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RÉSUMÉ 

Les zones côtières et estuariennes jouent un rôle clé dans les processus 

biogéochimiques comme les échanges de gaz à effet de serre à l'interface air-mer, la 

photosynthèse et la régénération des nutriments. Tous ces processus sont liés à la dynamique 

des matières particules en suspension (MPS). L’estuaire du Saint-Laurent (ESL) est un des 

plus grands estuaires du monde. On y retrouve un important mélange de propriétés chimiques 

et optiques résultant de la combinaison des eaux douces en provenance du fleuve St-Laurent 

(FSL) et des eaux marines du golfe du Saint-Laurent (GSL). L’objectif principal de cette 

thèse est d’évaluer, développer et valider différents modèles de télédétection optique pour 

estimer la concentration de MPS dans les eaux de l’ESL. 

Cette thèse présente en plus deux objectifs secondaires. Premièrement, caractériser, 

pour la zone étudiée, les distributions de tailles de la MPS, puis déterminer les propriétés 

optiques massiques spécifiques de la matière en suspension. Avec ces données certains 

proxys sont proposés pour étudier les attributs de deuxième ordre de la MPS. Deuxièmement, 

une revue des effets thermiques induits par la présence des MPS dans les eaux océaniques et 

littorales est réalisée. Cette synthèse incorpore une analyse des changements potentiels que 

pourraient subir certaines variables climatiques dues aux variations de chaleur associé à la 

distribution et à la nature des particules. 

Le premier chapitre résume les concepts relatifs à l’optique marine et la télédétection 

de la couleur des océans dans les eaux estuariennes et côtières. Le deuxième chapitre présente 

une relation biogéo-optique pour cartographier les distributions CMPS dans l'estuaire supérieur 

du Saint-Laurent basé sur des mesures satellitaires de couleur de l’océan à moyenne 

résolution spatiale. Enfin, l’influence de la composition chimique des particules sur la 
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télédétection des CMPS est investiguée et une série de nouveaux paramètres sont présentés 

pour estimer le contenu organique des MPS dans l’ESL. 

Le troisième chapitre traite de la caractérisation des propriétés optiques de la MPS 

ayant différentes compositions chimiques et tailles dans les eaux de l’ESL. Dans ce chapitre, 

l’effet de la composition et des tailles sur les propriétés optiques inhérentes des particules et 

leurs effets sur les signaux optiques détectés par des capteurs optiques sont étudiés. 

Le quatrième chapitre propose une revue du rôle des particules dans la modulation de 

la variabilité spatiale de la température de l’eau, des flux de chaleur à l’interface air-mer et 

des variables météorologiques locales. La contribution de la MPS et celle de la matière 

organique dissoute chromophorique (MODC) dans le budget de chaleur dans les eaux 

côtières et océaniques sont examinées. De plus, le rôle du flux de chaleur induit par les 

particules dans l’altération des processus de formation de nuage et de précipitations et la 

dynamique des banquises est analysé. 

En conclusion, pour l’ESL, les résultats obtenus dans cette thèse montrent que la 

concentration et la composition chimique des MPS peuvent être estimées à partir de méthode 

de télédétection optique avec une exactitude acceptable (c.-à-d.. une erreur d’environ 30 %). 

L’approche proposée devrait être valide dans d’autres environnements littoraux ayant des 

propriétés biogéooptiques comparables à celles mesurées dans la région d’étude. Il a été 

démontré que des changements dans la composition chimique des particules peuvent 

constituer une importante source de variabilité dans l'évaluation des CMPS estimée par 

télédétection dans la région d’étude. Finalement, la discussion du chapitre 3 a révélé une 

importance comparable de l’effet des particules en suspension et des matières dissoutes sur 

la température de l’eau et la variabilité des flux de chaleur dans les eaux côtières. 

 

Mots clés : matières particulaires en suspension, distribution de tailles des particules, 

composition des particules, matière organique dissoute colorée, propriétés optiques 

inhérentes, télédétection, flux de chaleur, température de l’eau surface, variabilité du climat 
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ABSTRACT 

Estuarine and coastal zones play a key role in biogeochemical processes such as air-

water exchange of greenhouse gases, photosynthesis and regeneration of nutrients. All these 

processes are linked to dynamics of suspended particulate matter (SPM). The St. Lawrence 

Estuary (SLE) is one of the largest estuaries in the world where a major mixing of chemical 

and optical properties occurs due to the exchange of water parcels derived from the St 

Lawrence River (SLR) and the Gulf of St. Lawrence (GSL). The primary objective of this 

thesis is to evaluate, develop and validate different optical remote sensing models for 

estimating concentration of SPM in SLE waters.  

In addition, this thesis has two secondary objectives: Firstly, mass-normalized optical 

properties of different chemical and size distribution fractions are characterized over the 

study area, and optical remote sensing proxies are proposed for studying second-order 

attributes of SPM. Secondly, a review of particle-mediated thermal effects in oceanic and 

littoral waters is achieved. Also, this synthesis incorporates an analysis of potential changes 

on climate variables due to variations on water heat content. associated to different particle 

distributions and nature.  

The first chapter summarizes the actual concepts on marine optics and remote sensing 

of ocean color in estuarine and coastal waters. In the second chapter, a biogeo-optical 

relationship is suggested to map CSPM distributions in the upper SLE and based on satellite 

ocean color measurements having a moderate spatial resolution. Lastly, the influence of 

particle chemical composition on remote sensing of CSPM was investigated, and a series of 

new parameterizations are shown for estimating organic content of SPM in SLE waters.  

The third chapter is about the characterization of optical properties of different 

chemical and size fractions of SPM in SLE waters. In this chapter, the effect of particle 
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composition and size distribution on the inherent optical properties of particles and their 

effects on optical signals arriving to the remote sensing sensor are investigated.  

The fourth chapter reviews the role of particles in in modulating the spatial variability 

of water temperature, air-water heat fluxes and local weather variables. Here, the contribution 

of SPM and chromophoric dissolved organic matter (CDOM) to heat budget components in 

coastal and oceanic waters was examined. Also, the role of the particle – mediated heat flux 

in altering the behavior of cloud formation and precipitation, and the dynamics of sea ice was 

analyzed.  

In summary for the SLE, the results obtained during this thesis showed that 

concentration and chemical composition of SPM can be estimated based on optical remote 

sensing methods and with an acceptable accuracy (i.e., around 30% error). The proposed 

approach is expected to be valid in other littoral environments with comparable biogeo-

optical properties to those typical measured over the study area. It was demonstrated that 

changes on particle chemical composition may be an important source of variability on 

remote sensing estimates of CSPM in our study area. Lastly, the discussion of chapter 3 

revealed the comparable importance of particulate and dissolved matter affecting water 

temperature and heat flux variability in land-influenced waters. 

Keywords: Suspended particulate matter, particle size distribution, particle 

composition, CDOM, inherent optical properties, remote sensing, air-water heat flux, water 

surface temperature, climate variability 
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CHAPTER 1 

 

1. GENERAL INTRODUCTION 

1.1 BASIC OPTICAL REMOTE SENSING CONCEPTS 

Remote sensing is the scientific discipline that studies the characteristics of an object 

having a direct contact. Thus, remote sensing is a broad term that includes optical, thermal, 

microwave and acoustic measurements. Optical remote sensing measurements are obtained 

within the spectral range of UV-visible (300-700 nm) and near-mid IR (700-3000 nm).  

Optical remote sensing measurements derived from satellites allow us to have synoptic 

observations of the object under investigation. Likewise, these methods provide the analysis 

of long-term regional trends on biogeochemical variables such as primary production, the 

fate of pollutants, and sediment transport in littoral waters (Jacobi et al., 2015; Balch et al., 

2002; Coulombier et al., 2012b). However, traditional methods for monitoring SPM are 

based on costly and time-consuming oceanographic surveys that have a limited coverage, 

spatially and temporally.  
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1.2 OPTICAL REMOTE SENSING SYSTEM COMPONENTS 

An optical remote sensing system is constituted by four elements: 1. the light source, 2. 

the target or object to be detected, 3. the receiver or sensor, and 4. the optical medium between 

the receiver and the target. Passive optical remote sensing systems have the sun as the light 

source and can detect reflected energy coming from the target. Unlike passive optical 

systems, active optical systems have a laser as a light source. These systems are currently 

known as LiDARs or light detection and range.  

 

1.3 LIGHT PROPAGATION IN AIR AND WATER 

The Penetrated beam in a water body can be absorbed or scattered. The photon is 

absorbed if it is permanently removed from the light beam. However, scattering redirects the 

angle of the light beam pathway. Unlike scattering which barely depends on the wavelength 

of the light beam, absorption highly depends on wavelength variation. The spectral beam 

attenuation coefficient c(λ) of a medium describes the fraction of incident beam intensity 

attenuated per meter of the medium. 

 In studying biogeochemical processes at littoral surface waters, the goal is to measure 

the water-leaving electromagnetic signals reflected from water constituents towards the 

remote optical sensor. An optical remote optical sensor must deal with various interfering 

factors that influence the photon’s path length. These radiance contributions causing 

interference include the effect of atmosphere and aerosols, bottom reflection, reflection by 

air bubbles, and adjacency effects (Figure 1). 



3 

 

Lw + Lbub = Lu – Ls – Lb - Ladj       (1) 

where ܮ௪ is water-leaving radiance, ܮ௨ is the total upwelling radiance, ܮ is the surface 

reflected radiance, ܮ is the atmospheric radiance including Rayleigh scattering of gases and 

aerosols, ܮis the bottom reflected radiance, ܮௗ is the adjacency reflected radiance, and 

 is the portion of the (ܮ) ௨ is the bubble-reflected radiance. Surface reflected radianceܮ

incoming solar radiation that is reflected by the water surface (Schaepman-Strub et al. 2006). 

The radiance by atmosphere (ܮ) includes two contributions; Rayleigh scattering of gases 

and aerosols (Gordon, 1997; Wang, 2010). The radiance by adjacent objects (Ladj) (e.g., ice, 

land) may cause light field distortions when they are very reflective or absorbing compared 

with the target to be detected (Lyapustin and Kaufman 2001). High wind speeds and breaking 

waves continuously produce bubble layers near the sea surface. The radiance due to bubble 

layers (Lbub) mainly affects Lw due to an increase in light scattering (Ma et al. 2015). Lw is 

composed by elastic (i.e., scattering) and inelastic (i.e., fluorescence) contributions (Mobley, 

1994). Reflection by the bottom (ܮ) in optically shallow waters can increase or decrease the 

water-leaving radiance depending bottom depth, inherent optical properties of water, and 

bottom reflectivity (Kostadinov et al. 2009). 
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Figure 1. Factors influencing upwelling sunlight leaving the air-water interface 

(adapted from www.dmu.dk) 

 

1.4 INHERENT AND APPARENT OPTICAL PROPERTIES (IOPS AND AOPS) 

In optical remote sensing, two major concepts are used the most often: inherent optical 

properties (IOPs) of particulates that are independent of illumination conditions, and apparent 
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optical properties (AOPs) that closely depend on IOPs and the ambient illumination 

conditions (Mobley 1994). The variability in IOPs have a major influence on Lw by causing 

scattering and absorption of photons. Indeed, light attenuation occurs due to either 

absorption, or scattering of light beam from its direct path by water molecules, dissolved 

matter, and particulates in the medium (Mobley 1994): 

c(λ) = a(λ) + b(λ)         (2) 

where a(λ) and b(λ) are the spectral beam absorption and scattering coefficients in m-1 units, 

respectively. In a water column, the sum of absorption coefficient of all single constituents 

form the bulk IOP: 

a(λ) = aw (λ) + aph (λ) + aNAP (λ) + aCDOM (λ)     (3) 

where aw(λ) is the absorption coefficient of water molecules. aph (λ) is the absorption 

coefficient of phytoplankton, which is determined by the composition and concentration of 

pigments. aNAP (λ) is the absorption coefficients of non-algal particles (NAP). NAP is a 

composite of detritus, suspended organic matter, zooplankton, and bacteria. aCDOM (λ) is the 

absorption coefficient of chromophoric dissolved organic matter (CDOM). Operationally, 

CDOM is defined the material that passes through a filter of nominal pore size 0.2 µm 

(Bricaud et al. 1981). Figure 2 shows the schematic absorption spectra of water components 

within visible and near IR wavelengths. aw(λ) is the least variable among other absorption 

values at given wavelengths (Pope and Fry 1997).  
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Figure 2. Light absorption components in coastal waters (Turpie 2013) 

 

Similarly, bulk scattering and backscattering (the fraction of light scattered at angled > 

90 ̊ relative to incident beam direction) coefficients can be written as: 

b (λ) = bw (λ) + bp (λ)        (4) 

bb (λ) = bbw (λ) + bbp (λ)        (5) 

where bw(λ), bp(λ), bbw (λ), and bbp (λ) are the scattering and backscattering coefficients for 

water and particulates, respectively. Scattering properties of particulates are directly related 

to computations of remote sensing reflectance. Particle scattering highly depends on size, 

geometry, and refractive index of all components of the particulate (Loisel et al., 2006). For 

instance, phytoplankton has a smaller scattering coefficient compared to other particulates in 

coastal waters due to the high water content (Aas, 1996), except cocolihophores that are 

associated with high values of scattering coefficient due to their calcium carbonate content 

(Balch et al., 2002). 
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Apparent optical properties of particulates depend on inherent optical properties and the 

light geometry. This concept is illustrated using the definition of Rrs in the relationship 

between IOPs and AOPs (Mobley 1994): 

ܴ௦(ߣ) =
ೢ(ఒ)

ா(ఒ)
         (6) 

where ܴ௦ is a remote sensing reflectance and an AOP, ܮ௪ is water-leaving radiance, and ܧௗ 

is down-welling irradiance. The forward simulation of radiance distribution due to SPM 

includes water-leaving radiance at a specific wavelength, Lw(), and downwelling irradiance 

signal due to SPM just above the water surface at a specific wavelength, Ed(,0+). These 

variables are essential to computing the remote sensing reflectance Rrs() of SPM. The 

interrelationship between IOPs and Rrs() is shown as (Mobley 1994): 

ܴ௦(ߣ) =
ೢ(ఒ)

ா(ఒ)
=



ொ
ቀ

್(ఒ)

(ఒ)ା್(ఒ)
ቁ       (8) 

where ܴ௦ is remote sensing reflectance, 


ொ
 is the proportionality factor that depends on both 

IOPs and AOPs of particulates, ܽ(ߣ) is particles absorption coefficient, and ܾ(ߣ) is particle 

backscattering coefficient.  

Variations in optical properties of water depend on the type of water body. Natural waters 

are classified into two water types: case 1 and case 2 waters. Case 1 corresponds to waters 

where chlorophyll is the major responsible for variation in optical properties within the water 

column. In case 1 waters, we undertake that there is a strong covariation between optical 

properties at any specified wavelength and the pigment concentrations. However, in Case 2 

waters, components other than chlorophyll, such as yellow substances or chromophoric 

dissolved organic matter (CDOM) and suspended matter contribute to this covariation 

(Mobley 1994). Unlike case 1 waters that single-variable biogeo-optical models could be 

used for deriving the water optical properties, case 2 waters require more complex algorithms 
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due to the spectral overlap of water constituents that causes a strong dependency between 

different components (Zarco-Tejada et al. 2000).  

 

1.5 OPTICAL REMOTE SENSING MODELS OF SPM 

Radiative transfer models are used for developing biogeo-optical models based on IOPs 

of SPM and simulated radiance field. A radiative transfer model allows to track the fate of a 

photon in the water column, whether it is absorbed, scattered, or produced (e.g. 

bioluminescence). Briefly, the RTE expression is (Zaneveld et al. 2005): 

  (7)
 

where  is the incident spectral radiance in (zenith at a specific direction, azimuth) 

direction ,  is the radiance created by scattering in direction  in the 

medium, τ is the optical depth, µ is the medium refraction index,  is the scattering phase 

function, ω(τ) is the single-scattering reflectance and Ω′ is the solid angle of the incident light 

beam. Currently there is no known general analytical solution to this equation, except when 

θ=0 (Zaneveld et al. 2005), which incorporates a derivative and an angular integral of the 

solution being sought (i.e. the directional radiance field L). To estimate the AOPs from IOPs 

(the forward approach), one needs to numerically solve the RTE as a function of the boundary 

(illumination) conditions. Inherent optical properties of particles can be computed based on 

apparent optical properties by using inversion models.  

There are two types of remote sensing reflectance models for estimating suspended and 

dissolved matter based on linear relationships between SPM concentration and reflectance at 

certain wavelengths: single-wavelength, and, multiple-wavelength models. Remote sensing 
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reflectance at a single wavelength has been used as a proxy to estimate the concentration of 

particle assemblages in numerous studies (Gordon and Castaño 1987, Nechad et al. 2003, 

Zhang et al. 2006). Despite wide usage, single-wavelength models are sensitive to changes 

in particle characteristics and associated effects on scattering and absorption (Doxaran et al. 

2003). By contrast, algorithms with band ratios are less sensitive to this natural variability. 

Indeed, band ratios minimize second-order effects and variability due to illumination 

conditions (Doxaran et al. 2003, Ruddick et al. 2008). These algorithms are widely used in 

studying the dynamics of suspended and dissolved matter in coastal waters (Gilerson et al. 

2010, Montes-Hugo et al. 2012, Mohammadpour et al. 2015). 

Estimating the characteristics of particle assemblages by biogeo-optical models is 

associated with uncertainties due to the optical variability of particles in littoral waters. 

Likewise, high absorption of light within UV-green wavelengths due to CDOM may cause 

bias on CSPM estimates due to highly absorptive characteristic within UV-blue wavelengths 

(Huang et al. 2012). Finally, the optical properties of particulates per unit mass at a region 

may change through time (Lucotte et al., 1986; Xi et al., 2013). Indeed, biogeo-optical models 

need to be validated within reasonably short periods due to high dynamism of littoral waters 

(Wei et al. 2004, Yu et al. 2016). 

 

1.6 OPTICAL REMOTE SENSING MODELS FOR STUDYING SECOND-ORDER ATTRIBUTES OF 

SPM 

Passive optical remote sensing techniques can be used for studying the second-order 

attributes of SPM (i.e., chemical composition and size distribution of SPM) in coastal waters 

(Neukermans et al. 2016, Woźniak et al. 2016, Organelli et al. 2016). These algorithms are 

constructed on particle backscattering ܾ(ߣ) and absorption ܽ(ߣ) coefficients at specific 
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wavelengths. Likewise, particulate absorption coefficient ܽ(ߣ) has been utilized for 

studying the variation in organic fraction of SPM in littoral waters (Neukermans et al. 2012, 

Woźniak 2014). The magnitude of ܾ(ߣ) has been used in developing algorithms for 

estimating particle chemical composition (Stramski et al. 2008, Martinez-Vicente et al. 

2013). Likewise, the spectral slope of ܾ(ߣ) has been anticipated to be as an indicator of 

particle size distribution (Loisel et al. 2006, Kostadinov et al. 2009). In summary, 

understanding the variation of the optical properties of the second-order attributes of SPM, 

plays a key role in improving biogeo-optical models in coastal waters.  

 

1.7 MASS-SPECIFIC OPTICAL PROPERTIES OF SPM 

The mass-specific absorption, σa, and scattering, σb, coefficients, known as optical cross 

sections of particles per unit mass, are influenced mainly by their natural characteristics such 

as particle composition, refractive index, density, and size distribution, due to their 

dependency on characteristic variations per unit mass (Neukermans et al. 2012). Optical 

cross-section of particulates play a key role in developing optical remote sensing models. 

Likewise, they are highly useful in detecting and discriminating biogeo-optical properties of 

particulates. Particulate mass-specific absorption and scattering coefficients are given by: 

ܽௌெ
∗ =

ೄುಾ

ೄುಾ
         (9) 

ܾௌெ
∗ =

ೄುಾ

ೄುಾ
         (10) 

where ܥௌெ is the concentration of SPM, and ܽௌெ and ܾ ௌெ are the absorption and scattering 

coefficients of SPM, respectively. Unlike a*
SPM, optical cross sections are not empirical. 

Instead, they must be computed based on models such as those based on Mie theory. The 

variation of optical cross sections of particulates depends on particle density and refractive 
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index. The partial regression coefficients from this multiple linear regression are the mass-

specific scattering cross sections for the particulate inorganic and organic matter (PIM, 

POM), indicated as ߪூை௦
ூெ  and ߪூை௦

ூெ , and are given by (Stavn and Richter 2008): 

(ߣ)ூெߪ =
ఙ(ఒ)

ఘ ௩
         (11) 

(ߣ)ூெߪ =
ఙ(ఒ)

ఘ  ௩
        (12) 

where ߪ(ߣ) and ߪ(ߣ) are, the particle scattering cross sections for mineral and organic 

fractions of particulates, respectively, ρ is the particle density, v is the volume of a single 

(mineral or organic) particle, and ௗ݂ is the volume fraction of dry organic matter in the 

organic particle. Optical cross sections of particles in terms of particle size, shape, and 

density, play key role in the simulation of water turbidity in littoral waters through the 

parameterization of turbulent kinetic energy within the water column (Bowers 2003, Peng 

and Effler, 2012; Rottgers et al., 2014). 

 

1.8 BIOGEO-OPTICAL WATER COMPONENTS AND HEAT TRANSFER ACROSS THE AIR-WATER 

INTERFACE 

The attenuated solar energy in coastal waters is partially transformed to heat depending 

on environmental and biogeochemical conditions of the water body such as zenith angle and 

water turbidity. Main components affecting light absorption and temperature variation in 

oceanic clear waters is phytoplankton (Morel 1988). The heat transfer related to absorption 

is as follows (Modest 2003): 

ݍ ∝ ܶସ − ஶܶ
ସ          (13) 
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where q is the heat transfer coefficient, T is a reference temperature, and T is temperature. 

Any relatively warm object emits electromagnetic waves to different directions of the 

surrounding space by the Planck’s law of black body radiation. The total exchange of heat 

்ܳ at the air-water interface can be partitioned as (Komori et al. 1993): 

்ܳ = ܳு + ܳா + ܳோ        (14) 

where ܳு is the sensible heat flux, ܳா is the latent heat flux, and ܳோ is the radiative heat flux 

in Wm-2 (Figure 3). These partitions are explained in more details in chapter 4. The 

relationship between radiative heat transfer and temperature fluctuation at the air-water 

interface is Modeled (Qiu and Kelly 1993, Isobe et al. 2014). More specifically, Manizza et 

al. (2005) parameterized the thermal effect of phytoplankton assemblages in terms of 

biological heating by: 

(ݖ)ݍ = ܫ0.58 + ோா݁ିೝ௭ܫ +  ா݁ି್௭      (15)ܫ

Where (ݖ)ݍ is downward radiative flux at the depth z, I0 is surface irradiance, IRED and IBLUE 

are 21% of I0 (reanalysis product available in NCEP-NCAR), and ݇ and ݇ are the 

attenuation coefficients at red and blue wavelengths, respectively, derived by (Morel 1988): 

݇ = 0.225 +  ℎ݈.ଶଽ        (16)ܥ 0.037

݇ = 0.0232 +  ℎ݈.ସ       (17)ܥ 0.074

Equations (15-17) approve the feedback of suspended and dissolved matter to solar radiation 

within UV-IR wavelengths through increasing the water surface temperature at the top layer 

of water column (Siegel et al. 1995, Isobe et al. 2014). 
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Figure 3. Heat budget components in coastal waters (adapted from www.luther.edu) 

 

Particle-mediated heat radiation performs environmental feedbacks in coastal and 

estuarine waters. Indeed, biological heating contributes in modifying sea-ice cover, vertical 

mixing, and surface heat flux in high latitude waters (Manizza et al. 2005). The increase of 

the temperature at the water surface thickens the mixed layer in the atmosphere and increases 

the vertical velocity of air (Mechem et al. 2012). This process can slightly change the 

direction of weather fronts and impact the cloudiness over the target region (Senatore et al. 

2014). In summary, particle mediated heat exchange at the air-water interface can play a key 

role in manipulating biogeochemical and environmental processes in coastal waters. 
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1.9 THE ST. LAWRENCE ESTUARY (SLE) 

The SLE is a unique environment in terms of the dynamics of dissolved and suspended 

particulates, primary production, tidal currents, and resuspension processes that control the 

advection and turbulent diffusion of SPM (El-Sabh and Silverberg 1992). The estuary covers 

an area of 12,850 km2, which begins at the upper limit of the salt-water intrusion near Quebec 

City, and extends 400 Km downstream to Pointe-des-Monts. The SLE is a transitional 

environment where the waters of the Atlantic and those of the Great Lakes converge 

(Forrester 1970). At the Quebec City, the drainage region of the St. Lawrence River hosts 

~375 km3 yr-1 of fresh water (El-Sabh and Silverberg 1990a). The SLE has been traditionally 

divided into two subregions such as the upper estuary, which covers the area between Ile 

d’Orleans and the mouth of the Saguenay fjord, and the lower estuary, which is extended 

from the Saguenay fjord until Pointe-des-Monts. The average depth of the upper estuary 

varies around 60 m with the lowest depth along the south shore of the estuary. while the lower 

estuary can be as deep as 250 – 400 m due to the Laurentian channel (El-Sabh and Silverberg 

1992). 

Considering complex physical and biogeochemical processes, the SLE is a suitable 

environment to develop remote sensing tools to study the biogeochemical processes and 

dynamics in this region, and expand those parameterizations to other estuarine and coastal 

waters in the world. Various studies on the SLE have revealed significant characteristics of 

estuarine waters and their influence on ocean color. These studies include the performance 

of bio-optical models on SPM estimates and the effect of particle composition on their 

performance (Larouche and Boyer-Villemaire 2010, Montes-Hugo et al. 2012, Montes-Hugo 

and Mohammadpour 2012, Mohammadpour et al. 2015), particle chemical composition 

(Gobeil et al. 1981, Tremblay and Gagné 2007, 2009), particle size distribution (Chanut and 

Poulet 1979, Poulet et al. 1986), particle dynamics (d’Anglejan and Smith 1973, Gagné et al. 
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2009, Coulombier et al. 2012a), physical processes (Bourgault et al. 2001, 2005, 2014), and 

the influences of teleconnections (Assani et al. 2010). 

 

1.9.1 PHYSICAL PROCESSES 

In the upper estuary, tidal currents are responsible for more than 90% of variations in 

currents (Saucier and Chassé 2000). Strong salinity gradient at the water surface characterizes 

this region due to the fresh water discharge by the SLR near Quebec City, which alters the 

salinity within the range of 0 – 20 psu from Quebec City to the mouth of the Saguenay fjord. 

This process intensifies the stratification conditions, and hence, weakens vertical circulations 

(Nieke et al. 1997). In the lower estuary, salinity varies between 20 and 30 psu due to tidal 

oscillations in the vertical shear of the geostrophic current. This resonant oscillation causes 

the density gradients to influence the upwelling zone near the mouth of the Saguenay fjord 

(Forrester 1970, Therriault and Levasseur 1985).  

 

1.9.2 TIDAL CURRENTS, WAVES, AND DYNAMICS OF SPM 

The SLE have salt marshes that serve to dissipate energy of tidal currents and waves. 

In the SLE, factors controlling the concentration of dissolved and suspended matter include 

the river discharge and their concentrations of geochemical traces, tide amplitude, estuarine 

geometry, mixing processes, and biological production. In the upper estuary, wind-driven 

waves and density gradient in the frontal regions cause sediment resuspension within shallow 

regions and the zone separating discharged fresh water of the St. Lawrence River from ocean 

salt water (Coulombier et al. 2012b). Likewise, the maximum turbidity zone in the upper 
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estuary supplies large sediments through tidal currents that induce cyclic seasonal erosion 

and a sedimentation rate as high as several centimeters per year (Troude and Sérodes 1990). 

Meybeck et al. (2003) showed the average daily yields of SPM in the SLE varied within 10 

– 50 kgkm-2day-1. Likewise, the sedimentation rate from free-drifting sediment traps in the 

SLE moved from ~4.5 mm. year-1 in spring to ~1 mm. year-1 in fall (Tremblay and Gagné 

2009). However, the conditions in the lower estuary are partially different from the upper 

estuary. The lower estuary, has more marine characteristics with respect to the upper estuary. 

This region is more exposed to waves and tidal currents, and tidal flats contain more fine 

sand. The lower estuary contains lower concentrations of suspended matter with respect to 

the upper estuary, which explains the role of currents and waves in particle dynamics and 

transport in this region (Coulombier et al. 2012a). Indeed, shear instabilities at the surface 

create barocliny and vertical fluxes of mass that are responsible for vertical distribution of 

nutrients and suspended particles (Bourgault et al. 2001). Likewise, in the lower estuary, the 

predominant northwesterly winds blow parallel to the southern shoreline and create the 

Gaspé current that displaces water mass and water constituents from the upper estuary and 

Saguenay fjord towards the Gulf of St. Lawrence (Koutitonsky and Bugden 1989). 

 

1.10 OBJECTIVES 

The objectives of this thesis are: 

• To evaluate the performance of different optical remote sensing models for estimating 

SPM in SLE waters 

• To determine mass-specific optical coefficients for different chemical and size 

fractions of SPM in SLE waters 
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• To review literature regarding how particulate and dissolved matter influence the 

surface water temperature and local climate 

 

1.11 HYPOTHESES 

To achieve our goals in this research, the following assumptions are considered: 

• First hypothesis: Optical remote sensing can be used to obtain reliable CSPM 

estimates in surface waters of the SLE. 

• Second hypothesis: Second-order attributes of SPM can be estimated in SLE waters 

based on optical remote sensing models 

 

1.12 GENERAL METHODOLOGY 

The general methodological approach includes three tools. Firstly, field surveys for 

developing and validating the in-water biogeo-optical relationships. Secondly, simulations, 

and lastly, implementations of satellite-based models of SPM based on in-water algorithms. 

The first tool comprised oceanographic surveys during June 2012 and June 2013, during 

which, biogeochemical measurements were performed based on sampling and filtrating 

surface seawater (< 2m of depth) at the target stations. We performed above-water remote 

sensing measurements during the 2012 survey, to determine apparent optical properties of 

surface water. The data obtained were used for developing optical proxies to estimate the 

SPM concentration in the SLE. Likewise, we measured particle attenuation and absorption 

coefficients and particle size distribution at each target station during June 2013. Those 
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measurements allowed us to characterize optical cross sections of particles based on particle 

mass, chemical composition, and size distribution in the sampling region during this period. 

The third and final tool we used was a radiative transfer model (Hydrolight 2.0, Sequoia 

Inc.) constrained by in situ measured IOPs, in order to simulate remote sensing reflectance 

(Rrs) values of MERIS spectral band ratios Rrs(708)/Rrs(665) and Rrs(753)/[Rrs(665)- 

Rrs(708)]. In general, the combination of these measurements and methods allowed us to 

achieve the specified objectives, although they individually have their advantages and 

disadvantages.  

 

1.13 STRUCTURE OF THE THESIS 

The thesis is divided in five chapters. The first chapter covers the general introduction, 

explaining the essential perceptions about optical remote sensing and optical properties of 

water constituents in coastal regions. In the second chapter, we will explain the fundamental 

concepts of particle optics and the effects of particle concentration on bio-optical proxies. 

Moreover, we will discuss the influence of particles chemical composition on the satellite-

derived SPM concentration. The third chapter explains how chemical composition and size 

distribution of particles affect the particle optical cross sections in our study area. Likewise, 

it considers the effect of particle size distribution and chemical composition on the optical 

proxies enlisted to estimate SPM concentration. The fourth chapter reviews the role of 

particles in radiant heat transfer and their influence on the variation of SST. The effect of 

teleconnections on particle concentration and attributes within estuarine and complex case II 

waters – with an interest in the SLE – have also been described. Finally, the fifth chapter 

covers the general conclusions and perspectives of the thesis. 
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CHAPTER 2 

EFFETS DE LA COMPOSITION DES PARTICULES SUR LES MATIERES EN 

SUSPENSION DÉRIVÉE DE MERIS : UNE ETUDE SUR L’ESTUARE DE 

SAINT- LAURENT  

Ce premier article, intitulé « Particle composition effects on MERIS-derived SPM: a 

case study in the Saint Lawrence Estuary», fut corédigé par moi-même ainsi que par les 

professeurs Martin A. Montes-Hugo, Robert Stavn, Jean-Pierre Gagné, et Pierre Larouche. 

Il fut accepté pour publication dans sa version finale en 2015 par les éditeurs de la revue 

Canadian Journal of Remote sensing. En tant que premier auteur, ma contribution à ce travail 

fut l’essentiel de la recherche sur l’état de l’art, le développement de la méthode, et 

l’exécution des tests de performance. Le professeur Martin A. Montes-Hugo, second auteur, 

a fourni l’idée originale. Il a aidé à la recherche sur l’état de l’art, au développement de la 

méthode ainsi qu’à la révision et la rédaction de l’article. Les professeurs Robert Stavn, Jean-

Pierre Gagné, et Pierre Larouche ont aidé à la recherche sur l’état de l’art ainsi qu’à la révision 

de l’article. Une version abrégée de cet article a été présentée à la conférence International 

Geoscience and Remote Sensing Symposium, à Québec (Québec, Canada) à l’été 2014. 

Mohammadpour G., Montes-Hugo M.A., Stavn R., Gagne J.P., Larouche L. Particle 

composition effects on MERIS-derived SPM: a case study in the Saint Lawrence Estuary. 

Canadian Journal of Remote Sensing. Vol. 41, issue 6, 2015, doi: 

10.1080/07038992.2015.1110012 
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Résumé 

Un modèle optique empirique pour estimer la concentration de particules en suspension 

(CSPM) a été développé dans la partie supérieure de l’estuaire du Saint-Laurent, basé sur la 

réflectance (Rrs) mesurée par télédétection correspondant aux canaux spectraux 7 et 9 (centrés 

sur des longueurs d’onde de 665 et 708 nm, respectivement) du capteur MERIS (Medium 

Résolution Imaging Spectromètre). La sensibilité de CSPM au changement du contenu en 

minéraux des particules en suspension a été examinée en utilisant des valeurs simulées de 

Rrs. Pour les mesures de juin 2012, les valeurs observées de Rrs(708)/Rrs(665) en fonction de 

CSPM peuvent être modélisées par une relation de type puissance (y = 235.7 x8.321,  r2 = 0.7, 

N = 10). De plus, des simulations numériques et une analyse de régression de type II révèlent 

que le paramètre exposant de ce modèle biogéo-optique diminue lorsque les particules en 

suspension deviennent plus riches en matière organique.  
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Abstract. An empirical optical model for estimating the concentration of suspended 

particulate matter (CSPM) was developed in the upper part of the Saint Lawrence Estuary 

based on remote sensing reflectance (Rrs) measurements corresponding to MERIS (MEdium 

Resolution Imaging Spectrometer) spectral channels 7 and 9 (i.e., centered wavelengths 665 

and 708 nm, respectively). Sensitivity of CSPM estimates to changes on mineral content of 

suspended particulates was investigated based on simulated Rrs values. For June 2012 

measurements, CSPM varied with Rrs(708)/Rrs(665) values following a power-type 

relationship (y = 235.7 x8.321,  r2 = 0.7, N = 10). Also, numerical experiments and analysis of 

regression type II showed that exponent parameter of this biogeo-optical model decreased as 

suspended particulates become more enriched in organic matter. 
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2.1 INTRODUCTION 

The study of the distribution of suspended particulate matter (SPM) in littoral 

environments has several applications in civil engineering and ecology including the 

characterization of coastal erosion patterns (Fettweis et al., 2012), the monitoring of harmful 

algae blooms (Miller et al., 2006), and the managing of fisheries (Gernez et al., 2014). The 

characterization of SPM dynamics based on discrete ship-based measurements is costly in 

estuarine and coastal areas due to the large temporal and spatial variability of water 

constituents. Overcoming these limitations is possible by performing a synoptic mapping of 

SPM based on optical measurements derived from satellite sensors (Miller and McKee, 

2004). Although several remote sensing algorithms based on visible and near-infrared (NIR) 

wavelengths have been proposed for characterizing the concentration of SPM (CSPM) in 

littoral surface waters (Doxaran et al., 2002; D'Sa et al., 2007; Nechad et al., 2009; Montes-

Hugo and Mohammadpour, 2012), their use cannot be generalized across different 

environments due to variations in regression model coefficients associated with changes in 

water optical composition including variability of particle attributes (e.g., mineral content). 

Here we investigate how parameters of an empirical biogeo-optical relationship for 

estimating CSPM and based on MERIS (MEdium Resolution Imaging Spectrometer) 

radiometric bands 7 and 9 (i.e., centered wavelengths 665 and 708 nm, respectively) are 

influenced by changes in particle chemical composition. The experiments were conducted 

with samples obtained in the upper part of the Saint Lawrence Estuary (SLE) and during June 

of 2012. The main working hypothesis states that non-linear variation of remote sensing 

reflectance ratio Rrs(708)/Rrs(665) as a function of CSPM is strongly related to particle 

composition changes as reflected by mineral enrichment of suspended particulate matter. 
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This deviation from linearity is linked to the combination of two SPM chemical components 

(i.e., mineral vs organic matter) with different indices of refraction.  

The results of this contribution have three important applications. First, they will help to 

generalize biogeo-optical models of CSPM across different littoral environments. Second, they 

will provide key information about the bias of CSPM estimates due to changes in particle 

composition. Lastly, they will be useful for estimating the fraction of inorganic material in 

suspended solids if the relationship between CSPM and Rrs is known a priori. 

 

2.2 METHODS 

2.2.1 STUDY AREA 

The lower estuary waters are brackish (salinity = 0-25 psu), relatively shallow (i.e., bottom 

depth < 50 m), and characterized by high spatial and sub-daily variations of CSPM values (1 

to 400 g m-3) (Yeats, 1988). Minerals dominate the chemical composition of suspended 

particulates by contributing up to 95% of SPM mass (Sundby, 1974; Yeats, 1988). The size 

spectrum of suspended particulates is strongly influenced by the presence of small particles 

(~5 µm in diameter) (Poulet et al., 1986). The concentration of CDOM or chromophoric 

dissolved organic matter, as reflected by its absorption coefficient (aCDOM), is very high (up 

to 2 m-1 at 412 nm) with respect to other SLE sub-regions (Nieke et al., 1997).  

 

2.2.2 DATASETS 

Field surveys were performed during June 14 of 2012 and encompassed 10 locations 

situated NE of the Orleans Island (M1 to M10, Figure 1). Discrete water samples for 

chlorophyll a concentration (chl), aCDOM, CSPM, and concentration of particulate inorganic 
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matter (CPIM) were obtained at 2 m depth by using a Niskin bottle (12 L). Also at each 

location, spectral radiance measurements for remote sensing reflectance calculations were 

made with a hand-held radiometer (see Above-water radiometric measurements).  

 

 

 

 

Figure 1. Study area; sampling locations during June 2012 (M1 to M10, inset A) 
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2.2.3 BIOGEOCHEMICAL ANALYSIS 

The concentration of SPM in g m-3 was measured gravimetrically after filtering a volume 

of seawater through pre-weighed GF/F filters (47 mm, pore size = 0.7 µm, Whatman) 

(Aminot and Chaussepied, 1983). The precision of CSPM determinations was 15%. The 

inorganic fraction of SPM was obtained after removing the organic components of the 

original sample by combustion at 450°C for 6 h. The analysis of Chl includes the following 

steps: 1) filtration of 0.5 L samples using GF/F membranes (25 mm, pore size = 0.7 µm 

Whatman), 2) storage of samples in liquid nitrogen and during 72 h, 3) 24-h extraction of 

pigments in cold (i.e., 4-5°C) 90% acetone and dark conditions, and 4) fluorescence 

measurements of extracted samples and standards (Mueller et al., 2003). The Fluorometer 

used in this study (TD-10AU, Turner Designs) allowed Chl determinations with a precision 

of 4%. Water samples for aCDOM determinations were obtained with clean amber glass bottles 

and immediately filtered through 0.2 µm membranes (nucleopore, Whatman). Filtrates were 

kept in dark conditions at 4oC till processing at ISMER. Spectral aCDOM measurements were 

performed with a dual beam UV-visible spectrophotometer (Perkin-Elmer Lambda-35) and 

using Nanopure water as a baseline (Mueller et al., 2003).  

 

2.2.4 ABOVE-WATER RADIOMETRIC MEASUREMENTS 

The radiometric data were collected under clear skies and calm wind conditions (i.e., wind 

speed < 4 ms-1, wave height < 0.3 m) using a portable spectrometer (ASD FieldSpecPro RS, 

spectral range = 350-1000 nm, spectral resolution 10 nm). Spectral radiance measurements 

of sky and water components were obtained at 1 m from the air-water interface. To compute 

Rrs, three types of radiance measurements were made: the total water upwelling radiance, Lu, 

the sky radiance, Lsky, and the reference radiance, Lg: 
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Rrs() = g() (Lu() - Fr() Lsky())/( Lg())     (1) 

Ed() =  Lg()/g()        (2) 

where Fr is the Fresnel reflectivity, Lu - Fr Lsky is equivalent to the water leaving radiance 

(Lw), and Ed is the downwelling irradiance. Upward (i.e., Lu and Lg) and downward (i.e., Lsky) 

radiance components were measured at 40° with respect to the vertical, and 135° with respect 

to the solar azimuth (Mobley, 1994). The final magnitude of Lu, Lsky and Lg was computed 

by averaging three samples having an integration time of 0.65, 0.14, and 0.03 s, respectively. 

Fr is equal to 0.02 and Fr Lsky represents the Ed fraction due to diffuse photons going to the 

ASD sensor after being retro-reflected against the air-water interface. Lg is measured using a 

Spectralon plaque with a known spectral reflectivity (i.e., g = 0.995 and 0.998 at a 

wavelength  of 665 and 708 nm, respectively) and assuming a Lambertian reflectance 

distribution function. 

 

2.2.5 CORRECTIONS DUE TO SENSOR DIFFERENCES 

To obtain synthetic MERIS-derived Rrs values, in situ Rrs measurements were weighted 

by the response function of the spaceborne imager (Froidefond et al., 2004): 

ܴ௦(݆) =  
∑ ೢ()ௌ,ೕ()సೌೣ 

స

∑ ா()ௌ,ೕ()సೌೣ
స

       (3) 

where i is the wavelength and j stands for MERIS radiometric channels 7 and 9, Si,j() is the 

spectral sensitivity of MERIS (Vermote et al., 2006). 
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2.2.6 SIMULATED PARTICLE COMPOSITION EFFECTS 

The impact of variable mineral content of SPM on Rrs(708)/Rrs(665) variations and 

subsequent changes on regression coefficients of CSPM- Rrs(708)/Rrs(665) relationship was 

modeled based on synthetic Rrs derived from the quasi-analytical algorithm (Lee et al., 2009): 

Rrs() = 0.52/(1/rrs)-1.7)        (4) 

rrs() = ((0.249 u() + 0.0895)2 – 0.008)/0.499     (5) 

u() = bb()/(a()+ bb())        (6) 

The total backscattering coefficient (bb) was computed as the sum of water and particulate 

contributions: 

bb() = 0.5 bw() + bPIM() beff
PIM + bPOM() beff

POM     (7) 

bPOM = σb
POM CPOM         (8) 

where bbw is the backscattering coefficient of pure seawater and equivalent to one half of 

the scattering coefficient of pure seawater (Morel, 1974). This approximation holds since 

forward and backward scattering contributions by a water molecule are comparable. bPIM and 

bPOM are the scattering coefficients for particulate inorganic and organic matter, respectively, 

beff
PIM and beff

POM are the backscattering efficiencies (i.e., backscattering coefficient over 

scattering coefficient ratio) for mineral (0.02) and organic (0.012) particulate compounds, 

respectively, CPOM is the concentration of particulate organic matter in g m-3. Notice that 

magnitude of beff
POM corresponds to an intermediate value between typical backscattering 

ratios of phytoplankton (0.007) and non-algal particulates (0.016) (Bukata et al., 1981). 

The calculation of the total absorption coefficient (a) included four components: 

a() = aw() + aCDOM() + aPIM() + aPOM()     (9) 

where aw is the pure seawater absorption coefficient (Pope and fry, 1997), aPIM and aPOM are 

the absorption coefficients for inorganic and organic particulate matter, respectively. Based 

on ship measurements (Montes-Hugo and Mohammadpour, 2012), mean aCDOM(665) and 
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aCDOM(708) values of 0.066 and 0.045 m-1, respectively, were chosen over the whole SLE. 

The value of aPIM was calculated as the product between CPIM and the mass-specific 

absorption coefficient of PIM (a
PIM()). The magnitude of a

PIM was 0.01975 and 0.01778 

m2 g-1 at 665 and 708 nm, respectively (Ahn, 1990). The values of aPOM() were derived as: 

aPOM() = a
SPM() CSPM - aPIM()       (10) 

The mass-specific absorption cross section for the absorption coefficient of SPM (a
SPM) 

has been set to the arithmetic average of CSPM-normalized particulate absorption coefficients 

measured during May 2000 and April 2001 cruises. a
SPM was 0.0242 and 0.0034 m2 g-1 at 

665 and 708 nm, respectively. To avoid negative aPOM(708) estimates, a constant value of 

0.0002 m-1 was used (Röttgers et al., 2014). Theoretical experiments were performed using 

ten CSPM concentrations (0.1, 0.5, 1, 3, 5, 10, 20, 100, 300, 500 g m-3) consistent with a 

realistic range of values reported in the SLE by previous studies (Sundby, 1974; Yeats, 1988). 

Also, simulations were initialized with five CPIM/CSPM ratios (1,0.8,0.5,0.2 and 0) 

encompassing extreme and intermediate cases. 

 

2.2.7 STATISTICAL ANALYSIS 

The relationship between CSPM and MERIS-adjusted Rrs(708)/Rrs(665) measurements was 

analyzed based on a power regression type II function (i.e., dependent and independent 

variables are randomly chosen):  

CSPM
MERIS  = A [Rrs(708)/Rrs(665)]B      (11) 

where A and B are regression coefficients as derived from the Levenberg-Marquardt 

algorithm (Levenberg,1944).  
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2.3 RESULTS 

2.3.1 BIOGEO-OPTICAL RELATIONSHIPS 

Examples of remote sensing reflectance spectra measured in the upper estuary and during 

June 2012 are shown in Figure 2. Despite the increase of the spectral slope of Rrs within the 

red-NIR as CSPM increases, the quotient between Rrs(708) and Rrs(665) values are larger at 

higher water turbidities. The graph clearly illustrates the augmentation of the spectral slope 

within the red-NIR as CSPM increases. This is the foundation of the parameterization proposed 

in equation 10. The resulting empirical model of CSPM as a function of Rrs(708)/Rrs(665) is 

depicted in Figure 3. This parameterization explained more than two- thirds of the regression 

variability, and was valid for a CSPM range of 4.9-18.5 g m-3 (Figure 3a, Table 1). Likewise, 

it was found that Rrs(708)/Rrs(665) changes were strongly related (i.e., more than 50% of 

regression variability) to variations on the mineral content of SPM (Figure 3b). As expected, 

the spatial distribution of CSPM during the spring surveys was far from being homogeneous. 

Indeed, CSPM varied more than 3-fold (i.e., 4.9 to 18.5 g m-3) in less than 2 km (Figure 3a). 

This was also true for CPIM/CSPM values (e.g., 0.57 at M10 and 0.79 at M3, Figure 1,3b). 
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Figure 2. Spectral remote sensing reflectance spectra in the SLE. Number next to each Rrs 

curve indicates the concentration of SPM measured in situ, wavelengths used in equation 

(11) (pink solid circles), spectral Rrs slopes (pink broken line). 
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Table 1. Biogeo-optical relationships of CSPM as a function of Rrs(708)/Rrs(665). Regression 

parameters are derived from the equation: y = A xB. Within parentheses two standard errors. 

The number of observations in each case (N) was 10. 

 A B r2 

CSPM 235.7 (171.1) 8.321 (4.016) 0.687 

CPIM/CSPM 1.535 (0.720) 2.069 (1.240) 0.592 

 



33 

 

 

Figure 3. Biogeo-optical relationships for estimating CSPM. a) CSPM versus Rrs(708)/Rrs(665), 

b) CPIM/CSPM versus Rrs(708)/Rrs(665). Labels of data points identify each sampling location, 

power-type regression model (dash line). 
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2.3.2 SENSITIVITY OF CSPM ESTIMATES TO PARTICLE COMPOSITION 

As highlighted in the previous section, the magnitude of Rrs(708)/Rrs(665) was 

substantially influenced not only by the first-order properties (i.e., concentration) but also by 

second-order properties (i.e., chemical composition) of suspended particulates. The inorganic 

enrichment of SPM and its impact on SPM optical properties is illustrated in Figure 4. As 

stated in introduction, our power-type model predicted a flattening of the curve as mineral 

particles become replaced by organic compounds (Figure 4a). In fact, minimum and 

maximum values of B (3.04 and 14.47, respectively) corresponded with the smallest and 

largest CPIM/CSPM (0 and 1, respectively) values studied here (Table 2). Notice that these 

results encompassed a broader interval of CSPM values with respect to those measured in the 

SLE during June 2012. However, the impact of increasing CPIM/CSPM on Rrs(708)/Rrs(665) 

was also present at CSPM values smaller than 20 g m-3 (Figure 4b). Indeed, modeled values 

suggest that optically-derived CSPM estimates may change in 100% (e.g., from 10 to 20 g m-

3) if CPIM/CSPM varied from 0.5 to 1.  
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Figure 4. Simulated particle composition effects on CSPM estimates. a) Variation of CSPM as 

a function of Rrs(708)/Rrs(665) for particle assemblages having different chemical 

composition, power-type regression models (solid lines), b) idem to a) but for the CSPM range 

measured during June 2012.  
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Table 2. Simulated influence of mineral content of particulates on Rrs(708)/Rrs(665) 

variability. Definition of regression parameters, uncertainties, and N as the list of 

abbreviations and acronyms. 

CPIM/CSPM A B r2 

0 2.963 (2.300)  3.036 (0.476) 0.994 

0.2 1.923 (1.980)  4.540 (0.842) 0.992 

0.5 2.003 (1.950)  7.398 (1.457) 0.991 

0.8 5.252 (5.163)  11.360 (2.523) 0.990 

1 20.020 (13.892)  14.990 (3.426) 0.989 
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2.4 DISCUSSION 

2.4.1 REMOTE SENSING OF CSPM AND CPIM/CSPM 

A power-type remote sensing model based on visible-NIR wavelengths was used in this 

study for investigating the impact of particle chemical composition on MERIS-derived CSPM 

estimates. The proposed CSPM model is not sensitive to CDOM variations and sunlight 

geometry, thus it is ideal for investigating biogeo-optical changes due to different particle 

assemblages. A remarkable result in this study was the positive correspondence between 

Rrs(708)/Rrs(665) ratios and CPIM/CSPM values. This strong linkage was not anticipated since 

variations due to second-order attributes of particulates are reduced when models are 

constructed based on Rrs band ratios (Doxaran et al., 2003). However, Wozniak et al. (2010) 

found that optical cross sections of particulate absorption and scattering coefficients (i.e., 

concentration-normalized IOPs) are very changing within the spectral interval 665-708 nm. 

Thus, to quantify the spectral response of Rrs to particle composition modifications in the 

upper estuary, a power-type model was suggested based on data reported in the literature and 

field measurements obtained in SLE waters. These simulations showed that CPIM/CSPM can 

be estimated from the exponent B based on the following function: y = y0 + y1 ln(x) (y0 = -

0.745  0.086, 2 standard errors, y1 = 0.646  0.042, r2 = 0.996, N = 10). By applying this 

expression to regression parameters in Table 1, the resulting CPIM/CSPM value (0.624) was 

within the interval of values (0.57-0.75) measured during June 2012 in the upper estuary. 
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2.4.2 THE ORIGIN OF BIOGEO-OPTICAL COVARIATIONS 

Any inherent optical property j can be computed as the product j
i [C]i, where [C]i is the 

concentration of the component i, thus the use of Rrs band ratios make models to be 

independent of [C]i terms. However, the influence of spectral variations driven by mass-

specific optical cross sections is preserved. These linkages are shown below for the band 

ratio applied in this study: 

Rrs (708)/Rrs(665) = k (bb(708)/ bb(665) [(a(665)+ bb(665)][a(708)+ bb(708)]-1 (12) 

bb() = 0.5 bw() +  SPM
bbp

CSPM, and a() = aw() +   CSPM   (13) 

where bbp and ap are the particulate backscattering and absorption coefficients, respectively.  

As a first order approximation, k is equal to 1 since the weak spectral variability of f/Q factors 

within the NIR range and associated to changes on solar illumination, sea-surface geometry, 

and inherent optical properties of the water (Morel and Gentili, 1996). 

Dependencies between mass-specific optical cross sections and particle characteristics 

have been already investigated in littoral environments but based on single wavelengths. In 

coastal waters of UK, it was shown a positive covariation between the mass-specific 

scattering coefficient of minerals as derived from in situ optical measurements at  = 665-

670 nm and the inverse of the apparent density of particulates (Bowers et al., 2009). In coastal 

and offshore waters of Europe, the magnitude of the mass-specific particulate backscattering 

coefficient measured at  = 650 nm was directly related to the proportion of organic carbon 

of SPM (Neukermans et al., 2012).  

Three more questions are keys to understand relationships found in Figure 3: Is scattering 

or absorption of particulates the main optical process modulating Rrs(708)/Rrs(665) 

SPM
a p
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variations? Which second-order particle attributes are responsible of these changes? Why the 

biogeo-optical functionalities become less linear as CSPM or CPIM/CSPM increases? Regarding 

the first question, the spectral influence of particulate absorption and scattering (bp) 

coefficients on [ap(665) bp(708) ] [ap(708) bp(665)]-1 ratios was examined based on in-water 

optical measurements obtained in the SLE during June 2013 (Appendix, Figure A1). This 

sensitivity analysis suggested that variability of [ap(665) bp(708)] [ap(708) bp(665)]-1 was 

mainly driven by particulate absorption changes (Figure A2a). Although potential changes 

on Rrs(708)/Rrs(665) due to spectral particulate backscattering variability were not analyzed, 

it can be said that variations on bbp(708)/bbp(665) were probably secondary as bbp strongly 

correlates (r2 = 0.96-0.98) with bp (Cizmeli, 2008), and spectral bp variations were not 

connected to [ap(665) bp(708) ] [ap(708) bp(665)]-1 changes (Figure A2b). 

With respect to the second question, it is possible that dependencies observed between 

Rrs(708)/Rrs(665) and CPIM/CSPM values were also partially influenced by additional 

properties of particulates such as particle size. Although size distributions of SPM were not 

measured during June 2012, additional data obtained over the SLE during June 2013 showed 

an inverse covariation between CPIM/CSPM and the average diameter of particulates as derived 

from the Sauter parameter (m) (Figure A3). Thus, the additive effect of particle size on 

Rrs(708)/Rrs(665) variations and subsequent changes of B is likely present and may not be 

ignored in our study area. 

By focusing in question 3, the regression analysis suggested a non-linear behavior of 

Rrs(708)/Rrs(665)-CSPM and Rrs(708)/Rrs(665)-CPIM/CSPM relationships. These deviations 

were likely attributed to spectral variations on optical cross sections associated to chemical 

and physical changes on non-algal particulates (NAP) as the SPM load increases. In coastal 

waters of California, particle assemblages dominated by organic and inorganic particulate 

components were characterized by relatively high (~ 6.7 in average) and low (~2) 

ap(665)*/ap(708)* values, respectively (Wozniak et al., 2010). Likewise, for the same 

samples, the mean value of bp(708)*/bp(665)*was found to be higher for organic-rich SPM 
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samples. This implies that rate of change of [ap(665) bp(708) ] [ap(708) bp(665)]-1 values will 

decrease as CSPM and CPIM/CSPM increase due to the replacement of organic-dominated NAP 

by inorganic-dominated NAP. These spatial biogeo-optical modifications have been already 

reported in other coastal environments with comparable turbidities to those measured in the 

SLE (Doxaran et al., 2012). Lastly, the influence of PIM and POM analytical errors on 

aforementioned ap∗ and bp∗ spectral dependencies are expected to be secondary because 

changes in ap∗(665)/ap∗(708) and bp∗(708)/bp∗(665) due to underestimation (overestimation) 

of CPIM (CPOM) are likely small (i.e.,∼10%). 

 

2.5 CONCLUSIONS 

In this contribution, we demonstrated the influence of different SPM compositions on 

MERIS-derived CSPM in very turbid environment of the SLE. Although MERIS mission 

finished in April 2012, ocean color spaceborne imagers having similar bands are expected to 

be launched in 2015 (e.g., Sentinel-3). Thus, the results obtained in this study are not 

restricted to MERIS observations and may also be useful in future satellite ocean color 

imagers. An important lesson derived here was the potential use of B as an optical proxy for 

discriminating waters with different particle chemical composition. This approach does not 

require of specific algorithms of CPIM since CPIM/CSPM fractions can be estimated from the 

exponent parameter of the CSPM-Rrs(708)/Rrs(665) function. Likewise, the suggested 

inversion may be generalized to other environments having comparable water optical 

properties. Indeed, the atmospheric correction can be achieved, even in these highly turbid 

waters. This may be problematic given the fact that the black pixel assumption of negligible 

Lw in the NIR may not hold in these waters. 
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2.8 APPENDIX 

2.8.1 SHIPBOARD OPTICAL MEASUREMENTS 

Spectral measurements of a and c coefficients were performed onboard using an 

absorption-beam attenuation meter (ac-s, WetLabs). Discrete samples were obtained at 2 m 

depth and using Niskin bottles attached to an oceanographic rosette. Sampling locations 

during June 2013 are depicted in Figure A1. The ac-s has a spectral range of 400-730 nm, a 

path length of 10 cm, a spectral resolution of 4 nm, and an accuracy of ± 0.001 m-1. In order 

to minimize the presence of bubbles, a pump (ISMATEC MCP-Z) was used to gently 

circulate the samples thru the ac-s tubes. Remaining signal spikes related to bubbles were 

removed by visual inspection. A posteriori, a and c values were corrected by water 

temperature and salinity variations (Pegau et al., 1997), and residual scattering effects were 

removed from resulting absorption coefficients following Zanaveld's approach (Zanaveld et 

al., 1994). The magnitude of aCDOM was also measured using the ac-s by filling each tube 

with seawater previously pre-filtered through a 0.2 μm polycarbonate membrane (Isopore, 

track-etched polycarbonate, 47 mm in diameter, Millipore). The magnitude of ap was derived 

by subtracting aw and aCDOM from a. Likewise, bp values at each wavelength were computed 

by subtracting a from c, and removing water contribution from the total scattering coefficient 

(b). 

 

2.8.2 ANALYSIS OF PARTICLE SIZE 

The particle size spectra of discrete water samples were measured using a red laser 

(wavelength = 670 nm) diffractometer (LISST-100X, type B, Sequoia Scientifics) equipped 
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with a chamber and a magnetic stir bar. The LISST-100X instrument can measure 32 size 

classes of particulates with a diameter between 1.25 to 250 μm, however only the interval 3- 

170 μm was analyzed due to instrument artifacts (e.g., stray light) in the first bins (i.e., < 3 

μm) and bias related to particle sinking in the last bin (i.e., 170-250 μm) (Reynolds et al., 

2010). Measurements were made during a period of 3 minutes at 1 Hz, and resulting raw data 

were quality controlled by using the Hampel filter algorithm (Pearson, 2005). The Sauter 

parameter or mean diameter of particulates weighted area by the cross-sectional area 

concentration of particles (φm) (Sauter, 1928) was calculated for each sampling location 

based on LISST measurements made within the size interval 3-170 μm (Neukermans et al., 

2012). 
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Figure A1. Sampling locations for June 2013 surveys. SLE sub-regions, Lower estuary (LE, 

L6 to L44), Saguenay Fjords (SF, L1 to L5), and upper estuary (UE, L12 to L14), GSL: Gulf 

of Saint Lawrence, Maximum turbidity zone mean boundaries (hatched area). Study area 

during June 2012 is highlighted with a rectangle. 
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Figure A2. Response of NIR-visible optical proxy of Rrs(708)/Rrs(665) to optical properties 

of SPM. GP = ap(665) bp(708) (ap(708) bp(665))-1.a) particulate absorption ratio. Datapoints 

in the lower range (inset), b) particulate scattering ratio. SLE sub-regions for June 2013 

surveys, UE (triangles), SF (rectangles) and LE (circles), are shown in Figure A1. Linear 

regression equation (upper left corner), modeled GP (dash line), between parentheses are two 

standard errors. 
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Figure A3. Exponential-type regression equation (upper right corner), modeled 

CPIM/CSPM (dash line), between parentheses are two standard errors.  
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CHAPTER 3 

 

PROPRIETES OPTIQUES LIÉES À LA TAILLE ET AUX FRACTIONS 

CHIMIQUES DES MATIÈRES EN SUSPENSION DANS LES EAUX 

LITTORALESDU QUÉBEC  

 

Ce deuxième article, intitulé « Optical properties of size and chemical fractions of 

suspended particulate matter in littoral waters of Quebec», fut corédigé par moi-même ainsi 

que par les professeurs Martin A. Montes-Hugo, Jean-Pierre Gagné et Pierre Larouche. 

L’article sera soumis au journal Optic Express. En tant que premier auteur, ma contribution 

à ce travail fut d’effectuer les recherches bibliographiques et de mettre à jour l’état des 

connaissances sur le sujet étudié, d’effectuer le développement de la méthode et l’exécution 

des tests de performance. Le professeur Martin A. Montes-Hugo, dernier auteur, a fourni 

l’idée originale. Il a aidé à la recherche sur l’état des connaissances, au développement de la 

méthode ainsi qu’à la révision et la rédaction de l’article. Les professeurs Jean-Pierre Gagné 

et Pierre Larouche ont aidé à la recherche sur l’état de l’art ainsi qu’à la révision de l’article.   
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RÉSUMÉ 

Les coefficients d’absorption massiques spécifique (aSPM*) et de diffusion (bSPM*) des 

matières particulaires en suspension ont été mesurés pour la matière en suspension de 

différentes tailles (0.2-0.4 µm, 0.4-0.7 µm, de 0.7 à 10 µm, et> 10 µm) et de compositions 

chimiques variables (dominance organique ou minérale) dans les eaux de surface du système 

du Saint-Laurent au cours du printemps 2013. En général, pour le spectre visible et proche 

de l’infrarouge, l’aSPM* et les sections de diffusion efficaces estimés pour les particules de 

matière inorganique étaient plus élevées par rapport à celles mesurées dans d'autres 

environnements littoraux. L'analyse des corrélations entre différents paramètres suggère que 

la composition des particules a un plus grand impact sur aSPM* que sur bSPM* comparé aux 

effets de la distribution de la taille des particules.  
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Abstract 

Mass-specific absorption (aSPM
*) and scattering (bSPM

*) coefficients of suspended 

particulate matter (SPM) were measured for different size (0.2-0.4 µm, 0.4-0.7 µm, 0.7-10 

µm, and >10 µm) and chemical (organic- vs mineral-rich) fractions in surface waters (i.e., 0-

5 m depth) of the Saint Lawrence Estuary and Saguenay Fjords (SLE-SF) during spring of 

2013. For the spectral range 400-700 nm, scattering cross sections for particulate inorganic 

matter were commonly larger with respect to those measured in other littoral environments. 

This phenomenon was attributed the lower water turbidity of the SLE-SF with respect to 

other river-influenced regions (e.g., Gironde River). Also, aSPM* values in our study area 

were relatively not only high in locations typically rich in particulate iron but also 

characterized by relatively high concentrations of chromophoric dissolved organic matter. 

Lastly, correlation analysis suggests that particle composition (size distribution) has a larger 

impact on aSPM
* (bSPM

*). This is consistent with published remote sensing models and 
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highlights the importance of including scattering processes for estimating ‘bulk’ changes on 

size spectra of suspended particulates. 

 

3.1 INTRODUCTION 

The distribution of suspended particulate matter (SPM) in coastal and estuarine 

environments has a major influence on several ecological processes (e.g., phytoplankton 

blooms) and human related activities (e.g., contaminant dispersion). The concentration of 

SPM (CSPM) is an important variable to estimate primary productivity and thermodynamic 

processes due to its influence on underwater light attenuation (Zhai et al. 2011; Morel and 

Antoine, 1994; Löptien and Meier, 2011). Likewise, size distribution and chemical 

composition of SPM are critical parameters for better understanding trophic relationships in 

a food web, the fate of pollutants, and the transport of sediments (Tremblay et al., 2005; 

Dunton et al. 2012, Dong et al. 2016, Yang et al. 2017). 

Due to its variability, spatial variations of SPM in littoral environments are commonly 

investigated based on synoptic measurements derived from spaceborne ocean color sensors. 

This approach has proven to be successful for estimating CSPM based on visible (i.e., 

wavelength,    = 400-700 nm) and infrared ( = 700-3,000 nm) spectral bands (Doxaran et 

al., 2002; Miller and McKnee, 2004; Montes-Hugo and Mohammadpour, 2012). Despite this 

progress, there is still a lack of understanding regarding how SPM microphysical 

characteristics (e.g., particle chemical composition and size distribution) relate to mass-

specific inherent optical properties (IOPs) of particulates. This knowledge is essential for 

deriving more accurate algorithms used for estimating CSPM and developing new mechanistic 

models for retrieving second-order attributes of SPM (i.e., chemical composition, size 

distribution).   

The remote sensing of particle size and composition in coastal and oceanic waters has 

been attempted based on four main methodologies: (1) analysis of spectral changes of IOPs 
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(Loisel et al., 2006), (2) empirical relationships between mass-specific IOPs and biogeo-

physical characteristics of SPM (e.g. mean diameter of particulates) (Bowers et al., 2009), 

(3) optical inversions of different volume scattering functions (Zhang et al. 2013; Zhang et 

al., 2014), and (4) changes on water leaving polarized reflectance (Loisel et al., 2008).  

The Saint Lawrence Estuary (SLE) and the Saguenay Fjords (SF) constitute a large sub-

Arctic system characterized by relatively high concentrations of chromophoric dissolved 

organic matter (CDOM) (Nieke et al., 1997). The accurate monitoring of CSPM and SPM 

characteristics in these waters is crucial for understanding regional climate effects on coastal 

erosion and occurrence of harmful algae blooms (Bernatchez and Dubois, 2004; Fauchot et 

al. 2008).  

Despite this need, there is a lack of information regarding how optical properties are 

linked to particle second-order attributes and what is the spatial variability of mass-specific 

IOPs of SPM. For this reason, our contribution has two main objectives: (1) to characterize 

the mass-normalized IOPs for size and chemical fractions of SPM in different locations of 

the SLE-SF during spring conditions, and (2) to establish relationships between mass-specific 

optical properties of SPM, 'bulk' particle characteristics related to size distribution and 

mineral content, and optical remote sensing proxies within the visible and near-infrared 

spectral range (i.e.,  = 700-1,000 nm). 

This study is organized in three sections. In the first section, mass-normalized spectral 

absorption and scattering coefficients for size and chemical SPM fractions are calculated for 

different optical environments of the SLE-SF waters in terms of CDOM contribution to light 

attenuation and particle characteristics. In the second section, the response of mass-

normalized absorption and scattering coefficients of SPM fractions to variations in particle 

size distribution and mineral-content are investigated. Lastly in the third section, covariations 

between remote sensing proxies and microphysical properties of SPM are examined.  
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3.2 DATA AND METHODS 

3.2.1 STUDY AREA 

The SLE can be divided in two main regions having contrasting biological productivity 

and bathymetry: the upper (UE) and the lower (LE) estuary (Levasseur et al., 1984) (Figure 

S1). Non-algal particulates (NAP) and CDOM dominate the underwater light attenuation of 

UE waters (Nieke et al., 1997). This is in part related to the inflow of CDOM-rich and NAP-

rich waters coming from the St. Lawrence River (Tremblay, and Gagné, 2007). Unlike NAP 

and CDOM, contribution of phytoplankton to IOPs increases downstream and along the LE 

(Montes-Hugo and Mohammadpour, 2012). Historical studies performed during summer of 

1975 suggest that size distribution of SPM differs between the UE, LE and SF regions (Poulet 

et al., 1986). Based on surface samples, Poulet et al. (1986) found a dominance of relatively 

'small-sized' (i.e., mode diameter < 10 μm) and 'large-sized' (i.e., > 30 μm) particulates over 

the UE and the mouth of the SLE, respectively.  

Conversely, the remaining locations of the LE were characterized by particulates having 

an intermediate size (i.e., 8-40 μm). In surface waters of SF, SPM is mainly composed by 

very small particles (i.e., 2-3 µm) during spring months (Chanut and Poulet, 1979). However, 

this pattern is reversed during autumn. Several investigations suggest that suspended 

particulates in SLE-SF regions are principally composed by inorganic matter (D’Anglejan, 

and Smith, 1973; Larouche and Boyer-Villemaire, 2010). This mineral contribution varies 

between 60 and 95% of dry weight depending on location and period of the year (Yeats, 

1988; Larouche and Boyer-Villemaire, 2010).   
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3.2.2 FIELD SURVEYS 

Discrete water samples for biogeochemical and optical measurements were obtained in 

23 sampling locations distributed over the SLE (n =18) and SF (n = 5) regions (Fig. S1). 

Samples were collected by using an oceanographic rosette onboard the vessel NGCC 

Frederick G. Creed and during June 3-9 of 2013. In all cases, the sampling was done near the 

surface (i.e., 2 m depth) by using Niskin bottles (volume = 12 L). Three main types of 

variables were analyzed during the survey: mass of different size fractions of SPM, IOPs for 

different SPM size fractions, and particle size distribution spectra. 

 

3.2.3 BIOGEOCHEMICAL ANALYSIS 

The concentration of SPM and particulate inorganic matter (CPIM) in g m-3 was measured 

gravimetrically with a precision of 15% and 25%, respectively (Mohammadpour et al., 2015). 

Size fractionation of SPM was done after sequentially filtering the original samples through 

pre-weighted membranes having a diameter of 47 mm and a pore size of 10 µm (Whatman, 

polycarbonate), 0.7 µm (GF/F, Whatman, glass fiber), 0.4 µm (Whatman, polycarbonate), 

and 0.2 µm (Nucleopore, polycarbonate). The contribution of size fraction i to the total mass 

of SPM (FSPM
i, i = 0.2-0.4 µm, 0.4-0.7 µm, 0.7-10 µm, and >10 µm) was computed by 

normalizing their weight by the total weight of unfractioned samples that were retained on 

0.2 µm membranes. The contribution of particulate inorganic (PIM) and organic (POM) to 

mass is FSPM
j where j superscript symbolizes PIM or POM (FSPM

PIM = CPIM/CSPM, FSPM
POM = 

CPOM/CSPM).  
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3.2.4 OPTICAL MEASUREMENTS 

Discrete water samples for CDOM absorption coefficient (aCDOM) determinations were 

done in the lab following protocols suggested by Muller and Horn (1990). Total absorption 

(a) and beam attenuation (c) coefficient measurements for four size fractions (0.2 – 0.4 µm, 

0.4 – 0.7 µm, 0.7 – 10 µm, and > 10 μm) were performed onboard using an absorption-beam 

attenuation meter (ac-s, WetLabs) after each filtration of water samples. Spectral values of b 

were computed by subtracting a from c at each wavelength, using the baseline correction at 

715 nm (Röttgers et al. 2013). The particle size spectra of discrete water samples and within 

the size range 3-170 µm were measured before filtering and by using a red laser (wavelength 

= 670 nm) diffractometer (LISST-100X, type B, Sequoia Scientifics) (Agrawal et al. 1991). 

 

3.2.5 OPTICAL PROXIES OF PARTICLE CHARACTERISTICS 

Optical composite parameters directly related to remote sensing reflectance (Rrs) (Table 

acronyms) were constructed based on IOPs since no in situ Rrs measurements were available 

in the oceanographic surveys conducted during 2013. Values of a and b at different 

wavelengths can be linked to the reflectance or irradiance ratio measured just below the water 

surface (R(0-)) (Morel and Prieur, 1977): 

R(0-) = f  b bb
eff /a         (1) 

Rrs = R(0-) /Qn(0)        (2) 

where f is a coefficient that varies with atmospheric (e.g., solar zenith angle) and water (e.g., 

single scattering albedo) parameters (Morel and Gentilli, 1996), bb
eff is the backscattering 

efficiency for water plus particulates (i.e., bb/b where bb is the backscattering coefficient). 

The magnitude of  depends on refraction and internal reflection of photons at the air-water 

interface. For a nadir-looking sensor, the Qn(0) is defined as the ratio between upwelling 

irradiance and upwelling radiance just beneath the sea surface and as a function of the solar 
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zenith angle (0). From equations (1) and (2), three biogeo-optical indices (BOI) were 

proposed for estimating changes in 'bulk' chemical composition (superscript comp) and size 

distribution (superscript size1 and size2) of SPM: 

BOIcomp = aSPM(6)/aSPM(4)       (3) 

BOIsize1 = F((b(1) a(2)) (a(1) b(2))-1)      (4) 

BOIsize2 = F((b(5) a(3)) (a(5) b(3))-1)      (5) 

where aSPM is the absorption coefficient of SPM, F is the polynomial function g + g2, where 

g = b() (b()+ a())-1, and 1, 2,  3,  4,  5 and 6 correspond to centered wavelengths 

443, 488, 555, 570, 670 and 675 nm, respectively. Values of the particulate absorption 

coefficient (aSPM) were derived by subtracting the contributions of CDOM and sea water to 

a. The absorption coefficient (aw) and scattering (bw) coefficient of seawater were computed 

at in situ salinity and temperature by using empirical parameterizations suggested by Pope 

and Fry (1997) and Zhang et al. (2009), respectively.  

The equation (3) was suggested based on empirical relationships between 

aSPM(6)/aSPM(4) and POC/CSPM ratios, where POC is the particulate organic carbon 

concentration (Wozniak et al., 2010). BOI indices for particle size distribution were based 

on published Rrs band ratios used for estimating the spectral slope of particulate 

backscattering (Carder et al., 2004; D’Sa et al., 2007). In general, BOIcomp values are expected 

to increase as SPM becomes richer in POC. Likewise, BOIsize1 and BOIsize2 are anticipated to 

decrease as particulates become larger or water contribution to backscattering increases at 

relatively low water turbidities. 

 

3.2.6 OPTICAL CROSS SECTIONS AND MASS-NORMALIZED IOPS 

Spectral values of mass-specific absorption (a
j) and scattering (b

j) cross sections for 

mineral and organic fractions of SPM were estimated from multiple regression analysis 

(Sokal et al., 1995). The superscript j indicates inorganic (PIM) u organic (POM) particulate 



57 

 

matter. For the case of size fractions of SPM, a mass-normalized variable was calculated for 

particulate absorption and scattering coefficients: 

ai
*() = ax () (mx)-1         (6) 

bi
*() = bx () (mx)-1         (7) 

where m is the mass in g m-3 for each size class i. 

 

3.2.7 STATISTICAL ANALYSIS 

The influence of particle size and chemical composition variations on aSPM , bSPM ,a,b,  

a*, and b* was investigated using the non-parametric Spearman rank correlation coefficient 

(S) (Spearman, 1904). This metrics was also applied to examine the sensitivity of ax
* and 

bx
* values to variations of the differential Junge slope () or the slope of log-transformed 

number of particulates per unit of volume as a function of their size range (Junge, 1963). 

Values of   were computed based on linear regression models where dependent and 

independent variables are randomly selected (i.e., type II parameterization). Although 

particle size distribution in natural waters may not follow a Junge-type slope, its use here was 

justified since our main interest was to have a first-order assessment of size effects of 

particulates on IOPs. The sensitivity of BOIcomp, BOIsize1, and BOIsize2 to variations of 

different chemical and SPM size fractions was quantified based on the magnitude of S. 

Lastly, potential functionalities between mass-normalized IOPs for different study regions 

were examined based on linear regression analysis model type II.  
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3.3 RESULTS 

3.3.1 SPATIAL VARIABILITY OF SPM FRACTIONS    

In terms of particle size distribution, contrasting areas in the SLE-SF were identified. In 

UE, particulates having a diameter larger than 10 µm had on average contribution of 11% to 

the total SPM (Table 1). This proportion was lower in the LE (up to 9%) and SF (up to 6%) 

sub regions. The largest mass contribution of smallest-sized particulates (i.e., diameter < 0.4 

µm) was calculated in the lower estuary. Lastly, the intermediate size class 0.7-10 microns 

was the fraction having the maximum contribution to SPM in the SF (76.5% in average).  
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Table 1. Summary of biogeochemical variables during June 2013. Acronyms UE, SF, 

LE, FSPM and FSPM
PIM are defined in the Table of acronyms. N is the number of sampling per 

sub-regions. 

Sub-region Fraction Range N 

UE FSPM
PIM 0.37 – 0.87 3 

 FSPM
0.2 – 0.4 μm 0.04-0.08 3 

 FSPM
0.4 – 0.7 μm 0.01-0.04 3 

 FSPM
0.7 – 10 μm 0.77-0.89 3 

 FSPM
>10 μm 0.05-0.17 3 

    

SF FSPM
PIM 0.49 – 0.66 5 

 FSPM
0.2 – 0.4 μm 0.05-0.11 5 

 FSPM
0.4 – 0.7 μm 0.01-0.14 5 

 FSPM
0.7 – 10 μm 0.66-0.87 5 

 FSPM
>10 μm 0.01-0.11 5 

    

LE FSPM
PIM 0.53 – 0.87 15 

 FSPM
0.2 – 0.4 μm 0.02-0.27 15 

 FSPM
0.4 – 0.7 μm 0.01-0.10 15 

 FSPM
0.7 – 10 μm 0.48-0.93 15 

 FSPM
>10 μm 0.03-0.15 15 
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In general, the Junge slope calculations suggested the presence of relatively larger 

particulates in the LE with respect to UE and SF sub-regions. Indeed, the arithmetic average 

and range of  for LE, UE and SF locations were 1.67 and 0.9-2.4, 2.4 and 2.3-2.4, and 2.4 

and 2.1-2.6, respectively. The uncertainty of   calculations varied between 8 and 90% based 

on the coefficients of determination, with smaller errors in the LE. Unlike particle size 

distribution modification, chemical composition of SPM was less variable (20 to 87 %). In 

average for each sub-region under investigation, the mass of suspended particulates was 

always determined by inorganic matter by inorganic matter (FSPM
PIM = 0.58, 0.62 and 0.70 

for SF, UE and LE, respectively, Table 1). The largest variability of mineral content of SPM 

was the characteristic of waters with relatively shallow depths and a greater of freshwater 

discharge by the St Lawrence River (e.g., sampling locations 12 and 13 in the UE). 

 

3.3.2 RELATIONSHIPS BETWEEN SPM FRACTIONS AND IOPS    

In general, size spectra and mineral content of SPM were important second-order 

attributes affecting the scattering coefficient of suspended particulates. In general, bSPM 

response to changes on SPM size fractions and chemical composition (s up to 0.71 and 0.59, 

t up to 21.17 and 15.35, Student-t test, respectively) was greater with respect to that 

associated to aSPM (s up to 0.53 and 0.21, t up to 13.13 and 4.51, Student-t test, respectively) 

(Table 2).  

The larger influence of particle size distribution on bSPM compared to aSPM values was 

supported by correlations between  and IOPs (s up to 0.50, t up to 12.12, Student-t test; s 

up to 0.33, t up to 7.34, Student-t test) (Table S1).  

Unlike particle size, the impact of SPM chemical composition on aSPM was principally 

manifested at relatively short wavelengths (i.e.,  = 440-556 nm, s up to 0.21, t up to 4.51, 

Student-t test, Table 2). Indeed, the highest correlations between SPM size fractions and aSPM 
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values were computed in the red-NIR spectral regions (e.g., s up to 0.41, t up to 9.44, 

Student-t test). 

 

3.3.3 MASS-SPECIFIC OPTICAL PROPERTIES OF SPM    

The variation of mass-normalized scattering and absorption coefficients of SPM for 

different size and chemical fractions are shown in Figure 1. In general, sub-regional averages 

of mass-normalized IOPs for different particle size ranges were higher with respect to optical 

cross sections of chemical fractions (up to 2 and 3 orders of magnitude for a and b, 

respectively). For a wavelength of 556 nm and over the whole study area, the range of values 

for a0.2-0.4 µm
*, a>10 µm

*, a
PIM and a

POM was 0.11-2.14, 0.18-1.20, 0.01-1.06 and 0.01-1.03 m2 

g-1, respectively (Figure 1a). Likewise, for the same wavelength, the range of b0.2-0.4 µm
*, b>10 

µm
*, a

PIM and a
POM was 1.82-2.39, 1.05-1.49, 0.03-1.06 and 0.03-0.36 m2 g-1, respectively 

(Figure 1b).  
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Table 2. Spearman Rank correlations between particulate IOPs and SPM mass fractions. The 

statistical confidence level at 95 and 99% is symbolized with * and **, respectively. 

  aSPM bSPM 

FSPM
PIM 440 

556 

665 

708 

0.21 ** 

0.12 * 

0.02 

0.17 * 

0.59** 

0.58** 

0.56 ** 

0.55 ** 

FSPM 
0.2-0.4 μm 440 

556 

665 

708 

-0.01 

0.03 

-0.03 

-0.13 * 

0.66 ** 

0.71 ** 

0.70 ** 

0.66 ** 

FSPM 
0.4-0.7 μm 440 

556 

665 

708 

-0.06 

-0.05 

-0.09 

-0.20 ** 

0.28 ** 

0.35 ** 

0.31 ** 

0.27 ** 

FSPM 
0.7-10 μm 440 

556 

665 

708 

-0.12 * 

-0.14 * 

-0.17 * 

-0.03  

-0.65 ** 

-0.67 ** 

-0.63** 

-0.57 ** 

FSPM 
>10 μm 440 

556 

665 

708 

0.36 ** 

0.35 * 

0.53 ** 

0.41 ** 

0.47 ** 

0.39 ** 

0.33 ** 

0.28 ** 
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Figure 1. Spectral variations of mass-normalized optical coefficients for SPM size and 

chemical fractions. a) particulate absorption, b) particulate scattering. Each bar corresponds 

to the arithmetic average over the whole study area; uncertainty bars symbolize 2 standard 

errors. Subscript x and superscript j symbolize size and chemical fractions, respectively. 



64 

 

For the spectral range 440-556 nm, mass-normalized absorption coefficients of SPM 

tended to be higher for particulates within the lower size range (i.e., 0.2-0.4 m) (Figure 1a, 

left-axis). Also, this trend appeared to be reversed at longer wavelengths. Unlike mass-

normalized absorption coefficients of size fractions, mass-specific cross sections of chemical 

fractions showed only differences within the red and near-IR wavelengths (Figure 1a, right-

axis). For the whole study area, the arithmetic average of mass-normalized scattering 

coefficients for the size fraction 0.2-0.4 µm were larger with respect to those derived for the 

size fraction >10 µm (Figure 1b, left-axis). At a wavelength of 440 nm, the mass-specific 

scattering cross sections for PIM were only substantially higher (1.060  0.206 m2 g-1) than 

those corresponding to POM (0.359  0.123 m2 g-1) (Figure 1b, right-axis). 

In general, the magnitude of the mass-normalized absorption coefficient at 440 nm and 

computed for different size and chemical fractions was higher in UE-SF with respect to LE 

locations (Figure 2a). Notice that absorption or scattering cross sections for chemical SPM 

fractions are not shown in UE locations since there number of samples to perform a multiple 

regression analysis was insufficient. The maximum aSPM
*(440) values (up to 4.6 m2 g-1) were 

associated with the largest size fraction of SPM and samples obtained in Saguenay Fjord 

waters. Unlike size fractions, no substantial sub-regional differences were detected for a
 PIM 

(440) and a
POM(440) values (P > 0.05, t up to 0.42, Student-t test). In general,  and FSPM

PIM 

correlations with mass-normalized IOPs suggest that particle chemical composition has a 

larger influence on ai(440)* (s up to 0.50, t up to 12.12, Student-t test) with respect to 

particle size (s up to 0.31, t up to 6.85, Student-t test) (Table 3).  

Unlike aj(440)*, mass-specific scattering coefficients computed at 550 nm and for 

different size and chemical fractions of SPM presented smaller variations among spatial 

domains (Figure 2b). Only for the intermediate size fraction 0.7-10 m, the regional average 

of bi(550)* in UE-SF (0.432-0.501 m2 g-1) was larger with respect to that computed in LE 

waters (0.136  0.027 m2 g-1). Unlike ai(440)*, bi(550)* variability was less influenced by 

changes on particle composition (s up to 0.42, t up to 9.72, Student-t test) (Table 3). 

Conversely, the impact of changing particle dimensions, as inferred from  correlations, was 
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greater for bi(550)* (s up to 0.37, t up to 8.36 Student-t test) with respect to ai(440)* (s up 

to 0.33, t up to 7.34 Student-t test) values. 

 

Table 3. Particle size and chemical composition effects on mass-normalized IOPs. Spearman 

correlations for ai
* and bi

* are computed at a wavelength of 440 and 550 nm, respectively. 

Acronyms  and FSPM
PIM are defined in the table of acronyms. The statistical confidence level 

at 95 and 99% is symbolized with * and **, respectively. 

 γ FSPM
PIM 

a0.2 – 0.4 μm
* 0.32 ** 0.31 ** 

a0.4-0.7 μm
* 0.28 ** 0.50 ** 

a0.7 – 10 μm
* 0.26 ** 0.49 ** 

a>10 μm
* 0.31 ** 0.44 ** 

b0.2 – 0.4 μm
* 0.15 * -0.17 * 

b0.4-0.7 μm
* 0.05 -0.06 

b0.7 – 10 μm
* 0.23 ** 0.42 ** 

b>10 μm
* 0.37 ** 0.26 ** 
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Figure 2. Sub-regional variations of mass-normalized optical coefficients of SPM. a) 

particulate scattering at  = 440 nm, b) particulate absorption at  = 550 nm. Each bar and 

uncertainty corresponds to the arithmetic average  2 standard errors of each sub-region (UE, 

SF and LE are defined in Table of acronyms. Subscript i and superscript j as in Figure 1. 
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3.3.4 OPTICAL REMOTE SENSING PROXIES    

Correlations between individual samples of size-based fractions of SPM and ratios of 

IOPs related to remote sensing proxies for estimating particle size and chemical composition 

are presented in Table 4. In general, it was found that BOIsize1 was a more selective biogeo-

optical indicator for retrieving second-order properties of SPM than BOIsize2 and BOIcomp. 

Indeed, BOIsize2 was also dependent on particle chemical composition variations as inferred 

from FSPM
PIM (S = -0.16, P <0.05, t = -3.40, Student-t test). Likewise, BOIcomp changes were 

also connected to variations of FSPM
0.2-0.4 µm (S = 0.34, t = 7.59, Student-t test) and FSPM

>10 

µm (S = -0.26, t = 5.65, Student-t test) fractions. Despite these dependencies, BOIcomp had 

the strongest correlations with FSPM
PIM values (S = 0.38, P < 0.05, t = 8.63, Student-t test). 

Optical proxies for estimating particle size had a different performance depending on the 

size fraction. Indeed, Carder et al. (2004) and D’Sa et al. (2007) indices were preferentially 

associated to changes of relatively small-sized (i.e., FSPM
0.2-0.4 µm, S up to -0.29, t up to -6.36, 

Student-t test) and intermediate-sized (FSPM
0.4-0.7 µm, S up to 0.35, t up to 7.85, Student-t test) 

particulates, respectively (Table 4).  

Unlike BOIcomp, BOIsize1 and BOIsize2 indices had a greater correlation with mass-specific 

IOPs and this dependency was stronger for larger particulates and mass-normalized 

absorption coefficients (S up to 0.74, t up 23.10 Student-t test). Notice that no correlations 

between a
j, SPM, b

j, SPM, BOIsize1, BOIsize2 and BOIcomp are shown because only 3 optical 

cross sections of SPM chemical fractions were computed over the whole study area .  
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Table 4. Particle size and chemical composition effects on optical remote sensing proxies. 

Spearman rank correlations having a statistical confidence level at 95 and 99% are 

symbolized with * and **, respectively. N the number of observations is 23.  

 BOI size1 BOI size2 BOI comp 

FSPM
PIM -0.02 -0.16 * 0.38 ** 

FSPM
0.2-0.4 μm -0.29 ** 0.03 0.34 ** 

FSPM
0.4-0.7 μm -0.28** 0.35** -0.20** 

FSPM
0.7-10 μm 0.27** -0.12* -0.21* 

FSPM
>10 μm -0.01 -0.10 0.26* 
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3.4 DISCUSSION 

3.4.1 SPATIAL PATTERNS OF SPM MICROPHYSICAL CHARACTERISTICS 

A striking finding in this study was the important weight contribution of relatively large 

particulates (i.e., >10 µm) in UE waters with respect to the other sub-regions. This 

phenomenon was likely attributed to the active resuspension of sediments associated with a 

continuous vertical mixing produced by tidal currents and winds (Yeats, 1988). Conversely, 

this effect was secondary in relatively deep waters of SF and LE where large and heavy 

particulates are rapidly removed from the water column and deposited along submarine 

canyons (Gagné et al., 2009).  

Although chemical composition of SPM size fractions was not analyzed in this study, 

additional correlations between total FSPM
PIM and SPM size fractions values suggest that 

smallest particulates were richer in inorganic matter (s = 0.27, t up to 5.89, Student-t test, 

Table S3). Also, the opposite was true for the largest particulates (s = -0.27, t up to -5.89, 

Student-t test). This finding confirms previous studies showing that relatively small (~2 μm) 

particulates in the SLE are mainly composed by minerals (Yeats, 1988; Gagné et al., 2009).  

In this contribution, a large proportion of particulates with a diameter above 50 m and 

lower  values were typically found in LE locations. This regional variation in SPM size 

distribution was attributed to the major influence of large-sized particulates derived from 

phytoplankton as  was strongly correlated with chlorophyll a concentration (s = -0.45, t up 

to -10.58, Student-t test, Table S4). These results also support historical observations made 

during July and August and showing a greater proportion of relatively large particulates (i.e., 

> 5 and < 50 µm) over the LE locations (Chanut and Poulet, 1979).  
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3.4.2 SPATIAL VARIABILITY OF MASS-SPECIFIC COEFFICIENTS OF SPM 

In this study, aSPM* measurements in the visible and near-IR range were in the upper 

range or higher than those reported in the literature for temperate coastal waters (e.g., Mobile 

Bay, River of La Plata, Elbe Estuary, Gironde Estuary) (Stavn and Richter, 2008; Doxaran 

et al., 2009; Dogliotti et al., 2015) (Table 5). In general, lowest aSPM* values commonly 

corresponded with samples obtained in very turbid environments (i.e., > 100 g m-3, Gironde 

River, La Plata River) (Dogliotti et al., 2015; Doxaran et al., 2009). Also, highest aSPM* 

values in the SLE were not associated to UE locations where water turbidity was maximum. 

Lastly, a
POM and a

PIM estimates in this study were generally lower and higher respectively 

compared with those reported in littoral waters having a concentration of SPM up to 6 and 

50 g m-3, respectively (Bowers and Binding, 2006; Snyder et al., 2008).  

 

 

 

 



 

Table 5. Mass-normalized absorption and scattering coefficients of SPM, PIM and POM in the SLE and different littoral 

environments. Acronyms , aSPM
*, bSPM

*, a
POM, a

PIM, b
POM, b

PIM and CSPM are defined in Table 1. 

Location  aSPM
* bSPM

* a
POM a

PIM b
POM b

PIM CSPM Reference 

 440 0.01 – 2.68 0.01 – 2.71 0.15 0.11 0.84 2.27 7.38 – 30.6 This study 

UE 488 0.01 – 0.99 0.01 – 2.70 0.06 0.05 0.76 2.04   

 556 0.01 – 0.32 0.01 – 2.55 0.01 0.01 0.71 1.82   

 665 0.01 – 0.15 0.01 – 1.75 0.01 0.05 0.45 1.67   

 708 0.01 – 0.12 0.01 – 0.79 0.01 0.02 0.11 1.31   

          

SF 440 0.01 – 2.61 0.03 – 2.39 1.71 0.86 1.78 0.94 2.28 – 3.68  

 488 0.01 – 1.76 0.05 – 1.76 1.84 0.43 1.14 0.88   

 556 0.01 – 1.55 0.05 – 1.68 0.85 0.17 0.45 0.56   

 665 0.01 – 0.70 0.01 – 0.68 0.12 0.11 0.23 0.12   

 708 0.01 – 0.44 0.01 – 0.49 0.01 0.01 0.12 0.04   
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LE 440 0.01 – 1.95 0.01 – 2.17 0.07 0.02 2.64 2.04 2.72 – 25.7  

 488 0.01 – 1.24 0.01 – 2.06 0.03 0.01 2.13 1.88   

 556 0.01 – 1.18 0.01 – 1.38 0.01 0.01 1.88 1.36   

 665 0.01 – 1.04 0.01 – 1.03 0.02 0.01 1.42 0.89   

 708 0.01 – 0.88 0.01 – 0.88 0.02 0.01 0.98 0.67   

          

Elber 

River, 

650 0.001 – 0.020      0.5-10 (Rottgers et 

al., 2014) 

German 

Bight,  

750 0.001 – 0.019        

Baltic Sea, 

New 

Caledonia 

lagoon 

850 0.001 – 0.014        



73 

 

          

Monterey 

Bay, US 

532  0.46 – 2.54    1.23–3.39 0.08 – 0.77 0.11 – 2.37 (Zhang, 

2014) 

Mobile 

Bay, US 

532  0.40 – 1.78   0.35–3.85 0.27 – 0.79 0.26 – 7.36  

          

Hudson 

Bay, 

Canada 

675 0.001 – 0.12      0.2 – 2.5 (Xi et al., 

2013) 

          

Mississippi 

River, US 

450 0.02 – 0.11      7-25 (Bowers and 

Binding, 

2006) 

 550 0.017 – 0.06        

 650 0.012 – 0.035        

 700 0.01 – 0.025        
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Mobile 

Bay,  

440 0.44 – 1.95    0.01-1.91 0.36 – 0.80 0.23-25.32 (Stavn and 

Richter, 

2008) 

Southwest 

Pass, US 

488 0.41 – 1.89    0.01-1.82 0.36-0.73   

 550 0.40 – 1.80    0.01-1.65 0.33-0.70   

 676 0.36 – 1.63    0.04-1.48 0.34-0.63   

 715 0.34 – 1.61    0.02-1.39 0.33-0.58   

          

Coast of 

New 

Jersey,  

440   0.23 –0.59 0.08–0.17 0.7 – 5.1 0.3 – 1.3 0.44 – 6.6 (Snyder et 

al., 2008) 

Monterey 

Bay,  

488   0.18 – 0.39 0.07–0.13 0.65 – 4.8 0.4 – 1.6   

Great Bay 556   0.13 – 0.21 0.05–0.08 0.4 – 4.3 0.5 – 1.8   
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 665   0.09 – 0.11 0.05–0.06 0.35 – 3.8 0.4 – 1.7   

 708   0.02 – 0.03 0.01–0.02 0.4-3.9 0.3-1.7   

          

Irish sea, 

UK 

665  0.08 – 0.45  0.01 – 0.02  0.47 – 0.49 1.9 – 26.5 (Binding et 

al., 2005) 

          

Irish sea, 

UK 

443  0.17 – 0.19  0.05 – 0.06  0.25 – 0.27 1.6 – 50 (Bowers and 

Binding, 

2006) 

 490  0.20 – 0.22  0.03 – 0.04  0.33 – 0.37   

 555  0.20 – 0.24  0.03 – 0.03  0.37 – 0.39   

 665  0.14 – 0.15  0.02 – 0.03  0.27 – 0.29   
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English 

channel, 

UK 

550  0.62 – 1.04     0.01 – 72.8 (Babin et al., 

2003) 

          

Coast off 

Europe and 

French 

Guyana  

676  0.63 – 2.07    0.12 – 1.83 1.2 – 82.4 (Neukermans 

et al., 2012) 

          

Guyana 

coast, 

Scheldt 

River, 

Gironde 

River, Rio 

de la Plata 

Estuary 

440 0.02 – 0.12     0.37 – 0.89 30 – 120 (Dogliotti et 

al., 2015) 
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Elbe 

Estuary, 

Germany 

555 0.05 – 0.07 0.35 – 0.47     73.5 – 294.2 (Doxaran et 

al., 2009) 

 715 0.01 – 0.03 0.32 – 0.44       

Gironde 

Estuary, 

France 

555 0.02 – 0.06 0.28 – 0.50     21.9 – 344.1  

 715 0.01 – 0.02 0.27 – 0.45       

 



 

One mechanism explaining the general decrease of aSPM* in very turbid waters is related 

to packaging effects (Zhang 2014). At higher turbidities, particulates become dominated by 

larger size distributions, thus as mean diameter of particles increases, the scattering efficiency 

of SPM decreases. In SF waters, the magnitude of a>10m(440)* values were higher with 

respect to those computed in other SLE subregions. These differences could be related to the 

relatively high concentrations of particulate iron and humic substances in surface waters of 

the Saguenay Fjord (Yeats and Bewers, 1976; Tremblay and Gagné, 2009). Pigmentation of 

mineral particulate due to iron hydroxides have been suggested to be a major factor 

enhancing aSPM* (Babin and Stramski, 2004; Estapa et al., 2012). Likewise, the association 

between iron and humic substances have been shown to increase absorption coefficient of 

CDOM by several folds in the visible range of the spectrum (Xiao et al., 2013) and could 

contribute in the increase in the magnitude of aSPM* in the SF. 

Unlike aSPM*, the magnitude of bSPM* during our surveys was comparable, smaller or 

higher with respect to other studies depending on the wavelength and the type of 

environment. To exemplify, at the wavelength of 440 nm, the magnitude of our bSPM* 

measurements was comparable to that reported in coastal waters off Mississippi (Stavn and 

Richter, 2008). However, these values were higher compared to that reported in the Irish Sea 

waters (Bowers and Binding, 2006). The magnitude of b
POM was relatively low with respect 

to values measured in environments having lower turbidities with respect to the SLE (e.g., 

Monterrey Bay, Mobile Bay and off New Jersey shore) (Snyder et al., 2008; Zhang, 2014). 

Lastly, our b
PIM estimates were relatively high with respect to those characteristics of 

environments having a greater concentration of SPM (e.g., La Plata River, Irish Sea) (Bowers 

and Binding, 2006; Dogliotti et al., 2015). This trend with turbidity was supported in our 

study area as sub-regional averages of b
PIM showed higher values downstream where CSPM 

was up to 10-fold lower with respect to the upper estuary. In general, as waters become richer 

in suspended particulate matter, the mean diameter of particles increases. This change is 
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expected to lower the scattering efficiency of particulates as deduced from Mie theory 

calculations (Peng and Effler, 2012). Thus, lower bSPM* values should be typically associated 

with waters dominated by relatively high CSPM values. 

 

3.4.3 PARTICLE SIZE AND COMPOSITION EFFECTS ON OPTICAL CROSS SECTIONS 

Correlations of  and FSPM
PIM with mass-normalized IOPs for different SPM size fractions 

showed two contrasting optical responses. First,  was positively correlated with aSPM(440)* 

(s up to 0.33, t up to 7.34, Student-t test) and bSPM(550)* (s up to 0.56, t up to 14.19, 

Student-t test) for particulates larger than 10 m. This pattern was due probably to the greater 

changes in particle density as particulates get bigger and more hydrated (Boss et al., 2001; 

Neukermans et al., 2012, 2016; Reynolds et al., 2016). Wozniak and Dera (2007) found that 

mass-specific absorption decreases as particle size increases. Based on theoretical 

calculations, Babin et al. (2003) showed a positive relationship between bSPM(550)* and the 

Junge slope of particle size distribution. Also in this study, bSPM(550)* was found to be 

directly related to  (Table 3).  

FSPM
PIM had a stronger correlation with aSPM(440)* compared with bSPM(550)* values, 

and these relationships were stronger when SPM was dominated by particulates with an 

intermediate size (i.e., 0.4-10 m). Babin et al. (2004) obtained positive correlations between 

aSPM* and iron content of minerals.  Rottgers et al (2014) suggest that low aSPM* values 

(averagely 0.001-0.01 m2g-1) in the near-IR are characteristic of organic detritus (i.e., non-

algal particulate organic matter). In summary, particle size (chemical composition) appears 

to be more important than particle composition (particle size) for influencing spatial 

variability of bSPM* (aSPM*) in Saint Lawrence Estuary waters, which is similar to the findings 

of Reynolds et al. (2016) in terms of particle backscattering at 550 nm in the Arctic waters. 

These functionalities seem to be different to those established across coastal-oceanic 



80 

 

gradients by Babin et al. (2003) and where organic matter content of SPM was the main cause 

of increasing bSPM* values toward deeper and more clear oceanic waters. 

 

3.4.4 OPTICAL PROXIES OF PARTICLE SIZE AND COMPOSITION 

The response of three optical composite variables (BOIsize1, BOIsize2 and BOIcomp) to size 

and composition changes on SPM were evaluated in this study. Correlations between indices 

and SPM fractions showed that unlike BOIcomp, BOIsize1 was very selective for indicating 

changes on particle micro-physical properties. Indeed, BOIcomp was correlated to FSPM
PIM and 

the mass contribution of relatively small (0.2-0.4 µm) and large (>10 µm) particulates. This 

lack of specificity may respond to the use of a spectral range where phytoplankton has a 

maximum light absorption peak (i.e., 675 nm). As phytoplankton cells becomes larger (e.g., 

above 20 µm), chlorophyll a increases (Montes-Hugo et al., 2008). As result, the magnitude 

of aSPM at 675 nm is expected to increase affecting positively BOIcomp. Lastly, BOIsize1 and 

BOIsize2 response was mainly associated with variability of large-sized and small-sized SPM 

fractions, respectively. This selectivity is particularly interesting as both indexes may be 

combined for developing more robust metrics for estimating SPM size spectra distributions 

in littoral waters. 

 

3.5 CONCLUSIONS 

The measure of optical cross sections of SPM is essential for developing optical 

inversions and improve our understanding regarding the origin of optical signatures in remote 

sensing studies and map biogeo-chemical components in surface waters. In this contribution, 

we presented for the first time, mass-specific scattering and absorption coefficients of size 
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fractioned SPM in estuarine waters of the Saint Lawrence River and a major SLE tributary, 

the Saguenay Fjord.  

Despite the intrinsic variability of weight-normalized IOPs due to variations of particle 

micro-physical attributes, the following trends were observed: 1. the mass-specific 

absorption coefficient of SPM was preferentially influenced by changes in particle chemical 

composition, 2. particle size had a larger impact on bSPM* than aSPM*, and 3. optical proxies 

of SPM size distribution BOIsize1 was more specific than optical proxy related to particle 

chemical composition (i.e., BOIcomp). These relationships are anticipated to be useful in the 

context of predicting mass-specific IOPs based on satellite remote sensing measurements. 
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3.8 APPENDIX  

 

Figure S1. Study area. Sampling locations for the UE (green triangles), LE (blue 

rectangles), and SF (red circles) are indicated. GSL is the Gulf of St. Lawrence. 
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Table S1. Spearman rank correlation between particulate IOPs of different SPM size 

fractions, , and FPIM. For each comparison, first, second, third and fourth value corresponds 

to the wavelength of 440, 556, 665 and 708 nm, respectively. The number of sampling 

locations is 23 in all cases. The statistical confidence level at 95 and 99% are symbolized 

with * and **, respectively. 

  FSPM
PIM 

aSPM
0.2-0.4 μm -0.17*, 0.21**, 0.01,0.01 0.10*,0.29**,0.12*,0.12* 

aSPM
0.4-0.7 μm 0.31**,0.07,0.33**,0.20* 0.62**,-0.17*,0.35**,0.36** 

aSPM
0.7-10 μm 0.07,0.31**,0.07,0.11* -0.17*,0.62**,-0.02,0.01 

aSPM
>10 μm 0.21**,0.30**,-0.30**,0.08 0.29**,0.42**,0.15*,0.01 

bSPM
0.2-0.4 μm -0.29**,0.26**,-0.30**,-0.25** -0.03,0.16*,0.15*,0.19* 

bSPM
0.4-0.7 μm -0.21**,0.18*,-0.21**,-0.16* -0.15*,0.28**,-0.10,-0.06 

bSPM
0.7-10 μm 0.50*,0.16*,0.50**,0.41** 0.28**,0.01,0.16*,0.17* 

bSPM
>10 μm 0.34**,0.05,0.24**,0.19* 0.59**,-0.13*,0.52**,0.44** 
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Table S2. Relationships between optical remote sensing proxies and mass-normalized IOPs 

of SPM. For each Spearman Rank correlation coefficient, the statistical confidence level at 

95 and 99% are symbolized with * and **, respectively. Mass-normalized absorption and 

scattering coefficients correspond to a  of 440 and 550 nm, respectively.  

 BOI size 1 BOI size 2 BOI comp 

a0.2-0.4 m
* -0.03 0.16* -0.14* 

a0.4-0.7 m
 * -0.47** 0.49** 0.06 

a0.7-10 m
* -0.44** 0.45** 0.06 

a>10 m
* -0.64** 0.74** 0.04 

b0.2-0.4 m
* -0.29** 0.19* -0.03 

b0.4-0.7 m
 * -0.19** 0.04 -0.02 

b0.7-10 m
* -0.17* 0.02 -0.04 

b>10 m
* -0.43** 0.35** 0.03 
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Table S3. Relationships between size and chemical fractions of SPM. Each relation and 

statistical confidence is described in table 2.  N the number of stations is 23. 

 FSPM
PIM 

FSPM
0.2 – 0.4 μm 0.27 ** 

FSPM
0.4 – 0.7 μm 0.15 * 

FSPM
0.7 – 10 μm 0.08 

FSPM
>10 μm -0.27 ** 
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Table S4. Relationship between chlorophyll a concentration and . Each relation and 

statistical confidence is described in Table S2. 

  N 

UE -0.08 3 

SF 0.62 ** 4 

LE -0.45 ** 14 
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CHAPTER 4 

 

 

EFFETS THERMIQUES DÛS À LA PRÉSENCE DE LA MATIÈRE 

PARTICULAIRE EN SUSPENSION DANS LES EAUX ESTUARIENNES ET 

LITTORALES 

 

Ce troisième article, intitulé « Thermal effect of suspended particulate matter (SPM) in 

estuarine and littoral waters», fut corédigé par moi-même ainsi que par les professeurs 

Martin A. Montes-Hugo, Jean-Pierre Gagné, et Pierre Larouche. L’article sera soumis au 

Journal of Geophysical Research. En tant que premier auteur, ma contribution à ce travail fut 

de proposer et de développer l’idée originale, d’effectuer les recherches bibliographiques sur 

l’état de la question, de développer la méthode présentée dans cet article, et d’exécuter des 

tests de performance. Le professeur Martin A. Montes-Hugo, deuxième auteur, a aidé à la 

recherche sur l’état de l’art, au développement de la méthode ainsi qu’à la révision de 

l’article. Les professeurs Jean-Pierre Gagné et Pierre Larouche ont aidé à la recherche sur 

l’état de l’art ainsi qu’à la révision de l’article.   
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Résumé 

La variabilité spatiale et temporelle de la matière particulaire en suspension dans les 

environnements littoraux joue un rôle majeur affectant la visibilité dans l'eau et l'échange de 

chaleur à travers l'interface air-mer. Les variations de turbidité de l'eau en raison de la 

présence de matières particulaires en suspension peuvent affecter indirectement des variables 

météorologiques locales (par exemple la température de l'air et l'humidité relative) à cause 

de modifications thermiques au sein de la couche de surface mélangée. Dans cette étude, 

nous expliquons les effets de ces modifications thermiques sur les modifications potentielles 

des conditions météorologiques locales. En outre, nous décrivons les mécanismes expliquant 

comment la lumière du soleil est atténuée par les composants optiques de l'eau et se convertit 

en chaleur rayonnante. Des études de terrain suggèrent que l'influence thermique des 

composés organiques dissous colorés et des matières particulaires en suspension peuvent être 

comparables. Comme les composés organiques dissous colorés, la production de chaleur 

induite par les particules peut avoir des influences considérables sur la variabilité climatique 

régionale. Ces changements peuvent affecter la distribution et ainsi la contribution des 

composants optiques responsables des effets thermiques sur les variations spatiale et 

temporelle de la fonte des glaces, des changements sur la nébulosité, et la répartition inégale 

de l'insolation. 
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Abstract 

The spatial and temporal variability of suspended particulate matter (SPM) in littoral 

environments has a major role affecting water visibility and heat exchange through the air-

water interface. Water turbidity variations due to SPM may affect local weather variables 

(e.g., air temperature and relative humidity) due to thermal modifications within the upper 

mixed layer. In this study, we explain the effects of these thermal modifications to potential 

modifications of local weather conditions. Besides, we describe the mechanisms explaining 

how sunlight is attenuated by the water optical components and is converted into radiant heat. 

Field studies suggest that thermal influence of colored dissolved organic components 

(CDOM) and SPM can be comparable. Like CDOM, particle-mediated heat production can 

have substantial influence on regional climate variability. These changes may affect the 

distribution and thus, the contribution of optical components responsible for thermal effects 

on spatial and temporal variation in ice melting, changes on cloudiness patterns, and uneven 

distribution of solar insolation. 
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4.1. INTRODUCTION 

The understanding of heat balance in littoral and oceanic waters has major implications 

for biogeochemical processes and development of circulation models. In that regard, the 

upper mixed layer plays an important function by absorbing solar radiation and modulating 

the air temperature just above the water surface (Donohoe et al., 2013). This redistribution 

of energy is modulated by changes in inherent optical properties (IOPs), local meteorological 

conditions (i.e., wind, cloudiness, precipitation), and hydrodynamics processes (e.g., 

advection, diffusion) (Adler et al., 2013; Boss et al., 2009; Guézennec et al., 1999; Verspecht 

and Pattiaratchi, 2010). Note that alterations in IOPs are mainly driven by concurrent 

variations in dissolved (e.g., CDOM) and particulate (e.g., phytoplankton and non-algal 

particulates) optical components. In general, in littoral environments influenced by fresh 

water discharge, changes in optical properties may be larger compared with marine 

environments (Zhang et al., 2010). 

The solar energy reaching the ocean surface is about 50% of the solar energy at the top 

of the atmosphere, and is mainly composed of visible light (wavelength = 350 – 700 nm) 

(Arancibia-Bulnes et al. 2000). One percent of this energy is lost to scattering and absorption 

before entering the water column (Bricaud et al., 1998). The rate of light attenuation with 

depth is variable and depends on the concentration of optical components and their vertical 

distribution. On average for coastal waters, sunlight may penetrate up to 20 m within the first 

optical depth = xc, where x is actual depth and c is beam attenuation coefficient in m-1, (Kirk, 

1994).  

The 1% light level (often inaccurately called the euphotic depth) is the depth at which 

photosynthetically available at noon falls to 1% of its value just below the sea surface. The 

rate at which light is attenuated is spectrally dependent. UV and green light (300 and 550 

nm) may be still measured at depths up to 50 and 100 meters, respectively (Helbling et al., 
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2003) in open oceans with minimal phytoplankton and CDOM concentrations. Conversely, 

near-infrared light (700-1000 nm) is rapidly attenuated within the first meter of the water 

column (Gitelson et al., 2008).   

The sea surface temperature (SST) is a leading factor that governs weather patterns, thus 

it plays a key role in constraining atmospheric models. Although surface temperature 

measurements are obtained from multiple platforms (e.g., satellites, ships, buoys, coastal 

weather stations), this information is insufficient for very accurate weather model simulations 

due to their limited spatio-temporal resolution. This constraint may lead to large model 

uncertainties in terms of predicting local weather variables (e.g., wind speed, relative 

humidity). Small-scale variations in SST due to water constituents may be amplified at the 

regional scale by affecting air temperature, pressure, and circulation (Isobe et al., 2014). 

Likewise, these perturbations can be rapidly (i.e., on a scale of days) propagated by weather 

systems (e.g., synoptic-scale pressure depression systems) across the world (Isobe et al., 

2014). 

In general, climate variability affects coastal turbidity plumes through affecting the 

magnitude of transported SPM and CDOM towards coastal regions by increasing riverine 

output or coastal runoffs (Garcia et al. 2015), and cause local atmospheric pressure 

depressions, which lead to change in wind speed and velocity (Qiu and Kelly 1993). Wind-

induced and tidal resuspension may have a major impact on the concentration and spatial 

distribution of SPM, and associated variations in light attenuation within the top layer of 

water column (Ruiz et al., 1994). Off the southwestern Australia, Verspecht and Pattiaratchi 

(2010) found that wind-induced waves were the dominant mechanism driving the vertical 

redistribution of particulate matter. They also found that daily see breezes were effective in 

holding particulate matter in suspension. The change in wind speed may also affect the 

release of water vapor and thermal energy at the water surface. These meteorological 

modifications may cause significant variations on vertical light penetration due to changes 
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on atmospheric transmission. At the same time, this effect is modulated by water turbidity 

and concentration of particulates inside of ice layers (Handorf et al., 2015; Hessen et al., 

2010). Thus, rivers are major sources of SPM and CDOM towards downstream watersheds 

during ice melting periods. 

In this chapter, the effect of different water optical components on heat budget terms are 

discussed with special emphasis on the influence of SPM on SST. Likewise, an important 

part of the review is devoted to understand relationships between weather patterns and 

particle-mediated thermal effects. The present chapter is organized in five sections. The first 

section encompasses the introduction and provides an overview about the heat balance 

between the atmosphere and the upper mixed layer of the ocean. In the second section, remote 

sensing variables related to heat budget parameterizations are discussed. In the third section, 

a simple thermodynamic model is described for the upper ocean. In the fourth section, the 

water heating due to SPM and CDOM, and its relationship with climate variables is analyzed 

for littoral waters. Lastly, in the fifth section, a list of potential long-term effects of particle-

mediated heat variations in regional climate variables is summarized for different estuarine 

and coastal systems. 

 

4.2 AIR-WATER HEAT FLUX COMPONENTS  

The ocean and the atmosphere have a fundamental role in redistributing the incoming 

Sun’s energy over the Earth's surface.  This ocean-atmosphere coupling modulates the global 

exchange of heat and momentum, and the local dynamics of weather variables. Likewise, 

these energy pathways may suffer alterations due to distribution changes in SST associated 

with SPM and CDOM.  
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4.2.1 HEAT BALANCE TERMS 

The exchange of heat across the atmosphere-ocean interface ்ܳ can be partitioned based 

on the following components (Komori et al., 2011):  

்ܳ = ܳு + ܳா + ܳோ        (1) 

where ܳு is the sensible heat flux, ܳா is the latent heat flux, and ܳோ is the radiative heat flux 

in W m-2. By assuming a temperature (∆ܶ) and specific humidity (∆ݍ) difference across the 

air-sea boundary (i.e., the ratio of the water vapor content of the mixture to the total air 

content per unit of mass), ܳு, ܳா, and ܳோ heat fluxes can be computed as follows: 

ܳு =  ுܷ∆ܶ        (2)ܥ,ܥߩ

ܳா =  (3)         ݍ∆ாܷܥܮߩ

ܳோ =  (4)         ܣ(ସܶߙߝ)

where ܥு and ܥா are the coefficients of sensible and latent heat fluxes [W s-1 Kg-1 K-1], 

respectively, ߩ is the air density [kg m-3], ܥ, is the specific heat of air at a constant 

atmospheric pressure [W s-1 kg-1 K-1], T is temperature [K], U is the wind speed above the 

air-sea interface [m s-1], ܮ is the evaporative latent heat coefficient [W s-1 kg-1], ߝ is the 

thermal emissivity coefficient, ߙ is the thermal diffusivity coefficient [m2 s], and ܣ is the 

area of exposure [m2].  
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4.2.2 PHYSICAL FACTORS INFLUENCING HEAT BALANCE TERMS 

Multiple energy pathways drive the exchange of heat between the atmosphere and the 

ocean surface. Longwave and shortwave radiation warms the ocean and provides energy to 

drive weather and climate. A fraction of this energy is stored in the ocean (~45%), and 

another fraction contributes to the atmosphere warming (~35%). Lastly, the the evaporation 

of water accounts for remaining energy fraction (~20%) (Kirk, 1988). 

In the midlatitudes and as climatological averages (Sakai and Nozaki, 1995) (Figure 1), 

the atmosphere absorbs 67 W m-2 of shortwave radiation and 350 W m-2 of reflected and 

emitted longwave radiation from the surface. Indeed, the atmosphere emits 165 and 30 W m-

2 of longwave and shortwave radiation, respectively. In addition, the absorbed energy by the 

earth, including land and ocean, is 168 W m-2 and 333 W m-2 for short and longwave 

radiations, respectively. Also, the Earth’s surface emits 195 W m-2 of longwave radiation to 

space. The ocean’s surface, in contrast, gains 168 W m-2 of shortwave solar radiation and 324 

W m-2 of longwave back radiation from the atmosphere and clouds. However, the earth’s 

surface emits 350 W m-2 of longwave radiation to the atmosphere. This balance results in a 

net surplus of energy from the earth to the atmosphere of 102 W m-2 (ܳு = 24 W m-2, ܳா = 

78 W m-2). It must be noted that latent heat flux and net infrared (IR) radiation tend to balance 

insolation. Moreover, the magnitude of ܳா is always small with respect to ܳு and ܳோ 

(~24%). 
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Figure 1. Net heat flux at the ocean-atmosphere interface (www.nasa.gov) 

 

Wind modifies the magnitude and variability of ܳா by injecting air into the water and 

changing the amount of water vapor just above the air-water interface (Sakai and Nozaki, 

1995). More specifically, the displacement of air above water changes the vapor saturation 

state of the air and the heat fluxes across the air-water interface (Kubota et al., 2003). In 

general, latent heat fluxes increase at higher wind speeds and are linked to large changes on 

ocean-atmosphere humidity gradients (Feng and Li, 2006; Yu et al., 2011).  

To investigate the effect of water constituents on underwater solar radiation and calculate 

the terms in Equations (1-4), we need to estimate the amount of transmitted solar radiation 

within visible and IR wavelengths going to the water column. Following Kirk (1994), the 

solar transmission at the water depth z, ( ܶ(ݖ) is defined as:  
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ܶ(ݖ. (ߣ =
ா(௭.ఒ)

ா(ష.ఒ)
         (5) 

.ݖ)ܧ (ߣ = .ݖ)ௗܧ (ߣ − .ݖ)௨ܧ  (6)       (ߣ

where ܧ(ݖ. .ݖ)ௗܧ ,(ߣ .ݖ)௨ܧ and ,(ߣ  are spectral net, downwelling, and upwelling (ߣ

irradiance (W m-2 nm-1), respectively. 

The fraction of solar radiation that leaves the water surface is given by: 

(ߣ)ߙ = (ߣ)ߙ +  (7)        (ߣ)ߙ

(ߣ)ߙ = 1 −
ா(ష.ఒ)

ா(శ.ఒ)
        (8) 

where (ߣ)ߙ is the water-surface reflectance. ߙ, is often defined as a combination of water-

leaving radiation, ߙ(ߣ), and Fresnel reflection, ߙ(ߣ) (Ohlmann et al., 2000). For a layer of 

thickness z, the radiant heat rate (RHR(z)) in ºC s-1 is defined as:  

(ݖ)ܴܪܴ =
ா(ష.ఒ)ିா(௭.ఒ)

௭ ఘೢ(௭) 
        (9) 

where ܧ(0ି.  denotes the total spectral net flux of solar radiation within UV – IR   spectral (ߣ

range (350 – 800 nm) and just below the sea surface, ߩ௪(ݖ) is the density of seawater [kg m-

3] at depth ݖ [m], and cp is the specific heat of water [W s-1 kg-1 K-1]. For the same depth 

interval and spectral range, the RHR is expected to be higher at IR wavelengths, due to their 

rapid attenuation of this energy within the spectral range 700 – 1700 nm (Chang and Dickey, 

2004). 

The heating rate beyond this depth only depends on attenuation of UV and visible light. 

This light extinction depends on optical properties of water constituents, as CDOM highly 

absorbs light at UV – blue spectra (wavelengths shorter than 450 nm), and water absorbs at 

relatively long wavelengths (i.e., > than 650 nm). Additionally, algal and non-algal particles 
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have a major contribution to light absorption in UV-blue spectral range, and light scattering 

at wavelengths above 500 nm (Mobley, 1994; Zhai et al., 2011) (Figure 2).  

 

 

Figure 2. The penetration of light spectra in coastal waters (adapted from 

oceanexplorer.noaa.gov) 

 

The presence of clouds can decrease the RHR by half and within the top 10 m of the 

water column (Siegel et al., 1999). Indeed, clouds decrease the magnitude of RHR through 

making the light more diffused and increasing the importance of upward Eu compared with 

Ed. 
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4.3 REMOTE SENSING OF HEAT BALANCE TERMS 

The characterization of heat budgets over a large spatial extent is commonly performed 

using satellite-based observations. Conversely, planes and balloons are usually used to 

validate satellite-derived products related to heat budget components retrievals. Satellite-

based heat budget measurements are commonly used in ocean circulation and climate 

models. The most important spaceborne variables for estimating heat balance terms shown 

in equations (1 – 9) are temperature, wind, and Ed(). This section is mainly focused on 

describing heat budget parameters obtained from spaceborne and in situ sensors that allow 

synoptic mapping of heat budget variables over spatial domains and scales comparable to 

meso-scale (as high as 500 km) oceanographic features. Likewise, this spatial domain has a 

major relevance for climate variability studies (Reynolds et al., 2002).   

 

 4.3.1 SATELLITE MEASUREMENTS 

In 1975, the first geostationary imager, GOES (Geostationary Operational Environmental 

Satellite), with visible and thermal capabilities was launched (Lombardi and Hanson, 2005). 

After several years, multiple GOES sensors were set in orbit (assemblage) providing different 

heat budget products (e.g., ocean heat content, radiation components, SST) at high temporal 

(i.e., 15 minutes) but low spatial resolution (i.e., ~30 km).  

The advanced very high resolution radiometer (AVHRR), the first polar-orbiting sensor 

able to measure SST, was launched on 1985 (Fusco et al., 1989). AVHRR has enough 

spectral bands for better estimating heat budget parameters such as solar radiation and cloud 

cover. Unlike GOES, AVHRR observations are daily and with a spatial resolution of 1.1 km. 

Also, the accuracy of AVHRR for measuring SST is higher ( 0.5 °C) compared with GOES-
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8 ( 1℃). These uncertainties are of special interest for climate studies since they have a 

direct impact on heat budget error calculations in terms of ܳோ. 

The advanced along-tracking scanning radiometer (AATSR) is a sun-synchronous sensor 

that was designed to retrieve global SST with an accuracy of  0.3 ℃ (Corlett et al., 2006). 

In addition to more accurate SST estimates, AATSR has a higher spatial resolution (1 km) 

compared with GOES. Unlike GOES, AVHRR and AATSR, the spaceborne sensor TIROS 

operational vertical sounder (ATOVS) consists of a high-resolution radiation sounder 

(HIRS), the advanced microwave sounding unit-A (AMSU-A), and AMSU-B for estimating 

temperature and humidity in all weather conditions with a 60-km resolution (40 km nadir) 

by a microwave sounder. ATOVS is capable of measuring sea surface temperature, surface 

skin temperature, and outgoing longwave radiation. Despite the vertical profiling capabilities 

of ATOVS and the fact that the sensor measures the SST with ± 0.5 ℃ of accuracy, this 

sensor has a coarse spatial resolution (60 km) with respect to AVHRR (1.1 Km), GOES (30 

Km), and AATSR (1 km). Despite of their widespread use, satellite-based IR remote sensing 

measurements may have a significant bias of ~50% due mainly to atmospheric effects such 

as aerosols, rain and fog that contribute in absorbing light within IR and SWIR wavelengths 

(Wang, 2010). Thus, in situ SST measurements are essential to validate and complement 

space-based retrievals.  

 

4.3.2 SHIPBOARD AND MOORING MEASUREMENTS 

Field measurements of heat budget variables are commonly applied for validating 

satellite measurements and filling data gaps originated from missing satellite pixels. Thermal 

data can be derived from buoys, underway continuous flow systems, CTD profiles, and 

onboard radiometers attached to the deck of oceanographic vessels (Kearns et al., 2000). 
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Unlike satellites, atmospheric effects do not influence ship-based radiometers, thus their 

estimates mainly depend on skin temperature variations. Notice that the skin temperature is 

the temperature of the microlayer (i.e., layer just underneath the water surface and 

encompassing a thickness of mm). This temperature is slightly (~0.01 – 0.1 ℃) different with 

respect to the bulk temperature of the upper mixed layer (Minnett et al., 2001). Ship-based 

radiometers can autonomously measure SST with an accuracy of ±0.16 ℃ (Jessup and 

Branch, 2008; Donlon et al., 2002; Branch et al., 2008).  

The SST sensors attached to buoys are mainly used for monitoring regional climate. 

Buoys provide a higher temporal resolution for estimating ܳோ and ܳு with respect to 

shipboard observations. However, their spatial resolution is coarser, as high as 600 Km, with 

respect to ship-derived measurements. To gain synoptic measurements, the data obtained by 

buoys are distributed through a data distribution system such as the Global 

Telecommunication System of the World Meteorological Organization. This coordination is 

essential to obtain global climatology with a temporal resolution of less than 3 h (Wallace, 

2012).  

 

4.4 THERMODYNAMIC MODELS COUPLED TO CIRCULATION 

As solar energy enters the water column, most of the photons are absorbed by suspended 

and dissolved optical components and transformed into heat (Morel and Antoine, 1994). 

Likewise, on a clear day at mid latitudes, phytoplankton absorbs about half of the solar flux, 

particularly between 350 and 700 nm, where it can be used to drive photosynthesis, creation 

of organic matter, and/or inelastic dissipation as fluorescence (phytoplankton, CDOM, and 

Raman), and thermal effects (Lewis et al., 1983; Shell et al., 2003). One small fraction (~1% 

depending on water turbidity) of the solar energy entering the aquatic medium is returned to 
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the atmosphere due to the molecular and particulate backscattering (Kirk, 1988).  Likewise, 

depending on vapor pressure and aerosol composition, one portion of these upwelling 

photons are further absorbed and converted into heat by aerosols and water vapor (Holland 

et al., 2011). These heat pathways are simultaneous and cannot be studied based on direct 

methods. Thus, thermodynamic models coupled to hydrodynamics must be used (Djoumna 

et al., 2014; Jolliff and Smith, 2014). In physical oceanography, thermodynamic models have 

shown that horizontal advection may be responsible for 90% of heat flux variability in surface 

littoral waters. Likewise, it has been shown that biota weakly (~ 3%) participates in this 

process. Also, numerical experiments in oceanic waters suggest that vertical mixing is the 

primary mechanism (up to 80 %) of modulating air-water heat transfer (Oschlies, 2004). 

Over relatively large areas (i.e., 600-1000 km) and periods of time (i.e., years to decades), 

heat budget can be simplified as advection effects are reduced (Gordon et al., 2000; Morel, 

1988; Strutton and Chavez, 2004). In the Gulf of California, Castro et al. (1994) used a simple 

model to compute the net surface heat flux based on monthly heat content variation between 

0 and 400 m depth by: 

(ݐ)ܪ =  ܸ݀(ݐ ˎݔ)ܶܥߩ


        (10) 

where ܶ(ݐ ˎݔ) is the temperature profile [℃], ܥ is calculated from Millero et al. (1973), and 

dV [m3] are the volume elements centered at the standard depths calculated from the 

bathymetry. In order to remove high seasonal variability and derive inter-annual trends, they 

fit a seasonal signal by least squares: 

(ݐ)ܪ ≅ ܪ + ଵܪ cos ݐ߱ + ଶܪ sin  (11)      ݐ߱

where ω=2π/365 day-1, t is the time in days from January 1st, and H is annual harmonic in 

the Fourier series. Finally, they measured net heat flux values computed from meteorological 
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data with theoretical estimates as derived from the following equation Lavin and Organista 

(1988): 

(ݐ)ܳ ≅ ܳ + ܳଵ cos ݐ߱ + ܳଶ sin  (12)      ݐ߱

Jolliff et al. (2012) used a coupled numerical model for calculating the ocean biological 

feedback in Monterey Bay, California. More specifically, they combined a coupled ocean-

atmosphere mesoscale prediction system (COAMPS) with a nested numerical modeling 

system developed at the Naval Research Laboratory (NRL). During this process, they 

assessed the thermal impact of phytoplankton blooms in the Monterey Bay through 

investigating the sensitivity of their modeling system to changes on oceanic optical 

shortwave attenuation. They found that light attenuation by phytoplankton blooms can 

increase the local air temperature (up to ~ 2℃) and produce air-sea fluxes on short time scales 

(i.e., a few hours). Also, they suggest that the influence of suspended and dissolved matter 

(e.g., CDOM) on heat budget variables (i.e., ܳுˎ ܳோ) is comparable to phytoplankton at the 

air-sea interface. 

A more complex parameterization of temperature changes due to variations on RHR and 

hydrodynamics is (Kako and Kubota, 2009; Qiu and Kelly, 1993): 

h
ப

ப୲
+ U. ∇T = A୦h∇ଶT +

ଵ

ୡ
(Q − qୀି୦) − ∆T(Wୣ + A୦∇ଶh)   (13) 

ଵ

ଶ
αgh∆TWୣ = mu ∗ଷ+  q(z)dz


ି୦

−
୦

ଶୡ
(Q + qୀି୦) − mୡ

୦

ସୡ
(|Q| − Q) (14) 

where h is the mixed layer depth and U is the horizontal velocity in the uppermost layer 

of the mixed layer. Constants A୦, ρ, c, α, ∆T, and g are the horizontal viscosity (103 m2s-1), 

seawater density (1028 kgm-3), specific heat of seawater (3930 Jkg-1K-1), thermal expansion 

coefficient of seawater (2.5 × 10-4 ℃-1), temperature difference between the mixed layer and 

water just below it (0.5 ℃), and gravitational acceleration, respectively. The two adjustable 
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constants ݉ and ݉ may be chosen 0.5 and 0.83, respectively (Qiu and Kelly, 1993). 

Likewise, ܳ denotes net heat flux through the sea surface that can be computed using the 

bulk formulas in Kondo (1975) with modeled SST, gridded wind speeds, and other 

atmospheric properties furnished by the national centers for environmental prediction 

(NCEP)- national centers for atmospheric research (NCAR) reanalysis products (Kalnay et 

al., 1996). Friction velocity (ݑ∗) can be computed using wind speed, with air density of 1.2 

kgm-3 and drag coefficient of 1.2 × 10-3. Other notations are standards, unless otherwise is 

stated. In the left hand side of the equation, local and advective change of temperature are 

denoted, respectively. The terms on the right side show the diffusive effect of heat flux on 

temperature in the upper mixed layer. The environment velocity ܹ at the bottom of the 

mixed layer is computed from Eq. (14). Heating by water constituents is incorporated into 

the downward radiative flux (Manizza et al., 2005): 

(ݖ)ݍ = ܫ0.58 + ோா݁ିೝ௭ܫ +  ா݁ି್௭     (15)ܫ

where ܫோா and ܫா are the irradiance in red and blue bands, respectively, and can be 

derived from the NCEP-NCAR re-analysis product. Attenuation coefficients of particulates 

for the visible wavelength bands with red/yellow (݇) and blue/green (݇) colors in Eq. (15) 

can be derived from the IOPs data obtained from in situ and previously-derived models (Isobe 

et al., 2014; Manizza et al., 2005; Morel, 1988). In summary, the computational procedure 

requires boundary conditions for ocean currents to solve Eq. (13) numerically, through 

solving entrainment velocity by Eq. (14) and downward radiative flux by Eq. (15). 

 

4.5 IMPACT OF SPM AND CDOM ON SST AND RHR 

Studies show the effect of suspended and dissolved particles on modulating RHR through 

light attenuation and diffusion in littoral waters (Nielsen et al., 2002; Savage et al., 2002). In 
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the Gulf of Maine, Ackleson et al. (1994) and Balch et al. (2002) found that waters dominated 

by coccolithophore blooms have 5-fold higher heating rates (0.32 ℃ day-1) compared with 

those where phytoplankton blooms were absent (0.06 ℃ day-1). Kahru et al. (1993) found 

that algal particulates in the southern Baltic Sea affect heat budget components by affecting 

ܳோ due to changes on reflectance. In this investigation, they found that the phytoplankton 

increased upward ܳோ through increasing the reflectance. They also found that water 

temperature was in average higher (up to 1.5 ℃) in waters characterized by phytoplankton 

blooms. In coastal waters of east and south China Sea Wang and Tang, (2010) showed that 

algal blooms may increase SST up to 1 and 5 ºC in spring and autumn in the East China Sea, 

respectively. This effect was attributed to the increase of solar radiation due to phytoplankton 

pigments.  

At mid and high latitudes, Shell et al. (2003) modeled SST changes due to phytoplankton 

by coupling an ocean general circulation and an atmospheric general circulation model forced 

by phytoplankton chlorophyll measurements derived from ocean color satellite sensors. They 

found that the variation of SST due to phytoplankton was 0.1 – 1.5 ºC and 0.1 – 0.3 ºC during 

spring/summer and during fall/winter, respectively. Jolliff et al. (2012) found that optical 

attenuation associated with phytoplankton blooms in the Monterey Bay substantially impacts 

the thermal exchange between ocean and atmosphere. This investigation showed that 

phytoplankton blooms may cause a local atmospheric warming of 2 ℃ day-1. Jolliff and 

Smith (2014) found that thermal stratification due to phytoplankton has also a positive 

feedback on phytoplankton growth and further vertical gradients of temperature and mixing 

reduction of the water column. Off Japan coast, Isobe et al. (2014) developed a radiative-

convective model and found that phytoplankton may be responsible of SST changes of up to 

1℃, in the Chukchi Sea during summer. The information is summarized in Table 1. 
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Table 1. Summarized information on previous studied on the thermal effects of 

particulates in coastal and oceanic waters 

Study Temperature change ( ̊C) Region 

Isobe et al. (2014) 1 Chukchi Sea 

Joliff et al. (2012) 2 Monterey Bay 

Wang and Tang (2010) 1-5 East China Sea 

Shell et al. (2003) 0.1-1.5 Global scale 

Balch et al (2002) 1 Gulf of Maine 

Ackleson et al. (1994) 1 Gulf of Maine 

Kahru et al. (1993) 1.5 Southern Baltic Sea 

 

 

CDOM and SPM have a comparable contribution to light absorption and RHR (i.e., 

~50%) (Hill 2008). In Central Arctic surface waters, Pegau, (2002) found that within 30 – 

50 % of UV radiation absorption ( = 200 – 380 nm) is due to CDOM, and light absorption 

by CDOM in the top 10 m of water column and within the visible spectral range ( = 350 – 

700 nm) may increase RHR in ~30%. Off the New Jersey coast and during June-August 

2001, Chang and Dickey (2004) found that light absorption due to CDOM and non-algal 

particles (NAP) may have larger (two folds) effects on RHR compared with phytoplankton. 
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4.6 PARTICLE-MEDIATED HEAT VARIABILITY AND WEATHER PATTERNS 

The spatial variation of heat fluxes driven by suspended particulates influences the 

variability of temperature in the upper mixed layer of ocean and the lower atmosphere. These 

thermodynamic perturbations can have different impacts on local weather variables as sea 

ice and cloudiness, which are the focus of the following section.  

 

4.6.1 SEA ICE  

Manizza et al. (2005) showed that water heating due to phytoplankton may cause a 

reduction of sea ice cover (up to 6%) in summer. This is a major change with respect to the 

warming attributed to water and air temperature (~2%). Also, changes of SST due to 

phytoplankton growth has a positive feedback on ice melting (Manizza et al., 2005). In Arctic 

and Subarctic regions, under-ice phytoplankton blooms may cause a local increase in surface 

temperature and a change of heat flux during early spring (Nelson and Smith, 1986). In 

coastal waters, the impact of CDOM and NAP on sea ice melting is more important with 

respect to phytoplankton (Chang and Dickey, 2004; Dickey and Falkowsky, 2002). Based on 

a global model, Loptien (2011) studied relationships between water turbidity and SST in the 

Baltic Sea. The main finding of this study was that turbidity-mediated changes on SST may 

affect timing of sea ice (e.g., early retreats in spring and late formation in autumn). 
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4.6.2 CLOUDINESS 

In the previous section, the influence of SPM on SST and convective oscillations in the 

atmosphere was discussed. Indeed, the formation of marine low clouds has been found to be 

substantially correlated with ܳு and ܳா (Ghate et al., 2009). In general, variations on ܳு are 

responsible of modifying cloud types, by transforming marine stratiform clouds into trade 

wind cumuliform clouds (Rosenfeld et al., 2006). Furthermore, the increase of surface 

sensible heat flux and/or latent heat flux can trigger the formation of open cell clouds, and 

subsequent precipitation (Wang et al., 2010). The resulting heat fluxes make the boundary 

layer thicker due to the larger vertical air velocities that favor the formation of thicker clouds 

and the initiation of rain events (Mechem et al., 2012). Due to SST variability, the paths of 

weather fronts can be slightly shifted (Senatore et al., 2014). Thus, it is expected that SST 

gradients due to SPM changes may alter trajectory of fronts. These atmospheric 

modifications may cause precipitation near coastal areas having mountains due to the 

displacement of humid air toward higher elevations, where orographic effects enhance 

rainfall intensity (Langhans et al., 2013).  

 

4.6.3 AEROSOLS 

Aerosols play a key role in cloud formation and type in coastal and marine regions. Kazil 

et al. (2014) showed that carbon-rich aerosols are highly hygroscopic and may play a role in 

shifting a convective cloud from a closed cell (i.e., without precipitation) to an open cell 

cloud (i.e., with precipitation) due to the formation of convective currents.  In Tasmania, 

Australia, McCoy et al. (2015) showed that more than half of variations in cloud particles are 

principally originated from marine biogenic matter. Likewise, Krüger and Graßl (2011) 
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showed that in Southern Ocean, within 45°S and 65°S and during austral summer, 

phytoplankton blooms significantly participate in precipitation regime of the region by 

providing a major fraction of cloud condensation nuclei (CCN). These particles play a key 

role in providing suitable conditions for nuclei production and cloud formation. Likewise, 

spatial variations of algal and non-algal particulates can affect convective currents and 

subsequent cloud cover conditions over the region. Indeed, studies in mid latitudes show that 

spatial alterations of SST are associated to cloud cover and type and forms phytoplankton 

blooms (Isobe et al., 2014; Morel, 1988). Also, rain-derived turbidity plumes increase light 

attenuation at the top level of water column and increase the SST variation over the turbid 

zone (Nakamoto et al., 2001; Shell et al., 2003). These processes may accelerate the upward 

motion of marine aerosols and signify their effect on cloud formation and type. Despite the 

important role of organic particles, numerical simulations suggest that aerosols have a 

secondary influence on triggering precipitation in clouds with respect to temperature and 

moisture perturbations at the boundary layer (Wang et al., 2010; Mechem et al., 2012). 

The National Aeronautics and Space Administration (NASA) has established the 

phytoplankton, Aerosol, Clouds and ocean Ecosystem (PACE) mission, tentatively 

scheduled to launch in 2022 to understand how the living ocean improve forecasts of earth 

system variability. The objective of this mission is to understand global ocean ecology, 

biogeochemistry, and carbon cycle based on global ocean color measurements and find their 

interrelationship with the Earth’s climate, clouds, and aerosols (www.nasa.gov). Similarly, 

the European space agency (ESA) initiated a program in 2009 in response to the need for 

climate-quality data. Their objective was to ameliorate the quality of obtained data by 

satellite network and achieve more accurate responses from global climate models. During 

their program, they have been monitoring ocean-atmosphere variables such as aerosol, cloud, 

SST, and ocean color, and find their connection in global climate. Finally, to be launched in 

2018 as a collaborating mission, the Japan aerospace exploration agency (JAXA) and ESA 

have established an earth observation satellite, so called EarthCARE. Their objective is to 
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use four sensors such as cloud profiling radar, backscatter Lidar, multispectral imager, and 

broadband radiometer, to observe clouds and aerosols on a global scale. This information 

helps to understand the details of aerosols and clouds for reducing crucial differences in 

climate change predictions. 

 

4.6.4 CLIMATE FEEDBACKS 

Global climate patterns are responsible for changing the intensity, duration, and 

frequency of weather conditions, which in turn have an influence on spatial and temporal 

distribution of dissolved and suspended particulate matter. Here, four climate indices are 

discussed, starting with the mode having the largest spatial and temporal influence on the 

eastern Canada climate, the Atlantic multi-decadal oscillation (AMO). Some posteriori, 

climate modes characterized by shorter periodicities, such as the North Atlantic oscillation 

(NAO), the multivariate ENSO index (MEI), and the Arctic oscillation, are examined.  

The AMO is a mode of natural variability occurring in the North Atlantic Ocean and has 

a major influence in SST. The AMO is responsible of SST changes over the North Atlantic 

with a periodicity of 60-80 years. Multi-decadal variations have been found in drought and 

precipitation records in many regions around the world. McCabe et al. (2008) showed that 

AMO is the most consistent indicator of decadal to multi-decadal drought variability in the 

US during the 20th century. Droughts, based on their frequency, intensity, and duration, can 

enhance the thermal effects associated to SPM in coastal waters due to their major role in 

coastal and inland erosion. As result of land erosion more terrigenous particulates are 

transported toward littoral waters. Thus, nearshore waters become more turbid due to the 

formation of turbidity plumes (Jacobi et al., 2015). McCabe and Wolock (2014) showed that 

there is a positive link between the positive phase of AMO and the increase of SST and 
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precipitation in North America, while the negative phase is associated with smaller 

fluctuations of SST and precipitation. In Quebec, Assani et al. (2010) showed that AMO had 

a minor influence on river discharge along the north shore of the Gulf of St. Lawrence. 

The NAO is the leading pattern of atmospheric variability occurring at middle and high 

latitudes influencing the North Atlantic Ocean (Pegau et al. 1997). Indeed, the NAO 

perturbation is related to a redistribution of air mass between the Arctic and the Sub-Tropical 

Atlantic Oceans. NAO has a positive phase that reflects below-normal geopotential heights 

with pressure systems across high latitudes of the North Atlantic, and above-normal 

geopotential heights with pressure systems over the central North Atlantic, the eastern United 

States and Western Europe.  

The negative phase of NAO reflects an opposite pattern of height and pressure anomalies 

over central North Atlantic, the eastern United States and Western Europe. The NAO’s 

change of phase takes place within a biennial to a decadal time scale (Hurrell and Loon, 

1997).  This phase shift generates changes on wind speed and direction, heat and moisture 

transport, SST, and storm characteristics (Wettstein and Mearns, 2002). Likewise, the NAO 

phase alteration has been associated to variation of river discharge in the northern hemisphere 

(Cayan, 1992). Thus, during a NAO+ (positive phase), increase in fresh water supply 

increases the magnitude of transported particulates (Dickson et al., 1996). During the NAO- 

(negative phase), Hátún et al. (2009) found a decrease of strength of the subpolar gyre. This 

hydrographic alteration was related to a decrease of phytoplankton population, and thus, 

decreasing the population of grazers. In the St. Lawrence Estuary and during the NAO+, 

Assani et al., (2011) found an increase of river flow along the north shore of the St. Lawrence 

River water shed.  

The MEI is a monthly index based on six main variables measured over the tropical 

Pacific Ocean: sea level pressure, zonal and meridional components of the surface wind, sea 

surface temperature, surface air temperature, and cloudiness (Gouirand and Moron, 2003). 



112 

 

The El Nino Southern Oscillation (ENSO) is the most important coupled ocean-atmosphere 

phenomenon to cause global climate variability at time scales from two to seven years and is 

highly correlated to the MEI (Spencer and Braswell, 2013). Indeed, negative and positive 

values of the MEI are characterized by cold (La Nina) and warm (El Nino) ENSO phases and 

lower and higher than normal SST, respectively, over central and eastern equatorial pacific.  

The warm phase of ENSO is associated with weaker low-level atmospheric winds along 

the equator, enhanced convection across the entire equatorial pacific, increase in global SST, 

and stronger jet stream activities over North America during the El Nino winters (Shabbar 

and Skinner, 2004). Thus, it is expected that SPM increases during a warm ENSO over 

eastern Canada. Spencer and Braswell, (2013) reported that surface temperature and 

cloudiness decrease during a negative phase of ENSO, due to decrease of solar radiation 

reaching the ocean surface. During El Nino, the southern and central areas of Quebec are 

commonly associated to a greater intensity and duration of rainfalls characterized by an 

anomalous warm winter. Thus, a greater transport of terrigenous particulates toward the 

Estuary and the Gulf of St. Lawrence during winter are expected during El Nino years 

(Assani et al., 2011). Although not measured, this phenomenon is expected to increase the 

SST during early spring and late fall due to larger proportion of solar radiation absorbed by 

land-derived particulate matter. 

The Atlantic Oscillation, also referred as AO, is a climate index that can be related to 

particle transport by rivers and land runoffs through affecting atmospheric conditions. It 

describes the atmospheric circulation over the Arctic, also referred as the northern 

hemisphere annular mode. The AO positive phase is characterized by below average 

geopotential heights associated with more atmospheric instability and precipitation, stronger 

winds, and more reduced SST, while during an AO-, the sign of geopotential heights is 

reversed. An AO negative phase is associated with weakening of the polar low-pressure 

system (the polar vortex) over the Arctic, and consequently, weakening of upper level winds 
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(i.e., westerlies at these latitudes), which results in cold Arctic air displacements farther south 

into the U.S. (Wettstein and Mearns, 2002). Handorf et al. (2015) found a weak correlation 

between the negative phase of AO and the arctic snow cover and sea ice. In Quebec, Assani 

et al. (2011) showed that higher stream discharges along the south shore of the St. Lawrence 

watershed occurred during the AO-, while the AO+ was associated with less river discharges. 

The AO and NAO phases are positively correlated in North America. 

The production of in-land mineral and organic particulates due to seasonal variation of 

air temperature during spring and winter over the eastern Canada and North America can be 

corresponded to AO+ and NAO+. Wettstein and Mearns (2002) showed higher temperatures 

in the U.S. and lower temperatures in Quebec, Canada, when the AO – NAO indices increase. 

During the AO+ – NAO+, the occurrence of very low temperatures in Quebec may increase 

the forest dieback (Auclair et al., 1996). Moreover, a tree or shrub starts to die due to extreme 

cold conditions and generates leaf residuals that can be later transported to nearshore waters 

by the spring freshets (Brodie and Dunn, 2010; McCabe and Wolock, 2014; Jiang and Zhang, 

2015). Therefore, the phase variation of AO and NAO can be related to the variation in heat 

flux and surface water temperature in coastal waters due to variation in water constituents. 
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Table S1. List of acronyms 

Abbreviation Definition Unit 

AATSR Advanced Along Track Scanning Radiometer  

AMO Atlantic multi-decadal oscillation  

AMSU-A Advanced microwave sounding unit-A  

AMSU-B Advanced microwave sounding unit-b  

AO Atlantic oscillation  

AOGCM Atmosphere-ocean general circulation model  

ATOVS 
Advanced TIROS operational vertical 

sounder 
 

AVHRR Advanced very high-resolution radiometers  

CCN Cloud condensation nuclei  

CDOM Chromophoric dissolved organic matter  

CDR Climate Date Records  

COAMPS 
Coupled ocean – atmosphere prediction 

system 
 

CTD Conductivity, temperature, and depth  

DOM Dissolved organic matter  

EUMETSAT 
European organization for the exploitation of 

meteorological satellites 
 

GAC global area coverage  
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GBN Global Buoy Network  

GHRSST 
Group for High Resolution Sea Surface 

Temperature 
 

GOES 
Geostationary operational environmental 

satellite 
 

GTS Global Telecommunication system  

HIRS High resolution radiation sounder  

HyspIRI Hyperspectral infrared imager  

IASI Infrared atmospheric sounding interferometer  

ISAR 
Infrared Sea surface temperature 

Autonomous Radiometer 
 

LDV Laser Doppler velocimetry  

LIDAR Light detection and ranging  

M-AERI 
Marine-Atmosphere Emitted Radiance 

Interferometer 
 

MEI Multivariate ENSO index  

MHS Microwave humidity sounder  

MIRS Microwave integrated retrieval system  

NAO North Atlantic oscillation  

NAP Non-algal particles  

NCEP 
National Center for Environmental 

Predictions 
 

NESDIS 
National environmental satellite, data, and 

information service 
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NIR Near-infrared  

NOAA 
National oceanic and atmospheric 

administration 
 

NRL Naval research laboratory  

PACE Pre-aerosol Clouds and ocean Ecosystem  

PIV Particle image velocimetry  

PSU Practical salinity units  

RHR Radiant heat rate  

RMSE Root mean square error  

SAR Synthetic aperture radar  

SISTeR 
Scanning Infrared Sea Surface Temperature 

Radiometer 
 

SSEC Space science and engineering center  

SSM/I Special sensor microwave imager  

TIR Thermal infrared  

TIROS Television Infrared Observation Satellite  

TOA Top of the atmosphere  

UV Ultra violet  

VOS Voluntary observing ships  

WMO World Meteorological Organization  

∇ଶT Laplacian of temperature ℃2 m-2 
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A୦ Horizontal viscosity m2 s-1 

qୀି୦ Heat flux at the depth h W 

Wୣ Environment velocity m s-1 

 ா Coefficient of latent flux KJ kg-1 K-1ܥ

 ு Coefficient of sensible flux KJ kg-1 K-1ܥ

 , Constant pressure specific heat of air KJ kg-1 K-1ܥ

.ݖ)ௗܧ  Spectral downwelling at the depth z w m-2 nm-1 (ߣ

.ݖ)ܧ  Net irradiance profiles at the depth z w m-2 nm-1 (ߣ

.ݖ)௨ܧ  Upwelling irradiances at the depth z w m-2 nm-1 (ߣ

 ா Irradiance in blue band W m-2ܫ

 ோா Irradiance in red band W m-2ܫ

  Evaporative latent heat Wܮ

ܳா Latent heat flux W 

ܳு Sensible heat flux W 

ܳோ Radiative heat flux W 

ܴௗ Complementary downwelling sky radiance Wsr−1m−2 

ܴ௨ Upwelling sea radiance Wsr−1m−2 

ܶ(ݖ) Solar transmission function - 

ܽைெ(ߣ) CDOM absorption coefficient m-1 
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ܽே(ߣ) NAP absorption coefficient m-1 

ܽ(ߣ) Phytoplankton absorption coefficient m-1 

ܽ௪(ߣ) Water absorption coefficient m-1 

ܿ Specific heat of seawater 
W s kg-1 

°C-1 

݇ 
Attenuation coefficients of particulates with 

blue/green colors m-1 

݇ 
Attenuation coefficients of particulates with 

red/yellow colors m-1 

 Friction velocity m s-1 ∗ݑ

 - Sea-surface albedo (ߣ)ߙ

  Air density Kg m-3ߩ

∆ܶ Air-sea difference of temperature ℃ 

 - Specific humidity ݍ∆

∇T Gradient of temperature ℃ m-1 

e Emissivity of the sea surface - 

h Mixed-layer depth m 

Q Net heat flux through the sea surface W 

RHR(z) Radiant heat rate ºC s-1 

U Wind speed above the air-sea interface m s-1 
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Z Depth m 

α thermal expansion coefficient of seawater ℃-1 

 Total absorption coefficient m-1 (ߣ)ܽ
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CHAPTER 5 

5. GENERAL CONCLUSION 

5.1 CONCLUSIONS 

The general objective of this thesis was to propose new remote sensing parameterizations 

for estimation the concentration of SPM in surface waters of the SLE (chapter 2). Also, the 

intention was to investigate to investigate the response of optically-derived CSPM to different 

particle assemblages in terms of chemical composition and size distribution (chapter 3). A 

final motivation of this thesis was to review the role of SPM on heat budgets of littoral waters 

(chapter 4). In the introduction, fundamental concepts in marine optics are summarized. Also 

as part of this chapter, the study area, sampling protocols, and remote sensing models are 

described.  

In the second chapter, a remote sensing model was originally proposed estimating the 

concentration of SPM in surface waters of the SLE and the Saguenay Fjord. Unlike previous 

algorithms, the parameterization evaluated here included optical information in the near-IR 

range to minimize the interference of strongly-light absorbing components in the blue 

spectral region. The MERIS-derived model for estimating CSPM may be applied to other SLE-

like environments having comparable optical properties and water turbidities. The suggested 

remote sensing approach will be also useful in future spaceborne missions such as Sentinel-

3, a sensor having compatibility with MERIS spectral bands. An important result in chapter 

2 was The sensitivity of MERIS bands 7 and 9 to changes on particle chemical composition 
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measurements. This effect was observed in situ and later confirmed based on synthetic 

remote sensing spectra obtained from radiative transfer model simulations.  

In the third chapter, relationships between inherent optical properties of SPM and two 

particle second-order attributes (size distribution and chemical composition) showed the 

greater importance of particle dimensions for determining the variability of SPM scattering 

properties. Conversely, it was found that changes on refractive index of SPM, as inferred 

from the mineral content of particulates, was critical for explaining variations on particle 

absorption properties.  

In the fourth chapter, the effects of suspended and dissolved particulates on the 

distribution of heat fluxes in turbid waters and the associated climate feedbacks were 

reviewed. Indeed, climate is expected to increase precipitation and turbidity plumes in the 

SLE, which will cause a redistribution of heat fluxes along the estuary since runoff will be 

mainly occurring in the lower estuary. Conversely, we could illustrate that how the 

immersion of particles in the variation of heat flux at the water surface can participate in 

altering weather conditions in a region. Besides particles, we discussed the comparable role 

of CDOM in light absorption within UV-blue wavelength compared to suspended particles, 

and the contribution of CDOM in radiant heat flux. In the SLE, CDOM is provided by several 

rivers and tributaries along the estuary, majorly the St. Lawrence River and the Saguenay 

Fjord. 

 

5.2 PERSPECTIVES 

An important research topic to address in the future is the influence of subpixel variability 

on satellite-derived CSPM estimates. The SLE is a very dynamic environment that is 

characterized by a large spatial and temporal variability of SPM. Thus, a better sampling 

strategy should use continuous measurements of SPM-related variables (e.g., turbidity, 
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backscattering) over the satellite footprint. In order to minimize errors on satellite retrievals 

of CSPM, an important effort should be focused in improving the mineral composition of SPM, 

a critical factor for obtaining accurate weight measurements. Lastly, this can be done by using 

multiple instruments such as Coulter Counter and LISST. 

Accurate determinations of particle composition and size, and the associated inherent 

optical properties can help to understand how different suspended particles participate in the 

variation of radiant heat transfer through the absorbing of incident light. This information 

helps us to better understand relationships between different particle assemblages, heat fluxes 

and associated water temperature changes. These particle-mediated changes on water 

temperature can be assimilated into weather models for evaluating the impact of SPM on 

meteorological parameters such as atmospheric vertical motion, potential vorticity, and cloud 

condensation level. 
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