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RÉSUMÉ

Des observations satellitaires et des modèles climatiques récents font valoir que
l’augmentation du réchauffement de la surface de la mer, la réduction de la glace marine
et le forçage atmosphérique sont à l’origine de modifications écologiques à grande échelle
dans les régions marines. Par exemple, les modifications de la durée et de la magnitude de
l’efflorescence phytoplanctonique saisonnière peuvent entrainer de lourdes conséquences
pour le fonctionnement du réseau trophique et la dynamique du carbone. Nous avons
investigué la réponse du phytoplancton océanique aux changements qui s’opèrent à la
subsurface du milieu physique de deux régions arctiques et subarctiques reconnues comme
des points névralgiques marins. Un ensemble de données satellitaires, d’observations in
situ et de sorties de modèle ont conduit à la définition d’indices utiles pour chiffrer la
phénologie du phytoplancton et évaluer si sa variabilité est attribuable à des changements
de forçage physique. Les méthodes phénologiques proposées dans cette étude ont dressé
le portrait de l’étendue régionale des efflorescences grâce à l’identification des modèles
de variabilité et des différences déterminantes en matière de période, de magnitude et de
durée. Or les observations suggèrent qu’une combinaison de modifications des variables
environnementales est souvent à l’origine d’une forte modulation de la phénologie
de l’efflorescence phytoplanctonique. Toutefois, les interactions de la dynamique du
phytoplancton et de l’environnement physique peuvent considérablement varier à l’échelle
subrégionale selon les caractéristiques intrinsèques d’une région marine donnée et le
mécanisme de forçage qui y prédomine. Le seuil biotique peut alors différer, voire
sembler inattendu là où des transformations locales donnent lieu à un environnement
de grande variabilité. Dans leur ensemble, les résultats indiquent que la dynamique du
phytoplancton varie sur des distances relativement courtes et qu’elle exige un examen
qui s’appuie sur de fines échelles spatiotemporelles. Enfin, notre étude réaffirme le rôle
du phytoplancton à titre d’élément biotique clé dans l’évaluation de la réponse des
écosystèmes marins de haute altitude au changement climatique.

Mots clés : écosystèmes pélagiques, phénologie du phytoplancton, forçage
physique, Arctique, Atlantique Nord subpolaire



ABSTRACT

Recent climate models and satellite observations highlight how increasing sea-
surface warming, sea-ice reduction and atmospheric forcing are triggering extensive
ecological modifications in marine regions. Alterations in the timing and magnitude of
the seasonal phytoplankton bloom may lead to important consequences on food web
functioning and carbon dynamics. We investigated the response of oceanic phytoplankton
to changes in the near-surface physical environment in two Arctic and subarctic regions
recognized as marine biological hotspots. Satellite datasets, together with in situ obser-
vations and model outputs, were used to define a suite of indices useful to quantifying
phytoplankton phenology and to test whether its variability is likely to be attributable
to shifts in physical forcing. The phenological methods proposed in this study provided
a picture of the regional extent of the blooms by identifying variability patterns and
determining differences in timing, magnitude and duration. Observations suggest that
often it is a combination of environmental variable changes that strongly modulate
phytoplankton bloom phenology. However, interactions among phytoplankton dynamics
and the physical environment may vary significantly across sub-regional spatial scales,
depending on the intrinsic characteristics of the marine region and the dominant forcing
mechanism. The biotic response might be different or even unexpected where local
processes create a highly variable environment. As a whole, results stress the view that
phytoplankton dynamics can vary over relatively short distances and require detailed
examinations at adequate temporal and spatial scales. Finally, this study reinforces the
role of phytoplankton as a key biotic element for evaluating the response of high-latitude
marine ecosystems to climate change.

Keywords : pelagic ecosystems, phytoplankton phenology, physical forcing,
Arctic, sub-polar North Atlantic
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INTRODUCTION GÉNÉRALE

Marine phytoplankton blooms and their importance

Phytoplankton are mostly microscopic photosynthetic (single-celled and colonies)

organisms that float freely in the uppermost sunlit layer of marine and freshwater

ecosystems. Similar to terrestrial plants, phytoplankton contain chlorophyll to capture

sunlight and use photosynthesis to turn it into chemical energy. Marine phytoplankton

fuel the oceanic food web and through the photosynthetic carbon fixation (i.e., primary

production) mitigate the oceanic and atmospheric carbon dioxide (CO2) levels (Sanders

et al., 2014). The Earth’s cycle of carbon and, to a large extent, its climate depend on

these photosynthetic organisms that strongly influence ocean-atmosphere gas exchanges

(Sanders et al., 2014).

Phytoplankton blooms (i.e., a condition of elevated phytoplankton concentration)

are ubiquitous and recurrent phenomena that contribute significantly to annual primary

production and to biogeochemical processes, such as the biological carbon pump, which

transfer the organic carbon from the sunlit surface waters to the ocean interior (Diehl

et al., 2015; Sanders et al., 2014; Tremblay et al., 2015). Phytoplankton blooms vary in

timing, magnitude, and duration both spatially and inter-annually as a consequence of

annual fluctuations in light and nutrient regime, water column stability (i.e., stratifica-

tion) and grazing activity (Winder and Sommer, 2012; Waniek, 2003). In particular, a

phytoplankton bloom occurs when seasonal light limitation lapses due to the shoaling of

the mixed layer above a critical-depth, where the loss terms (i.e., respiration, grazing,

sinking and natural mortality) are largely compensated by photosynthetic production

(the so-called "critical depth hypothesis" ; Sverdrup 1953).

However, although the "critical-depth hypothesis" formulated by Sverdrup (1953)

remains the most cited and widely accepted theory, new physical and biological me-
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chanisms have been suggested to drive phytoplankton blooms, especially in subarctic

Atlantic. In recent years, different studies have agreed (Mahadevan et al., 2012), challen-

ged (Behrenfeld, 2010; Boss and Behrenfeld, 2010) or merely refined Sverdrup’s model

by testing the hypothesis that the shutdown of winter convective mixing could serve

as a better indicator for the onset of the spring bloom than the mixed-layer depth

(Taylor and Ferrari, 2011). Recently observations (Lacour et al., 2017) showed evidence

for widespread winter (January-March) phytoplankton blooms in a large part of the

North Atlantic sub-polar gyre triggered by a combination of eddy-driven restratification

and prolonged periods of calm (i.e., relaxation of atmospheric forcing). All these works

highlight the complex interplay between abiotic and biotic factors in triggering the phyto-

plankton bloom dynamics. Probably, there is not a single dominant physical mechanism

that best predicts the inter-annual variability of the bloom onset (Ferreira et al., 2015).

In this connection, to move beyond the “single mechanism” point of view, an integrated

conceptual model of the physical and biological controls initiating the onset of the

phytoplankton spring bloom has been proposed (Lindemann and St John, 2014). Finally,

it is becoming increasingly clear that the cells’ ability (i.e., adaptive qualities) to modify

physiological rates in response to changes in the external environment may also play an

important role in the onset of phytoplankton spring bloom (Lindemann et al., 2015). For

instance, restratification during the winter period may cause a phytoplankton community

shift from small phytoplankton cells (i.e., pico- and nano-) to micro-phytoplankton cells

such as diatoms (Lacour et al., 2017). Overall, factors controlling the phytoplankton

seasonal cycle dynamics still remain controversial.

High-latitude sea-ice cover and primary production in a changing climate :

a briew overview

There is no doubt that global climate is changing. A considerable number of studies

published in peer-reviewed scientific journals shows that ∼ 97% of actively publishing
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climate scientists agree that climate-warming trends (Figure 1) over the past century

are most likely due to human activities (Cook et al., 2016, 2013).

Figure 1: The figure shows the temperature anomaly trends from dif-
ferent international science institutions. All show rapid warming in the
past few decades and that the last decade has been the warmest on
record (Source : https://climate.nasa.gov).

The impacts of climate warming are now increasingly visible in northern high-

latitude ocean areas. In particular, the Arctic and subarctic marine ecosystems are

experiencing a rapid sea-ice habitat loss and fragmentation that challenges the adaptive

capacity of sea-ice dependent marine mammals (Moore and Huntington, 2008; Laidre

et al., 2015) and under-ice fauna (Kohlbach et al., 2016). Changes in the sympagic

biota (i.e., organisms that live in, on or associated with the ice, ranging from microbial

communities to the charismatic mega-fauna, including seals, walrus and polar bears)

are now more than evident.

The sea-ice extent, one of the largest biomes on Earth, has significantly decreased

in recent decades (Comiso et al., 2008), hitting its lowest in 2012 (Parkinson and Comiso,

https://climate.nasa.gov)
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2013). More precisely, in September 2012 the average Arctic sea-ice extent (Figure

2) was the lowest in the satellite record. Other record lows occurred in September

2007 and recently in September 2016 (Figure 2). Based on estimates produced by the

National Snow and Ice Data Center (NSIDC) Sea Ice Index (Fetterer et al., 2002) the

September 2016 seaice minimum extent was 33% lower than the 1981-2010 average

sea-ice minimum extent and tied with 2007 for the second lowest value in the satellite

record (1979-2016). These recent observations strengthen even more the idea that the

sea-ice cover is becoming more sensitive to ocean warming.

Figure 2: Arctic sea-ice volume is plotted for each day of the year,
moving clockwise around the graph and taking one full year to complete
a circuit. The volume of sea-ice on a particular day is represented by
that plot’s distance from the center of the graph. Less sea-ice volume
places the plot closer to the center (0%). Thin gray lines represent past
years, while decadal averages and the current year (2018 in red) are
thicker and color-coded as detailed in the legend
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As temperatures have increased, much of the multiyear sea-ice has disappeared

and been replaced by a markedly thinner first-year ice that melts earlier in spring

(Maslanik et al., 2011; Ricker et al., 2017). As a result, the earlier melt has allowed

an ever-increasing fraction of the sea surface to absorb more solar radiation, thus

delaying the sea-ice freeze-up timing in the fall throughout most of the Arctic (Stroeve

et al., 2014). A later freeze-up timing implies that the sea-ice has less time to thicken

before the start of the next melt season, therefore resulting in its being more prone

to melt. Basically, the heat gained by the ocean mixed-layer during summer feeds a

loop that causes temperatures to rise : regions with especially higher than average

temperatures correspond to regions with lower sea-ice extent (Stroeve et al., 2014).

Moreover, intensification of the hydrological cycle is also predicted to occur due to

increasing precipitation (Kopec et al., 2016), rivers discharge (Bring et al., 2017) and

melting of glaciers and ice-sheets on land (Luo et al., 2016).

Although the ongoing changes in the physical domain are well documented, the

response of the marine ecosystem to these major external disturbances is still uncertain.

For instance, changes in sea-ice phenology (i.e., break-up, freeze-up and length of the

open-water season) have regionally dependent and significant impacts on pelagic primary

production (Wassmann and Reigstad, 2011). Sea-ice plays an important role in promoting

active biological and chemical processes and in regulating interactions between the upper

ocean and the atmosphere (Budikova, 2009; Vancoppenolle et al., 2013). In particular,

the sea-ice coverage directly influences the pelagic system by regulating the amount of

solar radiation reaching the water column and thus limiting the length of the productive

season (Arrigo and van Dijken, 2011). Historically, regions underneath a full sea-ice cover

(i.e., optically thick with a high reflection) have usually been considered incapable of

supporting phytoplankton production. However, in the present-day Arctic the undergoing

shift from multi-year ice to first-year ice caused the thinner summertime sea-ice to be

increasingly covered by melt ponds, which efficiently transmit light to the underlying

ocean (Frey et al., 2011; Palmer et al., 2014). Recent observations indicate that massive
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phytoplankton blooms start beneath the sea-ice when under-ice light conditions are

favorable (Arrigo et al., 2012). The presence of melt ponds may therefore stimulate

the light-limited biological productivity. According to a recent study (Horvat et al.,

2017), at the present day nearly 30% of the ice-covered Arctic Ocean between June and

July permits sub-ice blooms. However, even under favorable light conditions, nutrient

availability can limit biological productions in sea-ice melt ponds (Arrigo et al., 2014;

Sørensen et al., 2017).

Connected with the sea-ice dynamics are sea-ice edge phytoplankton blooms, which

occur when sea-ice retreats (Perrette et al., 2011). The sea-ice edge blooms can be favored

by a shallow mixed-layer (i.e., due to warm and fresher water that minimizes vertical

mixing), increasing light and by the release from melted ice of material (i.e., nutrients

and metals) into the water column (Vancoppenolle et al., 2013). However, quantifying

the contribution of primary production of the ice-associated blooms remains a challenge

because of the lack of observational data (Perrette et al., 2011).

Both in situ and satellite observations are used to estimate the biological producti-

vity (Matrai et al., 2013; Tremblay et al., 2015). In situ measurements directly estimate

primary production throughout the water column (i.e., from surface to subsurface)

but they are usually restricted to very small areas. Satellite ocean colour observations

provide more extensive spatial and temporal coverage but are limited to the surface

and affected by data gaps (Perrette et al., 2011). Overall, the increase in phytoplankton

biomass and productivity over the Arctic Ocean has been based mainly on open-water

measurements. For instance, satellite observations over a 12-year (1998-2009) period

reported a 20% overall increase in primary production, mostly due to an increase in

open-water extent (+27%) and duration (+45 days) of the open-water season (Arrigo

and van Dijken, 2011). A new study (Arrigo and van Dijken, 2015) incorporating a more

recent reprocessing version of the ocean color data suggests that primary production in

the Arctic Ocean continues to increase rapidly. Other remote sensing studies (Petrenko
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et al., 2013) and model simulation (Slagstad et al., 2015) suggest an increase, although

unevenly, in primary production. However, although these estimates currently lack the

ice-associated production, the observed enhancement in primary production has to be

carefully considered. In high-latitude ocean areas, numerical models still lack validation

with in situ time series (Babin et al., 2015). Furthermore, satellite-derived ocean-color

models are still subject to large uncertainties (Lee et al., 2015) due to different metho-

dological approaches and/or high concentrations of colored dissolved organic matter

that impede clear-cut estimates of chlorophyll-a (Matsuoka et al., 2011; Matrai et al.,

2013) a key diagnostic marker of phytoplankton (Huot et al., 2007). Another source of

uncertainty is the presence of a subsurface chlorophyll-a maximum (Ardyna et al., 2013),

which can become more important on a regional scale and critical for the pelagic-benthic

coupling system and higher-trophic-levels organisms (Wassmann and Reigstad, 2011).

Finally, the role of increasing cloudiness on the light intensity reaching the water column

and its effect on primary production has recently been debated (Bélanger et al., 2013a).

The latter analysis suggests that although the duration of the open-water period may

further increase, the phytoplankton photosynthetic activity might not follow a similar

positive trend because it is light-limited (Bélanger et al., 2013a).

Against this background, it follows that one of the key issues is whether or not the

ongoing changes will translate into enhanced phytoplankton production. Results suggest

that the decrease in sea-ice cover should cause an increase in primary production by

lengthening the growth season and allowing more sunlight to enter the sea-surface layer.

However, as previously discussed, cloudiness may influence the length of the productive

season by controlling the photosynthetic light requirement (Bélanger et al., 2013a).

Moreover, the nutrient availability and distribution over the entire productive period

is also of fundamental importance. Both factors (i.e., light and nutrient availability)

have been found to limit primary production in the Arctic and subarctic seas (Tremblay

et al., 2015). A recent study based on in situ measurements showed that the freshwater

variability in the Chukchi Sea has a strong influence on primary production by lowering
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the nutrient inventory in the euphotic zone (Yun et al., 2016). These results are consistent

with those of previous studies (e.g., McLaughlin and Carmack, 2010) that indicate that

an increase in stratification may strongly limit the availability of nutrients and therefore

negatively impact productivity. Some authors (e.g., Coupel et al., 2015) argued that

despite higher light penetration, a further increase in freshening might lead the Arctic

deep basins to become more oligotrophic because of a weaker nutrient entrainment

into the seasonal mixed layer. Basically, the freshwater accumulation could lead to a

decline in biological production because it restricts mixing of deep nutrients to the

ocean surface. The greatest decrease in primary production is expected in those marine

regions characterized by stratification-induced nutrient limitation (Slagstad et al., 2015).

Due to the heterogeneity of Arctic and subarctic marine regions, the idea that strongly

emerges is that photosynthetic production is expected to vary regionally (or even

locally) on the basis of different environmental factors controlling phytoplankton blooms

(Wassmann and Reigstad, 2011). For instance, a recent study suggests that the increase

in phytoplankton biomass and productivity in southwest Greenland waters is likely

triggered by a greater nutrient supply associated with glacial meltwater (Arrigo et al.,

2017). The nutrients released can be transported long distances and potentially fertilize

surrounding areas (Arrigo et al., 2017). Besides, the nutrient load supplied by rivers

seems to have a greater contribution at local scale but so far it does not appear to fuel

a major portion of the overall pan-Arctic primary production (Tremblay et al., 2015).

Certainly, these processes could become much more important in years to come.

Phytoplankton phenology in the Northern Hemiphere : a bottom-up synthe-

sis

Most of the above-mentioned studies focus mainly on estimates of primary pro-

duction. However, obtaining annual (seasonal) estimates of pelagic primary production

should not obscure the importance of closely monitoring the phytoplankton seasonal
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cycle dynamics (i.e., phenology : changes in timing, amplitude and duration). In marine

ecology, phenological studies are increasingly used to inspect pelagic ecosystems’ response

to changing climatic conditions. Phytoplankton phenology is a sensitive indicator useful

in assessing the response of the pelagic ecosystems (Platt and Sathyendranath, 2008)

to major external disturbances such as changes in water temperature and ice coverage.

In particular, in northern high-latitude pelagic ecosystems, phytoplankton phenology

requires special consideration for several reasons :

1. The strong seasonality in environmental conditions such as light, temperature,

nutrients, snow and sea-ice cover heavily characterize this remote environment ;

2. The organism’s reproductive strategies are adapted to both the harsh conditions

and the narrow time window defined by the strong seasonality. For instance,

phytoplankton blooms seasonality is strongly coupled with the light regime, which

is influenced by the seasonal and latitudinal controls and by the presence of snow

and sea-ice cover. The latter both attenuates and reflects light and is thus an

important contributor to the phytoplankton growth cycle (Ji et al., 2010) ;

3. Even a small timing mismatch (Søreide et al., 2010) between the organism’s life

strategy and the physical environment could have a substantial consequence for

the entire food web. In particular, changes in bloom timing may affect the energy

flow throughout the whole food web, which in turn may impact higher trophic level

productivity (Malick et al., 2015) ;

4. Climate warming through mechanisms that influence water column conditions is

predicted to lead marked and unexpected changes in Arctic and subarctic marine

ecosystems (Wassmann et al., 2011). Continued climate warming can modify not

only the bloom timing but also species composition and size structure, favouring

species traits best adapted to changing conditions (Winder and Sommer, 2012).

Recent studies revealed that dramatic changes in bloom characteristics and pheno-

logy have occurred in the Arctic and subarctic marine regions. According to Li et al.
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(2009), the phytoplankton community composition has changed under the warming,

freshening and stratifying condition in the Canada Basin. The authors revealed a shift

toward a dominance of small phytoplankton cells. These findings are consistent with

recent field observations (Blais et al., 2017) showing a drastic modification of the phyto-

plankton community structure (from large to small cells) and a drop in phytoplankton

biomass between 1999 and 2011 in the north of Baffin Bay. Changes in phytoplankton

community composition have also been reported in the Chukchi Sea and correlated

with the sea-ice retreat timing (Fujiwara et al., 2014). Using satellite data, Kahru

et al. (2011) reported significant trends (from 1997 to 2009) towards earlier (up 3-5

days per year) phytoplankton blooms in Arctic Ocean and peripheral seas. Particular

regions experiencing earlier blooms include e.g., the Hudson Bay, Baffin Sea, off the

coasts of Greenland and Kara Sea, which are also areas roughly coincident with trends

toward earlier summer ice break-up (Kahru et al., 2011). Model outputs together with

satellite data also suggest that changes in ice-retreat timing have a strong impact on

the timing variability in pelagic phytoplankton and ice-algae peaks (Ji et al., 2013).

As an example, in the Barents Sea, phytoplankton blooms are triggered by different

stratification mechanisms : heating of the surface layers in ice-free waters and melting

of the sea-ice along the ice edge (Oziel et al., 2017). Another study (Zhai et al., 2012)

also detected earlier blooms north of the Iceland-Faroe area (Arctic waters) due to early

stratification and a later bloom in the southern area (Atlantic waters) characterized by a

weakly stratified water-column. In Greenland, Iceland and Norwegian seas, results from

a biophysical model showed that earlier phytoplankton blooms lead to an earlier and

more severe nutrient drawdown (Zhang et al., 2010). Further south, in the Baltic Sea,

satellite observation (from 2000 to 2014) indicates that while bloom timing and duration

co-vary with meteorological conditions, the bloom magnitude is mainly determined by

winter nutrient concentration (Groetsch et al., 2016). In the Labrador Sea, the positive

relationship between deep winter (convective) mixing and nutrients concentration creates

favorable conditions for phytoplankton growth in spring and summer (Harrison et al.,
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2013). Recent increases in Arctic freshwater flux may weak convective mixing (Yang

et al., 2016) and thereby potentially lead to a significant reduction in phytoplankton

production. Howwever, a progressive deepening of winter convection in the Labrador

Sea was observed since 2012 (Yashayaev and Loder, 2017).

On the above basis, it seems clear that in northern high-latitude oceans the

seasonality of the phytoplankton bloom is controlled primarily by sea-ice dynamics,

light and nutrient availability. In this context, the interplay between stratification and

mixing plays a fundamental role in shaping the biological production. Stratification

causes the retention of phytoplankton within the euphotic layer, making light more

available but limiting access to inorganic nutrients. Light levels and the availability of

nutrients can therefore vary according to the intensity of the vertical stratification. The

latter in turn depends upon the temperature and salinity gradients as well as vertical

mixing processes (Drinkwater et al., 2010). It follows that changes in physical forcing

result in a modification of the balance between stratification and mixing. For instance,

although freshwater strengthens the stratification, a reduced sea-ice cover exposes an

ever-increasing fraction of the water column to wind-induced mixing processes. Periodic

vertical mixing, driven by wind events enhancing the nutrient replenishment, can

therefore burst and sustain the biological production, eventually throughout the growing

season (Tremblay et al., 2011, 2015). Recently, Ardyna et al. (2014) using satellite data,

documented a fundamental shift from a polar to a temperate mode. The development of

a second bloom in several regions of the Arctic and sub-arctic oceans seems to coincide

with the delayed freeze-up and the increased exposure of sea surface to wind stress.
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Figure 3: The figure shows (a) the North Water (NOW)
polynya located in northern Baffin Bay (>75°N) and sou-
thernmost (b) the Labrador Sea, a sub-polar sea that
connects the North Atlantic with the Arctic Ocean. The
Arctic Circle is also indicated (yellow line). The color gra-
dient, from blue (low values) to red (high values), is given
by the chlorophyll-a climatology derived from GlobColour
(http://www.globcolour.info) images from 1998 to 2015.

http://www.globcolour.info
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Thesis objectives and study areas

The large seasonality in light, temperature, and sea-ice extent is an integral aspect

of the Arctic and subarctic marine regions. However, the continuous Arctic-wide decrease

in sea-ice cover and its amplifying effect on the warming are modifying abiotic (e.g.,

balance between stratification and mixing) and biotic (e.g., grazing) mechanisms (Winder

and Sommer, 2012). In present-day climate conditions, monitoring the extent of the

shifts in timing together with the spatial distribution of phytoplankton blooms is relevant

because of their influence on biogeochemical cycles and marine ecosystem structure and

functioning. A better understanding of the phytoplankton response to these ongoing

environmental alterations may therefore provide a sensitive indicator of climate change.

Therefore, given the central role of phytoplankton in marine ecosystems, the main

objectives of this thesis are (1) to detect and quantify changes in timing, magnitude,

duration and spatial distribution of phytoplankton blooms in Arctic and subarctic

regions recognized as marine biological hotspots ; and (2) to relate these changes with

variability in oceanic and meteorological forcing mechanisms.

To accomplish these goals we used a remote sensing approach supplemented

by in situ measurements and models outputs. While essential knowledge on marine

ecosystem structure and functioning will continue to be derived from specific in situ

observations, the estimation of biological parameters (such as chlorophyll-a) through

satellite remote sensing provides a powerful tool to characterize phytoplankton phenology

at local, regional and global scales. Although satellite observations are limited to the

ocean surface, the possibility of periodically mapping areas at relatively high temporal

frequency provide compensating benefits.

The study was conducted at regional (and sub-regional scale) in two marine areas

(Figure 3) sensitive to the effects of ongoing climate changes and considered as hotspots

because of their biological and physical importance :
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1. The North Water (NOW) polynya, located between Greenland and Ellesmere

Island in northern Baffin Bay is the largest and one of the most biologically

productive marine areas of the Arctic Ocean. The NOW serves as an important

winter and summer habitat for marine birds and mammals and is considered an

oceanographic “window” through which it is possible to evaluate the state of the

Arctic marine ecosystem ;

2. The Labrador Sea, a sub-polar sea that connects the North Atlantic with the

Arctic Ocean, represents a major focal point for ocean feedback to the climate system.

It is a region characterized by a pronounced seasonality in biological production.

The northern part of Labrador Sea host one of the largest phytoplankton spring

bloom of the whole North Atlantic Ocean, with surface area that can reach as much

as 700 000 km2. In addition, deep convection and biology processes work together

making the Labrador Sea one of the principle oceanic “sinks” for atmospheric

carbon dioxide of the World Ocean.

This thesis includes a review (Chapter 1) of the current literature on the general

concept of hotspots, three research articles (Chapters 2-4) and a general conclusion.

Specifically, the chapters of this thesis addressed the following topics :

Chapter 1 provides a comprehensive review to introduce the approach that lies

behind the concept of biodiversity hotspots. The main criticisms and controversies

concerning this approach are also discussed. Next, links between biodiversity

hotspots, marine pelagic ecosystem processes and the deep-sea realm are taken into

consideration. Finally, some challenges in assigning global conservation priorities

are briefly discussed. This chapter was done as part of the Ph.D. program and

specifically in relation to the course Synthèse Environnementale. This chapter was

published in Global Ecology and Conservation (Marchese, 2015).

Chapter 2 begins the research part of this thesis. The specific objective of this study

is to investigate how contrasting effects of environmental factors may modulate
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the phytoplankton bloom response over the North Water (NOW) polynya. A

novel framework that combines an improved interpolation scheme to fill data gaps

together with Gaussian-models is used to increase accuracy when phenology metrics

were applied. This chapter was published in Polar Biology (Marchese et al., 2017).

Chapter 3 focuses on the bloom onset variability over the whole Labrador Sea. A

biogeographic analysis is used to partition the Labrador Sea into regions with

similar phytoplankton variability. Finally, the relationships between the spring

bloom onset and physical forcing are investigated using satellite-derived ocean color

observations and simulated data from a state-of-the-art ocean global circulation

model (CGM). This chapter is at an advanced preparation stage and will be

submitted to an high-impact and high-quality peer-reviewed journal at the earliest

possible date.

Chapter 4 provides evidence for the occurrence of an anomalous springtime phyto-

plankton bloom that occurred in the Labrador Sea in 2015. The study, by using

a combination of satellite and in situ observations, attempts to elucidate the me-

chanisms behind the extensive 2015 spring bloom. This chapter requires a little

bit more work before being sent as a research letter to a scientific peer-reviewed

journal.

The general conclusion reviews the main findings, highlights some possible limita-

tions of the present study and presents a brief discussion on future research directions.
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1.1 Résumé

Dans une ère caractérisée par l’activité humaine, les changements de l’environnement

planétaire, la perte d’habitat et la disparition des espèces, les stratégies de conserva-

tion marquent une avancée décisive pour réduire la perte de biodiversité. C’est le cas

notamment de l’acidification des océans et du changement d’affectation des terres qui

s’intensifient en plusieurs endroits, et dont les conséquences sont souvent irréversibles

pour la biodiversité. Bien que critiqués, les points névralgiques de la biodiversité sont

devenus des éléments clés pour élaborer les priorités de conservation et jouent un rôle

important dans les décisions et stratégies économiques en matière de préservation de la

biodiversité des écosystèmes terrestres, et marins, par extension. Cette action locale,

applicable à toute échelle géographique, est tenue pour l’une des meilleures approches

pour maintenir une large part de la diversité biologique mondiale. En revanche, la

délimitation des points névralgiques repose à la fois sur des critères quantitatifs et des

considérations subjectives, d’où le risque de négliger certaines zones, comme les points

froids, dont la valeur de conservation pourrait sembler moindre. Or il est largement

reconnu de nos jours que la biodiversité va bien au-delà du nombre d’espèces dans

une région donnée et qu’une stratégie de conservation ne saurait simplement se baser

sur le nombre de taxa dans un écosystème. L’idée qui s’impose de plus en plus, par

conséquent, est la nécessité de revoir les priorités de conservation sur la base d’une

approche interdisciplinaire qui en passe par la mise en place de partenariats politiques

et scientifiques.

Mots clés : changement climatique, points froids, richesse spécifique, diversité

phylogénétique, services écosystémiques
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1.2 Abstract

In an era of human activities, global environmental changes, habitat loss and species

extinction, conservation strategies are a crucial step toward minimizing biodiversity

loss. For instance, oceans acidification and land use are intensifying in many places

with negative and often irreversible consequences for biodiversity. Biodiversity hotspots,

despite some criticism, have become a tool for setting conservation priorities and play

an important role in decision-making for cost-effective strategies to preserve biodiversity

in terrestrial and, to some extent, marine ecosystems. This area-based approach can be

applied to any geographical scale and it is considered to be one of the best approaches for

maintaining a large proportion of the world’s biological diversity. However, delineating

hotspots includes quantitative criteria along with subjective considerations and the risk

is to neglect areas, such as coldspots, with other types of conservation value. Nowadays,

it is widely acknowledged that biodiversity is much more than just the number of species

in a region and a conservation strategy cannot be based merely on the number of

taxa present in an ecosystem. Therefore, the idea that strongly emerges is the need

to reconsider conservation priorities and to go toward an interdisciplinary approach

through the creation of science-policy partnerships.

Keywords: climate change, Coldspots, Species richness, Phylogenetic diversity,

Ecosystem services



19

1.3 Introduction

As demonstrated by several researches, maintaining biodiversity is essential to

the supply of ecosystem services and not less important to support their health and

resilience (Pereira et al., 2013). However, despite there being an international interest

to sustain and protect biodiversity, its loss does not seem to slow down (Butchart et al.,

2010). Although there has been an extension of protected areas (Pimm et al., 2014),

these provide a still low species coverage (Venter et al., 2014) and do not appear to

optimally protect biodiversity (Pimm et al., 2014). For instance, a recent analysis for

conservation priorities in marine environments by combining spatial distribution data

for nearly 12,500 species with human impacts information, identified new areas of high

conservation value that are located in Arctic and Antarctic Oceans and beyond national

jurisdictions (Selig et al., 2014).

Overall, habitat change and their over-exploitation, pollution, invasive species and

in particular climate change are the major causes for biodiversity loss. The combined

effect of these anthropogenic pressures may have already started a critical transition

toward a tipping point (Barnosky et al., 2012). In particular, climate is modifying

rapidly forcing biodiversity to adapt either through the change of habitat and life

cycles or the development of new physical traits (Berteaux et al., 2010). For instance,

rising temperatures can lead to potential biodiversity increases in northern regions (i.e.,

northern biodiversity paradox) where low temperatures usually are a limiting factor for

the establishment of many species (Berteaux et al., 2010). Given the importance that

biodiversity plays, the understanding of the main threats to biodiversity is today than

ever before a central objective in conservation biology. Nowadays there is serious concern

about the effectiveness of existing strategies for biodiversity protection. A central issue

in conservation is to identify biodiversity-rich areas to which conservation resources

should be directed. Based on the observation that some parts of the world have far

more species than others, the area-based approaches are widely advocated for species
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conservation planning. Areas with high concentrations of endemic species (species that

are found nowhere else on Earth) and with high habitat loss are often referred to as

”hotspots” (Myers, 1988). The hotspot approach can be applied at any geographical

scale and both in terrestrial and marine environments. However, hotspots represent

conservation priorities in terrestrial ecosystems but remain largely unexplored in marine

habitats (Worm et al., 2003) where the amount of data is still poor (Mittermeier et al.,

2011).

Despite this lack of homogeneity in data between terrestrial and aquatic ecosystems,

the recent concerns over loss of biodiversity have led to calls for the preservation of

hotspots as a priority. As reported by Myers (2003) at the end of his article, "Edward O.

Wilson, one of the leading authorities on conservation, described the hotspot approach as

"the most important contribution to conservation biology of the last century"". Closely

linked to the concept of biodiversity, the hotspot concept is used with increasing frequency

in biology and conservation literature and often with different meanings. While in a

strict sense, the meaning is based on an estimate of endemic species and habitat loss, in

a broad sense it refers to any area or region with exceptionally high biodiversity at the

ecosystem, species and genetic levels.

The aim of this work is to review the current literature on the general concept

of hotspots. We first introduce the approach that lies behind the concept of hotspots,

in both terrestrial and marine ecosystems. Next we discuss the main criticisms and

controversies concerning this approach and we present the possibility of using different

alternative metrics to identify hotspots. Then we bring to light the links between

biodiversity hotspots and marine pelagic ecosystem processes and we briefly introduce

the deep-sea, a realm for the most part unknown for which several key questions are

still waiting for an answer. Finally, we briefly discuss additional approaches and criteria,

such as costs, in order to highlight some challenges in assigning global conservation

priorities.
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Table 1: Biodiversity hotspots from 1988 to present (modified from Mittermeier et al.
2011)

Myers (1988) Myers(1990) Myers et al. (2000) Mittermeier et al. (2004) 2011 Revision

Uplands of Western Uplands of Western

Amazonia Amazonia Tropical Andes (a) Tropical Andes Tropical Andes

Western Ecuador Western Ecuador

Colombian Choco Colombian Choco Choco/Darien/western Ecuador (b) Tumbes-Choco-Magdalena Tumbes-Choco-Magdalena

Atlantic Coast Brazil Atlantic Coast Brazil Atlantic Coast Brazil Atlantic Forest Atlantic Forest

Brazilian Cerrado Cerrado Cerrado

Central Chile Central Chile (a) Chilean Winter Rainfall and Valdivian Forest Chilean Winter Rainfall and Valdivian Forest

Mesoamerica Mesoamerica Mesoamerica

Madrean Pine-Oak Woodlands Madrean Pine-Oak Woodlands

Caribbean Caribbean Islands Caribbean Islands

California Floristic Province California Floristic Province California Floristic Province California Floristic Province

Ivory Coast Guinean Forest of West Africa (a) Guinean Forest of West Africa Guinean Forest of West Africa

Cape Floristic Region Cape Floristic Province Cape Floristc Region Cape Floristc Region

Succulent Karoo Succulent Karoo Succulent Karoo

Maputaland-Podoland-Albany Maputaland-Podoland-Albany

Tanzania
Eastern Arc and Coastal Forest of

Tanzania/Kenya (c)
Eastern Afromontane (d) Eastern Afromontane

Coastal Forests of Eastern Africa (d) Coastal Forests of Eastern Africa

Horn of Africa Horn of Africa

Eastern Madagascar Eastern Madagascar Madagascar and Indian Ocean Islands Madagascar and Indian Ocean Islands Madagascar and Indian Ocean Islands

Mediterranean Basin Mediterranean Basin Mediterranean Basin

Caucasus Caucasus Caucasus

Irano-Anatolian Irano-Anatolian

Mountains of Central Asia Mountains of Central Asia

Western Ghats in India

Southwestern Sri Lanka Western Ghats and Sri Lanka (b) Western Ghats and Sri Lanka Western Ghats and Sri Lanka

Mountains of South-Central China Mountains of South-Central China Mountains of South-Central China

Indo-Burma Indo-Burma

Eastern Himalayas Eastern Himalayas Indo-Burma (e) Himalaya (f) Himalaya

Peninsular Malaysia Peninsular Malaysia

Northern Borneo Northern Borneo Sundaland(b) Sundaland Sundaland

Wallacea Wallacea Wallacea

Philippines Philippines Philippines Philippines Philippines

Japan Japan

Southwest Australia Southwest Australia (a) Southwest Australia Southwest Australia

Forests of East Australia (g)

East Melanesian Islands East Melanesian Islands

New Zeeland New Zeeland New Zeeland

New Caledonia New Caledonia New Caledonia New Caledonia New Caledonia

Polynesia-Micronesia Polynesia-Micronesia Polynesia-Micronesia

(a) Expanded.

(b) Merged and/or expanded.

(c) Expanded to include Coastal Forests of Tanzania and parts of Kenya.

(d) The Eastern Arc and Coastal Forests of Tanzania/Kenya hotspots was split into the Eastern Afromontane hotspot (the Eastern Arc Mountains and Southern Rift, the Albertine Rift,

and the Ethiopian Highlands) and Coastal Forests of EasternAfrica (southern Somalia south through Kenya, Tanzania and Mozambique).

(e) Eastern Himalayas was divided into Mountains of South-Central China and Indo-Burma, the latter of which was expanded.

(f) The Indo-Burma hotspot was redefined, and the Himalayan chain was separated as a new Himalayan hotspot, which was expanded.

(g) The Forests of Eastern Australia the 35th biodiversity hotspot.
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1.4 Biodiversity hotspots

1.4.1 The biodiversity hotspots concept

The British ecologist Norman Myers first published the biodiversity hotspot thesis

in 1988. Myers, although without quantitative criteria but relying solely on the high

levels of habitat loss and the presence of an extraordinary number of plant endemism,

identified ten tropical forest "hotspots" (Mittermeier et al., 2011). A subsequent anal-

ysis (Myers, 1990) added a further eight hotspots, including four in Mediterranean

regions. Conservation International (CI: http://www.conservation.org) adopted My-

ers’ hotspots as its institutional blueprint in 1989, and afterwards worked with him in

a first systematic update of the global hotspots. Myers, Conservation International,

and collaborators later revised estimates of remaining primary habitat and defined the

hotspots formally as biogeographic regions with >1500 endemic vascular plant species

and ≤30% of original primary habitat (Myers et al., 2000). This collaboration, which

led to an extensive global review (Mittermeier et al., 1999) and a scientific publication

(Myers et al., 2000) saw the hotspots expand in area as well as in number, on the basis

of both the better-defined criteria and new data. A second major revision and update

in 2004 (Mitttermeier et al., 2005) did not change the criteria but by redefining several

hotspots boundaries, and by adding new ones that were suspected hotspots for which

sufficient data either did not exist or were not easily accessible, brought the total to

34 biodiversity hotspots (Mittermeier et al., 2011). Recently, a 35th hotspot was added

(Williams et al., 2011), the Forests of East Australia. The 35-biodiversity hotspots

(Table 1; Figure 4) that cover only 17.3% of the Earth’s land surface are characterized

by both exceptional biodiversity and considerable habitat loss (Myers et al., 2000).

More precisely, hotspots maintain 77% of all endemic plant species, 43% of vertebrates

(including 60% of threatened mammals and birds), and 80% of all threatened amphibians

(Mittermeier et al., 2011; Williams et al., 2011).

http://www.conservation.org
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Figure 4: The world’s biodiversity hotspots (see also Table 1 for hotspots
names). Figure licensed under the Creative Commons Attribution-Share
Alike 4.0 International license (Author: Conservation International).

Biodiversity is important in the oceans as on land. Myers and colleagues, however,

excluded the oceans from their analysis. In particular, coral reefs are one of the most

biologically diverse ecosystems in the ocean and provide important structures and habitat

in tropical and sub-tropical coastal waters (Bellwood et al., 2004). In these areas, where

the explanation for the high number of species is still debated (Bowen et al., 2013;

Cowman and Bellwood, 2013), ocean acidification and changes in sea surface temperature

(Ateweberhan et al., 2013) are likely to cause major coral reef losses and changes in

the distribution and relative abundances of marine organisms. Moreover, apart from

the intrinsic biodiversity value, there are economic arguments for the protection of

marine biodiversity (Balmford et al., 2002). This makes the maintenance of marine

biodiversity a valuable environmental management goal. Roberts et al. (2002), through

the publication of one of the most comprehensive studies of hotspots on global coral reefs,

have brought much-needed attention to marine hotspots, extending the hotspot concept

to coral reefs and arguing that biodiversity hotspots are major centers of endemism in

the sea as well as on land. Overall, the analysis revealed the 18 richest multi- taxon
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centers of endemism, of which 10 were considered to be marine biodiversity hotspots.

Furthermore, 8 of 10 marine biodiversity hotspots and 14 of 18 centers of endemism

were found to be adjacent to terrestrial biodiversity hotspots, suggesting a possible

integration among terrestrial and marine conservation (Roberts et al., 2002).

1.4.2 Criticism of biodiversity hotspots

Since its introduction, the concept of hotspots was used as a key strategy for global

conservation action. For this reason, it has become the principal global conservation-

prioritization approach, attracting over $1 billion in conservation investment (Sloan

et al., 2014). The approach is thus partly economic and it is based on the fact that

it is not possible to protect the full range of biodiversity since it would certainly not

be a realistic target. Basically, biodiversity conservation requires prioritization to be

effective, if only because funds are limited and must be allocated carefully (Myers, 2003).

Therefore, among many others, entities like Conservation International, have explicitly

adopted the hotspot concept as a central conservation-investment strategy (Sloan et al.,

2014).

In a 2003 essay entitled "Conserving Biodiversity Coldspots", conservation biolo-

gists Peter Kareiva and Michelle Marvier argued that non-governmental organizations,

foundations and international agencies have been seduced by the simplicity of the hotspot

idea, and significant financial resources (Dalton, 2000) have been directed toward them.

In particular, the two conservation biologists argued that coldspots, despite begin poorer

for number of species, play an important ecological role. By investing exclusively in

hotspots and ignoring coldspots the risk is to lose large, natural and ecologically im-

portant areas that contribute to many ecosystem services (Kareiva and Marvier, 2003).

On the same wavelength, Jepson and Canney (2001) have warned that the biodiversity

hotspots approach provides only a partial response for the conservation. The authors

agree that promoting biodiversity hotspots, as a ”silver bullet” strategy for conserving
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the most species for the least cost is a risk in complex areas of international policy, such

as biodiversity conservation, because decision makers may view it as a cure-all. As a

result, they conclude that spatial priorities and public policy cannot be determined on

the basis of simple species counts, which is the foundation of the biodiversity hotspot

approach. Furthermore, as pointed out by Smith et al. (2001) biodiversity hotspots

entirely ignore regions of ecological transition. Hence, the authors promote a more

comprehensive approach to include regions important to the generation and maintenance

of biodiversity, regardless of whether they are "species-rich". Recently, Stork and Habel

(2014) have emphasized the lack of consideration for the role of invertebrates (e.g.,

herbivorous insects, herbivorous fungi and nematodes) in decision-making about global

biodiversity hotspots, suggesting a more detailed analysis of the role of plants as umbrella

species for these herbivorous organisms.

Furthermore, since data on species distributions are usually scarce the conservation

of an entire global hotspot may be difficult and unsustainable. In this regard, Cañadas

et al. (2014) pointed out the need to focus strategies on small areas that represent

maximum diversity and/or endemism. Finally, for some of the same reasons that fueled

disputes for terrestrial ecosystems, hotspots on coral reefs (Roberts et al., 2002) have

also been the subject of controversy (Baird et al., 2002; Hughes et al., 2002). In this

respect, Parravicini et al. (2014) have recently identified tropical reef areas that are

critical for preventing the loss of fish taxonomic and functional biodiversity. These

areas, such as the Western Indian Ocean, differ in important ways from the fish richness

hotspots previously identified close to the Indo-Australian Archipelago.

These criticisms highlight the problems associated with the idea of biodiversity

hotspots, even though Myers (2003) (whose criteria include endemism and species

richness) points out that other criteria are not ruled out by the theory itself. Essentially,

the author affirms that the hotspot approach does not exclude other areas that need

conservation, but nevertheless claims that a conservation strategy will always need
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a measure to determine priorities. In conclusion, although not completely free from

criticism, the hotspot approach has become a key tool to guide conservation efforts and

presently plays a leading role in decision-making regarding conservation cost-effective

strategies (O’Donnell et al., 2012).

1.5 Hotspots identification

Biodiversity hotspots are particular areas where extraordinary concentrations of

biodiversity exist. Although hotspots have also been identified through different ways

(Hoekstra et al., 2005), these areas are usually defined by one or more species-based

metrics (number of species - species richness; number of species restricted to a particular

area - endemic species richness; and number of rare or threatened species) or focusing

on phylogenetic and functional diversity in order to protect species that support unique

and irreplaceable roles within the ecosystem.

1.5.1 Species-based metrics

A central issue in conservation today is to identify biodiversity-rich areas. Species

richness (SR) has been the main focus of conservation studies and is still widely used,

mainly because it is easy to quantify and interpret data (Davies and Cadotte, 2011). In

particular, conservation planning has traditionally used richness information combined

with different irreplaceability measures (e.g., endemism or rarity) to prioritize some

regions over others (e.g., biodiversity hotspots). In the methodology proposed by Myers

et al. (2000), the key factors considered for the analysis were: (1) numbers of endemics

and endemic species/area ratios for both plants and vertebrates, and (2) habitat loss.

More precisely, vascular plants were chosen as the metric for endemism because fairly

well known and essential to all forms of animal life, while vertebrates (four groups:

mammals, birds, reptiles and amphibians) were mainly used to determine congruence



27

and to facilitate other comparisons among the hotspots. However, the analysis omitted

invertebrates because they are not yet well documented and fish, because of lack of good

data. Finally, the boundaries of the hotspots were determined by examining biological

commonalities with each of the areas featuring a separate biota or community of species

that fits together as a biogeographic unit. Therefore, selecting biodiversity hotspots

requires data on species distributions together with the definition of a threshold useful

to define the boundaries between hotspots and non-hotspots (Cañadas et al., 2014).

Increasing evidence, both in marine and terrestrial environments, shows that

hotspots of total species richness are not always concordant with hotspots of endemism

or threat. Concentrations of threatened species or local endemics may also occur in

areas of lower richness (Hughes et al., 2002). Orme et al. (2005), using a global database

to map the geographical distribution of birds, found an alarming lack of congruence

between hotspots defined with the criterion of species endemism and areas of high species

richness and concentrated threat. Furthermore, species richness for one taxon may not

match perfectly with hotspots in the richness of another (Davies and Cadotte, 2011). For

example, while Lamoreux et al. (2006) have found high congruence between conservation

priorities for terrestrial vertebrate species, Grenyer et al. (2006) reported low congruence

between conservation priorities for mammals, birds, and amphibians. Recently, a new

assessment of global conservation priorities (Jenkins et al., 2013) mapped global priority

areas using the latest data on mammals, amphibians, and birds at a scale 100 times finer

than previous assessments (Ceballos and Ehrlich, 2006; Grenyer et al., 2006; Lamoreux

et al., 2006). This analysis has identified areas in the world that are currently ignored by

biodiversity hotspots but critical for preventing vertebrate extinctions. Finally, focusing

on small areas Cañadas et al. (2014) showed that even in areas that are noted to be

hotspots, the endemic-plant richness is not uniformly distributed, but rather depends

largely on environmental conditions. Specifically, according to the authors, it is possible

to identify hotspots within hotspots that can be organized in a hierarchy helping to

focus conservation efforts at different scales within a given hotspot.
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1.5.2 Phylogenetic diversity

The use of species-based metrics remains the primary method for characterizing and

mapping the distribution of biological diversity and thus to identify areas as biodiversity

hotspots. However, because diversity, or evolutionary history, is distributed unequally

between taxa as well as between areas, taking into consideration only traditional

species diversity may not be sufficient to fully capture differences among species (Chao

et al., 2015). Therefore, to quantify biodiversity the focus shifted from pure species

counting to a more integrative approach that quantifies the evolutionary information

represented within groups of taxa (i.e., phylogenetic diversity, PD) along with the

diversity of ecological traits (i.e., functional diversity, FD). The loss of FD or PD per

unit of habitat loss may be a better indicator of ecosystem vulnerability, providing a

more comprehensive measure than those based exclusively on the loss of single species.

Recently, D’agata et al. (2014) showed that despite a minimal loss of fish richness that can

occur along a human pressure gradient, many functions and phylogenetic lineages might

be lost. PD might thus be more useful than species richness in maintaining ecosystem

services (Cadotte and Jonathan Davies, 2010). Its use redefines the identification of

species of conservation interest by taking into consideration the evolutionary information

represented within groups of taxa, providing additional information to guide conservation

decision-making. Phylogenetic information is increasingly being used in ecological studies

(Cadotte et al., 2010) in parallel with an increasing number of new and sophisticated

metrics that incorporate different community attributes such as abundance information

and geographical rarity (Cadotte and Jonathan Davies, 2010; Cadotte et al., 2010).

Probably, the increasing availability of molecular data and the recent advances in

software and phylogenetic methods (Roquet et al., 2013) will enhance even more the

use of phylogenetic information to better characterize and describe biodiversity patterns

and ecosystem functioning.
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1.5.3 Which metric?

A limiting factor in conservation assessments is the availability of appropriate

and quality data on spatial information upon which the effectiveness of conservation

planning depends. For example, assessing endemism in the western Amazon (one of

the world’s last high-biodiversity wilderness areas) continues to be a major challenge

and vast areas have yet to be surveyed by scientists, and in consequence many species

distributions are poorly known (Bass et al., 2010). Moreover, biodiversity is not an easy

concept to measure and the choice of metrics to define hotspots is thus an important and

sensitive issue that may lead to different conclusions regarding the future positioning of

hotspots (Possingham and Wilson, 2005). For instance, a recent study by integrating

abundance and functional traits revealed new global hotspots of fish diversity and

identified unrecognized biodiversity value in some temperate and southern hemisphere

marine regions (Stuart-Smith et al., 2013).

Species richness has been a convenient criterion to identify hotspots (Cadotte

and Jonathan Davies, 2010). However, as noted above, biodiversity metrics might

better reflect spatial diversity patterns for biogeography and conservation planning

by considering evolutionary history and functional diversity. Although measures of

species richness assume all species have equal weights, a common criticism of the

alternative diversity metrics is that they are sensitive to the calculations and the

weighting scheme used to construct them (Tucker et al., 2012). As evidenced by Cadotte

and Jonathan Davies (2010), the reliability of these metrics is closely linked with the

quality of the underlying phylogenetic and distributional data. The choice of a particular

metric can, therefore, significantly alter conservation priority. Recently, understanding if

there is a broad agreement between the results obtained from the use of different metrics

has become of common interest to correctly detect biodiversity distribution patterns

and identify diversity hotspots. For instance, Mazel et al. (2014) have found that SR,

PD and FD are not necessarily good surrogates for each other. Furthermore, the effect
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of considering PD metrics in existing conservation planning is still debated (Rosauer

and Mooers, 2013; Winter et al., 2013). Recently, Zupan et al. (2014) investigated

patterns of PD in relation to species diversity across three european taxonomic groups

(birds, mammals and amphibians) to evaluate their congruence and to emphasize areas

of particular evolutionary history. Results indicated that phylogenetic diversity patterns

strongly mismatch in space between groups and demonstrated that the diversity of

one taxonomic group is not representative of the diversity of other groups. Very likely,

the increasing availability of phylogenetic data and advances in informatics tools may

continue to facilitate a rapid expansion of studies that apply PD metrics and methods

to community ecology (Cavender-Bares et al., 2009). Finally, the development of ever

more sophisticated metrics (Rosauer et al., 2009; Cadotte et al., 2010) may help to

provide new and significant information into the mechanisms that underlie the current

patterns of biological diversity across different spatial scales.

Focusing our attention once again on species-based metrics, it is possible to consider

the conservation status, which indicates the probability that a given species is vulnerable,

at risk or close to extinction. For example, the IUCN Red List of Threatened Species

(http://www.iucnredlist.org/) was conceived for this purpose becoming through

time the most used system for assigning species’ threat status (Keith et al., 2014).

Nowadays the IUCN Red List may be used to aid effective conservation strategies by

incorporating genetic data (Rivers et al., 2014), in conjunction with models to detect

extinction risk from climate change (Keith et al., 2014) and to identify species at

extinction risk using global models of anthropogenic impact (Peters et al., 2015).

Finally, terrestrial biodiversity can be modeled at different scales using remote

sensing. Remote sensing is a useful tool to orient fieldwork, predict spatial patterns and

to improve species richness models (Camathias et al., 2013). Especially, remote sensing

can greatly aid conservation decisions, which are often made with relatively sparse

information (Pressey, 2004) providing high-resolution spatial data and continuously

(http://www.iucnredlist.org/)
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updated information on habitat status (area and degradation), alterations in species

diversity and distribution, and trends in pressures and threats. As summarized in a

recent review (Nagendra et al., 2013), different studies have used remote sensing tools

and satellite imagery to quantifying terrestrial biodiversity (e.g., Hernández-Stefanoni

et al., 2012; Mazor et al., 2013). Remote sensing shows thus great promise for monitoring,

managing protected areas and protecting biodiversity (see also Pettorelli et al. 2014 for

an up-to-date review). Basically, at this point, the improvement of existing technologies

together with a better availability of global data quality on species ecologies and

geographies represent an opportunity to improve our understanding on biodiversity

patterns and to make a difference in environmental management.

1.6 Marine hotspots

Oceanic ecosystems sustain the human well being by providing major services

like jobs and food supply. Due to climate change, physical and chemical conditions

marine ecosystems are changing with time (Doney et al., 2012). In particular, ocean

acidification represents a major threat to biodiversity (Sunday et al., 2014) whose

maintenance promotes ocean health and service provision (Worm et al., 2006). Overall,

the marine environment comprises two distinct and interconnected realms. The entire

area of the open water is the pelagic realm and the pelagic organisms are those that live

in the open sea away from the bottom. This is in contrast to the benthic realm, which

is a general term referring to organisms and zones of the sea bottom. Oceanic waters

and the deep-sea are here defined as waters and sea-floor areas over 200 m of depth.

1.6.1 Pelagic hotspots

The identification and monitoring of pelagic hotspots in marine ecosystems could

constitute an effective approach to ocean conservation and resource management. How-
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ever, the hotspot concept that fits well to more ”static” marine habitats such as coral

reefs (Roberts et al., 2002) is more difficult to apply in pelagic ecosystems (oceanic wa-

ters) where both boundaries and features are in constant movement due to the presence

of highly dynamic physical processes (Hazen et al., 2013). For instance, this aspect is

particularly evident in Arctic Ocean where oceanic fronts, polynyas or marginal ice zone,

act as local hotspots of both productivity and biodiversity. In this dynamic context, it is

thus important to examine biotic and abiotic environmental predictors (e.g., bathymetry,

shelf-breaks, sea surface temperature, chlorophyll-a) of hotspots occurrence in order to

explain their spatial distribution and persistence. As a consequence, the hotspot concept

applied to marine ecosystems has received somewhat mixed definitions (e.g., Piatt et al.,

2006; Worm et al., 2003; Sydeman et al., 2006). Overall, hotspots in the epipelagic

zone have been described as areas where, relatively to the surrounding environment,

particular and favorable physical condition promote high biological activity and thus

the aggregation of primary and secondary consumers (Palacios et al., 2006). In these

areas, upwelling, mesoscale eddies, and fronts may act in accordance with the local

geomorphology to generate conditions that greatly promote the availability of prey for

large fauna (Wingfield et al., 2011; Sigler et al., 2012). For example, seamounts are

fixed locations but can act as biodiversity hotspots, attracting top pelagic predators

and migratory species (Morato et al., 2010). Fundamentally, physical processes leading

to hotspot formation and persistence are different and operate through different spatial

and temporal scales. Mesoscale structure (10-1000 km; days to months) can determine

the occurrence and persistence of marine hotspots and provide criteria for defining areas

of high trophic transfer (Hazen et al., 2013). For example, cyclonic eddies enhancing

nutrient inputs to the surface ocean are important sources of biological production that

may contain high concentrations of biomass and probably affect the spatial and temporal

variation in top predator hotspots (Santora and Veit, 2013).

Finally, given the dynamic nature of pelagic hotspots the integration of shipboard

based studies with satellite remote sensing data may help to resolve possible spatiotem-
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poral mismatches (Hazen et al., 2013). Although limited to surface conditions, due to

their ability to sample local to global spatial scales over days to years, satellite-based

observations of ocean conditions offer the greatest opportunity to quantify the persis-

tence of many marine hotspots in space and time (Palacios et al., 2006). The primary

biological indicator accessible remotely from space is the phytoplankton chlorophyll-a

concentration, a good proxy of ocean productivity, which in turn has a significant effect

on marine biodiversity (Corliss et al., 2009). For instance, Suryan et al. (2012) used a

satellite-derived peak of surface chlorophyll-a as an index to identify seabird hotspots.

Recently, a variety of bio-optical and ecological methods (Brewin et al., 2014) have been

established to use satellite data to identify and differentiate between phytoplankton

functional types (PFTs) that are relevant proxies of ecosystem functioning. The attempts

to identify PFTs from space represent a new frontier, which no doubt has potential

for further improvement. Remote sensing of ocean color, besides being an established

tool to observe the global distribution of phytoplankton, may thus contain untapped

potential for marine biodiversity studies. However, it is just as important to realize that

remote sensing cannot provide all the answers. Recently, to provide support for the

assessment of the state of the marine ecosystem, Racault et al. (2014a) proposed a suite

of plankton indicators from different observing systems (e.g., mooring stations, ships,

autonomous floats and remote sensing) and subsequently have classified them in an

ecological framework that characterizes key attributes of the marine ecosystem. Finally,

remote sensing analysis can be used in fisheries management (Chassot et al., 2011) and to

characterize marine protected areas (Kachelriess et al., 2014) based on the dynamics of

oceanographic boundaries (and thus in areas beyond national jurisdiction which remain

vulnerable to uncontrolled exploitation) rather than on geographic boundaries employed

by traditional marine protected areas. As long-term time series become available in the

near future, remote sensing will offer opportunities to identify resilient pelagic marine

hotspots.
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1.6.2 Deep-water hotspots

Deep-sea ecosystems, which include the waters and sediments beneath approxi-

mately 200 m depth covering more than 65% of the Earth’s (Danovaro et al., 2010) are

going toward widespread changes in benthic ecosystems and the functions and services

they provide (Jones et al., 2014). In particular, biodiversity hotspots such as seamounts,

canyons, and cold-water coral reefs (Ramirez-Llodra et al., 2010), may be projected to

experience changes in benthic food supply (Jones et al., 2014) with a significant impact

on the distribution of species richness (Gambi et al., 2014). However, because of the

vastness and remoteness of the habitats (the majority of which are found in international

waters) the management and conservation of deep-sea ecosystems is not an easy task

(Ramirez-Llodra et al., 2010) and several key questions are still waiting for an answer.

Only recently deep-sea biodiversity was incorporated in the analysis of global biodiversity

through international monitoring programs (Weaver et al., 2004; Brandt et al., 2014),

the outcomes of which might contradict the assumptions and paradigms advanced in

the past (Danovaro et al., 2014). For instance, recent results showed the existence of an

exponential relationship between ecosystem functioning and deep benthic biodiversity

(Danovaro et al., 2008). These new observations suggest that (1) open continental slope

systems and deep basins are characterized by positive functional interactions between

different seafloor organisms and (2) indicate that a considerable biodiversity loss in

deep-sea ecosystems might be lead to a drastic abatement of the key ecosystem processes

(Danovaro et al., 2008, 2009). However, the two major trends in deep-sea biodiversity,

the latitudinal and bathymetric gradients, are still strongly debated.

Preliminary results based on a large dataset collected during a collaborative project

have provided new insights into latitudinal patterns (Danovaro et al., 2009) but their

existence in deep-sea habitats remains still debated (Berke et al., 2014). For instance,

while findings suggest that deep-sea diversity in the Southern Ocean presents high levels

of biodiversity (Brandt et al., 2014) in the Northern Hemisphere studies with larger and
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more robust datasets are required to fill data gaps. In the Arctic, apart from works that

have investigated the distribution and diversity of benthic fauna in specific areas of the

Arctic sea (Meyer et al., 2014), not many studies have been carried out to explicitly

investigate the relationship between biodiversity and ecosystem functions (Link et al.,

2013). However, a recent review that has achieved an inventory of benthic diversity of

pan-Arctic shelves (Piepenburg et al., 2011), seems to confute the common paradigm

of low Arctic diversity, providing evidence that Arctic shelves are not particularly

impoverished.

About the bathymetric gradient, qualitative and quantitative sampling studies

indicated a relationship between diversity and depth with a peak at mid-slope depths

(Ramirez-Llodra et al., 2010). However, although some hypotheses together with

biological and environmental factors have been proposed to explain why species diversity

changes as a function of depth, the mechanisms that potentially control bathymetric

patterns have not yet been fully understood (Danovaro et al., 2009). For instance, some

abyssal regions (e.g., the Equatorial Pacific and Southern Ocean) are characterized

by very high diversity (Ramirez-Llodra et al., 2010). The rate, nature and spatial

variability of food supply can play a key role in modulating ecosystem structure and

function (Smith et al., 2008). Recently, a long time series data was used to document

the importance of large episodic pulses of particulate organic carbon (POC) as vital

food supply for abyssal communities (Smith Jr et al., 2014). The analysis of time

series reveals that in the past few years these pulses have increased in magnitude. Such

increases in food supply that appears to change the structure and functioning of deep-sea

communities seem to be connected with changes in surface ocean conditions (Smith

et al., 2013). These outcomes suggest that different taxa may display different spatial

patterns with increasing depth and thus, as evidenced by other authors (Ramirez-Llodra

et al., 2010), the hump shaped curve (Weaver et al., 2004) does not represent the general

rule. Certainly, topographic and geological features may also play a key role in shaping

the biodiversity spatial patterns (Danovaro et al., 2009). For instance, seamounts can
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act as biodiversity hotspots, attracting top pelagic predators and migratory species,

such as whales, sharks, tuna or rays (Morato et al., 2010), as well as hosting a seafloor

fauna with a large number of endemic species (Stocks and Hart, 2007). Considering

the particularity and importance of these particular areas (Clark et al., 2010) a new

method that uses seamounts has been recently proposed (Clark et al., 2014) for the

selection of candidate "Ecologically or Biologically Significant Marine Areas" (EBSAs).

Certainly, the development of new methods, international monitoring programs and new

technologies can promote, as advocated by some organizations such as Convention on

Biological Diversity (CBD), the conservation of open-ocean and deep-sea ecosystems.

1.7 Biodiversity conservation and priorities

Biodiversity conservation, for several reasons (e.g., climate change), cannot be

considered an easy task and the establishment of priorities therein is complex. Given

this intrinsic difficulty, developing a global biodiversity observation system might look

something insurmountable (Pereira et al., 2013). However, a growing number of en-

vironmental organizations together with the scientific community are working on a

number of different approaches (Table 2) to identify biodiversity patterns, threats and

locations for future acquisition or management (Schmitt, 2011). These approaches,

which prioritize globally important areas for biodiversity conservation, are based on two

key ecological selection criteria (vulnerability and irreplaceability) and can be grouped

into three main categories: proactive, reactive and representative (Schmitt, 2011). Like

the hotspot approach, these efforts usually depend on species as the relevant unit of

biodiversity, some important biodiversity dimensions, such as genetic diversity is often

lacking (Pereira et al., 2013) and none of these approaches directly incorporate economic

costs (Brooks et al., 2006). However, although their importance is still debated (Duke

et al., 2013), economic costs could represent an important step in conservation planning.

For instance, a recent study (Venter et al., 2014) clearly demonstrates that considerable
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increase in global protected area coverage of species could be achieved at minimal

additional cost with a consequent improvement in biodiversity trends (Butchart et al.,

2012).

Table 2: The proactive, reactive and representative approaches used for the selection of
biodiversity conservation priority areas at global scale. All the approaches are based on
a combination of the ecological criteria of vulnerability and irreplaceability (Modified
from Schmitt 2011)

Approach Organization Vulnerability Irreplaceability

Proactive approaches

Frontier forests World Resources Institute Low Low

Last intact forest landscapes Greenpeace Low Low

Last of the wild Wildlife Conservation Society Low Low

Wilderness areas Conservation International Low Low

High biodiversity wilderness Conservation International Low High

Reactive approaches

Biodiversity hotspots Conservation International High High

Alliance for Zero Extinction (AZE)* 52 Conservation organizations High High

Key biodiversity areas (KBAs)* Conservation International High High

Birdlife International

Plantlife International

Important Bird Areas (IBAs)* Birdlife International High High

Representative approaches

Centers of plant diversity WWF/IUCN High

Endemic Bird Areas (EBAs) Birdlife International High

Global 200 WWF High

Megadiversity countries Conservation International High

*Site-specific approaches

Incorporating information on costs and biodiversity benefit could thus provide a

more cost-efficient allocation of limited conservation resources. In this respect, results

from a recent study (Waldron et al., 2013) showed that funding for conservation measures



38

is scarce despite the high levels of threatened biodiversity. Finally, as evidenced by

Duffy et al. (2013), there is not a proactive marine biodiversity observation network for

monitoring and evaluating global ocean biodiversity.

Another issue is the loss of habitat structure that generally leads to a decline in

species richness and biomass. The combined impacts of climate change and land use are

expected to drive unprecedented rates of environmental change and biodiversity loss

(Riordan and Rundel, 2014). In particular, climate change is likely to have a large impact

on biodiversity, from organisms to biomes (see Bellard et al. 2012 for an exhaustive

review). In this respect, recent studies (Bellard et al., 2014a,b) examined the potential

effects of global changes on hotspots. Results showed that 19% of the insular biodiversity

hotspots might be entirely submerged by the global sea level rise while, by a combined

effects of global changes, hotspots might experience an average loss of 31% of their area,

with some hotspots more affected than others (e.g., Polynesia–Micronesia). Approaches

that integrate climate change adaptation into conservation planning (see Watson et al.

2012 for a review) are vital to monitor biodiversity responses and thus to maintaining

the resilience of hotspots (Bellard et al., 2014b).

Finally, other dimensions of the problem, such as ecosystem services, need to be

considered as well. Basically, changes in biodiversity can influence ecosystem processes

and an alteration of these can influence ecosystem services (Díaz et al., 2006). Although

there is still disagreement in the scientific community (Reyers et al., 2012; Schröter

et al., 2014), ecosystem services-based strategies could be used for specific conservation

actions (Bhagabati et al., 2014) and for protected areas designation (Potts et al., 2014).

Anyhow, the exploration of possible congruencies between the targets of protecting

ecosystem services and conserving biodiversity (Turner et al., 2007) is still difficult. The

absence of credible, reproducible and sustainable frameworks makes the integration of

ecosystem services into decision making still debated (Daily et al., 2009).
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1.8 Conclusion

In 1988, Norman Myers published the first of a series of high-impact articles on

global biodiversity hotspots that opened the way for a new strategy of nature conservation.

Although not entirely free from criticism, the hotspot approach has played an important

role in conservation prioritization. Since it is not possible to conserve all biodiversity

due to lack of resources, international conservation agencies have used it as the most

effective approach to minimize species extinctions on a global scale. However, focusing

all the conservation attention on biodiversity hotspots could create a disproportionate

impact on the maintenance of biodiversity in other biomes. For instance, although desert

ecosystems cover 17% of the world’s landmass and harbor surprisingly high biodiversity,

they have not received substantial financial support for conservation actions (Durant

et al., 2014). An optimal conservation network would then include both areas with high

levels of diversity, as well as larger coldspots that are home to rare species (Kareiva and

Marvier, 2003). Not surprisingly, recent results emphasize the importance of rare species

conservation and a more detailed understanding of the role of rarity and functional

vulnerability in ecosystem functioning (Mouillot et al., 2013). Basically, coldspots could

be as good as hotspots for directing conservation strategies since they might provide

important ecosystem services. As pointed out by Bøhn and Amundsen (2004), an

interesting study (Price, 2002) showed that stressful marine environments with low

species richness could unexpectedly be both hotspots and coldspots of biodiversity. This

may seem unusual, but as mentioned by the authors it represents a lack of focus on the

ecological processes and interaction between organisms. Essentially, with the loss of the

diversity of interactions and processes within and between organisms, the major risk is

to irreversibly disrupt the integrity of the ecosystems and consequently the possibility

to preserve functions and evolutionary processes indispensable to the maintenance and

creation of new life (Bøhn and Amundsen, 2004).

Furthermore, another dimension of the problem, such as the incongruence among
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diversity metrics, needs to be considered as well. The identification of biodiversity

hotspots frequently relies on the basis of partial knowledge and is commonly based on

an assumption that areas significant for well-known species are also important for other

species. This implies that measures of diversity in different groups of organisms are

highly correlated, but as we have seen, it may not always be necessarily true. Nonetheless,

as previously reported, the development of new metrics that consider multiple aspects

of biodiversity could help to provide new insights into the mechanisms that underlie

the current patterns of biological diversity. Nowadays, an increasing number of studies

(e.g., Daru et al., 2015) reinforce the need to adopt more integrative strategies, which

considering evolutionary components and geographical distribution data, can better

identify areas of high conservation priority.

Finally, it is becoming clear that the biodiversity hotspots approach represents a

shortcut for a more complicated concept that is part of a bigger picture that includes

consideration of ecosystem services, policies, costs, social preferences, and other factors,

such as human activities and climate change. As mentioned by several authors, we

need to go toward a common, modern and broader vision of biodiversity conservation.

Scientific community, together with decision-makers in agencies, governments and non-

governmental organizations, should thus carefully reconsider conservation priorities

and, possibly, in order to avoid duplicating efforts (Mace et al., 2000), establish close

partnerships (Berteaux et al., 2010; Maury et al., 2013) to develop successful conservation

strategies for biodiversity management (Heller and Zavaleta, 2009). Because of the

complexity of the topic and the unpredictability brought by climate change, there is no

single definitive praxis to effective conservation, but rather an interdisciplinary approach

(Pohl and Hadorn, 2008) that is necessary today as never before.
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2.1 Résumé

Certains indicateurs écologiques marins permettent de mesurer l’état des écosys-

tèmes pélagiques. C’est le cas de l’apparition de l’efflorescence, qui nous prévient des

possibles changements dans les interactions trophiques et les processus biochimiques.

Cependant, représenter la phénologie de l’efflorescence du phytoplancton en de hautes

latitudes où des observations à long terme sont rares ou non disponibles n’est pas une

mince tâche. Un algorithme à fonction orthogonale empirique d’interpolation de don-

nées a été appliqué aux images satellitaires quotidiennes de chlorophylle pour produire

des données à long terme (1998-2014) et sans nuages de la polynie des eaux du Nord.

L’efflorescence saisonnière a été modélisée à partir d’une approche multigaussienne grâce

à laquelle on a pu extraire une base de caractéristiques phénologiques. Ensuite, une

analyse de corrélation met en évidence l’influence des facteurs environnementaux, dont

la température de surface de l’océan, la fraction nuageuse, la tension du vent et la

concentration de la glace marine, par la modulation de la date de début de l’efflorescence,

sa durée et son amplitude. La variabilité annuelle de l’apparition de l’efflorescence semble

tributaire d’un fragile équilibre entre les conditions océanographiques et météorologiques.

Ainsi, l’efflorescence durera plus longtemps les années caractérisées par une plus longue

période d’eaux libres et moins longtemps celles où la couverture de glace de mer sera plus

étendue. Un déclin remarquable de l’amplitude de l’efflorescence du phytoplancton a été

observé au cours de la période de dix-sept ans étudiée. Ces résultats croisés désignent

les eaux du Nord comme un secteur sensible au climat, où l’écosystème pélagique marin

semble mener à la baisse des concentrations en chlorophylle. Les séries temporelles

par satellite demeurent encore trop courtes, cependant, pour qu’on soit en mesure de

distinguer entre la variabilité d’une année ou d’une décennie à l’autre et un signe du

changement climatique. Mais si ces changements devaient persister, les eaux du Nord

pourraient ne plus représenter encore longtemps ce productif oasis régional qui abrite de

prospères populations de zooplancton et de superprédateurs.
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2.2 Abstract

Marine ecological indicators can be used to assess the condition of the pelagic

ecosystems. The bloom onset provides a warning bell for possible changes in trophic

interactions and biogeochemical processes. However, depicting the phenology of phyto-

plankton blooms at high latitudes, where long-term observations are sparse or unavailable,

is not a straightforward task. A data-interpolating empirical orthogonal function algo-

rithm was applied to daily satellite-retrieved chlorophyll-a images to produce a long-term

(1998-2014) and cloud-free data set over the North Water (NOW) polynya. The seasonal

bloom was modeled using a multi-Gaussian approach from which a baseline of phenolog-

ical characteristics was extracted. The correlation analysis highlights the influence of

environmental factors, such as sea surface temperature, cloud fraction, wind stress, and

sea-ice concentration, in modulating the bloom start date, its duration, and amplitude.

The year-to-year variability in bloom onset appears to be controlled by a delicate balance

between oceanographic and meteorological conditions. Blooms last longer during years

characterized by a longer open-water period and are shorter during those character-

ized by greater sea-ice coverage. Noteworthy is the decrease in phytoplankton bloom

amplitude over the 17 years examined. Collectively, these outcomes depict the NOW

as a climate-sensitive region in which the pelagic marine ecosystem seems to be going

toward a decline in chlorophyll-a concentrations. Satellite time series are still too short

to differentiate between inter-annual variability, inter-decadal variability, and climate

change signal. Should these changes persist; however, the NOW may no longer act

as a productive regional oasis supporting thriving populations of zooplankton and top

predators.

Keywords: phenology, phytoplankton, NOW polynya, Gaussian model, remote-

sensing, physical forcing
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2.3 Introduction

The Northern Hemisphere continues to experience profound environmental modifi-

cations in response to anthropogenic pressures (Gillett et al., 2008). One of the most

evident changes is the decline of the Arctic sea-ice cover, which plays a crucial role in

regulating light for phytoplankton primary production and the exchange of heat and

moisture between the upper ocean and the atmosphere. Recent models and satellite

observations show changes in the age of sea ice through a shift from multiyear to

first-year types (Maslanik et al., 2011), drastic reductions in their extent and thickness

(Stroeve et al., 2012), and an increasing of the melt season length (Stroeve et al., 2014).

These remotely observed changes in the Arctic sea-ice cover were recently corroborated

using a time series (2003-2012) constructed from direct observations (Renner et al.,

2014). Profound alterations of the seasonal cycle of the Arctic seaice cover may lead to

unexpected changes in Arctic marine ecosystem (Wassmann et al., 2011). Recent declines

in minimum Arctic sea-ice extent and increasing cloudiness have affected, although

unevenly, primary production over the Arctic Ocean (Petrenko et al., 2013; Bélanger

et al., 2013a; Arrigo and van Dijken, 2015). For instance, the timing of sea-ice retreat has

had a strong influence on the timing of the pelagic phytoplankton bloom (e.g., Ji et al.,

2013; Kahru et al., 2011), leading to changes in phytoplankton community structure (Li

et al., 2009; Fujiwara et al., 2014). Furthermore, these changes may consequently cause

a temporal mismatch between primary producers, arctic grazers, and apex predators

(Søreide et al., 2010). Finally, the delayed formation of sea ice and a longer exposure

of the ocean surface to the wind force are probably enhancing momentum transfer to

the upper Arctic ocean in summer and in fall (Rainville et al., 2011), with an increase

in the occurrence of secondary blooms resulting from upward nutrient supply (Ardyna

et al., 2014).

Closely linked to sea-ice conditions, polynyas (large areas of persistent open water

surrounded by sea ice) are known as unique marine polar environments with peculiar
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physical features. Polynya areas provide favorable conditions for primary producers

by exposing surface water to solar radiation much earlier than adjacent ice-covered

waters (Tremblay et al., 2002b). They also constitute key habitats for Arctic upper

trophic predators, such as seabirds and marine mammals (Karnovsky and Hunt Jr, 2002;

Heide-Jørgensen et al., 2013), serving as hotspots of both productivity and biodiversity

(Marchese, 2015). Consequently, polynyas are usually considered as oceanographic

"windows" through which it is possible to assess and evaluate the state of the Arctic

marine ecosystem (Smith Jr and Barber, 2007; Tremblay and Smith Jr, 2007). Because

changes in sea-ice dynamics and warming sea surface temperature (SST) will affect the

onset and the lifespan of polynyas, as well as carbon flux and food webs, monitoring

these particular areas is, therefore, of crucial importance.

Among the different Arctic polynyas (which number approximately 61, Barber

and Massom 2007), the North Water (NOW) polynya located between Greenland and

Ellesmere Island in northern Baffin Bay (Figure 5a) is the largest (∼85,000 km2) and

historically one of the most biologically productive marine areas of the Arctic Ocean

(Klein et al., 2002; Odate et al., 2002). The NOW is usually considered as a latent

heat polynya, whose recurrent formation is mostly due to the divergent flow of sea

ice away from an ice arch (or ice bridge) forming at the southern end of Nares Strait

(Dumont et al., 2009). The NOW starts to expand in late March or early April and

usually reaches its greatest extent in late July when it eventually opens to the bay and

stops being a polynya in the strict sense (Tremblay et al., 2002b). The ice bridge, which

represents the northern extent of the polynya, is also essential for the maintenance of

the polynya. It prevents sea ice from drifting southward into northern Baffin Bay and

allows strong northerly winds and sensible heat flux over localized areas to promote

open water conditions (Ingram et al., 2002; Tremblay et al., 2006b). Specifically, the

supply of oceanic heat occurs along the Greenland side due to upwelling and vertical

and tidal mixing of relatively warm Atlantic waters yielded by a branch of the West

Greenland Current. Conversely, cold and silicate-rich Pacific-derived water joins the
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NOW region from the North through Smith Sound (Tremblay and Smith Jr, 2007).

Once the polynya has formed, the interplay of physical factors, such as light availability,

density stratification, wind mixing, and advection of nutrient into the euphotic layer,

combines to support high levels of productivity in this region (Mei et al., 2002; Tremblay

et al., 2002b).

Given its biological importance, the NOW has been the site of a conspicuous number

of studies and oceanographic missions mostly from 1997 to 2000 via the International

North Water Polynya Study and more recently the ArcticNet field program (2005-

onward). Overall, these studies suggest that the NOW ecosystem is subject to large

inter-annual variability in primary production and whether its productivity increases

or decreases will be strongly dependent on physical environmental factors (i.e., the

formation of the Smith Sound ice arch; Kwok et al. 2010). A recent analysis (Bélanger

et al., 2013a), using a satellite-based model to assess primary production trends (1998-

2010) in Arctic waters, showed a substantial decrease in annual primary production

over the NOW, suggesting changes in phytoplankton phenology. Based on seasonal

nutrient drawdown, Bergeron and Tremblay (2014) inferred a 65% decline in the net

community production from 1997 to 2011, which was attributed to freshening and

increasing stratification. Recently, a field-based study (Blais et al., 2017) has also

emphasized a sharp decrease in phytoplankton biomass and diatom abundance probably

due to changes in sea-ice dynamics and water column stratification.

In this context, the action of specific physical processes is thus of particular

importance. For instance, the interplay between strong wind activity and calm periods

may foster surface nutrient replenishment and a more productive and long-lived bloom

(Tremblay et al., 2002b). Since the observed changes in northern Baffin Bay would

affect the supply of nutrients in the surface layer, the biological response of the pelagic

ecosystem should be detectable using remote-sensing data. Although several satellite

studies have investigated phytoplankton phenology at the global scale and over large
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oceanic areas (e.g., Henson et al., 2006; Frajka-Williams and Rhines, 2010; Sasaoka

et al., 2011; D’Ortenzio et al., 2012; Racault et al., 2012; Sapiano et al., 2012), only a

few studies (Kahru et al., 2011; Ji et al., 2013; Ardyna et al., 2014) on phytoplankton

phenology have been carried out in Arctic waters, where extensive cloudiness may

obscure the extent and magnitude of the bloom.

Given the lack of specific information about the phytoplankton phenology over

the NOW, the specific objectives of this study were twofold:

1. To fully capture in NOW waters the variability in bloom characteristics through

the development of a novel framework, which is based on the combined use of

cloud-free chlorophyll-a concentration [Chl-a; a proxy of phytoplankton biomass

(Huot et al., 2007)] images and Gaussian models;

2. To describe inter-annual changes in phytoplankton phenology and to determine

the extent to which contrasting effects of environmental factors may modulate the

initiation, amplitude, and duration of phytoplankton blooms in the NOW polynya.

2.4 Material and methods

2.4.1 Cloud-free satellite chlorophyll-a time series

The area lying between 81°N-74°N and 82°W-63°W was selected to study changes

in phytoplankton phenology over the NOW polynya (Figure 5a). For the period April-

September of 1998-2014, daily time series of satellite-derived (Case I water) Chl-a (mg

m−3) binned at 25 km of spatial resolution (to reduce the frequency of spatial data

gaps), estimated using the Garver-Siegel-Maritorena (GSM) algorithm (Maritorena

et al., 2002), were obtained from the GlobColour Project (http://hermes.acri.fr).

The latter, combining (when possible) data from different sensors [SeaWiFS (1998-

2010), MERIS (2002-2011), MODIS-Aqua (2002-), and VIIRS (2012-)], provided an

http://hermes.acri.fr
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enhanced spatiotemporal coverage (Maritorena et al., 2010) useful to partially overcome

the problem of data gaps, thus representing the best available data for phytoplankton

phenology studies (Ferreira et al., 2014). However, in the Arctic Ocean, clouds and fog

near the sea surface can affect ocean-color data availability and estimates (Cole et al.,

2012; Ferreira et al., 2014): data can be so sparse that the full seasonal phytoplankton

cycle may not be detected. One solution is to bin several years of ocean color data to

minimize data gaps in the time series and increase the goodness of phenological fitting

procedure (e.g., Ardyna et al., 2014; Lacour et al., 2015). However, such an approach

may mask the inter-annual variability in physical forcing and biological response, which

may be very large at high latitudes (e.g., Frajka-Williams and Rhines, 2010).

Given the presence of missing values in the data set used here, we applied the

data interpolating empirical orthogonal functions method (DINEOF; Beckers and Rixen

2003) to produce high temporal and spatial resolution cloud free Chl-a time series. The

iterative DINEOF technique, by identifying the dominant spatial and temporal patterns,

allowed a more accurate reconstruction of missing data without any a priori statistical

information of the analyzed field (Alvera-Azcárate et al., 2005). This method has been

shown to be appropriate for missing data reconstruction and prediction (Taylor et al.,

2013). It has been used both for physical and biological data, such as surface Chl-a

(Mauri et al., 2007; Sirjacobs et al., 2011; Wang and Liu, 2014), and has recently been

applied to phytoplankton phenology studies (Corredor-Acosta et al., 2015).

To meet the DINEOF requirements, we excluded each daily image (spatial dimen-

sion) holding less than 5% of the expected data. The same criterion was applied through

the temporal dimension, excluding all pixels holding less than 5% of valid data during

the course of the open water season. Finally, the remaining spatial domain (67% of the

original data set) was log-transformed prior to interpolation. Once the DINEOF method

was applied (Taylor, 2016), for each interpolated image, a daily sea ice-mask (based

on a 15% threshold - see the "Sea ice concentration" subsection) was superimposed to
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Figure 5: North Water polynya is situated in northern Baffin Bay
between Canada and Greenland. Smith Sound, the Arctic sea passage
between Greenland and Ellesmere Island, links Baffin Bay with Kane
Basin. Nares Strait (not indicated in the map) is the waterway between
Ellesmere Island and Greenland that includes, from south to north,
Smith Sound, and Kane Basin, respectively (a); monthly climatology
of merged satellite chlorophyll-a data from April 1998 to September
2014 at 25 km of resolution within the NOW polynya: 74°N-81°N,
82°W-63°W (b); time series of 8-day composite images of chlorophyll-a,
averaged for the NOW polynya from April 1998 to September 2014 (c)

avoid interpolation over ice-covered areas. Finally, to reduce the effect of outliers and to

have an appropriate temporal resolution to describe the bloom phenology, daily images

were aggregated over time to create 8-day composite Chl-a using the interquartile mean

(Land et al., 2014). The resulting data set had about 36% more data, showing a good

agreement (r2 = 0.98; rmse = 0.107) with the 8-day merged Chl-a composite directly

processed by the GlobColour team. The procedure described above is schematically

illustrated in Figure 6a.
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Figure 6: Workflow describing the multi-step tasks to obtain (a) 8-day
composite cloud-free chlorophyll-a images and (b) multiple-Gaussian
models approach to increase the number of fits.

2.4.2 Models and estimation of phenological metrics

To retain spatial patterns, four Gaussian models were fitted for each year on a

pixel-by-pixel basis (Platt and Sathyendranath, 2008) to the cloud-free time-series of
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8-day composite Chl-a images. The use of several Gaussian functions increased the

number of fits and provided a better capture of the bloom variability. However, if the

number of valid values for a pixel was less than the half of the time-series length (i.e.,

due to the continued presence of ice cover), the pixel was removed from the fitting.

The most complex model (see Table 3 for all model equations) used to describe the

characteristics of the annual bloom was a twopeak Gaussian (Zhai et al., 2012), which is

expressed as follows:

Chl (t) = ChlB + βt+ Chl1 exp
[

(t− tp1)2

2ω2
1

]
+ Chl2 exp

[
(t− tp2)2

2ω2
2

]
(1)

where ChlB (mg m-3) is the background value of Chl-a concentration, βt (mg m-3

day-1) is a linear time trend, Chl1 and Chl2 (mg m-3) correspond to the peak amplitudes,

ω1 and ω2 (days) are the standard deviations of the Gaussian curve and define the

temporal width of the bloom, and tp1 and tp2 (day of year) define the peak timing, the

date at which the maximum bloom occurs. The optimal parameter values that provide

the fit were determined using the Levenberg-Marquardt algorithm (LMA) for non-linear

regression (Elzhov et al., 2016). Finally, for each time series the best-fit model was

chosen by using the Akaike Information Criterion with a correction for finite sample

sizes (AICc; Burnham et al. 2011): smaller AICc values indicate a better-fitting model.

This procedure allowed the creation of phenological maps enabling the examination of

seasonal and inter-annual variations in bloom patterns (see Figure 6b).
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Table 3: Gaussian-models for the different types of seasonal phytoplankton cycles

Model name Type of annual cycle Fitted models

Single-peak Gaussian
Single bloom

Chl (t) = ChlB + Chl1 exp
[

(t−tp1)2

2ω2
1

]
Single-peak Gaussian with linear term Chl (t) = ChlB + βt+ Chl1 exp

[
(t−tp1)2

2ω2
1

]
Two-peak Gaussian

Double bloom
Chl (t) = ChlB + Chl1 exp

[
(t−tp1)2

2ω2
1

]
+ Chl2 exp

[
(t−tp2)2

2ω2
2

]
Two-peak Gaussian with linear term Chl (t) = ChlB + βt+ Chl1 exp

[
(t−tp1)2

2ω2
1

]
+ Chl2 exp

[
(t−tp2)2

2ω2
2

]

The phenological metrics obtained for each pixel, as illustrated in Figure 20 (annex

I), are summarized in detail in Table 4. In particular, the bloom start was determined

using a relative threshold: it is the date (day of year) at which the fitted function reached

the threshold of 20% of its maximum amplitude. This criterion was previously proposed

by Platt et al. (2009) and used by Zhai et al. (2012) to define the bloom initiation date

in Arctic and subArctic waters. Nevertheless, different thresholds (i.e., 15 and 25%)

were tested, but no significant differences in the results were detected (not shown).

Conversely, the bloom end is defined as the date at which the Chl-a decreased to

20% of the amplitude. The difference between bloom end and bloom start gives the

bloom duration. The bloom amplitude is defined in correspondence of the peak timing,

as the highest value of Chl-a during the bloom event.

Table 4: Main bloom phenology parameters extracted for each year at each pixel

Parameters (unit) Description

1. Bloom start (day of year) Date at which Chl-a concentration rises above the defined threshold*

2. Bloom end (day of year) Date at which Chl-a concentration falls below the defined threshold*

3. Bloom duration (days) Difference between 1 and 2

4. Peak time (day of year) Date at which the Chl-a concentration reaches its maximum value

5. Bloom amplitude (mg m−3) The highest value of Chl-a concentration during the bloom event

6. Background Chl-a concentration (mg m−3) The baseline of Chl-a concentration determined by the fitted function

*See text for details
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2.4.3 Environmental parameters

Over the NOW polynya, physical oceanographic and meteorological conditions

may subject the start, the duration, and the amplitude of the bloom to inter-annual

variability. For instance, the rate at which the sea-ice melts and forms within the

polynya is of fundamental importance, since it determines ice concentration patterns

and stabilizes the upper water column (Ingram et al., 2002). Another important physical

parameter strictly interrelated with the sea-ice is the SST, which may directly affect

process rates (i.e., phytoplankton growth rate) but also reflect patterns of sea-ice retreat

and absorption of solar radiation into the upper water column. This latter process

may be influenced in part by the presence of cloud cover. In the Arctic, the cloudiest

months are in summer and fall when the sea ice starts to melt and a greater portion of

water is exposed to the atmosphere (Chernokulsky and Mokhov, 2012). Finally, wind

plays an important role in maintaining the upper ocean structure within the NOW

polynya. In this region, winds are usually strongest in Smith Sound (see Figure 5a) due

to the topographic structure (Ingram et al., 2002). The time series of the environmental

parameters were retrieved from April to September for the years between 1998 and 2014.

The environmental parameters used in this study are described in the following sections.

2.4.3.1 Sea-ice concetration

Daily satellite-derived sea-ice concentrations (SIC) with a spatial resolution of ∼25

km × 25 km from SSM/I (1998-2007) and SSMIS (2008-2014) sensors were obtained

from the National Snow and Ice Data Center (NSIDC) and from their website at

http://nsidc.org (Meier et al., 2013). SIC is defined as the percent of a pixel area

covered by sea ice. The use of sea-ice data was twofold. First, to avoid Chl-a interpolation

over an ice-covered area, the sea-ice data were used to create a daily sea ice-mask based

on a 15% threshold. Second, we used daily sea-ice concentrations to compute the sea-ice

http://nsidc.org
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phenology: the day of the year when the ice concentration at each pixel dropped below

the threshold of 35% and later reached the same threshold again, was used as a proxy for

ice-retreat and freeze-up timing, respectively (similar to Ji et al. 2013). Consequently, for

each pixel, the open-water period (days) is defined as the period between the ice-retreat

and the freeze-up timing.

2.4.3.2 Sea-surface temperature

For the same period (1998-2014), the NOAA daily Optimum Interpolation (OI)

SST v2 data were obtained from the NOAA Physical Sciences Division, Earth System

Research Laboratory, from their website (http://www.esrl.noaa.gov/psd/). The data

have a spatial grid resolution of 0.25° (∼25 km × 25 km) and provide an interpolated

estimate of the SST for each day of the year combining satellite SST retrievals and SST

observations from ships and buoys. The OISST methodology includes a bias adjustment

step of the satellite data to in situ data prior to interpolation. For Arctic waters

and marginal ice zones, where in situ observations tend to be sparse, proxy SSTs are

computed from sea-ice concentrations (from satellite) above 50% using an empirically

derived linear regression equation with respect to SST observations. A description of

the complete OI analysis procedure can be found in Reynolds et al. (2007).

2.4.3.3 Cloud fraction

For the period 1998-2014, 8-day composite cloud fraction (CF) images were

obtained from the Globcolour project. The CF data are provided on the same 0.25°

(∼25 km × 25 km) resolution grid as the Chl-a estimates and obtained from different

ocean color sensors, such as SeaWIFS, MERIS, MODIS, and VIIRS. The CF images are

generated by a classification and statistical merging method (see also the Globcolour

products user guide).

http://www.esrl. noaa.gov/psd/
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2.4.3.4 Surface wind data

For the period 2000-2014, daily sea surface wind stress (WS) from QuikSCAT and

ASCAT with a spatial resolution of 0.25° (∼25 km × 25 km) was obtained from the Centre

ERS d’Archivage et de Traitement (CERSAT: http://cersat.ifremer.fr). In the

CERSAT data set, the wind field accuracy is investigated through the comparisons with

daily-averaged winds from moored buoys and the error associated with each parameter

(i.e., wind speed and stress) is also provided. In Arctic regions, near-surface wind can

be estimated through remote sensing only over ice-free areas. The data are, therefore,

provided with a daily sea-ice mask that is used to remove wind values from all those

pixels contaminated by sea ice. More details about data, method, and algorithm can be

found in Bentamy et al. (2012). However, since in the CERSAT data set, the daily wind

fields are calculated from October 1999, satellite wind data for the period 1998-1999

were instead obtained from NOAA’s National Centers for Environmental Information

(NCEI) at the same spatial resolution (Zhang et al., 2006). Periods of strong wind force

may significantly contribute to the nutrient (i.e., nitrate) transport into the euphotic

zone by destroying the pycnocline. To assess the likelihood of this mechanism, as in

Tremblay et al. (2002b), we estimated the depth D of the wind entrainment as a function

of the wind stress using the formulation of Deardorff (1983):

D = 0.3u∗

f
(2)

where f is the Coriolis parameter and u∗ is the friction velocity. Values of u∗

are calculated as
(

τ
ρsw

) 1
2 , where τ is the wind stress and ρsw is the seawater density

which, for simplicity, was set as constant (1027 kg/m3). The number of days for which

a threshold D value of 35 m was exceeded was used as an index of the frequency of

wind-driven entrainment of intermediate waters events (hereafter refer to as frequency D

of wind-driven entrainment). The threshold value was based on Tremblay et al. (2002b)

http://cersat.ifremer.fr
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who found that a value D of 34 m was deep enough to disrupt the pycnocline.

2.4.4 Statistical analyses

All statistical calculations and analyses were performed in the R programming

language (R Team, 2016). Pearson’s linear regressions (r) were used to determine

temporal trend (p < 0.05 mean statistically significant). To identify and test the

strength of a correlation among environmental variables and phytoplankton phenology

parameters, a Spearman’s rank correlation (ρ) matrix was computed (p < 0.05 mean

statistically significant). In addition to the correlation analysis, to distinguish each year

in a function of the abiotic and biotic factors, we performed a principal component

analysis (PCA).

2.5 Results

2.5.1 Spatiotemporal variability of satellite chlorophyll-a

The climatological monthly Chl-a (1998-2014) for the whole study area ranged

from a minimum of ∼0.05 mg m−3 to values higher than 3 mg m−3 (Figure 5b). Overall,

for the investigation period, a clear seasonal signal was observed in the mean Chl-a, with

the lowest values in April and September and the highest from May to August. In April,

except for an area close to the Greenland coast, where slightly higher concentrations

were visible, the Chl-a was still low (around <0.5 mg m−3). A sudden increase occurred

later: the bloom clearly reached high Chl-a values in May and continued in June,

encompassing the whole polynya (Figure 5b). Chl-a values remained high at a relatively

constant level throughout these 2 months, with maximum concentrations (>2 mg m−3)

in the central part of the region. Later, in July and August, the intensity of the bloom

declined gradually, except in Smith Sound and further north. In the south, however,



59

Chl-a concentrations became low, marking the end of the bloom. Finally, Chl-a returned

to the lowest values in September (<0.8 mg m−3) except for a small and circumscribed

area close to the Greenland coast (Figure 5b).

The regionally averaged time series of the annual Chl-a cycle (Figure 5c) showed

that the NOW is characterized by a repetitive pattern with a single peak-bloom (i.e.,

maximum Chl-a reached) that is sometimes followed by a less pronounced secondary

peak (e.g., 2003 and 2008). A maximum in late May, early June was observed with

regularity. However, the bloom intensity and duration were highly variable between

years (maximum ranging from an average value of 1.23 - 2.65 mg m−3). Overall, the

period 1998-2001 and the year 2014 showed the highest Chl-a peaks. Conversely, the

period 2002-2013 was characterized by lower Chl-a values (see Figure 5c).

Table 5: Summary of the annual average values (and standard deviation, SD) of the
regional phenological parameters obtained from the Gaussian fits. R2 is the coefficient of
determination of the Gaussian fits. The percentage of valid fits within the study region
is also reported.

Bloom start Peak time Bloom duration Bloom amplitude Background Chl-a Number of fits

Year R2 day SD day SD days SD mg m-3 SD mg m-3 SD %

1998 0.95 144 ±25 174 ±18 60 ±26 2.35 ±1.32 0.46 ±0.57 66

1999 0.92 169 ±26 194 ±21 50 ±28 3.01 ±2.10 0.71 ±0.72 84

2000 0.95 148 ±22 175 ±18 55 ±23 2.44 ±2.52 0.44 ±0.35 85

2001 0.95 151 ±24 178 ±18 54 ±23 2.65 ±1.79 0.49 ±0.27 74

2002 0.97 140 ±25 175 ±20 67 ±24 1.52 ±0.67 0.42 ±0.28 88

2003 0.92 146 ±30 175 ±28 58 ±30 1.44 ±0.72 0.46 ±0.47 86

2004 0.94 145 ±27 177 ±23 63 ±26 1.41 ±1.19 0.40 ±0.28 84

2005 0.92 156 ±29 185 ±21 59 ±33 1.14 ±0.54 0.38 ±0.26 77

2006 0.91 141 ±24 172 ±25 63 ±26 1.24 ±0.59 0.39 ±0.29 82

2007 0.97 134 ±32 170 ±18 72 ±25 1.53 ±0.77 0.30 ±0.22 91

2008 0.92 145 ±18 174 ±30 58 ±28 1.27 ±0.86 0.57 ±0.44 83

2009 0.94 128 ±22 161 ±16 65 ±21 1.95 ±0.92 0.46 ±0.31 98

2010 0.95 140 ±22 170 ±16 61 ±26 1.86 ±2.45 0.44 ±0.25 89

2011 0.94 147 ±26 175 ±20 56 ±25 1.56 ±2.02 0.39 ±0.23 85

2012 0.96 127 ±24 163 ±20 72 ±24 1.48 ±0.68 0.34 ±0.23 82

2013 0.93 154 ±19 180 ±15 53 ±19 1.71 ±0.94 0.38 ±0.24 84

2014 0.92 150 ±31 183 ±26 65 ±36 1.65 ±0.88 0.53 ±0.35 78
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2.5.2 Bloom phenology features and environmental parameters

Spatial patterns and inter-annual variability in bloom characteristics for the NOW

were examined by fitting four Gaussian models to the time series of Chl-a between April

and September for each year. For parsimony, we focused exclusively on three important

bloom characteristics: the bloom start, its duration, and amplitude. The mean values

and corresponding standard deviation for the phenological parameters for each year are

summarized in Table 5.

2.5.2.1 Bloom start

When we examined bloom start climatology (Figure 7a), sub-regional differences

over the study area became apparent and occurred across relatively short distances. For

instance, the bloom started earlier in the area between 76° and 78°N. Furthermore, the

bloom started earlier on the Greenland (eastern) side than on the Canadian (western)

side. This feature, which was particularly noticeable in some years (Figure 21 in annex I),

may reach a difference of approximately 2 months. Compared to the area lying between

76° and 78°N, the bloom also started later in the northern (>78°N) part compared

to the southeastern (<76°N) part of Smith Sound (Figure 7a). Overall, the bloom

occurred mainly between the beginning of May and June, ranging from 127 to 169 (day

of year; see Table 5). Over the 17 years analyzed, the bloom start did not show a clear

temporal trend (r2 = 0.12, p = 0.174; Figure 8a). However, an advance of the bloom

was noticeable if considering only the period 1998-2012 (∼ -1.4 days year-1, r2 = 0.36, p

= 0.017; regression analysis not showed). In particular, the years 2002, 2007, 2009, and

2012 were marked by the earliest bloom start dates. Interestingly, these years were also

characterized by longer open-water period, bloom duration, and high SST values (Figure

9b). The regionally averaged SST (over the period 1998 to 2014) exhibited a positive

trend (r2 = 0.35, p = 0.013; Figure 8d) and showed a significant negative correlation
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Figure 7: Climatology (1998-2014) maps of a) bloom start, b) bloom duration, c) bloom amplitude,
d) sea surface temperature, e) wind stress, and f) sea-ice concentration
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Figure 8: Time series analysis of the main bloom phenology characteristics (bloom start, bloom
duration, and bloom amplitude) and environmental parameters (SST, wind stress, and SIC)
averaged for the NOW polynya area. The black line is the mean ± standard deviation (shaded grey
area). The red line represents linear trend (days year-1) for the 17-year time series. Coefficient of
determination (r2) and probability levels (p) is shown for each figure in the upper right box.
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Figure 9: Spearman’s rank correlation (ρ) matrix (a) between phytoplankton phenological
parameters: BS (bloom start), BD (bloom duration), BA (bloom amplitude), and abiotic factors:
SST (sea surface temperature), WS (wind stress), CF (cloud fraction), SIC (sea-ice concentration),
SIE (sea-ice extent), IRT (ice-retreat timing), OWP (open-water period), and D (frequency of
wind-driven entrainment). The red color indicates a significant (p < 0.05) negative correlation,
while the blue color indicates a significant (p < 0.05) positive correlation. The color gradient
(from red to blue) indicates the magnitude of the correlation. The color white means that the
correlation between indicators is not significant (p > 0.05) according to the Spearman correlation
statistical test. Principal component analysis biplot (b) of: variables (red arrows; see text above
for abbreviations) and years (1998-2014) represented by dots.



64

with the bloom start (Figure 9a; ρ = -0.64, p = 0.002). Besides the observed negative

correlation with the SST, the bloom start was also positively correlated with the surface

WS (Figure 9a; ρ = 0.58, p = 0.027) and the SIC (Figure 9a; ρ = 0.63, p = 0.004). These

latter environmental parameters both presented a considerable inter-annual variability

(Figure 8e and 8f). In particular, while the WS was characterized by a sudden decline

between the years 2007 and 2012, the SIC showed a significant but weak temporal trend

(r2 = 0.24, p = 0.044; Figure 8f). Although slightly lower if compared to that of the SIC,

the bloom start was positively correlated with the ice-retreat timing (Figure 9a; ρ =

0.59, p = 0.006) and negatively correlated with the open-water period (Figure 9a; ρ =

−0.61, p = 0.007). The bloom start was also positively correlated with the CF (Figure

9a; ρ = 0.55, p = 0.004). Finally, the bloom start appeared to be inversely correlated

with the length of the bloom period (Figure 9a; ρ = −0.79, p < 0.0001): an early spring

bloom corresponded to greater bloom duration (and vice versa).

2.5.2.2 Bloom duration

Geographic differences in bloom duration and pronounced inter-annual variability

characterized the study region (Figure 7b and 8b). On average, the bloom duration

ranged from a minimum of about two to a maximum of almost 3 months (see Table

5). The bloom duration showed considerable temporal variations but did not show

any significant trend (r2 = 0.12, p = 0.182; Figure 8b). The most evident spatial

pattern of longer bloom duration encompassed the central part of the study region.

This spatial trait was also particularly evident during some years (see Figure 22 in

annex I). In this area the bloom tended to last longer, especially around Smith Sound

(approximately between 79°N and 77°N), which corresponded to higher values of wind

stress (Figure 7e). The bloom duration, however, appeared to be negatively correlated

with WS (Figure 9a; ρ = −0.472, p = 0.04) and CF (Figure 9a; ρ = −0.467, p = 0.003)

when considering the region as a whole. Conversely, a positive association between the
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bloom duration and SST (Figure 9a; ρ = 0.68, p = 0.003) was found. Moreover, the

relationship between the sea-ice dynamics and the bloom duration was highlighted by

the negative correlations of the latter with the SIC (Figure 9a; ρ = −0.71, p = 0.005)

and the positive correlations with the open-water period (Figure 9a; ρ = 0.65, p =

0.006). As evidenced by the PCA analysis (Figure 9b), the bloom lasted much longer

during the years characterized by lower sea-ice coverage (SIC) and a longer open-water

period (OPW), and the opposite also applies; the bloom was briefer in years with high

SIC. Finally, no significant correlation was found between the bloom duration and the

bloom amplitude (Figure 9a; ρ = −0.4, p = 0.132).

2.5.2.3 Bloom amplitude

The bloom amplitude revealed strong inter-annual variations in the spatial and

temporal patterns. On average, the background Chl-a (ChlB; Table 4) generally had

lower values (<1 mg m−3), whereas the bloom amplitude varied approximately between

1.14 and 3.01 mg m−3 throughout the time period examined (see Table 5). Although

the time series of the annual Chl-a cycles (see "Spatiotemporal variability of satellite

chlorophyll-a" subsection and Figure 5c) showed a year-to-year variability but no trend,

the annual average value of bloom amplitude showed a significant but weak declining

trend (Figure 8c; r2 = 0.28, p = 0.03) over the 17 years analyzed. In this regard, the

general decrease in Chl-a was also spatially noticeable. In particular, during the years

1998 and 2000, the bloom amplitude presented a wider and intense extension of Chl-a

values (∼67.812 km2 for Chl-a values >3 mg m−3). Conversely, a widespread reduction

in Chl-a and in its spatial extent was particularly evident from the year 2002 onwards

(see Figure 23 in annex I). Although the time series analysis of the annual Chl-a cycles

(Figure 5c) showed a higher peak for the year 2014, the spatial extent of the bloom

amplitude (∼25.000 km2 for Chl-a values >3 mg m−3; see also Figure 23 in annex I) and

the physical conditions (see Figure 8 and 9b) were different in 2014 if compared to the
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period 1998-2000.

The bloom amplitude spatial patterns are clearly noticeable in the bloom amplitude

climatology (Figure 7c). Overall, higher concentrations of Chl-a were observed in

northeastern Kane Basin, around the Smith Sound (∼78°N) area and further down

towards the southwest. Conversely, lower values of Chl-a (<1 mg m−3) were usually

present in the southern part of the NOW (<76°N) and in particular in the sector east

of 75°W. The correlation analysis suggests that throughout the course of the 17 years

analyzed, the year-to-year variations in bloom amplitude were positively correlated

with the frequency D (see eq. 2) of wind-driven entrainment (Figure 9a; ρ = 0.59, p =

0.018). Moreover, as evidenced by the PCA analysis (Figure 9b), years of stronger WS

(i.e., 1998, 1999, 2000) also had higher bloom amplitude values. Finally, no significant

correlation was found between the SIC and bloom amplitude (Figure 9a; ρ = 0.34, p =

0.279).

2.6 Discussion

2.6.1 Phytoplankton bloom dynamics and phenology

At high latitudes, the sea ice and its snow cover govern the incoming light in the

upper ocean (Vancoppenolle et al., 2013). In the Canadian Archipelago, phytoplankton

blooms typically begin in mid-July or in early August when the ice melting stratifies the

water column and a more significant fraction of sunlight is available (Tremblay et al.,

2002a). An exception occurs in NOW polynya, where the onset of summer melt occurs

much earlier (late March) than in the surrounding regions (Tremblay et al., 2006b).

Indeed, the early exposure of the water column to sunlight allows phytoplankton to

bloom as early as the beginning of May. Monthly images of climatological satellite Chl-a

for the period April-September corroborate the spatial and temporal evolution of in situ

measurements of Chl-a carried out during the past oceanographic surveys (e.g., Klein
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et al., 2002; Odate et al., 2002). In particular, Chl-a values are still low during April.

However, relatively high values of Chl-a (around 1 mg m−3) have been observed in late

April on the eastern (Greenland) side, where the presence of sea ice is less pronounced if

compared to the western side (Mei et al., 2002). The bloom peaks during the month of

May and remains vigorous in June throughout the NOW polynya with a spatial extent

reaching about 82.187 km2. During July and August, Chl-a values begin to decrease

gradually over the whole region and subsequently fade away in September.

Our results highlight regional differences in bloom initiation patterns, indicating

distinct areas over the NOW polynya. This spatial delay in bloom start dates occurs

between the east (Greenland) and west (Canadian) sides of the polynya. More precisely,

on the eastern side, the bloom starts in late April early May, while on the western

side of NOW polynya at the end of May or even later. It appears that different

environmental factors are responsible for the onset of the bloom. For instance, the

negative correlation between the SST and bloom start suggests that accelerated surface

warming can influence the bloom onset timing. A similar negative correlation field

between thermal conditions and bloom start was found by Friedland et al. (2016) in

large areas of the North Atlantic and was associated with the shoaling of the mixed layer,

driven by surface heating. Overall, the correlation analysis results show that the bloom

starts earlier in conditions of warm waters, and reduced sea-ice and cloud cover (i.e.,

more light availability). Interesting too is the inverse correlation between CF, open-water

period and SST that reflects, to some extent, the atmospheric effect. For instance,

measurements taken over the NOW polynya during spring and summer highlight how

the effect of cloud cover predominantly cools the sea surface (Hanafin and Minnett,

2001). Our analyses do not directly address the role of the mixed layer depth, which

may also be a significant driver of bloom timing, but it is plausible to hypothesize that

a shallow mixed layer associated with increasing solar heating and sea-ice loss promotes

optimal irradiance conditions and as a consequence the development of the bloom’s early

initiation. Physical conditions such as those previously described have been associated
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with an early phytoplankton bloom along the eastern side (Mei et al., 2002; Tremblay

et al., 2002b; Vidussi et al., 2004). Conversely, contrasting physical characteristics,

such as low irradiance, temperature, and deep mixing, have been observed in April and

May along the western side of the NOW polynya (Mei et al., 2002; Tremblay et al.,

2002b). In this sector, the bloom starts later in the season when the same favorable

environmental conditions for the phytoplankton growth are reached (Odate et al., 2002).

These differences between the eastern and the western side of the NOW are attributed

to different physical and climatic conditions. The western sector of the polynya receives

cold water and ice from the Arctic Ocean and is characterized by strong northerly winds

and deep convection (Melling et al., 2001). In the eastern sector of the polynya, a branch

of the West Greenland Current brings deep warm water into the mixed layer (Melling

et al., 2001) that, together with warmer air temperature (Barber et al., 2001), slow down

new-ice formation. The relatively low ice cover along the Greenland coast in turn allows

higher irradiance in the surface mixed layer (Mei et al., 2002) and the bloom starts in

relatively warmer surface waters (Vidussi et al., 2004). A previous study (Kahru et al.,

2011) showed that within Baffin Bay, the earlier start of the phytoplankton bloom was

directly related to the earlier disappearance of sea ice. This result is consistent with our

analysis that shows how the ice-retreat timing has an appreciable impact on the bloom

start. For instance, in Antarctic coastal polynyas, the ice-retreat timing predominantly

modulates light availability: earlier blooms are brought on by earlier ice-adjusted light

onset (Li et al., 2016). Finally, the correlation analysis suggests that strong winds may

delay the onset of the phytoplankton bloom. Wind forcing is commonly considered

one of the major drivers of changes in water column stability or mixed layer depth and

may exert, as shown in the North Atlantic by González Taboada and Anadón (2014), a

dominant role in determining the bloom onset timing.

Although the time series does not reveal a clear trend towards earlier phytoplankton

blooms, it does indicate that in the years 2002, 2007, 2009, and 2012, the bloom started

much earlier. Looking at a larger scale, during these years, satellite data revealed
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unusually low Arctic ice concentrations and surface, caused in part by anomalous high

temperatures (Serreze et al., 2003; Comiso et al., 2008; Parkinson and Comiso, 2013).

This corresponds with the observations of this study, where the SST trend analysis shows

a significant increase in temperature over the 17 years analyzed, with the highest values

achieved during the aforementioned years. In particular, the year 2009 was characterized

by a long open-water period and a higher-than-normal SST, which in July reached

approximately 5°C above the typical seasonal values (Vincent, 2013). The anomalously

early bloom of 2009 was likely due to the occurrence of particularly warm environmental

conditions. The Smith Sound ice arch failed to consolidate in 2009 but an ice arch

formed north of Kane Basin, preventing floes from reaching the NOW polynya until late

July (Vincent, 2013). This unique configuration, along with the higher SST, led to the

lowest sea-ice coverage over the NOW polynya which consequently experienced unusual

open-water conditions (Heide-Jørgensen et al., 2013; Vincent, 2013).

The correlation analysis also shows that the bloom start was inversely correlated

with the bloom duration: earlier blooms tended to produce longer-lasting blooms. In-

terestingly, early bloom onsets associated with longer blooms in several ocean basins

were found by Racault et al. (2012). Moreover, a consistent relationship between bloom

timing and duration was also found in the North Atlantic by Friedland et al. (2016). At

high latitudes, the negative correlation between bloom initiation and duration seems to

suggest that grazing pressure may be relatively weak due to the wintertime decline of

zooplankton that usually characterizes the beginning of the growth season (Lindemann

and St John, 2014). Conversely, later in the season under warmer conditions, a later

bloom could experience a higher grazing pressure (Henson et al., 2006) that may limit

its duration. Within the NOW polynya, the loss of phytoplankton biomass that occurs

during spring-summer (from April to July) conditions is primarily attributed to grazing

activity and sinking of phytoplankton cells (Michel et al., 2002; Tremblay et al., 2006a).

However, a recent mesocosm experiment (Lewandowska et al., 2014) showed that in strat-

ified and nutrient-limited waters, the temperature influences plankton mainly through
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physical mechanisms (i.e., stratification and nutrient supply). Conversely, the "grazing

effects" dominate in well-mixed and nutrient-rich waters, where the phytoplankton

community is typically dominated by large diatoms (Lewandowska et al., 2014). This

means that differences in bloom duration should also be viewed with respect to changes

in the physical environment. Variability in the upper water column structure may have

a detectable effect on the length and extent of the bloom. The correlation analysis

results show that although strong winds may temporarily dampen the bloom duration,

blooms lasted longer during years characterized by greater open-water conditions and

vice versa. In this connection, other authors have shown that an increase in open-water

area or in the length of the open-water period may contribute to the length of the

phytoplankton-growing season (Arrigo et al., 2008; Pabi et al., 2008; Arrigo and van

Dijken, 2011). Finally, the relatively high negative correlation between CF and the

bloom duration suggests that the incoming solar radiation into the surface layer is an

important factor that supports the phytoplankton growth during the open-water period.

The ability of strong wind events to erode stratification by enhancing vertical

mixing and to entrain nutrients into the euphotic zone is also important in relation to

the seaice cover (Rainville et al., 2011; Tremblay et al., 2011). In this regard, while

initial nutrient concentrations may support a more productive bloom (Mei et al., 2002;

Tremblay et al., 2002b), nutrient replenishment during the growth season may contribute

conspicuously to the new production in this region (Tremblay et al., 2002b). This means

that over the NOW polynya, the frequency of wind-generated nutrient pulses during the

open-water season may be considered an important factor controlling the magnitude

of the bloom. Strong local wind events may, therefore, entrain nitrate into the surface

layer and promote blooms (Rumyantseva et al., 2015). This hypothesis is supported

here by the positive correlation between the bloom amplitude and the frequency D

of wind-driven entrainment. For instance, a recent study (Carranza and Gille, 2015)

identified regions in the Southern Ocean, where high winds correlated with high Chl-a,

suggesting that the deepening of the mixed layer depth through wind mixing helped
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sustain high Chl-a throughout the growing season. Recently, Bergeron and Tremblay

(2014) reported that increased vertical stratification (over the period 1997-2011) due to

a decrease in salinity and wind-driven mixing led a drastic decrease in seasonal nitrate

consumption (approximately 65%) within the NOW polynya. Overall, their results

indicated that nitrate drawdown (i.e., net community production) in northern Baffin

Bay decreased at the mean rate of ∼26 mmol m−2 year−1. This change in environmental

setting may, in recent years, have limited the input of nutrients to the euphotic zone

(Tremblay et al., 2002b; Bergeron and Tremblay, 2014). This new scenario is clearly in

contrast with that of the summer 1998, during which a large portion of new production

was supported by upward flux of nitrate during intermittent storm activity (Bergeron

and Tremblay, 2014). Recently, direct observations (Torres et al., 2011) suggest that

changes in circulation and ice formation favor an increased flow of relatively fresh waters

from the Arctic Ocean into Nares Strait. Looking at a larger scale, recent hydrographic

observations and sampling also provide evidence that, in recent years, the freshwater

content in the Beaufort Gyre increased (Yamamoto-Kawai et al., 2009; Bourgain et al.,

2013). Interestingly, a three-dimensional coupled ocean and sea-ice model used to

simulate the ice cover and hydrography suggests that the NOW is moving toward a

future scenario characterized by longer seasonal periods of low sea-ice concentrations

and increased stratification (Rasmussen et al., 2011).

In this study, no significant correlation was found between sea-ice concentration and

bloom amplitude. However, Park et al. (2014) found a significant relationship between

the year-to-year variations in sea-ice concentration and Chl-a, providing evidence that

the abrupt increase in nutrients in the upper layer was primarily due to the advection

of sea-ice melted water. Recent field studies have shown that sea-ice melting might

influence the upper ocean layer by releasing a significant amount of nutrients, trace metals

(Tovar-Sánchez et al., 2010) and other substances that may alter water transparency

and the light regime (Bélanger et al., 2013b). In Baffin Bay, observational studies were

carried out on the distribution of trace elements (Campbell and Yeats, 1982) and their
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transfer in the NOW marine food web (Campbell et al., 2005). The high concentration

of trace metals found in sea-ice and their transfer to higher trophic levels, suggests that

melt water may also have a significant effect on surface water in terms of micronutrients

supply.

2.6.2 Limitation of the data

Compared to in situ data collected on board ships, the main advantage of using

satellite data to study phytoplankton phenology is the high temporal and spatial

resolution that allows the synoptic exploration of vast areas of the world oceans. However,

analyses based on satellite data sets have their limitations. For instance, given the

presence of sea-ice and heavy cloud cover, quantifying the variability of the phytoplankton

blooms phenology at high latitudes is not a straightforward task. The presence of data

gaps in satellite ocean-color time series may entail some degree of uncertainty in

phenology studies (Racault et al., 2014b). We attempted to reduce these errors by the

use of the GlobColour merged satellite Chl-a product and through the application of the

DINEOF method that fills data gaps by identifying the dominant spatial and temporal

patterns. From an operational perspective, this approach allowed the impact of missing

data to be limited and thus to increase, to some extent, accuracy when phenology

metrics were applied. Moreover, the use of appropriate metrics to quantify changes in

phytoplankton bloom dynamics is also of importance because different methods may

lead to differences in bloom phenology patterns (Brody et al., 2013). A second limitation

is that the subsurface chlorophyll maxima (SCMs), which are usually located below

the pycnocline and in close association with the nitracline (Ardyna et al., 2013), may

have been ignored because beyond the range of satellite ocean-color sensors. Another

important point to consider is that environmental drivers controlling the bloom dynamic

may co-vary and interact with each other, leading to non-linear responses within pelagic

ecosystems (Hunsicker et al., 2016). This implies that empirical regression analysis,
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although useful to highlight links between environmental forcing and phytoplankton

bloom dynamics, may fail to fully resolve the complex interactions existing between

physical and biological processes (Ji et al., 2010). In this context, the use of specific

statistical models that incorporate both linear and nonlinear response curves from

several environmental predictor variables might provide more specific insight on the

bloom phenology variability. Finally, the potential role of the top-down grazing pressure

and nutrient levels in shaping the spatial pattern of blooms should also be taken into

account and quantified when phenological studies are performed.

2.7 Conclusions

Within a pelagic ecosystem, changes in phytoplankton phenology may increase

the chance of trophic mismatch and, consequently, have important consequences for

the structure of the marine food web. In this study, to monitor bloom phenology,

we combined remote sensing data with a multi-Gaussian fitting method. The results

presented here clearly suggest that a combination of different environmental drivers

strongly influence phytoplankton dynamics within the NOW polynya. In particular, for

the period 1998-2014, the present study provides quantitative evidence of:

1. A marked year-to-year variability in bloom onset. Results indicated that the

timing of bloom onset appeared to be controlled by a delicate balance between

oceanographic (e.g., surface temperature and changes in sea-ice concentration) and

meteorological (e.g., cloud radiation interactions and wind stress) conditions.

2. A lack of clear positive trend in bloom duration. In particular, the correlation

analysis showed that in conditions of protracted open water period blooms lasted

longer. Conversely, during years with a relatively persistent ice cover blooms were

of shorter duration.

3. A decline in bloom amplitude during the 17 years examined. Although caution is
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needed in interpreting this result, we emphasize that the observed decline in Chl-a

could be related to large-scale changes in the Arctic Ocean (i.e., increased surface

temperature and freshwater content) but also to local scale forcing. For instance,

in this region, the role which winds played (relative to potential change in sea-ice

concentration) in entrainment of nutrient-rich water into the surface layer was of

fundamental importance to fuel large phytoplankton blooms.

Overall, these findings also suggested how climate oscillations controlling fundamen-

tal environmental conditions that regulate phytoplankton growth (i.e., light availability

and sea surface warming) may result in changes in size and species composition. For

instance, a recent study examining the responses of two different natural Arctic phyto-

plankton communities to surface warming reported a decline in phytoplankton biomass

and growth and as well a shift in phytoplankton size-structure and community composi-

tion (Coello-Camba et al., 2015). As far as the NOW polynya, field observations pointed

out a drastic modification of the phytoplankton community structure (from large to

small cells) and a drop in phytoplankton biomass between 1999 and 2011 (Blais et al.,

2017). A next step would thus be to investigate the phytoplankton functional types

phenology to better illustrate the phenological response of individual phytoplankton

species and the environmental factors controlling it over the NOW polynya. Finally, it is

noted that with respect to its sea-ice cover, the Arctic Ocean is increasingly displaying

new and remarkable changes (Arrigo et al., 2012; Ardyna et al., 2014). However, the

ongoing changes are not geographically homogeneous and can produce different effects

in different places. Therefore, to better understand how environmental changes will

affect pelagic Arctic ecosystems, it is becoming increasingly necessary to adopt a more

realistic pan-Arctic perspective by focusing on specific regional studies.
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3.1 Résumé

L’efflorescence annuelle du phytoplancton constitue un événement marin important,

dont la variabilité d’une année à l’autre est utile pour surveiller les modifications de

l’écosystème pélagique et pour mieux gérer les pêches. Une analyse biogéographique,

conjuguée aux données simulées à partir de l’état des connaissances actuel sur le modèle

de circulation océanique, a été requise pour investiguer la variabilité de l’apparition de

l’efflorescence sur l’étendue de la mer du Labrador. Le cycle saisonnier de la chlorophylle

dans la mer du Labrador diffère de manière significative dans deux biorégions voisines

mais distinctes : le nord (> 60°N) et le sud (< 60°N). Le nord voit l’efflorescence se

produire plus tôt (∼début-mi-avril) et de manière plus marquée, alors que au sud de la

mer du Labrador le phénomène se produit plus tard (∼mai) et peut durer tout l’été .

Dans la biorégion du sud, le taux de croissance maximal du phytoplancton (c’est-à-dire

l’apparition de l’efflorescence printanière à la surface) correspond de près au premier

renversement refroidissement-réchauffement des flux de chaleur air-mer. Dans cette

zone, le moment de l’efflorescence semble précéder ceux de la diminution de l’épaisseur

de la couche de mélange et du développement printanier de la stratification des couches

supérieures de l’océan. Or, dans la biorégion nord de la mer du Labrador, l’avènement

précoce de l’efflorescence printanière est associé à la stratification de l’épaisseur de la

couche de mélange et survient avant la fin du refroidissement hivernal (les flux air-mer

demeurent négatifs). La différence dans le temps de réponse de l’efflorescence dans

ces deux biorégions suggère de façon très nette que, par leurs interactions, la quantité

de phytoplancton et l’environnement physique dépendent étroitement l’un de l’autre

et, comme ils sont fonction du mécanisme de forçage dominant, peuvent fortement

varier. Compte tenu de l’hétérogénéité du bassin du Labrador, cette étude insiste sur

l’importance de prendre en considération les interactions physicobiologiques des couches

supérieures de l’océan propres aux différentes biorégions.

Mots clés: efflorescence phytoplanctonique, biorégion marine, mer du Labrador,
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forçage physique, variabilité interannuelle, Atlantique Nord subpolaire
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3.2 Abstract

The annual phytoplankton bloom is an important marine event and its inter-annual

variability can be used to monitor changes in the pelagic ecosystem and to manage

fisheries more effectively. A biogeographic analysis in conjunction with satellite-derived

ocean color observations and simulated data from a state-of-the-art ocean circulation

model were used to investigate the spring bloom onset variability over the whole Labrador

Sea (LS). Chlorophyll-a seasonal cycle in the LS varies markedly between two neighboring

but distinct bioregions: the north (> 60°N) and the south (< 60°N). The north LS

blooms earlier (∼early-mid April) and more intensely, while the south LS blooms later

(∼May) and its duration may persist all summer long. In the southern LS bioregion, the

maximum phytoplankton growth rate (i.e., the initiation of the surface spring bloom)

coincides closely with the timing of the first cooling-to-heating shift in air-sea heat fluxes.

In this area, the bloom timing tends to precede the shoaling of the mixed-layer depth and

the vernal development of the upper ocean stratification. Meanwhile, in the northern LS

bioregion, the early onset of the spring bloom is related to the seasonal evolution (i.e.,

shoaling) of the mixed-layer depth and precedes the cessation of wintertime cooling (i.e.,

the air-sea fluxes are still negative). The difference in bloom timing response across the

two bioregions suggests that interactions among phytoplankton stock and the physical

environment are strongly area-dependent and may vary significantly as a function of

the dominant forcing mechanism. Given the heterogeneity of the LS basin, this study

emphasizes the importance to consider the bioregion-specific differences in the upper

ocean physical-biological interactions.

Keywords: phytoplankton bloom, marine bioregion, Labrador Sea, Ocean color

remote-sensing, physical forcing, inter-annual variability, Sub-polar North Atlantic
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3.3 Introduction

Various oceanic regions are characterized by strong seasonal variations in phyto-

plankton abundance. In these regions, the transition from winter to spring is character-

ized by a rapid and intense phytoplankton growth (Henson et al., 2006) that is easily

recognizable by ocean-color satellite sensors through the increase in surface chlorophyll-a

concentration (Siegel et al., 2002), a key diagnostic pigment for all phytoplankton groups

(Huot et al., 2007). One of these ocean regions is undoubtedly the North Atlantic, a

strongly seasonal ocean characterized by intense spring phytoplankton blooms (Siegel

et al., 2002). In the North Atlantic, the pronounced seasonal growth cycle of phytoplank-

ton has been the subject of many interdisciplinary work. In particular, much attention

has been given to changes in the timing of the spring bloom (e.g., González Taboada and

Anadón, 2014; Henson et al., 2009), which can result in the decoupling of phenological

relationships in the pelagic food chain (Edwards and Richardson, 2004; Friedland et al.,

2016) and represents a critical factor for the seasonality of the biological carbon pump

(Sanders et al., 2014). The bloom timing by determining when food sources are available

to both fish and marine birds, plays thus a large role in maintaining food web interactions

and commercial fisheries (Racault et al., 2014a). In this connection, understand what

exactly causes the spring blooms to occur and monitoring their spatial patterns is of

fundamental importance.

Traditionally, the onset of the sub-polar North Atlantic phytoplankton blooms has

been attributed to changes in the mixed-layer depth: in open ocean/deep water the bloom

begins when the mixed-layer shoals (from winter to spring) to a depth shallower than a

critical depth at which the phytoplankton net growth becomes positive (i.e., the growth

of phytoplankton exceeds autotrophic respiration). The progressive shoaling of the

mixed-layer depth helps phytoplankton to remain and accumulate in the brighter surface

layer. Later, in late spring or early summer, nutrients become exhausted in the euphotic

zone, the growth slows and the loss due to increasing grazing pressure reduces the
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phytoplankton abundance to a lower level. This classical explanation for the occurrence

of the spring bloom represents the so-called "critical depth hypothesis" (Sverdrup, 1953).

Nowadays, the Sverdrup’s critical-depth hypothesis remains the most cited and widely

accepted theory and it has been used to investigate the timing of the spring bloom over

high latitude regions (e.g., Henson et al., 2006). However, contemporary studies have

agreed (Mahadevan et al., 2012), challenged (Behrenfeld, 2010; Boss and Behrenfeld,

2010) or merely refined the Sverdrup’s model by testing if reduction in turbulent mixing

within the mixed layer (rather than the decrease in the mixed layer itself) can create the

appropriate conditions for the bloom onset (Chiswell, 2011; Taylor and Ferrari, 2011).

Overall, in the North Atlantic the bloom onset variability has been studied extensively

and it has been related to several physical drivers. For instance, large-scale climate

indices such as the North Atlantic Oscillation have been linked to changes in the timing

of the sub-polar bloom (Henson et al., 2009; Zhai et al., 2013).

In the Labrador Sea (LS), a sub-polar sea that connects the North Atlantic with

the Arctic Ocean, few studies have investigated the bloom onset variability and its

ecological significance. More specifically, satellite observations in conjunction with

numerical model (Frajka-Williams and Rhines, 2010; Wu et al., 2008a), shipboard

observations (Head et al., 2000) and hydrographic-based studies (Frajka-Williams et al.,

2009) have identified a north-to-south progression in the spring bloom initiation. In the

northern region (north of ∼60°N) of the LS the bloom starts earlier, and it is usually

shorter but more intense compared to the central-southern region of the basin. This

reversed geographical pattern represents a distinctive feature if compared to the North

Atlantic where spring blooms tend to follow a general northward progression (Siegel

et al., 2002). The early bloom in the north LS was related to the shallower mixed layer

associated with Arctic-derived low-salinity waters. Instead, the initiation of the spring

bloom in the central-southern LS was linked to the formation of the seasonal thermal

stratification established by surface warming (Frajka-Williams and Rhines, 2010; Wu

et al., 2008a). Recently, the difference in the bloom temporal variations was redefined
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based on climatological ocean-color observations (Lacour et al., 2015): the spring bloom

starts when the depth of the mixed layer shoals and regulates the phytoplankton’s time

exposure to sunlight. Overall, the spring bloom onset in both regions occur when the

mean photosynthetically available radiation (PAR) over the mixed layer reach the same

threshold of 2.5 mol photon m-2 d-1, suggesting that light-mixing regime was the main

driver of the bloom onset in the whole LS basin (Lacour et al., 2015).

All these studies, using the critical depth hypothesis showed that over the LS the

onset of the spring bloom is highly sensitive to the light availability and the depth of the

mixed layer. However, Townsend et al. (1994) reported blooms in North Atlantic waters

weeks before the shoaling of the mixed layer. The authors suggested that in presence

of a very calm period (i.e., relaxation of atmospheric forcing), a near-surface bloom

could occur without stratification.Recent observations showed evidence for widespread

winter (January-March) phytoplankton blooms in a large part of the North Atlantic

sub-polar gyre triggered by prolonged periods of calm (Lacour et al., 2017). Probably,

these periods of calm combined with the phytoplankton cells ability to control buoyancy

can maintain phytoplankton stock in the upper water column (Lindemann and St John,

2014). Numerical simulations also suggest that a net positive phytoplankton population

growth in a deep mixed layer is possible when turbulence levels are not too strong

and/or possibly close to a critical threshold to maintain phytoplankton in the well-lit

zone (Ghosal and Mandre, 2003; Huisman et al., 2002). Recently, vertical profiles

from different Biogeochemical-Argo (BGC-Argo) floats that sampled the waters of the

subpolar North Atlantic revealed unequivocally that phytoplankton populations start

growing in early winter but at very weak rates (Mignot et al., 2018). However, the

period of explosive population growth (i.e., the so-called spring bloom phase) is not

observed until spring, when atmospheric cooling subsides and the mixed layer shoals

(Mignot et al., 2018).

While the weak accumulation of phytoplankton in winter has no surface signature
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(Ferrari et al., 2015; Mignot et al., 2018) the onset and magnitude of the spring bloom

can be intercepted and monitored by satellite remote sensing of ocean color measures.

Recently, Ferrari et al. (2015) used satellite data to show that over the subpolar North

Atlantic the cooling-to-heating shift in air-sea heat fluxes (the so-called convection

shutdown hypothesis) is a robust indicator of surface blooms. Using the air-sea heat

fluxes to estimate when the mixing layer shoals, the authors demonstrated that the

spring bloom onset is triggered by a reduction in turbulent mixing due to an increase in

net warming at the end of winter.

Although previous studies have examined the role of convective mixing in spring

blooms of the North Atlantic, none of these specifically focus on the LS (e.g., Ferrari

et al., 2015), one of the few marine regions where open-ocean deep convection occurs.

The goal of this study is therefore to test for the first time if the shutdown of winter

convective mixing could be, on an inter-annual scale, a more suitable predictor for

the spring bloom onset within the heterogeneous LS, a basin which hosts pronounced

seasonal growth cycles of phytoplankton. Additionally, this study also investigates the

role of the upper-ocean stratification in triggering the surface spring bloom. To achieve

the aforementioned objectives, we used an integrative approach that incorporates a

biogeographic analysis in conjunction with satellite-derived ocean color observations

and simulated data from a state-of-the-art ocean general circulation model to identify

region-specific physical determinants for the spring bloom initiation. The rationale is

that spurred on by a dominant forcing mechanism, interactions among phytoplankton

dynamics and the physical environment may vary across sub-regional spatial scales.

Therefore, the best way to compare timing of events is to use a cross-region and inter-

annual analysis. Knowing the role of blooms in drawing down atmospheric carbon

dioxide and its importance in food web interactions, a better understanding of the

mechanisms governing the timing of the LS’s spring bloom is of particular relevance.
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3.4 Material and methods

3.4.1 Satellite chlorophyll-a time series

The area lying between 67°N - 52°N and 65°W - 42°W was selected to study

the inter-annual variability in phytoplankton bloom onset over the LS (Figure 10a).

Daily time series (from 1998 to 2015) of surface satellite-derived chlorophyll-a (mg m-3)

at 25 km (∼0.25°) of spatial resolution were obtained from the GlobColour Project

(http://hermes.acri.fr). The surface chlorophyll-a values are gathered by using

the Garver-Siegel-Maritorena (GSM) model (Maritorena et al., 2002) combining, when

possible, data from different sensors (i.e., SeaWiFS, MERIS, MODIS and VIIRS),

and ultimately providing a merged product with elevated spatiotemporal coverage

(Maritorena et al., 2010). The GlobColour dataset represents thus a common and

appropriate choice for phytoplankton phenology studies because it improves coverage in

both space and time by combining observations from multiple sensors (Ferreira et al.,

2014) . Additionally, the dataset performs relatively well when compared with the

SeaWiFS Bio-optical Archive and Storage System (SeaBASS) database and other in

situ datasets (see Cole et al. 2015, and the references therein).

In order to facilitate comparison with the model output time-series (see subsection

3.4.4), to further increase spatial coverage and to reduce extreme values in the data,

the daily images of chlorophyll-a were averaged on a pixel-by-pixel basis (by using the

geometric mean that is less affected by extreme value than the arithmetic mean) to

create a 10-day composite time-series. Due to the low incidence sun angle in winter the

temporal coverage of the chlorophyll-a time-series is from early March to the end of

September, and it contains twenty-four 10-day periods. The aforementioned time period

is thus used to characterize exclusively the spring bloom phase over the LS.

http://hermes.acri.fr
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3.4.2 Clastering K-means analysis

Using the 10-day composite chlorophyll-a time-series, a bio-regionalization analysis

was carried out using the cluster K-means analysis (Hartigan and Wong, 1979). The

Calinski-Harabasz index (Caliński and Harabasz, 1974) was used to evaluate the optimal

number of clusters (see Figure 25 in annex II). The K-means analysis method regroups

pixels with a similar seasonal cycle shape (i.e., phenology). This method was previously

applied successfully at the global scale (D’Ortenzio et al., 2012), in the Mediterranean

Sea (D’Ortenzio and Ribera d’Alcalà, 2009), over the North Atlantic (Lacour et al.,

2015) and more recently in the Southern Ocean (Ardyna et al., 2017). The analysis

was performed on a pixel-by-pixel basis: each pixel within the study area was averaged

over the period 1998-2015 to create a 10-day climatological time-series of chlorophyll-a

concentration that was subsequently normalized in order to scale values between 0

and 1. However, pixels with more than two 10-day periods of missing data (i.e., due

the continued presence of clouds or sea-ice) were excluded from the analysis. The

cluster analysis, by condensing the spatiotemporal variations of the surface chlorophyll-a

concentration identifies groups representative of a characteristic seasonal cycle (i.e.,

a distinctive phenological regime). Basically, the spatial distribution of each group

constitutes a specific bioregion. Finally, using bathymetry data, the bioregions were

redefined to exclude shelf areas (shallower than ∼200 m) where the chlorophyll-a seasonal

cycle may be different.

3.4.3 Mixed-layer depth from ARGO data

The mixed-layer depth (MLD) represents a hydrographically defined region in

which turbulent mixing has homogenized some range of depths. We obtained daily MLD

data for the period 2002-2014 from the Scripps Institution of Oceanography and the

University of California, San Diego (http://mixedlayer.ucsd.edu/). This MLD is

http://mixedlayer.ucsd.edu/
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estimated using salinity and temperature profiles from an Array of Real-time Geostrophic

Oceanography (ARGO) and a hybrid temperature-density algorithm (Holte and Talley,

2009). The algorithm, recently tested in the Labrador and Irminger Seas seems to

produce MLDs more accurate than those calculated with a density threshold method

(Holte et al., 2017). That being said, other criteria to define the MLD can be found in

the literature. However, applying the most accurate MLD criteria presents challenges

because they all have limitations.

From the daily mean profiles, we calculated 10-day LS regional means. The 10-day

mean excluded outliers, i.e., floats with MLD values that were more than 2 standard

deviations away from the corresponding 10-day temporal mean. To assure the best

temporal quality, the mean was calculated when at least five individual profiling floats

were available within the 10-day period (after removing outliers). However, the seasonal

and inter-annual evolution of the MLD was still subject to temporal gaps and estimation

errors due to spatial coverage (see section 4) that would have introduced biases to our

analysis of phytoplankton phenology. For this reason, the 10-day regional MLD mean

derived from ARGO data was mainly used to evaluate the simulated MLD (derived

from NEMO3.4; see next subsection).

3.4.4 Simulated mixed-layer depth and heat fluxes

A numerical simulation using the Nucleus for European Modeling of the Ocean

version 3.4 (NEMO3.4; Madec 2008) was applied to capture the MLD and heat fluxes

(HFs) time evolution (i.e., seasonal and inter-annual) over the LS. The model domain

covers the Arctic and the Northern Hemisphere Atlantic with a horizontal resolution of

0.25° (ANHA4). This regional configuration has two open boundaries, one close to the

Bering Strait in the Pacific Ocean and the other one at 20°S across the Atlantic Ocean.

Further details about the model configuration and set up can be found in Dukhovskoy

et al. (2016) and Gillard et al. (2016).
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The simulation was integrated from January 2002 to December 2014 with initial

conditions (3D temperature, salinity, horizontal velocities, sea surface height and sea-

ice) from the Global Ocean Reanalysis and Simulations (GLORYS2v3) product from

MERCATOR (Ferry et al., 2010). The open boundary conditions (ocean temperature,

salinity, and velocities) were extracted from the GLORYS2v3 product as well. At the

surface, the model was driven with hourly 33-km resolution atmospheric forcing data (10

m wind, 2 m air temperature and humidity, downwelling and long wave radiation flux,

and total precipitation) from the Canadian Meteorological Centers Global Deterministic

Prediction System (CMC-GDPS; Smith et al. 2014). Monthly inter-annual runoff from

Dai et al. (2009) as well as Greenland melt-water provided by Bamber et al. (2012) was

also carefully remapped onto the model grid to give a more realistic freshwater input to

the ocean. No temperature or salinity restoring was applied in the simulation.

The HFs were computed on the fly (i.e. every model step) using the bulk formula

developed by Large and Yeager (2004). The model produced five-day mean HFs fields

as well as the 3D ocean temperature and salinity. The latter two fields were used to

calculate the MLD by employing the algorithm developed by Holte and Talley (2009)

that was recently adapted for ocean general circulation models by Courtois et al. (2017).

To align the time series of physical variables with the chlorophyll-a concentration

time-series, we averaged two consecutive 5-day means from the model output to obtained

10-day-mean fields of MLD and HFs. The high-frequency 10-day mean of simulated

data were thus used to consider the inter-annual relationships with surface chlorophyll-a.

Finally, as previously noted, we evaluated the 10-day mean simulated MLD values within

the LS with the ARGO MLD.
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3.4.5 Surface bloom onset and physical timing metrics

In order to better analyze the chlorophyll-a cycles in the bioregions identified by the

cluster analysis, 10-day annual cycles were created by spatial averaging all pixels within

the bioregions. If compared to a simple data-box selection, averaging data within the

bioregions represents a more accurate method because each bioregion is representative

of a distinctive phenological regime. To ensure sufficient data to identify the onset of

the surface bloom, only data covering the period 2002-2014 were used, given that at

least three out of the four sensors were operational during this period. The growth

rate is used as a proxy for the net increase of surface phytoplankton biomass. For each

year and for each bioregion, the growth rate (i.e., the rate of chlorophyll-a increase), gr

(day−1), was computed as follows:

gr = 1
Chla

× Chla
dt (1)

where Chl a is the averaged surface chlorophyll-a concentration. Similarly, to

Lacour et al. (2015), the surface bloom onset was defined as the date on which the

biomass reaches the maximum growth rate.

Two additional timing metrics (see also Table 6 for definitions) were selected based

on previous and relevant studies of bloom dynamics (e.g., Cole et al., 2015; Ferrari

et al., 2015). The physical timing metrics were calculated for each year and for each

bioregion. For each HFs annual cycle, the date on which the HFs became positive for at

least 20-days (two consecutive time step) was used as a proxy to indicate the end of

winter convection and the beginning of less turbulent conditions. Similarly, the date

of the steepest gradient in MLD that occurs between its maximum and minimum (i.e.,

date on which the MLD became shallower) was estimated each year and used as a proxy

to distinguish between vertically well mixed waters (> 100 m) and stratified water (<
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100 m). This threshold was also used in previous studies (i.e., Lacour et al., 2015, 2017).

Finally, the Brunt-Väisälä frequency (N2) in the upper 25 m of the water column

was also used as an indicator of the upper water column stratification. Specifically,

we calculated the Brunt-Väisälä frequency using the vertical gradient of potential

density: this computation uses the polynomial expression of McDougall (1987) and the

5-day-mean output temperature and salinity from NEMO.

Table 6: Description of physical metrics

Metric name Definition Reference

*HFs turn positive
The date on which the air-sea heat fluxes

became positive for at least 20 days

(two consecutive time step)

Taylor and Ferrari (2011);

Ferrari et al. (2015)

**MLD shoaling
The date of the steepest gradient in mixed-layer depth

that occur between its maximum and minimum

(i.e., the date on which the MLD became shallower)

Cole et al. (2015)

* Heat Fluxes

** Mixed Layer Depth

3.5 Results and Discussion

3.5.1 Bioregionalization and phytoplankton seasonal cycles differences

The bioregionalization of the LS identified two distinct bioregions on either side of

the 60°N parallel (Figure 10a) and matched those identified by Lacour et al. (2015). The

two bioregions respectively indicated as the northern bioregion (yellow area; Figure 10a)

and the southern bioregion (green area; Figure 10a), have marked differences in bloom

initiation patterns. In northern bioregion, the bloom starts in early-mid April, peaks

later in May, and usually declines in June (Figure 10b). Conversely, in the southern
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Figure 10: (a) Spatial distribution of the clusters obtained from the
K-means analysis and (b) the mean biomass (chlorophyll-a) annual
cycles in each cluster ±1 standard deviation (light grey area). The
spatial distribution of each cluster constitutes a specific bioregion rep-
resentative of a characteristic seasonal cycle. (c) Time (day of the year)
of the maximum chlorophyll-a amplitude (i.e., the date at which the
chlorophyll-a reaches its maximum value) for each bioregion.

bioregion the bloom starts in May, peaks in June, and fades away approximately towards

the end on July (Figure 10b). This temporal delay in bloom start dates clearly shows

that, over the LS, the bloom does not follow the general south-to-north progression

usually associated with the seasonal increase in surface light availability (Lacour et al.,

2015; Wu et al., 2008a). A Hovmöller diagram (Figure 26 in annex II) also gives
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a synthetic representation of the reversed latitudinal bloom gradient. Furthermore,

the southern bioregion has a longer bloom and lower bloom amplitude compared to

northern bioregion. However, differences in bloom phenology (i.e., onset, amplitude

and duration) between the north and the south LS can be more or less pronounced,

depending on the year. For instance, the northern bioregion, which typically has higher

surface chlorophyll-a concentrations, had a less intense bloom compared to the southern

bioregion during 2005 (Frajka-Williams et al., 2009). Moreover, during spring 2008

satellite data showed a spatially large phytoplankton bloom in the LS with the north

and south blooms observed nearly simultaneously. Both regions bloomed within a few

days of each other, reaching their maximum peaks with a difference of only few days

(Frajka-Williams and Rhines, 2010).

Overall, with the exception of some years (e.g., 2008 and 2014; Figure 10c) in

which the difference in bloom phenology between bioregions is less marked, the northern

bioregion starts and reaches its maximum amplitude earlier (Figure 10c). On average,

in the northern bioregion the bloom peaks in early May (126 ±7 day of year) while

in the southern bioregion the bloom peaks later in early June (154 ±15 day of year).

These observations confirm that on an inter-annual basis, mechanisms triggering spring

blooms differ between the two bioregions making the onset of the spring bloom strongly

area dependent. Indeed, the distinctions in dominant physical characteristics between

bioregions may play a crucial role in affecting the inter-annual variability of the bloom.

3.5.2 The southern bioregion

In winter, over the North Atlantic subpolar gyre, strong winds and surface cooling

deepen the mixed layer impacting on light and the upward flux of nutrients into the

euphotic zone (Barton et al., 2015). In the LS’s southern bioregion, which hosts the

convection area (south of 58°N and up to ∼300 km wide along the western side of the

basin; Lab Sea Group 1998), the pelagic ecosystem is heavily shaped by convective
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mixing. For instance, profiling floats reveal convection reaching depths of more than

800-1000 m or even greater than 1500 m during some years (Frajka-Williams et al.,

2009; Yashayaev and Loder, 2016). In this bioregion, the shoaling of the MLD were

assumed to be a critical environmental factor for the bloom onset (Wu et al., 2008a).

To investigate if over the southern bioregion other physical drivers were responsible for

the inter-annual variability in bloom initiation, the convection shutdown hypothesis was

tested following the approach of Ferrari et al. (2015). In the southern bioregion, the

surface seasonal bloom is visible as a sudden increase in chlorophyll-a concentration

(solid green line in Figure 11). The surface chlorophyll-a maximum (i.e., the bloom peak

value) is systematically preceded by the date at which the HFs turn positive (dotted

black vertical lines in Figure 11). The HFs annual cycle is made up by negative values

(cooling) in winter (grey shade in Figure 11), which favors convective mixing over the

bioregion, and by positive values (heating) in spring-summer (period between grey

shade in Figure 11). On an inter-annual timescale, the timing of the spring bloom (i.e.,

maximum phytoplankton growth rate) is well-correlated (r = 0.64, p = 0.018) with the

timing of the first shift from cooling to heating in HFs (the end of wintertime convection).

Cole et al. (2015) found a similar correlation (i.e., r = 0.61) in the sub-polar North

Atlantic. The authors indicated the onset of positive HFs as a basin wide driver for the

bloom initiation date. Brody et al. (2013), also showed that over most of the subpolar

North Atlantic the spring bloom initiation dates, gained by three different methods,

were approximately in sync with the HFs turning positive. It is also interesting to note

that in correspondence of the date at which the HFs turn positive (dotted black vertical

lines in Figure 11) the model-derived MLD (green area in Figure 11) is markedly still

deep when chlorophyll-a starts increasing (solid green line in Figure 11). The site of deep

convection is located in this bioregion and a rapid increase in the mean MLD occurs

during winter months, as a result of convective mixing. As the HFs start to increase from

its winter minimum the MLD also shoals gradually from winter into spring. However,

over the southern bioregion, the correlation between the timing of MLD shoaling and the
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Figure 11: Time series (2002-2014) of chlorophyll-a (green solid line), heat fluxes (the shaded areas show negative values
in winter) and simulated mixed layer depth (green area) over the southern bioregion. The heat fluxes annual cycle is
made up by negative values (cooling) in winter (grey shaded areas), which favors convective mixing and by positive values
in spring-summer (period between grey shaded areas). The vertical (black dotted) lines represent the date (for each year)
on which the heat fluxes became positive for a minimum of 20 consecutive days (note one time-step is 10-days). The
mixed layer is still deep when chlorophyll-a starts growing at the end of winter and the heat fluxes change sign (black
dotted lines).
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Figure 12: (a) Net surface growth rate increase averaged over the southern bioregion (green solid line ±1 standard
deviation) as a function of the days since the net heat fluxes turns positive. The average net surface growth rate is much
larger closer to the date when the heat fluxes turns positive (i.e., day zero). (b) The mixed layer depth (from 2002 to 2014)
at the time when the air-sea heat flux turned positive over the southern bioregion. Green bars represent the modeled
mixed layer depth, while the black two-dashed line with successive segments represents the ARGO mixed layer depth
(note that for the year 2002 no ARGO data were available at the time when the air-sea heat flux turned positive). In both
cases, when heat fluxes first exceed zero the depth of the mixed layer is often deeper than 100 m. (c) The stratification
index for both bioregions (see different colors) at the time when the HFs change sign over the southern bioregion (green
bars). In 8 out of 13 years (∼62%) the stratification is stronger (i.e., larger N2) in the northern bioregion (yellow bars).
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timing of the maximum phytoplankton growth rate was no significant. In the sub-polar

North Atlantic, Cole et al. (2015) found a weak correlation (i.e., r = 0.25) between

the date of MLD shoaling and the spring bloom initiation. Although different datasets

and a somewhat different time-period are used here, our results are in accordance with

previous observations obtained in the North Atlantic.

More quantitative evidence that in southern bioregion the convection shutdown

events strongly drive the bloom initiation is found when the net surface growth rate

is plotted as a function of the days since HFs turn positive (Figure 12a). Relative to

any other time of the year, the averaged net surface growth rate (green solid line ±1

standard deviation in Figure 12a, computed over the study period 2002-2014) is much

larger closer to the date when the HFs turn positive (i.e., day zero in Figure 12a). This

result suggests that the maximum phytoplankton accumulation rate (i.e., the onset

of the surface spring bloom) occur approximately when the convection shutdown, as

revealed be the change in HFs sign. The simulated (vertical green bars) and ARGO

(black two-dashed line with successive segments) MLD at the time when the HFs change

sign are shown in Figure 12b. It is noteworthy that the depth of the mixed-layer has

been traditionally identified as the crucial physical control for the timing of the spring

bloom. However, at the surface bloom onset time, in 12 out of 13 years (∼92%) the

simulated MLD remained beneath 100 m. Likewise, in 8 out 12 (note that for the year

2002 no ARGO data were available at the time when the HFs turned positive) years

(∼67%) the MLD calculated from ARGO floats was deeper than 100 m. Basically, the

MLD remains noticeably deep but turbulence likely decreases. Interestingly, in 8 out

of 13 years (∼62%) on the same date when the HFs change sign over the southern

bioregion, the stratification is weaker (Figure 12c) compared to northern bioregion (see

next subsection).

All together these results suggest that the spring bloom onset coincides with the

period of decreasing turbulence as the HFs become positive. This implies that over
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the southern bioregion the shutdown of winter convective mixing closely matches the

timing of phytoplankton growth. However, it is also possible that both a decrease in

turbulence (i.e., HFs close to zero) and MLD shoaling (∼50 m) occur together to trigger

the spring bloom (e.g., year 2012 in Figure 11 and 12b). A similar concomitance of

mechanisms is not unusual and was previously observed in sub-polar North Atlantic by

Cole et al. (2015). Furthermore, it is interesting to note that although the maximum

accumulation rate of chlorophyll-a coincides closely with the date when the HFs turn

positive, the net surface chlorophyll-a growth rate is already positive and started to

increase several weeks earlier (Figure 12a). Behrenfeld (2010) and Boss and Behrenfeld

(2010), argued that phytoplankton blooms might also start in midwinter, largely triggered

by the dilution of phytoplankton and grazer populations during mixed-layer deepening.

Basically, the deepening of the mixed-layer reduces grazer encounters and allows the

phytoplankton stock to increase. According to the hypothesis, rather than with an

increase in division rates, the phytoplankton accumulation starts because of a decrease

in zooplankton grazing rate (i.e., loss rates). A recent experiment, using the marine

diatom Thalassiosira weissflogii as a model organism showed that phytoplankton cells

during deep winter convection are able to use fluctuating light (i.e., rapid change in

light exposures) for growth, even if growth rates are very low (Walter et al., 2014).

Fieldwork conducted in the northern North Atlantic, Icelandic and Norwegian Sea, also

revealed a winter stock of living phytoplankton in the open ocean (Backhaus et al., 2003).

The authors, concluded that the winter stock may form the inoculum for the spring

production in the open ocean. More recently, Mignot et al. (2018) using time series

collected by BGC-Argo floats in North Atlantic subpolar gyre showed that accumulation

of phytoplankton biomass starts in winter, at a time when the mixed layer was still

deepening. However, during this period the net population growth rates were weak

(∼0.01 - 0.02 d−1). Instead, the authors report a sudden increase in net population

growth rates (∼0.08 d−1) that clearly shows the increase in division at the beginning

of the spring bloom, as the cooling ends. These findings are in agreement with our
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results which show a similar increase in the net population growth rate, with a maximum

occurring in spring before significant shoaling of the MLD and the development of stable

density stratification (Figure 12a and 12b).

3.5.3 The northern bioregion

The northern bioregion is an area characterized by high eddy kinetic energy

(De Jong et al., 2016). The East Greenland Current (EGC), a boundary current that

flows southward along the east coast of Greenland, turns west (at Cape Farewell, the

southern tip of Greenland) and then north into the LS, forming the West Greenland

Current (WGC). The latter provides a source of cold freshwater in its upper layers

and warm, salty Irminger Water at intermediate depths (Lacour et al., 2015; Wu et al.,

2008a). Other possible freshwater sources include elevated precipitation rates (Wu et al.,

2008a) and enhanced Greenland ice-sheet melt (Böning et al., 2016; Luo et al., 2016;

Gillard et al., 2016). However, as the topography of the West Greenland slope steepens

around 61°N, the WGC becomes unstable generating an eddy kinetic energy maximum

(Lilly et al., 2003). Mesoscale eddies, likely associated with instability of the WGC, mix

and spread the low salinity water from the Greenland coast to the northern LS (see also

Figure 27 in annex II), controlling the haline stratification (Lilly et al., 2003; Gelderloos

et al., 2011; Frajka-Williams et al., 2009; Frajka-Williams and Rhines, 2010; Wu et al.,

2008a). The high kinetic energy that characterizes the northeastern LS, along with the

large number of eddies shading off the boundary current system (De Jong et al., 2016)

may also inject additional nutrients from deeper waters. For instance, eddy-kinetic-

energy was shown to positively correlate with bloom intensity in the northern area of

the LS (Frajka-Williams and Rhines, 2010). In the same area, sea-glider observations

revealed that fluorescence (a proxy for phytoplankton concentration) was elevated within

and around several mesoscale eddies (Frajka-Williams et al., 2009).

These environmental peculiarities make the northern bioregion fairly different from
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the previously discussed southern bioregion, which hosts the deep convection site. The

surface freshwater flux and mesoscale eddies dynamics that characterize the northern

bioregion, counteract the mixing generated by surface cooling (i.e., reduce the convective

activity) and contribute to the restratification and shoaling of the MLD (Chanut et al.,

2008). For instance, the results of Mahadevan et al. (2012) demonstrated the role of

mixed-layer eddies in creating stratification and thus initiating surface blooms in the

absence of net positive heat input. Over the northern bioregion, the cooling-to-heating

shift in air-sea heat flux (dashed red vertical lines in Figure 13) occurs, on average 1.9 ±

1.4 time-steps (note that one time-step is 10-days) after the shoaling of the MLD (dotted

black vertical lines in Figure 13) and in concomitance or after the bloom peak. Further

inspection of data shows that in this bioregion, at the time of the cooling-to-heating shift

in air-sea heat flux, phytoplankton growth rates values are weak or already negative

(i.e., declining biomass; Figure 14a). Therefore, in the northern bioregion contrary to

the southern bioregion, the maximum phytoplankton growth rate (i.e., the initiation of

the surface spring bloom) tends to precede the cessation of wintertime cooling (i.e., the

air-sea fluxes are still negative). In northern bioregion, the date of the spring bloom

initiation had similar timing to the date of the MLD shoaling (dotted black vertical

lines in Figure 13). Both are well-correlated (r = 0.67, p = 0.012), suggesting that the

inter-annual variability in the date of bloom initiation is more closely related to the

thickness of the mixed layer. To provide more quantitative evidence that in the northern

bioregion the shoaling of the MLD strongly influences the bloom onset variability, the

averaged net surface growth rate (yellow solid line ±1 standard deviation in Figure

14b) was plotted as a function of the maximum MLD shoaling time (i.e., days since the

MLD reached the steepest gradient that occurs between its maximum and minimum).

The average net surface growth rate is larger closer to the date on which the steepest

gradient in MLD occurred (i.e., becoming shallower; Figure 14b). This result clearly

suggests that phytoplankton growth rates over the northern bioregion are sensitive to the

seasonal evolution of the MLD. However, even in this bioregion, the net surface growth
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Figure 13: Time series (2002-2014) of chlorophyll-a (yellow solid line), stratification (grey areas), and simulated mixed
layer depth (yellow area) over the northern bioregion. As the MLD shoals the stratification within the upper 25 m of the
ocean increases. The vertical (black dotted) lines represent the date (for each year) of maximum mixed layer shoaling
(i.e., the steepest gradient that occurs between its maximum and minimum). The vertical (red dashed) lines represent
the date (for each year) on which the heat fluxes became positive. The cooling-to-heating shift in air-sea heat flux (red
dashed lines) occurs, on average 1.9 ± 1.4 time-steps (with a range spanning from a minimum of 0 to a maximum of 5;
note that one time-step is 10-days) after the shoaling of the MLD (black dotted lines).
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Figure 14: Phytoplankton growth rates values at the time of the cooling-to-heating shift in air-sea heat flux over the
northern bioregion. The red dashed line represents the average value, while the light grey area is ±1 standard deviation
from the mean. Growth rates are near-zero or already negative (i.e., declining biomass). (b) Net surface growth rate
increase averaged over the northern bioregion (yellow solid line ±1 standard deviation) as a function of the days since
the mixed layer depth reaches the steepest gradient (i.e., becoming shallower) that occurs between its maximum and
minimum. The average net surface growth rate is larger closer to the date on which the mixed layer depth became
shallower (i.e., day zero). (b) The stratification index for both bioregions (see different colors) at the time when the mixed
layer depth reaches the steepest gradient in the northern bioregion. In 9 out of 13 years, the upper ocean stratification is
much stronger over the northern bioregion.
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rate is already positive and starts to increase several weeks earlier than the shoaling of

the MLD. Recent studies clearly show that weak mixed layer biomass accumulations

prior the spring bloom phase are possible across the whole North Atlantic subpolar gyre

(Lacour et al., 2017; Mignot et al., 2018). Finally, the stratification index (larger N2,

stronger stratification) at the time when the MLD reaches the steepest gradient (i.e.,

maximum MLD shoaling) in northern bioregion is shown for both bioregions in Figure

14c. In 9 out of 13 years (∼69%), the upper ocean stratification is much stronger over

the northern bioregion. This result, once again, suggests that on an inter-annual basis

stratification may play a major role in driving the timing of the surface spring bloom in

the northern bioregion.

3.5.4 Limitation

The outcomes presented in this study must be interpreted within the limitations

of the satellite data and the ocean model adopted. Remotely sensed ocean color data

provides key information about phytoplankton bloom phenology. In this study, the

combined use of satellite data and model outputs allowed to better address the seasonal

and inter-annual variability of both type of parameters (i.e., physical and biological).

However, it should be noted that our analysis applies only to surface blooms (i.e., the

spring bloom phase) since satellite remote sensing of ocean color is unable to track the

complete winter-spring evolution of phytoplankton biomass. Another partial limitation

of the method concerns the fact that the boundaries of the bioregions are defined on

a climatological basis and thus "static". The LS is a region characterized by a strong

environmental variability that can lead to the development of heterogeneous blooms

that may step outside the boundaries. When this happens, the bioregionalization of

the study area may become less efficient in delimiting the bioregion-specific linkages

between physical factors and phytoplankton dynamics. However, it is worth restating

that the results presented in this study relate on a sufficiently long time-series (2002-2014;
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13-years) to quantitatively highlight the bioregion-specific differences in the upper ocean

physical-biological interactions.

Furthermore, evaluation of the model MLD with ARGO floats suggest that the

model overestimates the MLD during deep convection with mean biases of 53 meters

(Figure 28 in annex II). This error may be partially modulated by the ARGO regional

coverage, for example, in years where the ARGO coverage within the convection region

was relatively poor, model biases were larger relative to years when ARGO coverage was

good. Simulated MLD biases may also be attributed to the 0.25-degree resolution of

the ocean model simulation, which although is the same as the satellite data resolution,

limits the representation of many of the small eddies shed by the boundary currents

(De Jong et al., 2016) that are key in the re-stratification process, therefore our model

simulation has lower skills in counterbalancing the heat loss due to the atmospheric

forcing. However, the simulation captures the seasonality of the MLD in the LS and

provides a good estimation of the shallower MLD (∼200 m) with biases of only 8 meters

deeper (Figure 28 in annex II; see small panel on the right). This latter outcome allows

us to be more confident with the results of our analysis that only takes in consideration

the spring bloom phase and the hydrographic conditions of the upper ocean (0-200 m).

Furthermore, it is worth remarking that role of other factors such as grazing

pressure, nutrients and wind mixing that may also be significant drivers for the spring

bloom timing were not explicit assessed in this paper. Holdsworth and Myers (2015)

suggests that wind events are crucial to deep winter vertical mixing, through the role

the wind plays in enhancing latent and sensible heat losses. Other authors suggest

that wind events contribute less to winter vertical mixing (e.g., Ferrari et al., 2015).

Recently, emphasizing the role of wind, Brody and Lozier (2014) predicted blooms

to occur when negative heat fluxes weaken, and the mixing mechanism shifts from

convection to wind. Certainly, the depth and intensity of the wind-driven mixing may

become more important later in the season, because of the ability to entrain (i.e., by
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eroding stratification) nutrients into the euphotic zone (Wu et al., 2008b).

Finally, it is becoming increasingly clear that not only the biological (i.e., top-down

grazing pressure) and physical (i.e., bottom-up factors) external controls modulate

phytoplankton dynamics but also phytoplankton adaptive qualities (i.e., plasticity) such

as physiological rates, photo-adaptation to low light, nutrient kinetics, and grazing

resistance are of fundamental importance in determining phytoplankton community

structure and their dynamics (Gaedke et al., 2010; Lewandowska et al., 2015; Lindemann

et al., 2015; Walter et al., 2014).

3.6 Conclusion

We have examined the inter-annual variability of phytoplankton spring blooms over

the LS in response to different environmental factors (i.e., mixed-layer depth and air-sea

heat fluxes). Our study using a biologically (i.e., exclusively based on the chlorophyll-

a) regionalization has spatially characterized two distinct sub-regions with different

phenological regimes. As a consequence, it was possible to recognize region-specific

physical drivers for the spring bloom timing.

Our findings suggest that over the southern bioregion the end of wintertime

convection nearly matches the timing of phytoplankton growth. More precisely, the

initiation of the spring bloom coincides closely with the timing of the first shift from

cooling to heating at the end of winter (i.e., when turbulent mixing becomes weak),

possibly before significant shoaling of the mixed layer and the development of stable

stratification. This is in opposition to blooms that occur in a thin layer near the surface

(usually shallower than ∼100 m). The change in sign of heat fluxes that typically

precedes the mixed-layer shoaling may thus provide a more suitable indicator for the

spring bloom initiation date over the southern bioregion. On the other hand, in the

northern bioregion, the early onset of the spring bloom is related with the development
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of stable stratification and precedes the cooling-to-heating shift in heat fluxes. As

described above, this result is probably linked to the intrinsic characteristics of the

northern bioregion. In this area, freshwater exchanges may eventually suppress vertical

mixing while the air-sea fluxes are still negative. It follows that the early shoaling of

the mixed layer triggers the onset of the phytoplankton spring bloom.

The present study, focusing on the influence of turbulent convection on the timing

of the spring bloom extended previous qualitative knowledge and provided a basin-wide

picture of the spring bloom dynamics over the LS. The difference in spring bloom

timing response across the two bioregions clearly indicate that interactions among

phytoplankton dynamics and the physical environment may vary significantly at sub-

regional spatial scales and as a function of the dominant forcing mechanism. Overall,

results contain useful information on the bioregion-dependent phytoplankton bloom

dynamics and therefore give an indication of the sensitivity of phytoplankton growth

to the physical complexity and heterogeneity of the pelagic ecosystem within the LS

basin. Future work will however need to better disentangle sub-regional variability of the

physical mechanisms controlling the phytoplankton bloom phenology in the LS. In this

connection, long time series of biogeochemical in situ measurements, as those collected

by the growing network of Bio-Argo floats (http://biogeochemical-argo.org/), will

no doubt be even more of significant help to complement satellite observations and

simulated bio-physical parameters.
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4.1 Résumé

La mer du Labrador subit à la fois d’intenses efflorescences printanières et de

profondes convections hivernales. Il en résulte, du fait de sa contribution significative

au rabattement du CO2 atmosphérique, que cette région s’avère d’une grande impor-

tance du point de vue biogéochimique. En mai 2015, l’efflorescence de phytoplancton

printanière a été la plus forte enregistrée jusqu’ici en termes de magnitude et d’étendue

grâce aux données satellitaires de la couleur de l’océan. Pour identifier les facteurs

environnementaux en cause dans cet événement biologique exceptionnel, nous avons

utilisé une combinaison d’observations par satellite et in situ, et d’indices climatiques.

Or l’année 2015 a été caractérisée par un régime d’oscillation nord-atlantique (NAO)

très élevé qui a mené à des conditions hivernales plus froides que la normale et à

l’une des plus profondes convections observées. Une augmentation d’énergie cinétique

sans précédent a alors succédé à ces rares conditions hivernales relevées dans tout le

bassin intérieur de la mer du Labrador, probablement en raison du nombre élevé de

caractéristiques dynamiques de type turbulence. Le bilan est clair : l’intense et étendue

efflorescence de 2015 suit une période de convection profonde et correspond à une phase

d’énergie cinétique maximale. La convection hivernale peut ainsi jouer un rôle majeur

dans l’approvisionnement nutritif au cours du préconditionnement de l’efflorescence

printanière. Les observations suggèrent que le taux d’énergie cinétique élevé est l’élément

clé d’une productivité saisonnière accrue. En effet, des processus à méso-échelles ont

pu augmenter la stratification printanière, et ainsi la productivité de tout le bassin du

Labrador. Plus généralement, les résultats démontrent que la poussée phytoplanctonique

massive de 2015 a été fortement favorisée par une période d’anomalies océanographiques

temporaire ressentie dans tout le bassin du Labrador.

Mots clés : efflorescence phytoplanctonique, forçage physique, convection profonde,

activité tourbillonnaire, mer du Labrador
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4.2 Abstract

The Labrador Sea (LS) experiences intense spring phytoplankton blooms following

deep winter convection events. As a consequence, due to its large contribution to the

drawdown of atmospheric CO2, the LS is a region of great biogeochemical importance.

In May 2015, the spring phytoplankton bloom was by far the most intense in term of

magnitude and area ever observed throughout the LS by satellite ocean color data. Here

we use a combination of satellite-derived data, climate indices and in situ observations

to identify environmental factors responsible for this exceptional biological event. The

year 2015 was characterized by a highly positive NAO regime that lead to colder than

usual winter conditions and to one of the deepest winter convection event on record.

These exceptional winter conditions were followed by an unprecedented kinetic energy

increase over the interior LS basin, due to an enhanced number of eddy-like dynamic

features. The balance of evidence suggests that the intense and widespread 2015 spring

phytoplankton bloom follows a deep convection period and coincides with the phase of

maximum kinetic energy. Winter convection may play a key role in supplying nutrients

during the preconditioning period of the spring bloom. Observations suggest that the

high level of eddy kinetic energy to be key in the seasonal increase of primary production.

Mesoscale processes may have enanched the springtime restratification and thus the

productivity of the whole LS basin. Overall, results provide evidence of how the massive

2015 phytoplankton bloom was actively promoted by a temporary period of anomalous

oceanographic conditions over the LS basin.

Keywords: Phytoplankton bloom, deep convection, eddy kinetic energy, Labrador

Sea
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4.3 Introduction

High-latitude oceans usually harbor highly productive springtime phytoplankton

blooms (Siegel et al., 2002). The high levels of phytoplankton biomass and primary

production that occur during these blooms strongly contribute to the global photo-

synthetic fixation and export of carbon to the deep ocean (Daniels et al., 2015). The

Labrador Sea (LS, hereafter), a sub-polar sea that connects the North Atlantic with

the Arctic Ocean, represents not only an ocean "sink" region for atmospheric carbon

dioxide, but also a marine region with a highly variable biological production and a

pronounced seasonal growth cycle of phytoplankton (Harrison et al., 2013). For instance,

the LS is one of the few marine sites where the functioning of the pelagic ecosystem is

subject to nutrient replenishment by the deepest mixing in the Northern Hemisphere

(Frajka-Williams et al., 2009). Open-ocean deep convection, a key and physical process

by which deep and intermediate waters are formed, is an annual event in the LS with

a high degree of inter-annual variability (Yashayaev and Loder, 2016). Profiling floats

reveal convection reaching depths of more than 800-1000 m or even greater than 1500

m during some years (Yashayaev and Loder, 2017). In the LS, deep winter convection

contributing to the Atlantic meridional overturning circulation (AMOC) makes this

marine site a "hotspot" for the global climate system (Våge et al., 2009; Yashayaev et al.,

2015). The main factor controlling convection events is the atmospheric forcing (e.g.,

cooling and evaporation) of water column density. During winter conditions, extreme

surface cooling and strong winds generate convective and wind-induced turbulence that

deepen the mixed-layer depth (MLD) and entrain nutrients from the deep ocean to

the euphotic zone (Severin et al., 2014). Low solar radiation and vertical mixing limit

winter phytoplankton biomass accumulation in the water column, although a recent

analysis shows positive phytoplankton growth starting in winter (Lacour et al., 2017).

However, the positive relationship between vertical mixing and nutrient concentrations

creates favorable conditions for phytoplankton growth in spring and summer (Harrison
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et al., 2013). The spring bloom phase thus initiates later in spring, when phytoplankton

stock takes advantage of either the increase in light exposure or the winter nutrient

pool (Siegel et al., 2002). Eventually, the bloom ends when the available amount of

nutrients and the grazing pressure significantly limit its growth (Lacour et al., 2015).

Occasionally, less intense summer phytoplankton blooms may be triggered by high wind

events (i.e., storms) that entrain nutrients into the euphotic zone by eroding the surface

stratification (Wu et al., 2008b).

In the North Atlantic, the distribution of bloom patterns has been studied exten-

sively (see Friedland et al. 2016 and the references therein). Many studies have shown

how environmental factors that modulate the phytoplankton dynamics are complex.

Light and nutrients are modulated by a host of physical processes (Lindemann and

St John, 2014). Recently, it has been suggested by Lacour et al. (2015) that, on a

climatological scale, the first-order mechanism controlling the timing of the onset of the

spring bloom over the LS is the light-mixing regime (i.e., the concomitant influence of

surface light and mixing). The seasonal increase in light availability from the decrease

in MLD modulates phytoplankton’s time exposure to light, enhancing primary produc-

tion. However, physical forcing may vary significantly within or between years and, in

particular, unpredictable fluctuations (i.e., unusual but efficient mechanisms) may be

of particular relevance to understanding bloom dynamics under climate change. For

instance, an increased transport of meltwater from the Greenland ice sheet towards the

northern and central LS may strongly influence circulation patterns, nutrient reservoirs

and biogeochemical processes (Arrigo et al., 2017; Luo et al., 2016).

In this study, we provide evidence for the occurrence of a spectacular springtime

phytoplankton bloom that is unprecedented in nearly 20-years of satellite observations

over the LS basin. The 2015 spring bloom developed nearly simultaneously over nearly

the whole LS reaching its maximum in mid-May. The oceanographic survey of the

Atlantic Zone Off-Shelf Monitoring Program (AZOMP) annual survey of the Department
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of Fisheries and Oceans (DFO) of Canada (Kieke and Yashayaev, 2015) confirmed the

exceptional character of the phytoplankton bloom, which was largely dominated by the

presence of Phaeocystis sp. (Schoemann et al., 2005). This intense bloom was preceded

by exceptionally deep wintertime convection that occurred across the entire sub-polar

gyre, driven by large oceanic heat loss (Fröb et al., 2016). More precisely, in the central

LS during the 2014-2015, winter convection depths were among the deepest ones in

the historical record (Yashayaev and Loder, 2016). The LS is considered an important

atmospheric carbon dioxide sink and biogeochemical transitional zone between waters

of the Arctic and the North Atlantic Oceans. Knowing therefore the role of the North

Atlantic blooms in drawing down atmospheric CO2, exporting carbon to the ocean

interior and influencing the marine foodweb, the main objective of this study is to gain

a better understanding of the possible mechanisms that stirred up the anomalous 2015

spring bloom. A combination of satellite-derived data, large-scale climate indices and in

situ observations was therefore used to investigate whether unusual forcing events were

responsible for the anomalous phytoplankton bloom.

4.4 Material and Methods

4.4.1 Satellite-derived data and eddy kinetic energy

Satellite-derived surface chlorophyll-a (Chl-a) data were used as a proxy to evaluate

phytoplankton variability patterns in the LS basin. The level-3 mapped Chl-a data

(units of mg/m3) were acquired at 4.6-km and 8-day resolution from the European

Space Agency (ESA)’s Ocean Colour Climate Change Initiative Group (OC-CCI; http:

//www.esa-oceancolour-cci.org) for the period 1998-2015. The OC-CCI dataset is

created by merging data from different satellite sensors (SeaWiFS, MERIS, MODIS and

VIIRS) and by following a procedure to estimate per-pixel uncertainty (Belo Couto et al.,

2016). Surface Chl-a concentrations are computed using the version 6 of the Ocean-

http://www.esa-oceancolour-cci.org
http://www.esa-oceancolour-cci.org
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Colour-4 algorithm (OC4v6), an updated version of a four-band blue-green reflectance

ratio empirical algorithm developed for SeaWiFS (O’Reilly et al., 2000). With respect

to the use of a single satellite sensor, this method limits missing data (usually associated

with cloud cover) by providing a greater spatial-temporal resolution and thus useful in

climate change prediction studies.

Absolute Dynamic Topography (MADT) gridded data, extracted from the de-

layed time (DT) multi-mission (merging of TP/ERS-1/2, Jason-1/Envisat, and Jason-

2/Envisat missions), were used to characterize the sea-level variability over the period

1998-2015. The MADT is routinely provided by the Archiving, Validation, and Interpre-

tation of Satellite Oceanographic data program (AVISO; www.aviso.oceanobs.com) with

a spatial resolution of ∼25 km (1/4°latitude by 1/4° longitude grid) and with 1-day

temporal resolution. The data set is corrected for atmospheric attenuation, satellite

orbit errors, sea-state and tidal influence (Ablain et al., 2009). To improve the reliability

of the dataset, we excluded MADT values with error estimates (percentage of the signal

variance) higher that 50%. However, errors were relatively small and typically below

10% of the signal variance. The eddy kinetic energy (EKE; unit: cm2/s2) time series

(1998-2015) was derived from the processed MADT and calculated as:

EKE = 1
2
(
U2 + V 2

)
(1)

where U and V are the zonal and meridional velocity components. Values of U

and V are calculated as −
(
g
f

) (
∂h
∂y

)
and

(
g
f

) (
∂h
∂x

)
respectively, where g is gravity, f is

the Coriolis parameter, and h is the MADT.
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4.4.2 Large-scale climate indices

Along with the previous satellite datasets, climate indices, such as the North

Atlantic Oscillation (NAO) and the Sub Polar Gyre (SPG-I), were also employed

to investigate ecosystem changes. Both indices synthesize (being related to several

physical elements) complex space and time climatic-weather variability into simple

measures that may explain a significant portion of the local and/or regional variability

in marine ecosystems. The NAO represents the dominant climate pattern in the

North Atlantic region and refers to a north-south alternation in atmospheric mass

between the subtropical Atlantic and the Arctic (Hurrell and Deser, 2010). Significant

changes in ocean surface temperature and heat content, ocean currents and sea-ice

cover in the Arctic and subarctic regions are also induced by changes in the NAO.

The winter (December-March) NAO time series based on station sea level pressures

was downloaded from the U.S. Global Climate Observing System (GCOS) website

(http://www.esrl.noaa.gov/psd/gcos_wgsp/Time-series). In addition to the NAO

index, the SPG-I (defined as the first principle component of the sea level anomaly in

the North Atlantic; Berx and Payne 2017), a physical metric reflecting the strength

and extent of the North Atlantic sub-polar gyre, was downloaded from the Marine

Scotland Data web-platform (http://data.marine.gov.scot). The sub-polar gyre, a

counter-clockwise rotating large body of relatively cold and low-saline subarctic water,

is the dominant features of the surface circulation of the North Atlantic Ocean, which is

subject to inter-annual and decadal variability. Positive values of SPG-I are associated

with a strong sub-polar gyre circulation. In comparison, negative values of SPG-I are

associated with a weak sub-polar gyre and westward retraction. Full details of the data

processing and calculation of the SPG-I can be found in Berx and Payne (2017).

(http://www.esrl.noaa.gov/psd/gcos_wgsp/Time-series)
(http://data.marine.gov.scot)
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Figure 15: Temporal and spatial characterization of remotely sensed
surface, chlorophyll-a concentration over the Labrador Sea. (a) Time-
series (1998-2015) obtained from the mean of all chlorophyll-a values (in
mg m-3) available from eight-day composites of the Labrador Sea area
between March 1998 and September 2015. Chlorophyll-a values (red
dots) that were obtained from less than 30% of all pixels contained in the
Labrador Sea area are also indicated. Maps showing (b) climatological
(1998-2015) monthly mean of chlorophyll-a concentration for May; (c)
monthly anomaly of chlorophyll-a for May 2011; and (d) monthly
anomaly of chlorophyll-a for May 2015. In (d) the area of deepest
mixing is indicated by the dashed black line.

4.5 Results and Discussion

In the global ocean, there are very few areas where ocean ventilation and at-

mospheric carbon dioxide sequestration occur. One of these locations, where surface

water is exchanged with the deep and intermediate ocean, is the LS. In this area, deep

convection efficiently transferring atmospheric gases and biogeochemical components

(such as oxygen and inorganic and organic carbon) to the deep and intermediate waters

contributes to the ventilation of the mesopelagic and bathypelagic layers. Furthermore,
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during the winter season, deep convective mixing also injects nutrients to the surface

ocean sustaining an increase in surface production (Severin et al., 2014).

In the LS, the phytoplankton spring bloom is a recurrent feature, but higher

surface Chl-a concentrations have been recorded over the years (e.g., 2008, 2012, 2014)

with stronger winter convection (Yashayaev and Loder, 2016). In May 2015, however,

satellite observations showed concentrations of Chl-a to be among the highest values

ever recorded for the LS basin (the 2015 bloom amplitude is over 4 mg m-3; Figure

15a). This extreme ocean manifestation occurred after two (2014 and 2015) deep (>

1500 m) winter convection events (Yashayaev and Loder, 2016). On average, in May,

the bloom (Figure 15b) reaches its maximum in the northern part (> 60°N) of the

basin, with higher values close to the Greenland coast. South of 60°N the spring bloom

occurs later reaching its maximum in June (Frajka-Williams and Rhines, 2010; Lacour

et al., 2015). Beside the climatological mean, Chl-a concentrations for the month of

May 2011 and 2015 (Figure 15c and 15d) are shown for comparison. During May 2015,

the spring bloom was extensively larger to nearly covering the entire basin. Compared

to the year 2011 (Figure 15c), the 2015 spring bloom was particularly intense and a

remarkable shift toward a pattern of positive anomaly in the phytoplankton biomass

was clearly observable over the whole basin (Figure 15d; see also Figure 29 in annex

III). In mid-May (17th to 24thof May), the surface area with Chl-a concentration greater

than 5 mg m-3 and 10 mg m-3 reached as much as ∼620 000 km2 and ∼490 000 km2,

respectively. For comparison, the 2015 bloom spatial extent was 3-fold greater than

the 2014 bloom, which was also an exceptional year in the satellite time series (see

Figure 15a). Conversely, the winter 2011 was characterized by relatively weak (<1000 m)

convection (Yashayaev and Loder, 2016). That year, the bloom reached its maximum

extent in early May (1st to 8th of May) with Chl-a concentration greater than 5 mg m-3

and 10 mg m-3 reaching only 162 000 km2 and 76 000 km2, respectively. The unusually

high Chl-a concentration in May 2015 is also confirmed by comparison of in situ ARGO

float measurements with those of May 2013 (see Figure 30 in annex III).
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The winter (December-March) 2014-15 was much more severe than the previous

winters in terms of ocean heat loss (Yashayaev and Loder, 2016). Since 2012, the NAO

(excluding the 2013) has mostly been in a high positive phase, which was strongly

positive in 2015, the highest one on record (∼1.5, Figure 16a). This is consistent with

the fact that a positive phase is often linked to strong winter atmospheric cooling (i.e.,

heat loss) and deep convection (Yashayaev and Loder, 2009). Compared to previous

winters, the 2014-2015 was exceptional in terms of winter heat loss and strong wind

event occurrences (Piron et al., 2017). Although there is a good correlation (r = 62, p

< 0.01) between convection depths and the NAO index (Figure 16b), preconditioning

plays an important role in regulating convection depths and the NAO explains only

a fraction of the regional atmospheric circulation variability (Våge et al., 2009). The

convection in winter 2014-2015 was the fourth deep-water (∼1650 m) formation event

following those in winters 2007-2008 (∼1545 m), 2011-2012 (∼1290 m) and 2013-2014

(∼1520 m) (Yashayaev and Loder, 2016) . Although with certain exceptions, winter

convection processes may enhance nutrient concentration in surface waters (Ólafsson,

2003). However, a recent analysis suggests that, rather than the depth reached by the

convective mixing, the upper-ocean nutrient replenishment can also be determined by

the convection area extension (Severin et al., 2014). During the winter 2014-2015 deep

convection occurred over an incomparably wide region in the subpolar North Atlantic

(Fröb et al., 2016; Piron et al., 2017). Strong winter cooling over the Labrador-Irminger

Seas during the winter 2014-2015 might have elevated the nutrients concentrations over

the LS basin. In this connection, a statistically significant (r = 0.71, p < 0.01) and

positive correlation (Figure 16c) between the depths of the winter convection and the

surface Chl-a (average from May to June) over the period 1998-2015 was found. A

similar correlation (r = 0.60, p < 0.01; data not shown) was found between the depths

of the winter convection and the Chl-a surface maxima. Recent observations show

that nutrient oncentrations in the Labrador Sea and Irminger Sea are highly correlated

with the sub-polar gyre index (Hátún et al., 2017). During years charactherized by
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Figure 16: (a) Time-series of the winter (December to March average) of the NAO index. (b)
Correlation between the NAO and the convection depths. (c) Correlation between the depths
of the winter convection and the surface chlorophyll-a (area-averaged from May to June) over
the period 1998-2015. (d) Correlation between the Sub-Polar Gyre Index (SPG-I) and the
area-averaged surface chlorophyll-a between 1998 and 2015.
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exceptional deep wintertime convection, the subpolar gyre expands. The SPG-I increased

in 2014 and even more in 2015, reflecting thus the cold anomaly that developed the

gyre-scale deep convection over the Labrador-Irminger Sea (Hátún et al., 2017). Changes

in the strength (and extent) of the sub-polar gyre, as characterized by the SPG-I, are

correlated (r = 0.56, p < 0.01) with surface Chl-a concentrations (Figure 16d). Such

a link has been reported previously suggesting that the sub-polar gyre dynamics may

regulate phytoplankton abundance and higher trophic levels, but the exact mechanisms

involved remain unknown (Hátún et al., 2009). However, it is interesting to note that in

both correlations (Figure 16c and 16d), the 2015 bloom stands out. These non-linear

responses of the 2015 spring bloom suggest that other physical mechanisms may have

fueled the exceptional increase in phytoplankton biomass. We speculate that highly

anomalous hydrographic settings in the region may have created persistence of optimal

bloom conditions throughout the LS basin.

In the LS, the altimetry-derived surface EKE is subject to significant inter-annual

variations (Figure 17a). The most prominent feature of the EKE time series in the

LS interior basin was the rise of spring EKE that started in 2014 and reached its

maximum in 2015. The annual mean EKE (Figure 17b) field in the LS shows distinct

sub-regional differences: kinetic energy is moderated over most of the basin with a

maximum along the boundary current system (i.e., the West Greenland Current (WGC)

and the Labrador Current (LC) flowing over the continental slope). In particular,

a large EKE signal extends from the West Greenland coast into the interior of the

Labrador Sea near 61-62°N: as the topography of the West Greenland slope steepens,

the WGC becomes unstable generating significant EKE levels (Luo et al., 2011). This is

a well-known feature of the northern LS and has been the subject of numerous studies

(Lilly et al., 2003; Frajka-Williams and Rhines, 2010; Luo et al., 2011, 2016; Gelderloos

et al., 2011). These studies indicate that mesoscale eddies, generated in the WGC area,

may propagate southward into the central LS. Their presence over the central LS may

thus speed up restratification process and as consequenze minimize the time required for
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Figure 17: Temporal and spatial characterization of altimetry-derived
surface EKE (Eddy Kinetic Energy) and absolute geostrophic velocities
over the Labrador Sea. (a) Time-series of altimetry-derived EKE in
the Labrador Sea averaged between April and May (spring), for the
period 1998-2015. Maps showing (b) the climatological (1998-2015)
mean distribution of surface EKE in the Labrador Sea; (c) monthly
anomaly of EKE in spring 2011; (d) monthly anomaly of EKE in spring
2015; (e) absolute geostrophic velocities average (May 1st; 1993-2015);
(f) absolute geostrophic velocities on May 1st 2015 and (g) 2011.
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restratification (Lilly et al., 2003; Gelderloos et al., 2011). However, a recent analysis,

suggests that the significant southward propagation only occurs when the EKE signal is

very strong (Zhang and Yan, 2018). Beside the climatological mean (Figure 17b), the

spring 2011 and the 2015 EKE anomalies (Figure 17c and 17d) are shown for comparison.

It is apparent from the 2011 EKE map (Figure 17c), that except for the area along

the Labrador continental slope the EKE signal was weak over most of the basin. A

very different situation characterizes the year 2015: the EKE signal is weaker along the

boundary current system but is significantly higher over the central basin (Figure 17d).

The central LS is capable of generating its own eddies (i.e., convective eddies) that are

usually linked to convection strength (Luo et al., 2011). The latter, was particularly

strong during winters 2014 and 2015. Consequently, considerable contribution to the

central LS EKE may be given by the activity of convective eddies (Zhang and Yan,

2018). Therefore, the large kinetic energy reservoir hosted in the central LS during

spring 2015 points out a local change in circulation patterns and likely an intensification

of the mesoscale dynamics. The near-surface surface absolute geostrophic velocities

(mean state in Figure 17e), derived from the absolute dynamic topography that provide

circulation maps, clearly show that as opposed to May 2011 (Figure 17f) a pronounced

mesoscale eddy dynamic in May 2015 is present (Figure 17g).

Looking at the 2015 EKE seasonal cycle from the central LS basin (Figure 18),

the peak of highest EKE is at the end of April- beginning of May, after the period

of the convective season and in correspondence with the Chl-a maximum. Such an

instantaneous increase in satellite-derived EKE levels in March-April has been previously

reported by Brandt et al. (2004) in 1993-1995 and 1997 in the whole central LS. The

authors, suggested that the enhanced EKE levels were largely generated by the collapse

of the convective regime at the end of the convective season. In this study, a significant

correlation (r = 0.58, p < 0.01; data not shown) was found between the 2015 seasonal

cycles of EKE and Chl-a. On an inter-annual time scale (1998-2008), EKE was also

shown to correlate with the bloom peak in the northern part of the LS (Frajka-Williams
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Figure 18: Eddy Kinetic Energy (EKE) seasonal cycle in the Labrador Sea for the years 2015
(green), 2011 (red) and the mean period (blue). The dark gray area indicates the period of deepest
convection (February-April). The pale gray area indicates the bloom period (from late April to
the end of May) over the year 2015. The 2015 spring bloom seems to coincide with a phase of
increased eddy activity.
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and Rhines, 2010). A similar correlation (for the period 1998-2015) was also found in

this study (r = 0.7, p < 0.01; data not shown).

As previously reported, during May 2015, the surface Chl-a maximum coincides

with a period of strongly enhanced kinetic energy signal (Figure 18), which is indicative

of eddies structures which may have trigger the 2015 spring bloom. For instance,

full resolution (750-m pixel) of Chl-a and sea surface temperature (SST) clearly show

numerous small cyclonic eddies within the bloom area (Figure 19). According to the

literature, the presence of cyclonic eddies seems unusual. For example, Lilly et al.

(2003) documented 33 eddies in the Labrador Sea, out of which 31 were anticyclonic

(downwelling core). However, although there is still much to learn about the propagation

and contribution of the different eddy types to the restratification processes after deep

convection (Chanut et al., 2008; Gelderloos et al., 2011), modeling and field studies

(Brody et al., 2016; Mahadevan et al., 2012) have recently shown the importance of eddy-

driven stratification in shaping the spring bloom onset over the North Atlantic. Moreover,

sea-glider observations (Frajka-Williams et al., 2009) revealed that fluorescence (a reliable

proxy for phytoplankton biomass) was elevated within and around several mesoscale

eddies. Other in situ observations showed low-salinity and high-oxygen patterns during

the passage of a single intense eddy (Körtzinger et al., 2008).

In conclusion, this study, provided evidence that the strong kinetic energy signal

and it intra-seasonal variation might have had a large effect on the phytoplankton

dynamic during spring 2015. Overall, obeservations suggest that the massive 2015 spring

bloom was driven by a combination of two factors: (1) the gyre-scale deep convection

over the Labrador-Irminger Sea that played a key role in supplying nutrient during

the preconditioning period of the spring bloom and (2) the higher EKE level that

enanched the springtime restratification and thus the productivity of the whole LS

basin. Yet, it should be noted that other mechanisms may also have been responsible

for the 2015 bloom. In this respect, ongoing analysis of Argo profiles together with
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Figure 19: High-resolution images of chlorophyll-a (Chl-a) and Sea Surface Temperature (SST) the 17th of May 2015. On
both sides, small boxes (from a to f) of Chl-a and SST show more in details some of the small cyclonic eddies within the
bloom area.
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Biogeochemical-Argo measurements and the cruise data collected as part of the 2015

AZOMP annual survey may reveal some additional clues to the causes of the anomalous

bloom. Therefore, future work could confirm these proposed mechanisms using more

detailed observations and also provide a better understanding of the importance of

unusual and short-term environmental events.
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CONCLUSION GÉNÉRALE

In a nutshell : context and originality

The Earth’s climate is undergoing a major transformation. In particular, the

Northern Hemisphere is probably experiencing some of the most visible and severe

climate change. Scientific evidence for high-latitude climate warming is currently provided

by observational and satellite studies that highlight changes in glaciers, sea-ice and

snow-cover patterns. The progressive reduction of the sea-ice cover and the warming of

the surface ocean layer are altering the physical, biogeochemical and biological linkages

within the pelagic ecosystem. In particular, trends toward the earlier onset of seasonal

sea-ice melt and increased duration of the annual melt season are going to limit the

habitat range for cold-adapted biota and possibly alter the timing of trophic interactions

in Arctic and sub-arctic marine food webs. All of these climate-related effects could

potentially lead the Northern Hemisphere to reach a new state, with characteristics

different than those observed previously. In the context of a "changing Arctic Ocean"

there is therefore a need for an improved understanding of the biological-physical

interactions.

High-latitude phytoplankton blooms are at the root of trophic interactions within

food webs and play an important role in oceanic uptake of atmospheric carbon dioxide. In

this regard, the research presented in this dissertation was primarily focused on identifying

seasonal to inter-annual variations in phytoplankton phenology in two important and

especially sensitive marine regions : the North Water (NOW) polynya (northern of

Baffin Bay) and the Labrador Sea. The chapters presented in this dissertation each

have an original aspect. Chapter 1 is the first comprehensive review on the general

concept of biodiversity hotspots with a link to highly productive marine ecosystems.

For instance, in pelagic ecosystems, phytoplankton blooms can be considered dynamic
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biological hotspots because their timing and location dictate the life cycles and migration

patterns of higher trophic levels. Chapter 2 is the first study to specifically monitor,

by using seventeen years of remote-satellite data, changes in phytoplankton phenology

in the NOW polynya. For this purpose, an improved interpolation scheme together

with multiple Gaussian models was combined in a novel framework to capture the

variability in bloom characteristics (i.e., onset, amplitude, duration). Chapter 3 presents

a pertinent and objective regionalization of the Labrador Sea used to specifically test

for the first time the shutdown of winter convective mixing (i.e., reduction in turbulent

mixing caused by changes in the atmospheric forcing) as the most effective mechanism

influencing the inter-annual variability of the spring bloom onset. Chapter 4 presents

the first attempt to investigate whether unusual forcing events were responsible for the

massive 2015-phytoplankton spring bloom, which occurred after two deep winter (2014

and 2015) convection events.

Overview : main findings, limitations and future directions

In this study, the main findings have mainly been achieved through the use of

ocean-color observations together with various types of satellite data (e.g., wind speed

and sea-ice concentration). A reason of strong interest for using remote sensing data in

oceanography is its potential to allow the synoptic exploration (at high temporal and

spatial resolution) of vast ocean regions. However, in high-latitude marine regions the

use of ocean-color observations is not a straightforward task because missing data can

affect the quality of phenology estimates (Cole et al., 2012; Brody et al., 2013). The

optical complexity of seawater and the impact of sea-ice on remotely sensed reflectance

(Bélanger et al., 2007, 2008) despite accounting for uncertainty in chlorophyll-a estimates,

affect fewer phenological studies. Therefore, the presence of persistent clouds and fog

remains the main limit to enabling resolution of timing of seasonal events with sufficient

precision.
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In Chapter 2, perhaps the most challenging aspect in providing the first quantitative

investigation of the phenology of phytoplankton in the NOW polynya was dealing with

missing data. One way to potentially minimize data gaps in ocean-color datasets is to

use climatological values or relatively simple interpolation methods such as the linear

or the nearest neighbour weighted method. However, such an approach may result

in perturbations in the time-series by masking inter-annual variability. We addressed

this issue by utilising a recently developed method (Beckers and Rixen, 2003) that

fills data gaps by identifying the dominant spatial and temporal patterns. Finally, the

interpolation scheme together with a multiple-Gaussian fitting approach was combined in

a novel framework to examine phytoplankton phenological patterns. From an operational

perspective, the framework proposed in this research allows us to encompass different

shapes and concentration ranges in chlorophyll-a seasonal cycles and may therefore

be extended to monitor inter-annual variability of phytoplankton seasonality in other

Arctic and subarctic marine ecosystems with a pronounced seasonal growth cycle.

In Chapter 2, results clearly suggest that a combination of different environmen-

tal drivers strongly influences phytoplankton dynamics within the NOW polynya. In

particular, results provide a local-scale assessment of the year-to-year variability in

bloom timing : earlier blooms occur during years with warm temperatures and an

earlier disappearance of sea-ice. Moreover, blooms last longer during years characte-

rized by a longer open-water period and are shorter during those characterized by

greater sea-ice coverage. In addition to the remarkable effects of temperature and sea-ice

concentration, the work revealed the important contribution of wind vertical-mixing

in modulating bloom phenology. For instance, the positive relationship between bloom

magnitude and the frequency of wind-driven entrainment is consistent with the idea

that when light is not limiting, wind mixing enhances nutrient input into the euphotic

zone, leading to higher chlorophyll-a concentrations. In this regard, the decline in bloom

amplitude during the seventeen years examined is also notable. The observed decline in

biomass may thus reflect a stringent phytoplankton nutrient limitation due to changes
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in stratification-destratification cycles during the productive period. However, this result

must be considered keeping in mind that the relationship between variability in surface-

layer chlorophyll-a and variability in subsurface chlorophyll-a maxima (a common feature

in Arctic Ocean ; Ardyna et al. 2013) was not explicitly evaluated. Basically, the implicit

assumption is that surface-layer chlorophyll-a variability reflects whole-water column

variability. That being said, accounting for subsurface chlorophyll-a maxima, recent field

observations in the north of Baffin Bay have shown a modification of the phytoplankton

community structure (from large to small cells) and a sharp decline in phytoplankton

biomass between 1999 and 2011 (Blais et al., 2017). All together these results emphasize

the importance of different bottom-up processes in shaping phytoplankton phenology,

community structure and regimes. Changes in phytoplankton community structure may

influence carbon export and the transfer of energy through the NOW polynya food

web structure. We suggest that this may be a fruitful and important area for future

research. For instance, phytoplankton functional types (PFTs) satellite products are

now being improved even more, validated (Brewin et al., 2017; Mouw et al., 2017) and

used for phenological studies (Kostadinov et al., 2017) although remain to be tested

in the optically complex waters of the Arctic. However, it is well known that standing

stocks of chlorophyll-a reflect the influence of both bottom-up processes and top-down

effects. Grazing activity by zooplankton may therefore also contribute to changes in the

patterns of bloom shape and dynamics (Friedland et al., 2016). Our analysis did not

address this hypothesis and further work is needed to resolve the uncertainty about the

impacts of grazing. To date, a relatively small number of studies focus on zooplankton

phenology, especially in high-latitude marine ecosystems (Ji et al., 2010). Future work

in this research line should specifically link zooplankton timing variability to changes in

phytoplankton species composition and phenology.

Different approaches can be taken to further explore variability patterns and

determine differences in phytoplankton phenology. In Chapter 3, the spatial distribution

of the surface chlorophyll-a was characterized by a biogeographic analysis to spatially
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identify bloom regions with similar phytoplankton seasonal cycles within the hetero-

geneous Labrador Sea basin. Basically, the spatial distribution of each bioregion is

representative of a distinctive phenological regime. As a consequence, it was possible to

identify region-specific physical environmental determinants for the bloom onset timing.

The cross-region and inter-annual (a thirteen-year period was considered) analysis has

delimited the boundaries of two distinct bioregions in the Labrador Sea : the north (>

60°N) and the south (< 60°N). South of 60°N, the bloom timing precedes the shoaling

of the mixed layer depth and the vernal development of stratification. Specifically, in

this area the bloom onset coincides closely with the timing of the first shift from cooling

to heating at the end of winter. Conversely, north of 60°N, the bloom starts before heat

fluxes become positive, hence no relation was found between the cooling-to-heating shift

in air-sea heat flux and the bloom timing response. In particular, in this specific bloom

region the early onset of the spring bloom was related to stratification and shoaling of

the mixed-layer depth. Overall, findings suggest that in the southern bioregion (south of

60°N) the end of wintertime convection closely matches the timing of phytoplankton

growth. In this bioregion the initiation of the spring bloom coincides closely with the

timing of the first shift from cooling to heating at the end of winter (i.e., when turbulent

mixing becomes weak), possibly before significant shoaling of the mixed layer and the

development of stable stratification. In the northern bioregion (north of 60°N), the early

onset of the spring bloom is related with the development of stable stratification and

precedes the cooling-to-heating shift in heat fluxes. This result is probably linked to

the intrinsic characteristics of the bioregion, where mesoscale processes may eventually

suppress vertical mixing while the air-sea fluxes are still negative. To the best of our

knowledge, these results were not reported previously for the study area. Furthermore,

albeit in a more speculative way (since the analysis was restricted primarily to surface-

layer chlorophyll-a) findings also support the disturbance-recovery hypothesis, which

predicts a net increase in phytoplankton biomass due to a "dilution effect" during the

deepening of the mixed-layer (Behrenfeld and Boss, 2014). In fact, although the results
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clearly showed that the maximum surface phytoplankton growth rates may occur with

the development of stable stratification in the northern bioregion or close with the

cooling-to-heating shift in the southern bioregion, in both bioregion the growth rate

starts to be positive earlier in the season.

Overall, results from Chapter 3 emphasize the view that the impact of the physical

environment on biological processes can vary markedly between bioregions, thus providing

a basin-wide picture of the complexity of bloom dynamics over the Labrador Sea.

Interactions between phytoplankton and the physical environment are therefore expected

to vary significantly depending on the intrinsic characteristics and/or geographical

features of the marine region and the dominant forcing mechanism. In this regard, a

parallelism can be done with the NOW marine ecosystem (Chapter 2). The ice bridge,

which represents the northern extent of the NOW polynya, prevents sea ice from drifting

southward into northern Baffin Bay and allows strong northerly winds to promote

open-water conditions. The Smith Sound ice-arch failed to consolidate in 2009 but an

ice-arch formed north of Kane Basin, preventing floes from reaching the NOW until

late July (Vincent, 2013). This unique configuration, along with the higher sea surface

temperature, led to the lowest sea-ice coverage over the NOW which consequently

experienced unusual open-water conditions and an anomalously early and lasting bloom.

In Chapter 3, the boundaries of the two bloom regions were delimited by a

biologically (i.e., exclusively based on the chlorophyll-a) regionalization. Perhaps, the

main limitation of the method concerns the fact that the boundaries of the bioregions

are fixed on a climatological basis and thus "static". In the pelagic zone, environmental

variability can lead to the development of temporary periods of anomalous oceanographic

and biological conditions that may step outside boundaries (see Chapter 4). Given this

limitation, the bioregionalization, however, provides a framework that can be used

in conjunction with models to further test hypotheses on the interactions between

phytoplankton dynamics and climate forcing.
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To end with, an interesting outcome of this study was the observed widespread and

strong phytoplankton bloom throughout the Labrador Sea basin during May 2015. Two

events occurred during 2015, which could have had the potential to promote the unusual

bloom. The intense 2015 spring bloom occurred after a severe winter characterized by a

high NAO regime and deep convection. Winter convection processes in the Labrador-

Irminger Seas have been suggested to enhance biological production by bringing up

nutrients from deep to euphotic layers. The convection in winter 2014-2015 was the

fourth deep-water (∼ 1650 m) formation event following those in winters 2007-2008

(∼ 1545 m), 2011-2012 (∼ 1290 m) and 2013-2014 (∼ 1520 m). These exceptional

winter conditions were followed by an unprecedented kinetic energy increase over the

interior Labrador Sea basin, probably due to an enhanced number of eddy-like dynamic

features. Mesoscale processes may play an important role in enhancing the seasonal

restratification and thus primary production. The resulting picture is that the combined

effect of these two key events may have stimulated the massive and unusual bloom.

However, although phytoplankton bloom and diversity may be associated with regimes

of instability and enhanced eddy kinetic energy (Clayton et al., 2013), this does not rule

out the possibility that other factors may have contributed to fuel the sharp bloom in

May 2015. For instance, the massive bloom may also have been influenced by reduced

grazing pressure. Future research following up on these results from Chapter 4 should

accurately resolve both mesoscale and intra-seasonal processes to better elucidate the

causes of the anomalous bloom.

Finally, a partial limitation of this thesis arises from the use of traditional statistical

approaches (i.e., regression and curve-fitting analyses). The latter, although useful to

highlight links between environmental forcing and bloom dynamics, may fail to fully

resolve the complex interactions within pelagic ecosystems. Therefore, a potential line of

future research to explore mechanisms underlying changes in phytoplankton dynamics

could be to use machine learning-based methods, such as the Random Forest (Breiman,

2001). In marine ecosystem studies, the use of machine-learning algorithms still remains
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an unexplored area. Random Forest algorithms can cope with complex datasets, mixed

data types, outliers and missing data. Furthermore, they offer a simple and powerful

alternative to enable the detection of nonlinear relationships between environmental

predictor and response variables. Finally, Random Forest models can provide measures

of relative variable importance that can be used to further disentangle the effects of the

individual environmental variables in shaping phytoplankton patterns.

To conclude, the phenological methods proposed in this study have been used

to relate phytoplankton blooms to changes in the near-surface physical environment.

Overall, the observations presented in this thesis provide valuable insight into the

sensitivity of the phytoplankton seasonal cycle to environmental forcing. Findings

suggest that a single mechanism for what drives spring blooms in high latitude marine

ecosystems may be an oversimplification : often it is a combination of environmental

variable changes that strongly influence phytoplankton bloom phenology. Furthrmore,

observations clearly show that phytoplankton dynamics can vary over relatively short

distances. For instance, spurred on by a dominant forcing mechanism, interactions among

phytoplankton dynamics and the physical environment may vary across sub-regional

spatial scales. Finally, the biotic response can be different or even unexpected where

local physical processes create a highly variable environment.

As a whole, the observations presented in this research emphasize the view that only

a careful integration of satellite data, in situ time series, and model output can provide

a solid basis upon which to explore the complexity of the phytoplankton dynamics.

Moreover, to accurately understand the sensitivity of the pelagic ecosystem and related

changes in phytoplankton phenology targeted and tailor-made observational programs

must be conducted at spatiotemporal scales that are relevant for ecosystem dynamics

and phytoplankton growth. Finally, the research reinforces the role of phytoplankton as

a key biotic element for evaluating high-latitude marine ecosystem responses to climate

change.



ANNEXE I

CHAPITRE 2 : MATÉRIEL SUPPLÉMENTAIRE
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Figure 20: An example of fit. CHLB (0.38 mg/m3) corresponds to
the background chlorophyll-a determined by the fitted function (red
line). CHL1 (1.91 mg/m3) correspond to the peak amplitude, ω1 is
the standard deviation of the Gaussian curve and define the temporal
width of the bloom, and tp1 (day 90 of year) define the peak timing,
i.e. the day of the year at which the maximum of bloom occurs. The
bloom start is determined using a relative threshold : it is the date
(day of the year) at which the fitted function reaches the threshold of
20% (blue line) of its maximum amplitude. The same criterion was used
to define the bloom end in the downslope of the Gaussian curve. The
time interval, represented in figure by the blue lines, gives the bloom
duration (the difference between bloom end and bloom start).
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Figure 21: Bloom start phenology : inter-annual differences for selected
years (1998-2000, 2002, 2003, 2005, 2007, 2009, 2012, 2014) over the
study region. White areas represent pixels with low variability or per-
sistent periods of missing data. Highest values are represented by the
red color and lowest values by the blue color.
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Figure 22: Bloom duration phenology : inter-annual differences for
selected years (1998-2000, 2002, 2003, 2005, 2007, 2009, 2012, 2014)
over the study region. White areas represent pixels with low variability
or persistent periods of missing data. Highest values are represented by
the red color and lowest values by the blue color.



137

Figure 23: Bloom amplitude phenology : inter-annual differences for
selected years (1998-2000, 2002, 2003, 2005, 2007, 2009, 2012, 2014)
over the study region. White areas represent pixels with low variability
or persistent periods of missing data. Highest values are represented by
the red color and lowest values by the blue color
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Figure 24: Plot of the proportion of variances (y-axis) explained by the components (x-axis) of
annual change in phytoplankton phenology and physical parameters across the years (1998-2014).
Based on this figure, we decided to retain 4 principal components and to focus only on the two
most important that represent more than 70% of the proportion of variances (Axe 1 = 57.4% ;
Axe 2 = 15.7%)
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Figure 25: The Calinski-Harabazs index used to estimate the optimal number of cluster to
bio-regionalize the Labrador Sea. The index measures the ratio between the dispersion of the
observations (i.e., chlorophyll-a data) within a cluster and the dispersion between the clusters.
The optimal clustering is the one with the highest value for the pseudo F-statistic.
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Figure 26: Hovmöller diagram used to plot the latitudinal evolution of the 10-days climatological
(2002-2014) chlorophyll-a mean as function of the time over the Labrador Sea. Compared to the
North Atlantic where blooms tend to follow the general south-to-north progression, the reversed
pattern within the Labrador Sea represents a distinctive feature.
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Figure 27: Salinity values are from the surface layer (0-50 m) and
were extracted from the World Ocean Database 2009 (https://www.
nodc.noaa.gov). In the top panel, dots indicate individual original
measurements (n = 45768).

https://www.nodc.noaa.gov
https://www.nodc.noaa.gov


143

Figure 28: Scatter plot comparing the time-series of mean MLD compu-
ted with the ANHA4 configuration and ARGO-floats using the density
criteria. The mean from ARGO-floats was computed when there were
more than five floats available after outliers were removed. Outliers were
defined as values being more than two standard deviations from the
mean. The model represents relatively well the shallower MLD (<200
m) with biases of only 8 meters (small panel on the right).
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Figure 29: Standardized monthly anomalies maps of surface chlorophyll-a for the month of May
over the period 1998-2015. Satellite data indicates elevated phytoplankton biomass in the Labrador
Sea during May 2015 when compared to data for the eighteen-year period (1998-2015).
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Figure 30: Depth-averaged (0-25 m) chlorophyll-a concentration in the
central Labrador Sea derived from Biogeochemical-Argo (BGC-Argo)
float measurements in May 2013 and 2015. The box in the upper left
shows the free-drifting profiling floats position taken into account.
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