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Abstract The aim of this study was to evaluate the effect of a dietary highly unsaturated fatty 28 

acid (HUFA) deficiency on winter flounder Pseudopleuronectes americanus metamorphosis by 29 

examining growth and the expression of genes involved in some key metabolic processes: lipid 30 

digestion, oxidative stress, and growth. Three groups of fish were fed rotifers enriched with 31 

different blends of microalgae providing different HUFA profiles: (1) a diet comprising a mixture 32 

of three microalgae, Nannochloropsis oculata, Isochrysis galbana, and Pavlova lutheri (Cocktail 33 

diet), which contained a balanced combination of ecosapentaenoic acid (EPA), docosahexaenoic 34 

acid (DHA), and arachidonic acid (AA); (2) the N. occulata diet (Nanno diet), with a low level of 35 

DHA; and (3) the I. galbana diet (Tiso diet), characterized by low levels of EPA and AA. The 36 

results indicate that the need for DHA increased from settlement and for EPA and AA from 15 37 

days after settlement. The lower HUFA content in the Tiso and Nanno diets did not affect larval 38 

development or lipid reserve accumulation. The superoxide dismutase gene expression suggests a 39 

reduced oxidative stress in the Cocktail group, and overall results indicate that gh gene 40 

expression could be a valuable indicator of development at the molecular level in response to 41 

dietary HUFA quality during metamorphosis in winter flounder.  42 

 43 

Introduction 44 

 45 

In many marine fish species, metamorphosis is a critical step during which animals undergo 46 

profound physiological and morphological modifications that are controlled by a coordinated 47 

change in gene expression (Bao et al. 2005; Hildahl et al. 2007; Wang et al. 2011). 48 

Metamorphosis processes differ between flatfish and pelagic fish species: flatfish metamorphosis 49 

is characterized by striking anatomical transformations that involve a 90° rotation in body 50 

position, asymmetrical pigmentation, and the migration of one eye towards the other on the upper 51 
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side of the fish. This process is correlated with a transition from the pelagic to the benthic habitat 52 

(Fuiman 1997; Gibson 1997; Geffen et al. 2007) that involves modifications in feeding habits and 53 

digestive physiology (Tanaka et al. 1996; Lagardère et al. 1999; Cañavate et al. 2006). In marine 54 

fish production, metamorphosis is a crucial phase, and its success is strongly related to survival 55 

rate, growth, and pigmentation development (Geffen et al. 2007).  56 

 It is well known that metamorphosis is affected by environmental factors such as 57 

temperature and photoperiod (Policansky 1982; Solbakken and Pittman 2004) as well as the 58 

nutritional environment (Tocher 2010; Pinto et al. 2010; Olivotto et al. 2011). The nutritional 59 

environment is of particular importance during marine fish metamorphosis because it must 60 

provide the energy required for cellular, tissular, and functional remodelling (Sargent 1999; 61 

Tocher 2010). Nutritional deficiencies have been shown to be the cause of abnormal 62 

pigmentation and bone deformities commonly encountered during the culture of larval fishes 63 

(Miki et al. 1990; Kanazawa 1993; Bolker and Hill 2000; Hamre et al. 2005; Mazurais et al. 64 

2009). In particular, lipid deficiencies may impair larval health, growth, and feeding efficiency 65 

and may also cause anaemia and high larval mortality (Sargent 1999; Copeman et al. 2002; Cahu 66 

2003; Olivotto et al. 2011). Among lipids, 20- and 22-carbon highly unsaturated fatty acids from 67 

the n-3 and n-6 series (n-3 and n-6 HUFAs), such as ecosapentaenoic acid (EPA, 20:5n-3), 68 

docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), perform a variety of 69 

important physiological functions in all vertebrates (Sargent et al. 2002). In fish larvae, they are 70 

preferentially incorporated into membrane phospholipids (Linares and Henderson 1991) and have 71 

been shown to play key roles in ontogenesis, growth, survival, pigmentation, and resistance to 72 

stress and disease as well as in the development and functionality of the brain, vision, and the 73 

nervous system (for reviews, see Sargent et al. 2002; Glencross 2009; Tocher 2010). While they 74 

are essential for several vital functions, HUFAs from the n-3 and n-6 series are generally only 75 
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minimally synthesized de novo in marine fishes and must therefore be supplied by food (Teshima 76 

et al. 1992).  77 

Lipid digestion is a key metabolic process that develops during metamorphosis: dietary 78 

lipids play an important role as energy sources to achieve metamorphosis in carnivorous fishes, 79 

which have few carbohydrates available for energy (Watanabe 1982). Lipid digestion is 80 

facilitated by the activation of lipases (Iijima et al. 1998), the most important of which in teleosts 81 

is bile salt-activated lipase (Bal) (Patton et al. 1977; Gjellesvik 1992; Murray et al. 2003; Darias 82 

et al. 2007; Sæle et al. 2010). Bal hydrolyzes the ester bonds of triacylglycerols (TAGs), and the 83 

digestion products are absorbed by the enterocytes located on the gut epithelial wall.  84 

The development of digestive pathways and of all other metabolic pathways occurring 85 

during metamorphosis creates a high metabolic demand. To meet this demand, fishes increase 86 

their exogenous oxygen consumption (Fernández-Díaz et al. 2001) which can increase the 87 

production of reactive oxygen species (ROS). ROS are waste products from mitochondrial 88 

oxidation and may cause damage to lipids, proteins, and DNA in fish tissues (Fridovich 2004; 89 

Mourente et al. 2007). ROS are continually detoxified and removed from cells by antioxidant 90 

enzymes. The study of the mechanisms behind oxidative stress in fish is an emerging field in 91 

aquaculture, and enzymatic activities as well as mRNA transcription levels have been 92 

characterized in several species (Mourente 1999; Fontagné et al. 2008; Todorcevic et al. 2009; 93 

Tovar-Ramírez et al. 2010; Ji et al. 2011; Zuo et al. 2012). Among antioxidant enzymes, 94 

superoxide dismutase (Sod) catalyzes the dismutation of superoxide radicals to hydrogen 95 

peroxide and oxygen (Halliwell 2006). Studies on turbot (Peters and Livingstone 1996), common 96 

dentex Dentex dentex (Mourente 1999), and rainbow trout Oncorhynchus mykiss (Fontagné et al. 97 

2008) have shown that Sod is required at very early developmental stages to reduce elevated 98 

tissue concentrations of oxygen. Moreover, in rainbow trout, Sod was the only antioxidant 99 
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enzyme with readily measurable activity in embryos, contrary to catalase and glutathione 100 

peroxidase. Sod activity during metamorphosis has recently been shown to depend on the n-3 101 

HUFA dietary content in Atlantic salmon Salmo salar (Todorcevic et al. 2009), juvenile grass 102 

carp Ctenopharyngodon idellus (Ji et al. 2011), and yellow croaker Larimichthys crocea (Zuo et 103 

al. 2012). The mRNA levels of antioxidant enzymes are known to be valid biomarkers of 104 

oxidative stress (Olsvik et al. 2005). However, to our knowledge, there are no reports concerning 105 

the effect of dietary HUFA content on the expressions of genes coding for antioxidant enzymes 106 

during early developmental stages of marine fish larvae. 107 

 While several studies have focussed on flatfish metamorphosis and the effects of HUFA 108 

dietary content on key process during flatfish development at the enzymatic level, very little is 109 

known about the genetic mechanisms underlying metamorphosis and about the role of HUFA in 110 

these mechanisms. In this context, our aim was to study the effect of a dietary HUFA deficiency 111 

on flatfish metamorphosis through the measure of growth and the expression of genes involved in 112 

some key metabolic processes occurring during metamorphosis: lipid digestion, oxidative stress, 113 

and growth. The model we used was winter flounder, a common inshore flatfish geographically 114 

distributed from Labrador (Atlantic Canada, 53° N) to Georgia (southeast United States, 33° N) 115 

(Scott and Scott 1988). Since the 1970s, this species has been identified as a promising candidate 116 

for coldwater marine aquaculture due to its tolerance to a wide range of temperatures (from -1.9 117 

to 25°C; Duman and Devries 1974; Fletcher and Smith 1980) and salinities (from 3 to 40; 118 

McCracken 1963), its good response to gamete stripping as well as the possibility of 119 

cryopreserving sperm (Rideout et al. 2003), and its high commercial value (Fairchild et al. 2007).  120 

 Starting at mouth opening, three groups of winter flounder larvae were fed rotifers 121 

enriched with different blends of microalgae providing different HUFA profiles. The expressions 122 

of genes involved in growth (growth hormone gh), lipid digestion (bile salt-activated lipase bal, 123 
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and triacylglycerol lipase tag), and oxidative stress (superoxide dismutase sod) were surveyed for 124 

30 d starting at settlement; these were compared to gene expressions in pelagic larvae just prior to 125 

settlement. 126 

 127 

Materials and methods 128 

 129 

Fish rearing conditions  130 

 131 

All experiments were conducted at the Station aquicole de Pointe-au-Père (ISMER / UQAR, 48° 132 

27' N; 68° 32' W, QC, Canada), and all fish manipulations were done according to the Canadian 133 

Council of Animal Protection recommendations and protocols approved by the University’s 134 

Animal Care Committee.  135 

Egg stripping and fertilization were done according to Ben Khemis et al. (2000). Once 136 

hatched (day 0), larvae were transferred into nine 55 L cylindro-conical tanks (density: 250 larvae 137 

L-1) placed in a temperature-controlled room (10°C) and exposed to a 12:12 (light:dark) 138 

photoperiod cycle. These tanks were supplied with flowing filtered ambient sea water except 139 

during the feeding period (09:00–17:00), when flow was stopped. A permanent up-welling was 140 

maintained in each tank by the aeration system placed at the bottom of a vertical strainer. From 141 

mouth opening (4 days post-hatching, dph) until the end of the experiment, larvae were fed the 142 

rotifer Brachionus plicatilis (5 ind. ml-1) enriched with one of three different microalgal diets to 143 

modify their fatty acid profiles (see Seychelles et al. 2009 for the enrichment protocol): 1) the 144 

Cocktail diet (Nannochloropsis oculata, Isochrysis galbana, and Pavlova lutheri), containing a 145 

balanced combination of EPA, DHA, and AA (EPA/DHA/AA = 3.8/2.9/1), 2) the Nanno diet (N. 146 
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oculata), with a low level of DHA (EPA/DHA/AA = 3.4/0.5/1), and 3) the Tiso diet (I. galbana), 147 

with low levels of EPA and AA (EPA/DHA/AA = 1.3/6.3/1). The fatty acid composition of each 148 

diet is reported in Table 1. Three larval tanks were used for each experimental diet (N = 3 per 149 

diet).  150 

 When settlement occurred (~ 45 dph), newly settled larvae were collected every three 151 

days and transferred into rectangular tanks (35.5 × 65 × 6.5 cm). Each replicate tank contained 152 

300 individuals. Post-settled larvae were reared according to Fraboulet et al. (2010), using 153 

flowing filtered seawater (50 µm, 2 L min-1) under natural conditions of temperature (10.4 ± 154 

1°C), salinity (28.8 ± 1.3), and photoperiod (artificial light 400 lux). Each day, post-settled larvae 155 

were fed the same diet as during pelagic larval stage (i.e., Nanno, Tiso, or Cocktail; 5 rotifers ml-1 156 

at 11:00, 13:00, and 16:00), supplemented with 10 microdiet meals (Gemma wean; 157 

www.skretting.com) every 30 min between 09:00 and 11:00 and between 13:30 and 15:30. 158 

Seawater flow was stopped between 09:00 and 12:00 and between 13:00 and 17:00 to avoid 159 

rotifer loss. Water was renewed between 12:00 and 13:00 and overnight. Dead individuals and 160 

excess microdiet were removed every day and tanks were cleaned every two weeks.  161 

 162 

Rotifer culture and sampling 163 

  164 

Rotifers were cultured in triplicate in 18 L tanks and enriched with fresh microalgae produced in 165 

a semi-continuous system in a closed photobioreactor (Seychelles et al. 2009). Microalgae were 166 

added once a day, with the total amount of cells provided being adjusted based on rotifer numbers 167 

in the culture tanks (106 rotifers L-1). Microalga concentration was 10 × 109 cells L-1 for I. 168 

galbana (Tiso diet), 20 × 109 cells L-1 for N. oculata (Nanno diet), and 12 × 109 cells L-1 for the 169 
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Cocktail diet (1:1:1 N. oculata, I. galbana, and P. lutheri). After 72 h of enrichment, two aliquots 170 

of 20 000 rotifers from each replicate were taken for lipid analysis (N = 3 tanks per diet). Rotifers 171 

were rinsed with filtered sea water (0.2 µm) on a 50 µm filter and stored at -80°C in 1 ml 172 

dichloromethane in amber glass vials with Teflon-lined caps until lipid extraction. 173 

 174 

Larval sampling  175 

 176 

Larvae were sampled in the morning before their first meal (12h fast prior to sampling). At the 177 

peak of settlement, early settled larvae (S0) and pelagic larvae (PL) were sampled. Larvae were 178 

also sampled 15 (S15) and 30 (S30) days after settlement. At each sampling period, 10 179 

individuals per tank were collected and anaesthetized (MS-222, 0.05 g L-1) for growth 180 

measurements, three subsamples of five or six larvae per tank were frozen at -80°C for lipid 181 

analysis, and four subsamples of six larvae per tank were preserved in five volumes of 182 

RNAlater® (Applied Biosystems, CA, USA) for 24h before being frozen at -80°C for gene 183 

expression measurements.  184 

 185 

Lipid analysis 186 

 187 

For each subsample, whole frozen larvae and enriched rotifers were weighed and homogenized 188 

(Dounce homogenizer) at 4°C in dichloromethane/methanol (2:1 v/v). Total lipids were extracted 189 

(Folch et al. 1957) with chloroform replaced by dichloromethane. Lipid classes (triacylglycerols 190 

TAG, free sterols ST, phospholipids PLP, acetone-mobile polar lipids AMPL, free fatty acids 191 

FFA, and ketones KET) were determined on 4 µl of total lipids by thin-layer chromatography 192 

with flame ionization detection (TLC-FID) using an Iatroscan MK6 (Shell USA, VA, USA; 193 
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Parrish 1987). Extracts were spotted onto chromarods coated with silica gel (SIII, Shell USA), 194 

and a three-stage development system was used. Chromatograms were recorded using 195 

PeakSimple software (v3.21, SRI Inc., CA, USA), and peak areas were quantified using 196 

calibration curves obtained from scans of standards (Sigma Chemicals, Inc., MO, USA). Lipid 197 

classes were calculated in μg of lipids per mg of dry mass, summed, and expressed as percentages 198 

of total lipids. 199 

Total lipid extracts were dried and fatty acid methyl esters (FAMEs) were prepared 200 

(Lepage and Roy 1984) and analyzed in mass spectrometry scan mode (ionic range: 60–650 m/z) 201 

on a Polaris Q ion trap coupled to a trace gas chromatography GC (Thermo Finnigan, 202 

Mississauga, ON, Canada) equipped with a Valcobond VB-5 capillary column (VICI Valco 203 

Instruments Co. Inc., Broakville, ON, Canada); data were treated using Xcalibur v.1.3 software 204 

(Thermo Scientific, Mississauga, ON, Canada). FAMEs were identified by comparing retention 205 

times with known standards (Supelco 37 Component FAME Mix and menhaden oil; Supleco 206 

Inc., Belfonte, PA, USA). Data acquisition and processing were performed using the Excalibur 207 

2.1 software (ThermoScientific, Fisher, ON, Canada).  208 

 209 

Growth measurements 210 

 211 

Total length, standard length (i.e., notochord length), and maximum width were measured using a 212 

micrometer (± 0.001 mm) on ten larvae per tank (N = 3 tanks per treatment) at PL, S0, S15, and 213 

S30 stages. 214 

 215 

Primer design for superoxide dismutase sod, growth hormone gh, and glyceraldehyde-3 216 

phosphate dehydrogenase gapdh cloning and sequencing 217 
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 218 

Primers were designed from mRNA sequences to obtain PCR products ranging from 90 to 150 bp 219 

using Primer Express® software v.3.0 (Applied Biosystems, CA, USA). While the mRNA 220 

sequences for the tag and bal genes were available for P. americanus (Benson et al. 2005), those 221 

for sod, gh, and gapdh were not. Primers for sod, gh, and gapdh were designed from sequences 222 

available for Platichtys flesus and Paralichtys olivaceus. Sequences of primers used for each 223 

gene, the percentages of similarity between the sequences obtained, the source sequences and the 224 

length of the amplicon obtained are presented in Table 2. 225 

PCR reactions using the newly designed primers were carried out on a Mastercycler® 226 

epGradient S (Eppendorf) in a total volume of 25 µl containing 5 µl of cDNA (initial 227 

concentration: 500 ng µl-1), 2.25 µl of each forward and reverse primers (10 µmol L-1), 2.5 µl of 228 

buffer (Expand High Fidelity PCR Buffer 10X with MgCl2; Roche diagnostics, QC, Canada), 0.1 229 

µl of DNA polymerase (Expand High Fidelity 3.5 U/µl, Roche diagnostics, QC, Canada), 1 µl 230 

dNTP (2.5 mM Mix, Roche diagnostics, QC, Canada), and 11.9 µl of sterile water. Thermal 231 

cycling was initiated with 10 min at 95°C then 2 min at 50°C, followed by 40 cycles consisting of 232 

15 sec at 95°C and 1 min at 60°C. A last cycle of 10 min at 60°C was performed to obtain poly-A 233 

tails for future cloning.  234 

For each gene, the amplicon obtained with the newly designed primers was sequenced to 235 

verify whether its sequence corresponded to the targeted gene sequence. The amplicon was first 236 

cloned using the TOPO TA Cloning Kit for Sequencing® (Invitrogen Inc., ON, Canada). Plasmid 237 

cDNA was extracted using the EZNA Plasmid Mini Kit I® (Omega Bio-Tek, GA, USA) and 238 

sequenced in forward and reverse directions using the Big Dye Terminator v3.1 Cycle 239 

sequencing kit (Applied Biosystems, CA, USA). The sequencing reactions were performed with a 240 

PerkinElmer DNA Thermal Cycler 480 in a total volume of 10 µl containing 3 µl of cDNA, 1 µl 241 
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of 5 X buffer (Applied Biosystems, CA, USA), 2 µl of Big Dye Terminator v3 chemistry® 242 

(Applied Biosystems, CA, USA), 2 µl of forward and reverse primers (1.0 µM) for plasmid (T3 243 

or T7; Applied Biosystems, CA, USA), and 2 µl of sterile water. The sequencing parameters 244 

were as follows: one minute at 95°C, 35 cycles of 10 sec at 96°C, 5 sec at 50°C, and 4 min at 245 

60°C. Unincorporated nucleotides were removed using Ultra-Step Dye Terminator Removal Kit® 246 

(EaZy Nucleic Isolation, Ezna, Omega Bio-Tek, GA, USA). Electrophoresis was carried out 247 

using an ABI 3130 Genetic Analyzer (Applied Biosystems, CA, USA). For each gene, the 248 

sequence specificity was verified using BLAST software (Altschul et al. 1990).  249 

 250 

Gene expression measurements 251 

 252 

Relative expressions of sod, bal, tag, and gh were determined as in Vagner et al. (2013). Briefly, 253 

total RNA was extracted from 30 mg of larvae in three tanks per treatments using an RNeasy Plus 254 

Mini Kit® (Qiagen, Inc., ON, Canada) according to the manufacturer’s instructions. Total RNA 255 

purity and concentrations were determined using the 260 nm / 280 nm absorbance ratio measured 256 

with a Nanodrop ND-1000 Spectrophotometer v3.3.0 (NanoDrop Technologies, Inc., DE, USA). 257 

RNA purity was also assessed by running an aliquot of all RNA samples on 1.2% agarose gel 258 

stained with ethidium bromide. The 260nm / 280nm ratio for all samples ranged from 1.6 to 2.0, 259 

and the intensity ratio of the 28s and 18s rRNA bands was always approximately 2:1.  260 

Duplicate measures of cDNAs were immediately obtained by reverse transcription on 261 

1 µg of total RNA for each sample using a Quantitect Reverse Transcription kit® with integrated 262 

removal of genomic DNA contamination (Qiagen, Inc., ON, Canada). cDNA concentrations were 263 

determined using a Nanodrop spectrophotometer. cDNA duplicates were pooled for each sample 264 

and stored at -20°C until analyses. For each gene, qPCR analyses were performed in duplicate 265 
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(Biorad MyiQ I cycler, Bio-Rad Laboratories, Inc., ON, Canada) on each pool of cDNA in a total 266 

volume of 15 µl containing 5 µl of cDNA (mean initial concentration 20.0 ± 2.4 µg ml-1), 0.5 µl 267 

of primers (10 µmol l-1), 1.5 µl of sterile water, and 7.5 µl of 2X iQ SYBR Green Supermix® 268 

(Bio-Rad Laboratories, Inc., ON, Canada). Thermal cycling of real-time PCR was initiated with 269 

an incubation at 95°C for 13.5 min for activation of the hot-start enzyme, iTaqTM DNA 270 

polymerase. After this initial step, 45 cycles of PCR were performed. Each PCR cycle consisted 271 

of 30 s at 95°C for denaturing, 60 s at 60°C for annealing, and 30 s at 72°C for extension. To test 272 

the amplification specificity, the PCR product was subjected to a melting curve analysis during 273 

qPCR assays: the 45 cycles for cDNA amplification were followed by one minute at 95°C, 60 s at 274 

55°C, and 80 cycles consisting of 0.5°C increments from 55°C to 90°C for 10 s each.  275 

Cycle threshold values (CT) correspond to the number of cycles during which the 276 

fluorescence emission monitored in real time exceeds the threshold limit. CT values were 277 

automatically calculated on the log curve for each gene.  278 

To determine the relative quantity of target-gene–specific transcripts present in each 279 

subsample, CTs were averaged for each duplicate and then for each tank, and relative expression 280 

was calculated according to equation 1 (Livak and Schmittgen 2001): 281 

    2-ΔΔ^CT = 2^-(ΔCTe – ΔCTc)    1 282 

  CTe = CT target gene – CT reference gene for sample x,  283 

  CTc = CT target gene – CT reference gene for the calibrator. 284 

In our study, the calibrator was the pelagic larval stage fed the Cocktail diet (PL-Cocktail group) 285 

and the reference gene was gapdh, which was already used for this species by Vagner et al. 286 

(2013). To test the stability of gapdh gene expression between samples and developmental stages, 287 

standard curves were established for each developmental stage in triplicate by plotting the CT 288 



13 
 

values against the log10 of five different dilutions (in triplicate) of a pool of a representative 289 

cDNA sample solutions.  290 

 291 

Statistical analyses  292 

 293 

All statistical tests were performed with Statistica 6 for Windows (Statsoft v.6.1, Tulsa, OK, 294 

USA). Normality and homoscedasticity of data were tested using Kolmogorov-Smirnov and 295 

Levene tests, respectively. In order to meet these conditions, gene expression values were log (x 296 

+ 1) transformed and fatty acids in percentages were arcsine–square-root transformed. The effect 297 

of microalgal treatments on rotifer fatty acid content was tested using one-way ANOVA. The 298 

effects of developmental stage and diet on fish growth (total length, standard length, and width), 299 

gene expression, and fatty acid content were tested using two-way ANOVA. A test of slope 300 

homogeneity followed by an ANCOVA was performed on gapdh gene expression to show its 301 

stability among developmental stages. When significant effects were found, the unequal Tukey 302 

test was applied if ANOVA assumptions were met; the Fisher LSD test was applied on rank-303 

transformed data if homoscedasticity was violated (Quinn and Keough 2002). Differences were 304 

considered significant at P < 0.05. 305 

 306 

Results 307 

 308 

Lipid composition of diets 309 

 310 

No significant difference was found among diets with respect to lipid classes, but the fatty acid 311 

proportions were significantly different (Table 1). The Tiso diet was characterized by (i) the 312 
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highest content of 18:3n-3 (3.7 ± 1.4% of total FA) and by an EPA (20:5n-3) content (1.9 ± 0.0% 313 

of total FA) roughly six- and five-fold lower than in the Nanno and Cocktail diets, respectively. 314 

The 14:0, 18:2n-6c, and 18:4n-3 FA contents were respectively two-, two-, and four-fold higher 315 

in the Tiso diet than in the Nanno diet, while the 16:0, 16:1, and AA (20:4n-6) FA contents were 316 

respectively two-, six-, and two-fold higher in the Nanno diet compared to the Tiso diet. DHA 317 

(22:6n-3) was approximately five- to six-fold lower in the Nanno diet (1.7 ± 0.2% of total FA) 318 

than in the Cocktail and Tiso diets, respectively (7.7 ± 1.9 and 9.5 ± 0.5% of total FA). No 319 

significant difference was found between diets with respect to the content of other FA (P > 0.05).  320 

 321 

Fatty acid and lipid composition of pelagic larvae, early-settled larvae, and post-settled larvae  322 

 323 

Diet greatly influenced the FA composition in early developmental stages (Table 3). The 14:0 324 

and MUFA contents were significantly lower in the groups fed the Nanno diet than in the other 325 

two for all developmental stages (14:0: F2 = 13.96, P < 0.001; MUFA: F2 = 14.34, P < 0.001). At 326 

S30, the accumulation of 14:0 and MUFA was 69% and 59% lower in post-settled larvae fed with 327 

Nanno-enriched rotifers than in the groups fed Cocktail- and Tiso-enriched rotifers, respectively. 328 

Larvae fed the Nanno diet had a 70% lower 17:0 content than those fed the Cocktail diet (F2= 329 

4.6, P < 0.05). They had 74% less 18:1n-7 (F2 = 6.87, P < 0.01), 36% less 22:1n-9 (F2 = 4.74, P 330 

< 0.05), 32% less 20:5n-3 (F2 = 4.1, P < 0.05), and 81% less PUFA (F2 = 3.69, P < 0.05) than 331 

larvae fed the Tiso diet but 20% higher SFA (F2 = 10.6, P < 0.01) compared to larvae fed the 332 

other two diets.   333 

FA composition varied during winter flounder development (Table 3). MUFA content (F3 334 

= 7.40, P < 0.01) was 19% higher at S0 than at S15. Moreover, EPA (F3 = 5.60, P < 0.01), DHA 335 

(F3 = 7.40, P < 0.01), and EFA (F3 = 5.93, P < 0.01) contents were 71, 68, and 69%, respectively, 336 
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higher at S30 than at S0. DHA content also increased significantly (two-fold higher) between S15 337 

and S30 (F3 = 7.40, P < 0.01).  338 

AA, EPA, and DHA available from the Cocktail diet seemed to be sufficient for larval and 339 

post-settled larval development, since the ratios between organism FA content and dietary FA 340 

content were always below one for that treatment (Fig. 1). However, we observed strong selective 341 

retention for DHA from settlement to S30 with the Nanno diet and for EPA (from S15) and AA 342 

(from S30) with the Tiso diet, with organism/diet ratios above one (Copeman et al. 2002). This 343 

suggests that the availability of essential fatty acids from the Nanno and Tiso diets were below 344 

the physiological needs of early settled (S0) and post-settled (S15 and S30) larvae. 345 

No significant differences were found between developmental groups for the main lipid 346 

classes associated with structural lipids or energy reserves (PLP, TAG, ST, and AMPL; P > 0.05; 347 

Table 3). A significant interaction between diet and developmental stage was observed for KET 348 

content (F16 = 5.40, P < 0.01), but no clear pattern emerged.  349 

 350 

Growth performance 351 

 352 

Total length varied from an average of 6.60 ± 0.08 mm in PL, S0, and S15 to 7.48 ± 0.17 mm in 353 

S30 (F3 = 9.96, P < 0.001; Fig. 2a). Between PL and S0, body width increased significantly by a 354 

factor of 1.6, remained unchanged between S0 and S15, and increased again from S15 to S30 (F3 355 

= 30.70, P < 0.001; Fig. 2b). No significant effect of diet or interaction between developmental 356 

stage and diet was observed for growth in total length, standard length (data not shown), or 357 

maximum width (P > 0.05; Fig. 2). 358 

 359 

Gene expression 360 
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  361 

A test of slope homogeneity (F = 0.00, N = 4, P > 0.05) followed by an ANCOVA (F = 0.11, N = 4, P > 362 

0.05) did not reveal any effect of developmental stage on gapdh expression, allowing its use as a 363 

housekeeping gene. 364 

While bal gene expression was not influenced by diet (P > 0.05), it differed significantly 365 

among development stages (Fig. 3a). It was 2.5 times higher at S30 than at PL and S0 for all 366 

dietary groups (F3 = 4.74, P < 0.05). Relative gene expression was intermediate at S15, indicating 367 

that the expression activation had already begun at this stage. The tag gene expression was not 368 

affected by diet or by developmental stage (P > 0.05; Fig. 3b). 369 

The gh and sod gene expressions differed according to both developmental stage and diet 370 

(F6 = 2.66, P < 0.05; Fig. 3c and F6 = 2.85, P < 0.05; Fig. 3d). In young winter flounder fed the 371 

Cocktail diet, gh gene expression increased significantly and continuously from PL to S30: it was 372 

about 5-fold higher at S15 than PL and about 16-fold higher at S30 than PL (Fig. 3c). In those fed 373 

the Nanno diet, it increased only by about 4-fold from PL to S30, while it increased with the Tiso 374 

diet by about 7-fold from PL to settlement before stabilizing. The sod gene expression decreased 375 

significantly by 2-fold from PL to S15 in the Cocktail group and remained stable during this 376 

period with the two other diets. It increased significantly by about 2- to 3-fold from S15 to S30 in 377 

all treatments (Fig. 3d).  378 

 379 

Discussion 380 

 381 

Effect of dietary HUFA levels on the FA profile of pelagic, early settled, and post-settled larvae 382 

 383 
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The low amounts of essential fatty acids (EFA) present in the Tiso and Nanno diets were not 384 

reflected in the fatty acid composition of pelagic larvae. However, in larvae that had initiated 385 

metamorphosis, a selective retention of DHA, indicating potential deficiency, appeared at 386 

settlement in the group fed the Nanno diet, and selective EPA and AA retention appeared from 387 

S15 in the group fed the Tiso diet. These results suggest that EFA levels in the Nanno and Tiso 388 

diets were below the physiological needs of early settled and post-settled larvae, and that the 389 

larvae had to retain the low levels of EPA, AA, and DHA in tissues to support growth and 390 

development during metamorphosis. Such a process was suggested for yellow tail flounder 391 

(Copeman et al. 2002) and sea scallop Placopecten magellanicus larvae (Pernet and Tremblay 392 

2004). Pelagic and settled larvae that were fed rotifers enriched with the microalgal mix (Cocktail 393 

diet) did not show any selective retention of DHA, EPA, or AA, indicating that this enrichment 394 

seemed adequate to support the physiological needs in EFA during metamorphosis (Copeman et 395 

al. 2002; Pernet and Tremblay 2004).  396 

The low levels of EFA in the groups fed the Nanno and Tiso diets could indicate that, 397 

before S0 (for the Nanno group) or S15 (for the Tiso group), (1) the dietary EFA content satisfied 398 

larvae needs, or (2) the larvae were able to produce EFAs from FA precursors (18:2n-6 or 18:3n-399 

3) using desaturation and elongation processes. The first hypothesis is the most likely, since it is 400 

generally considered that elongation/desaturation processes are of minor importance in marine 401 

fish that require preformed HUFA, contrary to freshwater fish (see Glencross 2009 and Tocher 402 

2010 for reviews). From settlement, it is possible that the DHA content in the Nanno diet is no 403 

longer sufficient to sustain the high metabolic demand during this developmental stage. Our 404 

results suggest that the requirement for DHA increases at settlement while those for EPA and AA 405 

increase 15 days later. These results could be related to winter flounder lifestyle in the natural 406 

environment. Indeed, prior to settlement, pelagic carnivorous larval fish, such as flatfish larvae, 407 
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have access to abundant DHA sources in the pelagic food chain (Drake and Arias 1993; Kainz et 408 

al. 2004) through copepods and bivalve veligers that are known to be rich in DHA (Holland 409 

1978; Sargent and Falk-Peterson 1988; Morehead et al. 2005). Following settlement, benthic-410 

dwelling flatfish are exposed mainly to an abundance of EPA via diatoms and polychaetes, which 411 

are particularly rich in this HUFA (Kates and Volcani 1966; Graeve et al. 1997; Cabral 2000; 412 

Copeman and Parrish 2003). It is important to note that the period of settlement coincides with 413 

the introduction of the commercial diet to supplement the enriched rotifer diet in our experiment. 414 

However, this commercial diet was quantitatively and qualitatively similar for all dietary groups. 415 

We thus assume that the fatty acid compositions of all groups were similarly impacted by this 416 

inert diet, and consequently that the differences in fatty acid composition observed between 417 

groups are only related to rotifer enrichments. 418 

 419 

Effect of dietary HUFA levels on growth performance 420 

 421 

Despite the selective retention measured in the Nanno and Tiso groups, which indicates a 422 

potential EFA deficiency (Copeman et al. 2002; Pernet and Tremblay 2004), growth performance 423 

in width and total length were similar in all three groups, indicating that DHA, EPA, and AA 424 

were sufficient in all three diets to sustain normal growth in winter flounder. The similar growth 425 

rates among groups despite EFA deficiencies could also be explained by the presence of MUFA 426 

and SFA in fish tissues. MUFA and SFA are considered as the fuel for fish growth and can easily 427 

be synthesized by fish (Sargent et al. 2002). While we found ∑ MUFA and ∑ SFA to be lower in 428 

the Nanno group than in the other two dietary groups, these low levels did not represent 429 

deficiencies since the ratios between fish content and dietary content were always below one in 430 

the three groups (results not presented; Copeman et al. 2002; Pernet and Tremblay 2004). 431 
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Moreover, similar growth rates could also be explained by a good balance between HUFA, which 432 

is required for the functional integrity of cell membranes, and the less unsaturated FA required 433 

for energy (Sargent 1995). For instance, Villalta et al. (2005) observed a lower growth rate in 434 

Senegalese sole fed a high DHA dietary content compared to those fed a DHA-deficient diet once 435 

fish became benthic. These authors explained their results by the reduction of dietary MUFA in 436 

the DHA-enriched diet.  437 

Several studies have highlighted the importance of dietary EPA/AA and DHA/EPA ratios 438 

rather than the individual dietary FA contents in sustaining higher growth rates since each of 439 

these FA plays a specific physiological role (Sargent 1999; Sargent et al. 2002; Bell et al. 2003; 440 

Zuo et al. 2012). A higher growth rate was reported at 19°C in sea bream Sparus aurata fed 441 

rotifers with a DHA/EPA ratio of 1.5 compared to those fed rotifers with a DHA/EPA ratio < 0.6 442 

(Rodriguez et al. 1997). Moreover, Zuo et al. (2012) reported a higher growth rate for a 443 

DHA/EPA ratio between 2.17 and 3.04 in yellow croacker reared between 21.5 and 30°C. In the 444 

present study, the DHA/EPA ratio varied widely among the three diets, from 0.15 ± 0.02 for the 445 

Nanno diet to 5.04 ± 0.02 for the Cocktail diet, but these differences did not affect growth 446 

performance. Sargent (1999) found growth to be markedly impaired in several larval fish species 447 

when the EPA/AA ratio was below 1.5. Such impairment was not observed in our study, where 448 

the dietary EPA/AA content was not significantly different among groups and varied between 449 

1.26 ± 0.02 and 3.93 ± 1.19. Thus our results indicate that the DHA/EPA and EPA/AA ratios 450 

used were not limiting growth performance in winter flounder reared at 10°C, as opposed to what 451 

has been observed for other fish species. Such differences may be explained by the different 452 

temperatures used in the different studies, since growth has already been shown to be affected by 453 

both temperature and dietary HUFA content in marine fishes (Person-Le Ruyet et al. 2004; Skalli 454 

et al. 2006). It is known that elevated temperature increases cellular turnover (Hagar and Hazel 455 
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1985), which should increase the need for HUFA to make new cell membranes. The 456 

EPA/DHA/AA ratios should then be more critical at high temperatures because of higher cell 457 

turnover.  458 

 459 

Effect of dietary HUFA levels on lipid reserves 460 

  461 

The low EFA levels measured in the Nanno and Tiso groups did not affect lipid reserve 462 

accumulations during winter flounder metamorphosis as shown by the similar TAG contents as 463 

well as by the similar tag gene expression measured in all groups. Moreover, the TAG ratio 464 

between fish content and diet content measured in all groups from PL to S30 was below one 465 

(results not presented), revealing that TAG was not incorporated into fish tissues. The TAG 466 

enzyme is responsible for the degradation of triglycerides to FAs available for energy (Henderson 467 

and Tocher 1987). This lack of accumulated lipid reserves could be due to their immediate 468 

utilization during metamorphosis to support fast growth and metamorphosis. This hypothesis is in 469 

accordance with the significant increase in body width measured at S0 and S30 and in body 470 

length measured at S30. The absence of accumulated lipid reserves in fish could also be the 471 

consequence of increased β-oxidation due to a sufficiently high n-3 HUFA level in all groups, as 472 

has been observed in Atlantic salmon (Kjaer et al. 2008; Todorcevic et al. 2009). Increased β-473 

oxidation would reduce FA availability (the substrate for TAG synthesis) and thus reduce TAG 474 

synthesis. The mechanisms underlying the reduction are not known in fish, nor have they been 475 

completely elucidated in mammals (see Shearer et al. 2012 for a review). Along with stable TAG 476 

reserves, we also measured stable bal gene expression in all groups from the pelagic larval stage 477 

(about 45 dph) to 30 days post settlement (about 75 dph), suggesting a stable capacity for lipid 478 

digestion throughout the studied developmental stages. Our results could also suggest that—479 
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whatever the levels of DHA, EPA, and AA in the diet treatments—they were not limiting factors 480 

for pancreas development since bal is mostly produced by the pancreas in winter flounder.  481 

 482 

Effect of diet on the expression of genes coding for growth hormone and antioxidative defences  483 

 484 

While low HUFA levels did not affect growth performance or lipid reserves, it reduced gh gene 485 

expression in the Tiso and Nanno groups. Although gh expression was continuously stimulated in 486 

the Cocktail group from PL to S30, it remained at the settlement level in the Tiso and Nanno 487 

groups. This suggests that an essential combination of EPA, AA, and DHA—as in the Cocktail 488 

group—is required to sustain the up-regulation of this gene expression throughout metamorphosis 489 

in winter flounder. Thus gh gene expression could be an indicator of development at the 490 

molecular level in response to the dietary HUFA quality during winter flounder metamorphosis.  491 

The selective retention indicating potential EFA deficiency that was observed in the 492 

Nanno and Tiso groups may have limited the reduction of antioxidative defences, while the 493 

combination of n-3 and n-6 HUFA, as in the Cocktail group, would instead have reduced the 494 

level of antioxidative defences through a lowering in the reactive oxygen species (ROS) 495 

concentration in cells. Indeed, sod gene expression decreased in the Cocktail group at S15 while 496 

it remained stable in the two others. It is known that the Sod activity correlates well with ROS 497 

production (Mourente et al. 2007). The high levels of EPA and AA in the Nanno diet as well as 498 

the high level of DHA in the Tiso diet may have promoted oxidative stress in cells, as suggested 499 

for Atlantic salmon (Todorcevic et al. 2009). Moreover, a recent study reported that Sod activity 500 

increased significantly in juvenile grass carp with increasing dietary HUFA content (Ji et al. 501 

2011).  502 
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The higher sod gene expression measured at S30 in all dietary groups may be related to an 503 

increased metabolic rate towards the end of metamorphosis due to the increase in growth rate 504 

measured at the same time (gh gene expression, total length, and maximum width) (Aceto et al. 505 

1994; Fernández-Díaz et al. 2001; Vagner et al. 2013). The increased growth rate would have led 506 

to increased oxygen uptake, which may have the potential to increase ROS production in the 507 

early life stages of fish. This higher sod gene expression could be a final response to strong 508 

metabolic changes occurring throughout metamorphosis, as suggested in common dentex 509 

(Mourente 1999) and Senegalese sole (Solé et al. 2004; Fernández-Díaz et al. 2006). Our results 510 

are in accordance with previous studies on rainbow trout (Fontagné et al. 2008), Salmo iridaeus 511 

(Aceto et al. 1994), and several other fish species (Rudneva 1999), all of which reported 512 

increasing sod gene expression during larval development. 513 

 514 

Conclusion 515 

 516 

This study reveals the increased requirement of DHA from settlement in winter flounder while 517 

the EPA and AA content seem critical starting 15 days later. The lower HUFA content in the Tiso 518 

and Nanno diets had no effect on larval growth performance or lipid reserve accumulations. The 519 

gh gene expression could be an indicator of development at the molecular level in response to the 520 

dietary HUFA quality during metamorphosis in winter flounder. The results indicate that 521 

potential EFA deficiencies may limit antioxidative defences, and a combination of n-3 and n-6 522 

HUFA (as in the Cocktail group) may be necessary to reduce oxidative stress in winter flounder 523 

during metamorphosis. Overall results also suggest that the gh gene expression could be a 524 

valuable indicator of development in response to the dietary EFA quality during metamorphosis. 525 

 526 
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Table 1 Lipid composition (lipid classes: % of total lipids, mean ± SD; fatty acids: % of total 788 

fatty acids, mean ± SD) of rotifers enriched with the Tiso (Isochrysis galbana), Nanno 789 

(Nannochloropsis oculata), and Cocktail (Isochrysis galbana, Nannochloropsis oculata, Pavlova 790 

lutheri) diets (N = 3 tanks per diet). Only FAs with a content > 2% are presented. Diets not 791 

sharing a common letter are significantly different (P < 0.05)  792 

 793 

Lipid class Cocktail diet Tiso diet Nanno diet p F df 

 Mean SD Mean SD Mean SD    

KET 70.9 6.5 41.8 23.7 36.0 25.8 0.33 1.7 2 

TAG 7.2 8.6 17.1 17.8 22.6 8.0 0.53 0.8 2 

ST 0.0 0.0 7.5 0.3 1.1 1.5 0.06 7.8 2 

AMPL 9.2 2.7 11.2 8.3 23.9 11.5 0.30 1.8 2 

PLP 12.1 0.3 22.5 2.2 16.4 7.7 0.22 2.6 2 

Fatty acid          

14:0 7.5ab 0.7 11.3b 0.9 4.8a 1.2 0.03 16.0 2 

16:0 18.3ab 0.3 14.2a 0.9 25.2b 1.4 0.00 16.0 2 

18:0 2.7 1.1 2.4 0.0 2.8 0.3 0.70 0.4 2 

22:0 3.3 2.0 3.0 0.1 2.8 0.4 0.95 0.1 2 

24:0 1.0 1.3 2.9 0.1 2.8 0.3 0.16 3.7 2 

16:1 11.7ab 2.0 2.6a 0.2 16.6b 2.4 0.02 16.0 2 

18:1n-9c 7.2 0.9 12.8 0.5 6.9 0.2 0.13 4.3 2 

18:1n-7 2.4 0.4 2.8 0.4 1.4 0.3 0.06 8.6 2 

18:2n-6c 3.3ab 0.4 5.0b 0.0 2.4a 0.0 0.03 16.0 2 

18:3n-3 2.0b 0.4 3.7c 1.4 0.8a 0.1 0.01 24.0 2 

18:4n-3 4.8ab 0.4 6.2b 0.1 1.5a 0.2 0.03 16.0 2 

20:4n-6 (AA) 2.6ab 0.6 1.5a 0.1 3.4b 0.0 0.03 16.0 2 

20:5n-3 (EPA) 9.9 b 2.1 1.9 a 0.0 11.6b 0.7 0.02 18.4 2 

22:6n-3 (DHA) 7.7b 1.9 9.5 b 0.5 1.7a 0.2 0.03 15.5 2 

Σ SFA 53.6 11.9 52.9 0.9 56.8 4.1 0.58 0.7 2 
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Σ MUFA 25.7 0.9 25.1 0.4 26.8 3.0 0.72 0.4 2 

DHA/EPA 0.8 0.0 5.0 0.1 0.2 0.0 0.00 1658 2 

EPA/AA 3.9 1.2 1.3 0.0 3.4 0.1 0.13 4.2 2 

Σ PUFA 37.0 2.3 36.3 1.0 29 1.4 0.17 3.5 2 

Σ EFA 20.2 3.5 12.9 0.6 16.7 0.5 0.13 4.3 2 

Total FA (mg g-1) 14.3 6.2 13.2 0.5 13.6 1.3 0.98 0.02 2 

KET: ketone, TAG: triglyceride, ST: sterols, AMPL: acetone-mobile polar lipids, PLP: 794 

phospholipids, AA: arachidonic acid, EPA: ecosapentaenoic acid, DHA: docosahexaenoic acid, 795 

SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty 796 

acids, EFA: essential fatty acids, FA: fatty acids. 797 

798 
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Table 2 Primers used for Pseudopleuronectes americanus in qPCR analysis. The GenBank 799 

accession number identifies the sequence of the species used for primer design. The size of the 800 

PCR amplicon (bp) as well as the percentage of similarity obtained between the sequence of the 801 

amplicon and that of the GenBank species are provided  802 

 803 

Target 

 

Primer sequence (5'  3') Sequence used for 

primer design 

(GenBank accession 

number) 

Sequence 

similarity 

(%) 

Amplicon 

size (bp) 

tag 
F: GTGGCTTCGACGAGAAAAAC 

R: AAGTCAAACGCTGCCAGTCT 

P. americanus 

(AF512562) 
99 138 

bal 
F: GGACAACGCCTACTCCACAT 

R: GCCTGTGTAGGAACCAGGAA 

P. americanus 

(AF512561) 
98 116 

sod 
F: TGGAGACAACACAAACGGG 

R: CATTGAGGGTGAGCATCTTG 

Platichthys flesus 

(AJ291980) 
95 138 

gh 
F: CCTGAAGCTGATAGAGGCCAAT 

R: GGAGCACCGAACTCTCAGAGA 

Paralichtys 

olivaceus (M23439) 
96 76 

gapdh 
F: CAACGGCGACACTCACTCCTC 

R: TCGCAGACACGGTTGCTGTAG 

P. olivaceus 

(AB029337) 
85 87 

tag: triacylglycerol lipase, bal: bile salt-activated lipase, sod: superoxide dismutase, gh: growth 804 

hormone, gapdh: glyceraldehyde-3 phosphate dehydrogenase.  805 

 806 
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Table 3 Fatty acid composition of early developmental stages of winter flounder fed Cocktail (C; Isochrysis galbana, Nannochloropsis 807 

oculata, Pavlova lutheri), Tiso (T; Isochrysis galbana), and Nanno (N; Nannochloropsis oculata) enriched diets at the pelagic larval 808 

stage (PL), at settlement (S0), and 15 (S15) and 30 (S30) days after settlement. Results are expressed in % of total lipids (TL) ± SD, 809 

and TL (first line) is expressed in mg of fatty acid per g of dry matter. Only FA with content > 2% of TL are presented. *: P < 0.05; 810 

**: P < 0.01; ***: P < 0.001. The letters d, s, and d × s indicate respectively an effect of diet, developmental stage, and their 811 

interaction. NS indicates that no significant effect was observed. Groups not sharing a common letter are statistically different (P < 812 

0.05) 813 

 PL S0 S15 S30 

 C T N C T N C T N C T N 

TL 

NS 

64.0±56.5 50.2±1.9 31.3±1.9 20.1±11.4 63.9±33.3 45.9±36.2 66.4±36.7 49.1±14.1 63.1±16.5 84.9±45.6 34.2±0.3 155.2±174.4 

PLP 

NS 

 

55.8±9.4 52.5±9.6 69.5±9.5 68.2±2.9 63.5±0.4 59.7±12.5 61.4±4.5 62.3±8.3 56.5±4.3 62.7±0.1 61.5±5.6 60.5±8.9 

TAG 

NS 

 

14.0±7.2 11.3±1.1 0.0±0.0 5.1±5.8 2.8±1.0 5.7±2.5 5.2±7.3 1.1±1.9 2.7±2.1 0.0±0.0 6.7±9.5 0.0±0.0 

ST 

NS 

14.8±3.8 21.3±5.5 12.4±4.7 11.8±6.5 18.7±4.8 19.1±4.7 26.3±6.7 23.3±2.8 15.3±1.1 19.5±4.1 18.2±12.9 22.1±5.6 

KET 5.05±2.7c 4.08±1.6bc 1.1±1.6ab 1.6±1.4ab 2.8±0.5abc 0.7±1.2a 0.0±0.0a 2.2±3.9ab 9.5±3.6c 5.6±2.5c 1.3±1.9ab 5.6±2.2c 

d × s **            

AMPL 

NS 

10.3±6.8 10.8±4.6 14.4±10.3 13.4±12.2 12.2±5.0 14.6±12.4 7.1±3.9 11.0±7.1 15.9±0.3 11.9±6.4 11.7±8.0 11.7±12.4 

14:0 3.1±0.3 1.3±1.9 1.2±1.7 2.5±0.6 3.3±0.2 2.2±0.8 1.5±2.1 2.7±0.6 0.0±0.0 3.7±1.0 2.2±0.1 0.0±0.0 

d **      N < C; N < T; C = T           

16:0 

NS 

10.7±0.3 11.2±1.4 12.8±4.1 13.9±1.6 12.1±0.7 16.7±3.0 10.7±1.4 12.6±2.4 10.5±4.0 15.2±4.8 10.3±1.7 13.3±4.7 

17:0 2.5±0.4 1.1±1.5 2.2±3.2 2.7±0.9 2.7±0.2 1.4±1.3 1.3±1.8 2.2±0.5 0.0±0.0 3.0±1.0 1.8±0.1 0.0±0.0 

d*         N < C; C = T; C = N           

19:0 36.7±8.3 35.9±7.1 55.1±2.8 36.8±12.4 39.5±4.8 36.4±10.6 46.0±22.6 30.8±5.4 69.8±11.5 25.1±4.6 23.5±3.6 64.0±8.1 
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d**      N < C; N < T; C = T           

20:0 

NS 

3.1±1.5 2.8±1.0 0.6±0.9 2.3±2.0 3.2±1.6 2.6±1.4 2.1±3.0 3.1±1.8 1.1±0.2 5.1±1.7 2.9±0.2 0.7±0.9 

22 :0 

NS 

2.9±2.8 2.9±4.1 0.0±0.0 3.0±3.0 3.2±0.1 2.6±2.3 3.4±4.8 5.0±2.9 0.8±1.2 3.8±0.3 3.9±0.9 0.0±0.0 

23 :0 2.2±0.8 2.6±0.8 0.0±0.0 1.8±1.6 1.1±1.6 0.0±0.0 1.8±2.6 1.2±1.1 0.0±0.0 1.6±0.5 1.7±1.0 0.0±0.0 

d**       N < C; N < T; C = T          

24 :0 

NS 

2.2±2.2 0.0±0.0 1.9±2.7 3.4±3.3 1.8±2.5 1.0±0.9 1.3±1.8 1.6±1.4 3.7±5.2 0.0±0.0 1.0±1.4 1.4±2.0 

18:1n-9c 

NS 

6.3±0.4 6.2±0.4 6.0±5.4 6.3±1.7 6.5±0.2 6.6±0.7 5.8±1.9 6.8±0.6 2.4±3.4 7.6±1.5 6.1±0.5 5.1±0.5 

18:1n-7 2.9±0.4 2.8±0.4 0.0±0.0 2.1±0.5 2.9±0.2 2.2±1.9 0.7±1.0 2.5±0.5 0.0±0.0 2.3±1.3 2.6±0.3 0.0±0.0 

d**        N < T; C = N; C = T           

20:1 

NS 

1.8±1.2 2.1±0.8 0.8±1.1 1.7±1.5 2.3±1.2 2.0±0.5 1.4±0.2 1.1±1.1 0.0±0.0 1.4±0.4 2.4±0.2 1.7±0.5 

22:1n-9 1.2±1.2 1.3±1.8 0.4±0.6 1.2±1.3 2.6±1.2 1.6±1.4 0.5±0.7 1.0±0.9 0.0±0.0 0.0±0.0 1.0±1.4 0.0±0.0 

d*          N < T; C = N; C = T           

24:1 2.0±1.8 1.4±0.3 0.6±0.9 3.5±1.3 2.5±1.3 1.7±0.5 0.6±0.8 0.7±1.2 0.0±0.0 0.6±0.8 1.1±1.6 1.2±0.3 

s*          S0 > S15; PL = S0; PL = S15; PL = S30; S0 = S30; S15 = S30       

18:2n-6c 

NS 

1.5±0.2 0.8±1.1 2.3±3.2 0.5±0.8 0.0±0.0 2.7±3.8 2.8±1.6 1.6±1.7 2.2±0.7 1.8±2.6 3.3±0.4 3.7±0.7 

AA 

NS  

1.4±0.3 0.7±0.9 1.4±2.0 0.4±0.7 0.0±0.0 1.3±2.2 1.9±0.7 1.4±1.3 1.1±0.1 1.8±2.5 3.1±0.1 3.1±0.4 

EPA 2.7±1.6 0.9±1.2 1.4±2.0 1.0±1.8 0.0±0.0 2.0±2.5 2.4±1.0 2.5±1.0 0.8±1.1 3.9±0.5 4.2±0.1 4.2±0.2 

s*          S0 < S30; PL = S0; PL = S15; PL = S30; S0 = S15; S15 = S30      

DHA 3.3±1.3 3.5±0.1 1.3±1.8 1.0±1.7 1.7±0.0 1.9±2.4 2.0±0.7 2.9±1.5 2.5±0.5 4.4±1.3 6.2±0.5 4.5±0.2 

s**        S30 > S0; S30 > S15; PL = S0; PL = S15; PL = S30; S0 = S15     

22:5n-3 1.0±0.9 0.7±1.0 0.0±0.0 0.5±0.8 0.0±0.0 0.0±0.0 0.7±1.0 1.5±1.4 0.0±0.0 0.8±1.1 2.5±1.3 0.0±0.0 

d*          N < C; N < T; C = T         

Σ SFA 72.2±2.9 71.7±4.2 84.4±8.3 78.7±7.6 79.6±1.8 76.9±5.6 76.4±3.4 70.2±14.5 92.7±0. 1 71.6±10.8 55.8±7.2 87.6±1.8 

d**        N < C; N < T; C = T         

Σ MUFA 16.0±2.6 17.7±0.6 7.8±2.8 16.6±1.0 18.7±1.9 16.8±3.4 11.2±4.6 14.6±3.3 5.4±5.5 13.4±0.6 18.0±1.7 10.3±0.4 

d*** :      N < C; N < T; C = T;             s**  :    S15 < S0; PL = S0; PL = S15; PL = S30; S0 = S30; S15 = S30 

Σ PUFA 11.8±2.7 10.6±4.9 7.8±11.1 4.7±8.1 1.7±0.0 6.3±4.1 12.5±1.2 15.3±11.2 2.8±4.0 15.1±11.4 26.3±5.5 2.2±1.4 

d*           N < T; C = N; C = T         

Σ EFA  7.3±2.5 5.0±2.1 4.1±5.8 2.4±4.2 1.7±0.0 5.4±6.9 6.2±2.4 6.8±3.6 4.8±1.1 10.0±4.3 13.4±0.5 11.7±0.3 

s**         S30 > S0; PL = S0; PL = S15; PL = S30; S0 = S15; S15 = S30   

Abbreviations: AA: arachidonic acid 20:4n-6, AMPL: acetone-mobile polar lipids, d: diet, DHA docosahexaenoic acid 22:6n-3, EFA 814 
essential fatty acids, EPA: ecosapentaenoic acid 20:5n-3, i: interaction between diet and developmental stage; KET: ketones, MUFA: 815 
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mono-unsaturated fatty acids, NMI: non-methylene-interrupted, NS: not significant; PLP: phospholipids, PUFA: poly-unsaturated fatty 816 
acids, s: developmental stage, SFA: saturated fatty acids, ST: sterols, TAG: triglycerides 817 
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Figure captions 

 

Fig. 1 Change in fatty acid (FA) ratios between fish FA content and dietary FA content for the 

three main polyunsaturated fatty acids found in fish membranes by developmental stage: (a) 

arachidonic acid (AA; 20:4n-6), (b) ecosapentaenoic acid (EPA; 20:5n-3), and (c) 

docosahexaenoic acid (DHA; 22:6n-3). Results are expressed as mean ± SD. PL: pelagic larvae; 

S0: at settlement; S15: 15 days after settlement; S30: 30 days after settlement. The dotted lines 

indicate the 1:1 ratio. For each graph, bars or developmental groups not sharing a common letter 

are significantly different at P < 0.05; Dietary groups sharing an asterisk are significantly 

different from the others at P < 0.05 

 

Fig. 2 Growth performance of Pseudopleuronectes americanus during development and 

according to diet: (a) total body length and (b) maximum body width in mm (mean ± SE) by 

developmental stage (PL: pelagic larvae; S0: at settlement; S15: 15 days after settlement; and 

S30: 30 days after settlement). Developmental groups not sharing a common letter are 

significantly different (two-way ANOVA; P < 0.05)  

 

Fig. 3 Fold-change in (a) bile salt-activated lipase (bal), (b) triacylglycerol lipase (tag), (c) 

growth hormone (gh), and (d) superoxide dismutase (sod) gene expression in Pseudopleuronectes 

americanus with respect to pelagic larvae of the Cocktail group (mean ± SE; N = 4 subsamples of 

6 larvae per tank) and according to developmental stage (PL: pelagic larvae; S0: settlement; S15: 

15 days after settlement; and S30: 30 days after settlement). Bars not sharing a common letter are 

significantly different (P < 0.05). The black horizontal line indicates the level of gene expression 

in the reference group (PL-Cocktail group) from which the gene expression of other groups was 

calculated (two-way ANOVA; P < 0.05) 

 

 

 

 


