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Abstract

In forestry, the variable of interest is not always directly available from forest
inventories. Consequently, practitioners have to rely on models to obtain predictions
of this variable of interest. This context leads to hybrid inference, which is based on
both the probability design and the model. Unfortunately, the current analytical
hybrid estimators for the variance of the point estimator are mainly based on linear
or nonlinear models and their use is limited when the model reaches a high level of
complexity.

An alternative consists of using a variance estimator based on resampling meth-
ods, as suggested in Rubin (1987). However, it turns out that a parametric boot-
strap estimator of the variance can be biased in contexts of hybrid inference. In this
study, we designed and tested a corrected bootstrap estimator for the variance of
the point estimator, which can easily be implemented as long as all of the stochastic
components of the model can be properly simulated. Like previous estimators, this
corrected variance estimator also makes it possible to distinguish the contribution
of the sampling and the model to the variance of the point estimator.

The results of three simulation studies of increasing complexity showed no evi-
dence of bias for this corrected variance estimator, which clearly outperformed the
bootstrap variance estimator used in previous studies. Since the implementation of
this corrected variance estimator is not much more complicated, we recommend its
use in contexts of hybrid inference based on complex models.

Keywords. Estimator bias; Variance estimator; Estimate of the total; Horvitz-Thompson
estimator; Log grade; Lumber recovery model.
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Introduction

In forestry, it often happens that the variable of interest is not directly available from forest
inventories. For example, volume is a key variable in forest management planning, but
its measurement on each individual tree, even in a small sample, is absolutely impossible
without destructive sampling. In such contexts, practitioners usually rely on predictive
models that are based on auxiliary variables that can easily be measured. In the case of
volume, tree diameter and height are used to predict tree volume.

When it comes to estimating the total or mean volume of a population, design-based
point estimators such as the Horvitz-Thompson (HT) estimator (Horvitz and Thompson,
1952) are unbiased. However, their associated variance estimators tend to underestimate
the true variance because they do not take the variance related to model predictions into
account. Model-assisted estimators require some observations of the response variable
(Mandallaz, 2008, p. 109). They can be used under the assumption that the model
predictions are close to the observations (Mandallaz and Massey, 2012), but there is still
a risk of underestimating the variance. Pure model-dependent estimators, also known as
model-based estimators, assume the existence of a super-population model and require
a census of the auxiliary variables of the population (Mandallaz, 2008, p. 98). Model-
dependent estimators are particularly suited to remote sensing data since the auxiliary
variables are then available for large areas (e.g. Saarela et al., 2016a,b; Breidenbach et al.,
2016).

When the response variable is unobserved and the auxiliary variables are only avail-
able in the probability sample, which is a common context in forestry, the statistical
inferences require hybrid estimators, i.e., estimators that rely on both the probability de-
sign and the super-population model. The term “hybrid” was coined by Fattorini (2012)
and Corona et al. (2014). According to St̊ahl et al. (2016), the lack of recognition of the
design-based component of these estimators in studies prior to Corona et al. (2014) had
led to different names such as model-based inference (St̊ahl et al., 2011), model-dependent
inference (Gobakken et al., 2012) and pseudo-synthetic estimator (Mandallaz, 2013). An-
alytical hybrid estimators have been mainly developed with linear and nonlinear models
in contexts of volume or biomass estimation (St̊ahl et al., 2011, 2014; Corona et al., 2014;
Margolis et al., 2015; Saarela et al., 2015). Here, we want to emphasize that the term
“analytical” refers to the fact that these estimators are treated using algebra, in contrast
to those based on resampling methods such as the bootstrap estimator (see Efron, 1977;
Efron and Tibshirani, 1994). Analytical hybrid estimators have been recently extended
to models with heteroscedastic variances (Saarela et al., 2016a) and mixed-effects models
(Fortin et al., 2016a), but at the cost of tedious statistical developments.

The analytical hybrid estimators of the variance of the point estimator share the
same requirement: the variance induced in the model predictions by the uncertainty in
the parameter estimates, the residual error and, eventually, the random effects must be
derived or closely approximated using Taylor series. This is possible when the fixed-
effects part of the model is expressed as a single equation or as a system of simultaneous
equations. However, when the model reaches a higher level of complexity, these analytical
derivations or approximations quickly become intractable, hindering the use of current
analytical hybrid estimators. An example of “complex” models would be those models
that are composed of various submodels, with the predictions of some of them being
considered as predictors in others.

These complex models are common in forestry. Tree-level growth models are a good
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example of this complexity (e.g. Pretzsch et al., 2002). Some tree- and stand-level models
of log grade volumes or lumber product recovery also reach similar levels of complexity
(e.g. Schneider, 2007). Basically, when some models are coupled to create decision-support
tools (e.g. Kotamaa et al., 2010), the error propagation usually becomes so complex that
there is no analytical hybrid estimator of the variance of the point estimator.

An alternative consists of using variance estimators based on resampling methods,
which have been widely used in forestry for uncertainty assessment and error propagation
(Gertner and Dzialowy, 1984; McRoberts, 1996; Berger et al., 2014). In the context of
hybrid inference, a parametric bootstrap estimator of the variance of the point estimator
has been used by some authors (McRoberts and Westfall, 2014, 2016; McRoberts et al.,
2016), based on the work of Rubin (1987). However, to the best of our knowledge, no study
has ever tested the reliability of this variance estimator in the context of hybrid inference.
It can be mathematically demonstrated that this estimator tends to overestimate the true
variance of the point estimator.

Thus, our objective was to develop a corrected variance estimator, which could be
easily used with any model regardless of its complexity. To do this, we built on what is
currently known about hybrid inference with linear and nonlinear models, and developed
a new bootstrap estimator for the variance of the point estimator.

This paper is structured as follows: it first presents the statistical developments that
show the bias of the current bootstrap variance estimator and how this bias can be avoided
by using a corrected variance estimator. Secondly, the corrected variance estimator is
tested in three simulation studies with models of increasing complexity. Thirdly, the
corrected variance estimator is applied in a real-world case study, namely, white birch
lumber recovery in the Bas-Saint-Laurent region, Québec, Canada. Finally, the strengths
and weaknesses of this corrected variance estimator are discussed.

Material and Methods

Statistical developments

In this paper, we will adopt the notation of Corona et al. (2014): the subscripts d and m
stand for design- and model-dependent features, respectively, while hybrid features bear
both subscripts. Like the model-dependent inference framework, the hybrid approach
assumes that the variable of interest is the realization of a general model that describes
the whole population. This model is referred to as a super-population model (Gregoire,
1998). Mathematically speaking, it can be defined as follows:

yi = f(xi;β) + εi (1)

where yi is the variable of interest of population unit i, xi is a vector of auxiliary
variables, β is a vector of unknown model parameters, and εi is a residual error. Since
we assume that Em[εi | xi] = 0, the function f(xi;β) is actually the expectation of
yi conditional on the auxiliary variables. For the sake of simplicity, we will define this
expectation as Em[yi | xi] = f(xi;β) ≡ ẏi.

Because the auxiliary variables are known in the sample s and not for the whole
population, the inferences cannot be purely model-dependent. In fact, they have to rely
on the probability design as well, which is known as hybrid inference (Corona et al., 2014;
St̊ahl et al., 2016). McRoberts et al. (2016) listed the four key features of hybrid inference
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as: (i) a probability sample of the auxiliary variables; (ii) a super-population model that
can predict the variable of interest in the sample based on the auxiliary variables; (iii) a
design-based point estimator of a population parameter, which is usually the mean or the
total; and (iv) inferential methods that are based on both the model and the probability
design in order to estimate the variance of the point estimator.

In this study, we will focus on the total of the population (τ) and not the mean. As
outlined in Gregoire and Valentine (2008, p. 40), the estimator of the total of the popu-
lation is unbiased under all probability designs, as opposed to the estimator of the mean,
and the mean can easily be estimated from the estimate of the total. Throughout this
paper, we will also assume that the probability design is one of simple random sampling
without replacement (SRSWoR).

The total of the yi in the N units that compose the population, i.e., τy =
∑N

i=1 yi, is
the quantity of interest. The HT estimator is an unbiased estimator of this quantity:

τ̂y =
∑

i∈s

yi
πi

(2)

where πi is the inclusion probability of unit i. The estimated sampling variance of
estimator 2 is (Horvitz and Thompson, 1952):

V̂d(τ̂y) =
∑

i∈s

(
1− πi
π2
i

)
y2
i +

∑

i∈s

∑

i′ 6=i

(
πii′ − πiπi′
πiπi′

)
yiyi′

πii′
(3)

where πii′ stands for the joint inclusion probability, i.e., the probability that both units
i and i′ are part of the sample.

Because the variable yi is unobserved, we rely on the model in order to obtain its ex-
pectation. If we define τẏ as the total of the expectations of yi throughout the population,
then:

τy =
N∑

i=1

ẏi +
N∑

i=1

εi = τẏ +
N∑

i=1

εi (4)

It must be stressed that τy is a random variable even though the parameters of the
super-population model are known (Gregoire, 1998). Under the assumption that Em[εi |
xi] = 0, then the model-dependent variance of τy is:

Vm(τẏ − τy) = Vm(
N∑

i=1

εi)

=
N∑

i=1

Vm(εi) +
N∑

i=1

N∑

i′ 6=i

COVm(εi, εi′) (5)

In practice, the values of the parameters are unknown and have to be estimated from
a sample of the population. If this sample is actually a subset of the sample s, the super-
population model is said to be internal, as opposed to an external model that would be
fitted to observations that are not part of s (Mandallaz, 2013). Since we assume that the
response variable is not observed in s, the super-population model is necessarily external.
To avoid any confusion between the sample from the probability design and the sample
to which the super-population model was fitted, we will systematically refer to the second
as the dataset.
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Once the parameters are replaced by their estimates, predictions of yi are obtained as
ŷi = f(xi, β̂). Relying on both the probability design and the model, τy can be estimated
using the following unbiased hybrid (HYB) estimator:

τ̂HYB =
∑

i∈s

ŷi
πi

(6)

only under the assumption that the model is correct.
Calculating the variance of the estimator presented in Eq. 6 requires the variances of

the model-dependent and the design-based approach to be combined:

Vmd(τ̂HYB − τy) = Vmd(τ̂HYB − τẏ) + Vm(τẏ − τy) (7)

The first term on the right-hand side of Eq. 7 accounts for the design variance and
the variance due to the parameter estimates. The second term accounts for the residual
errors, as shown in Eq. 5. The development of this variance in the context of linear models
is shown in the Supplementary Material SM1.

If the function f in Eq. 1 is differentiable, then the variance components in Eq. 7 can
be estimated using analytical hybrid estimators (St̊ahl et al., 2014, 2016; Fortin et al.,
2016a). However, functions that are not differentiable or for which the derivatives can only
be calculated with great difficulty considerably hinder the use of these analytical variance
estimators. An alternative consists of using a variance estimator based on resampling
methods. As we already mentioned, some authors have used a bootstrap variance esti-
mator inspired by Rubin (1987, p. 77) in the context of hybrid inference (e.g. McRoberts
and Westfall, 2014, 2016).

Basically, the idea is to generate random deviates for the residual error as well as for
the errors in the parameter estimates in order to obtain a realized sample. Let yi,b be
the realized value of yi in the sample s for realization b. By using the HT estimator as
defined in Eq. 2 and its variance estimator as defined in Eq. 3 with this sample of yi,b,
it is possible to obtain the realized point estimate τ̂y,b and its realized variance estimate

V̂d(τ̂y,b). After B realizations, the bootstrap (BS) point estimator is obtained by averaging
all the realized point estimates:

τ̂BS =

∑B
b=1 τ̂y,b
B

(8)

The bootstrap variance estimator is given by:

V̂md(τ̂BS − τy) =

∑B
b=1(τ̂y,b − τ̂BS)2

B
+

∑B
b=1 V̂d(τ̂y,b)

B
(9)

If the number of realizations B is large, the estimator found in Eq. 9 reduces to the
law of total variance (see Casella and Berger, 2002, p. 167):

lim
B→∞

V̂md(τ̂BS − τy) = V̂m(τ̂y,b) + Êm[V̂d(τ̂y,b)] (10)

These bootstrap estimators can be seen as the average of all the possible realizations
in the sample s. Under the assumption that the model is correct, the estimator in Eq. 8
is unbiased. However, it can be shown that the variance estimator in Eq. 9 overestimates
the true variance by this quantity (see the Supplementary Material SM2):
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Bias[V̂md(τ̂BS − τy)] = 2Tr(Vd(τ̂x)Vm(β̂)) +
N∑

i=1

(
2

πi
− 2

)
Vm(εi)

+
N∑

i=1

N∑

i′ 6=i

(
2πii′ − 2πiπi′

πiπi′

)
COVm(εi, εi′) (11)

where Tr(·) is the trace of a matrix argument and τx is the total of the auxiliary
variables across the population.

The first term of the bias is described in Fortin et al. (2016a) and arises from the
substitution of estimates for Vd(τ̂x) and Vm(β̂). As the sample size increases, the variance
Vd(τ̂x) converges to 0, and this first term becomes negligible. In the context of SRSWoR,
πii′ ≈ πiπi′ for large populations, and the last term of Eq. 11 converges to 0 as well.
The overestimation mainly comes from the term involving the variance of εi, which only
cancels out when the population is censused, i.e., πi = 1. In all other cases, the result
of 2

πi
− 2 will be greater than 0. Moreover, the smaller the inclusion probability is, the

greater this overestimation will be. The quantification of this bias is further developed in
the Supplementary Material SM3.

The following corrected variance estimator is unbiased (see the Supplementary Mate-
rial SM2):

V̂md,CORR(τ̂BS − τy) = V̂m(τ̂y,b) + 2V̂d(τ̂ȳ)− Êm[V̂d(τ̂y,b)]

=

∑B
b=1(τ̂y,b − τ̂BS)2

B
+ 2V̂d(τ̂ȳ)−

∑B
b=1 V̂d(τ̂y,b)

B
(12)

where V̂d(τ̂ȳ) can be obtained by substituting ȳi =
∑B

b=1
yi,b
B

for yi in the HT vari-
ance estimator found in Eq. 3. Like some previously developed analytical or bootstrap
estimators (e.g. Breidenbach et al., 2014; McRoberts et al., 2016; Fortin et al., 2016a),
the variance estimator presented in Eq. 12 makes it possible to distinguish the sampling-
related variance from the model-related variance, which are estimated as V̂d(τ̂ȳ) and

V̂m(τ̂y,b) + V̂d(τ̂ȳ) − Êm[V̂d(τ̂y,b)], respectively (see the Supplementary Material SM2).
The implementation of this new variance estimator is summarized in Fig. 1. For the sake
of clarity, we will refer to this new variance estimator as the corrected bootstrap variance
estimator, while the estimator found in Eq. 9 will be referred to as the uncorrected boot-
strap variance estimator. Both of them are parametric bootstrap estimators as defined in
Efron and Tibshirani (1994, p. 53).

While the mathematical developments in the Supplementary Material SM2 provide a
corrected bootstrap variance estimator for linear models, there is no certainty that the
estimator is still unbiased with more complex models. Since nonlinear models can be
linearly approximated using a first-order Taylor series, the corrected bootstrap variance
estimator in Eq. 12 should be asymptotically unbiased with these models. For more
complex models, we relied on simulation studies, which are detailed in the next section.
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A B

Realization
Sampling unit i Estimate

1 2 3 4 · · · Total∗ Variance∗∗

1 y1,1 y2,1 y3,1 y4,1 · · · τ̂y,1 V̂d(τ̂y,1)

2 y1,2 y2,2 y3,2 y4,2 · · · τ̂y,2 V̂d(τ̂y,2)

3 y1,3 y2,3 y3,3 y4,3 · · · τ̂y,3 V̂d(τ̂y,3)

... ... ... ... ... . . . ... ...

B y1,B y2,B y3,B y4,B · · · τ̂y,B V̂d(τ̂y,B)

C ȳ∗∗∗i ȳ1 ȳ2 ȳ3 ȳ4 · · ·

∗ The estimates are obtained using the HT estimator in Eq. 2

∗∗ The variance estimates are obtained using the HT variance estimator in Eq. 3

∗∗∗ The ȳi are calculated as ȳi =
∑B

b=1 yi,b/B

Estimate of the total

Calculate τ̂BS =
∑B

b=1 τ̂y,b/B using the values in column A.

Estimate of the variance

Step 1: Calculate
∑B

b=1(τ̂y,b−τ̂BS)2

B using the values in column A.

Step 2: Calculate
∑B

b=1 V̂d(τ̂y,b)

B using the values in column B.

Step 3: Calculate
∑

i∈s

(
1−πi
π2i

)
ȳ2
i +
∑

i∈s
∑

i′ 6=i

(
πii′−πiπi′
πiπi′

)
ȳiȳi′
πii′

using the

values in row C.

Step 4: Calculate the variance estimate as the result of Step 1 plus twice

the result of Step 3 minus the result of Step 2.

Figure 1: Schematic implementation of the corrected bootstrap variance estimator. The
values in the upper part of the table are the realizations yi,b.

Simulation studies

The estimators defined in Eqs. 8 and 12 were first tested with a simple linear model.
We assumed that the population contained 1000 units. For each unit i, we defined the
auxiliary variable xi, which was attributed a random value uniformly distributed between
2 and 8. The super-population model was set to yi = 4 + 3xi + εi with εi ∼ N(0, σ2xi)
and σ2 = 2. We tested three sample sizes, i.e., n ∈ 10, 25, 50. For this linear model, we
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proceeded as follows:

• Step 1: The error term εi was generated for each unit of the population, and the
total τy was calculated.

• Step 2: Deviates were generated to create parameter estimates under the assumption
that their true distribution was:

β̂ =

(
β̂0

β̂1

)
∼ N

((
4
3

)
,

(
0.02500 0.00035
0.00035 0.00050

))

as if the model had been fitted to an external dataset. An estimated variance-
covariance matrix for the parameter estimates and an estimated residual variance
(σ̂2) were also generated assuming a Wishart (1928) distribution and a χ2 distribu-
tion, respectively, with 98 degrees of freedom in both cases.

• Step 3: A sample of n units was selected following a SRSWoR probability design.

• Step 4: We used the super-population model with the parameter estimates, their
estimated variance-covariance matrix and the estimated residual variance obtained
in Step 2 to simulate the realized values yi,b in the sample s.

• Step 5: Step 4 was repeated 1000 times, τ̂BS was calculated using Eq. 8, and its
variance was estimated using the corrected bootstrap variance estimator found in
Eq. 12.

• Step 6: Steps 1 to 5 were repeated 10 000 times in order to obtain the empirical
distribution of the differences τ̂BS−τy. The empirical bias of the point estimator τ̂BS

was calculated as the average of these differences. The average estimated variance
was also compared to the empirical variance of the differences to test whether the
corrected bootstrap variance estimator was biased or not.

We tested the corrected bootstrap variance estimator in a second and a third simula-
tion study based on two models, both of which predict the volumes of different log grades
in individual standing trees. The second simulation study is based on the model of Fortin
et al. (2009). This model aims at predicting the volumes of five log grades, namely F1,
F2, F3, F4 and pulpwood, in standing trees of sugar maple (Acer saccharum Marsh.) and
yellow birch (Betula alleghaniensis Britton). The first four are sawlog grades where F1
is the best grade and F4 the worst. The fixed-effects part of the model consists of two
systems of five equations. The first system predicts the presence of a particular grade in
the tree, whereas the second system provides a prediction of the volume of each log grade,
conditional on its presence in the tree. Further details about the structure of the model
can be found in the Supplementary Material SM4.

We ran this second simulation study with a setup similar to the first one. The popu-
lation was assumed to contain 1000 plots. Each plot was randomly attributed a discrete
number of trees uniformly distributed between two and 22. All the stems were assumed
to be sugar maple trees with a diameter at breast height randomly drawn from a uni-
form distribution between 24 and 50 cm. We ran the simulation according to the steps
described above. The super-population model in Step 1 was assumed to be the one fit-
ted by Fortin et al. (2009). In Step 2, realized parameter estimates were drawn from a
multivariate Gaussian distribution with the mean and variance-covariance set to those
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estimated in the original study. Likewise, the realized estimated variance-covariance ma-
trix of the parameter estimates and the realized estimated residual variances were drawn
from Wishart (1928) distributions.

We also included an intermediate step between Step 4 and Step 5, which consisted of
aggregating the tree-level realizations in order to obtain a realized value at the population
unit level, namely the plot. Note that these plot-level realizations are actually vectors
that contain the sum of the volumes per log grade for all of the trees in a particular plot.

The third simulation study was based on the model developed by Schneider (2007).
This model predicts the volume of five log grades in standing trees of white birch (Betula
papyrifera Marsh.). These different log grades are pulpwood, sawlog, low-grade sawlog,
veneer and low-grade veneer. For any white birch tree, the model first predicts the height
to a small-end diameter of 20 cm as well as the commercial volume, which is defined as
the volume from 0.15 m in height up to a small-end diameter of 9 cm. Depending on
the diameter at breast height and the visual quality of standing trees, the commercial
volume is then split into the different log grades. Some grades are eligible only if the
visual quality is good enough and the diameter at breast height is larger than a particular
threshold. These features make the model more complex since some components are
enabled only if these criteria of quality and diameter are met. The model is described in
the Supplementary Material SM5.

Again, we assumed a population of 1000 plots. The number of white birch trees in
each plot ranged from two to 22. Each tree was attributed a random diameter uniformly
distributed between 18 and 45 cm. We then followed the steps described above. The origi-
nal model developed by Schneider (2007) was used as a super-population model in Step 1.
The realized parameter estimates were randomly drawn from a multivariate Gaussian
distribution with the mean and variance-covariance equal to those in the original study.
The realized estimated variance-covariance matrix of the parameter estimates and the
realized estimated residual variances were also drawn from Wishart (1928) distributions.
The intermediate step of aggregation between Step 4 and Step 5 was also required in order
to obtain plot-level realizations.

For the sake of the comparison, the uncorrected bootstrap variance estimator found in
Eq. 9 was also tested in each simulation study. The average estimated variance obtained
with this uncorrected bootstrap variance estimator was also compared to this empirical
variance in order to quantify the bias.

Real-world case study

To illustrate the applicability of the corrected bootstrap variance estimator, we used
a subset of the provincial forest inventory with the model of Schneider (2007). This
inventory programme partly relies on a network of permanent sample plots that were
established in the 1970s. In 2003, 393 plots in this network were measured in the Bas-
Saint-Laurent region, which is exactly the region for which the model was fitted. At
that time, the forested area under survey was 22 681 km2 (Parent and Fortin, 2003).
Each plot covered an area of 400 m2. We assumed a SRSWoR design with an inclusion
probability ∀i : πi = 6.930911×10−6. The estimation was based on 1000 realizations, like
in the simulation studies. A summary of the 393 plots used in this case study is shown
in Table 1.
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Table 1: Summary of the 393 permanent plots measured in the Bas-Saint-Laurent region
in 2003.

All species White birch only
Basal area (m2ha−1)
Minimum 0.0 0.0
Mean 15.4 1.4
Maximum 61.2 18.5

Tree density (trees ha−1)
Minimum 0.0 0.0
Mean 551 71
Maximum 2425 825

Results

The results of the simulation studies are shown in Tables 2, 3 and 4. In most cases, the
biases of the point estimator τ̂BS were smaller than 1% in absolute value, except for some
log grades such as F1 and F4 in the second simulation study (Table 3), as well as for the
sawlog, low-grade sawlog and veneer grades in the third simulation study (Table 4). For
a particular grade, the biases were constant, regardless of the sample size.

Table 2: Results of the simulation study with the linear model. Relative biases are shown
in parentheses.

Sample size (n)
10 25 50

Average difference τ̂BS − τy 1.7 (0.0%) 6.5 (0.0%) -2.5 (-0.0%)
Empirical variance 2.74 1.15 0.57
Average uncorrected variance 4.66 (70.2%) 1.93 (67.7%) 0.96 (68.4%)
Average corrected variance 2.71 (-1.1%) 1.14 (-1.0%) 0.58 (1.7%)
Sampling-related 2.66 1.09 0.53
Model-related 0.05 0.05 0.05

Variance estimates (×106)

The corrected bootstrap variance estimator yielded estimates that were always close
to the average empirical variances, whereas the uncorrected bootstrap variance estimator
overestimated these empirical variances. For the simulation study with the simple linear
model, the uncorrected bootstrap variance estimator yielded estimates that were 70%
greater than the empirical variances (Table 2). For the two other simulation studies,
the uncorrected bootstrap variance estimator overestimated the empirical variance by
more than 50% in most cases. The pulpwood grade in the third simulation study was
the case where the uncorrected bootstrap variance estimator showed the smallest bias
(Table 4). Nevertheless, it still overestimated the empirical variance by 20%. Even in that
particular case, the uncorrected bootstrap variance estimator was clearly outperformed
by the corrected bootstrap variance estimator.

Page 10



Published in Forestry 2017 doi: 10.1093/forestry/cpx048

Table 3: Results of the simulation study with the model of Fortin et al. (2009). Relative
biases are shown in parentheses.

Sample size (n)
10 25 50

F1 gradea

Average difference τ̂BS − τy -9.8 (-4.3%) -9.6 (-4.3%) -9.0 (-3.9%)
Empirical variance 4.6 2.8 2.7
Average uncorrected variance 29.2 (535.4%) 12.3 (337.5%) 7.4 (179.3%)
Average corrected variance 4.5 (-1.0%) 2.9 (4.0%) 2.7 (1.7%)
Sampling-related 2.3 0.8 0.4
Model-related 2.3 2.2 2.3

F2 gradea

Average difference τ̂BS − τy -4.7 (-0.4%) -1.6 (-0.1%) -1.7 (-0.1%)
Empirical variance 49.3 20.4 13.5
Average uncorrected variance 112.1 (127.5%) 45.1 (121.5%) 26.2 (94.0%)
Average corrected variance 48.2 (-2.2%) 20.5 (0.3%) 13.7 (1.7%)
Sampling-related 42.8 15.2 8.1
Model-related 5.4 5.2 5.6

F3 gradea

Average difference τ̂BS − τy 0.7 (0.0%) 3.8 (0.2%) 0.9 (0.0%)
Empirical variance 113.4 45.8 25.9
Average uncorrected variance 184.0 (62.2%) 73.4 (60.2%) 39.9 (54.0%)
Average corrected variance 111.0 (-2.1%) 45.1 (-1.7%) 25.6 (-1.2%)
Sampling-related 105.5 39.7 19.9
Model-related 5.5 5.4 5.7

F4 gradeb

Average difference τ̂BS − τy -1.6 (-1.4%) -1.7 (-1.5%) -1.9 (-1.6%)
Empirical variance 5.5 3.2 2.7
Average uncorrected variance 29.8 (444.8%) 12.7 (296.3%) 7.4 (177.7%)
Average corrected variance 5.5 (0.6%) 3.2 (-0.0%) 2.6 (-1.6%)
Sampling-related 3.6 1.4 0.7
Model-related 1.9 1.8 1.9

Pulpwood gradec

Average difference τ̂BS − τy 5.4 (0.1%) 9.9 (0.3%) 8.0 (0.2%)
Empirical variance 41.7 15.8 8.7
Average uncorrected variance 54.2 (30.1%) 20.9 (32.1%) 11.1 (27.1%)
Average corrected variance 40.7 (-2.4%) 15.7 (-1.0%) 8.5 (-3.2%)
Sampling-related 39.8 14.8 7.5
Model-related 0.9 0.9 0.9

a Variance estimates (×103)
b Variance estimates (×102)
c Variance estimates (×104)

The sampling-related variance, as estimated through the corrected bootstrap variance
estimator, decreased with increasing sample sizes, whereas the model component remained
approximately constant. With the smallest sample size, the sampling-related variances
were larger than the model-related ones in most cases. There were some exceptions such as
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the F1 grade and the veneer grade in the second and third simulation studies, respectively.
For the largest sample size, there was no clear pattern.

Table 4: Results of the simulation study with the model of Schneider (2007). Relative
biases are shown in parentheses.

Sample size (n)
10 25 50

Pulpwooda

Average difference τ̂BS − τy 42.0 (0.9%) 42.8 (0.9%) 40.3 (0.9%)
Empirical variance 60.3 26.3 15.0
Average uncorrected variance 77.9 (29.1%) 32.5 (23.7%) 18.0 (20.3%)
Average corrected variance 61.7 (2.2%) 26.4 (0.4%) 15.0 (0.1%)
Sampling-related 57.5 22.4 11.0
Model-related 4.2 4.0 4.0

Sawloga

Average difference τ̂BS − τy -68.2 (-5.8%) -63.2 (-5.6%) -67.2 (-5.9%)
Empirical variance 8.4 5.5 4.6
Average uncorrected variance 22.8 (170.3%) 11.0 (100.0%) 7.4 (61.0%)
Average corrected variance 9.0 (7.1%) 5.7 (3.8%) 4.8 (4.3%)
Sampling-related 5.0 1.9 0.9
Model-related 4.0 3.8 3.9

Low-grade sawlogb

Average difference τ̂BS − τy -3.3 (-3.4%) -3.4 (-3.5%) -3.1 (-3.3%)
Empirical variance 9.5 6.4 4.7
Average uncorrected variance 28.6 (201.3%) 13.9 (116.5%) 8.2 (75.5%)
Average corrected variance 9.8 (3.0%) 6.5 (1.7%) 4.7 (1.9%)
Sampling-related 6.0 2.6 1.3
Model-related 3.8 3.9 3.5

Veneerc

Average difference τ̂BS − τy 28.0 (6.9%) 26.8 (6.8%) 25.9 (6.4%)
Empirical variance 19.5 14.2 13.7
Average uncorrected variance 88.0 (352.0%) 40.4 (185.1%) 27.2 (99.0%)
Average corrected variance 20.8 (6.9%) 15.2 (7.1%) 14.6 (6.7%)
Sampling-related 7.5 2.9 1.5
Model-related 13.3 12.3 13.1

Low-grade veneerc

Average difference τ̂BS − τy 0.9 (0.1%) 1.0 (0.1%) 2.9 (0.3%)
Empirical variance 51.8 28.3 21.7
Average uncorrected variance 86.6 (67.0%) 41.3 (46.2%) 29.2 (34.6%)
Average corrected variance 53.1 (2.5%) 28.9 (2.3%) 22.9 (5.6%)
Sampling-related 37.3 14.3 7.3
Model-related 15.8 14.6 15.6

a Variance estimates (×104)
b Variance estimates (×102)
c Variance estimates (×103)

Regarding the case study, the pulpwood log grade was estimated to be the most abun-
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dant one, followed by the sawlog, the low-grade sawlog, the low-grade veneer and, finally,
the veneer grade (Table 5). The uncorrected bootstrap variance estimator systematically
yielded larger estimates than the corrected bootstrap variance estimator. The variance
component that largely predominated was the sampling, which represented more than
80% of the variance for all grades except the low-grade sawlog (Fig. 2).

Table 5: Estimates of total volumes (m3) per log grades for white birch in the Bas-
Saint-Laurent region in 2003 based on the hybrid estimator and the model of Schneider
(2007). Relative differences between the uncorrected and the corrected bootstrap variance
estimators are shown in parentheses.

Estimate Pulpwood Sawlog
Low-grade

Veneer
Low-grade

sawlog veneer
Point estimate (×103) 7 492 1 573 1 119 93 160

Uncorrected variance
1 026 708 111 757 60 333 3 815 8 530

(6.7%) (36.7%) (27.5%) (163.4%) (86.2%)
Corrected variance 962 575 81 733 47 324 1 449 4 582
Model-related 92 864 13 811 20 880 111 131
Sampling-related 869 711 67 922 26 444 1 338 4 451

Variance estimates (×106)
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Figure 2: Contribution of the sampling-related variance to the total variance of the es-
timator of the total volume for the different log grades in the 2003 inventory in the
Bas-Saint-Laurent region.

Discussion

Bias

In the context of hybrid inference, it has always been a challenge to merge the variance
that stems from the probability design with that of the super-population model. It usually
results in complex mathematical developments, even though the variances induced by the
uncertainty in the parameter estimates, the random effects and the residual error in the
model predictions can be explicitly formulated (St̊ahl et al., 2011; Fortin et al., 2016a).
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However, in some circumstances, the super-population model can be more complex than
those that were dealt with in previous studies on hybrid inference. This complexity
arises when the model includes several components with eventual logical choices based on
intermediate predicted values. In such a context, the contribution of the uncertainty in
the parameter estimates, the random effects and the residual error to the variance of the
point estimator can rarely be derived or approximated, which hampers the use of current
analytical variance estimators.

A common method to overcome this problem consists of using estimators based on
resampling methods. A variance estimator based on a parametric bootstrap, which we de-
scribed earlier as the uncorrected bootstrap variance estimator, has already been used in
the context of hybrid inference. Our statistical developments show that this variance es-
timator overestimates the true variance of the point estimator when the super-population
model is linear. Our second and third simulation studies confirmed that this overestima-
tion also exists when the hybrid estimator is based on a more complex super-population
model.

The major part of the bias of the uncorrected bootstrap variance estimator arises from

the second term on the right-hand side of Eq. 11, namely
∑N

i=1

(
2
πi
− 2
)
Vm(εi) (see the

Supplementary Material SM3). It turns out that there are three factors that affect the
magnitude of this bias: the population size, the sample size and the average residual
variance of the super-population model (see the Supplementary Material SM3). This bias
never tends to 0 unless the whole population is censused, i.e., n = N . As a matter of fact,
this bias will increase along with the population size. If we focus on the first simulation
study, where Vm(εi) = 2xi and ∀i : πi = π, this bias can be approximated to 1.98 × 106.
This approximation is close to the difference of 1.92× 106 that we obtained between the
average uncorrected variance estimate and the empirical variance (Table 2). Repeating
the same calculation for n = 25 and n = 50 also yields values that are very close to the
observed differences.

Bias estimation

The unknown variance Vm(εi) can be replaced by its estimate in order to obtain a feasible
correction factor. If the variance Vm(εi) is heterogeneous, then the total

∑N
i=1 Vm(εi)

can also be estimated using a HT estimator (see Fortin et al., 2016a). Nevertheless,
the implementation of such a correction factor is more tedious than implementing the
corrected bootstrap variance estimator (Fig. 1).

Many studies address the estimate of the mean and not of the total. The mean estimate
and its estimated variance are easily obtained by dividing estimators 8 and 12 by N and
N2, respectively (Gregoire and Valentine, 2008, p. 40). Whether it is the total or the mean
of the population, it can be shown that the relative bias of the uncorrected bootstrap
variance estimator is the same for both quantities (see the Supplementary Material SM3).
This relative bias is proportional to the average residual variance of the super-population
model. It is also independent of the population size. There are two patterns that can be
distinguished. The first one is when the model-related variance is large compared to the
sampling-related variance, in which case a large sample size then induces a decrease in
the relative bias. The second pattern occurs when the sampling-related variance is found
to be much greater than the model-related variance. In such cases, the decrease in the
relative bias induced by an increasing sample size remains marginal (see Eq. S18 in the
Supplementary Material SM3).
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Both patterns can be found in the simulation studies. For instance, the first sim-
ulation study clearly belongs to the second pattern: the sampling-related variance was
much greater than the model-related variance and the relative bias did not decrease with
increases in the sample size (Table 2). The F1 log grade in the second simulation study
is a typical case of the first pattern: the model-related variance was greater than the
sampling-related variance and the relative bias decreased as the sample size increased
(Table 3).

In practice, the first pattern is rather uncommon with the exception of the study
of Fortin et al. (2016a). In most cases, the sampling-related variance is much greater
than the model-related variance (McRoberts and Westfall, 2014; St̊ahl et al., 2014; Fortin
et al., 2016b) and the relative bias can be roughly approximated from the coefficient
of determination (R2) of the super-population model as follows (see the Supplementary
Material SM3):

Bias[V̂md(τ̂BS)]

Vmd(τ̂BS)
≈ 2(1−R2)

R2
(13)

In the first simulation study, the R2 was 0.7297 and the relative bias could be approx-
imated to 74.1%, which is close to the observed relative biases that ranged from 67.7 to
70.2% (Table 2). Note that this approximation does not directly apply when the super-
population model provides tree-level predictions because this R2 should be calculated at
the population unit level, namely the plot. Nevertheless, this approximation indicates
that there would still be a relative bias of about 10%, even though the super-population
model has a R2 of 0.95. We ran the first simulation study again with a smaller resid-
ual variance in order to have a super-population model with a R2 close to 0.95 and we
obtained relative biases that ranged from 9.9% to 13.8%.

In the context of volume estimation, Fortin and DeBlois (2010) found that the standard
deviation of the prediction errors represented approximately 15% of the plot-level volume
predictions. This level of precision leads to a R2 of 0.978. Using the approximation shown
in Eq. 13, the bias of the uncorrected bootstrap variance estimator can be estimated at
4.5%, which is probably not a great concern. However, there is no guarantee that such
precise super-population models are the rule.

St̊ahl et al. (2016) suggested that the residual variance of the super-population model
makes a relatively small contribution to the total variance, which was empirically demon-
strated by some authors (Breidenbach et al., 2014; Fortin et al., 2016a,b). If the residual
error is omitted in the uncorrected bootstrap variance estimator, the bias can be greatly
reduced. While this option seems to be a valid alternative for linear and nonlinear mod-
els, which are the most common situation, it may not be satisfactory for complex models.
Some authors have shown that complex models may yield predictions that are signifi-
cantly different depending on the stochastic components that are enabled (Higgins et al.,
1997; Zhou and Buongiorno, 2004; Fortin and Langevin, 2012), which is essentially due
to Jensen’s (1906) inequality. With such models, omitting the residual error terms could
induce a bias in the point estimator of the total or the mean.

In all three simulation studies, our corrected bootstrap variance estimator yielded
estimates that were very close to the empirical variances. These results support the
conclusion that this corrected bootstrap variance estimator, which was developed in the
context of linear models, also works with complex models. The implementation of this
corrected bootstrap variance estimator is not much more complicated than that of the
uncorrected bootstrap variance estimator (Fig. 1). It only requires an additional term to
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be calculated, i.e., V̂d(τ̂ȳ). The calculation of the ȳi implies that the realizations yi,b are
saved in the memory until the B realizations have been generated. In all our simulations,
that additional memory requirement was not an issue.

Sampling vs model-related variance

Like some previous hybrid estimators, this corrected bootstrap variance estimator makes
it possible to distinguish the variance that is induced by the sampling from that of the
model. While the sampling variance decreased with increasing sample sizes, the model-
related variance remained stable. This result was also highlighted in Fortin et al. (2016a).
In reality, this model-related variance is only slightly impacted by the sample size through
term Tr(Vd(τ̂x)Vm(β̂)) (see the Supplementary Material SM1), which is relatively small
compared to terms βTVd(τ̂x)β and τxVm(β̂)τ Tx . Even though a census of the whole
population was taken, the variance related to the model remained because the responses
are not observed but only predicted. The only way to reduce this variance component is to
fit a more accurate super-population model, which is possible by either adding explanatory
variables in the model or increasing the size of the dataset to which the model is fitted.

In our case study, the distinction between these two sources of variance clearly indi-
cated that the sampling-related variance was by far the most important source of variabil-
ity. For most grades, it accounted for more than 80% of the total variance of the estimate
(Fig. 2). It clearly appears that any effort to increase the precision of the estimates should
first focus on the sampling.

This large sampling variance was due to the scarcity of white birch trees in the sample.
Many plots actually had no white birch at all, whereas the species accounted for a signif-
icant part of the basal area and tree density in some others. A simple way to reduce this
sampling-related variance would be to use a stratified design instead of a simple random
design like the one we considered here. If the strata that have a higher proportion of
white birch trees could be delineated on the map, the overall sampling-related variance
could be decreased. This sampling scheme is largely described in Gregoire and Valentine
(2008, Ch. 5).

Hybrid estimators are both model-dependent and design-based. Being model-dependent,
they rely on the usual distributional assumptions related to model fitting (Gregoire, 1998).
If these assumptions hold, the estimator of the variance-covariance matrix is usually un-
biased or, at least, asymptotically unbiased. With linear models, the variability of the
estimated variance-covariance matrix should not be a concern. With more complex models
that include nonlinear sub models with strong curvature, the corrected bootstrap variance
estimator could be biased. For further details on this curvature issue, the reader is re-
ferred to Seber and Wild (2003, Ch. 12). In such a case, the distribution of the parameter
estimates could be better approximated by refitting the super-population model to boot-
strapped samples of the original dataset, as suggested in McRoberts and Westfall (2014,
2016). This however assumes that this original dataset is still available. This approach
remains to be tested.

Confidence intervals

It can be reasonably assumed that the uncertainty of the estimated variance-covariance
matrix also impacts the coverage of the confidence intervals. When working in a design-
based framework, confidence intervals are based on Student’s t distribution instead of a
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Gaussian distribution. Student’s t distribution was designed to take the fact that the
true variance remains unknown into account and that only an estimate is available. The
corrected bootstrap variance estimator in Eq. 12 implies the estimation of three variance
components, i.e., V̂m(τ̂y,b), V̂d(τ̂ȳ) and Êm[V̂d(τ̂y,b)]. Student’s t distribution cannot be
used because the degrees of freedom in the first term are probably different from those
of the other two. An approximation of the total degrees of freedom could be calculated
using the Welch-Satterthwaite equation (Satterthwaite, 1946). The empirical coverage
of confidence intervals based on this approximation should be further investigated. In
the meantime, confidence intervals based on a normal distribution should achieve their
nominal coverage only if both the dataset used to fit the super-population model and the
sample are large.

Another possibility that we did not test is that of spatial correlations among the
residual errors of the super-population model. In all our simulation studies, the term
COVm(εi, εi′) was assumed to be null. Theoretically, the corrected bootstrap variance
estimator is unbiased even if these covariances are not null. However, this should be
empirically tested in future simulation studies.

Practical implications

In terms of practical implications, this corrected bootstrap variance estimator opens the
way for large-area growth predictions using tree-level models. As we mentioned in the
introduction, these models are complex by nature. They include nonlinear components
and they rely on an iterative process in which the predictions are reinserted in the model
in order to obtain long-term projections. When using this type of model for large-area
predictions, there exist two strategies of upscaling. The first one consists of averaging
the input data, which is known as the simple averaging method (Wu and Li, 2006).
However, with this method, the large-area predictions can be biased because the nonlinear
components of the model are likely affected by Jensen’s (1906) inequality.

The second strategy is known as the direct extrapolation method (Wu and Li, 2006)
and it makes it possible to avoid the prediction issue due to Jensen’s inequality. Each
plot is simulated individually and the predictions are then averaged or summed in order
to obtain a prediction for the whole population, which is a setup identical to that of this
study. In order to obtain a reliable estimate of the variance, the options are limited. Using
the uncorrected bootstrap variance estimator leads to overestimating the variance of the
point estimator. Omitting the residual error term would reduce the bias in the uncorrected
bootstrap variance estimator, but it would induce a bias in the point estimator (see
Fortin and Langevin, 2012). If the tree-level growth model benefits from a full stochastic
implementation, the prediction errors can be propagated as well as the sampling error
using the corrected bootstrap variance estimator of this study, which is, to the best of our
knowledge, the only reliable option in this context.

Conclusions

On the basis of this study, we can draw the following conclusions:

1. A variance estimator based on a parametric bootstrap and the law of total variance
tends to overestimate the true variance in contexts of hybrid inference.
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2. When working with the estimate of the total, the quantity
∑N

i=1

(
2
πi
− 2
)
Vm(εi)

accounts for the major part of this bias. If ∀i : πi = π, this quantity can be
estimated using a HT estimator. The population size, the sample size and the
average residual variance of the super-population model affect the magnitude of the
bias. This bias never tends to 0 unless the whole population is censused, i.e., n =
N, or the residual variances Vm(εi) tend to 0.

3. Whether it is the total or the mean of the population, the relative bias of this
uncorrected bootstrap variance estimator is the same for both quantities. This
relative bias is independent of the population size and it is rather insensitive to the
sample size when the model-related variance is much smaller than the sampling-
related variance, which is often the case. In such a context, the relative bias can be
roughly estimated from the coefficient of determination (R2) of the super-population
model as follows: 2(1−R2)/R2.

4. If the residual error is omitted under the assumption that the residual variance has
a small contribution to the total variance of the point estimator, the bias of the
uncorrected bootstrap variance estimator is greatly reduced. This works well with
simple linear or nonlinear models as in most situations. However, when dealing with
a complex model, there is a risk of causing a bias in the point estimator, which is
essentially due to Jensen’s (1906) inequality.

5. In comparison, the corrected bootstrap variance estimator in Eq. 12 is unbiased and
its implementation only requires the computation of an additional term once the B
realizations have been generated (Fig. 1). In all our simulation studies, the bootstrap
point estimator and the corrected bootstrap variance estimator were based on 1000
realizations, which ensured the stabilization of the total and variance estimates.

6. The corrected bootstrap variance estimator works even though the aggregation of
the predictions is required. Even if the model applies at a lower level than the
population unit, this corrected bootstrap variance estimator showed no evidence of
bias.

7. Like some other variance estimators, the corrected bootstrap variance estimator
also makes it possible to distinguish the model-related variance from the sampling-
related variance. As shown in our case study, it was possible to identify the most
important source of variability and to focus on the methods that are the most likely
to increase the precision of the estimates.

From a theoretical point of view, this corrected bootstrap variance estimator can
apply to any super-population model in the context of hybrid inference as long as its
nonlinear components do not exhibit strong curvature (see Seber and Wild, 2003, Ch. 12).
However, it should be stressed that hybrid inference is tied to the assumptions underlying
the model. As a consequence, the estimator is not robust to model misspecification and
overparameterisation. Moreover, the estimator requires that all the stochastic components
of the super-population model be properly simulated.

In summary, we make the following recommendations. If the super-population model
is linear or nonlinear and it applies at the plot level, then use some analytical hybrid
variance estimators such as those in St̊ahl et al. (2011, 2016) and Fortin et al. (2016a).
If the super-population model is linear or nonlinear but it applies at a lower hierarchical
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level, analytical hybrid variance estimators can still be used (Fortin et al., 2016a). If
the super-population model is hardly differentiable or not differentiable at all, then use
the corrected bootstrap variance estimator of this study, which is also a valid alternative
to all of the cases mentioned above, although it implies a greater computational burden
and it assumes that all the stochastic components of the super-population model can be
properly simulated.
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