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RÉSUMÉ 

Le couvert de glace impose une rugosité de surface qui modifie la structure des écoulements 
turbulents en rivière. Deux gradients de vitesses apparaissent, l'un associé à la rugosité du lit 
et l'autre à celle de la glace. L'impact d'un écoulement composé de deux couches-limites sur 
les échanges turbulents en rivière est appréhendé à deux échelles: 1) celle du développement 
des structures macroturbulentes et 2) celle du patron des écoulements secondaires dans une 
section de rivière à méandres. Ces deux échelles sont en apparence distinctes par le large 
écart des dimensions de temps et d'espace qui sont impliquées, mais toutes deux sont 
directement affectées par une structure de l'écoulement composée de deux couches-limites . 
Des données de vitesses d'écoulement ont été mesurées avec un profileur acoustique à effet 
Doppler pendant deux hivers successifs dans un méandre de la rivière Neigette (Rimouski, 
Québec). À l'échelle des profils de vitesses, des structures macroturbulentes sous la forme de 
bandes verticales de basses et de hautes vitesses sont observées. En l'absence de glaces, elles 
peuvent occuper toute la profondeur de l'écoulement alors qu'en présence d'un couvert de 
glace elles sont préférentiellement situées à proximité des plans de rugosité et se raréfient 
dans la région centrale de l'écoulement. En conséquence, la taille des structures est 
considérablement réduite dans leur extension longitudinale et verticale. Il est suggéré que 
chaque plan de rugosité initie des structures macroturbulentes et que celles-ci se rencontrent 
au centre de l'écoulement où elles se confrontent et se dissipent. Elles peuvent occuper 
simultanément les deux-couches limites, mais sont moins fréquentes et plus éphémères que 
celles qui sont observées en l'absence de couvert de glace. À l'échelle du méandre, l'analyse 
du patron spatial des écoulements secondaires révèle la présence de deux cellules hélicoïdales 
à l'entrée de la courbure. À l'apex, une seule cellule avec un sens de rotation inverse à celui 
attendu dans des conditions libres de glace est observée. Le patron des écoulements 
secondaires de la rivière Neigette est plus complexe que la référence conceptuelle basée sur 
des résultats de laboratoire où figurent deux cellules hélicoïdales stables à travers l'ensemble 
du méandre. Cette différence est expliquée par une morphologie naturelle plus complexe 
ainsi que par le jeu des interactions entre les deux cellules hélicoïdales. La présence 
d'accumulation de frasil dans le méandre lors du premier hiver révèle que les écoulements 
secondaires se développent quasi-instantanément à la sortie de la zone obstruée. Ces résultats 
mettent en évidence l'étendue des impacts associés à la présence d'un couvert de glace et 
insiste sur le large éventail des échelles qui sont impliquées. Cette étude fournit des 
observations originales qui permettent d'initier un questionnement mieux dirigé à propos des 
impacts du couvert de glace sur la structure turbulente des écoulements en rivière. 

Mots clés: couvert de glace, couche-limite turbulente, structures macroturbulentes, 
écoulements secondaires, cellules hélicoïdales, profileur acoustique à effet Doppler 



INTRODUCTION 

Dans les climats tempérés froids, l'hiver est souvent perçu comme une période d 'accalmie 

pour les systèmes fluviaux . Les chenaux sont couverts d ' une couche de glace qui paralyse en 

apparence l'activité fluviale . Or, la période hivernale engage un enchaînement de nouveaux 

processus et de formes qui modifient en profondeur les interactions dans le système fluvial 

(Allard et al., 2009). Le couvert de glace est un volume solide qui confine l'écoulement dans 

un conduit fermé. L'envers du couvert de glace est souvent moins lisse qu'il n'y paraît sur la 

surface et peut présenter des microformes profilées à l'image des rides sableuses ou des 

aspérités liées à la fusion de la glace (figure la) . La présence d ' un couvert de glace plus ou 

moins rugueux ralentit l'écoulement en surface et forme un second gradient de vitesse. En 

conséquence, l'écoulement sous glace est caractérisé par deux couches-limites turbulentes 

(figure lb), l'une propre au lit (CLT,) et une seconde liée à la glace (CLTg) . L'impact de cette 

structure de l'écoulement dans la nature des échanges turbulents en milieu fluvial reste 

toutefois largement inexploré. 

Depuis la deuxième moitié du XXèrne siècle, des structures cohérentes de fluide avec des 

cycles de vie quasi-périodiques ont été observées dans des écoulements en laboratoire et en 

rivière. Parmi elles, on distingue celles dites macroturbulentes dont la taille est 

proportionnelle à la profondeur de l'écoulement. Ce sont des échanges cohérents de fluide 

qui, en rivière de petite et moyenne tailles, dominent la totalité de la tranche de l'écoulement. 

Pendant la période hivernale, l'interaction de l'écoulement avec la rugosité glacielle produit 

une nouvelle source de turbulence. Cette turbulence est associée à des échanges cohérents 

émanant du couvert de glace qui se propagent dans l'écoulement et se mélangent aux 

structures en provenance du lit. L'effet de cette double CLT sur l'occurrence des échanges 

macroturbulents est inconnu. Cette méconnaissance provient autant d' un manque d'acquis sur 
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les mécanismes spécifiques à la formation des structures macroturbulentes qu'à une absence 

d'étude portant spécifiquement sur cette échelle. 

a) 

b) 

c) 

Figure 1 : a) Microformes sous un bloc de glace découpé en rivière; b) schéma théorique de 
l' effet de la présence d'un couvert de glace sur la structure de la CLT et c) schéma théorique 
des écoulements secondaires sous glace dans un méandre de rivière selon les études en 
laboratoire. 
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À l'échelle des tronçons fluviaux, les échanges turbulents se traduisent par des patrons 

tridimensionnels complexes. Le patron spatial des écoulements secondaires dans les 

méandres à surface libre est bien connu et se résume grossièrement à la présence d'une 

cellule de rotation hélicoïdale (Blanckaert et Graf, 2001; Frothingham et Rhoads, 2003). Ce 

schéma conceptuel est toutefois inapplicable aux conditions englacées en raison de la 

nouvelle structure de la CLT. Des études en laboratoire ont montré que le patron spatial des 

écoulements dans les chenaux curvilinéaires avec couvert de glace présentent deux cellules 

hélicoïdales superposées et de sens de rotation inverse (figure Ic) (Zufelt, 1988; Urroz et 

Ettema, 1994). Toutefois, les simulations en laboratoire simplifient les conditions naturelles 

caractérisées par une morphologie complexe et l'effet potentiel des accumulations de frasil 

sous le couvert. Les accumulations de frasil sont courantes pendant la période hivernale et 

peuvent générer des obstructions m<üeures à l'écoulement. La constriction des écoulements 

peut même être suffisante pour générer la mobilisation des sédiments et modifier les formes 

du lit (Sui et al., 2008) . 

Cette étude se base sur un échantillonnage du champ de vitesses dans un méandre de la 

rivière Neigette, située en périphérie de la ville de Rimouski (Québec, Canada). Les mesures 

de vitesses ont été obtenues à l'aide d'un profileur acoustique à effet Doppler (PC-ADP). 

Celui-ci mesure des séries temporelles de vitesses simultanément sur l'ensemble de la 

profondeur et dans les trois dimensions de l'espace. C'est un instrument non-intrusif adapté 

aux rivières peu profondes et suffisamment robuste pour résister aux températures hivernales. 

Les capacités du PC-ADP offrent une opportunité unique pour l'étude des structures 

macroturbulentes dans l'écoulement sans a voir recours à une série de sondes ponctuelles 

intrusives, donc plus délicates à déployer sous un couvert de glace en rivière. Aussi, cette 

simultanéité dans l 'acquisition des séries temporelles accélère la collecte de données et 

permet de reconstituer le champ tridimensionnel des vitesses d'écoulement à l'échelle d'un 

tronçon fluvial en relativement peu de temps. Trois campagnes de terrain ont eu lieu, deux 

pendant les hivers 2007 et 2008 et une pendant l'été 2007, ce qui a permis l'acquisition de 

plus d'une centaine de profils de vitesses. Pendant l'hiver 2007, le méandre était occupé par 

une quantité importante de frasil qui modifiait le patron des écoulements dans le méandre et 
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empêchait localement l'acquisition des données par le PC-ADP. En 2008, le frasil était 

absent. Ce qui est apparu en premier lieu comme un obstacle majeur au projet a été en 

définitive exploité pour étudier l'effet des engorgements de frasil sur le patron de vitesses par 

une analyse comparative entre les données de l'hiver 2007 et 2008. 

Le mémoire comprend deux chapitres, chacun sous forme d'article visant à être soumis à un 

périodique scientifique: 

1) Le premier article est intitulé Structures macroturbulentes mesurées à l'aide d'un 

profileur acoustique à effet Doppler dans une rivière avec couvert de glace 

(traduction de l'auteur). L'article porte sur une analyse détaillée de quatre profils de 

vitesses mesurés sous couvert de glace. Ceux-ci sont comparés à un profil témoin, 

mesuré au même endroit, mais en l'absence de glace (été 2007). L'article présente 

des indices de la présence de structures macroturbulentes et discute de leur 

dynamique dans le contexte d'un écoulement caractérisé par deux CLT. L'article a 

été soumis à la revue Water Resources Research. 

2) Le second article est intitulé Cellules hélicoïdales dans un méandre de rivière en 

présence d'un couvert de glace (traduction de l'auteur). L'article étudie la structure 

tridimensionnelle des écoulements à l'intérieur d'une section de rivière à méandre. 

Les résultats reposent sur une analyse spatiale du champ de vitesses de l'ensemble du 

méandre pendant les deux hivers successifs. L'effet du frasil sur le patron spatial des 

écoulements est brièvement abordé. L'article a été soumis et accepté dans le 

périodique River Research and Applications (sous presse). 



CHAPITRE 1 

MACROTURBULENT COHERENT STRUCTURES IN ICE-COVERED RIVER FLOW 

USING A PULSE-COHERENT ACOUSTIC DOPPLER PROFILER 

STRUCTURES MA CROTURBULENTES MESURÉES À L'AIDE D'UN PROFlLEUR 

ACOUSTIQUE À EFFET DOPPLER DANS UNE RIVIÈRE AVEC COUVERT DE GLACE 

Abstract 

This paper presents the frrst field evidence of the presence of macroturbulent coherent 

structures in an ice covered river reach. Velocity profiles were obtained using a Pulse-

Coherent Acoustic Doppler Profiler (PC-ADP) under an ice coyer and are compared to 

measurements of open channel conditions. The results show that the friction imposed by the 

ice coyer slows mean velocities at the water surface and results in a velocity profile with 

parabolic shapes of varying asymmetry. The Reynolds stresses in the streamwise (u) and 

vertical (v) components of the flow show positive values near the bed channel and negative 

values near the ice coyer. The meeting point of the two boundary layers is a mean rnixing 

layer dividing two types of coherent structure signatures, one pertaining to the ice coyer and 

the other to the channel bed boundary layer. Using statistics applied to space-time matrices of 

flow velocities, vertically aligned stripes of coherent motions were revealed for both open 

channel and ice-covered flow conditions. In ice-covered conditions, they showed 

discontinued extensions with less frequent occupancy in proxirnity of the rnixing layer. It 

follows that macroturbulence in ice-covered flow is highly reduced in scale when compared 

to open channel conditions: the streamwise length scale of the macroturbulent coherent 

structures is reduced from an average of 2.6 to OAY (u component) and from 1.9 to OAY (v 
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component) where Y is the channel depth. The use of correlation matrices pairing time series 

of different flow depths was used to estimate the vertical extension of macroturbulent 

structures. During open channel conditions, the flow remains correlated over the entire flow 

depth, whereas in ice-covered conditions the mean extension was between O.58Y and 1 Y (u 

component) and O.81Y and lY (v component). The reduced scale of macroturbulence is 

presumably associated with the roughness ratio between the ice cover and the bed channel at 

the reach scale. Each boundary wall generates its own set of macroturbulent motions that 

compete with each other in the outer region of the flow, enhancing mixing and promoting the 

dissipation of coherent structures. The apparent division of the flow is a dynamic frontier 

with overlapping coherent motions over both boundary layers, but these mixing phenomena 

tend to be very intermittent. 

Résumé 

Des structures macroturbulentes sont mises en évidence dans une rivière en présence d'un 

couvert de glace. Des profils de vitesses mesurés sous couvert de glace à l'aide d'un profileur 

acoustique à effet Doppler. sont comparés à un état de référence obtenu dans des conditions 

libres de glace. Les résultats montrent que la friction exercée par le couvert de glace retarde 

les écoulements de surface et se traduit par des profils de vitesses de formes paraboliques 

d'asymétrie variable. Les cisaillements de Reynolds dans la composante longitudinale (u) et 

verticale au chenal (v) de l'écoulement présentent des valeurs positives près du lit et 

négatives près du couvert de glace. Le point de rencontre entre les deux couches-limites est 

un plan de mélange entre des écoulements dominés respectivement par des signatures 

turbulentes propres au couvert de glace et au chenal. À l'aide de statistiques appliquées à des 

matrices s patio-temporelles de vitesses d'écoulement, des successions de structures 

macroturbulentes en bandes verticales sont révélées dans les écoulements. En condition 

englacée, ces macrostructures sont discontinues et moins fréquentes à proximité du plan de 

mélange. En conséquence, les structures macroturbulentes sont considérablement réduites en 

taille par rapport aux conditions libres de glace: la taille longitudinale des structures est 

réduite en moyenne de 2.6 à O.4Y (selon la composante longitudinale) et de 1.9 à O.4Y (selon 

la composante verticale) où Y est la profondeur de l'écoulement. L'utilisation de matrices de 
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corrélation appliquées aux vitesses de l'écoulement de profondeurs différentes permet de 

visualiser l'extension verticale des structures macroturbulentes. En période libre de glace, les 

vitesses sont corrélées sur toute la profondeur de l'écoulement alors qu'en période englacée 

l'extension varie entre 0.58 et lY (composante longitudinale) et 0.81 et lY (composante 

verticale). L'extension verticale est présument définie par le rapport de rugosité entre le 

couvert de glace et le lit du chenal à l'échelle du tronçon. Chaque plan de rugosité génère un 

groupe de structures macroturbulentes qui se propagent dans l'écoulement et qui se 

rencontrent au centre de l'écoulement, accentuant ainsi le mélange et la dissipation des 

structures cohérentes. Cette division n'est pas une frontière imperméable; en un point donné, 

des structures cohérentes peuvent survenir dans les deux couches-limites, mais ces incursions 

sont très intermittentes. 
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1.1 Introduction 

In co Id temperate climate, the winter season is associated with particular processes and 

interactions between the different components of fluvial systems (Allard et al., 2009). Most 

notably, the formation of an ice coyer has immediate and profound impacts on the flow 

structure of the turbulent boundary layer (TBL). Turbulent flow structure is a fundamental 

mechanism in the boundary layer that acts on mixing processes, sediment transport 

(Lapointe, 1992; Drake et al., 1988; Cellino and Lemmin, 2004; Paiement-Paradis et al., 

2011), morphological change (Leeder, 1983; Best, 1993) and aquatic habitat (Davis and 

Barmuta, 1989; Carling, 1992). Central to the theme of turbulent flow structure is the 

occunence of quasi-periodical coherent motions that promote strong exchanges between the 

inner and outer layers of the flow. The near-wall region, or inner layer, is a breeding ground 

for the production and self-sustainment of such coherent structures (Smith et al., 1991; 

Smith, 1996). The main structures are the upward bursting of slow fluid motion called 

ejections and downward inrushes of fast fluid motion called sweeps (Kline et al., 1967; 

Corino and Brodkey, 1969). These mechanisms contribute to most of the turbulence 

production (Kim et al., 1971). Grass (1971) showed that these turbulent mechanisms are 

present in rough turbulent wall conditions and can be scaled with the size of the roughness 

elements (Grass, 1971; Grass et al. 1991; Defina, 1996; Grass and Mansour-Tehrani, 1996). 

The outer layer of the flow was also found to present large coherent structures that scaled 

with the thickness of the boundary layer. These structures are hereby refened to as 

macroturbulent. The outer layer flow maintains conelated velocities throughout the boundary 

layer with signatures similar to those of ejections and sweeps (Brown and Thomas, 1977; 

Nakagawa and Nezu, 1981). Large bulges of coherent fluid motions were also found to occur 

coincidently with altemating low and high-speed pulsations of flow compared to mean 

velocity (Falco, 1977). This macroturbulence was described as three-dimensional quasi-

periodical vortices 'rolling' in stable paths of the channel (Schvidchenko and Pender, 2001). 

Altemating pulses of high and low-speed velocities are equally present in both sand bedded 

(Levasseur, 1999) and gravel-bed channels (Fergus on and Kirkbride, 1995; Buffin-Bélanger 

et al., 2000). Roy et al. (1996) found integral time and length scales to remain constant at 
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different flow depths, suggesting that the flow is dominated by coherent structures units 

occurring simultaneously over the entire flow depth. These large scale structures were found 

to have convex shaped fronts, forming wedges with a mean angle of 36° with the bed 

(Buffin-Bélanger et al., 2000). Based on space-time correlation analysis applied to 

simultaneous velocity time series measured in various configurations of a gravel-bed river, 

Roy et al. (2004) presented the shape of wedges as elongated (3-5Y) and narrow features 

(0.5-1 Y) where Y is flow depth. The mechanism that generates and sustains macroturbulent 

structures is still unclear (Robinson, 1991, Roy et al., 2004; Nezu, 2005). Macroturbulent 

coherent flow structures occurring in the outer layer have been presented as the result of the 

coalescence of ejection motions expanding throughout the boundary layer (Head and 

Bandyopadhyay, 1981; Perry and Chong, 1982, Nezu and Nakagawa, 1993). Amalgamation 

of small-scaled coherent structures from eddy shedding and wake flapping in the lee of 

protruding particles could also set the conditions for larger scaled structures initiation in 

gravel-bed channels (Hardy et al., 2009). Even if the inner layer is the main provider of 

turbulence production, studies have also shown that large scale structures occurring in the 

outer layer has a prominent influence on the inner layer turbulent processes (Roy and 

Blackwelder, 1994; Buffin-Bélanger et al. 2001). 

To date, research addressing the hydraulic response to ice coyer formation has focused 

mainly on the mean velocity profiles. Bulk flow velocity is slowed and depth 

correspondingly increased as a consequence of an additional roughness boundary in the 

perimeter of the flow (Ashton, 1986). Often, the ice undercover presents wavy forms similar 

to sand bedded ripples, effectively mimicking the roughness of a channel bed (Ashton and 

Kennedy, 1972). The general shape of the resulting velocity profile is a more or less 

symmetric parabolic form with peak velocities found toward the smoother boundary. In 

depth-limited flow typical of small rivers, the classical perspective is to consider the flow as 

two boundary layers that behave like two distinct open channel flows stacked on each other 

and meeting at the plane of maximal velocities. Logarithmic profiles can be applied 

independently to both velocity gradients leading to computerization of boundary parameters 

(Larsen, 1969). A few flume and field studies have also examined turbulent parameters in 

perspective of the two boundary layer hypothese (Hanjalic and Launder, 1972; Parthasarathy 
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and Muste, 1996, Sukhodolov et al., 1999). When applied piecewise to each boundary layer, 

profile trends of turbulence intensities and Reynolds shear stress are found to follow semi-

theoretical predictions established for open channels. Close to the ice co ver, Reynolds shear 

stress in the combined streamwise and vertical components of the flow show negative values. 

Slow upward and fast downward motions c1assically associated to coherent motions are 

turned upside down, leading to slow downward and fast upward motions. Thus, the plane 

where Reynolds shear stress crosses the O-value can be viewed as a mean interface dividing 

two stacked boundary layers dominated by different turbulence signature, one pertaining to 

the ice cover and the other to the channel bed. 

The assessment of macroturbulence dynamics in the case of a composite input of turbulence 

production is only tentative since no measurements were designed to focus at this scale of 

analysis. The aims of the paper are to identify macroturbulent coherent structures in an ice 

covered f10w and to describe their geometry and spatial distribution in regard of the flow 

division in two TBL. The flow velocities are measured with a Pulse-Coherent Acoustic 

Doppler Profiler (PC-ADP), deployed in a small sand bedded channel with a fully developed 

ice cover. The PC-ADP is a non intrusive instrument that can measure profiles at a high 

vertical resolution simultaneously. It offers a unique opportunity to easily visualize and 

analyse in synchronicity the macroturbulent scale of turbulence over the entire flow depth 

without resorting to arrays of single point devices which would be delicate to deploy under an 

ice cover. The paper presents a series of analysis that follows the guidelines of c1assical 

techniques already used in the context of macroturbulence detection in open channel 

conditions (visualisation of velocity signaIs and correlation analyses) while fully exploiting 

the high density potential offered by the PC-ADP. The PC-ADP measurement technique and 

its potential in the measurement of turbulence parameters will first be reviewed since its use 

has yet to be widespread for the study of turbulence. 
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1.2 Methodology 

1.2.1 Experimental design 

A field survey was carried out in early March 2008 in a small meandering reach of the 

Neigette River, which is part of the catchment system of the Mitis River (Quebec, Canada). 

The river reach is deeply incised into cohesive clay deposits but the bed material is mainly 

composed of sand. Velocity profiles were collected at four locations at the upstream edge of a 

pool in a meander reach where the flow is nearly parallel to the banks and only rnildly 

affected by centrifugaI effect (figure I.la). 

a) 
p3 pO;p1 

ice caver 

0.5 
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bl:anfung dIStance 

blanking distance 
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sampling frequency 
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: 0.044 m 
: 1 Hz 
: 600 

Figure l.1: a) Sampling scheme III the Neigette River and b) setup parameters of the 
PC-ADP. 

Four velocity profiles (pI-p4) were measured during ice-covered conditions. They are 

compared to one profile (pO) measured during open channel conditions (August, 2007). The 

latter profile was located at the same position as profile pl. At the time of the surveys, the 

discharges were estimated at 2.2 and 5.1 m3/s (-4% and -10% of bankfull discharge) for 

winter and su mmer conditions respectively. It is recognized that the size of macroturbulent 
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coherent structures changes with flow depth and thus discharge. Incidentally, the results must 

be scaled with flow depth in order to measure the specific effect of the ice coyer on 

macroturbulence dynarnics. At each measurement station, the ice coyer thickness was 

measured manually with a scaled rod and the ice undercover roughness was visually 

inspected using a submersible optical camera. Roughness was classified in three categories 

judging from the overall variability in the reach: smooth, smooth-rough and rough. The bed 

roughness was also visually inspected and was composed of uniform sand with localised 

ripples for ail profile positions except pl where a small woody debris was found to layon the 

sand (diameter is -2 cm). lce conditions and flow characteristics pertaining to each velocity 

profiles are summarized in table 1.1. Change in flow depths and velocities along with ice 

coyer thickness and roughness variability offer a wide range of conditions. 

Table 1.1 : Physical characteristics at velocity profiles sampling location 

Profile # 

Undercover 
roughness 

!ce coyer 
thickness (m) 
Flow depth 

(m) 
Mean velocity 

(mis) 

No 
lce coyer 

1.30 

0.38 

rough 

0.61 

1.08 

0.35 

rough smooth-rough smooth-rough 

0.55 0.61 0.60 

0.86 1.66 1.04 

0.18 0.25 0.12 

Velocity data were collected using a Sontek 1.5Mhz Pulse Coherent Acoustic Doppler 

Profiler (PC-ADP). This instrument measures simultaneous velocities over the entire flow 

depth and in al! three components of the flow (longitudinal, vertical and lateral). The PC-

ADP relies on a particular measurement technique, the coherent mode, which can reach 

vertical resolutions as low as a few centimetres (Lherrnitte and Serafin, 1984). The device 

sends two short sound impulses in the water column where it is backscattered by the bu oyant 

particles in movement with the water (pings). The phase shift (L'l<l» between the two signaIs 

is related to the particles velocity (V p) by the relation: 
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v: = c~<D 
p 4rrFM 

(1) 

where c is the speed of sound in water, F is the signal frequency of the instrument and tH is 

the time lag between the two sound impulses (Lacy and Sherwood, 2004). Each ping is 

listened and measured at different time lags leading to estimation of flow velocities at several 

flow depths from the instrument. Multiple pings are th en averaged over a user defined 

sampling frequency that can reach a maximum of 2 Hz. Velocities are measured parallel to 

three radial beams inclined with a 15° with the axis of the instrument, forming a sampling 

volume extending outward in the water in the shape of a cone (figure LIb). Measurements 

are made through ceUs which correspond to horizontal slices of the cone. Along beam 

velocities are afterward converted into a cartesian framework which assumes that flow 

measured by ail beams is equivalent. This means that flow must be homogeneous in the 

samp ling volume determined by the perimeter of the beams and the vertical length of the 

cell s. Non-homogeneity can be encountered in highly turbulent flow and in complex three 

dimensional flow fields, especially when it is coupled with a large sampling volume located 

far from the instrument. We used a tripod mount with a scaled rod which allowed us to insert 

the instrument head even with the ice undercover. Ice covered mounting setup reduces flow 

di sturbance normally caused by instrument intrusion in the water, so the blanking distance, 

the no-see area near the no se of the instrument, was set to its minimum length of 0.05 m. 

Every profile was measured at a constant vertical resolution of 0.044 m and at a sampling 

freq uency of 1 Hz for time series of 10 minutes (600 records). 

1.2.2. Data vaiidation 

Along with the velocity data, the PC-ADP measures quality parameters, the signal to noise 

ratio (SNR) and correlation values that help to evaluate the reliability of sampled data 

(Sontek, 2004) . The SNR is a measure of sound intensity compared to background noise and 

is linked to the presence of sufficient particles in the water to properly reflect back the signal 

to the instrument. Sontek (2004) recommends a minimum of 5 db and this criterion was 

constantly met in ail time series collected (mean SNR is 21.7 db with a standard deviation of 
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2.6). The correlation values are a measure of coherency between each sound impulses pair 

and are linked to many sources of errors among which lack of flow homogeneity within the 

sampling volume is a predominant factor. No minimal li mit is recommended since correlation 

value is also function of environmental conditions, mainly determined by intensity of 

turbulence mixing. Mean correlation value is 0.43 for the profile during open channel 

conditions (standard deviation is 0.071) and 0.13 for ail other ice covered profiles (standard 

deviation is 0.027). Thus, the ice coyer is found to diminish correlation values, perhaps 

because of increased sound interferences or lesser flow homogeneity. Time series were 

removed when correlation values showed a decrease of two standard deviations from the 

profile mean correlation. In figure 1.2, black horizontal stripes show the cells that have been 

removed . They are almost systematically located close to the bed (except one for profile p4). 

This is because sound interference and bed non uniformity typically hinders the capacity of 

the PC-ADP to resolve the cells nearest to the bed. 
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Figure 1.2 : Percentage of data corrected per time series using (1) the algorithm of ambiguity 
correction (Iight gray) and (2) the de-spiking algorithm (dark gray). Black stripes (3) id en tif y 
time series entirely removed. 

One specificity in the use of an ADCP in coherent mode is the constant tradeoff between the 

profiling range (Pmax) and the maximum velocities resolvable (Lhermitte and Serafin, 1984, 
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Lohrmann et al., 1990). Measurement of the phase shi ft between two successive impulses is 

theoretically limited to an extent of 2n: (360°). This limit corresponds to a velocity that is 

called the ambiguity velocity (V A) and can be linked to the profiling range (Pmax) by the 

relation: 

(2) 

Thus, maximum resolvable velocities are inversely related to the profiling range. Velocities 

higher than V A will result in data corruption called ambiguity error that implies that the true 

velocity is underestimated by a factor of VA. This problem can be limited by minimizing the 

time between the two sound impulses (Lu) which shortens the phase shift observed, thus 

keeping velocity measurements under the maximum limit. However, a short time lag also 

reduces the time allowed to receive the backscattered sound impulses, limiting the maximum 

profiling range (Pmax). The Sontek PC-ADP addresses this tradeoff problem by using an 

independent velocity measurement made at a resolution cell fixed at a shorter profiling range 

(Pres« Pmax) thus ensuring a maximum resolvable velocity range for this specific 

measurement. If accurate, this velocity can later be compared to velocity data collected over 

the entire profiling range set by the user (Pmax)' We used the algorithms of Lacy and 

Sherwood (2004) as modified by Cassista (2007) based on this independent velocity to 

resolve every other measurement. Their approach is twofold, including 1) the treatment of the 

velocities measured in the resolution cel! and 2) the comparison of this measure with every 

other data collected: 

1. The spikes in the velocity time series of the resolution cell are first removed with the use 

of Goring and Nikora (2002) filter algorithm. When correlation values of the resolution 

cell is less th an 2S%, the detection threshold of spikes is reduced by a factor of 0.3. 

Afterward, the time series are smoothed with a Butterworth filter with a cutoff frequency 

of 30 seconds. 

2. For each profile, velocities measured in the resolution cells are compared with the values 

in the profile cell located closest to it. If the difference between the two data is more th an 

O.SV A, the velocity is adjusted by adding VA' This corrected (or not) velocity is then 

compared with every other cells, first upward and secondly downward the profile. Every 
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time the difference is more than O.SV A, the data is corrected by adding VA. After the 

exarnination of the vertical profiles, adjacent values of individual time seties are compared 

with each other, each time using the same correction when the difference is higher than 

O.SVA. 

In figure 1.2, light gray bars show the proportion of velocity measurements per time series 

that were corrected by the algorithm for the correction of ambiguity errors. Profiles pO, pl 

and p3 present the highest amount of ambiguity correction. As expected, these profiles 

correspond to the deepest and fastest f1 0w (table 1.1 ). The distribution of ambiguity 

correction along individual profiles also c10sely follows the trends of expected mean velocity 

profiles. Visual inspection of time seties showed that the algorithm was unable to remove ail 

aberrant data. Hence, the algorithm of Goring and Nikora (2002) fo r de-spiking time series 

was also applied a second time to adjust these measurements. This approach is unlike the 

resolution of ambiguity erro rs. The data are not replaced by V A, but by a probable value 

determined by its neighbours. In fi gure J .2, dark gray bars show the percentage of 

measurements pel' time series that were adjusted by this second algotithm. The amount of 

corrected values is fairly constant over f10w depth and follows no systematic trend . In some 

occasions, the de-spiki ng affected time series that were left unchanged by the ambiguity error 

correction. It is likely that the de-spiking algorithm affected both ambiguity errors and a 

certa in amount of valid velocity measurements. Considering the low amount of corrected data 

(-2%), this solution has nonetheless proved to efficiently remove the last ambiguity errors as 

assessed by a visual examination. 

1.2.3. Data analyses 

Table 1.2 presents the conclusions from studies that have compared flow parameters 

measured by the PC-ADP with those measured by an Acoustic Doppler Velocimeter (ADV), 

a device commonl y used in the study of turbulence (Voulgaris and Trowbtidge ,1998; Lane et 

al., 1998). Considering a spatial framework where x, y and z respectively represent the 

streamwise, normal and spanwise axis of the flow, the corresponding velocity components of 
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the flow are defined as u, v and w. Each component can be divided into its mean (u, V, w ) 

and fluctuating parts (u', v', w'). The intensity of this fluctuating part is expressed by the 

standard deviations of the time series, quoted as su, Sv and SW' Finally, the covariance between 

the u and v components of the flow, the Reynolds stresses (-pu'v'), is also considered 

because of its significance for turbulent exchanges of momentum and its relevance in 

documenting coherent structures occurrence and dynarnics. As shown in table 1.2, mean flow 

estimated by the PC-ADP are reliable parameters that present only small deviations when 

compared to ADV measurements. However, this consistency between the two devices does 

not hold for standard deviations estimations. When flow is not completely homogeneous, 

transformation from beam velocities to a cartesian framework introduces variance in the 

longitudinal and lateral components and reduces variance in the vertical components when 

compared to ADV measurements. This is because the noise measured in the beam axis is 

transferred with different magnitudes to the different f10w components of the cartesian 

framework depending on the angle proxirnity between the two (Hurther and Lemmin, 2001) . 

Because of the variable incidence of geometry transformation on the different flow 

components, Reynolds stresses are underestimated when pairing either longi tudinal or lateral 

components wi th the vertical component of the f1 ow. However, the vertical profiles of the 

turbulent variables tend to follow theoretically expected trends (Muste et al ., 2004; Cassista, 

2007; Nystrom et al., 2007). 

Table 1.2: Correspondences of mean and turbulent parameters as measured by the PC-ADP 
when compared to the ADV 

Flow parameters 

il 
v 
w 
Su 

Sv 

Sw , , -puv 

Tilston and Biron 
(2006) 

nia 

Cassista 
(2007) 
== (3%) 

"' (60%) 
T (40%) 
"' (100%) 

T 

Nystrom et al. 
(2007) 
== (2%) 

nia 
nia 
nia 
nia 
nia 

T (90%) 
equivalency, ... : overestimation of the PC-ADP, T : underestimation 

PC-ADP, nia : not available, (*) magnitude of difference if available 
of the 
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The capacity of the PC-ADP to accurately estimate other turbulent variables has not reached 

a consensus so far. This paper makes use of visualization techniques applied to time series as 

weil as various correlation techniques that could be affected by the larger spatial sampling 

volume of the PC-ADP. The results will thus be consistently exarnined for possible bias and 

the interpretation will remain prudent. A classical technique used for the visual detection of 

large scale flow structures from velocimetric data relies on individual time series analysis 

using standard deviations as thresholds to identify high or low-speed deviance from the mean 

flow (Falco, 1977; Buffin-Bélanger et al., 2000; Roy et al., 2004). Initial results from this 

technique yields good results for open channel conditions, but the higher complexity of the 

flow in ice-covered conditions was poorly characterized using this approach (unpublished 

results). Figure 1.3a illustrates the initial u-velocities of profile pO (open channel conditions). 

Velocity signaIs (shades of gray) are presented in stacked cells representing flow fluctuations 

from the bed (bottom) to the surface (top) of the channel. Figure 1.3b shows the conversion 

of the initial time series in a binary representation of low (white) and high-speed (black) flow 

compared to the cells mean velocities. This yields a streaky structure that covers various time 

lengths. Nystrom (2001) described the most ephemeral streaky structures as the result of the 

temporal averaging of the PC-ADP. One solution to effectively remove the se artefacts wou Id 

be to further specify deviances from the mean with standard deviations units to keep 

considering only the largest scales of turbulence. The high density of data measured by the 

PC-ADP offers the opportunity to use alternative techniques that also considers the vertical 

conti nuit y in the data. Anselin's algorithm for local indications of spatial associations (LISA) 

is a statistical test which locally identifies the presence of positive and negative 

autocorrelation in a spatially distributed phenomenon (Anselin, 1995). The longitudinal 

(individual time series) and vertical continuity (between measurement cells) in flow 

fluctuations can thus be equally considered on a simple proxirnity basis. For each 

observation, the algorithm computes an index that measures the auto-sirnilarity or 

dissirnilarity with a set of adjacent observations located inside a predefined space window. 

For each observation, the index Ii is computed with the formula: 

(3) 



19 

where the subscript i represents the observation for which the index is to be caIculated, the 

subscript j is ail other measurements in the predefined window, z is the standardized values 

and w is a weight that represents the spatial relationship between aIl pairs of i and j. For 

randornly sampled values, Ii follows a normal curve distribution . When z-score values are 

lower than -1.96 or higher than 1.96, the null hypothesis (no autocorrelation) can be rejected 

with an alpha error of 0.05. A positive significant value indicates local similarity in the data 

while a negative value indicates local dissimilarity. This type of analysis was initially 

designed for spatial data, but it can also be used for data where space can be substituted by 

time. In the context of flow velocity measurements, positive autocorrelations can be 

interpreted as local clusters of coherent motions amid a more complex ambient flow. The 

LISA algorithm is dependent on the size window as weil as the weight that defines the spatial 

relationship between the observations. Preliminary analyses indicated that a growing window 

size produces larger local associations. The algorithm was applied to data sharing a direct 

neighbourhood with each other in the matrix with weights equally distributed in ail 

directions, including oblique neighbourhood (9 x 9 matrices) . This implicitly assumes some 

anisotropy in the results favouring the vertical connectivity since the cells are spatially closer 

(-4.4 cm) from each other than successive measurements in time (real distance is function of 

mean velocity). Prior to the application of the algorithm, each time series was standardized. 

This was to effectively group the data on the basis of its deviation from the local mean and to 

discard the influence of the shape of the velocity profile. Figure 1.3c shows the result of the 

LISA algorithm. Black and white cells respectively represent significant clusters of higher 

and lower velocity compared to the cell me an velocities. When compared to the upper 

graphs, the visual effect of figure 1.3c is to remove the noise of variations that do not present 

space-time coherency, hence by-passing small-scaled streaky structures possibly yielded by 

temporal averaging. 
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Figure l.3: a) Velocity time series as collected by the PC-ADP after data validation, b) binary 
representation of the velocities from their deviance from the mean and c) identification of 
clusters of coherent motions in the flow from the LISA algorithm. To represent the flow as if 
it is moving from left to right, the time series are plotted from the end to the beginn ing of the 
actual time in data collection. 

Various correlation techniques are used to assess the scale of macroturbulence and its spatial 

organization. Space-time correlations were applied between all measured cells of the PC-

ADP. Correlation coefficients (r) are computed between two different time series (UI and U2) 

while considering an array of temporal lags (~t) between the two. Correlation coefficients are 

computed from: 



and 

Cu1uz(M) = 2:f~Llt(Uli - U1)(U2iHt - U2), for M 2': 0 

CU1Uz (M) = 2:f=1-Llt(U1i - u 1) (U2i+Llt - U2), for M < 0 
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(4) 

(5) 

(6) 

where Uj, il, Su and N are respectively the instantaneous velocity, the average velocity, the 

standard deviation and the number of measurements of the time series UI and U2 and where 

CU1Uz is the covariance between the two. The similarity of successive measurements in each 

time series is also measured using autocorrelation functions (ACF). In ACF, correlation 

coefficients (r) are computed for individual time series at different time lags using UI in place 

of U2 in equation (4) and (6). The integral time scale is the time lag until correlation 

coefficients first underscores the threshold for statistical significance (a = 0.05). When 

multiplied by fI, ITS values can be converted to Integral Length Scales (ILS), which is a 

measure of the mean length of coherent structures . This analysis postulates that Taylor' s 

hypothesis of frozen turbulence is valid and can be converted into a distance scale when the 

flow is not modified by significant shear (Taylor, 1935). 

1.3. Results 

1.3.1. Mean and turbulent parameters 

Figure IAa shows the streamwise velocity profiles measured by the PC-ADP for both open 

(pO) and ice-covered flow conditions (pl; p2; p3; p4). As expected for depth-limited open 

channel flows, pO presents a graduai velocity gradient typical of a single boundary layer 

occupying the entire flow depth . The effect of the ice coyer on the vertical distribution of 

streamwise velocities is revealed on the other four profiles by an inverse velocity gradient 

near the water surface. The two boundary layers meet in the outer region where maximum 

velocities are found. The dimensionless depths representing the plane of maxi mum velocities 

(YumaxfY) dividing the two boundary layers are presented in table 1.3 . Three out of four ice 

covered profiles (p2; p3; p4) have c1early defined points of maximum velocities. However, 
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pl has a fiat velocity profile that makes difficult to define the exact location of the maximum 

velocity. 
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Figure 1.4: a) Velocity profiles and b) Reynolds shear stress for profiles measured during 
open (pO) and ice-covered fIow conditions (pl; p2; p3; p4) . Note the different range of values 
for profile pO. 

Table 1.3: Dimensionless depths of the plane of maximal velocities (YurnaJY) and zero 
Reynolds shear stress (YuvdY) 

Pl P2 
0.37* 0.66 
0.61 * 0.52 

r2 0fLSR 0.86 0.98 
slope ofLSR -1.74 -2.25 

*exact location is unclear 

P3 
0.56 
0.84 
0.98 
-1.15 

P4 

0.63 
0.44 
0.98 
-3 .8 
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Figure lAb shows the vertical distribution of Reynolds shear stress values (-pu'v'). In open 

channel conditions, Reynolds shear stress increases from the channel bed until 0.3Y where it 

peaks at 1.18 N/m2• Above, it decreases near null values at the water surface. In ice-covered 

flow conditions, Reynolds stress values are positive in the region close to the bed and 

negative in the region affected by ice. Two types of profile shapes are apparent. Profiles p2 

and p4 have linear trends while profiles pl and p3 have more sinuous trends with S-shaped 

forms. The outer region trends allow the identification of the horizon where -pu'v'= 0 with 

standard least square regressions (LSR). The models have been applied to all values between 

the most negative and positive values of the profile to avoid the scatter along the S-shaped 

trends. Results of dimensionless flow depths values for the plane of zero shear stress (yuv=QIY) 

are presented in table 1.3. Profile pl has the peculiarity to present a flat front in the outer 

region that sticks more or less to the O-value. The standard least square procedure identifies a 

precise transition that, in fact, co vers a wider range of depth values (from -O.SY to -0.7SY). 

The trend of profile p3 is almost restricted to the upper half of the profile and crosses the 

plane of zero shear stress only very close to the ice cover. This shape is strikingly similar to 

the one measured during summer conditions (pO). For ail ice-covered profiles, the range of 

Reynolds shear stress values is sirnilar, varying between -0.18 and 0.21N/m2 , with the 

exception of p3 where values reach a maximum of OA3N/m2 . In all cases, Reynolds shear 

stress values in ice-covered flow conditions are much lower than in open channel f10w 

conditions (ranging between 0.34 and 1.18 N/m2). 

1.3.2. Visualization of macroturbulent coherent flow structures 

Figures 1.5 and 1.6 present the space-time velocity matrix used in the LISA algorithm as well 

as the proportion of time when clusters are identified as lower or higher than mean velocities. 

In open channel conditions, velocity fluctuations for both the u and v components show well 

defined stripes of vertically organized clusters covering a proportion of the flow depth, 

sometimes occupying the entire water column. For the u component of f1ow, identified 

clusters correspond to 40.7 % of all data and equally include higher and lower than average 

zones. AIso, the frequencies show that clusters are evenly represented along the vertical 
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profile. They often slightly diverge from perfect verticality, but definite obliquity trends are 

not obvious. For the v velocity component, identified clusters represent 28.9% of aIl data. 

Clusters also tend to organize in vertical stripes, but have shorter time lengths and tend to be 

slightly more frequent in the core area of the profile. For both components of the flow, no 

clear succession of lower and higher than average velocities can be readily observed. 

In companson, the ice-covered flow velocity profiles seem disorganized. For the u 

component offlow, clustered velocities represent 13% (pl), 2l.8% (p2), 21.9% (p3) and 23% 

(p4) of aIl data compared to 40.7% for open cpannel conditions. Clusters appear also 

vertically aligned and can coyer a significant proportion of the flow depth. However, the 

frequency distribution shows that c1usters are more frequent toward the boundaries and less 

frequent at mid-depths of flow, with a definite asymmetry favouring c1uster occurrence near 

the bed channel rather than the ice coyer. The position of lowest frequencies appears to occur 

very close to the interface of Yuv=<1y. For a better visu al interpretation of thi s relation, this 

interface is presented by a dot line on each graph. In cases where the interface is not 

systematically coincident with the very lowest values of frequencies, it appears nonetheless 

close to a zone of decreasing frequency values for profiles pl, p2 and p3. Also, the more 

pronounced is the gradient of Reynolds shear stress values, the clearer is the decrease in 

cluster frequencies (see table l.3 for gradient values). Profile pl has no variations of 

Reynolds stresses in the mid region of the flow and this is reflected by a mild variation in the 

frequency of the clusters. Profile p3 has the most pronounced gradient of Reynolds shear 

stress values over depth and this is reflected by a large variability of frequencies over depth. 

A close examination of individual clusters reveals that they can occasionally interpenetrate 

both boundary layers . However, on average, clusters are lengthier and more frequent near the 

boundaries and shorter as they reach and cross the interface of Yuv=<1y. Coherency is al so 

better defined near the channel bed, reflecting the asymmetry in boundary roughness and its 

influence in the production of turbulent coherent motions. 
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The v component of flow presents a different pattern. Clusters represent 17.6% (pl), 24.3% 

(p2), 26% (p3) and 24.6% (p4) of total data, a proportion that is systematically higher th an 

for the u component. This increased frequency appears to be more evenly distributed along 

the water colurnn with perhaps a meagre peak somewhere in the profile, though without any 

obvious pattern in its location. No relation with the interface YuvdY can be seen. This does 

not imply that individual clusters cover the entire flow depth. When looking more 

specifically at individual cIusters, it is obvious that their vertical extension is limited, but they 

occur everywhere in the profile. 

1.3.3. Integral rime and length scales of macroturbulence 

Figure 1.7 presents values of Integral Time Scales (ITS) and Integral Length Scales (ILS) for 

the u and v velocity component. The ITSu and ILSu values of the open channel profile range 

respectively between 7-11 seconds and 2.5-4.5 meters. The ITSu values have no visible 

vertical trend, generally remaining constant over the depth of flow, while ILS u values cIosely 

follows the gradient of the mean velocities of the profile. The mean ILS u value over depth is 

3.4 meters and corresponds to 2.6 times the flow depth. The ITSv and ILS v values range 

respectively between 3-11 seconds and 1.1-3.8 meters. Mean ILS v equals to 2.5 meters and 

corresponds to 1.9 times the flow depth. Here, a definite trend of increasing values toward the 

bed is apparent for both variables. 
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p3 = <? p4 = x. 

Integral time and length scales of macroturbulence for ice-covered profiles have drastically 

different features. For the u component, ITSu and ILSu values respectively range between 0-6 

seconds and 0-1.5 meters. The mean length scale of aIl four profiles averages 0.4 meter, 

corresponding to 0.38 of the flow depth. This central value varies along the depth of flow in a 

crescent shape trend with maximum values in the vicinity of the ice and bed boundaries and 

lower values in the outer region of the flow. For the v component, ITSv and ILS v values 

respectively range between 0-1.5 seconds and 0-1 meter. Mean ILSv value is 0.48 and 

corresponds to 0.42 times the flow depth. The crescent shape observed for the u component 

can still be observed for the ITSv values, but is very subtle for the integral length scale. The 

results of ITS and ILS values for the u component are consistent with the results from the 

LISA analysis. For open channel conditions, the autocorrelation function reveals that flow 



29 

coherency over time is constant regardless of flow depth. For ice-covered conditions, the 

crescent shaped patterns along the ITS and ILS profile values follow the same pattern 

revealed by the LISA algorithm where clusters of coherent motions were more present near 

the boundaries and less frequent towards the interface of zero Reynolds stresses. If the pattern 

between the ACF and the LISA analysis are consistent, the time persistency and, 

consequently, the length sc ales of coherency are not. The LISA algorithm presented the 

clusters as very large and intermittent. However, the length of clusters identified with the 

LISA algorithm is dependant upon the space window and the weight parameters. The ACF 

yields a true length scale of macroturbulence structure. 

1.3.4. Inclination of macroturbulent structures 

Following Buffin-Bélanger et al. (2000), angles of inclination to the channel bed of large 

scale turbulent structures (cp) can be estimated for each pair of cells in the vertical profile 

from: 

tan (cp) = dl( Lmax * il ) (7) 

where d is the vertical distance between two cells, Lmax is the time lag of maximum cross-

correlation between the two cells and il is the mean velocity of the top cell. The small 

sampling frequency (l Hz) limits the capacity to detect the presence of weak inclinations. If 

one accepts a mean inclination of 36° for large scale turbulent structures as reported in 

gravel-bed ri vers (Buffin-Bélanger et al. , 2000), uses an average flow velocity of -40 cmls 

and a minimum time lag of 1Hz, the vertical distance between the cells needed to detect an 

inclination would be -30 cm. So, time series sufficiently distant from each other could in 

theory allow to estimate an angle of inclination. For each profile, cross-correlation analyses 

were computed considering a range of time lags of ±5 seconds between two time series. 

Cross-correlations were applied between a fixed ceIl, the third from the ice cover, and every 

downward cell of the profile. The third cell was chosen instead of the first or second because 
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of the small proportion of significant correlation values for the first two cells with the other 

cells of the profile. 

Figure 1.8 presents the results of cross-correlation values in the form of isolines for both open 

channel and ice covered conditions. In open channel conditions, correlation values show a 

constant decrease with distance, although ail cells remain significantly correlated over the 

flow depth. Maximum values remain centered on the O-lag line suggesting that the flow 

structures tend to follow a near vertical axis, which is consistent with the LISA analysis 

(figure 1.5). Considering the range of depths covered from the third top cell to the last bottom 

cell (1.03 m) with no time lag trends detected in the cross-correlation, it follows that the 

inclination with the bed of the structures would be superior to 68°. This is far higher than 

angles previously reported for gravel-bed rivers, but agrees with the shape of the c1usters 

observed in the time series (figure 1.5 and 1.6). Clearly, a higher sampling frequency is 

necessary to further assess the exact obliquity of large scale turbulent flow structures in sand 

bedded channels. In ice-covered conditions, cross-correlations values decrease with distance, 

but at a faster rate than in open channel conditions. For profiles pl, p2 and p3, correlation 

coefficients are not significant at flow depths of 40 to 50 cm under the ice cover. In profile 

p3, higher correlation values reappear further down the profile until a depth of -1 .25 m. In 

p4, correlation values remain statistically significant over the entire flow depth at lag times of 

o. For aIl profiles, there appears to be no systematic shift in the lag of maximum correlation 

values, as it is centered on lag = o. However, there also appears to be an asymmetry in 

correlation values between positive lags (backward flow) and negative lags (forward flow), 

favouring the latter (more pronounced for the 0.06 and 0.2 isolines). This asymmetry 

suggests a possible slight forward inclination starting from the ice cover. 



31 

0.2 c-
p_O 

-rrrrr---.,..., 

004 DA 

/' 
, 

É- a.C6 0.2 '\." 

0.06 0.06 0.06 
..c 0 .6 0.6 0.6 0.6 a / 

/ 
Q) 

( 
'0 

~ s: 02 0 
iL 0.8 0.8 0.8 . 0.8 0.8 

0.06 
-5 0 5 

-5 0 5 
1.0 1.0 1.0 -5 0 5 

-5 0 5 
1.2 

1 .4 L--'---'--_--' 
-5 o 5 

Lags (s) 

Figure 1.8: Isolines of cross-correlation values between the top third ceU from the water 
surface (or ice cover) and every other downward ceUs of the profiles. The line labeled 0.06 
represents the critical value of statistical significance at a = 0.05. 

1.3.5. Correlation matrices 

The vertical extent of macroturbulence over the flow depth can be estimated using correlation 

values from other ceUs in the profile. Each cell of the profile is successively used as the fixed 

cell to compute correlation values with aU other cells of the profile. The previous cross-

correlation analyses based on the third cell from the ice cover showed the absence of definite 

inclinations in flow structures for both open-channel and ice-covered conditions. This result 

simplifies the analyses because it is not necessary to consider oblique continuity in 

correlation values. In other words, we can consider that the maximum correlation values 

between the time series will occur at a time lag of O. Values are presented in the form of 

matrices with axes that represent cell velocities of differing flow depths that are correlated 
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against each other in the profile. The oblique white line of ceIls represents perfect correlation 

between one cell and itself. The information is best read on the vertical where correlation 

values can be viewed considering successively different cells of the flow. Looking up (water 

surface) or down (channel bed) from each white ceIl, correlation values can show the extent 

of flow that remains correlated. From this, a measure of the vertical extent of coherency 

(d corr ) can be calculated, representing the maximal distance before correlation values dip 

below the threshold for statistical significance. The mean vertical extent of coherency for an 

en tire profile (dcorr ) represents the average (in percentage of flow depth) observed for aIl 

ceIls of the profile. These values are presented in table 1.4. 

In open channel conditions, correlation values of both the u and v components remain 

statisticaIly significant throughout the entire flow depth for almost aIl cells (dcorr= Y). On 

average, correlation values are of the order of 0.44% and 0.59% for the u and v component 

respectively (considering only significant values and excluding values of perfect 

correlations). Correlation values vary mainly as a function of the separation distance between 

the cells and are fairly unaffected by flow depth, although slightly weaker correlation values 

can be identified toward the water surface compared to the river bed for the u component. In 

ice-covered conditions, average correlation values are much lower in comparison to open 

channel conditions for both the u and v components of the flow. Again, values for the v 

component are systematically higher than for the u component. In ice-covered conditions, 

correlated cells do not cover the entire flow depth (deoIT < Y). The mean extent of correlated 

cells (dcorr ) for each profile co vers 0.58, 0.64, 0.64 and 1 time the flow depth for pl, p2, p3 

and p4 profiles, respectively. For the v component, the se values increase to 0.81 , 1,0.91 and 

1 time the flow depth. 
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Table 1.4: Mean correlation coefficients and vertical extension of correlated cells in the flow 

pO pl p2 p3 p4 
r 

u- velocities 0.44 0.21 0.24 0.28 0.32 
v- velocities 0.59 0.28 0.34 0.36 0.38 

dcorr 
u- velocities 1 0.58 0.64 0.64 1 
v- velocities 1 0.81 1 0.91 1 

r: Mean correlation coefficients applied to ail significant values in the matrices No 
significant negative correlations were observed. 

dcorr : Mean vertical extent of significant correlation values in the matrices (in proportion of 
flow depth) 

The separation distance between the cell pairs in ice-covered profiles affects the correlation 

values, but the position of the cells in the water column must also be considered. For an equal 

separation distance, correlation values vary if the cells are c10ser to the ice or to the bed. This 

can be easily seen in the matrices of the u component. Profiles pl, p2 and p3 show c1ear 

increase in the maximal distance of correlated cells with increasing depth (c1oser to the bed 

boundary) . Profiles pl and p2 show a graduaI increase while profile p3 shows a c1ear 

transition between the two boundaries. There is not a good correspondence between the 

position of zero Reynolds shear stress and the apparent transitions in correlation values. The 

only c1ear correspondence is for the v component in profile p3 that presents a sharp transition 

between the two boundaries. The other profiles exhibit either a graduaI change (pl and p2) or 

no uncorrelated cell pairs (p4) to establish a match with the plane of zero Reynolds shear 

stresses. However, the relative thickness of the two boundary layers as derived from both 

analyses is fairly similar. The larger coherency near the bed as revealed by correlation 

matrices for profile pl, p2 and p3 is reflected by a shifted position of the Reynolds shear 

stresses c10ser to the ice cover. 
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1.4. Discussion 

The analyses show an overall consistency in the picture of macroturbulence for both open 

channel and ice-covered channels. In open channel conditions, we are confident that the 

results show the presence of macroturbulent coherent flow structures as reported in earlier 

studies that focused at this scale of analysis (Roy et al., 2004). The LISA analyses detected 

vertically organised stripes of high and low speed coherent motions covering the en tire flow 

depth. The mean length scales of coherency measured from the ACF are estimated at 2.6 

times the flow depth, which lies in the range of 2-3 times the flow depth as reported by Roy 

et al. (2004) . The two analyses are not necessarily referring to the same scale of 

macroturbulence, but they both contribute to a complementary view of macroturbulence. 

LISA illustrates the space-time pattern of coherency while the ACF gives an accu rate 

measure of their size. Discrepancies with past model of large scale coherent structures also 

appear. Cross-correlations reveal no perceptible tilting in the structure while previous flume 

and field studies have both shown that macroturbulence should be forwardly inclined in the 

flow (Brown and Thomas, 1977; Levasseur, 1999; Buffin-Bélanger et al., 2000). However, 

this assessment should be based on a higher sampling frequency to be adequately resolved. 

AIso, vertical velocities are not displaying the same picture as for the longitudinal velocities. 

Firstly, clusters of coherent motions are not evenly distributed over flow depth. They are 

more frequent toward the center of the flow and show a decrease both toward the water 

surface and the bed. Secondly, ITS v and ILS v show a graduai decrease toward the water 

surface. This trend is more in line with the occurrence of smaller scaled coherent structures 

that form near the channel bed and advects in the outer layer where it coalescences and 

dissipates. 

In ice-covered conditions, velocity profiles adopt classicaI parabolic shapes with varying 

symmetry that reflect the influence of the ice coyer and of the bed roughness on mean 

velocities . Negative Reynolds shear stress values indicate the production of turbulence 

arising from the flow interaction with the ice coyer. The position of the inversion between 

positive and negative Reynolds shear stress value (Yuv=o) is used to identify a mean interface 

of turbulent exchanges occurring from each boundary layer. This interface is symmetrical for 
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profiles p2 and p4 and asymmetrical for profiles pl and p3, with an accentuate dominance in 

turbulence production from the bed channel. No obvious roughness feature could explain the 

variability in asymmetry between the profiles. 1t is likely that they are related to a spatial 

pattern at the reach scale (p 1 and p3 are located at the centre of the channel while p2 and p4 

are closer to one of the channel banks) instead of being related to the roughness features of 

the ice cover or the channel bed at the very local scale. About macroturbulent coherent 

structures, the results pinpoint to two complementary views of macroturbulence: 

1) On one hand, several results reiterate the flow structure division into two independent 

TBL: the frequency of clusters detected with LISA for the streamwise velocity component 

are more defined in the vicinity of the boundaries, ILS are highest close to the boundary walls 

and matrices of correlation values show vertical discontinuity in flow coherency. These 

results aIl converge towards a picture of two boundary layers with high turbulent exchange 

between the two, thus disrupting macroturbulent coherent structures. Coherency is 

preferentially located near each of the boundary walls and flow motions associated with 

coherent structures seem less likely to overlap both boundary layers. The main consequences 

of this division is that macroturbulence under an ice cover is highly reduced in scale, both 

streamwise and vertically. The ACF estimates that the streamwise length scale of 

macroturbulent coherent structures is reduced from an average of 2.6 to OAY (u component) 

and from 1.9 to OAY (v component). Correlation matrices show that the vertical extension is 

less than the flow depth in ice-covered conditions: between 0.58 to 1 Y (u component) and 

between 0.81 to 1 Y (v component). Perhaps, each boundary is fed with turbulence production 

from the flow interaction with the walls and macroturbulence structures advect in the flow 

with limited capacity to expand into the other territory. 1t could then be hypothesised that the 

scale of macroturbulence is determined by the thickness of the respective boundary layers. 

No particular relation between the scale of macroturbulence and outer layer parameters could 

be identified. However, it is likely that the macroturbulence structure division in the flow is a 

function of the roughness ratio between the ice cover and the bed channel at the reach scale. 

Further studies should use a more explicit notion of roughness ratio between the ice cover 

and the bed channel to better evaluate its influence in macroturbulence dynamics. 



37 

2) On the other hand, it also appears incorrect to present macroturbulence as a confined 

mechanism limited within each respective boundary layers. The results show that 

macroturbulence display spatial trends in the form of two boundary regions where coherency 

is maintained and one fuzzy mixing region where it is disrupted and eventually dissipated. 

Visualization of velocity coherency using the LISA algorithm revealed clear intermittent 

overlap of the clusters over both boundaries. The perrneability of the interface between the 

two boundaries is further emphasized from the results of the correlation matrices that presents 

a mismatch between the position of Yuv=r/Y and the vertical extension of correlated cells in 

the flow. At first, this could appear as contradictory since one would assume that the position 

of the mixing layer would imply that velocities would stop being correlated when crossing 

this interface. However, since it is a mean position, it is possible to imagine a scenario where 

the macroturbulent structures could be triggered alternatively from the ice coyer and the bed 

channel and still expand throughout both boundary layers. This situation would however 

necessitate highly quiescent and ephemeral macroturbulent structures. Perhaps, this is the 

case for profile p4 that presents no uncorrelated cells over the flow depth (dCOTT = Y). The 

results for profile pl , p2 and p3 rather suggest a mid case scenario where macroturbulent 

structures expand from both boundary layers and maintain their coherency across the mixing 

layer before breaking up (dCOTT < Y) . FIume studies have already shown that coherent 

structures shed in the lee of protruding obstacles attached to the bed can advect as far as the 

ice coyer (Ettema et al., 1999). Hence, vertical exchanges between the two layers may 

certainly arise for individual small-scaled coherent structures with high momentum. The 

outer region may then be perceived as a territory where low momentum macroturbulent 

coherent structures can occupy interrnittently. In fact, the ide a of a division into two TBL 

might be misleading when considering macroturbulence dynamics since this so-called 

frontier is not static in time. 

These two complementary views of macroturbulence are conceptually illustrated in figure 10. 

The division of the flow is represented by two TBL enclosing a rnixing region that is shared 

by the two. In this case, the TBL of the bed is thicker than the TBL of the ice as revealed by 

the correlation matrices. This can evolve through time as the roughness of the ice undercover 

changes in the winter season and the roughness ratio with the bed is modified (Ashton and 
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Kennedy, 1972). Both TBL present velocity signatures of ejection and incursion type motions 

that are conveyed in the rnixing region along with macroturbulence coherent structures. 

Macroturbulent coherent structures are represented as motions attached to either boundary 

walls penetrating to various extents into the mixing region. Their length decreases from the 

boundary walls towards the mixing region, but they can extend far into the flow and even 

reach the opposite boundary. The representation of macroturbulent coherent structures 

through time is only tentative, but appears as patchy as revealed from the LISA analysis. 

Further studies should regard with more emphasis the organisation and structure of 

macroturbulent coherent structures in the time and frequency domains. 

These two complementary Vlews of macroturbulence are conceptually illustrated in 

figure 1.10. The division of the flow is represented by two TBL enclosing a rnixing region 

that is shared by the two. In this case, the TBL at the bed is thicker than the TBL under the 

ice coyer. This can evolve through time as the roughness of the ice undercover changes in the 

winter season and the roughness ratio with the bed is modified [Ashton and Kennedy, 1972]. 

Both TBL present velocity signatures of ejection and incursion type motions that are 

conveyed in the mixing region along with MeS. Mes are represented as motions attached to 

either boundary walls penetrating to various extents into the rnixing region. Their length 

decreases from the boundary walls towards the mixing region, but they can extend far into 

the flow and even reach the opposite boundary. The organization of Mes through time is 

only tentative, but appears as patchy when referring to results from the LISA analysis. 

Further studies should examine with more emphasis the organisation and structure of Mes in 

the time and frequency domains. 
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Figure 1.10: Conceptual model of macroturbulent coherent structures under an ice cover 

1.5 Conclusion 
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This paper aimed at detecting and observing macroturbulent coherent structures under an ice 

cover in a sand bedded river. This was possible using a pulse coherent acoustic Doppler 

profiler which can sample water velocities simultaneously over the entire flow depth at a high 

vertical resolution. This allowed for detailed observations of macroturbulence in response to 

the presence of an ice cover. The ice cover exerts a friction that forms an . upside down 

boundary layer. The four ice-covered profiles exhibit velocity profiles with parabolic shape 

of varying asymmetry. Reynolds shear stresses in the uv plane show positive values near the 

channel bed and negative values near the ice cover. This allowed identifying a mean mixing 

layer dividing two TBL, each one dominated by a turbulence signature referring to either the 

ice cover (top boundary) or the channel bed (bottom boundary) . The LISA algorithm revealed 

vertical stripes of high and low speed coherent motions in both open channel and ice covered 

flows. In the presence of an ice cover, clusters are less frequent and best defined in the 

vicinity of the boundary walls. Presumably, each boundary wall generates and sustains its 

own set of macroturbulent motions that compete with each other in the outer region of the 

flow where they become scarcer and less persistent. As a consequence, ice-covered flow is 
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more complex and macroturbulent coherent structures are reduced in scale. The ACF showed 

that the streamwise length scale is highly reduced and correlation matrices revealed that their 

vertical extension is less th an the flow depth. However, the flow structure must not be 

perceived as two compartmental regions with closed frontier. Coherent motions do overlap 

both boundary layers, however less often and with reduced coherency. Further measurements 

aimed at the scale of macroturbulence are most needed, especially with instruments with 

higher space-time resolutions, to further specify the interactions at the interface between the 

two TBL. 



CHAPITRE II 

HELICAL CELL MOTIONS IN A SMALL ICE-COVERED MEAN DER RIVER REA CH 

CELLULES HÉLICOÏDALES DANS UN MÉANDRE DE RIVIÈRE EN PRÉSENCE D'UN 

COUVERT DE GLACE 

Abstract 

The investigation of the flow field with a Pulse-Coherent Acoustic Doppler Profiler has led to 

new high resolution observations of the secondary flow pattern occurring in a natural ice-

covered meander reach . Surveys were conducted during two successive winter periods with 

different ice conditions. Massive frazil ice accumulation was present during one of the survey 

and its influence on the flow pattern could be assessed. ResuIts show that the primary flow is 

c1early deflected toward the outer bend. Secondary flows are one order of magnitude less 

th an the primary flow and they display two stacked counter rotating helical cells pattern 

occurring at the entrance of the bend. This pattern is associated with the parabolic shape of 

the velocity profiles entering the bend. The pattern rapidly evolves downstream, reducing to 

one helical cell rotating in an opposite direction th an what is observed in open channel flows . 

Flow mixing and morphological non-uniformity are potential factors governing the 

development of the helical cells throughout the bend. Our observations show that a sirnilar 

coherent flow pattern rapidly forms downstream of a massive frazil ice obstruction in the 

bend. Frazil ice does not constrain the formation of helical flow pattern in river bends. 
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Résumé 

Le patron des écoulements secondaires dans un méandre en présence d'un couvert de glace 

est révélé par des mesures à haute résolution obtenues à l'aide d'un profileur acoustique à 

effet Doppler. L'échantillonnage du champ de vitesses s'est déroulé pendant deux hivers 

successifs qui présentaient des conditions de glace différentes . La présence d'accumulations 

massives de frasil à l'apex du méandre lors de l'une des campagnes a permis de mesurer son 

incidence sur le patron spatial des écoulements secondaires. En l'absence de frasil, 

J'écoulement principaJ est dévié rapidement vers la berge externe en réponse à J'accélération 

centrifuge. Les écoulements secondaires sont en moyenne un ordre de grandeur plus faible 

que l' écouJement principal. À J'entrée du méandre, ceux-ci sont caractérisés par la présence 

de deux cellules hélicoïdales superposées. Ce patron est associé à la forme parabolique des 

profils de vitesses présents sous couvert de glace. Ce patron est rapidement réduit à la 

présence d ' une seule cellule secondaire avec un sens de rotation opposé à celui attendu dans 

les méandres à surface libre. Cette évolution du patron peut être associée au mélange des 

écoulements et à la non-uniformité morphologique d'un méandre caractéristique des milieux 

naturels. Dans la période caractérisée par une accumulation de frasil, l' écoulement secondaire 

es t formé de deux cellules hélicoïdales superposées dès la sortie de la zone de confinement. 

L ' accumulation de frasil n'apparait donc pas comme une contrainte persistante pour leur 

formation . 
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2.1. Introduction 

Flow structure in open channel meander bends has long attracted attention (Thomson, 1876) 

and is still extensively studied in both laboratory flume (Blanckaert and Graf, 2001) and field 

experiments (Frothingham and Rhoads, 2003) . Planform curvature of meandering bends 

promotes strong secondary currents that develop into helical patterns. This pattern is 

coincident with high shear stress directed towards the outer bend (Bathurst et al., 1979) a~d is 

connected with the erosion and deposition pattern occurring at the meander reach scale 

(Bridge and Jarvis, 1982). Flow helicity is governed by two opposing forces that balance 

differently along flow depth . Bend curvature is linked to a centrifugaI acceleration that works 

to direct the water toward the outer bend. Skewing of the flow toward the outer bend raises 

the water surface thus creating a cross-sectional difference in water surface height. The 

pressure differential induced from the water surface height gradient works to redirect the 

water toward the inner bend . Given that average flow velocities tend to follow a logarithrnic 

vertical profile in a shallow f1ow , high speed velocities at the water surface are more affected 

by the centrifugaI acceleration and directed toward the outer bend. The low speed flow near 

the channel bed is less affected by centrifugai acceleration compared to the pressure force and 

hence is directed toward the inner bend. This twofold mechanism induces a rotating motion 

progressing downstream that can be grossly represented as a helical pattern. In spite of the 

crucial role of the vertical distribution of flow velocities, the helical flow pattern was shown 

to be resilient to the shape of the velocity profile in the flow entering the bend in open 

channels (Ghamry and Steffler, 2002). 

Ice-covered f10w is drastically different from open channel conditions. Depth-lirnited ice-

covered channels are characterized by two distinct boundary layers developed in the opposite 

direction and stacked on top of each other. Each velocity gradient is affected by the 

roughness of its boundary and meets at some point in the water column where maximal 

average velocities are found. The vertical distribution of average flow velocities has a 

parabolic shape. Urroz (1988) and Zufelt (1988) have both studied the flow field in flumes 

reproducing high ly curved river bends with an ice coyer. By investigating the lateraI 

components of the velocity profiles, the authors have found evidence of two stacked counter 
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rotating helical ceil motions. High speed f10w occurring at mid-depths of the water column is 

preferentially deflected toward the outer bend by centrifugai acceleration. Flow redirection 

toward the inner bend occurs near both the ice and channel boundaries. This results in two 

counter rotating helical cell patterns. 

The occurrence of two helical cells in natural ice covered meander reaches has yet to be 

observed in small rivers. Natural conditions are expected to offer more complexity because of 

the irregularity in bed morphology and in ice cover thickness and of the potential obstruction 

in the meander from frazil particle accumulation. Velocity measurements are needed to feed 

models describing ice-covered river f10w structure, but also to assess the ubiquity of the 

helical flow model in different natural settings and ice conditions. However, the lack of 

adequate instruments has long impeded this type of survey. The Pulse-Coherent Acoustic 

Doppler Profiler (PC-ADP) is a relatively new option for field surveys that can measure 

entire velocity profiles simultaneously in the three components of the f1ow . This instrument 

offers the opportunity to sound a vast volume of f10w with good spatial and temporal 

resolution. In this study, surveys have been conducted in two successive winter periods in a 

small meandering reach. The surveys allowed us to 1) detect and characterize the presence of 

helical ceIl motions and 2) to assess the variability of the f10w structure during two 

successive winter conditions. The occurrence of massive frazil ice accumulations in the river 

bend during the first survey gave us an insight on the sensitivity of the average f10w structure 

to this frequent winter related process. 

2.2. Methodology 

Fie ld surveys were carried out in early March 2007 and 2008 in a small meandering reach of 

the Neigette River, a tributary of the Mitis River (Quebec, Canada) . The meander reach is 

deeply incised and stabili zed by compact clay deposits. Bed material is composed of sand. 

Discontinuous ripples were locally observed on the bed at the head of the pool. The radius of 

curvature is low (-50 m) and results in a sharp 134° change in talweg orientation 

(figure 2.la). 
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: 0.05 m blanking distance 
cel! size : 0.044 m 
sampling frequency : 1 Hz 
number of records : 600 

Figure 2.1 : a) Meander reach sampling scheme; b) PC-ADP sampling scheme. 

The channel curvature is not constant, but follows a graduaI tightening from the apex of the 

meander to the outlet. Discharge was estimated at 1.7 m3/s (-3% of bankfull discharge) in 

2007 and at 2.2 m3/s (-4%) in 2008. The thickness of the ice coyer was measured and the 

undercover roughness was visually inspected using a submersible optical camera. Ice 

roughness was classified in three discrete classes judging from the overall observed 

roughness variability : smooth, smooth-rough and rough (see figure 2.2 for an illustration of 

each category) . Thirty eight velocity profi les positioned along 16 cross-sections (CS) were 

measured during a two day fie ld campaign. During the survey, water discharge remained 

constant. The sampling design aimed at optimising the location of the profiles by increasing 

the density of sampling points at the meander apex where helical cells were thought to be 
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more likely to develop. Figure 2.1 a summaries the sampling design in which profiles are 

identified by their relative position along a particular CS measured from the outer bend. 

Velocity profiles were collected using a Sontek 1.5Mhz Pulse Coherent Acoustic Doppler 

Profiler (PC-ADP). The profiler has the ability to collect simultaneously entire velocity 

profiles in aIl three velocity components (longitudinal, lateral and vertical). The PC-ADP 

relies on a particular measurement technique, the coherent mode, that can provide a vertical 

resolution in the order of a few centimetres (Lac y and Sherwood, 2004). The instrument 

sends two short sound impulses in the water colurnn where it is backscattered by the buoyant 

particles in movement within the water. Velocities are measured parallel to three radial 

beams inclined at 15° with respect to the axis of the instrument, forming a sampling volume 

extending outward in the water column following the shape of a cone (figure 2.lb). The 

instrument measures velocities at several depths of flow which corresponds to slices (cells) of 

the cone. The sampling diameter of the cells grows with distance from the instrument (d) as a 

ratio of -O.Sd. Velocities are converted into a cartesian framework which postulates that the 

flow measured by ail beams is spatially equivalent, i.e. flow is assumed to be homogeneous 

within the sampling volume. 

We used a tripod mount with a scaled rod which allowed us to insert the instrument head 

even with the ice undercover. Blanking distance, the no-see area near the nose of the 

instrument, was set to its minimum length of 0.05 m and cell heights varied between 0.044 or 

0.105 m. Velocities are sampled at a frequency of 1 Hz during 10 minutes . Along with 

velocity data, the instrument measures quality parameters for validation purposes. Correlation 

values measure the coherency between each sound impulses pair (Sontek, 2004). No minimal 

threshold is recommended since correlation value is also function of environmental 

conditions. Interference between successive sound impulses typically hinders the capacity of 

the PC-ADP to resolve the cells nearest to the bed. We have found that the ice cover further 

increase sound interferences and diminish correlation to values as low as 25%. We 

systematically removed time series that presented lower mean correlation values (<15%) and 

these appeared to be systematically close to the bed where flow is also less homogeneous. 

Time series are also affected by ambiguity error that results from the short range of 
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resolvable velocities (Lhermitte and Serafin, 1984). This is overcome by the use of an 

independent velocity measurement to detect and correct the corrupted data. The algorithm 

provided by Lacy and Sherwood (2004) and improved by Cassista (2007) was applied to aIl 

times series and proved to be effective for correcting ambiguity errors. Time series were 

averaged and rotated to allow the analysis of the lateral components, which are defined as the 

perpendicular to the primary flow velocities. The rotation used herein is applied to every 

profile of each CS to give a net zero lateral discharge (Markham and Thome, 1992a,b). The 

technique is known to yield a better representation of the true secondary components of the 

flow as opposed to the more commonly used Rozovskii (1954) rotation technique 

(Lane et al., 2000). 

2.3. Results 

2.3. 1. /ce caver and velocity profiles 

Figure 2.2 illustrates the spatial variability of ice coyer thickness and roughness classes for 

both SUl·veys. !ce thickness at the reach scale ranges from 51 to 76 cm and from 53 to 69 cm 

for the 2007 and 2008 surveys respectively. Despite the similarity in range, the first survey 

presents a more scattered spatial organisation. !ce thickness is patchier and presents more 

drastic local changes in 2007 . This patchiness at the reach scale is matched by the visual ice 

undercover roughness at the local scaie. The rough category represents 48 % of observed 

sites in 2007 as opposed to 16% for the 2008 survey. AIso, at the time of measurement in 

2007, the pool area was filled with accumulated frazil ice particles that often hindered the 

assessment of the undercover state as weil as the measurement of velocity profiles. The 

accumulation of frazil particles acts as a porous roughness that is known to modify the 

pattern of flow in a meander bend (Sui et al. , 2008) . Thus, it is expected that flow structures 

between the two successive winters might exhibit different patterns. 
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• • • 
... .. 

Roughness Thickness (cm) 

• Smooth 76 69 
.. Smooth-rough 

• Rough 51 53 
~ 2007 2008 X Frazil ice ~ 

Figure 2.2 : Ice coyer thickness and undercover roughness for the 2007 and 2008 surveys. 

Figure 2.3 presents two velocity profiles coUected during each survey at the entrance of the 

pool where flow is still lightly affected by centrifugaI acceleration. The two surveys show 

differences in flow depths and velocities due to the different discharge, but the profiles 

entering the bend present a classical parabolic shape typical of river flow under an ice coyer. 

Also, the ice undercover is rougher at the entrance of the bend in 2007. As a result, profile at 

position 8°-1/2 (2007) has a shape with maximum velocities found closer to the bed. 

Undercover roughness may shift the position of maximum velocities and so influence the 



49 

height of flow divergence against the outer bend. Overall, the profiles entering the bend 

exhibit classica1 undercover profiles that wou1d theoretically 1ead to two he1ica1 cell motions 

(Urroz and Ettema, 1994). 

8° - 1/2 (2007) 8°_3/4 (2007) 8° -1 /2 (2008) 8°-3/4(2008) 
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Figure 2.3 : Ve10city profiles at the entrance of pool for the 2007 and 2008 surveys. 

2.3.2. Three dimensionalflow pattern 

The p1anform view of depth-averaged flow ve10cities throughout the bend is illustrated in 

figure 2.4 for the 2008 survey. Although the figure does not show the complex vertical flow 

pattern that could be typica1 of flow in meander bends, severa1 features can be observed. At 

the bend entrance (0° and 8° CS), average flow velocities are in the order of - 25 crnls with a 
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cJear mean deflection toward the outer bend. The deflection is observed for downstream CS 

and a line of maximum velocity develops in the reach towards the outer bend. A peculiar 

velocity signature occurs near the 8° CS close to the outer bend where near null velocities are 

observed with a recirculation pattern (not visible on the figure because of the scaling). The 

low velocity values are caused by the presence of a tree along the outer bank that was 

revealed by the underwater camera during the survey. The wake effect of this obstruction can 

be perceived from slower velocities measured near the outer bank at 17° CS and 23° CS. As 

the flow enters the bend, flow velocities are gradually slowed to -10 cmls near the deepest 

part of the pool and then rapidly speed up again from the 105° to 134° CS where flow depth 

is rapidly reduced. Flow is highly non-uniform throughout the bend. 
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Figure 2.4 : Planform view of depth-averaged flow velocities of the 2008 survey. 
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Figure 2.5 illustrates flow veloc ities along fi ve cross-sec tions (30° to 105°) near the apex of 

the meander for the 2008 survey, downstream from the perturbation caused by the tree 

obstruction. From bottom to top, the cross-sections show the downstream evolution of three 

dimensional flow patterns where colors and vec tors represent respectively the downstream 

(u) and joint lateral (v) and vertical (w) average velocity components of f1ow. From the 

combination of vectors and colors, a secondary fl ow pattern is observed along a velocity 

profile when c1ear lateral and vertical velocity changes occur in a coherent fashion. For an 

easier lecture, a schematic view of the orientation of the vectors is shown on the right hand 

side of the figure . Although it c10sely follows the pattern exhibited by the measured vectors, 

this schematic view is an interpretation by the authors of the likely pattern observed and is 

not scaled with the magnitude of secondary f1 ow. Looking at the primary component of the 

flow, downstream maximal average veloc ities are located near the outer bank throughout the 

bend as observed in figure 2.4. A shift can be seen while progressing downstream as the 

location of maximal velocities is moving more c10sely toward the outer bank edge. Following 

the expected shape of velocity profiles under the ice coyer, maximal velocities are found to 

be almost consistently at mid-depths of the Flow. However, 88° CS and L05 ° CS differ from 

this general pattern as max imal veloc ities are found to lie c10ser to the ice coyer near the 

outer bank edge. 

The secondary component of fl ow is one order of magnitude smaller than the pnmary 

component, in a proportion ranging between 5.3% and 11.2%. The relative magnitude of 

secondary flow is strongest at the meander apex (11 .2%; 65° CS) where primary f10w is the 

slowest due to increased depth and where helical cell s are better developed because of the 

sharp curvature of the channel. Evidence of helical like motions first appears at the 30° CS 

where profiles in the 1/3 and 1/2 positions show a clear mid-depth deflection toward the outer 

bend as well as two inward motions near both the ice and bed boundaries. Downstream from 

this cross-section, the secondary flow pattern is less coherent. Profile at the position 1/3 on 

the 5 1 ° CS also appears to fo llow a helical ceU pattern , although the lateral extent of the cell 

remains unknown. Profil es along the 65° CS and 88° CS still show a mid-profile deflection in 

the outward direction while near ice f1 0w remains directed toward the inner bend. However, 



52 

near-bed secondary flows are not apparent. Profile at the position 1/3 of the 65° CS suggests 

a potential inward flow near the bed, although this interpretation is tentative due to the lack of 

information located very close to the bed. Profiles along the 88° and 105° CS present mid-

depth and near-bed flow directed toward the outer bend while near-ice flow is directed 

toward the inner bend. This pattern suggests the presence of only one helical cell rotating in a 

counter ciockwise direction . Secondary flows past the 105° CS show no apparent coherent 

pattern. 
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Figure 2.5 : Longitudinal (colored contours) and secondary flow patterns (vectors) viewed downstream from bottom to top (2008 
survey). One vector is presented for each three measurements (0.13 m apart from each other on the vertical axis). Right handed 

schemes are a synthesis of results for a better reading. 



During the 2007 survey, frazil ice particles obtruded a large volume of the bend, thus no 

velocities have been measured in the pool area. However, the PC-ADP allowed us to assess 

indirectly the thickness of frazil ice accumulation by analyzing the strength of the 

backscattered signal. Strong rebound clearly identified area of frazil ice accumulation. Figure 

2.6 is a representation of frazil ice obstruction and flow velocities along the 65°, 88° and 105° 

CS of the 2007 survey. Frazil ice is shown to be mainly confined toward the inner bend or 

near the talweg. Velocities measured at the exit of bend (l 05° CS) show a surprisingly 

coherent motion despite the upstream obstruction caused by the presence of frazil ice. Profile 

at position 113 shows two near-bed and ice inward motions suggesting the presence of two 

he li cal cells. Profile at position 112, at the innermost edge of the bend, shows a closed 

rotation cell which suggests that the pattern consisting of two helical cells is lirnited to the 

outer half of the bend. 
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Figure 2.6 : Frazil ice obstruction and flow velocities in the pool area of the 2007 survey 
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2.4. Discussion 

These results suggest that two stacked helical cell motions are present in the river bend under 

an ice coyer. However, data from the 2008 survey reveal a discontinuous pattern as the flow 

is advecting downstream. The two helical cells are clearly observed between the 300 and the 

5 10 CS, but the pattern is rapidly modified further downstream. At the meander apex (65 0 

CS), strong secondary flow suggests only one helical cell rotating in a counter clockwise 

direction, which is on the opposite direction of what is expected under open chan nel fl ow 

conditions. The single helical cell pattern is less coherent but still apparent at further cross 

sections downstream. This complex evolving pattern is unexpected considering the results of 

past studies assessing the helic ity of fl ow in ice-covered flumes, where two stacked counter 

rotating helical cell motions were observed th roughout the entire bend (Urroz, 1988; Zufelt, 

1988). Concerning the counter clockwise helical ce Il , Corney et al. (2006) have also 

documented in submarine channel meanders a helical moti on rotating in an opposite direction 

from the one found in typical subaerial open channels. They explained the pattern by the 

presence of density currents exhibiting velocity profiles with max imum speed located near 

the channel bed (Felix, 2002). The effect of centrifugai acceleration is thus more pronounced 

near the bed, which is fo llowed by helical rotation in a reverse direction. Although the 

patterns documented by Corney et al. (2006) are sirnilar to the one we have observed under 

an ice co ver, they are li kely resulting fro m different processes. The vertical velocity profiles 

entering the bend of an ice covered channel present a parabolic shape with the maximal 

velocities found near the rniddle part of the fl ow (Figure 2.3). AIso, because the two helical 

cell motions take place at the entrance of the bend , the possibility of any persisting helical 

rotation corning from upstream bends can be discarded. 

Urroz and Ettema ( 1994) have stated that the two helical cell s should not be seen as 

independent, but rather as interacting objects that are likely to become more complex as they 

develop downstream. The interaction between the cell s lirnits the capacity to describe the 

phenomenon accurately with the simple hypothesis of two boundary layers sandwiching 

maxi mal velocities at rnid-depths of fl ow. Greater complex ity in the interaction between the 

cell s may lead to a weaker overall coherency that may feature several competing vorticity 
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elements . Local higher momentum might favour one or the other cell that will grow at the 

expense of the other and modify the initial pattern of flow. As the fl ow is redistributed 

throughout the bend by secondary currents, the momentum of max imum veloc ities is also 

expected to move through the bend . The effect of centrifugaI acceleration is evolving 

coincidently with the change in the primary flow velocity distribution. Thus, the secondary 

flow pattern can only be expected to change while moving downstream. The downstream 

progression can also be affected by the non-uniformity of the channel bed morphology. The 

discrepancy of our results when compared to flume studies arises most likely from the more 

complex bed morphology of natural settings. Maximum veloc ities at 105° CS are nested in 

the corner formed by the water surface and the outer edge of the bend. This situation most 

likely result fro m the sudden change in channel curvature observed at the outlet of the bend 

(from 65° to 105° CS) that also coincides with a more asymmetrical shape of the cross-

sections. The position of maximum veloc ities and helical pattern found at thi s cross-section is 

counter-intuitive since high-speed fl ow at the water surface would imply flow deflection 

toward the outer bend instead of inward . Hence, the link between the veloc ity profile shapes 

and secondary fl ow patterns is not simple. The upstream fl ow redistribution, change in bend 

curvature and morphological forcing are ail acting together throughout the bend to affect the 

development of a secondary flow pattern as it progresses downstream. 

The observations fro m the 2007 survey have shown the presence of two counter rotating 

helical cells at the exit of the pool, albeit being significantly obstructed by an accumulation of 

frazil ice particles. This suggests that frazil ice is not impeding the development of helical 

type motions. Throughout the bend, the flow pattern is most likely affected by centrifugaI 

acceleration while being simultaneously spatially directed to frazi l free areas. Moreover, 

constriction most likely speeds up flow velocities, enhancing centri fugaI effect and helical 

cen formation. Sui et al. (2008) made measurements inside a bend wi th a hanging dam of 

frazil ice that have revealed helical ce ll s to effectively occur amid the frazil free areas of the 

bend, although the global pattern that was observed was very complex. A flow pattern 

recovering fro m this containment might also be further disrupted because of the Iikelihood of 

a recirculation area near the inner bend created by the frazil obstruction. With more closely 

spaced cross-secti ons, it might be possible to better capture the transition between these areas 
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and specify the effects of containment on the pattern of flow. The presence of two stacked 

helical cells at 105 0 CS du ring the 2007 survey can be puzzling when only one was observed 

during the 2008 survey at this location . This implies that the upstream flow pattern has an 

incidence on the development of the helical cell motions immediately downstream. 

2.5. Conclusion 

Investigation with a PC-ADP of the velocity field in a small meanderi ng river reach covered 

with ice has led to new observations on the pattern of secondary flows in curved channels. 

Results show evidence of two stacked counter-rotating helical cell motions occurring at the 

entrance of the bend (300 CS to 51 0 CS) . This pattern evolves rapidly downstream, 

transforming to one helical cell rotating in an opposite direction than the one expected in 

open channel flows (610 CS to 105 0 CS). Flow mixing and morphological non-uni formity are 

suggested as possible factors explaining the development of the two helical cells into one as it 

progresses downstream. Frazil ice accumulation in the bend is not an obstac le to the 

development of the helical cells immediately downstream. 

The results emphasise the complexity of flow structures found in ice covered curved channels 

and its variability in the presence of frazil ice obstructions. The model proposed fro m flume 

studies presenting the three-dimensional flow pattern as a set of two closed helical cell 

motions is likely to oversimplify the complexity of f1 0w occurring in rivers . Further studies 

should consider increasing the density of velocity measurements in order to better delineate 

the features of the helical pattern. AIso, diversifyi ng the characteristics of the study sites 

should be considered to analyse flow pattern consistency over different flow and ice 

conditions. A larger spatial coverage including multiple successive bends could also provide 

a broader understanding of the fl ow structure of meandering rivers under ice. 



CONCLUSION 

Cette étude vise à décrire les impacts du couvert de glace sur la structure turbulente des 

écoulements en rivière. Nous nous sommes attardés à deux échelles spécifiques, soit les 

structures macroturbulentes et le patron spatial des écoulements secondaires dans un 

méandre. En apparence, ces objectifs sont di ssociés par le large écart d 'échelle qui les sépare. 

Toutefois, tous deux relèvent directement de l'effet de la glace sur la structure de la CL T de 

l' écoulement, dont les impacts se transposent à une large gamme d'échelles de temps et 

d 'espace. 

Le preffiler article présente des observations sur l' impact du couvert de glace sur les 

structures macroturbulentes. Les résultats indiquent que la présence des structures 

macroturbulentes est calquée sur la divi sion de l'écoulement en deux CLT. Les structures 

macroturbulentes sont présentes à proximité des plans de rugos ité, et inversement, se 

raréfient à l'interface entre les deux couches-limites. En conséquence, l' échelle des structures 

macroturbulentes est réduite, possiblement en fonction du rapport de rugosité entre la glace et 

le lit du chenal à l'échelle du tronçon fluvial. Toutefois, cette division n'est pas une frontière 

imperméable et des échanges turbulents se produisent entre les deux régions, contribuant au 

mélange et à la destruction des structures cohérentes de chacune des régions. 

Le deuxième article présente en détail le patron tridimensionnel du champ de vitesses à 

l'échelle d'un méandre. À l'entrée de la courbure, les écoulements secondaires amorcent 

deux mouvements hélicoïdaux superposés et de rotation opposée. Ce patron résulte de la 

distribution parabolique des vitesses moyennes sur la profondeur, i.e. de la double couche-

limite de l'écoulement. À l'apex du méandre, les cellules hélicoïdales se développent en une 

seule cellule de rotation inverse par rapport au patron observé dans les écoulements de 

surface. Cette cellule se dissipe rapidement à la sortie du méandre. Le patron global des 
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écoulements secondaires se distingue des résultats obtenus en laboratoire. La relation entre la 

structure de la CLT et le développement des cellules hélicoïdales est complexe, 

conjointement contrôlée par la forme du chenal et l'interaction entre les deux cellules 

hélicoïdales. La présence de frasil dans le méandre contraint localement les écoulements, 

mais n'empêche pas le développement des cellules hélicoïdales à la sortie du méandre. 

Cette étude permet de rendre compte de l'ampleur des changements conséquents à la 

présence d' un couvert de glace sur la structure turbulente des écoulements en rivière. 

L'approche terrain privilégiée ici fournit des indices concrets quant à la complexité des 

échanges aux deux échelles d'analyse. Dans l'état actuel des connaissances, ces observations 

ont une teneur exploratoire. Elles révèlent à tout le moins que les connaissances acquises par 

les travaux en condition libre de glace ne peuvent être transposées directement aux 

environnements fluviaux englacés. Le cas des rivières englacées exige une boni ficati on des 

connaissances basée sur une multiplication des observations effectuées dans différentes 

conditions d'écoulement sous glace, mais surtout une meilleure compréhension des 

mécanismes. 
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