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dans le cadre du programme de maı̂trise en océanographie
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PAR

©YAN LÉVESQUE
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qui a signé le formulaire � Autorisation de reproduire et de diffuser un rapport, un mémoire
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RÉSUMÉ

Le but de cette recherche est d’utiliser les propriétés physiques, magnétiques et sédimen-
tologiques de trois carottes sédimentaires récupérées dans le centre-ouest de la baie de Baffin.
Afin de déterminer la chronostratigraphie, les âges radiocarbones de chacune de ces carottes
sont combinés avec les résultats paléomagnétiques et les processus sédimentaires en mettant
l’accent sur les éventails glaciogéniques (EGs) de Home Bay (carottes AMD16-LGM-09 et
AMD0217-01). Les variations millénaires à séculaires de l’orientation du champ magnétique
ont été reconstituées puis comparées à des courbes de référence des variations séculaires
paléomagnétiques (VSP) provenant de l’Océan Atlantique Nord. Les âges radiocarbones de
ces 3 carottes et leurs VSP montrent que celles-ci couvrent une période maximale de 41 000
cal BP. Les enregistrements des variations d’orientation du champ magnétique terrestre cal-
culée à partir de l’analyse en composantes principales respectent les critères de qualité et
oscillent autour des valeurs attendues pour la latitude du site selon un modèle dipolaire. Les
enregistrements sédimentaires de ces EGs, situés à environ 100 km au large de l’ı̂le de Baffin,
sont d’un grand intérêt pour la reconstitution des avancées et retraits de l’Inlandsis laurenti-
dien et pour déterminer si ce dernier a atteint la limite du plateau continental au cours de la
dernière glaciation. Les données géophysiques combinées aux enregistrements sédimentaires
de ces EGs indiquent qu’une série de coulées de débris et de turbidites ont été générées au
cours de la dernière glaciation, suggérant ainsi que la marge glaciaire de l’inlandsis s’est
étendue jusqu’à cette zone du plateau. Ces résultats nous permettent de proposer une nou-
velle délimitation de l’extension maximale de l’Inlandsis laurentidien lors du dernier épisode
glaciaire.

Mots clés : [Arctique, baie de Baffin, paléomagnétisme, éventails glaciogéniques,
Inlandsis laurentidien, sédiments marins]
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ABSTRACT

The purpose of this research is to use the physical, magnetic and sedimentological
properties of three sedimentary cores recovered in west-central Baffin Bay to determine the
chronostratigraphic framework (core HU2013-029-077) and sedimentary processes with an
emphasis on the Home Bay Trough-Mouth Fans (TMFs) in central-western Baffin Bay (Cores
AMD16-LGM-09 and AMD0217-01). In addition, millennial to secular variations in Earth’s
magnetic field orientation were reconstructed and compared with reference curves of paleo-
magnetic secular variations (PSV) of the North Atlantic Ocean. The radiocarbon ages from
these 3 cores and their PSVs indicate that they cover a maximum period of 41 000 cal BP.
The paleomagnetic directional data calculated from the principal component analysis meet
the quality criteria and oscillate around the expected values for the site latitude based on a
geocentric axial dipole model. The sediment records of these TMFs, located approximately
100 km offshore from Baffin Island, are of great interest in reconstructing the advances and
retreats of the Laurentide Ice Sheet (LIS) and determining if it reached the shelf edge during
the last glaciation. Geophysical data combined with the sedimentary records of these TMFs
indicate that a series of debris flows and turbidites were generated during the last glaciation,
suggesting that the ice margin has reached this limit. These results allow us to propose a new
delimitation of the maximum extension of the LIS during the Last glacial episode.

Keywords : [Arctic, Baffin Bay, paleomagnetism, trough-mouth fans, Laurentide
Ice Sheet, marine sediments]
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INTRODUCTION GÉNÉRALE

La baie de Baffin est un étroit bassin océanique situé entre l’archipel Arctique canadien

et le Groenland. Elle possède une marge continentale étroite le long de l’ı̂le de Baffin ainsi

qu’un certain nombre de chenaux et de cônes de déjection sous-marins (c.-à-d., éventails

glaciogéniques - EGs) répartis sur le talus continental. La baie de Baffin se situe sur l’an-

cienne marge nord-est de l’Inlandsis laurentidien (IL) et a été le réceptacle des produits de

l’érosion glaciaire durant le dernier épisode glaciaire (Brouard and Lajeunesse, 2017 ; Mar-

gold et al., 2015 ; Stokes, 2017). Une étude à partir des séquences sédimentaires de la baie de

Baffin peut donc mettre de l’avant les liens entre la cryosphère, le climat et l’océan afin de

mieux comprendre les changements climatiques et environnementaux qui ont lieu dans l’Arc-

tique à cette époque. En effet, les variations paléoclimatiques séculaires à millénaires peuvent

être étudiées à l’aide de carottes sédimentaires afin d’identifier les fluctuations des apports

sédimentaires associés à la déglaciation et à l’établissement des conditions postglaciaires.

Afin de déterminer la stratigraphie et les processus sédimentaires, trois carottes sédimentaires

(HU2013-029-077, AMD16-LGM-09 et AMD0217-01) ont été prélevées dans la région de

Home Bay à 1220 m, 1076 m et 1153 m de profondeur. Elles font office d’archives des

variations géologiques et paléomagnétiques du passé terrestre. Les carottes AMD16-LGM-

09 et AMD0217-01 ont été prélevées à l’intérieur d’éventails glaciogéniques dans la région

de Home Bay et elles ont été d’un grand intérêt pour la reconstitution des avancées et re-

traits de l’IL ainsi que pour déterminer si ce dernier a atteint la limite du plateau continental

au cours de la dernière glaciation. En effet, pendant les maximums glaciaires, les inlandsis

avancent fréquemment jusqu’à la limite du plateau et deviennent la source d’une grande quan-

tité de sédiments qui se déposent au bas de la pente continentale par une série de processus

sédimentaires tels les coulées de débris et les courants de turbidité (Dowdeswell et al., 2008 ;

King et al., 1998 ; Laberg and Vorren, 1995 ; Taylor et al., 2002 ; Tripsanas and Piper, 2008).

Lorsque ces coulées s’immobilisent, elles peuvent laisser d’importantes couches de dépôts

relativement denses et compactés qui s’accumulent à la base du talus continental à l’intérieur
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d’éventails glaciogéniques (De Blasio et al., 2004 ; Nygard et al., 2002 ; Vorren and Laberg,

1997). Ceux-ci sont donc les diagnostics de la présence de l’inlandsis sur le plateau conti-

nental (Ó Cofaigh et al., 2013). La quasi-absence de carbonate biogénique dans cette région

nordique s’est avérée être un défi de taille afin de dater les sédiments. En effet, les matériaux

datables tels les foraminifères sont souvent rares, dissous et mal conservés dans les envi-

ronnements arctiques canadiens, spécialement dans la baie de Baffin (e.g., de Vernal et al.,

1992 ; Ledu et al., 2008 ; McKay et al., 2008). Un cadre temporel est néanmoins essentiel afin

de déterminer l’âge des coulées de débris et des turbidites retrouvées à l’intérieur des EGs.

Une chronostratigraphie des séquences sédimentaires en utilisant une combinaison d’âges ra-

diocarbones et de paléomagnétisme a malgré tout pu être établie. De plus, la géophysique a

permis d’identifier des formes et des structures associées aux mouvements de l’IL. En effet,

la forte érosion glaciaire sur le plateau continental, ainsi que la morphologie des fonds sous-

marins suggèrent une présence de l’inlandsis jusqu’à la limite du plateau continental durant

le dernier épisode glaciaire.

Objectif de la recherche

L’objectif principal de cette maı̂trise était de déterminer le rôle des fluctuations de l’In-

landsis laurentidien sur les processus sédimentaires dans un système d’éventail glaciogénique

(trough-mouth fan) dans la région de Home Bay depuis la dernière glaciation.

Cet objectif a été atteint grâce à la géophysique et aux propriétés physiques et magné-

tiques des sédiments qui ont permis de déterminer la stratigraphie, la sédimentologie et la

morphologie des séquences sédimentaires. Trois carottes sédimentaires qui ont été prélevées

au centre-ouest de la baie de Baffin, au large de l’ı̂le de Baffin (∼100 km), ont permis

de déterminer les fluctuations des apports sédimentaires associées à la déglaciation et à

l’établissement des conditions postglaciaires. Les points suivants énumèrent les objectifs

spécifiques qui ont été atteints pour mener à bien cette étude :
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• Reconstituer les variations d’orientation et d’intensité du champ magnétique terrestre

afin d’établir la chronostratigraphie des séquences sédimentaires étudiées ;

• Déterminer les processus sédimentaires sur la marge est de l’ı̂le de Baffin en utili-

sant une approche multitraçeurs telle que la géophysique, la distribution granulométrique, la

composition chimique et les propriétés magnétiques des sédiments ;

• Identifier les formes et les structures associées aux mouvements de l’Inlandsis lau-

rentidien sur le plateau continental à l’aide de la bathymétrie multifaisceaux.

Organisation du mémoire et contributions

Ce mémoire de maı̂trise est rédigé en anglais et est présenté sous la forme d’un article

scientifique et sera soumis prochainement à la revue internationale Boreas sous la référence :

Lévesque, Y., St-Onge, G., Lajeunesse, P., Desiage. P-A., sera soumis prochainement.

Defining the maximum extent of the Laurentide Ice Sheet in Home Bay cross-shelf

trough during the Last glacial episode.

Présentations officielles lors de congrès

Durant les deux années de cette maı̂trise, j’ai eu la chance de participer à plusieurs
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Abstract

Three sediment cores recovered from Home Bay in central-western Baffin Bay were

used to constrain the chronostratigraphy and determine the sedimentary processes of the

Home Bay trough-mouth fans (TMFs) and to investigate if the Laurentide Ice Sheet (LIS)

reached the shelf edge during the Last Glacial Maximum (LGM). Seven lithofacies were

identified in the the cores 1Comp and 9CASQ based on the physical, magnetic and sedi-

mentological properties. Paleomagnetic results from u-channel samples and hysteresis data

reveal that the sediments from Home Bay indicate that the sediment recorded a genuine ge-

omagnetic signal that can be used for chronostratigraphic purposes. Geophysical data also

allowed the identification of shapes and structures associated with the presence of the LIS

on the cross-shelf trough. Mega-scale glacial lineations (MSGL) suggest glacial processes

have eroded and molded the shelf during the Quaternary. These landforms are signature of

ice stream activity and have probably been used as feeder corridors for TMFs systems. These

geomorphological evidences combined with the sedimentary records in the TMFs, radiocar-

bon ages and paleomagnetism, indicate that a series of debris flows and turbidity currents
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were generated during the Last glacial episode, suggesting that the LIS margin reached the

shelf edge. These results allow us to propose a new maximum extent of the LIS during the

LGM.
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1 Introduction

The Laurentide Ice Sheet (LIS) covered most of the of North America during the last

glaciation and the Baffin Island margin has been mainly shaped by is successive phases of

advance (A. Dyke and Prest 1987). Therefore, being located at the northeast margin of the

LIS, Baffin Bay constitutes a unique setting to better understand sedimentary processes re-

lated to ice sheet margins (e.g. Margold et al. 2015; Brouard and Lajeunesse 2017; Stokes

2017). During the Last Glacial Maximum (LGM), recent studies have suggested an extensive

LIS margin on the Baffin Island shelf, which have reached the shelf edge (Li et al. 2011;

Brouard and Lajeunesse 2017; Jenner et al. 2018). Ice sheets generally extends from fjords

and small bays across the shelf and extended just beyond the shelf edge (e.g. Andrews 1990;

Ó Cofaigh et al. 2013). According to Dyke et al. (2002) and Margold et al. (2015), ice began

to recede from its maximum position between 13-12 cal ka BP. Ice sheets near the shelf edge

generates change, which result in considerable temporal and spatial variability in the deposi-

tional processes of glaciogenic sediments onto the continental slope to ocean basins (Laberg

and Vorren 1995; Vorren et al. 1998; King et al. 1998; Nygard et al. 2002). This range

of processes are described by many studies including glaciogenic debris flows (GDFs) and

turbidity currents, which can extend tens to hundreds of kilometers downslope, being trans-

ported by several canyons and gullies and accumulated on submarine deep sea fans (e.g. Ó

Cofaigh et al. 2003; De Blasio et al. 2004). These glacial depositional features represent one

of the most voluminous downslope remobilizations of glacial sediment progradation, usually

described as trough-mouth fans (TMFs); (Laberg and Vorren 1993; King et al. 1998; Ny-

gard et al. 2002; Taylor et al. 2002). They are composed by stacked debrites sometimes

switching laterally with turbidites (Laberg and Vorren 1995; Vorren et al. 1998; Tripsanas

and Piper 2008). Establishing the temporal evolution setting of this sediment accumulation

in a TMF can be highly challenging due to chronostratigraphic limitations. Indeed, datable

material such as biogenic carbonates are scarce and/or not well-preserved in Canadian Arc-

tic, including in Baffin Bay (De Vernal et al. 1987; De Vernal et al. 1992; Ledu et al. 2008;
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McKay et al. 2008; Simon et al. 2012). In order to circumvent these issues, paleomagnetism

combined with radiocarbon dating constitutes a valuable answer to establish the age control

of this glaciogenic triggering events (Stoner and St-Onge 2007; St-Onge and Stoner 2011).

In fact, sediment cores taken offshore of continental margins at high latitudes are particularly

suited for paleoenvironmental high-resolution reconstructions during the Quaternary and can

provide continuous and reliable records of geomagnetic field variation (e.g. Andrews and

Jennings 1990; Snowball and Sandgren 2002; Snowball and Muscheler 2007; St-Onge et

al. 2003; Barletta et al. 2008). In this paper, we present a palaeomagnetic sequence of the

relative paleointensity from the continental margin of Baffin Island compared to one paleo-

magnetic record (Simon et al. 2012) and two other geomagnetic field model (Meynadier et al.

1992; Kissel et al. 2000) in order to obtain a time frame to determine the glaciogenic origin

of the debrite and turbidite found in the two sedimentary cores collected within the Home

Bay TMFs. In addition, geophysical data allowed the identification of forms and structures

associated with the presence of the LIS and/or iceberg drifting offshore on the Home Bay

cross-shelf trough.

2 Regional Setting

2.1 Hydrography

Baffin Bay is a narrow oceanic basin located between the Canadian Arctic Archipelago

and Greenland (Fig. 1). It is about 1300 km long and 450 km wide with a depth of up to 2300

m (Aksu and Piper 1987). It results from the extension of the rift system that opened the shelf

of the North Atlantic and Labrador during the Late Cretaceous (McCann 1988; Stanley and

Luczaj 2015). An anticlockwise ocean circulation is generated in Baffin Bay and the area is

partially covered by sea-ice most of the year, except for August and September (Tang et al.

2004).
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Figure 1: Topographic and bathymetric map of the Baffin Bay area
(Jakobsson et al. 2012). The Red star shows the location of the
sampling sites from this study: cores HU2013-029-0077 (77PC),
AMD0217-01 PC and TWC (1Comp) and AMD 16-LGM-09CASQ
(9CASQ). The Yellow star shows the location of core HU2008-029-
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cording to Dyke (2004) and Margold (2015). The red square is a focus
of the figure 2.
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Figure 2: Last Glacial Maximum (LGM) extension of the Laurentide Ice Sheet on the conti-
nental shelf of western Baffin Bay (Home Bay) during MIS 1 and MIS 2. The dashed black
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2.2 Bedrock Geology

The Archaean and Paleoproterozoic cratons form the main units on either side of Baffin

Bay. With late Cretaceous rifting continuing throughout the Tertiary, Greenland rifted away

from North America forming the Labrador Sea and Baffin Bay and a series of wide grabens

(sounds and straits) are observed along the passive margin of the Canadian and Greenland

shields (Stein et al. 1979; Hoffman et al. 1989; Scotese and Golonka 1997; Stanley and

Luczaj 2015). For this reason, the bay has few Phanerozoic rocks and its geology is mainly

characterized by a crystalline basement of Precambrian origin. These old rocks are overlain

by a succession of Paleozoic rocks dominated by shallow carbonates such as dolostones and

some limestones (Aksu and Piper 1987; Hiscott et al. 1989; Balkwill et al. 1990; Simon et al.

2012; Stanley and Luczaj 2015). The western side of Baffin Bay may also have a significant

amount of granitic gneiss and quartzofeldspathic orthogneiss. For this reason, Baffin Island

Current (BIC) can transport sediments from this type of rock all along the western side of the

island (Harrison et al. 2008).

2.3 Quaternary geology and sedimentation

During the LGM, the Baffin Bay was surrounded by three major ice sheets that flowed

into it: the Greenland Ice Sheet (GIS), the Laurentian Ice Sheet (LIS) and the Innuitian Ice

Sheet (IIS) (Dyke and Prest 1987; Dyke et al. 2002; Margold et al. 2015; Stokes 2017).

The LIS extended across Baffin Island and possibly cover much of its continental shelf, as

well as within the Home Bay and a multitude of fjords that incise the islands (Briner et

al. 2006; Funder et al. 2011). Deglaciation of the LIS in Baffin Bay began around 16-15

cal ka BP but covered Home Bay area up to 13-12 cal ka BP (Dyke and Prest 1987; Dyke

et al. 2002; Dyke 2004; Margold et al. 2015). The sedimentary facies upper Quaternary

Baffin Bay succession have been described by several studies that suggested that the LIS

may have reached the Baffin Island continental shelf (Aksu and Piper 1987; Hiscott and
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Aksu 1994; Praeg et al. 2006; Ó Cofaigh et al. 2013). These facies are mainly controlled

by the glacial and interglacial cycles which link the sedimentary processes and resulting

sedimentary deposits. When the ice sheets reached the shelf edge, the ice flow triggered

a series of sedimentary processes (e.g. turbidity currents and glaciogenic debris flows) that

can eventually lead to the formation of TMFs. These TMFs are considered as one of the

diagnostics for the presence of ice streams at the shelf edge. In fact, a large part of these TMFs

is composed of turbidites and debrites in relation to meltwater processes that periodically

incise canyons and submarine valleys (e.g. Tripsanas and Piper 2008; Li et al. 2012). Near

the mouths of existing TMFs, basal diamicts are often observed in sediment cores collected

on the NE Baffin slope (Table 1 and Fig. 12). They usually represents GDFs that were

triggered by glacial advance during the LGM (Jenner et al. 2018).

3 Material and methods

3.1 Sediment cores

Two piston cores and one large square gravity core (CASQ) were collected with their

companion trigger weight cores (TWC) and associated box cores (BC) in central Baffin

Bay. Cores AMD16-LGM-09 and AMD0217-01, hereinafter referred as cores 9CASQ and

1Comp, were collected aboard CCGS Amundsen on the Home Bay TMFs, whereas core

HU2013-029-0077 (hereinafter referred as 77PC) was collected aboard the CCGS Hudson

during cruise 2013029 in order to serve as a chronostratigraphic reference core (Table 1, Fig.

1; Campbell 2014).

3.2 Seismo-stratigraphy and swath bathymetry

The Home Bay TMF coring sites were determined using a Knudsen 3.5 kHz Chirp

subbottom profiler and a Kongsberg Simrad EM-300 (30 kHz) echo-sounders to identify
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Table 1: Coordinates and property of the coring sites

Core Latitude (°N)

HU2013-029-0077 PC

AMD16-LGM-09 CASQ

AMD02171-01 PC/TWC
Composite

68.31

68.28

69.24
 “

63.79

64.56

64.43
 “

Slope

Slope (TMF)

Slope (TMF)
 “

1153

1220

1076
 “

597

350/152
380

554

Longitude (°W) Location Water depth (m) Length (cm)

areas of Quaternary sedimentary sequences with the presence of mass movements and/or

sediment perturbations inside TMFs (Figs. 3 to 11). The high-resolution chirp data were

collected with a Knudsen 3.5 kHz subbottom profiling system, integrated and analyzed using

the Kingdom Suite software (IHS). The geomorphology of the Home Bay area was exam-

ined using high-resolution multibeam bathymetric data that were processed with the CARIS

HIPS and SIPS software and visualized with the QPS Fledermaus software. Finally, line

76029 AG 280 1730 (seismic profile) collected in 1976 on board the CCGS Hudson by the

Geological Survey of Canada (GSC) has been used to validate if any grounding-zone wedges

(GZW) were present in the sector of the Home Bay cross-shelf trough (Fig. S4).

3.3 Physical and geochemical properties

In order to define the stratigraphy and sedimentary facies, sections of core 9CASQ

were passed through a computerized axial tomography scanner (CAT-Scan) at the Institut na-

tional de la recherche scientifique, Centre Eau Terre Environnement (INRS-ETE) in Québec

City to characterize the sedimentary facies and sediment structures (St-Onge et al. 2007).

Similarly, the sections of core 1Comp were scanned with a GEOTEK XCT digital X-ray sys-

tem at ISMER. The whole cores were then passed at ISMER on the GEOTEK Multi Sensor

Core Logger (MSCL) at 1 cm intervals to measure the low-field volumetric magnetic suscep-

tibility (kLF) and the wet bulk density by gamma-ray attenuation, then split, described and

photographed. Diffuse spectral reflectance was then acquired with an online Minolta CM-

2600d spectrophotometer at 0.5 cm intervals, while the concentration of minor and major
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chemical elements (calcium (Ca), strontium (Sr), iron (Fe), Rubidium (Rb), among others)

were determined by X-ray fluorescence (XRF) spectrometry at the same intervals using an

Olympus Innov-X Handheld XRF analyser Delta Family integrated to the MSCL. The grain

size analysis was performed on bulk sediment samples at ISMER using a Beckman Coulter™

LS13320 laser diffraction grain size analyzer at 10 cm intervals, as well as at a higher reso-

lution in specific facies such as in turbidites. Prior to analysis, samples were sieved at 2 mm.

A part for a few intervals with a few pebbles, no material larger than 2 mm were recovered.

3.4 Paleomagnetic Analysis

Paleomagnetic data were measured at 1 cm intervals on u-channel samples (2 cm x

2 cm x 150 cm) using a 2G Enterprises™ cryogenic magnetometer at ISMER for chronos-

tratigraphic purposes and to identify possible rapidly deposited layers such as turbidites and

debrites that are characterized by low quality paleomagnetic data and shallow inclinations

(e.g. St-Onge et al., 2004; Tanty et al., 2016). The measurements performed were: the natu-

ral remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal

remanent magnetization (IRM) and the saturation isothermal magnetization (SIRM). Due to

the finite spatial resolution of the pick-up coils that integrates measurements over ∼7-8 cm

(Philippe et al., n.d.), some smoothing occurs. To eliminate the edge effect associated with

this response function, the data from the first and last 4 cm of each u-channel were excluded.

The NRM was measured and then progressively demagnetized using stepwise alternating

field demagnetization (AF) at peak fields from 0 to 75 mT at 5 mT increments. Directions

(inclination and declination) of the characteristic remanent magnetization (ChRM) were cal-

culated using the Excel spreadsheet developed by Mazaud (2005) with AF demagnetization

steps from 10 to 60 mT (11 steps) for the three cores. This method also provides the max-

imum angular deviation (MAD) values which are indicative of high-quality directional data

when the MAD is lower than 5° for Quaternary paleomagnetic studies (Stoner and St-Onge,

2007). With this spreadsheet, the median destructive field (MDF) of the NRM is also calcu-
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lated. It represents the required demagnetization field necessary to reduce the initial magnetic

remanence by half of its initial intensity. The MDF is an indicator of magnetic mineralogy

reflecting the mean coercivity state of the magnetic grain assemblage and depends on both

the grain size and mineralogy (e.g. Stoner and St-Onge 2007; Barletta et al. 2010). The

ARM was then induced using a 100 mT AF with a 0.05 mT direct current (DC) biasing field.

The ARM was then demagnetized and measured from 0 to 75 mT at every 5 mT. Two IRMs

were imparted with a DC field of 0.3 T (IRM) and 0.95 T (SIRM) using a 2G Enterprises

pulse magnetizer. Each IRM was measured from 0 to 75 mT at 5 mT demagnetization step

increments, while for the SIRM, the steps used were 0, 10, 30, 50 and 70 mT.

3.5 Hysteresis Measurements

In order to define the magnetic mineralogy, hysteresis measurements were performed

on the three cores on a small quantity of sediment at 10 cm intervals using a Princeton Mea-

surement Corporation MicroMag 2900 alternating gradient force magnetometer (AGM). The

saturation magnetization (Ms), the coercive force (Hc), the saturation remanence (Mrs) and

the coercivity of remanence (Hcr) were extracted from the hysteresis data to characterize the

magnetic mineralogy and grain size (Day et al. 1977).

3.6 Radiocarbon dating

In order to develop the chronology of the cores, 14C ages were obtained by accelera-

tor mass spectrometry (AMS) on six samples from mixed planktonic and benthic foraminifera

and pachyderma shell (Table 2) at the Laboratoire des sciences du climat et de l’environnement

(LSCE), Gif-sur-Yvette, France (cores 9CASQ and 1Comp,) and from Jenner et al. 2018 for

the 14C ages of core 77PC. The conventional ages were then calibrated using the CALIB 7.1

online calibration software (Stuiver and Reimer, 1993) and Marine13 dataset (Reimer et al.,

2013) using 1 sigma and a regional reservoir correction ∆R of 220 ± 20 years (Coulthard et
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Table 2: Radiocarbon ages from cores HU2013-029-0077, AMD0217-01 PC and AMD 16-
LGM-09CASQ. Radiocarbon ages were calibrated ages using the CALIB version 7.1 soft-
ware (Stuiver and Reimer 1993) and the Marine13 calibration curve (Reimer et al. 2013).
Radiocarbon ages from cores HU2013-029-0077 have been taken from Jenner et al., 2018.

Core Depth (cm) Material Conventional
age

Calibrated
age (cal. ka BP) Lab. number

77PC

9CASQ

01-PC

142
205
644 (core catcher)

465

109 (not valid)
135

Foraminifers (benthic)

Pachyderma (Nps)
Foraminifers (planktics)

Foraminifers (mixed)

Foraminifers (mixed)
Foraminifers (mixed)

10550 +/- 40
12750 +/- 55
37900 +/- 1600

35160 +/- 760

10180 +/- 1490
12820 +/- 60

11327
14013
41461

39024

11029
14088

OS-117723
OS-118359
OS- UCIAMS 181265

ECHo 2458

ECHo 2559
ECHo 2558

al., 2010). Of the 6 samples that were analyzed, the results of sample ECHo 2559 could not

be validated as only 1 µg of carbon was detected, the current was very low with 0.3 µA and

the analysis time was only 2 minutes. This age is therefore only given as an indication.

4 Results

4.1 Sea floor morphology and stratigraphic framework

4.1.1 Subbottom profiles

The acoustic subbottom profiles (3.5 kHz) from the sampling location of core 9CASQ

show high amplitude parallel acoustic reflections in the middle of the core (362 to 340 cm)

where a turbidite and an alternation of rhythmic succession of stratified pebbly mud rich in

IRD are observed. This unit is topped by an acoustically transparent unit associated with the

postglacial hemipelagic sediments (Fig. 3). The seismic profile of core 77PC is modified

from Campbell and Bennett (2014) and is characterized by high amplitude parallel reflec-

tions in the basal part of the core as well as transparent acoustic facies associated with the
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hemipelagic sediments in the upper part of the core (Fig. 4; Campbell and Bennett, 2014).

For core 1Comp, the sequence is characterized by a high amplitude reflection that can be

associated with the debrite observed at the base of the core, whereas the uppermost acous-

tically transparent unit is interpreted as postglacial hemipelagic sediments (Fig. 5). Finally,

the available data, including the airgun profile (Fig. S4), do not show any grounding-zone

wedge (GZW) in the sector.
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a TMF near the abyssal plain in the lower continental slope of Home Bay. The base
of the core contains alternation of rhythmic succession of stratified pebbly mud rich
in IRD and probably thin turbidites. The middle contains a turbidite and alternation
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Figure 4: Huntec profile collected in 1978 showing the thick acoustically
stratified interval of core 77PC located on the continental slope of Home
Bay. The estimated core depths are indicated with red mark. Figure is
modified from Campbell and Bennett (2014).
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Figure 5: 3.5 kHz chirp subbottom profile of core AMD0217-01 PC (1Comp) located on the margin
of a TMF in the lower continental slope of Home Bay. The base of the core contains a debrite and the
top is composed of a layer of postglacial hemipelagic sediments. The orange dashed line delimited a
debris flow channel north west of the core and extends to a depth of more than 10 m. This channel is
composed of a series of stacked debris flow which accumulate inside this TMF. The estimated core
depths (∼4m) are indicated with red mark.
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4.1.2 Swath bathymetry

The high-resolution swath bathymetry imagery allowed the identification of shapes and

structures associated with the presence of the LIS and/or iceberg drifting offshore. Indeed,

the tails of icebergs that drift north to south within the BIC form vast curvilinear and irregular

depressions a few meters deep. They sometimes have features showing U or V-shaped forms

but can also be very long and almost linear over a distance of more than 20 km and a depth

of about 10 m (Figs. 6, 8 and 10).

Another surface of erosion found on the continental shelf are the mega-scale glacial lin-

eation (MSGL; Dowdeswell et al. 2016; Montelli et al. 2017). These are profiled, subparallel

and very elongated lineation which aligns in the direction of the advances and retreat of the

LIS in Home Bay. When the ice sheet grows or decay, it has formed wide and deep channel

that can reach a depth of some ten of meters (about 40 m in figure 11) and a length of several

Shelf edge

AMD0217-01PC

Iceberg scours
(ploughmarks) 

Cross-shelf trough 

TMF

6 km

TMF

Figure 6: Multibeam image and morphology of the cross-shelf trough of Home Bay visualized with
the QPS Fledermaus software. The bedforms observed within the area contain iceberg scours on the
cross shelf and a series of sub-parallel linear gullies going down the slope. The red star corresponds to
core 1Comp (AMD0217-01) located in a trough-mouth fans (TMF).
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Figure 7: Topographic and bathymetric map of the Baffin Bay area. The white square is an
approximate focus on the multibeam image of the figures 6, 8, 9, 10 and 11. See text for details.

tens of km (Figs. 10 and 11).
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Figure 8: Multibeam image and morphology of the cross-shelf trough and submarine gullies within
the slope of Home Bay visualized with the QPS Fledermaus software. The bedforms observed within
the area contain iceberg scours on the cross-shelf trough and a series of sub-parallel linear gullies going
down the slope. The white dashed lines correspond to the limit of 3 TMFs containing cores 9CASQ
(AMD16-LGM-09) and 1Comp (AMD0217-01). The black dashed lines represent sediment transport
pathways.
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Figure 9: Multibeam image of the site of core 1Comp (AMD0217-01) sampled at the edge of a TMF
visualized with the QPS Fledermaus software. The white dashed lines represent the delimitation of the
TMFs.
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Figure 10: Multibeam image obtained as part of the ArcticNet program showing mega-scale
glacial lineations (MSGLs) and iceberg ploughmarks on the shelf. A series of sub-parallel
gullies within the slope of Home Bay are also visible and TMFs on the continental rise at the
top of the image.
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Figure 11: Multibeam image software showing MSGLs associated with the activity of the LIS on the
shelf during the last glaciation. MSGL are an unequivocal signature of ice stream activity. They are
profiled, subparallel and very elongated lineations which are aligned in the direction of the advances
and retreat of the LIS. The black dashed lines represent potential meltwater channels.
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4.2 Lithofacies

Seven lithofacies were identified in the two cores from the TMFs (1Comp and 9CASQ;

Figs. 13 and 15). They are described and presented below (see Table 3). The classification

of these facies was determined from CAT-scan images, physical and magnetic properties, as

well as previous studies from Baffin Bay (e.g. McCann 1988; Tripsanas and Piper 2008; Ó

Cofaigh et al. 2013; Simon et al. 2013; Jackson et al. 2017; Jenner et al. 2018).
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Table 3: Sediment facies characteristics of the cores 1Comp and 9CASQ. From left to right:
X-radiographs, high-resolution photography, facies, sedimentary structures and processes
with the depositional environment.

X-ray Image Facies
Sedimentary 

ProcessesStructures

Homoge-
nous mud 
without 
IRD (LF7)

Silt and 
sand 
turbidite 
(LF3)

Complex 
diamicton
(LF1)

Bioturbated grayish to 
brownish mud without IRD. 
No apparent structure are 
observed.

Dense and very dark gray 
silt and fine sand with clast 

Massive, matrix-supported 
diamict facies. Very dense, 
black and coarse-grained 
sediment mixed with a 
fine-grained matrix.

Hemipelagic sedimenta-
tion (postglacial)

Hemipelagic sedimenta-
tion with frequent IRD 
(deglacial/postglacial)

Glacigenic debris flow 
(glacial environment)

   Turbidity current 
(glacial environment)

Homoge-
nous mud 
with IRD 
(LF5) 

Rich 
carbonate 
bed with 
IRD (LF6)

Laminated 
mud (LF4)

Laminated 
mud rich in 
IRD (LF2)

Light olive brown sandy 
mud and pebbly mud rich 
in IRD.

Dark grayish brown silty 
mud with IRD. No apparent 
structures are observable.

Unrhytmic succession of dark 
gray to dark grayish brown silty 
laminated mud rich in IRD.

Dark grayish brown rhytmic 
succession of mud and silt 
laminae

 Meltwater plume, turbidity 
current and possible bottom 
current influence (deglacial)

Meltwater plume, ice rafting 
and turbidity current (glacial 
environment)

Photography and CAT-scan reveal a highly variable lithology across the cores (Table

3, Fig. 12). Lithofacies 1 (LF1) is defined as a massive, matrix-supported diamicton facies

with very dense, black and coarse-grained sediment mixed with a fine-grained matrix with

a sharp upper contact. This facies contain a concentration of granules, pebbles and cobbles

which are angular to sub rounded in shape. As previously suggested for similar sediments,
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LF1 probably represent GDF triggered near an ice-sheet margin (e.g. King et al. 1998; Ó

Cofaigh et al. 2013).

Lithofacies 2 (LF2) is defined as a laminated dark gray to dark grayish brown silty mud

rich in IRD with a unrhythmic succession of stratified pebbly mud. The concentrations of

pebbles have often deformed the laminae and contacts range from diffuse to sharp (Fig. 12).

LF2 facies probably represents sea-ice cover break-ups with renewed warming when iceberg

can drift again and the deposition of IRD is re-established (Dowdeswell et al. 2000). LF2

can also be associated with deposition from turbidity currents and turbid meltwater plumes

from the ice sheet on the shelf. These layers are often composed of coarse-based laminated

mud fining upward (Figs. 13b and 14). Indeed, meltwater may be a major influence on

laminated sediment deposition which can be observed in settings relatively proximal to tide-

water glaciers reflecting evolution in time in meltwater discharge (Cowan and Powell 1990;

Andrews et al. 1991; Dowdeswell and Cromack 1991; Jennings 1993; Dowdeswell et al.

2000; Jenner et al. 2018). This assumption is supported by the fact that during winter or

a long phase of climate cooling, ice is covering the entire Baffin Bay which traps icebergs

and suppresses their drift offshore. In this case, meltwater discharge will be dominant, when

delivery of coarser debris is absent. Cowan et al. (1997) suggested the opposite and proposed

punctuated IRD in winter and turbid meltwater deposition dominated by turbidity currents

and suspension deposits in summer. One way or the other, deposition of fine-grained lami-

nated glaciomarine sediments are not usually regarded as typical of iceberg-dominated area

but sometimes can vary rhythmically with IRD and rapidly deposited layers (Dowdeswell et

al. 2000; Domack 1990). Similar layer in core 9CASQ represents a glaciomarine environ-

ment. Suspension deposit sedimentation in periods of continuous sea-ice cover has probably

generated the mud of this units. The hypothesis of multiyear sea-ice covering the core sites

is reinforced by the scarcity of foraminifera, because a continuous sea-ice cover suppresses

biological activity (Syvitski 1989; Dowdeswell et al. 2000). Lithofacies 3 (LF3) is defined as

dense and very dark gray silt and sand with clast. Facies LF3 are composed of coarse-based

laminated mud fining upward. In addition, grain size data highlight the normal grading of this
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facies (Fig. 14). The upper contact of this RDL is also visible as shown by the contrast be-

tween the finer sediment and the background sediments immediately above (Figs. 13 and 14;

e.g. St-Onge et al. 2004; Bourget et al. 2011; Pouderoux et al. 2012). We interpret LF3 has a

silty and sandy turbidite. Baffin Island Current (BIC) is particularly strong at 1000-1200 wa-

ter depth in Baffin Bay Slope (Dunlap and Tang 2006) and that low density muddy turbidity

currents can be generated as a result. These proglacial turbidity currents were probably small,

dilute and easily dissipated by the BIC. The core 9CASQ, which contain a turbidite deposited

in a glacial environment, has been collected at 1220 m below sea level. The strong BIC at

this depth might have influence the bottom current deposition and influence the triggering of

this type of turbidite (Dunlap and Tang 2006; Roger et al. 2013; Jenner et al. 2018).

Lithofacies 4 (LF4) is defined as a laminated dark grayish brown rhythmic succession

of clay and silt laminae. The laminae and contacts range from diffuse to very sharp and

does not contain IRD or bioturbation. As suggested by Jenner et al. (2018), this type of

parallel laminations with diffuse contacts can be generated in many ways in northern oceanic

environment : by meltwater plumes (Hesse et al. 1997), as mud turbidites seawards of glacial

troughs (Roger et al. 2013) and as subglacial outbursts of turbid meltwaters on TMFs (Lucchi

et al. 2013). In cores 9CASQ and 1Comp, this facies is mostly overlying a debrite or turbidite

and we associate it to muddy density flows and meltwater plumes emanating from glacial

discharge during ice retreat.

Lithofacies 5 (LF5) is defined as a massive homogenous dark grayish brown silty mud

with the presence of IRD. No apparent structures are observable. The distribution of peb-

bles within LF5 ranges from dispersed to concentrated and the contacts range from diffuse

to gradual. We interpret LF5 as hemipelagic sedimentation with frequent IRDs associated

with deglacial/postglacial environment. As IRDs are related to the drifting of icebergs, their

presence in cores 1Comp and 9CASQ suggests that a significant portion of Home Bay was

ice-free at this time.

Lithofacies 6 (LF6) is defined as a carbonate-rich light olive brown sandy and pebbly
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mud with IRD. Previous research has shown that late Quaternary sedimentation seawards of

Home Bay is characterized by a proglacial facies containing detrital carbonate that may rep-

resent carbonate-rich ice-rafted sediments from northern Baffin Bay icebergs flowing south-

ward with the cold Baffin Island Current and delivering IRDs to the slope between ∼ 25 cal

ka BP and ∼ 11 cal ka BP (Andrews et al. 1998; Andrews et al. 2009; Jackson et al. 2017).

Aksu and Piper (1987) suggested that northwestern Baffin Bay, Devon and Ellesmere Islands

and northwestern Greenland are the source of the lower Paleozoic limestones and dolomites

observed in sediments transported in the form of IRD to southern Baffin Bay (Aksu and Piper

1987).

Finally, lithofacies 7 (LF7) is defined as a massive and homogenous bioturbated grayish

to brownish mud without IRD. Apart from traces of bioturbation such as well-defined bur-

rows, no apparent structures are observed (Fig. 12). In contrast with the previous facies rich

in ice rafted debris (IRDs), turbidite and debrite, and the presence of this facies in the upper-

most part of the core, we associate this facies to hemipelagic sedimentation in a postglacial

environment. Similar facies in the uppermost part of cores were also observed along the West

Greenland continental margin adjoining Baffin Bay (Dowdeswell et al. 2008; Ó Cofaigh et

al. 2013).



32

LF7

LF7

LF4

LF4

LF5

LF2

LF2

LF5

LF 4

LF 1

LF 1

LF 1

LF 1

LF 5

LF 6

LF 1

LF 6

LF 7

LF 7

LF 6

AMD0217-01 PC AMD16-LGM-09 PC (9CASQ)

C

LF3
LF2

LF6

LF2

LF2

X-rayImage

A B C D

LF7

LF7

X-rayImage
E F G

50

40

30

20

10

0

90

80

70

60

50

40

30

20

10

0

180

160

140

120

100

80

60

340

320

300

280

260

240

220

200

240

220

200

180

160

140

120

100

400

380

360

340

320

300

280

260

540

520

500

480

460

440

420

Figure 12: X-radiographs and high-resolution photography of representative lithofacies from sed-
iment cores of Home Bay TMFs: AMD0217-01 PC and AMD 16-LGM-09CASQ (9CASQ). 1)
Massive, matrix-supported diamict facies. Complex diamicton (LF1); 2) Laminated mud rich in IRD
(LF2); 3) Silt and sand turbidite (LF3); 4) Laminated mud (LF4); 5) Homogenous mud with IRD
(LF5); 6) Carbonate-rich bed with IRD (LF6); 7) Homogenous mud without IRD (LF7). Ticks on
the figures represent the depth in cm. See Table 3 for the legend of facies identification and sediment
characteristics. N. B. add 30 cm to get the real depths of 1Comp.
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4.3 Stratigraphy, physical and magnetic properties

Core 77PC

Core 77PC is used in this study as a reference core for establishing a reliable chronos-

tratigraphy. Jenner et al. (2018) provided a detailed description of the sedimentary sequence

and facies of this core. Overall, this core is composed of laminated and bioturbated mud,

wavy silty laminae, detrital carbonate mud and contain no rapidly deposited layers (Jenner et

al., 2018). We will now focus on the description of the paleomagnetic results to establish that

core 77PC recorded a genuine paleomagnetic signal. Grain size distribution shows relatively

fine material with an average of ∼ 5 µm for the entire core (Fig. 15a). Between 161 and

117 cm, a sharp increase of density and MAD values is observed, as well as a decrease in

inclination and NRM values. Aside from this interval, the NRM values are relatively con-

stant (∼ 0.02 A/m),but peaks are seen in the ARM, IRM, and SIRM profiles between 310

and 270 cm, as well as between 470 and 450 cm (Fig. 15a). Nonetheless, MAD values are

lower than 5° in the entire core, indicating high quality paleomagnetic data event except for

a few intervals. The CHRM has been determined after using a 5 mT demagnetization steps

between 10 and 60 mT. The ChRM fluctuates around expected inclination value that was cal-

culated according to the geocentric axial dipole model (IGAD) at the coring site, denoting a

well-recorded paleomagnetic signal (Fig. 15a; Stoner and St-Onge, 2007). Downcore MAD

values are generally lower than 2°, indicative of very well defined ChRM. The values of the

MDFNRM fluctuate between 20 and 40 mT throughout the core with an average of 35 mT.

Such an average indicates the presence of low coercivity minerals such as magnetite, except

from a few very thin intervals where MDF values close to 50 mT are observed.
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Core 1Comp

The correlation of density measured on the piston and the trigger weight core 01 sug-

gests that about 30 cm of sediment was lost during piston coring. This missing sediment was

taking into account when constructing the composite profile (Fig. S3). The 01 composite

sequence is characterized by highly variable lithofacies. The physical and magnetic proper-

ties allowed the identification of 5 distinct stratigraphic units (Table. 3 and Fig. 13a). These

units represent different sedimentary processes (Fig. 17).The grain size distribution shows

relatively constant variations ranging from fine clay to fine sand, except for a peak between

225 and 200 cm which reaches 12 µm and which is consistent with the presence of a debris

flow deposit covering the base of the core 1Comp (Fig. 13a). This thick layer (LF1) is less

sorted than the overlying sediments. LF1 was observed only in core 1Comp and extends from

381 to 175 cm. The base of this core is firm with high densities (∼ 2 g/cm 3), black with low

L * values, matrix-supported with high sorting (∼ 5 µm) and mean grain size that vary around

7 µm, predominantly massive diamicton with a sharp upper contact (Table. 3; Figs. 12 and

13a). LF4 extends from 175 to 161 cm, has low magnetic susceptibility, good sorting and

mean grain size that varies around 3 µm. The coarse material from LF5 reflects high values

of magnetic susceptibility that peaks at about 400 × 10 -5 SI, which is due to the presence

of pebbles containing a high concentration of ferrimagnetic minerals. Unit 5 (LF5) extends

from 161 to 129 cm.

The detrital carbonate layers (LF6) from 117 and 65 cm are visible on the CAT-scan

images (Fig. 12) and can be identify with other parameters such as L*, Ca/Sr ratio, MAD

values, inclination and magnetic intensity (Figs. 13a and 15b). The higher L* values observed

in LF6 most likely reflect a higher carbonate content. This proxy is often used for carbonate

content in marine sediment cores (e.g. Balsam et al. 1999; Jackson et al. 2017). The ratio

of calcium (Ca) to strontium (Sr) is also frequently used to identify detrital carbonate bed

(Hodell et al. 2008; Channell et al. 2012; Winsor et al. 2012). This ratio averages around

100 throughout the core 1Comp, but inside these facies it reaches 750 at 85 cm. In addition,
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LF6 between 117 and 65 cm has MAD values reaching 30° at 100 cm, as well as a decrease

in inclination and remanence values (NRM, ARM, IRM, SIRM; Fig. 15b). These results

attest to the presence of a detrital carbonate layer (Fig. 13a), as well as ice rafting since

many clasts are observed in this unit. Similar to 9CASQ, LF7 covers the top of the core

between 65 to 0 and from 129 to 117 cm. NRM, ARM, IRM and SIRM values are variable

throughout this core with significantly higher values in LF5, suggesting an increase in the

ferrimagnetic mineral concentration (Fig. 15b). Inclination values in this unit also fluctuate

around the expected values of the GAD with MAD values below 5°, representing high quality

paleomagnetic data (Stoner and St-Onge, 2007; Tauxe, 2010). Shallower inclinations and

much higher MAD values are observed between 381-175 cm, 161-115 cm and 117-65 cm.

These intervals correspond to the bottom debris flow deposit and IRD-rich layers. In the

debris flow deposit, the alternance of negative and positive inclination values denotes the

presence of clasts (Figs. 13a and 15b). Aside from the debris flow which has low values, the

MDFNRM values fluctuate between 30 and 55 mT with an average around 45 mT (Fig. 15b),

indicating the presence of low coercivity minerals such as magnetite and a contribution from

higher coercivity minerals (Tauxe and Wu 1990; Stoner et al. 2000).
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Core 9CASQ

Core 9CASQ is characterized by 6 lithofacies (Table 3, Fig. 13b). The grain size

distribution shows relatively constant variations throughout the core ranging from fine clay

to coarse silt with an average of 4 µm, except for three distinct layers where the average

increases between 544-536 cm, 533-523 cm and 362-340 cm (Figs. 13b and 14), which cor-

respond respectively to LF3 and two thin layers at the base of LF2 which could be turbidites

(Table 3, Figs. 13b and 14). These three layers are also less sorted than the rest of the core

and they present the normal grading of muddy turbidite (e.g. St-Onge et al. 2004; Bourget et

al. 2011; Pouderoux et al. 2012). In addition, for LF3, high-resolution physical and magnetic

analyses also revealed the presence of a rapidly deposited layer (RDL) in core 9CASQ and

is recognizable by its low basal paleomagnetic inclinations and MAD values (St-Onge et al.

2008; Philippe et al. n.d.). As a whole, LF2 extends between 550-362 cm and is character-

ized by unrhythmic succession of stratified pebbly mud with often deformed diffuse to sharp

parallel laminations, ice rafted debris and probably thin turbidites (Fig. 13b). The coarser

base of the turbidite in LF3 are visible on the CAT-scan images (Fig. 12) and are reflected by

higher density, CT number and magnetic susceptibility values that can reach ∼ 400 × 10 -5 SI

(Fig. 13b). LF4 extend over two distinct intervals between 241 to 211 cm and 340 to 305 cm

and is laminated with a rhythmic succession of clay and silt laminae.

Lithofacies 5 (LF5) and 6 (LF6) are observed respectively between 275-241 cm and

211 to 125 cm. The coarser material present in these two facies is also visible on the CAT-

scan images (Fig. 12). Like core 1Comp, LF6 is characterized by high L* values, a sharp

increase of the Ca/Sr ratio and lower inclination and MAD values.

LF7 covers the top of the core between 125 and 0 cm, as well as between 305 to 275 cm.

LF7 and LF4 reveal little variation in their physical and magnetic properties of the sediments

in these facies. Indeed, the density is relatively low, the sorting is good and varies little,

whereas the mean grain size is stable and averages 4 µm.
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The orange layer represent the RDL facies.

The ChRM inclination along the core generally fluctuates around the expected inclina-

tion values (IGAD) and MAD values are lower than 2°, indicative of very well-defined paleo-

magnetic data, except for the detrital carbonate and turbidites layers (LF6 and LF3), which

have low inclination and high MAD values. Aside of the LF6 layer, MDFNRM values range

between 20 and 40 mT with an average of 30 mT, which is indicative of the presence of low

coercivity minerals such as magnetite throughout the core (Fig. 15c). The sharp increase in

MDF values in the detrital carbonate layer indicates a lower concentration of magnetite and

the presence of higher coercivity minerals in this layer (Simon et al. 2012).
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4.4 Magnetic properties

Day plots indicate that most of the sediments of the three cores are composed of mag-

netic grains in the pseudo single domain (PSD) range although some samples of cores 1Comp

and 9CASQ fall in the multi domain range (MD). The samples in the MD range reflect the

coarser grains observed in the rapidly deposited layers (e.g. turbidite and debrite). For the

three cores, the magnetic kARM/k diagram (King et al., 1983) indicate that the magnetic grain

size is relatively fine and under 5 µm. Even though, the absolute magnetic grain size values

are to be taken with caution as these empirical relationships were carried out for synthetic

magnetic grains, taken together with the results from the Day plot, they suggest an optimal

PSD range for paleomagnetic reconstructions (e.g. Tauxe, 1993).

The shape of hysteresis curves of the discrete samples from the three cores are typical

of low coercivity ferrimagnetic minerals such as magnetite (Fig. 16a; Tauxe et al. 1996; Dun-

lop and Özdemir, 1997). In addition, the magnetic mineralogy-dependent ratio IRM/SIRM

(Pseudo S-ratio) is useful to estimate changes in magnetic mineralogy, with values close to 1

indicating a low-coercivity ferrimagnetic mineralogy (e.g. magnetite; St-Onge et al., 2003).

The S-ratio in cores 77PC, 1Comp and 9CASQ, with mean values of 0.992, 0.988 and 0,987

respectively, suggesting that low coercivity minerals such as magnetite is the dominant mag-

netic carrier. Moreover, MDFNRM values ranging from 25–40 mT also suggest the presence

of magnetite and/or titanomagnetite in most of the 3 cores (Fig. 15). On the other hand, sed-

iments of LF1 and LF6 in core 1Comp are characterized by lower MDF values that indicate

the occurrence of coarser magnetic grains as seen in the Day plot (Fig. 16b) and physical

grain size data (Fig. 16c). Finally, changes in NRM, ARM, IRM and SIRM vary by less than

an order of magnitude.
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Figure 15: . High-resolution physical, geochemical and magnetic properties of cores 77PC
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4.5 Relative Paleointensity (RPI) Determination and Chronostratigraphy

To derive a RPI proxy, some criteria must be satisfied : the NRM must be characterized

by a strong, stable, single component magnetization with MAD values < 5°, carried by low

coercivity ferrimagnetic grains (e.g. magnetite) in the SD/PSD domain (e.g. Levi and Baner-

jee 1976; Tauxe 1993; Stoner and St-Onge 2007; Yamazaki et al. 2013). Moreover, magnetite

concentration variations should not vary by more than a factor of 10 (Tauxe, 1993). The NRM

should also be normalized by an appropriate magnetic parameter (normally ARM or IRM)

that activates the same grains that carried the NRM (Levi and Banerjee, 1976). The relative
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Figure 16: A. Typical hysteresis curves and derived parameters of cores 77PC, 9CASQ and 1Comp; B:
Day plot (Day et al. 1977): RDL= Rapidly deposited layers (turbidite and debrite); C: kARM vs. kLF plot
representing estimated magnetic grain size for magnetite (King et al. 1983): Red circle represent RDL
and black circles the remaining sediments.

paleointensity proxy cannot be correlated with its normalizer or with any lithological proxy

(Tauxe and Wu, 1990). For cores 77PC, 1Comp and 9CASQ, the comparison between ARM

and IRM as normalizers seem to activate the same magnetic assemblages and the difference

between ARM and IRM as normalizers also suggest that ARM have a slightly better R2 then
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IRM (Figs. S1 and S2). For the 3 cores, the comparison of the normalized remanence with

its normalizer indicates that NRM/ARM is not correlated with the ARM when RDL are ex-

cluded (Fig. S1). Conversely, the same comparison indicates a correlation for RDL (e.g.

debrite and turbidite; LF1 and LF3) and detrital carbonates (DC) layers (LF6) with R2 of re-

spectively 0.37 and 0.40 (Fig. S1). Based on these results, ARM has been selected as the best

normalizer. Detrital carbonate layers were then excluded for paleomagnetic reconstructions,

but RDL, even if they do not yield appropriate results, have been kept in the figures in order

to give the reader a glimpse of their age-depth relationship.

5 Discussion

5.1 RDL layers: Glaciogenic debris flows (GDFs) and turbidites

Glaciogenic debris flows are major components of TMFs (e.g. Laberg and Vorren 1995;

King et al. 1998; Vorren et al. 1998; Nygard et al. 2002). In Home Bay, LFI is characterized

by a massive, matrix-supported diamicton facies with clasts, the highest MAD values and

low values of paleomagnetic inclinations (Fig. 15b). This combination of parameters clearly

indicate that glaciogenic debris flows were recorded. Magnetic properties of sediments can

be a source of significant information for the interpretation of sedimentary products. In fact,

turbidites, debrites and detrital carbonate layers generate higher MAD values (> 5°) and

highly variable inclinations which move away from the expected values. If the inclination is

highly variable very shallow such as in the debrite (LF1) of core 1Comp and in the turbidite

(LF3) in core 9CASQ, it has no geomagnetic meaning, but clearly indicates the presence of

a rapidly deposited layer (RDL).

A series of stacked debrites encompasses a wide range of scale, geometry, structure,

lithology and process. They have specific shape and geometry and they usually accumulate

in the form of continuous and elongated lenses inside a TMF (Nygard et al. 2002). The
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final depositional area are often observed at great distances from the origin (De Blasio et

al. 2006) and have volumetric importance and ubiquitous distribution in high latitudes that

reflect past glacial environment (King et al. 1998; Nygard et al. 2002; Ó Cofaigh et al. 2013).

Turbidity currents are also gravity-driven density currents and occur on continental slopes as

well as adjacent parts of ocean basins. They are considered, along with debris flows, to be

one of the main processes of sediment transfer in deep oceans (Piper and Normark 2009).

They are generally triggered when an event occurs such as a seismic event, landslide, high

sedimentation rates or ice sheet movements near the shelf edge (Li et al. 2012; Talling et

al. 2013; Talling 2014). Moreover, according to past studies, debris flows sometimes evolve

distally into turbidity currents (Nemec 1990; De Blasio et al. 2006; Talling et al. 2007).

Both physical and magnetic profiles of the core 9CASQ highlight the presence of a

turbidite along the slopes of Home Bay in the most distal part of a small TMF. This core,

recovered in a distal area of a TMF (Fig. 8) about 100 km away from the coast, contains

a turbidite between 362 and 340 cm. This turbidite contrast sharply with the dark grayish

brown silty mud of hemipelagic sedimentation and IRD layers associated to the continuous

”background” sedimentation (Figs. 13b and 14). The presence of debrites and turbidites at-

tests to the sensitivity of Home Bay to capture mass wasting events that can be associated

with advances of the LIS on the shelf edge (Fig. 17). This type of sediment therefore repre-

sents a glacial environment, while IRD deposits are more associated with periods of warming

and melting ice during ice sheet retreat. Laberg et al. (1995) have reported the same associ-

ation of sedimentary processes during the LGM were large debris flows have been generated

and accumulated down the slope on the Bear Island trough-mouth fans when the Barents Sea

Ice Sheet reached the shelf break (Laberg and Vorren 1995). They identified a chronological

sequence of debrites which have accumulated inside a North Sea Fan. This sequence corre-

sponds to the advances and retreats of the southern Fenoscandian Ice Sheets from 18 to 15

ka BP and GDFs are directly associated with the presence of the inlandsis at the shelf break

(Fig. 17; King et al. 1998). Subbottom profiles from the sampling location of core 1Comp

(Figs. 2 and 9) reveal that the acoustic facies associated with the debris flow extends laterally
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to a series of stacked debris flow deposits which accumulated inside this TMF (Fig. 5). In

addition, subglacial landforms like MSGL and iceberg ploughmarks reveal a complex and

dynamic layer of ice and subglacial ice stream that suggests a glacial calving margin on the

shelf during the Last glacial episode. On the other side, the available data do not confirm the

presence of GZW in the sector of Home Bay trough (Fig. S4) that could testify the presence

of an ice sheet on the continental shelf (Batchelor and Dowdeswell 2015). Most of the iceberg

ploughmark scars are likely caused by icebergs coming from Greenland, but they might also

suggest the presence of a glacial calving margin at the shelf during the LGM (Dowdeswell et

al. 1993; Dowdeswell and Ottesen 2013). These features are found at a depth of about 650 m

and are frequently oriented in a north-south direction, like the BIC (Fig. 10). This orientation

along the BIC suggests that these iceberg ploughmarks could also have come from northern

Baffin Bay and would have drifted south along the coast of Baffin Island to run aground on

the continental shelf of the sector. MSGLs landforms are signature of ice stream activity and

several meltwater channels have probably been used as feeder corridors for TMFs systems

(Fig. 11; Ottesen et al. 2005; Montelli et al. 2017). Furthermore, these meltwater channels

can be used to determine the direction of past ice-flow to the shelf break during glaciation.

Sediments are transported by this ice stream and can also travel downslope as a series of de-

bris flows (e.g. Laberg and Vorren 1995; Lasabuda et al. 2018) and turbidity currents. Several

small canyons and gullies will eventually serve as the main transport routes for remobilizing

sediments from the upper slope towards their accumulation site in the basin (e.g. Lasabuda et

al. 2018) as TMFs (Figs. 8 and 9). These multiple erosional surfaces (scars) suggest glacial

processes have eroded and molded the shelf during the Quaternary. There is no evidence

these structures were generated during the Last glacial episode (or even during the LGM),

but this strong glacial erosion not covered by thick layers of sediments on the continental

shelf, as well as the morphology of the seabed and the stratigraphy of a glaciogenic debrite

and turbidite dated from the last glaciation (∼ 15 and 20 cal ka BP; Fig. 18), suggest the LIS

margin extended to the shelf edge during the LGM. These results, paired with the dating of a

glaciogenic debrite and turbidite, demonstrate the activity of glacial processes near the shelf
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Figure 17: Schematic model for the main glaciogenic sedimentary processes inside a trough-mouth fan
(TMF).

edge.

5.2 Late Pleistocene Baffin Bay chronostratigraphy

In order to date these debrite and turbidite and to establish an original age-depth rela-

tionship for these cores in Home Bay, a combination of radiocarbon ages along with pale-

omagnetic tie points were used to determine the chronology of these cores. These 3 cores

show similar directional and relative paleointensity (RPI) features that can be correlated on

a regional scale and with other Northern Hemisphere paleomagnetic secular variation (PSV)

records at the millennial scale since the last 45 ka (Fig. 18).

Figure 18 shows the comparison of RPI profiles from 0 to 580 cm in core 77PC, 0 to 475

cm in core 9CASQ, and from 0 to 337 cm in core 1Comp along with 3 previously published
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RPI records from the Northern Hemisphere: North Atlantic stack (NAPIS-75; Kissel et al.

2000; Laj et al. 2000), Baffin Bay (Core 16PC, Simon et al. 2012) as well as Mediterranean

and Somali Stack (Meynadier et al. 1992). This comparison supports the geomagnetic origin

of the signal in the 0–45 ka interval for cores 77PC, 9CASQ and 1Comp, as well as to support

the available radiocarbon ages.

According to this comparison and the dating model, we suggest that the debrite ob-

served in core 1Comp were triggered before 15 cal ka BP, while the turbidite (LF3) of core

9CASQ were deposited around 20 cal ka BP. Furthermore, subbottom profiles (3.5 kHz) from

the coring site of core 1Comp illustrates that the core was collected on the side edge of a de-

bris flow channel (Figs. 5 and 9) in a much thinner section (∼ 4 m depth) than the center of

this channel which is more then 10 m deep (Fig. 5) and probably dating back, at is deepest,

to more than 15 cal ka BP. The chronostratigraphy thus suggests that debrite and turbidite

observed within cores 1Comp and 9CASQ are glaciogenic origin. Without disqualifying the

possibility of an earthquake in the Baffin Bay area at this time, the turbidite found in core

9CASQ were dated from the Last glacial episode (∼ 20 ka BP) and are more likely to have

been triggered by the presence of the LIS margin on the continental shelf. Previous work has

shown that large volumes of turbidites along ice margins are essentially related to subglacial

outbursts and can be used as a proxy to determine a glaciomarine source (Dowdeswell et al.

1998; Hesse et al. 1999; Toucanne et al. 2012). There is still no general agreement on which

sedimentary structures can be used to distinguish fine-grained turbidites from contourites

(Rebesco et al. 2014) and it has been a controversial issue in sedimentology since the 1970’s

(Hollister 1967; Piper 1972; Hollister and Heezen 1972). Some authors have already consid-

ered that fine turbiditic deposits like LF3 in core 9CASQ can be differentiated from contourite

based on certain characteristics: the absence of widespread burrowing, bioturbation, a lack

of a vertical sequence of structures (Lovell and Stow 1981; Stow and Piper 1984) and trac-

tion sedimentary structures (Carter et al. 1996; Wynn and Stow 2002; Shanmugam 2006).

These criteria are considered to be viable diagnostic for differentiated fine turbidites from

contourites. Furthermore, the combination of the data (timing, mega-scale glacial lineations,
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from North Atlantic stack (NAPIS-75; Kissel et al. 2000; Laj et al. 2000), Baffin Bay (Core 16PC;
Simon et al. 2012) as well as Mediterranean and Somali Stack (Meynadier et al. 1992). Correlative
paleointensity features are indicated with dashed black line. RDLs (e.g. debrite and turbidite) are
delimited by the grey and blue square. Radiocarbon ages from core HU2013-029-0077 have been
taken from (Jenner et al. 2018).

TMFs, sedimentology and low inclinations) presented in this paper clearly demonstrate that

the graded sediments in LF3 is a glaciogenic turbidite. The very low inclinations at the base

of this turbidite is a very strong argument and was previously seen in several records (Fig. 9;

e.g. St-Onge et al. 2004; Tanty et al. 2016). Furthermore, the seismic profiles in the area do

not present the acoustic attributes of contourites.
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5.3 New delimitation of the maximum extension of the LIS in Home Bay during the

Last glacial episode

In order to generate GDFs and turbidity currents that have accumulated in the Home

Bay TMF at the bottom of the continental slope of Baffin Island, the ice sheet had to advance

to the shelf edge during the Last glacial episode. The morphology of the bedforms observed

within the area of the Home Bay based on swath bathymetry imagery supports this hypothesis

by showing the cross-shelf trough were glacially eroded and contain ice sheet and iceberg

scours. Some area also contains MSGLs extending to the shelf break, which are indicators

of fast ice-flow and are a common signature of ice stream activity (Figs. 10 and 11; Stokes

and Clark 2002; Clark et al. 2003; Brouard and Lajeunesse 2017). Their well-preserved

morphology and the thin cover of postglacial sediments suggest that they are related to the

Last glacial episode. According to some authors, the maximum extension of the LIS in the

Home Bay area probably lasted up to 13 - 12 cal ka BP (Dyke et al. 2002; Margold et al.

2015).

These ice-contact landforms, the glaciogenic debrite and turbidite mapped on the Home

Bay continental rise and shelf allows us to propose a new delimitation of the maximum ex-

tension of the LIS margin in central-western Baffin Bay during the Last glacial episode (Fig.

2), more precisely at the time corresponding to the initiation of the debris flow deposit and

the turbidite, which are respectively, according to the age model, during the LGM.

6 Conclusions

The new geomorphological, stratigraphic and sediment core data coupled with the dat-

ing of a glaciogenic debrite and turbidite accumulated in trough-mouth fans during the Last

glacial episode allow the reconstruction of the activity of the LIS margin in Home Bay trough

and trough-mouth fans.
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In this paper, three key results allow us to suggest that an ice margin has extended near

the shelf edge of Home Bay during the Last glacial episode:

1) 7 facies in three sedimentary cores can be genetically related to different depositional

environments associated to the last glaciation and deglaciation. These facies reflect four ma-

jor depositional environments: A) rapidly deposited layers such as a debrite and turbidite

generated in a glacial environment; B) meltwater plumes, turbidity currents and possible

bottom current influence generated in a glacial and deglacial environment; C) Ice Rafted De-

bris (IRD) deposited during the last deglaciation and during postglacial times; D) postglacial

hemipelagic sedimentation.

2) The established chronostratigraphy indicate that the debrite and turbidite recorded

at the base of cores 1Comp and 9CASQ were probably transported along the slope during

the Last glacial episode. They represent a prograding depositional system which eventually

accumulated at the bottom of the continental slope as TMFs due to the accumulation of large

volumes of glacial sediments. TMFs are considered as evidence of the presence of the LIS

margin on the shelf edge.

3) High-resolution multibeam bathymetry allowed the identification of shapes and struc-

tures related to ice stream activity near the shelf edge. These subglacial landforms, such as

mega-scale glacial lineations, along with the dated debrite and turbidite suggest that these

glacial processes have eroded and molded the shelf during the Last glacial episode, allowing

us to propose a new delimitation of the maximum extent of the LIS in the Home Bay sector.

Finally, new sediment cores should also be collected from the TMFs adjacent to cores

9CASQ and 1Comp in order to identify and date more turbidites and debrites. Similarly, a

new seismic and multibeam survey further upstream in the Home Bay area could also help

to accurately delineate the MSGLs left by the passage of the LIS in this region. Finally, this

paper illustrates the usefulness of combining paleomagnetic measurements with radiocarbon

dating to establish a reliable chronostratigraphy in an environment where calcium carbonate
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dissolution challenges the use of foraminifera for dating.

Index of abbreviations- TMF: trough-mouth fan; GDF: glaciogenic debris flows; LIS: Lauren-

tide Ice Sheet; IIS: Innuitian Ice Sheet; GIS: Greenland Ice Sheet; LGM: Last Glacial Maximum; BIC:

Baffin Island Current; 9CASQ: AMD16-LGM-09; 1Comp: AMD0217-01PC and AMD0217-01BC;

77PC: HU2013-029-0077; LF1 to LF7: Lithofacies 1 to 7; RDL: rapidly deposited layer; BBDC:

Baffin Bay detrital carbonates; GZW: grounding-zone wedge; MSGL: mega-scale glacial lineation;

MSCL: Multi Sensor Core Logger; XRF: X-ray fluorescence. Paleomagnetic parameters: kLF: mag-

netic susceptibility; NRM: natural remanent magnetization; ARM: anhysteretic remanent magnetiza-

tion; IRM: isothermal remanent magnetization; SIRM: saturation isothermal magnetization; ChRM:

characteristic remanent magnetization; MAD: maximum angular deviation; MDF: median destructive

field; IGAD: axial dipole model; PSD: pseudo single domain; SD: single domain; PSV: paleomagnetic

secular variation; RPI: relative paleointensity; Ms: saturation magnetization; Hc: coercive force; Mrs:

saturation remanence; Hcr: coercivity of remanence; AMS: accelerator mass spectrometry; AGM:

alternating gradient force magnetometer; AF: alternating field; DC: direct current
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CONCLUSION GÉNÉRALE

Ce projet de maı̂trise a permis de définir une nouvelle extension maximale de l’Inlandsis

laurentidien (IL) dans la région de Home Bay grâce à la morphologie des fonds sous-marins

et aux turbidites et coulées de débris accumulées dans les éventails glaciogéniques (EGs) au

cours de la dernière glaciation.

Huit lithofaciès représentatifs d’un système EGs ont été identifiés dans les carottes de

Home Bay sur la base des différentes propriétés des sédiments et des images CT-scan. Ces

lithofaciès sont d’un grand intérêt pour mieux comprendre les séquences sédimentaires et les

processus liés à la dynamique de la dernière glaciation et déglaciation. Les lithofaciès à la

base des séquences sédimentaires des carottes sont principalement constitués : 1- Un faciès

massif qui contient une matrice de boue sableuse riche en diamictons qui provient des coulées

de débris glaciogéniques déclenchées dans un environnement glaciaire ; 2- Un faciès de boue

laminée et/ou massive à base grossière et qui s’amincit progressivement vers le sommet de la

séquence. Ce faciès reflète des turbidites déposées dans un environnement glaciaire.

Les trois autres faciès sus-jacents sont constitués de boue bioturbée (sédimentation

hémipélagique) contenant occasionnellement des cailloux, une boue laminée parsemée de

cailloux (sédimentation hémipélagique avec des débris délestés par les icebergs (IRD) et une

boue laminée (sédimentation hémipélagique sans débris délestés par les icebergs (IRD) qui

représentent respectivement des environnements de déglaciation et postglaciaires. Ces faciès

sédimentaires sont également visibles sur les profils sismiques (3,5 kHz) et sont caractérisés

par des unités acoustiques stratifiées représentant une alternance de boue et de coulées de

débris/turbidites surmontées par une unité acoustique transparente représentant des boues

postglaciaires.

Les résultats paléomagnétiques obtenus sur des u-channels ainsi que les données

d’hystérésis des carottes HU2013-029-077 (77PC), AMD16-LGM-09 (9CASQ) et
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AMD0217-01 (1Comp) révèlent que les sédiments de Home Bay sont des enregistrements

paléomagnétiques de haute qualité dont l’aimantation est portée par des minéraux de faible

coercivité comme la magnétite de type pseudo-single domain (PSD). La magnétostratigraphie

et les datations radiocarbone sur les carottes des EGs de Home Bay indiquent que les coulées

de débris glaciogéniques et les turbidites remontent à plus de 15 cal ka BP, et donc, du der-

nier épisode glaciaire. En effet, selon Dyke et al., (2002) et Margold et al., (2015), l’extension

maximale de l’Inlandsis laurentidien dans la région de Home Bay aurait probablement duré

jusqu’à 13 000 - 12 000 BP.

Ces résultats indiquent qu’une série de coulées de débris et de turbidites ont été

générées durant la dernière glaciation, suggérant que la marge glaciaire de l’IL a atteint la

limite du plateau, tandis que la sédimentation postglaciaire a conduit au dépôt principale-

ment de boues hémipélagiques bioturbées et/ou caillouteuses et laminées.

De plus, de multiples surfaces d’érosion (cicatrices) démontrent l’activité des processus

glaciaires antérieurs sur le plateau continental et la présence de linéation glaciaires à grande

échelle (MSGL) qui s’étendent jusqu’à la limite du plateau suggère la présence de l’inlandsis

à cet endroit. Ce type de linéation profilée, subparallèle et très allongée est une signature

irrévocable de l’activité des courants glaciaires et aurait servi de couloirs d’alimentation aux

systèmes d’EGs. Les sédiments ont probablement été transportés sous la forme de coulées

de débris et de turbidites durant le dernier épisode glaciaire par plusieurs petits canyons et

ravins pour finalement s’accumuler au bas de la pente continentale sous la forme d’éventails

glaciogéniques.

Ces reliefs sous-marins révèlent une épaisse couche de glace dynamique, des flux

de glace et un écoulement sous-glaciaire qui suggèrent la présence d’une marge glaciaire

de vêlage sur le plateau. Ces résultats, jumelé avec la datation des coulées de débris gla-

ciogéniques et des turbidites démontrent l’activité des processus glaciaires antérieurs à la li-

mite du plateau continental et permettent de définir une nouvelle extension maximale de l’IL

dans le centre-ouest de la baie de Baffin durant le dernier épisode glaciaire. Afin d’appuyer
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cette hypothèse, de nouvelles carottes sédimentaires devraient être prélevées à l’intérieur des

éventails glaciogéniques adjacents à ceux où ont été prélevés les carottes AMD16-LGM-

09 et AMD0217-01 afin d’identifier et de dater des turbidites et des coulées de débris gla-

ciogénique. Une nouvelle campagne sismique plus en amont, dans la région de Home Bay,

pourrait également venir délimiter avec précision les MSGLs laissés par le passage de l’in-

landsis dans cette région. En terminant, cette étude illustre clairement l’intérêt de combiner

des âges radiocarbones avec des analyses paléomagnétiques pour établir le cadre chronostra-

tigraphique dans les régions touchées par une importante dissolution des carbonates.
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Figure S1 : RPI proxy vs. its normalizer for cores 77PC, 1Comp and 9CASQ : RDLs = red points and
blue line ; REMAINING SEDIMENT = blue points and red line
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Figure S4 : Line 76029 AG 280 1730 (airgun profile) collected in 1976 on board the CCGS Hudson
by the Geological Survey of Canada. This figure do not show any grounding-zone wedge (GZW) in
the sector.
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