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22 Abstract

23

24 Questions

25 What role played historical anthropogenic disturbances in modifying the natural fire regime? To 

26 which extent have they shaped current forest? Do those have lingering impacts in present-day 

27 landscape? Are certain tree species related to former land-use?

28 Location

29 Eastern Québec, Canada.

30 Methods

31 Spatial data on landscape structure, burnt areas, settlements, and forest patches were vectorized 

32 on an archival map dating back to 1938. For each landscape class, the total area, the number of 

33 polygons, the proportion of the total landscape occupied by the largest polygon were analyzed 

34 according to elevation and to the Euclidean distance from the "settlement" polygons. An index of 

35 the spatial link between the landscape classes was calculated, based on the proportion of the 

36 perimeter of the polygons of each class shared with each of the other classes. A Kolmogorov-

37 Smirnov test for pooled data was used to obtain the frequency distributions of landscape classes 

38 as a function of distance. The association between settlement fires and present-day vegetation, 

39 and more specifically Populus and Betula stands, was tested by superimposing the most recent 

40 ecoforest map on the 1938 land-use map. Distance bands on either side of the 1938 settlement 

41 front were delineated to calculate the proportion of each distance class occupied by present-day 

42 aspen and birch stands.

43 Results

44 Anthropogenic fires generated a recognizable landscape pattern of land-use. Burnt areas were 

45 mostly located within 2 km from a settlement. Most burnings observed on the 1938 map were 
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46 human-induced, based on their spatial connection with the settled areas. Lingering impacts of 

47 these 20th-century fires on present-day forests were identified using the peculiar spatial 

48 distribution of tree species. The presence and spatial distribution of aspen in the present-day 

49 landscape is tightly associated with previously burnt areas.

50 Conclusions

51 Past land-use strongly altered the natural fires regime and associated tree species. Current land-

52 use could potentially lead to increased degraded forest landscapes in a near future.

53

54 Keywords

55 Anthropogenic fires, aspen, boreal forest, land-use, North America, Populus, settlement, spatial 

56 landscape structure, temperate forest

57

58 Introduction

59

60 Uncovering the historical role played by anthropogenic disturbances in shaping current forests 

61 remains a crucial issue in paleoecology and forest management (Foster et al. 2003, Higgs et al. 

62 2014, Stephens et al. 2019). Paleoecological studies relying on the abundance of charcoal in lake 

63 sediments have shown that climate was the main driver of fire regime since the onset of the 

64 Holocene at both global (Marlon et al. 2008, Power et al. 2008) and North American (Clifford 

65 and Booth 2015, Pederson et al. 2015) scales. However, anthropogenic activities have deeply 

66 modified natural fire regimes by increasing fire frequency, which in turn altered terrestrial 

67 ecosystems structure and function (Turner and Gardner 2015). This situation has been 

68 exacerbated since the industrial revolution and associated human population increase (Marlon et 

69 al. 2008, Nowacki and Abrams 2008).
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70 Human-driven impacts on fire regimes can generally be divided in two phases in 

71 temperate and boreal biomes: a rapid and substantial increase in the frequency of anthropogenic 

72 fires during the settlement of new territories, followed by a decline, often below the pre-

73 settlement levels. This two-phases pattern has already been documented in the boreal and 

74 temperate forests of North America (Weir and Johnson 1998, Bergeron et al. 2006, Hessl et al. 

75 2011, Thompson et al. 2013), Eurasia (Lehtonen and Huttunen 1997, Niklasson and Granström 

76 2000, Groven and Niklasson 2005), and Patagonia (Veblen et al. 1999). For example, during the 

77 European settlement of North America (19th-20th centuries), massive conversion of forests into 

78 farmlands led to a marked increase in fire frequency in surrounding forests (Weir and Johnson 

79 1998, Weir et al. 2000, Hessl et al. 2011). The main causes of fire ignition during this period 

80 were deforestation using fire, slash-and-burn for agriculture, sparks produced by steam 

81 locomotives, and industrial forest exploitation (Blanchet 2003, Pyne 2007). Subsequently, fire 

82 frequency has dropped significantly at the wildland-urban interface due to the gradual cessation 

83 of forest conversion into farmlands, to greater and better organized efforts for fire suppression 

84 (Cardil et al. 2018), and to increased fragmentation of fuels across human-dominated landscapes 

85 (Weir and Johnson 1998, Weir et al. 2000, Lefort et al. 2003, Peter et al. 2006, Brose et al. 2013).

86 However, in several human-dominated landscapes, it remains difficult to identify the 

87 causes of fire ignition during the last two centuries, whether anthropogenic, climatic, or resulting 

88 from the interaction between these two drivers (Pyne 1997, Bowman et al. 2011, Boucher and 

89 Grondin 2012, Johnson and Kipfmueller 2016). This may in part result from the lack of spatially 

90 explicit data regarding the occurrence of early anthropogenic fires, which might confound our 

91 understanding of the landscape structure during the settlement phases. If anthropogenic fires 

92 accompanied some settlement episodes, then burnt areas should be spatially connected to settled 

93 areas. Indeed, previous studies have suggested that landscapes subject to anthropogenic fires 
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94 display diagnostic properties that can be identified. For instance, Cochrane and Laurence (2002) 

95 reported that anthropogenic fires in Amazonia represent a typical "fish-bone" edge effect at the 

96 settlement front. In the North American and Scandinavian boreal forests, increased fire frequency 

97 has been detected directly in the vicinity of human activities during settlement phases (Weir et al. 

98 2000, Lefort et al. 2004, Grenier et al. 2005, Wallenius et al. 2005). Similarly, 

99 dendrochronological data from Eastern European Russia (Drobyshev et al. 2004) and Patagonia 

100 (Mundo et al. 2013, Paritsis et al. 2013) have shown increased correlation between fires and 

101 settlements with decreasing distance from the nearest village. Moreover, fire-adapted forests may 

102 have subsequently developed following these settlement fires (Weir and Johnson 1998), 

103 producing a long-lasting imprint still visible in present-day landscapes in North America (Clark 

104 and Royall 1995, Nowacki and Abrams 2008, Munoz and Gajewski 2010, Danneyrolles et al. 

105 2016), Eastern Europe (Niklasson et al. 2010), Scandinavia (Niklasson and Drakenberg 2001), 

106 and Russia (Wallenius et al. 2005). Such legacies of past fire regimes may have important 

107 consequences on the structure, composition, functioning and management options of many 

108 present-day and future landscapes (Paristis et al. 2015, Kitzberger et al. 2016, Boulanger et al. 

109 2019). 

110 In 1938, an aerial survey was conducted to map land-use types at the height of a European 

111 settlement episode in the Lower St. Lawrence region, within the southern boreal forest of eastern 

112 Canada. Here, we analyze an archival map produced during this survey and provide a spatially 

113 explicit reconstruction of the connection between settled and burnt areas. We also test the 

114 lingering impact of increased anthropogenic fire on the forest landscape. Specifically, we 

115 hypothesize that present-day distributions of the early-successional, fire-adapted trembling aspen 

116 (Populus tremuloides Michx.) (Bergeron and Charron 1994) and white birch (Betula papyrifera 

117 Marshall) stands reflect the occurrence of settlement fires. Both species have dramatically 
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118 increased in abundance after European settlement of the North American boreal and temperate 

119 forests (Friedman and Reich 2005, Thompson et al. 2013, Dupuis et al. 2011), and anthropogenic 

120 disturbances were probably a major cause of their increase (Danneyrolles et al. 2019).

121

122 Methods

123

124 Study area

125 The study area covers 13,767 km2, bordered by the St. Lawrence River to the North and by the 

126 province of New-Brunswick (Canada) and Maine (USA) to the South (Figure 1). The area 

127 belongs to the Appalachian geological formation, mainly composed of a sedimentary bedrock 

128 that forms low hills with an altitude up to 900 m (Appendix S1a). Glacial till cover the hill slopes 

129 of higher altitudes, while alteration deposits occupy the main valleys and the downslopes 

130 (Appendix S1b, Robitaille and Saucier 1998). Postglacial marine deposits from the retreat of the 

131 Goldwaith Sea characterize a narrow coastal band. The center of the study area forms a large 

132 valley that corresponds to the hydrographic basin of the Matapedia River, which flows 

133 southwards (Figure 1). Drainage is generally moderate throughout the study area (Appendix S1c).

134 The climate is temperate continental, with mean annual temperatures varying between -

135 11.4°C in January and 18.3°C in July (mean 4.4°C) (Rimouski station). Mean annual 

136 precipitations reach 958.5 mm, among which 28.5% are snowfall. The growing season lasts 150 

137 days in average and corresponds to ca. 1,500 degree-days above 5°C (ENRC 2019). 

138 The study area is located in the transition zone between the temperate and the boreal 

139 zones (MRNFP 2004). The forests largely belong to the balsam fir–yellow birch bioclimatic 

140 domain, transitioning to the balsam fir–white birch domain further east (Figure 1) (Robitaille and 

141 Saucier 1998). Balsam fir (Abies balsamea (L.) P. Mill), yellow birch (Betula alleghaniensis 
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142 Britt.), white birch, trembling aspen and white spruce (Picea glauca (Moench).Voss) are 

143 common on mesic soil downslopes, while sugar maple (Acer sacharum Marsh), red maple (Acer 

144 rubrum L.) and yellow birch mostly occur on hilltops. Black spruce (Picea mariana (P.Mill.) 

145 B.S.P.) and northern white-cedar (Thuja occidentalis L.) are found on organic soils. Human-

146 induced modifications of the territory have led to a generalized increase in the abundance of 

147 deciduous trees (aspen, maple, and birch) at the expense of conifers (cedar, fir, and spruces) 

148 (Boucher et al. 2006, 2009a, b, Dupuis et al. 2011, Terrail et al. 2019). Natural fires were 

149 probably uncommon before settlement, with a long rotation period estimated to 1,100 years 

150 (Lorimer 1977).

151

152 History of the study area

153 Indigenous peoples in the study region were mainly nomadic (i.e. Algonquians), by contrast with 

154 the Iroquoians peoples living closer to current Québec and Montréal cities, who were mainly 

155 sedentary (Michaud 2015, Miller 2018). Little is known, however, about the extant of their 

156 territory and their land-use. First Europeans settled at the end of the 17th century, although the 

157 population actually increased only after 1830, alongside the development of industrial forest 

158 exploitation. Before 1860, colonists essentially settled in seigniories established before 1760 

159 under the French regime along the St. Lawrence River (Fortin et al. 1993). The construction of 

160 roads and railways, growth of forest industry, and demographic pressure from more densely 

161 populated territories westwards led to the spread of agriculture inland and, more specifically, into 

162 the Matapedia River valley after 1880 (Roy 1992). Many settlement campaigns occurred after 

163 1895, especially in the 1930s, leading to rapid expansion of land clearing and cultivation. 

164 Agricultural expansion and population density of the hinterland (including the Matapedia River 

165 valley) peaked around 1940, before the abandonment of several farmlands and the population 
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166 exodus to urbanized areas along the coast (Fortin et al. 1993). In the 19th century, the forest 

167 industry practiced selective logging of the largest trees near watercourses used for timber floating 

168 (Boucher et al. 2009a, b, 2014). With the growth of the pulp and paper industry at the beginning 

169 of the 20th century, clearcutting extended inland and intensified in the 1940s owing to 

170 mechanization.

171

172 The 1938 landscape map

173 The steps of our analysis and associated geodata layers and time steps are conceptualized in the 

174 Appendix S2. The 1938 map was produced during a series of aerial surveys carried out in June 

175 and July, as part of an inventory of the natural resources in the Lower St. Lawrence region 

176 (Hébert 1938). In addition to rivers and lakes, the original document included four landscape 

177 classes: "old forest", "young forest", "agriculture", and "burnt". According to the report 

178 accompanying the map, these classes corresponded to ≥ 60-year-old forests, 10- to 35-year-old 

179 forests, agricultural areas, and burnt areas of less than 10 years, respectively (Hébert 1938). A 

180 series of 85 oblique aerial photographs taken concurrently, as well as early land survey records of 

181 public lands conducted prior to 1940 (Dupuis et al. 2011, Terrail et al. 2019), allowed us to 

182 determine the origin of 80% of the "young forest" polygons. Because these polygons consistently 

183 correspond to burned areas, with typical unburned islands and irregular contours on aerial 

184 photographs (Appendix S3), we reclassified all "young forest" as "ancient fire" and changed the 

185 "burnt" class to "recent fire". This reclassification is supported by "fire" and "old fire" mentions 

186 in early land surveys from the 1900-1940 period as well as by a governmental database of ancient 

187 fires dated by fire scars (https://www.donneesquebec.ca/recherche/fr/dataset/feux-de-

188 foret/resource/8ce4f503-94f8-4041-a395-959c5ade950c). We then combined our "recent fire" 

189 and "ancient fire" classes into a more general "total fire" class. Similarly, we replaced the 
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190 "agriculture" class as "settlement" because we found that it also included cities, villages and other 

191 urban structures. In the original conception of the map (Hébert 1938), this "settlement" class was 

192 systematically drawn above the "fire" polygons, thus partially masking and spuriously 

193 fragmenting these into several smaller polygons. Hence, the total area of the "fire" polygons is 

194 likely underestimated (i.e. masked by settled areas) and their number overestimated. No 

195 procedure has allowed for satisfactory reconstruction of the original "fire" polygons.

196

197 Landscape structure

198 The map was scanned using 70-m × 70-m pixels (Figure 1b), then georeferenced by using 

199 permanent reference lines (e.g. township and provincial borders) and vectorized all polygons of 

200 the different landscape classes (ARCGIS 10, ESRI 2011). We first described landscape structure 

201 by measuring, for each landscape class, the total area, the number of polygons, the proportion of 

202 the total area of the class occupied by the largest polygon, and the proportion of the total 

203 landscape occupied by the largest polygon. Elevation was an important factor influencing the 

204 spread of the settlement front from the coastal terraces (Fortin et al. 1993). We thus calculated the 

205 relative abundance of landscape classes within 100-m elevation bands, between 0 m and 700 m 

206 altitude. We generated elevation bands by using the digital hypsometric maps provided by the 

207 Québec Ministry of Natural Resources (scale 1: 20,000 with 10-m isolines, MRNQ 2000b).

208 The spatial connection between the "settlement" and "fire" polygons was studied by 

209 creating 100-m-wide land bands up to 30 km away from all "settlement" polygons. We then 

210 examined how the "fire" and "forest" areas were distributed according to the distance to the 

211 "settlement" class, and measured the shortest Euclidean distance separating each "fire" polygon 

212 from the nearest "settlement" polygon. Finally, we evaluated how the "fire" polygons and their 

213 cumulative area were distributed on the landscape according to the shortest distance separating 
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214 each "fire" polygon from a "settlement" polygon. As an index of the spatial link between the 

215 landscape classes, we measured Pij, the proportion of the perimeter of the polygons of each class i 

216 ("settlement", "total fire", "ancient fire", "recent fire", and "forest"), shared with each of the other 

217 classes j:

218 Pij = [(pij / pi) × l00] (eq. 1)

219 where pij is the total perimeter length shared between polygons of classes i and j in the entire map, 

220 and pi is the total perimeter length of class i. We used a Kolmogorov-Smirnov test for pooled 

221 data (Zar 1999) to test the frequency distributions of landscape classes as a function of distance.

222

223 Association between settlement fires and present-day vegetation

224 In order to assess whether present-day fire-adapted forest stands (i.e. aspen and white birch 

225 stands) are a legacy of settlement and fire patterns at the peak of settlement, we superimposed the 

226 ecoforest map of the Third Decennial Inventory conducted by the Québec Ministry of Natural 

227 Resources (1991-2003, MRNQ 2000a) on the 1938 land-use map. Ecoforest mapping of extant 

228 Populus and Betula stands relied on the photo-interpretation of aerial photographs (1:15,000), 

229 based on taxa dominance and co-dominance in the forest cover (MRNFQ 2009). Because it was 

230 not possible to distinguish trees beyond the genus level from these map data, we validated the 

231 forest composition from 1,251 temporary sampling plots inventoried by the Québec Ministry. 

232 This analysis indicated that poplar and birch stands were dominated by trembling aspen and 

233 white birch, respectively (Appendix S4).

234 Considering that the maximal extent of agricultural territory was reached around 1940 

235 (Fortin and Lechasseur 1999), we assessed whether present-day abundance of aspen and birch 

236 stands reflects the location and the spatial configuration of the settlement front mapped in 1938. 

237 We first positioned the 1938 settlement front at the interface between the largest forest polygon 
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238 not fragmented by human activities and the reunion of "settlement" and "fire" polygons directly 

239 connected with the early settled coastal sector. We then delineated distance bands (of increasing 

240 width from 500 m to 5 km) ranging from 500 m to 20 km on either side of the 1938 settlement 

241 front to calculate the proportion of each distance class occupied by present-day aspen and birch 

242 stands.

243 Aspen and birch stands were superimposed on the 1938 map to test more specifically 

244 whether pre-1938 fires and settlement directly influenced the present-day distribution of these 

245 forest stands. Because more recent fires may also have contributed to the forest dynamics, we 

246 added 1940-2007 "fire" polygons contained in the database of the Forest Fire Protection Agency 

247 (SOPFEU, 2018). Note, however, that the older the time period, the less complete and accurate 

248 the polygons outline becomes. Similarly, we also added fires older than those mapped in 1938, as 

249 reconstructed from early land surveys conducted between the 1820s and the 1930s. We calculated 

250 the frequency of fire observations (number fires mentioned by a surveyor divided by the total 

251 number of surveyors' observations) in each 2-km × 2-km cell throughout the surveyed territory. 

252 The two-km unit was the smallest land unit we could use for this analysis given that land surveys 

253 were conducted along range lines spaced by 1.6 km (i.e. a mile). Settlers later established their 

254 farms along these rage lines (Appendix S5). We then conducted a permutation test in order to 

255 verify the null hypothesis that aspen and birch stands are randomly distributed relative to the 

256 "total fire" (including cells with surveyor's fire mentions), the "settlement", and the union of total 

257 fire and settlement landscape classes. The number of stands expected in each of these classes 

258 under the assumption of random aspen or birch stands distributions were estimated from 1,000 

259 random permutations of the stand centroids within the study area. The confidence intervals of the 

260 expected values were determined from the corresponding 2.5th and 97.5th percentiles of the 

261 permutations and were compared to the corresponding observed values. This analysis was 
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262 repeated after excluding the "young forest" class to confirm that our conclusions are not 

263 influenced by the reclassification of "young forest" into "ancient fire" (Appendix S6).

264

265 Results

266

267 Landscape structure

268 The 1938 landscape reflected the rapid advance of a settlement front inland and along the 

269 Matapedia River valley (Figure 1). The "forest" class was dominant, covering 67% of the total 

270 landscape area, while the "settlement" and "total fire" classes accounted for 19% and 13%, 

271 respectively (Table 1). The "settlement" class dominated along the coast and "forest" was inland, 

272 whereas the "fire" class was located at the interface between "settlement" and "forest" classes 

273 (Figure 1). Forests were still highly connected, with the largest "forest" polygon occupying 59% 

274 of the total landscape area and 87% of the total forest area.

275 The spatial structuring of the landscape also depended on altitude (Figure 2a and b). The 

276 "settlement" class occupied the lowest altitudes, with a relative abundance reaching ca. 70% in 

277 the 0-100 m elevation band, and decreasing steadily to a relative abundance < 1% above 400 m in 

278 elevation. By contrast, the relative abundance of the "forest" class increased from ca. 30% below 

279 100 m, to almost 100% higher than 600 m. The "ancient fire" and “recent fire” classes occupied 

280 an intermediate position, with a maximum relative abundance reaching 20% between 200 m and 

281 300 m (Appendix S1). The "settlement" class disappeared completely along with the "recent fire" 

282 class above 600 m.

283 The proportion of polygon perimeter shared between the various landscape classes pairs 

284 (Pij index) illustrates the diagnostic position of the fire polygons at the interface between the 

285 "settlement" and "forest" classes (Table 2). Indeed, "total fire" had almost as much perimeter in 
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286 common with "settlement" (42%) as with "forest" (50%). "Ancient fire" shared a greater 

287 perimeter with "settlement" (59%) than with "forest" (28%), whereas "recent fire" had a greater 

288 perimeter in common with "forest" (61%) than with "settlement" (31%). Hence, the "ancient fire" 

289 class is found at lower altitude and closer to the St. Lawrence River compared to the "recent fire" 

290 class.

291 In 1938, fires were strongly connected to settled areas (Figure 1). More than 70% of the 

292 total burnt area ("ancient fire" plus "recent fire" polygons) was located within 2 km from a 

293 "settlement" polygon (Figure 2c). In comparison, only 42% of the "forest" area occurred within 4 

294 km from the nearest "settlement" polygon. In addition, more than 80% of all "fire" polygons were 

295 located (at the shortest distance) within 2 km from a "settlement" (Figure 2d), and more than 95% 

296 of the total burnt area was included in polygons whose shortest distance to a "settlement" polygon 

297 was less than 2 km (Figure 2e). While "ancient fire" and "recent fire" polygons had a similar 

298 frequency distribution according to their shortest distance to a "settlement" polygon (DKolmogorov–

299 Smirnov = 0.20, P = 0.28), "recent fire" distribution was skewed inland compared to "ancient fire" 

300 (Figures 1 and 2d). 

301

302 Association between settlement fires and present-day vegetation

303 The present-day distribution of aspen and birch stands in the landscape was strongly shaped by 

304 the 1938 settlement front and associated fire polygons (Appendix S6). The position of the 

305 settlement front in 1938 strikingly delineates the zones of highest abundance for aspen and birch 

306 stands, respectively (Figure 2f; Figure 3). The transition between the relative abundance of the 

307 two stand types across the landscape corresponds precisely to the position of the settlement front 

308 in 1938 (Figure 2f). Aspen stands are more abundant towards the coast, behind the settlement 

309 front (Figure 3a), whereas birch stands are rather found inland, ahead of the settlement front 
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310 (Figure 3b). Permutation tests indicated that centroids of aspen stands are more frequently located 

311 inside fire polygons than expected from 1,000 random simulations (Figure 3c) whereas birch 

312 stands centroids are less often found within fire polygons than expected from the null distribution 

313 (Figure 3d). The fire-aspen connection remains strong, even when considering only the "recent 

314 fire" class (Appendix S6) or the reunion of all 19th century and 20th century fire polygons and fire 

315 mentions (Appendix S7). Indeed, 44% of all aspen stands were present in areas that have burnt 

316 since the mid-19th century, whereas these burnt areas covered less than 13% of the total landscape. 

317 The high frequency of aspen stands in the seignories settled during the first half of the 19th 

318 century in the coastal sector along the St. Lawrence River (Appendix S6) suggests that these 

319 forest stands can persist for more than 150 years.

320

321 Discussion

322

323 Connection between settlements and fires

324 Several studies have documented a general increase in fire frequency triggered by the expansion 

325 of human activities following European settlement in North America (Pyne 2007). This 

326 phenomenon was exacerbated during agricultural expansion in the southern boreal and temperate 

327 zones, as previously reported at the margin of the boreal zone in central Canada (Weir and 

328 Johnson 1998). Such increase in fire frequency was generally inferred from historical documents 

329 (e.g. early land survey archives, early maps and aerial photos) (e.g. Lorimer 1977, 2001, Schulte 

330 and Mladenoff 2005, Boucher et al. 2014, 2017, Danneyrolles et al. 2016) and empirical data 

331 from field observations (e.g. fire scars) (Drobyshev et al., 2008a, b, Hessl et al., 2011). These 

332 sources of information are often fragmentary and seldom allow for a systematic location or an 
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333 accurate contour of fires related to European colonization over large geographic areas, thus 

334 hindering any attempt at inferring a cause-and-effect relationship between the human presence 

335 and fire activity. Interestingly, the archival map used in the present study rigorously shows the 

336 extent of fires relative to other landscape classes from a large area of eastern Canada in 1938, at 

337 the peak of agricultural expansion and reveals a strong spatial connection between the 

338 "settlement" and "fire" landscape classes. We inferred that increasing European settlement during 

339 the early 20th century has modified fire activity and landscape structure. Furthermore, we 

340 demonstrated that this increase in anthropogenic fires has altered forests and left a lingering 

341 imprint on present-day landscape.

342 The spatial connection between European settlement and fires in 1938 likely resulted from 

343 burning by the settlers to prepare land for agriculture. During the 19th century and the first half of 

344 the 20th century, early settlers cleared the forest for their establishment and usually burnt the 

345 logging waste (Blanchet 2003). The presence of smoke plumes on the oblique photos (Appendix 

346 S5) and the report of their high prevalence during the 1938 aerial survey (Hébert 1938) are 

347 additional indications of the historical widespread use of slash fires in the study region. 

348 Moreover, the government inventory report of 1938 strongly emphasized that settlers used fire 

349 inconsequentially, and that poorly controlled slash fires regularly escaped to the surrounding 

350 forest (Guay 1942). In addition, for all inhabited areas in Québec during the 1906-1941 period, 

351 only 5.5% of the reported fires were associated with lightning strikes, whereas 66.5% were of 

352 human origin (SOPFEU 1909-1941). The deep incisions of the settled land within the forest, 

353 following the cadastral plan at the settlement front (Figure 1), probably increased the contact area 

354 between settled and forest areas, which, in turn, increased the probability of anthropogenic fires 

355 to spread into the remaining forest matrix. The construction of a railway through the Matapedia 
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356 River valley between 1871 and 1876 is an additional factor for the occurrence of anthropogenic 

357 fires in the late 19th and early 20th centuries (SOPFEU 1909-1941, Blanchet 2003). The steam 

358 locomotives let out sparks that ignited fires along the railway by burning the available fuels. This 

359 source of ignition, however, would have become negligible after 1914, due to the introduction of 

360 locomotives inspections, to improvement of spark arresters, and to a reduction of forest fuel close 

361 to the railways (Blanchet 2003).

362 The spatial arrangement of the landscape in 1938 also reflected the progression of the 

363 settlement along the elevation gradient from the coast. The fires were mainly located at 

364 intermediate altitudes, between the coastal and lowland settled areas along the St. Lawrence 

365 River and in the Matapedia River valley, and the forests at higher altitudes in the hinterland. The 

366 gradual expansion of settlement, from the seigniories established in the 18th century along the 

367 shore of the St. Lawrence to the Matapedia valley, as well as the greater agricultural potential of 

368 the soils along the St. Lawrence and in the Matapedia valley in comparison with those of the 

369 highlands, could explain this peculiar pattern. The "ancient fire" polygons probably indicate the 

370 position of the settlement front around 1900-1925. Their location at lower elevation and at a 

371 shorter distance from the coast, compared to the "recent fire" class, indicate a rapid progression 

372 of the settlement front to the hinterland between 1900 and 1938. Conversely, the virtual absence 

373 of both "ancient fire" and "recent fire" classes within the coastal seigniories probably reflect the 

374 much older occupation and forest fuel exhaustion of this territory, as well as the slower progress 

375 of the settlement before the beginning of the 20th century (Fortin et al. 1993).

376

377 Settlement as an ignition agent

378 In the transition zone between the boreal and mixedwood forests of northeastern North America, 
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379 the pre-settlement disturbance regime was likely dominated by secondary disturbances such as 

380 insect outbreaks and windthrow, with a long fire cycle estimated to more than 1,100 years 

381 (Lorimer 1977). Consequently, the presettlement forest was strongly dominated by shade-tolerant 

382 conifer tree species typical of late successional stages, such as fir, spruces, and cedar, with 

383 relatively low occurrence of fire-adapted species, such as aspen and pines (Boucher et al., 2009a, 

384 2009b, 2017, Dupuis et al 2011, Thompson et al. 2013, Danneyrolles et al. 2016). 

385 Our results suggest that this low incidence of natural fires mainly resulted from unsuitable 

386 conditions for fire ignition. Indeed, the occurrence of multiple large fires directly connected to 

387 the settlement front combined with a virtual absence of fires distant to the settlement front, 

388 indicate that fires were not limited by fuel type or weather conditions, but rather by a low 

389 frequency of ignition events. The increase in anthropogenic ignitions at the edge of the settled 

390 areas resulted in extremely high burn rates at the peak of colonization. According to the 1938 

391 regional forest inventory, fires annually burnt 5% of the territory. Although this estimate is 

392 limited to a short time period, it is similar to the highest values ever reported for the most fire-

393 prone boreal regions (Weir and Johnson 1998, Héon et al. 2014). This did not preclude 

394 interactions between weather conditions and anthropogenic ignitions. Weather has probably 

395 influenced the spread of fires ignited by settlers in the study area at the beginning of the 20th 

396 century, because this period was particularly prone to large fires across both the commercial and 

397 non-commercial eastern Canadian boreal forest (Bergeron et al. 2004, Erni et al. 2017). 

398 Nevertheless, human ignition in regions were natural fires are uncommon, is a widespread 

399 phenomenon already described from the tropics (Cochrane and Laurence 2002, Morin-Rivat et al. 

400 2016) to temperate (Balch et al. 2017) and boreal environments (Achard et al. 2007). Moreover, 

401 the low fire incidence following the settlement peak in our study area may be attributed to a 

402 decrease in human ignitions, along with organized fire suppression (Cardil et al. 2018), and 
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403 possibly the increasing abundance of aspen stands, a fuel type which tends to be avoided by fire 

404 (Bernier et al. 2016).

405 Several studies assessing burn rates in the temperate and southern boreal forests have 

406 highlighted the difficulty to discriminate between the relative contributions of natural and 

407 anthropogenic fires (Bergeron et al. 2004). Our results indicate that studying spatial landscape 

408 structure at the time of the settlement could provide useful insights regarding the imprint of 

409 anthropogenic fires. The overwhelming proportion of fires connected to the "settlement" 

410 polygons (more than 80%) lend credence to the critical role of past anthropogenic fires in shaping 

411 present-day landscapes.

412

413 Lingering impacts of anthropogenic fires on present-day forest structure and composition

414 Our results demonstrate that the high occurrence of anthropogenic fires in the early 20th century 

415 has altered the forest composition of present-day landscape. However, the trends differed 

416 markedly between aspen and white birch. These two light-demanding species have high 

417 reproductive output and growth rate and are often reported to increase in abundance following 

418 ecological disturbance (Zasada et al. 1992, Bergeron and Charron 1994, Thompson et al. 2013, 

419 Boucher et al. 2017). Hence, we initially hypothesized that they would react in a similar way to 

420 increasing settlement fires. By contrast, our results strikingly demonstrate that aspen and birch 

421 stands display opposite patterns of abundance on either side of the 1938 settlement front (Figure 

422 2f; Figure 3a and b).

423 The contrasted patterns of current abundance might reflect different responses of each 

424 species according to their respective abundance patterns in the 19th century. Reconstruction of the 

425 19th-century forest composition based on early land survey records, indicated that trembling 

Page 18 of 56Journal of Vegetation Science



19

426 aspen was rare, while white birch was widespread as a companion species throughout the study 

427 area (Dupuis et al. 2011, Terrail et al. 2019). This assertion is supported by forest maps of the 

428 early 20th century (Boucher et al. 2009a, 2009b) and the land survey archives from neighboring 

429 Maine (Lorimer 1977, Thompson et al. 2013). That said, comparing historical data with the 

430 modern forest inventories indicates that white birch and especially aspen are more common in 

431 today’s landscape than in the 19th century (Dupuis et al. 2011, Terrail et al. 2019). This trend has 

432 also been reported in southern boreal (Brown and Simmerman 1986, Bergeron 2000, Boucher et 

433 al. 2014, 2017, Danneyrolles et al. 2016) and northern temperate forests (Foster et al. 1998) 

434 throughout North America. Aspen-dominated stands are common today behind the settlement 

435 front, but virtually absent beyond. We thus infer that aspen frequency increased as a consequence 

436 of anthropogenic fires behind the front, but that it could not significantly establish beyond the 

437 front in the absence of fires. Conversely, birch stands are now mainly confined beyond the 

438 settlement front. We conclude that birch frequency decreased behind the front, while increasing 

439 within the forested area ahead of colonization.

440 This contrasted pattern of species abundance probably reflects the faster postfire 

441 establishment of aspen thanks to its sprouting and clonal multiplication, that is its greater 

442 competitiveness compared to birch on burnt areas (i.e. behind the settlement front). Trembling 

443 aspen benefits from the occurrence of fires across its entire distribution range (Bergeron 2000, 

444 Bergeron et al. 2001, Kulakowski et al. 2004). Aspen regeneration by suckering allows this 

445 species to establish massively and aggressively after fire (Burns and Honkala 1990). Increased 

446 ground temperature induced by fire strongly influences nutrient remobilization in soils 

447 (Heinselman 1981), while litter removal also creates favorable conditions for suckers growth 

448 (Weir and Johnson 1998). The new suitable environments created by anthropogenic fires 
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449 probably prompted a rapid and massive post-fire aspen establishment, likely excluding birch and 

450 other taxa. The rapid expansion of aspen behind the settlement front suggests that at least some 

451 individuals were already present, although they needed not be dominant. Indeed, aspen produces 

452 abundant wind-dispersed seeds that can travel over great distances and readily germinate on burnt 

453 substrates (Bergeron 2000). 

454 White birch regional abundance has increased since the 19th century (e.g. Dupuis et al. 

455 2011, Terrail et al. 2019). Birch-dominated stands are now concentrated in the forested area 

456 ahead of the 1938 settlement front. These stands may have been favored by logging activities and 

457 spruce budworm (Choristoneura fumiferana [Clem.]) outbreaks, two major drivers of forest 

458 disturbance beyond the settlement front. Logging of mature trees creates canopy openings 

459 allowing light penetration and ground warming, thus favoring white birch regeneration by 

460 seeding. (Burns and Honkala 1990). At least three spruce budworm outbreaks occurred across the 

461 study area over the past century (Boulanger and Arseneault 2004). While birch benefits from 

462 regular canopy gaps created by spruce budworm, the small forest openings associated with insect 

463 outbreaks are inappropriate for massive aspen establishment (Kneeshaw and Bergeron 1999, 

464 Bergeron 2000).

465 Mitigating expected deleterious effects of global climate warming on ecosystems is now a 

466 worldwide endeavor (IPCC 2018). Understanding how ecosystems will respond to ongoing 

467 climate change requires a sound comprehension of the complex interplay between climate, 

468 disturbance regimes, and associated biotic responses. For example, our study exemplifies how 

469 human activities since the 19th century have deeply altered natural disturbance regimes and 

470 associated ecosystems. Based on aspen persistence in the early settled coastal seignories of our 

471 study area, as well as in the early settled regions elsewhere in the province of Québec 

472 (Danneyrolles et al. 2019), we anticipate a long-lasting impact of these legacies. These and other 
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473 anthropogenic land-use changes such as landscape fragmentation along with forest 

474 homogenization, both in terms of structure and composition, could modify ecosystem responses 

475 to future global warming (Millar et al. 2007, Wang et al. 2015, García-Valdés et al. 2015, 

476 Danneyrolles et al. 2019) and complicate efforts to manage forest ecosystems sustainably 

477 (Boulanger et al. 2019). 
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733 Table 1. Metrics of the 1938 landscape.

Class Proportion of the 
total landscape 
(%)

Perimeter 
(km)

Area 
(km2)

Nb of 
polygons

Proportion of the largest 
polygon

% of the 
class area

% of the 
total 
landscape

Settlement 19 4987 2605 143 74 14
Ancient 
fire

4 1222 590 109 22 2

Recent fire 9 2047 1153 89 21 1
Total fire 13 3127 1729 199 15 2
Forest 67 6230 9189 423 87 59
River/lake 2 1372 228 489 8 0
Total 100 15716 13751 1452

734

735

736 Table 2. Perimeter in common (Pij index) among the 1938 landscape classes in the study area.

j class
i class (%) Settlement Fire Forest Lake Shore Outer 

limits
Ancient Recent Total

Settlement - 14 13 27 65 4 3 1
Total fire 42 - - - 50 5 0 3
Ancient fire 59 - - - 28 8 0 0
Recent fire 31 - - - 61 3 0 1
Forest 52 5 20 25 - 16 1 6

737
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738

739 Figure 1. Location of the study area in the Lower St. Lawrence region in eastern Québec: (a) the bioclimatic zones 

740 in Southern Québec; (b) Land-use types based on the 1938 archival map (Bibliothèque et Archives nationales du 

741 Québec, ref. ANQ-A16-P5_1938). "Ancient fire" correspond to 10- to 35-year-old forests (1903-1928) and "recent 

742 fire” to burnt areas of less than 10 years (1928-1938).

743
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744

745 Figure 2. The spatial structure of the Lower St. Lawrence landscape in 1938 and its association with explanatory 

746 variables. (a) Proportion of each elevation band occupied by each landscape class. (b) Proportion of the total area of 

747 each landscape class occupying each elevation band. (c) Cumulative area of the "fire" and "forest" classes in 

748 successive 100-m-wide bands surrounding each "settlement" polygon. (d) Cumulative proportion of the total number 

749 of "fire" polygons at increasing shortest distance to a "settlement" polygon, and (e) cumulative proportion of total 

750 area of "fire" polygons at increasing shortest distance to a "settlement" polygon. (f) Spatial distribution of present-

751 day aspen and birch stands as a function of the distance to the 1938 settlement front.
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752

753 Figure 3. (a, b) Distribution of (a) aspen and (b) birch stands (ecoforest maps from the Ministry of Natural 

754 Resources, MRNQ 2000a) in relation with the landscape structure classes of the 1938 map. (c, d) Simulated and 

755 observed number of aspen (c) and birch (d) stands centroids tallied within land class polygons (fire, settlement). 

756 Frequency distributions indicate the number of stand centroids for aspen (n = 3,586) and birch (n = 4,822) stands 

757 falling within each land class polygon over 1,000 random permutations. Vertical dotted lines indicate the number of 

758 observed stands actually recorded within each land class polygon.

759
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781 (ecoforest maps from the Ministry of Natural Resources, MRNQ 2000a) in relation with the landscape structure 

782 classes of the 1938 map.

783

784

785 Summary for the expanding entries

786 Using an archival map dated to 1938 and other spatial data, this study showed that anthropogenic 
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787 fires generated a recognizable landscape pattern of land-use in Eastern Québec, Canada. 

788 Lingering impacts of 20th-century fires on present-day forests were identified using the peculiar 

789 spatial distribution of tree species. Specifically, the presence and spatial distribution of aspen on 

790 present-day landscape is tightly associated with previously burnt areas.

791

792 Chosen image for the expanding entries

793 Figure 1 (1938 map).
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1

2 Appendix S1. Maps of altitude (a), surficial deposits (b) and drainage classes (c) across the study area. Shaded 

3 gray areas correspond to all fires (ancient plus recent).
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6 Appendix S2. Diagram showing the temporal and conceptual relationships between the georeferenced layers used in 

7 this study.
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3

8

9 Appendix S3. Archive photo illustrating the landscape classes mapped from the 1938 aerial survey in the hinterland 

10 of the Lower St. Lawrence region (Québec, Canada). "Young forest" polygons consistently correspond to fires with 

11 very similar appearance and age as "burnt" polygons, with typical unburned islands and irregular contours. In fact, 

12 the "burnt" and "young forest" areas displayed in the photo burned during the same fire event in 1923. The St. 

13 Lawrence River is in the background. The oblique photo was taken during the aerial survey and was then used to 

14 validate the mapping of landscape classes (Bibliothèque et Archives nationales du Québec, E21, P96).
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4

16 Appendix S4. Validation of the mapped ecoforest polygons dominated by Populus and Betula taxa from the 

17 associated field plots of the Third Decennial Inventory of the Québec Ministry of Natural Resources. Plots are 

18 circular units covering surfaces of 0.4 ha (MRNFQ 2007). Frequency: number (percent) of plots containing the 

19 corresponding species for each polygon category. Mean stem density is averaged across all plots containing a given 

20 species.

21

“Populus” polygon “Betula” polygon

Frequency Stem density
(N/ha)

Frequency Stem density
(N/ha)

All species 444 1069 ± 470 807 920 ± 457

Populus tremuloides 354 (79.7%) 366 ± 335 123 (15.2%) 135 ± 168

Populus balsamea 65 (14.6%) 332 ± 423 10 (1.2%) 90 ± 65

Betula papyrifera 331 (74.5%) 181 ± 206 651(80.7%) 259 ± 257

Betula alleghaniensis 53 (11.9%) 80 ± 61 482(49.8%) 102 ± 86

22

23
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24

25 Appendix S5. Archive photos illustrating typical slash fires during the settlement in the hinterland of the St. 

26 Lawrence region (Québec, Canada): (a) oblique aerial photograph taken at the time of the mapping of the study area 

27 in 1938 (Bibliothèque et Archives nationales du Québec, E21, P112). Note the establishment of ribbon farms along 

28 two range lines (front and background of the photo). The land between the two ranges were almost completely burnt 

29 shortly before the photograph. An active slash fire is visible on the top-right; (b) slash fire in 1944 at Saint-Marcellin 

30 (photo by Paul Carpentier, Bibliothèque et Archives nationales du Québec, E6, S7, SSl, P21326).
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31

32 Appendix S6. Comparison of simulated and observed numbers of aspen stand centroids tallied within all fire 

33 polygons (as shown in Fig 3c; blue curve) with the number tallied when considering only the "recent fire" class. 

34 Frequency distributions indicate the number of aspen stand centroids (n = 3,586) included within fire polygons over 

35 1,000 random permutations. Vertical dotted lines refer to the number of stands actually recorded within each fire 

36 polygon dataset, which are far greater than the numbers observed during each of the 1000 random permutations. The 

37 conclusion of a strong connection between aspen stands and fire polygons thus holds whatever the fire dataset 

38 considered.
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39

40 Appendix S7. The spatial distribution of fire, aspen and birch in the Lower St. Lawrence region (Québec, Canada) 

41 (ecoforest maps from the Ministry of Natural Resources, MRNQ 2000a) in relation with the landscape structure 

42 classes of the 1938 map.
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