trajectory will diverge from the MSDR.

In their comparison of different crown radius models for balsam fir, Gilmore and
Seymour (1997) obtained predicted crown radii as large as 2.0 m for open-grown
and co-dominant balsam fir trees. Assuming that the trees would be uniformly
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distributed over the plot, nearly 700-800 trees per hectare could fully occupy the
canopy. Of course, trees are not evenly distributed, nor do they immediately occupy
a gap as soon at it appears. In our simulations, the gaps caused by the increasing
mortality appeared at a faster pace than they could be occupied by survivor trees.
As the mortality increases, this pace is expected to increase as well and the stand is
likely to reach the old-growth stage (Oliver 1981).

The causes for this increasing mortality in trees with larger diameters are exoge-
nous to the between-tree competition. Balsam fir is known to be vulnerable to butt
and root rots as well as red heart fungus (Haematostereum sanguinolentum). Patry
et al. (2004) reported a 50% probability of observing butt rot for 65-year-old balsam
fir trees. This age corresponds to the one when root decay becomes a risk (Whitney
1989) and is a little less than the age identified by Basham (1991) at which bal-
sam fir should be harvested in order to avoid serious decay losses. These damaging
agents are known to affect the mechanical stability of balsam trees, making them
more vulnerable to windthrow as they become older (Frank 1990).

Our simulations on the structure effects show that asymmetric initial diame-
ter distributions resulted in higher mean total tree volume at the beginning of the
simulation. This can be explained by the fact that volume is a three-dimensional
measurement, whereas diameter is only a single dimension. For the same mean di-
ameter, larger trees account for much more volume than small trees do. In this study,
the plots with asymmetric distributions contained more trees larger than 14 cm than
the plots with symmetric distributions (Fig. 1). The estimated volumes of those
trees pull the mean total tree volume upwards for the same density, which explains
the higher initial mean total tree volume for the plot of the asymmetric sets (Fig. 4).

On the other hand, the simulations of the plots in these asymmetric sets showed
that their mean total tree volume was lower on average at advanced ages (Fig. 4).
The explanation for this result seems to be related to the above-mentioned argu-
ments. In fact, the plots of the asymmetric sets have a typical right-tailed dbh dis-
tribution (Fig. 1). Individually, these large trees reach the 25-cm threshold in dbh
sooner than those in the plots of the symmetric sets. When they reach this threshold,
these trees are more prone to die, which results in higher losses in mean total tree
volume than in the plots of the symmetric sets. The MSDRs that flatten out in the
asymmetric sets are essentially due to different individual dynamics.

Monserud et al. (2004) compared PROGNAUS predictions with two existing
MSDRs: Reineke’s (1933) relationship and Sterba’s (1987) index. When compared
to Sterba’s MSDR, the maximum site density indices in the simulations were much
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lower. At least a part of this difference can be explained by methodological issues.
Monserud et al. (2004) ran deterministic simulations. However, when they used
stochastic simulations, they only considered the means of these simulations. An
individual-based model represents the mathematical expectation of the growth pro-
cess. A high degree of uncertainty still exists around model predictions (Kangas
1999; Fortin et al. 2009a).

On the other hand, MSDRs are usually fitted on plot data, which are realizations
of the growth process. The plots that define the MSDR are those with the highest
stem densities for a given size. Those plots are the highest percentiles in all the re-
alizations of the growth process. Unless the prediction error variance is small, these
realizations can be far from the average trend by definition. This difference can be
found in Fig. 3. We recall that Bégin et al.’s MSDR was fitted in such a way that
95% of the observations were under the maximum size-density line. If we had only
considered the mean predicted values (solid black line), we would have concluded
that the maximum size-density relationship in our model was slightly lower than
the one in Bégin et al. Taking the uncertainty associated with the predictions into
account, as we did in our Monte Carlo simulations, is clearly more in accordance
with the way the MSDR are usually fitted.

The prediction uncertainty is also closely related to the plot size. In this study,
we were faced with the ideal situation: the plots Bégin et al. used to fit their MSDR
and the plots that served to fit the model had the same area, namely 400 m2 each.
All other things considered, repeating this study with a model whose components
would be fit with smaller or larger plots is likely to result in something different.
The variance in basal area would probably increase as the plot size decreases. If
no bias is to be expected here, the variance of the predictions would definitely be
different. In other words, with the submodels fitted on smaller plots, we would
expect many more realizations to exceed the MSDR and vice versa for larger plots.

5 CONCLUSIONS
A simple mortality submodel coupled with a diameter increment submodel may

implicitly reproduce existing MSDRs. We do not suggest this is always the case.
However, in our case study, the adequacy between Monte Carlo-simulated evolu-
tions and the MSDR was surprisingly good, considering that the predictors in our
submodels were only the species group, tree dbh and the basal area of all trees with
a dbh larger than the subject. Furthermore, trajectories are also consistent with the
conceptual or the observed development of balsam fir stands on SDMD.
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The simulations made it possible to identify the threshold beyond which there is
a divergence from the MSDR. For balsam fir trees in the Lac Matapedia experiment,
the threshold for the dbh could roughly be set to 25 cm. As soon as the trees reach
this threshold, their probability of mortality drastically increases.

Skewed diameter distributions might result in a change in the slope of the MSDR,
with higher mean total tree volumes for the same density, and even more so with
greater initial stem densities and vice versa. This impact seems to be closely linked
to the aforementioned threshold. In right-skewed diameter distributions, some trees
reach the 25-cm dbh threshold sooner than in symmetric distributions for the same
mean diameter.
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A APPENDIX
EXPECTATIONS OF PLOT BASAL AREA AND STEM DENSITY FOR A SINGLE

GROWTH INTERVAL

Using the rule of iterated expectations, the expectation of the plot basal area can
be expressed as:

E[Gik] = E[E[Gik | bik]]

= E

[
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[
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E[gi jk]

]
(A.1)

where

E[gi jk] =
25π

4000000

(
100 ·dbh2

i jk +20 ·dbhi jk∆tikwwwi jkγγγ+

∆t2
ik(wwwi jkγγγ)2 +∆t2

ik(σ
2
treedbh2

i jk +σ2
res)

)
(A.2)

The marginal expectation A.1 is obtained by marginalizing out the random effect
bik. As mentioned in Section 2.2.1, this can be done by integrating the expectation
conditional on bik over the distribution of bik:

E[Gik] = E

[
∑

j
e−exxxi jkβββ+bik

E[gi jk]

]

=
∫ (

∑
j

e−exxxi jkβββ+bik
E[gi jk]

)
ϕ(bik;σ

2
int)dbik

= ∑
j

∫
e−exxxi jkβββ+bik

E[gi jk]ϕ(bik;σ
2
int)dbik

= ∑
j

E[gi jk]
∫

e−exxxi jkβββ+bik
ϕ(bik;σ

2
int)dbik

= ∑
j

E[gi jk]E[e−exxxi jkβββ+bik
]

The term E[e−exxxi jkβββ+bik
] =

∫
e−exxxi jkβββ+bik

ϕ(bik;σ2
int)dbik cannot be solved analyti-

cally, and numerical integration has to be used instead. Just as in Section 2.2.1, the
Gauss-Hermite quadrature was used to approximate this integral.

Following the same developments, the expectation of the stem density is:
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E[Nik] = ∑
j

E[e−exxxi jkβββ+bik
]

It is worth mentioning that the parameters βββ , γγγ , σ2
tree, σ2

int , and σ2
res are un-

known. To obtain feasible estimators for the basal area and the stem density, these
parameters are replaced by their maximum or restricted maximum likelihood es-
timators. The errors in the parameter vector γ̂γγ are likely to induce a bias in the
square transformation of the dbh in Eq. A.2 as shown by Gregoire et al. (2008). The
larger the variance of the errors, the larger the bias is. Considering the extent of our
dataset, we assumed that the errors in these parameter estimates were negligible.
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