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1 Defining the maximum extent of the Laurentide Ice Sheet in Home 

2 Bay (eastern Arctic Canada) during the Last Glacial episode

3

4 YAN LÉVESQUE, GUILLAUME ST-ONGE, PATRICK LAJEUNESSE, PIERRE-ARNAUD 

5 DESIAGE AND ETIENNE BROUARD

6

7 Three sediment cores recovered on the lower slope of the continental shelf in western Baffin Bay 

8 (Arctic Canada) as well as swath bathymetry and subbottom profiler data collected on the shelf 

9 and slope of the region were analyzed to investigate if the Laurentide Ice Sheet (LIS) reached the 

10 shelf edge offshore Home Bay during the Last Glacial Maximum (LGM). Physical, 

11 sedimentological, and palaeomagnetic analyses of the cores were also used to constrain the 

12 chronostratigraphy of upper sedimentary facies of the Home Bay trough-mouth fan (TMF). 

13 Seven lithofacies were identified in the cores and reveal that the sediments recorded a genuine 

14 geomagnetic signal and that the cores span the last 40 ka. In the Home Bay Trough, sets of 

15 elongated ridges are discernable on swath bathymetry imagery and are interpreted as mega-scale 

16 glacial lineations (MSGLs) resulting from an ice stream eroding the trough and delivering 

17 glaciogenic sediments to the TMF. The geomorphology of the TMF, combined with the 

18 sedimentary records and the chronostratigraphy, indicates that a series of debris flows and 

19 turbidity currents were generated between 35 and 15 ka BP. These results indicate that the LIS 

20 margin extended near the shelf edge during the LGM and allow us to propose a new maximum 

21 extent of the LIS during the Last Glacial episode.

22 Yan Lévesque (yan.levesque@uqar.ca), Guillaume St-Onge and Pierre-Arnaud Desiage, Institut des sciences de la 

23 mer de Rimouski (ISMER), Canada Research Chair in Marine Geology, Université du Québec à Rimouski and 
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24 GEOTOP, 310 allée des Ursulines, Rimouski, QC, Canada, G5L 3A1; Patrick Lajeunesse, Département de 

25 géographie and Centre d’études nordiques, Université Laval, QC, Canada,  G1V 0A6; Étienne Brouard, 

26 Département des sciences de la Terre et de l’atmosphère, Université du Québec à Montréal, QC, Canada, H3C 3P8.

27

28 The Laurentide Ice Sheet (LIS) covered most of North America during the last glaciation and the 

29 eastern margin of Baffin Island, in the eastern Canadian Arctic, has been shaped by its phases of 

30 advance and retreat (Dyke & Prest 1987; Dyke 2004). Therefore, Baffin Bay, located between 

31 Baffin Island and Greenland, forms a unique setting capturing sediments related to the pulses of 

32 ice sheet margins on the surrounding continental shelves (e.g. Simon et al. 2012, 2014, 2016; 

33 Brouard & Lajeunesse 2017; Jenner et al. 2018). Recent studies have suggested that the LIS 

34 margin extended on the northeastern Baffin Island shelf during the Last Glacial Maximum 

35 (LGM) and reached the shelf edge (Fig. 1A, B; Li et al. 2011; Brouard & Lajeunesse 2017; 

36 Jenner et al. 2018). These studies contrast with the generally accepted LIS extent and 

37 chronologies which portray the LIS as only extending few kilometers seaward of the mouth of 

38 the fiords (Briner et al. 2005, 2006). According to Dyke et al. (2002) ice only began to recede 

39 from its maximum position (e.g. fiord mouths) around 13-12 ka BP.

40 Ice sheet dynamics near a shelf edge can generate considerable temporal and spatial 

41 variability in the depositional processes of glaciogenic sediments onto the continental slope and 

42 in ocean basins (Laberg & Vorren 1995; King et al. 1998; Vorren et al. 1998; Nygard et al. 

43 2002). A range of sedimentary processes have been described and include glaciogenic debris 

44 flows (GDFs) and turbidity currents, which flow through canyons and gullies, and can 

45 accumulate tens to hundreds of kilometers downslope on submarine deep sea fans (e.g. TMFs; Ó 

46 Cofaigh et al. 2003; De Blasio et al. 2004; Laberg & Vorren 1995; Vorren et al. 1998; Tripsanas 

47 & Piper 2008).  TMFs are generally composed of stacked glaciogenic debrites that in some cases 
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48 alternate laterally with turbidites also of glacial origin; they can therefore be used to identify 

49 periods of glacial activity at the shelf edge (e.g. Laberg & Vorren 1995; Vorren et al. 1998; 

50 Tripsanas & Piper 2008). Establishing the temporal evolution setting of the sediment 

51 accumulation within a TMF can, however, be highly challenging due to chronostratigraphic 

52 limitations. Indeed, datable material such as biogenic carbonates are scarce and/or not well-

53 preserved in the Canadian Arctic, especially in Baffin Bay (de Vernal et al. 1987, 1992 ; Ledu et 

54 al. 2008; McKay et al. 2008; Simon et al. 2012). To circumvent these issues, palaeomagnetism 

55 combined with radiocarbon dating can provide an age control on the glaciogenic triggering events 

56 (Stoner & St-Onge 2007; St-Onge & Stoner 2011). Sediment cores taken offshore of high-

57 latitude continental margins are particularly well suited for high-resolution Quaternary 

58 palaeoenvironmental reconstructions and can provide continuous and reliable records of 

59 variations in the geomagnetic field (e.g. Andrews & Jennings 1990; Snowball & Sandgren 2002; 

60 Snowball & Muscheler 2007; Barletta et al. 2008). 

61 Here, we present a palaeomagnetic sequence of the relative palaeointensity from the 

62 continental margin of Baffin Island and compare this sequence to one palaeomagnetic record 

63 (Simon et al. 2012) and two others palaeomagnetic stacks from the North Atlantic and 

64 Mediterranean Sea/Somalian Basin (Meynadier et al. 1992; Laj et al. 2000) to obtain a time 

65 frame for the cores collected from Home Bay TMF, in order to determine if the LIS reached the 

66 self edge during the LGM. In addition, we use swath bathymetry and subbottom profiler data to 

67 identify landforms and deposits left by the LIS on the Home Bay cross-shelf trough and fan.

68

69 Regional setting

Page 3 of 55 Boreas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

70 Baffin Bay forms a narrow (450 km-wide) oceanic basin located between the Canadian 

71 Arctic Archipelago and Greenland that is characterized by an anticlockwise ocean circulation 

72 (West Greenland and Baffin Island currents; Fig. 1A) and by partial sea ice cover during most of 

73 the year (Tang et al. 2004). Archaean and Palaeoproterozoic cratons form the main geological 

74 units on either side of Baffin Bay, and are overlain by a succession of Palaeozoic rocks 

75 dominated by shallow carbonates such as dolostones and limestones (Aksu & Piper 1987; Hiscott 

76 et al. 1989; Simon et al. 2012; Stanley & Luczaj 2015).  

77 During the LGM, Baffin Bay was surrounded by three major ice sheets that flowed into it: 

78 the Greenland Ice Sheet (GIS), the Laurentian Ice Sheet (LIS) and the Innuitian Ice Sheet (IIS) 

79 (Dyke & Prest 1987; Dyke et al. 2002; Stokes 2017). The LIS extended across Baffin Island and 

80 possibly covered much of the fiords and the continental shelf (Briner et al. 2006; Funder et al. 

81 2011).  Quaternary deposits from Baffin Bay, mainly debris flows and turbidites, also suggest 

82 that the LIS may have reached the Baffin Island continental shelf during the LGM (Aksu & 

83 Piper 1987; Hiscott & Aksu 1994; Praeg et al. 2006). These turbidites and debrites relate to 

84 meltwater processes that periodically incised canyons and submarine valleys on TMFs (e.g. 

85 Tripsanas & Piper 2008; Li et al. 2012). Therefore, they record periods of ice occupying the 

86 troughs. Basal diamictons are often observed in sediment cores collected on the NE Baffin slope 

87 near the mouths of TMFs (Table 1, Fig. 2). They usually represent GDFs that were triggered by 

88 glacial advance during the LGM (Jenner et al. 2018). Deglaciation of the LIS in Baffin Bay is 

89 thought to have begun around 16-15 cal. ka BP, but only beginning around 13-12 cal. ka BP in 

90 Home Bay (Dyke & Prest 1987; Dyke et al. 2002; Dyke 2004). 

91

92 Material and methods
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93 Sediment cores

94 Two piston cores and one large square gravity core (CASQ) were collected with their companion 

95 trigger weight cores (TWC) and associated box cores (BC) in central Baffin Bay in 2016 and 

96 2017. Cores AMD16-LGM-09 and AMD0217-01, hereinafter referred as cores 9CASQ and 

97 1Comp, were collected aboard the CCGS Amundsen from the Home Bay TMF; core HU2013-

98 029-0077 (hereinafter referred as 77PC) was collected in 2013 aboard the CCGS Hudson during 

99 cruise 2013029 with the purpose of serving as a chronostratigraphic reference core (Table 1, Fig. 

100 1; Campbell 2014).

101

102 Seismo-stratigraphy and swath bathymetry

103 High-resolution swath bathymetry data were acquired using a hull-mounted Kongsberg EM-302 

104 (30 kHz) echosounder. High-resolution acoustic subbottom data were collected with a 

105 Knudsen 3.5 kHz Chirp system and analyzed using The Kingdom Suite software (IHS). 

106 Subbottom profiles were analyzed onboard in order to identify areas of Quaternary sedimentary 

107 sequences in which mass movements and/or sediment perturbations were present inside the TMF 

108 (i.e. the coring sites). The geomorphology of the Home Bay area was mapped by the 

109 interpretation of the swath bathymetric data that were processed using the CARIS HIPS and SIPS 

110 software and then visualized with the QPS Fledermaus software. Finally, airgun seismic 

111 reflection data (Line 76029_AG_280_1730) were acquired through the public database of the 

112 National Resources Canada Marine Data Holdings. The airgun data were used to investigate the 

113 sedimentary architecture of the cross-shelf trough in search of potential grounding-zone wedges 

114 (GZW) in the area. 

115
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116 Physical and geochemical properties

117 To define the stratigraphy and sedimentary facies, sections of core 9CASQ were passed through a 

118 computerized axial tomography scanner (CAT-Scan) at the Institut national de la recherche 

119 scientifique, Centre Eau Terre Environnement (INRS-ETE) in Québec City to characterize the 

120 sedimentary facies and sediment structures (St-Onge et al. 2007). Similarly, the sections of 

121 core 1Comp were scanned with a GEOTEK XCT digital X-ray system at ISMER (Fig. 2). Whole 

122 cores were then analyzed using the GEOTEK Multi Sensor Core Logger (MSCL) at 1 cm 

123 intervals to measure the low-field volumetric magnetic susceptibility (kLF) and the wet bulk 

124 density using gamma-ray attenuation; then, the core was split, described and photographed. 

125 Diffuse spectral reflectance was then acquired with an online Minolta CM-2600d 

126 spectrophotometer at 0.5 cm intervals, while the concentration of minor and major chemical 

127 elements (calcium (Ca), strontium (Sr), iron (Fe), Rubidium (Rb), among others) were 

128 determined by X-ray fluorescence (XRF) spectrometry for the same intervals using an Olympus 

129 Innov-X Handheld Delta XRF analyser Delta Family integrated to the MSCL. The grain size 

130 analysis was performed at 10 cm intervals on bulk sediment samples at ISMER using a Beckman 

131 Coulter™ LS13320 laser diffraction grain size analyzer, as well as at a higher resolution in 

132 specific facies such as in turbidites. Prior to analyses, samples were sieved at 2 mm. Apart from a 

133 few intervals with a few pebbles, no material larger than 2 mm was recovered. Therefore, the size 

134 fraction larger than 2 mm has been excluded from the grain size metrics.

135

136 Palaeomagnetic analysis

137 Palaeomagnetic data were measured at 1 cm intervals on u-channel samples (2 x 2 x 150 cm) 

138 using a 2G Enterprises™ cryogenic magnetometer at ISMER for chronostratigraphic purposes 
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139 and to identify possible rapidly deposited layers such as turbidites and debrites, which are 

140 characterized by low quality palaeomagnetic data and shallow inclinations (e.g. St-Onge et al. 

141 2004; Tanty et al. 2016). The measurements performed were as follows: natural remanent 

142 magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal remanent 

143 magnetization (IRM) and saturation isothermal magnetization (SIRM). Due to the finite spatial 

144 resolution of the pick-up coils that integrates measurements over ~7–8 cm (Philippe et al. 2018), 

145 some smoothing occurred. To eliminate the edge effect associated with this response function, the 

146 data from the first and last 4 cm of each u-channel were excluded.

147 The NRM was measured and then progressively demagnetized using stepwise alternating 

148 field demagnetization (AF) at peak fields from 0 to 75 mT at 5 mT increments. Directions 

149 (inclination and declination) of the characteristic remanent magnetization (ChRM) were 

150 calculated using the Excel spreadsheet developed by Mazaud (2005) with AF demagnetization 

151 steps from 10 to 60 mT (11 steps) for the three cores. This method also provides maximum 

152 angular deviation (MAD) values, which are indicative of high-quality directional data for 

153 Quaternary palaeomagnetic studies if the MAD is lower than 5° (Stoner & St-Onge 2007). Using 

154 this spreadsheet, the median destructive field (MDF) of the NRM is also calculated. The MDF 

155 represent the required demagnetization field necessary to reduce the initial magnetic remanence 

156 by half of its initial intensity. The MDF is an indicator of magnetic mineralogy, reflects the mean 

157 coercivity state of the magnetic grain assemblage and depends on both the grain size and the 

158 mineralogy (e.g. Stoner & St-Onge 2007; Barletta et al. 2010) The ARM was then induced using 

159 a 100 mT AF with a 0.05 mT direct current (DC) biasing field. The ARM was then demagnetized 

160 and measured from 0 to 75 mT at every 5 mT. Two IRMs were imparted with a DC field of 0.3 T 

161 (IRM) and 0.95 T (SIRM) using a 2G Enterprises pulse magnetizer. Each IRM was measured 
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162 from 0 to 75 mT at 5 mT demagnetization step increments; the steps used in the SIRM were 0, 

163 10, 30, 50 and 70 mT.

164 To define the magnetic mineralogy, hysteresis measurements were performed at 10 cm 

165 intervals on a small quantity of sediment from the three cores using a Princeton Measurement 

166 Corporation MicroMag 2900 alternating gradient force magnetometer (AGM). The saturation 

167 magnetization (Ms), the coercive force (Hc), the saturation remanence (Mrs) and the coercivity of 

168 remanence (Hcr) were extracted from the hysteresis data to characterize the magnetic mineralogy 

169 and grain size (Day et al. 1977).

170

171 Radiocarbon dating

172 To develop the chronology of the cores, 14C ages were obtained by accelerator mass spectrometry 

173 (AMS) on six samples from mixed planktonic and benthic foraminifera and one sample derived 

174 from Neogloboquadrina pachyderma shells (Table 2) at the Laboratoire des sciences du climat et 

175 de l’environnement (LSCE), Gif-sur-Yvette, France (cores 9CASQ and 1Comp). The 

176 conventional ages were then calibrated using the CALIB 7.1 online calibration software (Stuiver 

177 et al. 2017) and the MARINE13 calibration curve (Reimer et al. 2013) with a regional reservoir 

178 correction ΔR of 220 ± 20 years (Coulthard et al. 2010). Of the 6 samples that were analyzed, 

179 only the results of sample ECHo 2559 could not be validated, since only 1 μg of carbon was 

180 detected.

181

182 Results

183 Sea floor morphology and stratigraphic framework
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184 Subbottom profiles. The acoustic subbottom profiles (3.5 kHz) from the sampling location of 

185 core 9CASQ show high amplitude parallel acoustic reflections at the middle of the core (between 

186 362 to 125 cm) where a turbidite and alternating mud and IRD layers are observed. These units 

187 are topped by an acoustically transparent unit associated with postglacial hemipelagic sediments 

188 (Fig. 3A). However, given the loss of the signal at the base of the core (between 552 and 362 

189 cm), the seismic profile in Fig. 3A does not reflect the stratigraphy at the base. The seismic 

190 profile of core 77PC is modified from Campbell & Bennett (2014) and is characterized by high 

191 amplitude parallel reflections in the basal part of the core and transparent acoustic facies 

192 associated with the hemipelagic sediments in the upper part of the core (Fig. 3B; Campbell & 

193 Bennett 2014). For core 1Comp, the sequence is characterized by a high amplitude reflection that 

194 can be associated with the debrite observed at the base of the core, whereas the uppermost 

195 acoustically transparent unit is interpreted as postglacial hemipelagic sediments (Fig. 4). The 

196 available data within the cross-shelf trough, including the airgun profile (Fig. S1), do not show 

197 any seismic unit that could be interpreted as a grounding-zone wedge (GZW).

198

199 Swath bathymetry. Glaciogenic landforms associated with the presence of the LIS and/or 

200 icebergs drifting offshore were identified and mapped using the swath bathymetry imagery. 

201 Linear, curvilinear, and almost circular depressions with a general N-S orientation, occur at the 

202 eastern end of the trough. These are interpreted as the product of iceberg keels eroding the 

203 seafloor (Figs 5A, B, S2; Brouard & Lajeunesse 2019A). Sets of other erosional landforms 

204 aligned parallel to the trough axis (W-E) are also observed in the Home Bay Trough. Three 

205 distinct landforms can be interpreted within the trough: 1) large ridges that are similar in terms of 

206 width (km) to subglacial medial moraines in other Baffin Island troughs (Brouard & 
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207 Lajeunesse 2017); 2) smaller-scale longitudinal ridges that have morphologies similar to mega-

208 scale glacial lineations (MSGL; Clark 1993; Stokes & Clark 2002); and 3) curvilinear 

209 depressions that are interpreted as iceberg scours (Fig. 5B). The seaward end of the cross-shelf 

210 trough is characterized by a series of parallel gullies, some of which extending downslope to 

211 form turbidity channels with distinctive levees (Figs. 5A, S2, S6). Such channels are generally 

212 eroded by underflows or currents transporting sediment downslope and have been reported on 

213 other high-latitude shelves and in fiords (Syvitski & Shaw 1995; Syvitski et al. 2012; 

214 Dowdeswell & Vásquez 2013; Brouard & Lajeunesse 2019B).  

215

216 Lithofacies

217 The classification of these facies was determined from CAT-scan images, physical and magnetic 

218 properties, as well as previous studies from Baffin Bay (Andrews 1985; Tripsanas & Piper 2008; 

219 Ó Cofaigh et al. 2013; Simon et al. 2012; Jackson et al. 2017; Jenner et al. 2018). Photography 

220 and CAT-scan images reveal a highly variable lithology across the cores (Figs. 2, 7). Overall, 

221 seven lithofacies were identified in the two cores from the TMF (1Comp and 9CASQ; Figs. 6, 7). 

222 Lithofacies 1 (LF1) is defined as a massive, matrix-supported diamicton facies with very dense, 

223 black, and coarse-grained sediment. It is mixed with a fine-grained matrix and has a sharp upper 

224 contact. This facies contains a concentration of granules, pebbles, and cobbles, which are angular 

225 to sub-rounded in shape. Lithofacies 2 (LF2) is defined as a laminated dark gray to dark grayish-

226 brown silty mud, rich in IRD, with an unrhythmic succession of stratified pebbly mud. The 

227 concentrated pebbles often deform the laminae and contacts range from diffuse to sharp (Fig. 2). 

228 Lithofacies 3 (LF3) is defined as dense, very dark gray silts and sands with clasts. Facies LF3 is 

229 composed of coarse-based fining upward laminated mud with normal grading (Fig. 8). The upper 
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230 contact of this layer is also visible, as shown by the contrast between the finer sediment and the 

231 background sediments immediately above (Figs. 6, 8; St-Onge et al. 2004; Bourget et al. 2011; 

232 Pouderoux et al. 2012). Lithofacies 4 (LF4) is defined as a laminated dark grayish-brown 

233 rhythmic succession of clay and silt laminae. The laminae and contacts range from diffuse to very 

234 sharp and do not contain IRD or bioturbation. Lithofacies 5 (LF5) is defined as a massive 

235 homogenous dark grayish-brown silty mud with IRD. No apparent structures are observed. The 

236 distribution of pebbles within LF5 ranges from dispersed to concentrated and the contacts range 

237 from diffuse to gradual. Lithofacies 6 (LF6) is defined as a carbonate-rich light olive brown 

238 sandy and pebbly mud with IRD. Finally, lithofacies 7 (LF7) is defined as a massive and 

239 homogenous bioturbated grayish to brownish mud without IRD. Apart from traces of 

240 bioturbation such as well-defined burrows, no apparent structures are observed in this lithofacies 

241 (Fig. 2). 

242

243 Interpretation of lithofacies

244 LF1 exhibit characteristics (massive, matrix-supported diamicton facies) that are similar to GDFs 

245 triggered near an ice-sheet margin and that have been described at the margin of other deglaciated 

246 shelves (King et al. 1998; Ó Cofaigh et al. 2013). The IRD rich silty mud of the LF2 facies 

247 suggests that it was probably deposited during episodes of warming leading to sea-ice cover 

248 break-ups which enables icebergs to drift along currents (Dowdeswell et al. 2000). However, the 

249 laminated character of LF2 also suggests other possible processes for deposition; the laminations 

250 could result from turbidity current activity and/or turbid meltwater plumes originating from 

251 glacial ice on the shelf. These laminations would reflect the evolution in time of meltwater 

252 discharge from proximal tidewater glaciers (Cowan & Powell 1990; Andrews et al. 1991; 
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253 Dowdeswell & Cromack 1991; Jennings 1993; Dowdeswell et al. 2000; Jenner et al. 2018). This 

254 assumption is supported by the fact that during winter or a long phase of climate cooling, ice 

255 covers all of Baffin Bay and traps icebergs, suppressing their drift offshore. In this case, 

256 meltwater discharge will be dominant if there is no delivery of coarser debris. Cowan et al. 

257 (1997) suggested the opposite and proposed punctuated IRD deposition occurs in winter and 

258 turbid meltwater deposition, dominated by turbidity currents and suspension deposits, occurs in 

259 summer. One way or the other, the fine-grained laminated glaciomarine sediments are usually not 

260 regarded as typical of icebergs-dominated areas, but sometimes they can vary rhythmically with 

261 IRD and rapidly deposited layers (Domack 1990; Dowdeswell et al. 2000). Overall, both 

262 processes (IRD and turbidity current deposition) probably reflect punctuated IRD deposition 

263 during winters and turbid meltwater deposition, dominated by turbidity currents and suspension 

264 deposits, during summers (Cowan et al. 1997). A similar layer in core 9CASQ represents a 

265 glaciomarine environment. Suspension deposit sedimentation during periods of continuous sea-

266 ice cover probably generated the mud of this unit. The hypothesis of multiyear sea-ice cover of 

267 the core sites is reinforced by the scarcity of foraminifera, as continuous sea-ice cover suppresses 

268 biological activity (Syvitski 1989; Dowdeswell et al. 2000).

269 The coarse-grained laminated mud at the base of LF3 and its normal grading is suggestive 

270 of a silty and sandy turbidite. Core 9CASQ was collected at 1220 m water depth and contains 

271 such LF3 layer (Figs. 6, 8). As the Baffin Island Current (BIC) is particularly strong at 1000–

272 1200 water depth on the Baffin Bay Slope (Dunlap & Tang 2006) and can trigger low density 

273 muddy turbidity currents on the Baffin Bay Slope. LF3 facies could be interpreted as a turbidite 

274 resulting from bottom current activity (Dunlap & Tang 2006; Roger et al. 2013; Jenner et al. 

275 2018).
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276 Rhythmic succession of clay and silt laminae with diffuse contacts and without IRD and 

277 bioturbation in LF4 can be deposited through various processes in northern environments, such as 

278 the deposition by meltwater plumes (Hesse et al. 1997), as mud turbidites seaward of glacial 

279 troughs  (Roger et al. 2013) and as subglacial outbursts of turbid meltwaters (Lucchi et al. 2013). 

280 In cores 9CASQ and 1Comp, this facies mostly overlies a debrite or turbidite. We therefore 

281 associate it with muddy density flows and meltwater plumes emanating from glacial discharge 

282 during ice retreat.

283 The massive and homogenous character of LF5 mud indicates a low-energy environment 

284 that probably reflects the absence of glacial activity near the core site. The frequent IRD of LF5 

285 relate to drifting icebergs and suggests that a significant portion of Home Bay was ice-free at this 

286 time.  

287 The carbonate-rich sandy and pebbly mud with IRD of LF6 is similar to ice-rafted, 

288 carbonate-rich sediments observed all around Baffin Bay (Andrews et al. 1998, 2009; Jackson et 

289 al. 2017). These layers, named Baffin Bay Detrital Carbonate layers (e.g. Andrews et al. 1998; 

290 Simon et al. 2014) are associated with episodes of high iceberg activity originating from 

291 NW Baffin Bay (Aksu & Piper 1987) and have been dated to 10.5-12 (BBDC0) and 13.7-15 cal. 

292 ka BP (BBDC1; Simon et al. 2014). Aksu & Piper (1987) suggested that northwestern Baffin 

293 Bay, Devon and Ellesmere Islands and northwestern Greenland are the source of the lower 

294 Palaeozoic limestones and dolomites observed in sediments transported as IRD to southern 

295 Baffin Bay. In contrast with the previous facies, which were rich in ice rafted debris (IRDs), LF7 

296 contains massive and homogenous bioturbated mud without IRD in the uppermost part of the 

297 core and reflects hemipelagic sedimentation in a postglacial environment similarly to other 

298 uppermost parts of cores recovered in Baffin Bay (e.g. Dowdeswell et al. 2008; Ó Cofaigh et al. 

299 2013). 
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300

301 Physical, stratigraphic and magnetic properties

302 Core 77PC. Core 77PC is used here as a chronostratigraphic reference core; Jenner et al. (2018) 

303 provided a detailed description of the core together with original ages. Overall, this core is 

304 composed of laminated and bioturbated mud, wavy silty laminae and detrital carbonate layers but 

305 contains no rapidly deposited layers. The grain size results show relatively fine material with an 

306 average of ~5 µm in the entire core (Fig. 6A). Between 161 and 117 cm, a sharp increase in the 

307 density and MAD values is observed, as well as a decrease in the inclination and NRM values. 

308 Aside from this interval, the NRM values are relatively constant (~ 0.02 A m-1), but peaks are 

309 seen in the ARM, IRM, and SIRM profiles between 310 and 270 cm, as well as between 470 and 

310 450 cm (Fig. 6A). Nonetheless, the MAD values are lower than 5° in the entire core, indicating 

311 high quality palaeomagnetic data except for a few intervals.

312 The ChRM was determined after using a 5 mT demagnetization steps between 10 and 60 

313 mT. The ChRM fluctuates around the expected inclination value for the coring site that was 

314 calculated according to the geocentric axial dipole model (IGAD), denoting a well-recorded 

315 palaeomagnetic signal (Fig. 6A; Stoner & St-Onge 2007). The downcore MAD values are 

316 generally lower than 2°, indicative of a very well-defined ChRM. The MDFNRM values fluctuate 

317 between 20 and 40 mT throughout the core with an average of 35 mT. Such an average indicates 

318 the presence of low coercivity minerals such as magnetite, except for a few very thin intervals 

319 where MDF values close to 50 mT are observed.

320
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321 Core 1Comp. The correlation between the density measured on the piston and the trigger weight 

322 core 01 suggests that approximately 30 cm of sediment was lost during the piston coring. This 

323 missing sediment was taken into account when constructing the composite profile (Fig. S3). 

324 The physical and magnetic properties allow the identification of 5 distinct stratigraphic 

325 units (Figs. 6B, 7). The base of the core extends from 381 to 175 cm and is characterized by a 

326 thick and poorly sorted layer with high density values. This layer showing the LF1 facies is 

327 absent in 9CASQ and core 77PC. 

328 Overlying LF1, LF4 layer extends from 175 to 161 cm, has low magnetic susceptibility, 

329 good sorting and a mean grain size ~3 μm. The coarse material from LF5 (161-129 cm) reflects 

330 the high values of magnetic susceptibility that peaks at approximately 400 × 10-5 SI, which is due 

331 to the presence of pebbles containing a high concentration of ferrimagnetic minerals. Unit 5 

332 (LF5) extends from 161 to 129 cm.

333 Over LF4 lies a layer (117-65 cm) showing distinct peaks in Ca/Sr ratio (Fig. 6B) 

334 reflecting a high carbonate content. The Ca/Sr ratio averages approximately 100 throughout the 

335 core 1Comp, but reaches 750 at 85 cm. In addition, between 117 and 65 cm, the MAD values 

336 reach 30° at 100 cm, as well as a decrease in inclination and remanence values (NRM, ARM, 

337 IRM, SIRM; Fig. 6B). These results attest to the presence of detrital carbonate probably 

338 associated to BBDC events (Fig. 6B; e.g. Balsam et al. 1999; Hodell et al. 2008; Channell et al. 

339 2012; Winsor et al. 2012; Simon et al. 2014, 2016; Jackson et al. 2017). LF7 tops the core from 

340 65 to 0, but also from 129 to 117 cm. 

341 The NRM, ARM, IRM and SIRM values are variable throughout this core (Fig. 6B). 

342 Inclination values in this core also generally fluctuate around the expected values of the GAD 

343 with MAD values below 5°, indicating high quality palaeomagnetic data (Stoner & St-Onge 

344 2007; Tauxe 2010). Shallower inclinations and much higher MAD values are observed between 
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345 381-175 (LF1), 161-115 and 117-65 cm (BBDC). In LF1, the alternating negative and positive 

346 inclination values denote the presence of clasts (Fig. 6B). The MDFNRM values fluctuate between 

347 30 and 55 mT (aside from the debris flow deposit, which shows low values and have an average 

348 of approximately 45 mT (Fig. 6B); these values indicate the presence of low coercivity minerals, 

349 such as magnetite, and a contribution from higher coercivity minerals (Tauxe & Wu 1990; Stoner 

350 et al. 2000).

351

352 Core 9CASQ. Core 9CASQ is characterized by 6 lithofacies (Figs. 6C, 7). LF2 facies forms the 

353 lower part of the core (550-362 cm) and is characterized by a succession of stratified pebbly mud 

354 with frequently deformed, diffuse to sharp, parallel laminations and some IRDs (Fig. 6C). The 

355 lowermost part of LF2 reveal small peaks in mean grain size and in sorting that could be related 

356 to small turbidity current activity. Over LF2, a coarser layer of LF3 (362-340 cm) shows high 

357 density and CT number, and magnetic susceptibility values of up to 400 × 10-5 SI (Fig. 6C). 

358 Over LF3, two distinct intervals of the LF4 facies (241-211 and 340-305 cm) consisting of a 

359 rhythmic succession of clay and silt laminae alternate with homogeneous muds without IRDs 

360 (LF7; 305-275 and 125-0 cm) and layers with carbonate peaks (LF6; 211-125 cm), which can be 

361 related to BBDC. 

362 The grain size distribution shows relatively constant variations throughout the core, 

363 ranging from fine clay to coarse silt with an average of 4 μm, except in three distinct layers with 

364 increased average values, which correspond respectively to LF3 (362-340 cm; Figs. 6C, 7, 8) and 

365 two thin layers at the base of LF2 (544-536 and 533-523 cm; Fig. 6C). These three layers are also 

366 less sorted than the rest of the core and show a normal grading typical of turbidites (Fig. 8; e.g. 

367 St-Onge et al. 2004; Bourget et al. 2011; Pouderoux et al. 2012). LF3 is characterized by low 
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368 basal palaeomagnetic inclinations and high MAD values (Figs. 6C, 8; St-Onge et al. 2004; 

369 Philippe 2019). 

370 The ChRM inclination along the core generally fluctuates around the expected inclination 

371 values (IGAD) and MAD values are lower than 2°, indicative of very well-defined palaeomagnetic 

372 data, except for the detrital carbonate and turbidite layers (LF6 and LF3), which have low 

373 inclination (Fig. 8) and high MAD values. Aside from LF6, the MDFNRM values range between 

374 20 and 40 mT with an average of 30 mT, which is indicative of low coercivity minerals such as 

375 magnetite (Fig. 6C). The sharp increase in MDF values in the detrital carbonate layer indicates a 

376 lower concentration of magnetite and a higher concentration of coercivity minerals in this layer 

377 (Simon et al. 2012).

378

379 Magnetic properties

380 Day plots (Fig. 9B) indicate that most of the sediments of the three cores are composed of 

381 magnetic grains in the pseudo single domain (PSD) range with only few samples from 

382 cores 1Comp and 9CASQ falling in the multi-domain range (MD). The samples in the MD range 

383 reflect the coarser grains observed in the rapidly deposited layers (e.g. turbidite and debrite). The 

384 magnetic kARM/k diagram (King et al. 1983) for the three cores indicates that the magnetic grain 

385 size is relatively fine and under 5 μm. The absolute magnetic grain size values should be 

386 interpreted with caution because these empirical relationships were derived from synthetic 

387 magnetic grains. However, taken together with the results from the Day plot, these values suggest 

388 an optimal PSD range for palaeomagnetic reconstructions (e.g. Tauxe 1993). 

389 The shape of the hysteresis curves of the discrete samples from the three cores are typical 

390 of low coercivity ferrimagnetic minerals such as magnetite (Fig. 9A; Tauxe et al. 1996; Dunlop 
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391 & Özdemir 1997). In addition, the magnetic mineralogy-dependent ratio IRM/SIRM (Pseudo S-

392 ratio) is useful for estimating changes in magnetic mineralogy, with values close to 1 indicating a 

393 low-coercivity ferrimagnetic mineralogy (e.g. magnetite; St-Onge et al., 2003). The S-ratio in 

394 cores 77PC, 1Comp and 9CASQ, with mean values of 0.992, 0.988 and 0.987, respectively, 

395 suggest that low coercivity minerals, such as magnetite, are the dominant magnetic carriers. 

396 Moreover, the MDFNRM values range from 25 to 40 mT, which also suggest the presence of 

397 magnetite and/or titanomagnetite throughout most of the 3 cores (Fig. 6). On the other hand, 

398 sediments of LF1 and LF6 in core 1Comp are characterized by lower MDF values that indicate 

399 the occurrence of coarser magnetic grains, as seen in the Day plot (Fig. 9B) and in the physical 

400 grain size data (Fig. 9C). Finally, changes in the NRM, ARM, IRM, and SIRM values vary by 

401 less than an order of magnitude. 

402

403 Relative palaeointensity (RPI) determination and chronostratigraphy

404 The magnetic properties of the cores indicate that the NRM of most of the sediments, apart from 

405 RDL, is characterized by a strong, stable, single component magnetization carried by PSD 

406 magnetite grains, thus fulfilling the established criteria to derive a reliable RPI proxy (e.g. Levi & 

407 Banerjee 1976; Tauxe 1993; Stoner & St-Onge 2007; Yamazaki et al. 2013). Moreover, the 

408 comparison between ARM and IRM as normalizers seems to activate the same magnetic 

409 assemblages (Levi & Banerjee 1976) and the differences between the ARM and IRM as 

410 normalizers also suggest that ARM has a slightly better R2 then IRM (Figs. S4, S5). The 

411 comparison of the normalized remanence with its normalizer among the 3 cores indicates that 

412 NRM/ARM is not correlated with the ARM when rapidly deposited layers are excluded (Fig. S4). 

413 Conversely, the same comparison indicates a correlation for RDL (e.g. debrite and turbidite; LF1 
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414 and LF3) and detrital carbonates (DC) layers (LF6) with R2 values of 0.37 and 0.40, respectively 

415 (Fig. S4). Based on these results, ARM has been selected as the best normalizer. Detrital 

416 carbonate layers were then excluded from palaeomagnetic reconstructions, but RDL values, even 

417 if they do not yield appropriate results, have been retained in the figures to give the reader a 

418 glimpse of their age-depth relationship.

419

420 Discussion

421 RDL layers: debrite and turbidite

422 Glaciogenic debris flow deposits are major components of TMFs (Fig. 10; Laberg & 

423 Vorren 1995; King et al. 1998; Vorren et al. 1998; Nygard et al. 2002). In Home Bay, LF1 is 

424 characterized by a massive, matrix-supported diamicton facies with clasts, the highest MAD 

425 values, and low values of palaeomagnetic inclinations (Fig. 6B). This combination of parameters 

426 clearly indicates that a debrite was recorded. Magnetic properties of sediments can be a source of 

427 significant information for the interpretation of sedimentary products. In fact, turbidites, debrites 

428 and detrital carbonate layers generate higher MAD values (>5°) and highly variable inclinations 

429 which move away from the expected values. If the inclination is highly variable and very low 

430 such as in LF1 or LF3 it has no geomagnetic meaning, but it indicates the presence of rapidly 

431 deposited layers (Figs. 6B, C, 8).

432 Both physical and magnetic profiles of the 9CASQ highlight the presence of a turbidite (LF3) in 

433 the most distal part of Home Bay TMF (Fig. 5A). The turbidite contrasts sharply with 

434 hemipelagic muds and IRD layers associated with the continuous “background” sedimentation 

435 (Figs. 6B, 7). The presence of a debrite and a turbidite attests to the sensitivity of Home Bay 

436 TMF for capturing mass wasting events on the shelf edge. The glacial debris flow reflect the 
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437 presence of nearby glacial ice alike LGM sedimentary processes of other glaciated continental 

438 slopes: large debris flows were generated and accumulated down the slope on the trough-mouth 

439 fans when the local ice sheets reached the shelf break (Fig. 10; e.g. Laberg & Vorren 1995; 

440 Laberg et al. 1995; Dowdeswell et al. 1996; Laberg & Vorren 1996a; Vorren & Laberg 1997; 

441 King et al. 1998; Dowdeswell & Siegert 1999; Batchelor et al. 2014, 2015). Subbottom profiles 

442 over the sampling location of core 1Comp (Figs. 1B, 4, S6) reveal that the acoustic facies 

443 associated with the debris flow extends laterally to form a series of stacked debris flow deposits 

444 which accumulated inside this TMF (Figs. 4, 10). Subglacial landforms such as MSGLs and 

445 deeply-incised iceberg ploughmarks that are oriented in the trough axis also suggest that glacial 

446 ice extended near the shelf edge to later retreat while calving deep-keeled icebergs. Icebergs 

447 flowing along the BIC most likely produced iceberg ploughmarks scars that are oriented N-S. 

448 However modern-day drafts of icebergs flowing through Baffin Bay rarely exceed 300 m (Praeg 

449 et al. 2006), indicating that they cannot account for the deep keel scours that occur below 300 m 

450 within the trough (Praeg et al. 2006). This suggests ploughmarks are not modern and that they are 

451 most likely resulting from deep glacial ice grounding in Baffin Bay. The orientation of the 

452 ploughmarks within the trough suggests that the icebergs responsible for the deep keel erosion 

453 were originating from within the trough. The ice flow landforms (MSGLs) within the trough can 

454 be interpreted as a signature of ice stream activity while the several channels on the TMF have 

455 probably been eroded by sediment-rich meltwaters from nearby glacial ice (Fig. 5B; Ottesen et 

456 al. 2005; Montelli et al. 2017). Such sediments can be transported by ice streams and be advected 

457 towards the slope where they can take the shape of debris flows (e.g. Laberg & Vorren 1995; 

458 Lasabuda et al. 2018) and turbidity currents. The several canyons and gullies could have formed 

459 routes for remobilizing sediments from the upper slope to their accumulation site in the basin 

460 (Figs. 5A, S6; e.g. Lasabuda et al. 2018). 
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461

462 Late Quaternary Baffin Bay chronostratigraphy

463 While the geophysical data point towards the LIS extending near the shelf edge during the LGM, 

464 ages are needed to define whether the debrite or the turbidite are of LGM age. The 3 studied 

465 cores show similar relative palaeointensity (RPI) features that can be correlated on a regional and 

466 hemispheric scale. A combination of radiocarbon ages and palaeomagnetic tie points were used to 

467 determine the chronology of the cores. Therefore, the cores can produce a chronostratigraphic 

468 framework for the last 45 ka (Fig. 11).

469 A comparison between the cores and other RPI records from the Northern Hemisphere 

470 indicate that the geomagnetic origin of the signal in the 0–45 ka interval for cores 77PC, 9CASQ 

471 and 1Comp is consistent with the available radiocarbon ages (Fig. 11). Based on this comparison 

472 and the chronological model, we suggest that the debrite observed in core 1Comp was deposited 

473 before 15 cal. ka BP, while the turbidite (LF3) in 9CASQ was deposited at approximately 20 cal. 

474 ka BP. Subbottom profiles (3.5 kHz) from the coring site of core 1Comp illustrates that the core 

475 was collected on the side edge of a debris flow channel (Figs. 4, 5A, S6) in a thin, side section of 

476 the channel and therefore record the full sequence since the last debris flow (i.e. since 15 ka BP). 

477 Without discarding the possibility of an earthquake in the Baffin Bay area at this time, the 

478 turbidite recorded in core 9CASQ was dated from the Last Glacial episode (~20 ka BP) and could 

479 have been triggered by the presence of the LIS margin on the continental shelf. Previous work 

480 showed that large volumes of turbidites along ice margins are related to subglacial outbursts and 

481 can be used as a proxy to determine a glaciomarine source (Dowdeswell et al. 1998; Hesse et al. 

482 1999; Toucanne et al. 2012). There is still no general agreement in regards to which sedimentary 

483 structures can be used to distinguish fine-grained turbidites from contourites (Hollister 1967; 
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484 Hollister & Heezen 1972; Piper 1972). Some authors contend that fine turbidite deposits such as 

485 LF3 in core 9CASQ can be differentiated from those of contourites based on certain 

486 characteristics: the absence of widespread burrowing, bioturbation, a lack of a vertical sequence 

487 of structures (Lovell & Stow 1981; Stow & Piper 1984) and traction sedimentary structures 

488 (Carter et al. 1996; Wynn & Stow 2002; Shanmugam 2006). These criteria are considered to be 

489 diagnostic of fine-grained turbidites rather than contourites: therefore, together with geophysical 

490 and sedimentological data, the graded sediment in LF3 is interpreted as a glaciogenic turbidite. 

491 The occurrence of >15,000 years-old GDFs and turbidity current deposits on the Home Bay TMF 

492 together with glacial lineations clearly indicate that the LIS advanced near the shelf edge during 

493 the Last Glacial episode. According to several authors, the maximum extension of the LIS in the 

494 Home Bay area probably lasted up to ~14-12 cal. ka BP (Dyke et al. 2002; Margold et al. 2015). 

495 The chronostratigraphy obtained by a combination of palaeomagnetism and radiocarbon ages 

496 shows that debrites were being deposited in the Home Bay TMF until around 15 cal. ka BP, 

497 which approximately marks the beginning of the Bølling warm period (Deschamps et al. 2012). 

498 Hence, perennial temperatures and precipitation during post-LGM and pre-Bølling were cold 

499 and/or precipitations high enough to keep the ice margin near the shelf edge. This late retreat of 

500 the LIS margin offshore Home Bay is somehow similar to persistent glacial ice in southern 

501 regions (e.g. Des Moines lobe, James Bay lobe, and Great Lakes lobes; Dyke 2004) which only 

502 show significant retreat after 15 cal. ka BP. This pattern could point out to a similar response of 

503 the LIS to the Bølling warming over all its extent. 

504

505 Conclusions
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506 New geomorphological, stratigraphic and sediment core data coupled with the dating of 

507 glaciogenic debrite and turbidite allowed to reconstruct the activity of the LIS margin in the 

508 Home Bay trough and trough-mouth fan during the Last Glacial episode. The following results 

509 suggest that an ice margin extended near the shelf edge of Home Bay during the Last Glacial 

510 episode: 

511  Seven lithofacies within the cores depict a full glacial-deglacial-postglacial sedimentary 

512 sequence: i) rapidly deposited layers such as a debrite and a turbidite generated in a glacial 

513 environment; ii) sediments from meltwater plumes, turbidity currents and possibly bottom 

514 currents generated in an ice-proximal environment; iii) ice-rafted debris deposited since the last 

515 deglaciation; and iv) postglacial hemipelagic sediments.

516  Chronostratigraphy from the core 9CASQ indicate that the turbidite observed was 

517 probably transported along the slope of Home Bay trough-mouth fan during the LGM. 

518  High-resolution swath bathymetry data allowed the identification of subglacial landforms 

519 related to ice-stream activity near the shelf edge. The subglacial landforms, such as mega-scale 

520 glacial lineations (MSGLs), together with the age of the debrite and the turbidite, indicates that 

521 glacial processes have eroded and molded the shelf during and since the LGM.

522 Finally, this paper outlines the usefulness of combining palaeomagnetic measurements 

523 with radiocarbon dating for establish a reliable chronostratigraphy in an environment where 

524 calcium carbonate dissolution challenges the use of foraminifera for dating. 

525

526 Index of abbreviations: TMF: trough-mouth fan; GDF : glaciogenic debris flows; LIS : Laurentide Ice Sheet; IIS: 
527 Innuitian Ice Sheet; GIS : Greenland Ice Sheet; LGM: Last Glacial Maximum; BIC: Baffin Island Current; 9CASQ: 
528 AMD16-LGM-09; 1Comp: AMD0217-01PC and AMD0217-01TWC; 77PC: HU2013-029-0077; LF1 to LF7: 
529 Lithofacies 1 to 7; RDL: rapidly deposited layer; BBDC: Baffin Bay detrital carbonates; GZW: grounding-zone 
530 wedge; MSGL: mega-scale glacial lineation; MSCL: Multi Sensor Core Logger; XRF: X-ray fluorescence. 
531 Palaeomagnetic parameters: kLF: magnetic susceptibility; NRM: natural remanent magnetization; ARM: anhysteretic 
532 remanent magnetization; IRM : isothermal remanent magnetization; SIRM: saturation isothermal magnetization; 
533 ChRM: characteristic remanent magnetization; MAD: maximum angular deviation; MDF: median destructive field; 
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534 IGAD: axial dipole model; PSD: pseudo single domain; SD: single domain; PSV: palaeomagnetic secular variation; 
535 RPI: relative palaeointensity; Ms: saturation magnetization; Hc: coercive force; Mrs: saturation remanence; Hcr: 
536 coercivity of remanence; AMS: accelerator mass spectrometry; AGM: alternating gradient force magnetometer; AF: 
537 alternating field; DC: direct current
538
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841 Table 1. Coordinates and properties of the coring sites.
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843 Table 2. Radiocarbon ages from cores HU2013-029-0077, AMD0217-01 PC and AMD16-LGM-
844 09CASQ. Radiocarbon ages were calibrated using the CALIB version 7.1 (Stuiver & Reimer 
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845 2017) and the Marine13 calibration curve (Reimer et al. 2013). Radiocarbon ages from core 
846 HU2013-029-0077 are from Jenner et al. (2018).
847
848
849
850 Figure captions
851
852 Fig. 1. A. Topographic and bathymetric map of the Baffin Bay area (Jakobsson et al. 2012). The 
853 red star shows the location of the sampling sites from this study: cores HU2013-029-0077 
854 (77PC), AMD0217-01 PC and TWC (1Comp) and AMD16-LGM-09CASQ (9CASQ). The 
855 yellow star shows the location of core HU2008-029-016PC from Simon et al. (2012). The 
856 simplified ocean circulation is represented by the red arrows to illustrate the warm West 
857 Greenland current and by the blue arrow to represent the cold Baffin Island current. The white 
858 lines represent the ice margin at 16.5 cal. ka of the Laurentian (LIS), Innuitian (IIS) and 
859 Greenland (GIS) ice sheets according to Dyke (2004). The red square is the focus of the Fig. 1B. 
860 The dashed black line represents the maximum extent proposed in this study. The solid black line 
861 represents the maximum extent according to Dyke (2004). The red stars represent the sampling 
862 sites of cores 77PC, 9CASQ and 1Comp. Light gray lines refer to the locations of the seismic 
863 profiles shown in Figs. 3A, B and S1. The white dashed circle refers to Fig. 4. The red square is 
864 the location of the multibeam image of Figs. 5A and B. See text for details. 
865
866 Fig. 2. X-radiographs and high-resolution photography of representative lithofacies from 
867 sediment cores of Home Bay TMF: AMD0217-01 PC and AMD16-LGM-09CASQ (9CASQ). A. 
868 Massive, matrix-supported diamicton facies. Complex diamicton (LF1). B. Laminated mud rich 
869 in IRD (LF2). C. Silt and sand turbidite (LF3). D. Laminated mud (LF4). E. Homogenous mud 
870 with IRD (LF5). F. Carbonate-rich bed with IRD (LF6). G. Homogenous mud without IRD 
871 (LF7). The gray dashed lines define facies changes. See Fig. 7 for facies identification legend and 
872 sediment characteristics. Add 30 cm to obtain the real depths of 1Comp.
873
874 Fig. 3. A. Acoustic (Chirp) subbottom profile over core 9CASQ site and located at the lower end 
875 of the continental slope of Home Bay. TMF near the abyssal plain. B. Huntec subbottom profile 
876 collected in 1978, showing the thick acoustically stratified interval of core 77PC located on the 
877 continental slope of Home Bay. The estimated core depths are indicated with red mark. Fig. 3B is 
878 modified from Campbell & Bennett (2014). The acoustically-transparent layers represent 
879 postglacial sediments and the high-amplitude reflections represent alternation of mud, IRD layers 
880 and turbidite.
881
882 Fig. 4. Acoustic (Chirp) subbottom profile over core AMD0217-01 PC (1Comp) site located at 
883 the lower end of the continental slope of Home Bay. The orange dashed line delimits a buried 
884 debris flow channel just aside of the core. The chaotic character of the infill on the profile is 
885 attributed to debris flow deposits. This channel is composed of a series of stacked debris flows 
886 that accumulated inside the TMF. The estimated core depths (~4 m) are indicated with the red 
887 mark.
888
889 Fig. 5. A. Angle view of the submarine morphology of the TMF showing gullies and iceberg 
890 ploughmarks. The white dashed lines correspond to the limit of 3 turbidity channels upstream of 
891 cores 9CASQ and 1Comp (AMD0217-01). The black dashed lines represent sediment transport 
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892 pathways. B. Swath bathymetry imagery showing elongated landforms interpreted as mega-scale 
893 glacial lineations (MSGLs) and iceberg ploughmarks on the shelf. See text for details. 
894
895 Fig. 6. High-resolution physical, geochemical and magnetic properties of cores 77PC (A), 
896 1Comp (B) and 9CASQ (C). See Fig. 7 for more details on facies identification. The vertical red 
897 lines delineate respectively the MAD value of 5° and the expected inclination, respectively, 
898 according to geocentric axial dipole (IGAD) at the coring site. Sediments were sieved at 2 mm 
899 prior to laser size analysis and no sediment coarser than 2 mm, except for occasional pebbles, 
900 were recovered. Therefore, the >2 mm size fraction has been excluded from the grain size 
901 metrics.
902
903 Fig. 7. Sediment facies characteristics of cores 1Comp and 9CASQ. From left to right: X-
904 radiographs, high-resolution photography, facies, sedimentary structures and processes with the 
905 depositional environment.
906
907 Fig. 8. Grain size signature (D50, D90, sorting) and inclinations of LF3 in core 9CASQ sampled 
908 in the lower continental slope of Home Bay. These trends illustrate the normal grading of a 
909 turbidite. The arrows represent the grading. The >2 mm size fraction has been excluded from the 
910 grain size metrics.
911
912 Fig. 9. A. Typical hysteresis curves and derived parameters of cores 77PC, 9CASQ and 1Comp. 
913 B. Day plot (Day et al. 1977). RDL = rapidly deposited layers (turbidite and debrite). C. kARM vs. 
914 kLF plot representing estimated magnetic grain size for magnetite (King et al. 1983). Red circle 
915 represents the RDLs and black circles the remaining sediment.
916
917 Fig. 10. Schematic model for the main glaciogenic sedimentary processes inside a trough-mouth 
918 fan (TMF).
919
920 Fig. 11. Relative palaeointensity correlation. Relative palaeointensity inter-comparison for the 
921 last 45 cal. ka BP between cores 77PC (this study), 9CASQ (this study), 1Comp (this study) and 
922 RPI reference curves from the North Atlantic stack (NAPIS-75; Laj et al. 2000); the Baffin Bay 
923 (Core 16PC; Simon et al. 2012) and the Mediterranean and Somalian Stack; (Meynadier et al. 
924 1992). The correlative palaeointensity features are indicated with the blue line. RDLs (e.g. debrite 
925 and turbidite) are delimited by the grey and purple square. In red, calibrated radiocarbon ages 
926 (cal. ka BP). Radiocarbon ages from core HU2013-029-0077 are from Jenner et al. (2018). Here, 
927 various scales are used to highlight the trends.
928
929 Supporting information
930
931 Fig. S1. Line 76029_AG_280_1730 (airgun profile) collected in 1976 on board the CCGS 
932 Hudson by the Geological Survey of Canada. This figure does not show any grounding-zone 
933 wedge (GZW) in the sector.
934
935 Fig. S2. Multibeam image and morphology of the cross-shelf trough of Home Bay visualized 
936 with the QPS Fledermaus software. The bedforms observed within the area contain iceberg 
937 ploughmarks on the cross shelf and a series of sub-parallel linear gullies going down the slope. 
938 The red star corresponds to core 1Comp (AMD0217-01) located in a trough-mouth fan (TMF).
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939
940 Fig. S3. Correlation of cores 01-PC and 01-TWC (AMD0217-01 = 1Comp) based on density. 
941 Open delta symbol represents the difference between each core. The numbers represent tie-points 
942 between the two cores.
943
944 Fig. S4. RPI proxy vs. its normalizer for cores 77PC, 1Comp and 9CASQ. Red points and blue 
945 lines = RDLs. Blue points and red line = remaining sediments.
946
947 Fig. S5. RPI proxy vs. its normalizer ARM and IRM for cores 77PC, 1Comp and 9CASQ
948
949 Fig. S6. Multibeam image of the site of core 1Comp (AMD0217-01) sampled at the edge of a 
950 TMF visualized with the QPS Fledermaus software. The white dashed lines represent the 
951 delimitation of the turbidity channels.
952

Page 32 of 55Boreas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Rimouski, Canada, September 6, 2019

Prof. Jan A. Piotrowski
Editor-in-Chief
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Table captions

Table 1. Coordinates and properties of the coring sites.

Table 2. Radiocarbon ages from cores HU2013-029-0077, AMD0217-01 PC and AMD16-
LGM-09CASQ. Radiocarbon ages were calibrated using the CALIB version 7.1 (Stuiver 
& Reimer 2017) and the Marine13 calibration curve (Reimer et al. 2013). Radiocarbon 
ages from core HU2013-029-0077 are from Jenner et al. (2018).

Figure captions

Fig. 1. A. Topographic and bathymetric map of the Baffin Bay area (Jakobsson et al. 2012). 
The red star shows the location of the sampling sites from this study: cores HU2013-029-
0077 (77PC), AMD0217-01 PC and TWC (1Comp) and AMD16-LGM-09CASQ 
(9CASQ). The yellow star shows the location of core HU2008-029-016PC from Simon et 
al. (2012). The simplified ocean circulation is represented by the red arrows to illustrate 
the warm West Greenland current and by the blue arrow to represent the cold Baffin Island 
current. The white lines represent the ice margin at 16.5 cal. ka of the Laurentian (LIS), 
Innuitian (IIS) and Greenland (GIS) ice sheets according to Dyke (2004). The red square 
is the focus of the Fig. 1B. The dashed black line represents the maximum extent proposed 
in this study. The solid black line represents the maximum extent according to Dyke 
(2004). The red stars represent the sampling sites of cores 77PC, 9CASQ and 1Comp. Light 
gray lines refer to the locations of the seismic profiles shown in Figs. 3A, B and S1. The 
white dashed circle refers to Fig. 4. The red square is the location of the multibeam image 
of Figs. 5A and B. See text for details. 

Fig. 2. X-radiographs and high-resolution photography of representative lithofacies from 
sediment cores of Home Bay TMF: AMD0217-01 PC and AMD16-LGM-09CASQ 
(9CASQ). A. Massive, matrix-supported diamicton facies. Complex diamicton (LF1). B. 
Laminated mud rich in IRD (LF2). C. Silt and sand turbidite (LF3). D. Laminated mud 
(LF4). E. Homogenous mud with IRD (LF5). F. Carbonate-rich bed with IRD (LF6). G. 
Homogenous mud without IRD (LF7). The gray dashed lines define facies changes. See 
Fig. 7 for facies identification legend and sediment characteristics. Add 30 cm to obtain 
the real depths of 1Comp.

Fig. 3. A. Acoustic (Chirp) subbottom profile over core 9CASQ site and located at the 
lower end of the continental slope of Home Bay. TMF near the abyssal plain. B. Huntec 
subbottom profile collected in 1978, showing the thick acoustically stratified interval of 
core 77PC located on the continental slope of Home Bay. The estimated core depths are 
indicated with red mark. Fig. 3B is modified from Campbell & Bennett (2014). The 
acoustically-transparent layers represent postglacial sediments and the high-amplitude 
reflections represent alternation of mud, IRD layers and turbidite.
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Fig. 4. Acoustic (Chirp) subbottom profile over core AMD0217-01 PC (1Comp) site 
located at the lower end of the continental slope of Home Bay. The orange dashed line 
delimits a buried debris flow channel just aside of the core. The chaotic character of the 
infill on the profile is attributed to debris flow deposits. This channel is composed of a 
series of stacked debris flows that accumulated inside the TMF. The estimated core depths 
(~4 m) are indicated with the red mark.

Fig. 5. A. Angle view of the submarine morphology of the TMF showing gullies and 
iceberg ploughmarks. The white dashed lines correspond to the limit of 3 turbidity channels 
upstream of cores 9CASQ and 1Comp (AMD0217-01). The black dashed lines represent 
sediment transport pathways. B. Swath bathymetry imagery showing elongated landforms 
interpreted as mega-scale glacial lineations (MSGLs) and iceberg ploughmarks on the 
shelf. See text for details. 

Fig. 6. High-resolution physical, geochemical and magnetic properties of cores 77PC (A), 
1Comp (B) and 9CASQ (C). See Fig. 7 for more details on facies identification. The 
vertical red lines delineate respectively the MAD value of 5° and the expected inclination, 
respectively, according to geocentric axial dipole (IGAD) at the coring site. Sediments were 
sieved at 2 mm prior to laser size analysis and no sediment coarser than 2 mm, except for 
occasional pebbles, were recovered. Therefore, the >2 mm size fraction has been excluded 
from the grain size metrics.

Fig. 7. Sediment facies characteristics of cores 1Comp and 9CASQ. From left to right: X-
radiographs, high-resolution photography, facies, sedimentary structures and processes 
with the depositional environment.

Fig. 8. Grain size signature (D50, D90, sorting) and inclinations of LF3 in core 9CASQ 
sampled in the lower continental slope of Home Bay. These trends illustrate the normal 
grading of a turbidite. The arrows represent the grading. The >2 mm size fraction has been 
excluded from the grain size metrics.

Fig. 9. A. Typical hysteresis curves and derived parameters of cores 77PC, 9CASQ and 
1Comp. B. Day plot (Day et al. 1977). RDL = rapidly deposited layers (turbidite and 
debrite). C. kARM vs. kLF plot representing estimated magnetic grain size for magnetite 
(King et al. 1983). Red circle represents the RDLs and black circles the remaining 
sediment.

Fig. 10. Schematic model for the main glaciogenic sedimentary processes inside a trough-
mouth fan (TMF).

Fig. 11. Relative palaeointensity correlation. Relative palaeointensity inter-comparison for 
the last 45 cal. ka BP between cores 77PC (this study), 9CASQ (this study), 1Comp (this 
study) and RPI reference curves from the North Atlantic stack (NAPIS-75; Laj et al. 2000); 
the Baffin Bay (Core 16PC; Simon et al. 2012) and the Mediterranean and Somalian Stack; 
(Meynadier et al. 1992). The correlative palaeointensity features are indicated with the blue 
line. RDLs (e.g. debrite and turbidite) are delimited by the grey and purple square. In red, 
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calibrated radiocarbon ages (cal. ka BP). Radiocarbon ages from core HU2013-029-0077 
are from Jenner et al. (2018). Here, various scales are used to highlight the trends.

Supporting information

Fig. S1. Line 76029_AG_280_1730 (airgun profile) collected in 1976 on board the CCGS 
Hudson by the Geological Survey of Canada. This figure does not show any grounding-
zone wedge (GZW) in the sector.

Fig. S2. Multibeam image and morphology of the cross-shelf trough of Home Bay 
visualized with the QPS Fledermaus software. The bedforms observed within the area 
contain iceberg ploughmarks on the cross shelf and a series of sub-parallel linear gullies 
going down the slope. The red star corresponds to core 1Comp (AMD0217-01) located in 
a trough-mouth fan (TMF).

Fig. S3. Correlation of cores 01-PC and 01-TWC (AMD0217-01 = 1Comp) based on 
density. Open delta symbol represents the difference between each core. The numbers 
represent tie-points between the two cores.

Fig. S4. RPI proxy vs. its normalizer for cores 77PC, 1Comp and 9CASQ. Red points and 
blue lines = RDLs. Blue points and red line = remaining sediments.

Fig. S5. RPI proxy vs. its normalizer ARM and IRM for cores 77PC, 1Comp and 9CASQ

Fig. S6. Multibeam image of the site of core 1Comp (AMD0217-01) sampled at the edge 
of a TMF visualized with the QPS Fledermaus software. The white dashed lines represent 
the delimitation of the turbidity channels.

Page 36 of 55Boreas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Core Latitude
(°N)

Longitude
(°W) Location Water depth

(m)
Length
(cm)

HU2013-029-0077 69.31 63.79 Slope 1153 597
AMD16-LGM-09 CASQ 68.28 64.56 Slope (TMF) 1220 554
AMD0217-01 PC/TWC 69.24 64.43 Slope (TMF) 1076 350/152

Composite 69.24 64.43 Slope (TMF) 1076 380
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Core Depth (cm) Material Conventional 
age

Calibrated age 
(cal. a BP) Lab. number

77PC 142
205
644 (core catcher)

Mixed benthic foraminifera
Mixed planktonic foraminifera
Neogloboquadrina pachyderma

10 550±40
12 750±55
37 900±1600

11 327
14 013
41 461

OS-117723
OS-118359
OS-UCIAMS 181265

9CASQ 465 Mixed benthic and planktonic foraminifera 35 160±760 39 024 ECHo 2458

01-PC 109 (not valid)
135

Mixed benthic and planktonic foraminifera
Mixed benthic and planktonic foraminifera

10 180±1490
12 820±60

11 029
14 088

ECHo 2559
ECHo 2558
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sand 
turbidite 
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diamicton
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Bioturbated grayish to 
brownish mud without 
IRD. No apparent struc-
ture are observed.

Dense and very dark 
gray silt and fine sand 
with clast. 

Massive, matrix-supported 
diamict facies. Very dense, 
black and coarse-grained 
sediment mixed with a 
fine-grained matrix.

Hemipelagic sedimenta-
tion (postglacial).

Hemipelagic sedimen-
tation with frequent IRD 
(deglacial/postglacial).

Glacigenic debris flow 
(glacial environment).

   Turbidity current 
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Homoge-
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Laminated 
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ent structures are observ-
able.

Succession of dark gray to 
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laminated mud rich in IRD.

Dark grayish brown 
rhytmic succession of mud 
and silt laminae.

 Meltwater plume, turbidity 
current and possible bottom 
current influence (deglacial).

Meltwater plume, ice rafting 
and turbidity current (glacial 
environment).
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